Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaType.cpp
Warning:line 6055, column 45
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaType.cpp

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaType.cpp

1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeLocVisitor.h"
24#include "clang/Basic/PartialDiagnostic.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Lex/Preprocessor.h"
27#include "clang/Sema/DeclSpec.h"
28#include "clang/Sema/DelayedDiagnostic.h"
29#include "clang/Sema/Lookup.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Sema/ScopeInfo.h"
32#include "clang/Sema/SemaInternal.h"
33#include "clang/Sema/Template.h"
34#include "clang/Sema/TemplateInstCallback.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/StringSwitch.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/Support/ErrorHandling.h"
40#include <bitset>
41
42using namespace clang;
43
44enum TypeDiagSelector {
45 TDS_Function,
46 TDS_Pointer,
47 TDS_ObjCObjOrBlock
48};
49
50/// isOmittedBlockReturnType - Return true if this declarator is missing a
51/// return type because this is a omitted return type on a block literal.
52static bool isOmittedBlockReturnType(const Declarator &D) {
53 if (D.getContext() != DeclaratorContext::BlockLiteral ||
54 D.getDeclSpec().hasTypeSpecifier())
55 return false;
56
57 if (D.getNumTypeObjects() == 0)
58 return true; // ^{ ... }
59
60 if (D.getNumTypeObjects() == 1 &&
61 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
62 return true; // ^(int X, float Y) { ... }
63
64 return false;
65}
66
67/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
68/// doesn't apply to the given type.
69static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
70 QualType type) {
71 TypeDiagSelector WhichType;
72 bool useExpansionLoc = true;
73 switch (attr.getKind()) {
74 case ParsedAttr::AT_ObjCGC:
75 WhichType = TDS_Pointer;
76 break;
77 case ParsedAttr::AT_ObjCOwnership:
78 WhichType = TDS_ObjCObjOrBlock;
79 break;
80 default:
81 // Assume everything else was a function attribute.
82 WhichType = TDS_Function;
83 useExpansionLoc = false;
84 break;
85 }
86
87 SourceLocation loc = attr.getLoc();
88 StringRef name = attr.getAttrName()->getName();
89
90 // The GC attributes are usually written with macros; special-case them.
91 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
92 : nullptr;
93 if (useExpansionLoc && loc.isMacroID() && II) {
94 if (II->isStr("strong")) {
95 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
96 } else if (II->isStr("weak")) {
97 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
98 }
99 }
100
101 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
102 << type;
103}
104
105// objc_gc applies to Objective-C pointers or, otherwise, to the
106// smallest available pointer type (i.e. 'void*' in 'void**').
107#define OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership \
108 case ParsedAttr::AT_ObjCGC: \
109 case ParsedAttr::AT_ObjCOwnership
110
111// Calling convention attributes.
112#define CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
\
113 case ParsedAttr::AT_CDecl: \
114 case ParsedAttr::AT_FastCall: \
115 case ParsedAttr::AT_StdCall: \
116 case ParsedAttr::AT_ThisCall: \
117 case ParsedAttr::AT_RegCall: \
118 case ParsedAttr::AT_Pascal: \
119 case ParsedAttr::AT_SwiftCall: \
120 case ParsedAttr::AT_SwiftAsyncCall: \
121 case ParsedAttr::AT_VectorCall: \
122 case ParsedAttr::AT_AArch64VectorPcs: \
123 case ParsedAttr::AT_MSABI: \
124 case ParsedAttr::AT_SysVABI: \
125 case ParsedAttr::AT_Pcs: \
126 case ParsedAttr::AT_IntelOclBicc: \
127 case ParsedAttr::AT_PreserveMost: \
128 case ParsedAttr::AT_PreserveAll
129
130// Function type attributes.
131#define FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
\
132 case ParsedAttr::AT_NSReturnsRetained: \
133 case ParsedAttr::AT_NoReturn: \
134 case ParsedAttr::AT_Regparm: \
135 case ParsedAttr::AT_CmseNSCall: \
136 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
137 case ParsedAttr::AT_AnyX86NoCfCheck: \
138 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
139
140// Microsoft-specific type qualifiers.
141#define MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
\
142 case ParsedAttr::AT_Ptr32: \
143 case ParsedAttr::AT_Ptr64: \
144 case ParsedAttr::AT_SPtr: \
145 case ParsedAttr::AT_UPtr
146
147// Nullability qualifiers.
148#define NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
\
149 case ParsedAttr::AT_TypeNonNull: \
150 case ParsedAttr::AT_TypeNullable: \
151 case ParsedAttr::AT_TypeNullableResult: \
152 case ParsedAttr::AT_TypeNullUnspecified
153
154namespace {
155 /// An object which stores processing state for the entire
156 /// GetTypeForDeclarator process.
157 class TypeProcessingState {
158 Sema &sema;
159
160 /// The declarator being processed.
161 Declarator &declarator;
162
163 /// The index of the declarator chunk we're currently processing.
164 /// May be the total number of valid chunks, indicating the
165 /// DeclSpec.
166 unsigned chunkIndex;
167
168 /// Whether there are non-trivial modifications to the decl spec.
169 bool trivial;
170
171 /// Whether we saved the attributes in the decl spec.
172 bool hasSavedAttrs;
173
174 /// The original set of attributes on the DeclSpec.
175 SmallVector<ParsedAttr *, 2> savedAttrs;
176
177 /// A list of attributes to diagnose the uselessness of when the
178 /// processing is complete.
179 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
180
181 /// Attributes corresponding to AttributedTypeLocs that we have not yet
182 /// populated.
183 // FIXME: The two-phase mechanism by which we construct Types and fill
184 // their TypeLocs makes it hard to correctly assign these. We keep the
185 // attributes in creation order as an attempt to make them line up
186 // properly.
187 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
188 SmallVector<TypeAttrPair, 8> AttrsForTypes;
189 bool AttrsForTypesSorted = true;
190
191 /// MacroQualifiedTypes mapping to macro expansion locations that will be
192 /// stored in a MacroQualifiedTypeLoc.
193 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
194
195 /// Flag to indicate we parsed a noderef attribute. This is used for
196 /// validating that noderef was used on a pointer or array.
197 bool parsedNoDeref;
198
199 public:
200 TypeProcessingState(Sema &sema, Declarator &declarator)
201 : sema(sema), declarator(declarator),
202 chunkIndex(declarator.getNumTypeObjects()), trivial(true),
203 hasSavedAttrs(false), parsedNoDeref(false) {}
204
205 Sema &getSema() const {
206 return sema;
207 }
208
209 Declarator &getDeclarator() const {
210 return declarator;
211 }
212
213 bool isProcessingDeclSpec() const {
214 return chunkIndex == declarator.getNumTypeObjects();
215 }
216
217 unsigned getCurrentChunkIndex() const {
218 return chunkIndex;
219 }
220
221 void setCurrentChunkIndex(unsigned idx) {
222 assert(idx <= declarator.getNumTypeObjects())((void)0);
223 chunkIndex = idx;
224 }
225
226 ParsedAttributesView &getCurrentAttributes() const {
227 if (isProcessingDeclSpec())
228 return getMutableDeclSpec().getAttributes();
229 return declarator.getTypeObject(chunkIndex).getAttrs();
230 }
231
232 /// Save the current set of attributes on the DeclSpec.
233 void saveDeclSpecAttrs() {
234 // Don't try to save them multiple times.
235 if (hasSavedAttrs) return;
236
237 DeclSpec &spec = getMutableDeclSpec();
238 for (ParsedAttr &AL : spec.getAttributes())
239 savedAttrs.push_back(&AL);
240 trivial &= savedAttrs.empty();
241 hasSavedAttrs = true;
242 }
243
244 /// Record that we had nowhere to put the given type attribute.
245 /// We will diagnose such attributes later.
246 void addIgnoredTypeAttr(ParsedAttr &attr) {
247 ignoredTypeAttrs.push_back(&attr);
248 }
249
250 /// Diagnose all the ignored type attributes, given that the
251 /// declarator worked out to the given type.
252 void diagnoseIgnoredTypeAttrs(QualType type) const {
253 for (auto *Attr : ignoredTypeAttrs)
254 diagnoseBadTypeAttribute(getSema(), *Attr, type);
255 }
256
257 /// Get an attributed type for the given attribute, and remember the Attr
258 /// object so that we can attach it to the AttributedTypeLoc.
259 QualType getAttributedType(Attr *A, QualType ModifiedType,
260 QualType EquivType) {
261 QualType T =
262 sema.Context.getAttributedType(A->getKind(), ModifiedType, EquivType);
263 AttrsForTypes.push_back({cast<AttributedType>(T.getTypePtr()), A});
264 AttrsForTypesSorted = false;
265 return T;
266 }
267
268 /// Completely replace the \c auto in \p TypeWithAuto by
269 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
270 /// necessary.
271 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
272 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
273 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
274 // Attributed type still should be an attributed type after replacement.
275 auto *NewAttrTy = cast<AttributedType>(T.getTypePtr());
276 for (TypeAttrPair &A : AttrsForTypes) {
277 if (A.first == AttrTy)
278 A.first = NewAttrTy;
279 }
280 AttrsForTypesSorted = false;
281 }
282 return T;
283 }
284
285 /// Extract and remove the Attr* for a given attributed type.
286 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
287 if (!AttrsForTypesSorted) {
288 llvm::stable_sort(AttrsForTypes, llvm::less_first());
289 AttrsForTypesSorted = true;
290 }
291
292 // FIXME: This is quadratic if we have lots of reuses of the same
293 // attributed type.
294 for (auto It = std::partition_point(
295 AttrsForTypes.begin(), AttrsForTypes.end(),
296 [=](const TypeAttrPair &A) { return A.first < AT; });
297 It != AttrsForTypes.end() && It->first == AT; ++It) {
298 if (It->second) {
299 const Attr *Result = It->second;
300 It->second = nullptr;
301 return Result;
302 }
303 }
304
305 llvm_unreachable("no Attr* for AttributedType*")__builtin_unreachable();
306 }
307
308 SourceLocation
309 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
310 auto FoundLoc = LocsForMacros.find(MQT);
311 assert(FoundLoc != LocsForMacros.end() &&((void)0)
312 "Unable to find macro expansion location for MacroQualifedType")((void)0);
313 return FoundLoc->second;
314 }
315
316 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
317 SourceLocation Loc) {
318 LocsForMacros[MQT] = Loc;
319 }
320
321 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
322
323 bool didParseNoDeref() const { return parsedNoDeref; }
324
325 ~TypeProcessingState() {
326 if (trivial) return;
327
328 restoreDeclSpecAttrs();
329 }
330
331 private:
332 DeclSpec &getMutableDeclSpec() const {
333 return const_cast<DeclSpec&>(declarator.getDeclSpec());
334 }
335
336 void restoreDeclSpecAttrs() {
337 assert(hasSavedAttrs)((void)0);
338
339 getMutableDeclSpec().getAttributes().clearListOnly();
340 for (ParsedAttr *AL : savedAttrs)
341 getMutableDeclSpec().getAttributes().addAtEnd(AL);
342 }
343 };
344} // end anonymous namespace
345
346static void moveAttrFromListToList(ParsedAttr &attr,
347 ParsedAttributesView &fromList,
348 ParsedAttributesView &toList) {
349 fromList.remove(&attr);
350 toList.addAtEnd(&attr);
351}
352
353/// The location of a type attribute.
354enum TypeAttrLocation {
355 /// The attribute is in the decl-specifier-seq.
356 TAL_DeclSpec,
357 /// The attribute is part of a DeclaratorChunk.
358 TAL_DeclChunk,
359 /// The attribute is immediately after the declaration's name.
360 TAL_DeclName
361};
362
363static void processTypeAttrs(TypeProcessingState &state, QualType &type,
364 TypeAttrLocation TAL, ParsedAttributesView &attrs);
365
366static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
367 QualType &type);
368
369static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
370 ParsedAttr &attr, QualType &type);
371
372static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
373 QualType &type);
374
375static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
376 ParsedAttr &attr, QualType &type);
377
378static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
379 ParsedAttr &attr, QualType &type) {
380 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
381 return handleObjCGCTypeAttr(state, attr, type);
382 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership)((void)0);
383 return handleObjCOwnershipTypeAttr(state, attr, type);
384}
385
386/// Given the index of a declarator chunk, check whether that chunk
387/// directly specifies the return type of a function and, if so, find
388/// an appropriate place for it.
389///
390/// \param i - a notional index which the search will start
391/// immediately inside
392///
393/// \param onlyBlockPointers Whether we should only look into block
394/// pointer types (vs. all pointer types).
395static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
396 unsigned i,
397 bool onlyBlockPointers) {
398 assert(i <= declarator.getNumTypeObjects())((void)0);
399
400 DeclaratorChunk *result = nullptr;
401
402 // First, look inwards past parens for a function declarator.
403 for (; i != 0; --i) {
404 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
405 switch (fnChunk.Kind) {
406 case DeclaratorChunk::Paren:
407 continue;
408
409 // If we find anything except a function, bail out.
410 case DeclaratorChunk::Pointer:
411 case DeclaratorChunk::BlockPointer:
412 case DeclaratorChunk::Array:
413 case DeclaratorChunk::Reference:
414 case DeclaratorChunk::MemberPointer:
415 case DeclaratorChunk::Pipe:
416 return result;
417
418 // If we do find a function declarator, scan inwards from that,
419 // looking for a (block-)pointer declarator.
420 case DeclaratorChunk::Function:
421 for (--i; i != 0; --i) {
422 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
423 switch (ptrChunk.Kind) {
424 case DeclaratorChunk::Paren:
425 case DeclaratorChunk::Array:
426 case DeclaratorChunk::Function:
427 case DeclaratorChunk::Reference:
428 case DeclaratorChunk::Pipe:
429 continue;
430
431 case DeclaratorChunk::MemberPointer:
432 case DeclaratorChunk::Pointer:
433 if (onlyBlockPointers)
434 continue;
435
436 LLVM_FALLTHROUGH[[gnu::fallthrough]];
437
438 case DeclaratorChunk::BlockPointer:
439 result = &ptrChunk;
440 goto continue_outer;
441 }
442 llvm_unreachable("bad declarator chunk kind")__builtin_unreachable();
443 }
444
445 // If we run out of declarators doing that, we're done.
446 return result;
447 }
448 llvm_unreachable("bad declarator chunk kind")__builtin_unreachable();
449
450 // Okay, reconsider from our new point.
451 continue_outer: ;
452 }
453
454 // Ran out of chunks, bail out.
455 return result;
456}
457
458/// Given that an objc_gc attribute was written somewhere on a
459/// declaration *other* than on the declarator itself (for which, use
460/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
461/// didn't apply in whatever position it was written in, try to move
462/// it to a more appropriate position.
463static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
464 ParsedAttr &attr, QualType type) {
465 Declarator &declarator = state.getDeclarator();
466
467 // Move it to the outermost normal or block pointer declarator.
468 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
469 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
470 switch (chunk.Kind) {
471 case DeclaratorChunk::Pointer:
472 case DeclaratorChunk::BlockPointer: {
473 // But don't move an ARC ownership attribute to the return type
474 // of a block.
475 DeclaratorChunk *destChunk = nullptr;
476 if (state.isProcessingDeclSpec() &&
477 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
478 destChunk = maybeMovePastReturnType(declarator, i - 1,
479 /*onlyBlockPointers=*/true);
480 if (!destChunk) destChunk = &chunk;
481
482 moveAttrFromListToList(attr, state.getCurrentAttributes(),
483 destChunk->getAttrs());
484 return;
485 }
486
487 case DeclaratorChunk::Paren:
488 case DeclaratorChunk::Array:
489 continue;
490
491 // We may be starting at the return type of a block.
492 case DeclaratorChunk::Function:
493 if (state.isProcessingDeclSpec() &&
494 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
495 if (DeclaratorChunk *dest = maybeMovePastReturnType(
496 declarator, i,
497 /*onlyBlockPointers=*/true)) {
498 moveAttrFromListToList(attr, state.getCurrentAttributes(),
499 dest->getAttrs());
500 return;
501 }
502 }
503 goto error;
504
505 // Don't walk through these.
506 case DeclaratorChunk::Reference:
507 case DeclaratorChunk::MemberPointer:
508 case DeclaratorChunk::Pipe:
509 goto error;
510 }
511 }
512 error:
513
514 diagnoseBadTypeAttribute(state.getSema(), attr, type);
515}
516
517/// Distribute an objc_gc type attribute that was written on the
518/// declarator.
519static void distributeObjCPointerTypeAttrFromDeclarator(
520 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
521 Declarator &declarator = state.getDeclarator();
522
523 // objc_gc goes on the innermost pointer to something that's not a
524 // pointer.
525 unsigned innermost = -1U;
526 bool considerDeclSpec = true;
527 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
528 DeclaratorChunk &chunk = declarator.getTypeObject(i);
529 switch (chunk.Kind) {
530 case DeclaratorChunk::Pointer:
531 case DeclaratorChunk::BlockPointer:
532 innermost = i;
533 continue;
534
535 case DeclaratorChunk::Reference:
536 case DeclaratorChunk::MemberPointer:
537 case DeclaratorChunk::Paren:
538 case DeclaratorChunk::Array:
539 case DeclaratorChunk::Pipe:
540 continue;
541
542 case DeclaratorChunk::Function:
543 considerDeclSpec = false;
544 goto done;
545 }
546 }
547 done:
548
549 // That might actually be the decl spec if we weren't blocked by
550 // anything in the declarator.
551 if (considerDeclSpec) {
552 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
553 // Splice the attribute into the decl spec. Prevents the
554 // attribute from being applied multiple times and gives
555 // the source-location-filler something to work with.
556 state.saveDeclSpecAttrs();
557 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
558 declarator.getAttributes(), &attr);
559 return;
560 }
561 }
562
563 // Otherwise, if we found an appropriate chunk, splice the attribute
564 // into it.
565 if (innermost != -1U) {
566 moveAttrFromListToList(attr, declarator.getAttributes(),
567 declarator.getTypeObject(innermost).getAttrs());
568 return;
569 }
570
571 // Otherwise, diagnose when we're done building the type.
572 declarator.getAttributes().remove(&attr);
573 state.addIgnoredTypeAttr(attr);
574}
575
576/// A function type attribute was written somewhere in a declaration
577/// *other* than on the declarator itself or in the decl spec. Given
578/// that it didn't apply in whatever position it was written in, try
579/// to move it to a more appropriate position.
580static void distributeFunctionTypeAttr(TypeProcessingState &state,
581 ParsedAttr &attr, QualType type) {
582 Declarator &declarator = state.getDeclarator();
583
584 // Try to push the attribute from the return type of a function to
585 // the function itself.
586 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
587 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
588 switch (chunk.Kind) {
589 case DeclaratorChunk::Function:
590 moveAttrFromListToList(attr, state.getCurrentAttributes(),
591 chunk.getAttrs());
592 return;
593
594 case DeclaratorChunk::Paren:
595 case DeclaratorChunk::Pointer:
596 case DeclaratorChunk::BlockPointer:
597 case DeclaratorChunk::Array:
598 case DeclaratorChunk::Reference:
599 case DeclaratorChunk::MemberPointer:
600 case DeclaratorChunk::Pipe:
601 continue;
602 }
603 }
604
605 diagnoseBadTypeAttribute(state.getSema(), attr, type);
606}
607
608/// Try to distribute a function type attribute to the innermost
609/// function chunk or type. Returns true if the attribute was
610/// distributed, false if no location was found.
611static bool distributeFunctionTypeAttrToInnermost(
612 TypeProcessingState &state, ParsedAttr &attr,
613 ParsedAttributesView &attrList, QualType &declSpecType) {
614 Declarator &declarator = state.getDeclarator();
615
616 // Put it on the innermost function chunk, if there is one.
617 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
618 DeclaratorChunk &chunk = declarator.getTypeObject(i);
619 if (chunk.Kind != DeclaratorChunk::Function) continue;
620
621 moveAttrFromListToList(attr, attrList, chunk.getAttrs());
622 return true;
623 }
624
625 return handleFunctionTypeAttr(state, attr, declSpecType);
626}
627
628/// A function type attribute was written in the decl spec. Try to
629/// apply it somewhere.
630static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
631 ParsedAttr &attr,
632 QualType &declSpecType) {
633 state.saveDeclSpecAttrs();
634
635 // C++11 attributes before the decl specifiers actually appertain to
636 // the declarators. Move them straight there. We don't support the
637 // 'put them wherever you like' semantics we allow for GNU attributes.
638 if (attr.isStandardAttributeSyntax()) {
639 moveAttrFromListToList(attr, state.getCurrentAttributes(),
640 state.getDeclarator().getAttributes());
641 return;
642 }
643
644 // Try to distribute to the innermost.
645 if (distributeFunctionTypeAttrToInnermost(
646 state, attr, state.getCurrentAttributes(), declSpecType))
647 return;
648
649 // If that failed, diagnose the bad attribute when the declarator is
650 // fully built.
651 state.addIgnoredTypeAttr(attr);
652}
653
654/// A function type attribute was written on the declarator. Try to
655/// apply it somewhere.
656static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
657 ParsedAttr &attr,
658 QualType &declSpecType) {
659 Declarator &declarator = state.getDeclarator();
660
661 // Try to distribute to the innermost.
662 if (distributeFunctionTypeAttrToInnermost(
663 state, attr, declarator.getAttributes(), declSpecType))
664 return;
665
666 // If that failed, diagnose the bad attribute when the declarator is
667 // fully built.
668 declarator.getAttributes().remove(&attr);
669 state.addIgnoredTypeAttr(attr);
670}
671
672/// Given that there are attributes written on the declarator
673/// itself, try to distribute any type attributes to the appropriate
674/// declarator chunk.
675///
676/// These are attributes like the following:
677/// int f ATTR;
678/// int (f ATTR)();
679/// but not necessarily this:
680/// int f() ATTR;
681static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
682 QualType &declSpecType) {
683 // Collect all the type attributes from the declarator itself.
684 assert(!state.getDeclarator().getAttributes().empty() &&((void)0)
685 "declarator has no attrs!")((void)0);
686 // The called functions in this loop actually remove things from the current
687 // list, so iterating over the existing list isn't possible. Instead, make a
688 // non-owning copy and iterate over that.
689 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
690 for (ParsedAttr &attr : AttrsCopy) {
691 // Do not distribute [[]] attributes. They have strict rules for what
692 // they appertain to.
693 if (attr.isStandardAttributeSyntax())
694 continue;
695
696 switch (attr.getKind()) {
697 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
698 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
699 break;
700
701 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
:
702 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType);
703 break;
704
705 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
706 // Microsoft type attributes cannot go after the declarator-id.
707 continue;
708
709 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
710 // Nullability specifiers cannot go after the declarator-id.
711
712 // Objective-C __kindof does not get distributed.
713 case ParsedAttr::AT_ObjCKindOf:
714 continue;
715
716 default:
717 break;
718 }
719 }
720}
721
722/// Add a synthetic '()' to a block-literal declarator if it is
723/// required, given the return type.
724static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
725 QualType declSpecType) {
726 Declarator &declarator = state.getDeclarator();
727
728 // First, check whether the declarator would produce a function,
729 // i.e. whether the innermost semantic chunk is a function.
730 if (declarator.isFunctionDeclarator()) {
731 // If so, make that declarator a prototyped declarator.
732 declarator.getFunctionTypeInfo().hasPrototype = true;
733 return;
734 }
735
736 // If there are any type objects, the type as written won't name a
737 // function, regardless of the decl spec type. This is because a
738 // block signature declarator is always an abstract-declarator, and
739 // abstract-declarators can't just be parentheses chunks. Therefore
740 // we need to build a function chunk unless there are no type
741 // objects and the decl spec type is a function.
742 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
743 return;
744
745 // Note that there *are* cases with invalid declarators where
746 // declarators consist solely of parentheses. In general, these
747 // occur only in failed efforts to make function declarators, so
748 // faking up the function chunk is still the right thing to do.
749
750 // Otherwise, we need to fake up a function declarator.
751 SourceLocation loc = declarator.getBeginLoc();
752
753 // ...and *prepend* it to the declarator.
754 SourceLocation NoLoc;
755 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
756 /*HasProto=*/true,
757 /*IsAmbiguous=*/false,
758 /*LParenLoc=*/NoLoc,
759 /*ArgInfo=*/nullptr,
760 /*NumParams=*/0,
761 /*EllipsisLoc=*/NoLoc,
762 /*RParenLoc=*/NoLoc,
763 /*RefQualifierIsLvalueRef=*/true,
764 /*RefQualifierLoc=*/NoLoc,
765 /*MutableLoc=*/NoLoc, EST_None,
766 /*ESpecRange=*/SourceRange(),
767 /*Exceptions=*/nullptr,
768 /*ExceptionRanges=*/nullptr,
769 /*NumExceptions=*/0,
770 /*NoexceptExpr=*/nullptr,
771 /*ExceptionSpecTokens=*/nullptr,
772 /*DeclsInPrototype=*/None, loc, loc, declarator));
773
774 // For consistency, make sure the state still has us as processing
775 // the decl spec.
776 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1)((void)0);
777 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
778}
779
780static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
781 unsigned &TypeQuals,
782 QualType TypeSoFar,
783 unsigned RemoveTQs,
784 unsigned DiagID) {
785 // If this occurs outside a template instantiation, warn the user about
786 // it; they probably didn't mean to specify a redundant qualifier.
787 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
788 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
789 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
790 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
791 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
792 if (!(RemoveTQs & Qual.first))
793 continue;
794
795 if (!S.inTemplateInstantiation()) {
796 if (TypeQuals & Qual.first)
797 S.Diag(Qual.second, DiagID)
798 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
799 << FixItHint::CreateRemoval(Qual.second);
800 }
801
802 TypeQuals &= ~Qual.first;
803 }
804}
805
806/// Return true if this is omitted block return type. Also check type
807/// attributes and type qualifiers when returning true.
808static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
809 QualType Result) {
810 if (!isOmittedBlockReturnType(declarator))
811 return false;
812
813 // Warn if we see type attributes for omitted return type on a block literal.
814 SmallVector<ParsedAttr *, 2> ToBeRemoved;
815 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
816 if (AL.isInvalid() || !AL.isTypeAttr())
817 continue;
818 S.Diag(AL.getLoc(),
819 diag::warn_block_literal_attributes_on_omitted_return_type)
820 << AL;
821 ToBeRemoved.push_back(&AL);
822 }
823 // Remove bad attributes from the list.
824 for (ParsedAttr *AL : ToBeRemoved)
825 declarator.getMutableDeclSpec().getAttributes().remove(AL);
826
827 // Warn if we see type qualifiers for omitted return type on a block literal.
828 const DeclSpec &DS = declarator.getDeclSpec();
829 unsigned TypeQuals = DS.getTypeQualifiers();
830 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
831 diag::warn_block_literal_qualifiers_on_omitted_return_type);
832 declarator.getMutableDeclSpec().ClearTypeQualifiers();
833
834 return true;
835}
836
837/// Apply Objective-C type arguments to the given type.
838static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
839 ArrayRef<TypeSourceInfo *> typeArgs,
840 SourceRange typeArgsRange,
841 bool failOnError = false) {
842 // We can only apply type arguments to an Objective-C class type.
843 const auto *objcObjectType = type->getAs<ObjCObjectType>();
844 if (!objcObjectType || !objcObjectType->getInterface()) {
845 S.Diag(loc, diag::err_objc_type_args_non_class)
846 << type
847 << typeArgsRange;
848
849 if (failOnError)
850 return QualType();
851 return type;
852 }
853
854 // The class type must be parameterized.
855 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
856 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
857 if (!typeParams) {
858 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
859 << objcClass->getDeclName()
860 << FixItHint::CreateRemoval(typeArgsRange);
861
862 if (failOnError)
863 return QualType();
864
865 return type;
866 }
867
868 // The type must not already be specialized.
869 if (objcObjectType->isSpecialized()) {
870 S.Diag(loc, diag::err_objc_type_args_specialized_class)
871 << type
872 << FixItHint::CreateRemoval(typeArgsRange);
873
874 if (failOnError)
875 return QualType();
876
877 return type;
878 }
879
880 // Check the type arguments.
881 SmallVector<QualType, 4> finalTypeArgs;
882 unsigned numTypeParams = typeParams->size();
883 bool anyPackExpansions = false;
884 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
885 TypeSourceInfo *typeArgInfo = typeArgs[i];
886 QualType typeArg = typeArgInfo->getType();
887
888 // Type arguments cannot have explicit qualifiers or nullability.
889 // We ignore indirect sources of these, e.g. behind typedefs or
890 // template arguments.
891 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
892 bool diagnosed = false;
893 SourceRange rangeToRemove;
894 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
895 rangeToRemove = attr.getLocalSourceRange();
896 if (attr.getTypePtr()->getImmediateNullability()) {
897 typeArg = attr.getTypePtr()->getModifiedType();
898 S.Diag(attr.getBeginLoc(),
899 diag::err_objc_type_arg_explicit_nullability)
900 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
901 diagnosed = true;
902 }
903 }
904
905 if (!diagnosed) {
906 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
907 << typeArg << typeArg.getQualifiers().getAsString()
908 << FixItHint::CreateRemoval(rangeToRemove);
909 }
910 }
911
912 // Remove qualifiers even if they're non-local.
913 typeArg = typeArg.getUnqualifiedType();
914
915 finalTypeArgs.push_back(typeArg);
916
917 if (typeArg->getAs<PackExpansionType>())
918 anyPackExpansions = true;
919
920 // Find the corresponding type parameter, if there is one.
921 ObjCTypeParamDecl *typeParam = nullptr;
922 if (!anyPackExpansions) {
923 if (i < numTypeParams) {
924 typeParam = typeParams->begin()[i];
925 } else {
926 // Too many arguments.
927 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
928 << false
929 << objcClass->getDeclName()
930 << (unsigned)typeArgs.size()
931 << numTypeParams;
932 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
933 << objcClass;
934
935 if (failOnError)
936 return QualType();
937
938 return type;
939 }
940 }
941
942 // Objective-C object pointer types must be substitutable for the bounds.
943 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
944 // If we don't have a type parameter to match against, assume
945 // everything is fine. There was a prior pack expansion that
946 // means we won't be able to match anything.
947 if (!typeParam) {
948 assert(anyPackExpansions && "Too many arguments?")((void)0);
949 continue;
950 }
951
952 // Retrieve the bound.
953 QualType bound = typeParam->getUnderlyingType();
954 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
955
956 // Determine whether the type argument is substitutable for the bound.
957 if (typeArgObjC->isObjCIdType()) {
958 // When the type argument is 'id', the only acceptable type
959 // parameter bound is 'id'.
960 if (boundObjC->isObjCIdType())
961 continue;
962 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
963 // Otherwise, we follow the assignability rules.
964 continue;
965 }
966
967 // Diagnose the mismatch.
968 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
969 diag::err_objc_type_arg_does_not_match_bound)
970 << typeArg << bound << typeParam->getDeclName();
971 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
972 << typeParam->getDeclName();
973
974 if (failOnError)
975 return QualType();
976
977 return type;
978 }
979
980 // Block pointer types are permitted for unqualified 'id' bounds.
981 if (typeArg->isBlockPointerType()) {
982 // If we don't have a type parameter to match against, assume
983 // everything is fine. There was a prior pack expansion that
984 // means we won't be able to match anything.
985 if (!typeParam) {
986 assert(anyPackExpansions && "Too many arguments?")((void)0);
987 continue;
988 }
989
990 // Retrieve the bound.
991 QualType bound = typeParam->getUnderlyingType();
992 if (bound->isBlockCompatibleObjCPointerType(S.Context))
993 continue;
994
995 // Diagnose the mismatch.
996 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
997 diag::err_objc_type_arg_does_not_match_bound)
998 << typeArg << bound << typeParam->getDeclName();
999 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
1000 << typeParam->getDeclName();
1001
1002 if (failOnError)
1003 return QualType();
1004
1005 return type;
1006 }
1007
1008 // Dependent types will be checked at instantiation time.
1009 if (typeArg->isDependentType()) {
1010 continue;
1011 }
1012
1013 // Diagnose non-id-compatible type arguments.
1014 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1015 diag::err_objc_type_arg_not_id_compatible)
1016 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1017
1018 if (failOnError)
1019 return QualType();
1020
1021 return type;
1022 }
1023
1024 // Make sure we didn't have the wrong number of arguments.
1025 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1026 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1027 << (typeArgs.size() < typeParams->size())
1028 << objcClass->getDeclName()
1029 << (unsigned)finalTypeArgs.size()
1030 << (unsigned)numTypeParams;
1031 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1032 << objcClass;
1033
1034 if (failOnError)
1035 return QualType();
1036
1037 return type;
1038 }
1039
1040 // Success. Form the specialized type.
1041 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
1042}
1043
1044QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1045 SourceLocation ProtocolLAngleLoc,
1046 ArrayRef<ObjCProtocolDecl *> Protocols,
1047 ArrayRef<SourceLocation> ProtocolLocs,
1048 SourceLocation ProtocolRAngleLoc,
1049 bool FailOnError) {
1050 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1051 if (!Protocols.empty()) {
1052 bool HasError;
1053 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1054 HasError);
1055 if (HasError) {
1056 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1057 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1058 if (FailOnError) Result = QualType();
1059 }
1060 if (FailOnError && Result.isNull())
1061 return QualType();
1062 }
1063
1064 return Result;
1065}
1066
1067QualType Sema::BuildObjCObjectType(QualType BaseType,
1068 SourceLocation Loc,
1069 SourceLocation TypeArgsLAngleLoc,
1070 ArrayRef<TypeSourceInfo *> TypeArgs,
1071 SourceLocation TypeArgsRAngleLoc,
1072 SourceLocation ProtocolLAngleLoc,
1073 ArrayRef<ObjCProtocolDecl *> Protocols,
1074 ArrayRef<SourceLocation> ProtocolLocs,
1075 SourceLocation ProtocolRAngleLoc,
1076 bool FailOnError) {
1077 QualType Result = BaseType;
1078 if (!TypeArgs.empty()) {
1079 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1080 SourceRange(TypeArgsLAngleLoc,
1081 TypeArgsRAngleLoc),
1082 FailOnError);
1083 if (FailOnError && Result.isNull())
1084 return QualType();
1085 }
1086
1087 if (!Protocols.empty()) {
1088 bool HasError;
1089 Result = Context.applyObjCProtocolQualifiers(Result, Protocols,
1090 HasError);
1091 if (HasError) {
1092 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1093 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1094 if (FailOnError) Result = QualType();
1095 }
1096 if (FailOnError && Result.isNull())
1097 return QualType();
1098 }
1099
1100 return Result;
1101}
1102
1103TypeResult Sema::actOnObjCProtocolQualifierType(
1104 SourceLocation lAngleLoc,
1105 ArrayRef<Decl *> protocols,
1106 ArrayRef<SourceLocation> protocolLocs,
1107 SourceLocation rAngleLoc) {
1108 // Form id<protocol-list>.
1109 QualType Result = Context.getObjCObjectType(
1110 Context.ObjCBuiltinIdTy, { },
1111 llvm::makeArrayRef(
1112 (ObjCProtocolDecl * const *)protocols.data(),
1113 protocols.size()),
1114 false);
1115 Result = Context.getObjCObjectPointerType(Result);
1116
1117 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1118 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1119
1120 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1121 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1122
1123 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1124 .castAs<ObjCObjectTypeLoc>();
1125 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1126 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1127
1128 // No type arguments.
1129 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1130 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1131
1132 // Fill in protocol qualifiers.
1133 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1134 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1135 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1136 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1137
1138 // We're done. Return the completed type to the parser.
1139 return CreateParsedType(Result, ResultTInfo);
1140}
1141
1142TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1143 Scope *S,
1144 SourceLocation Loc,
1145 ParsedType BaseType,
1146 SourceLocation TypeArgsLAngleLoc,
1147 ArrayRef<ParsedType> TypeArgs,
1148 SourceLocation TypeArgsRAngleLoc,
1149 SourceLocation ProtocolLAngleLoc,
1150 ArrayRef<Decl *> Protocols,
1151 ArrayRef<SourceLocation> ProtocolLocs,
1152 SourceLocation ProtocolRAngleLoc) {
1153 TypeSourceInfo *BaseTypeInfo = nullptr;
1154 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1155 if (T.isNull())
1156 return true;
1157
1158 // Handle missing type-source info.
1159 if (!BaseTypeInfo)
1160 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1161
1162 // Extract type arguments.
1163 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1164 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1165 TypeSourceInfo *TypeArgInfo = nullptr;
1166 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1167 if (TypeArg.isNull()) {
1168 ActualTypeArgInfos.clear();
1169 break;
1170 }
1171
1172 assert(TypeArgInfo && "No type source info?")((void)0);
1173 ActualTypeArgInfos.push_back(TypeArgInfo);
1174 }
1175
1176 // Build the object type.
1177 QualType Result = BuildObjCObjectType(
1178 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1179 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1180 ProtocolLAngleLoc,
1181 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1182 Protocols.size()),
1183 ProtocolLocs, ProtocolRAngleLoc,
1184 /*FailOnError=*/false);
1185
1186 if (Result == T)
1187 return BaseType;
1188
1189 // Create source information for this type.
1190 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1191 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1192
1193 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1194 // object pointer type. Fill in source information for it.
1195 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1196 // The '*' is implicit.
1197 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1198 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1199 }
1200
1201 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1202 // Protocol qualifier information.
1203 if (OTPTL.getNumProtocols() > 0) {
1204 assert(OTPTL.getNumProtocols() == Protocols.size())((void)0);
1205 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1206 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1207 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1208 OTPTL.setProtocolLoc(i, ProtocolLocs[i]);
1209 }
1210
1211 // We're done. Return the completed type to the parser.
1212 return CreateParsedType(Result, ResultTInfo);
1213 }
1214
1215 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1216
1217 // Type argument information.
1218 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1219 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size())((void)0);
1220 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1221 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1222 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1223 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1224 } else {
1225 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1226 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1227 }
1228
1229 // Protocol qualifier information.
1230 if (ObjCObjectTL.getNumProtocols() > 0) {
1231 assert(ObjCObjectTL.getNumProtocols() == Protocols.size())((void)0);
1232 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1233 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1234 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1235 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1236 } else {
1237 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1238 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1239 }
1240
1241 // Base type.
1242 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1243 if (ObjCObjectTL.getType() == T)
1244 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1245 else
1246 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1247
1248 // We're done. Return the completed type to the parser.
1249 return CreateParsedType(Result, ResultTInfo);
1250}
1251
1252static OpenCLAccessAttr::Spelling
1253getImageAccess(const ParsedAttributesView &Attrs) {
1254 for (const ParsedAttr &AL : Attrs)
1255 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1256 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1257 return OpenCLAccessAttr::Keyword_read_only;
1258}
1259
1260/// Convert the specified declspec to the appropriate type
1261/// object.
1262/// \param state Specifies the declarator containing the declaration specifier
1263/// to be converted, along with other associated processing state.
1264/// \returns The type described by the declaration specifiers. This function
1265/// never returns null.
1266static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1267 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1268 // checking.
1269
1270 Sema &S = state.getSema();
1271 Declarator &declarator = state.getDeclarator();
1272 DeclSpec &DS = declarator.getMutableDeclSpec();
1273 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1274 if (DeclLoc.isInvalid())
1275 DeclLoc = DS.getBeginLoc();
1276
1277 ASTContext &Context = S.Context;
1278
1279 QualType Result;
1280 switch (DS.getTypeSpecType()) {
1281 case DeclSpec::TST_void:
1282 Result = Context.VoidTy;
1283 break;
1284 case DeclSpec::TST_char:
1285 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1286 Result = Context.CharTy;
1287 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1288 Result = Context.SignedCharTy;
1289 else {
1290 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((void)0)
1291 "Unknown TSS value")((void)0);
1292 Result = Context.UnsignedCharTy;
1293 }
1294 break;
1295 case DeclSpec::TST_wchar:
1296 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1297 Result = Context.WCharTy;
1298 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1299 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1300 << DS.getSpecifierName(DS.getTypeSpecType(),
1301 Context.getPrintingPolicy());
1302 Result = Context.getSignedWCharType();
1303 } else {
1304 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&((void)0)
1305 "Unknown TSS value")((void)0);
1306 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1307 << DS.getSpecifierName(DS.getTypeSpecType(),
1308 Context.getPrintingPolicy());
1309 Result = Context.getUnsignedWCharType();
1310 }
1311 break;
1312 case DeclSpec::TST_char8:
1313 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0)
1314 "Unknown TSS value")((void)0);
1315 Result = Context.Char8Ty;
1316 break;
1317 case DeclSpec::TST_char16:
1318 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0)
1319 "Unknown TSS value")((void)0);
1320 Result = Context.Char16Ty;
1321 break;
1322 case DeclSpec::TST_char32:
1323 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0)
1324 "Unknown TSS value")((void)0);
1325 Result = Context.Char32Ty;
1326 break;
1327 case DeclSpec::TST_unspecified:
1328 // If this is a missing declspec in a block literal return context, then it
1329 // is inferred from the return statements inside the block.
1330 // The declspec is always missing in a lambda expr context; it is either
1331 // specified with a trailing return type or inferred.
1332 if (S.getLangOpts().CPlusPlus14 &&
1333 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1334 // In C++1y, a lambda's implicit return type is 'auto'.
1335 Result = Context.getAutoDeductType();
1336 break;
1337 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1338 checkOmittedBlockReturnType(S, declarator,
1339 Context.DependentTy)) {
1340 Result = Context.DependentTy;
1341 break;
1342 }
1343
1344 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1345 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1346 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1347 // Note that the one exception to this is function definitions, which are
1348 // allowed to be completely missing a declspec. This is handled in the
1349 // parser already though by it pretending to have seen an 'int' in this
1350 // case.
1351 if (S.getLangOpts().ImplicitInt) {
1352 // In C89 mode, we only warn if there is a completely missing declspec
1353 // when one is not allowed.
1354 if (DS.isEmpty()) {
1355 S.Diag(DeclLoc, diag::ext_missing_declspec)
1356 << DS.getSourceRange()
1357 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1358 }
1359 } else if (!DS.hasTypeSpecifier()) {
1360 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1361 // "At least one type specifier shall be given in the declaration
1362 // specifiers in each declaration, and in the specifier-qualifier list in
1363 // each struct declaration and type name."
1364 if (S.getLangOpts().CPlusPlus && !DS.isTypeSpecPipe()) {
1365 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1366 << DS.getSourceRange();
1367
1368 // When this occurs in C++ code, often something is very broken with the
1369 // value being declared, poison it as invalid so we don't get chains of
1370 // errors.
1371 declarator.setInvalidType(true);
1372 } else if ((S.getLangOpts().OpenCLVersion >= 200 ||
1373 S.getLangOpts().OpenCLCPlusPlus) &&
1374 DS.isTypeSpecPipe()) {
1375 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1376 << DS.getSourceRange();
1377 declarator.setInvalidType(true);
1378 } else {
1379 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1380 << DS.getSourceRange();
1381 }
1382 }
1383
1384 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1385 case DeclSpec::TST_int: {
1386 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1387 switch (DS.getTypeSpecWidth()) {
1388 case TypeSpecifierWidth::Unspecified:
1389 Result = Context.IntTy;
1390 break;
1391 case TypeSpecifierWidth::Short:
1392 Result = Context.ShortTy;
1393 break;
1394 case TypeSpecifierWidth::Long:
1395 Result = Context.LongTy;
1396 break;
1397 case TypeSpecifierWidth::LongLong:
1398 Result = Context.LongLongTy;
1399
1400 // 'long long' is a C99 or C++11 feature.
1401 if (!S.getLangOpts().C99) {
1402 if (S.getLangOpts().CPlusPlus)
1403 S.Diag(DS.getTypeSpecWidthLoc(),
1404 S.getLangOpts().CPlusPlus11 ?
1405 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1406 else
1407 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1408 }
1409 break;
1410 }
1411 } else {
1412 switch (DS.getTypeSpecWidth()) {
1413 case TypeSpecifierWidth::Unspecified:
1414 Result = Context.UnsignedIntTy;
1415 break;
1416 case TypeSpecifierWidth::Short:
1417 Result = Context.UnsignedShortTy;
1418 break;
1419 case TypeSpecifierWidth::Long:
1420 Result = Context.UnsignedLongTy;
1421 break;
1422 case TypeSpecifierWidth::LongLong:
1423 Result = Context.UnsignedLongLongTy;
1424
1425 // 'long long' is a C99 or C++11 feature.
1426 if (!S.getLangOpts().C99) {
1427 if (S.getLangOpts().CPlusPlus)
1428 S.Diag(DS.getTypeSpecWidthLoc(),
1429 S.getLangOpts().CPlusPlus11 ?
1430 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1431 else
1432 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1433 }
1434 break;
1435 }
1436 }
1437 break;
1438 }
1439 case DeclSpec::TST_extint: {
1440 if (!S.Context.getTargetInfo().hasExtIntType())
1441 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1442 << "_ExtInt";
1443 Result =
1444 S.BuildExtIntType(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1445 DS.getRepAsExpr(), DS.getBeginLoc());
1446 if (Result.isNull()) {
1447 Result = Context.IntTy;
1448 declarator.setInvalidType(true);
1449 }
1450 break;
1451 }
1452 case DeclSpec::TST_accum: {
1453 switch (DS.getTypeSpecWidth()) {
1454 case TypeSpecifierWidth::Short:
1455 Result = Context.ShortAccumTy;
1456 break;
1457 case TypeSpecifierWidth::Unspecified:
1458 Result = Context.AccumTy;
1459 break;
1460 case TypeSpecifierWidth::Long:
1461 Result = Context.LongAccumTy;
1462 break;
1463 case TypeSpecifierWidth::LongLong:
1464 llvm_unreachable("Unable to specify long long as _Accum width")__builtin_unreachable();
1465 }
1466
1467 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1468 Result = Context.getCorrespondingUnsignedType(Result);
1469
1470 if (DS.isTypeSpecSat())
1471 Result = Context.getCorrespondingSaturatedType(Result);
1472
1473 break;
1474 }
1475 case DeclSpec::TST_fract: {
1476 switch (DS.getTypeSpecWidth()) {
1477 case TypeSpecifierWidth::Short:
1478 Result = Context.ShortFractTy;
1479 break;
1480 case TypeSpecifierWidth::Unspecified:
1481 Result = Context.FractTy;
1482 break;
1483 case TypeSpecifierWidth::Long:
1484 Result = Context.LongFractTy;
1485 break;
1486 case TypeSpecifierWidth::LongLong:
1487 llvm_unreachable("Unable to specify long long as _Fract width")__builtin_unreachable();
1488 }
1489
1490 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1491 Result = Context.getCorrespondingUnsignedType(Result);
1492
1493 if (DS.isTypeSpecSat())
1494 Result = Context.getCorrespondingSaturatedType(Result);
1495
1496 break;
1497 }
1498 case DeclSpec::TST_int128:
1499 if (!S.Context.getTargetInfo().hasInt128Type() &&
1500 !S.getLangOpts().SYCLIsDevice &&
1501 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1502 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1503 << "__int128";
1504 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1505 Result = Context.UnsignedInt128Ty;
1506 else
1507 Result = Context.Int128Ty;
1508 break;
1509 case DeclSpec::TST_float16:
1510 // CUDA host and device may have different _Float16 support, therefore
1511 // do not diagnose _Float16 usage to avoid false alarm.
1512 // ToDo: more precise diagnostics for CUDA.
1513 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1514 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1515 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1516 << "_Float16";
1517 Result = Context.Float16Ty;
1518 break;
1519 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1520 case DeclSpec::TST_BFloat16:
1521 if (!S.Context.getTargetInfo().hasBFloat16Type())
1522 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1523 << "__bf16";
1524 Result = Context.BFloat16Ty;
1525 break;
1526 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1527 case DeclSpec::TST_double:
1528 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1529 Result = Context.LongDoubleTy;
1530 else
1531 Result = Context.DoubleTy;
1532 if (S.getLangOpts().OpenCL) {
1533 if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1534 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1535 << 0 << Result
1536 << (S.getLangOpts().OpenCLVersion == 300
1537 ? "cl_khr_fp64 and __opencl_c_fp64"
1538 : "cl_khr_fp64");
1539 else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1540 S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1541 }
1542 break;
1543 case DeclSpec::TST_float128:
1544 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1545 !S.getLangOpts().SYCLIsDevice &&
1546 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsDevice))
1547 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1548 << "__float128";
1549 Result = Context.Float128Ty;
1550 break;
1551 case DeclSpec::TST_bool:
1552 Result = Context.BoolTy; // _Bool or bool
1553 break;
1554 case DeclSpec::TST_decimal32: // _Decimal32
1555 case DeclSpec::TST_decimal64: // _Decimal64
1556 case DeclSpec::TST_decimal128: // _Decimal128
1557 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1558 Result = Context.IntTy;
1559 declarator.setInvalidType(true);
1560 break;
1561 case DeclSpec::TST_class:
1562 case DeclSpec::TST_enum:
1563 case DeclSpec::TST_union:
1564 case DeclSpec::TST_struct:
1565 case DeclSpec::TST_interface: {
1566 TagDecl *D = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl());
1567 if (!D) {
1568 // This can happen in C++ with ambiguous lookups.
1569 Result = Context.IntTy;
1570 declarator.setInvalidType(true);
1571 break;
1572 }
1573
1574 // If the type is deprecated or unavailable, diagnose it.
1575 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1576
1577 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((void)0)
1578 DS.getTypeSpecComplex() == 0 &&((void)0)
1579 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0)
1580 "No qualifiers on tag names!")((void)0);
1581
1582 // TypeQuals handled by caller.
1583 Result = Context.getTypeDeclType(D);
1584
1585 // In both C and C++, make an ElaboratedType.
1586 ElaboratedTypeKeyword Keyword
1587 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1588 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result,
1589 DS.isTypeSpecOwned() ? D : nullptr);
1590 break;
1591 }
1592 case DeclSpec::TST_typename: {
1593 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&((void)0)
1594 DS.getTypeSpecComplex() == 0 &&((void)0)
1595 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&((void)0)
1596 "Can't handle qualifiers on typedef names yet!")((void)0);
1597 Result = S.GetTypeFromParser(DS.getRepAsType());
1598 if (Result.isNull()) {
1599 declarator.setInvalidType(true);
1600 }
1601
1602 // TypeQuals handled by caller.
1603 break;
1604 }
1605 case DeclSpec::TST_typeofType:
1606 // FIXME: Preserve type source info.
1607 Result = S.GetTypeFromParser(DS.getRepAsType());
1608 assert(!Result.isNull() && "Didn't get a type for typeof?")((void)0);
1609 if (!Result->isDependentType())
1610 if (const TagType *TT = Result->getAs<TagType>())
1611 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1612 // TypeQuals handled by caller.
1613 Result = Context.getTypeOfType(Result);
1614 break;
1615 case DeclSpec::TST_typeofExpr: {
1616 Expr *E = DS.getRepAsExpr();
1617 assert(E && "Didn't get an expression for typeof?")((void)0);
1618 // TypeQuals handled by caller.
1619 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1620 if (Result.isNull()) {
1621 Result = Context.IntTy;
1622 declarator.setInvalidType(true);
1623 }
1624 break;
1625 }
1626 case DeclSpec::TST_decltype: {
1627 Expr *E = DS.getRepAsExpr();
1628 assert(E && "Didn't get an expression for decltype?")((void)0);
1629 // TypeQuals handled by caller.
1630 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1631 if (Result.isNull()) {
1632 Result = Context.IntTy;
1633 declarator.setInvalidType(true);
1634 }
1635 break;
1636 }
1637 case DeclSpec::TST_underlyingType:
1638 Result = S.GetTypeFromParser(DS.getRepAsType());
1639 assert(!Result.isNull() && "Didn't get a type for __underlying_type?")((void)0);
1640 Result = S.BuildUnaryTransformType(Result,
1641 UnaryTransformType::EnumUnderlyingType,
1642 DS.getTypeSpecTypeLoc());
1643 if (Result.isNull()) {
1644 Result = Context.IntTy;
1645 declarator.setInvalidType(true);
1646 }
1647 break;
1648
1649 case DeclSpec::TST_auto:
1650 case DeclSpec::TST_decltype_auto: {
1651 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1652 ? AutoTypeKeyword::DecltypeAuto
1653 : AutoTypeKeyword::Auto;
1654
1655 ConceptDecl *TypeConstraintConcept = nullptr;
1656 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1657 if (DS.isConstrainedAuto()) {
1658 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1659 TypeConstraintConcept =
1660 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl());
1661 TemplateArgumentListInfo TemplateArgsInfo;
1662 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1663 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1664 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1665 TemplateId->NumArgs);
1666 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
1667 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1668 TemplateArgs.push_back(ArgLoc.getArgument());
1669 } else {
1670 declarator.setInvalidType(true);
1671 }
1672 }
1673 Result = S.Context.getAutoType(QualType(), AutoKW,
1674 /*IsDependent*/ false, /*IsPack=*/false,
1675 TypeConstraintConcept, TemplateArgs);
1676 break;
1677 }
1678
1679 case DeclSpec::TST_auto_type:
1680 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1681 break;
1682
1683 case DeclSpec::TST_unknown_anytype:
1684 Result = Context.UnknownAnyTy;
1685 break;
1686
1687 case DeclSpec::TST_atomic:
1688 Result = S.GetTypeFromParser(DS.getRepAsType());
1689 assert(!Result.isNull() && "Didn't get a type for _Atomic?")((void)0);
1690 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1691 if (Result.isNull()) {
1692 Result = Context.IntTy;
1693 declarator.setInvalidType(true);
1694 }
1695 break;
1696
1697#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1698 case DeclSpec::TST_##ImgType##_t: \
1699 switch (getImageAccess(DS.getAttributes())) { \
1700 case OpenCLAccessAttr::Keyword_write_only: \
1701 Result = Context.Id##WOTy; \
1702 break; \
1703 case OpenCLAccessAttr::Keyword_read_write: \
1704 Result = Context.Id##RWTy; \
1705 break; \
1706 case OpenCLAccessAttr::Keyword_read_only: \
1707 Result = Context.Id##ROTy; \
1708 break; \
1709 case OpenCLAccessAttr::SpellingNotCalculated: \
1710 llvm_unreachable("Spelling not yet calculated")__builtin_unreachable(); \
1711 } \
1712 break;
1713#include "clang/Basic/OpenCLImageTypes.def"
1714
1715 case DeclSpec::TST_error:
1716 Result = Context.IntTy;
1717 declarator.setInvalidType(true);
1718 break;
1719 }
1720
1721 // FIXME: we want resulting declarations to be marked invalid, but claiming
1722 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1723 // a null type.
1724 if (Result->containsErrors())
1725 declarator.setInvalidType();
1726
1727 if (S.getLangOpts().OpenCL) {
1728 const auto &OpenCLOptions = S.getOpenCLOptions();
1729 bool IsOpenCLC30 = (S.getLangOpts().OpenCLVersion == 300);
1730 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1731 // support.
1732 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1733 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1734 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1735 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1736 // only when the optional feature is supported
1737 if ((Result->isImageType() || Result->isSamplerT()) &&
1738 (IsOpenCLC30 &&
1739 !OpenCLOptions.isSupported("__opencl_c_images", S.getLangOpts()))) {
1740 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1741 << 0 << Result << "__opencl_c_images";
1742 declarator.setInvalidType();
1743 } else if (Result->isOCLImage3dWOType() &&
1744 !OpenCLOptions.isSupported("cl_khr_3d_image_writes",
1745 S.getLangOpts())) {
1746 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1747 << 0 << Result
1748 << (IsOpenCLC30
1749 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1750 : "cl_khr_3d_image_writes");
1751 declarator.setInvalidType();
1752 }
1753 }
1754
1755 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1756 DS.getTypeSpecType() == DeclSpec::TST_fract;
1757
1758 // Only fixed point types can be saturated
1759 if (DS.isTypeSpecSat() && !IsFixedPointType)
1760 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1761 << DS.getSpecifierName(DS.getTypeSpecType(),
1762 Context.getPrintingPolicy());
1763
1764 // Handle complex types.
1765 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1766 if (S.getLangOpts().Freestanding)
1767 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1768 Result = Context.getComplexType(Result);
1769 } else if (DS.isTypeAltiVecVector()) {
1770 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1771 assert(typeSize > 0 && "type size for vector must be greater than 0 bits")((void)0);
1772 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1773 if (DS.isTypeAltiVecPixel())
1774 VecKind = VectorType::AltiVecPixel;
1775 else if (DS.isTypeAltiVecBool())
1776 VecKind = VectorType::AltiVecBool;
1777 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1778 }
1779
1780 // FIXME: Imaginary.
1781 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1782 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1783
1784 // Before we process any type attributes, synthesize a block literal
1785 // function declarator if necessary.
1786 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1787 maybeSynthesizeBlockSignature(state, Result);
1788
1789 // Apply any type attributes from the decl spec. This may cause the
1790 // list of type attributes to be temporarily saved while the type
1791 // attributes are pushed around.
1792 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1793 if (!DS.isTypeSpecPipe())
1794 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes());
1795
1796 // Apply const/volatile/restrict qualifiers to T.
1797 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1798 // Warn about CV qualifiers on function types.
1799 // C99 6.7.3p8:
1800 // If the specification of a function type includes any type qualifiers,
1801 // the behavior is undefined.
1802 // C++11 [dcl.fct]p7:
1803 // The effect of a cv-qualifier-seq in a function declarator is not the
1804 // same as adding cv-qualification on top of the function type. In the
1805 // latter case, the cv-qualifiers are ignored.
1806 if (Result->isFunctionType()) {
1807 diagnoseAndRemoveTypeQualifiers(
1808 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1809 S.getLangOpts().CPlusPlus
1810 ? diag::warn_typecheck_function_qualifiers_ignored
1811 : diag::warn_typecheck_function_qualifiers_unspecified);
1812 // No diagnostic for 'restrict' or '_Atomic' applied to a
1813 // function type; we'll diagnose those later, in BuildQualifiedType.
1814 }
1815
1816 // C++11 [dcl.ref]p1:
1817 // Cv-qualified references are ill-formed except when the
1818 // cv-qualifiers are introduced through the use of a typedef-name
1819 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1820 //
1821 // There don't appear to be any other contexts in which a cv-qualified
1822 // reference type could be formed, so the 'ill-formed' clause here appears
1823 // to never happen.
1824 if (TypeQuals && Result->isReferenceType()) {
1825 diagnoseAndRemoveTypeQualifiers(
1826 S, DS, TypeQuals, Result,
1827 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1828 diag::warn_typecheck_reference_qualifiers);
1829 }
1830
1831 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1832 // than once in the same specifier-list or qualifier-list, either directly
1833 // or via one or more typedefs."
1834 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1835 && TypeQuals & Result.getCVRQualifiers()) {
1836 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1837 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1838 << "const";
1839 }
1840
1841 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1842 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1843 << "volatile";
1844 }
1845
1846 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1847 // produce a warning in this case.
1848 }
1849
1850 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1851
1852 // If adding qualifiers fails, just use the unqualified type.
1853 if (Qualified.isNull())
1854 declarator.setInvalidType(true);
1855 else
1856 Result = Qualified;
1857 }
1858
1859 assert(!Result.isNull() && "This function should not return a null type")((void)0);
1860 return Result;
1861}
1862
1863static std::string getPrintableNameForEntity(DeclarationName Entity) {
1864 if (Entity)
1865 return Entity.getAsString();
1866
1867 return "type name";
1868}
1869
1870QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1871 Qualifiers Qs, const DeclSpec *DS) {
1872 if (T.isNull())
1873 return QualType();
1874
1875 // Ignore any attempt to form a cv-qualified reference.
1876 if (T->isReferenceType()) {
1877 Qs.removeConst();
1878 Qs.removeVolatile();
1879 }
1880
1881 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1882 // object or incomplete types shall not be restrict-qualified."
1883 if (Qs.hasRestrict()) {
1884 unsigned DiagID = 0;
1885 QualType ProblemTy;
1886
1887 if (T->isAnyPointerType() || T->isReferenceType() ||
1888 T->isMemberPointerType()) {
1889 QualType EltTy;
1890 if (T->isObjCObjectPointerType())
1891 EltTy = T;
1892 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1893 EltTy = PTy->getPointeeType();
1894 else
1895 EltTy = T->getPointeeType();
1896
1897 // If we have a pointer or reference, the pointee must have an object
1898 // incomplete type.
1899 if (!EltTy->isIncompleteOrObjectType()) {
1900 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1901 ProblemTy = EltTy;
1902 }
1903 } else if (!T->isDependentType()) {
1904 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1905 ProblemTy = T;
1906 }
1907
1908 if (DiagID) {
1909 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1910 Qs.removeRestrict();
1911 }
1912 }
1913
1914 return Context.getQualifiedType(T, Qs);
1915}
1916
1917QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1918 unsigned CVRAU, const DeclSpec *DS) {
1919 if (T.isNull())
1920 return QualType();
1921
1922 // Ignore any attempt to form a cv-qualified reference.
1923 if (T->isReferenceType())
1924 CVRAU &=
1925 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
1926
1927 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1928 // TQ_unaligned;
1929 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
1930
1931 // C11 6.7.3/5:
1932 // If the same qualifier appears more than once in the same
1933 // specifier-qualifier-list, either directly or via one or more typedefs,
1934 // the behavior is the same as if it appeared only once.
1935 //
1936 // It's not specified what happens when the _Atomic qualifier is applied to
1937 // a type specified with the _Atomic specifier, but we assume that this
1938 // should be treated as if the _Atomic qualifier appeared multiple times.
1939 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1940 // C11 6.7.3/5:
1941 // If other qualifiers appear along with the _Atomic qualifier in a
1942 // specifier-qualifier-list, the resulting type is the so-qualified
1943 // atomic type.
1944 //
1945 // Don't need to worry about array types here, since _Atomic can't be
1946 // applied to such types.
1947 SplitQualType Split = T.getSplitUnqualifiedType();
1948 T = BuildAtomicType(QualType(Split.Ty, 0),
1949 DS ? DS->getAtomicSpecLoc() : Loc);
1950 if (T.isNull())
1951 return T;
1952 Split.Quals.addCVRQualifiers(CVR);
1953 return BuildQualifiedType(T, Loc, Split.Quals);
1954 }
1955
1956 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
1957 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
1958 return BuildQualifiedType(T, Loc, Q, DS);
1959}
1960
1961/// Build a paren type including \p T.
1962QualType Sema::BuildParenType(QualType T) {
1963 return Context.getParenType(T);
1964}
1965
1966/// Given that we're building a pointer or reference to the given
1967static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1968 SourceLocation loc,
1969 bool isReference) {
1970 // Bail out if retention is unrequired or already specified.
1971 if (!type->isObjCLifetimeType() ||
1972 type.getObjCLifetime() != Qualifiers::OCL_None)
1973 return type;
1974
1975 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1976
1977 // If the object type is const-qualified, we can safely use
1978 // __unsafe_unretained. This is safe (because there are no read
1979 // barriers), and it'll be safe to coerce anything but __weak* to
1980 // the resulting type.
1981 if (type.isConstQualified()) {
1982 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1983
1984 // Otherwise, check whether the static type does not require
1985 // retaining. This currently only triggers for Class (possibly
1986 // protocol-qualifed, and arrays thereof).
1987 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1988 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1989
1990 // If we are in an unevaluated context, like sizeof, skip adding a
1991 // qualification.
1992 } else if (S.isUnevaluatedContext()) {
1993 return type;
1994
1995 // If that failed, give an error and recover using __strong. __strong
1996 // is the option most likely to prevent spurious second-order diagnostics,
1997 // like when binding a reference to a field.
1998 } else {
1999 // These types can show up in private ivars in system headers, so
2000 // we need this to not be an error in those cases. Instead we
2001 // want to delay.
2002 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
2003 S.DelayedDiagnostics.add(
2004 sema::DelayedDiagnostic::makeForbiddenType(loc,
2005 diag::err_arc_indirect_no_ownership, type, isReference));
2006 } else {
2007 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
2008 }
2009 implicitLifetime = Qualifiers::OCL_Strong;
2010 }
2011 assert(implicitLifetime && "didn't infer any lifetime!")((void)0);
2012
2013 Qualifiers qs;
2014 qs.addObjCLifetime(implicitLifetime);
2015 return S.Context.getQualifiedType(type, qs);
2016}
2017
2018static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2019 std::string Quals = FnTy->getMethodQuals().getAsString();
2020
2021 switch (FnTy->getRefQualifier()) {
2022 case RQ_None:
2023 break;
2024
2025 case RQ_LValue:
2026 if (!Quals.empty())
2027 Quals += ' ';
2028 Quals += '&';
2029 break;
2030
2031 case RQ_RValue:
2032 if (!Quals.empty())
2033 Quals += ' ';
2034 Quals += "&&";
2035 break;
2036 }
2037
2038 return Quals;
2039}
2040
2041namespace {
2042/// Kinds of declarator that cannot contain a qualified function type.
2043///
2044/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2045/// a function type with a cv-qualifier or a ref-qualifier can only appear
2046/// at the topmost level of a type.
2047///
2048/// Parens and member pointers are permitted. We don't diagnose array and
2049/// function declarators, because they don't allow function types at all.
2050///
2051/// The values of this enum are used in diagnostics.
2052enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2053} // end anonymous namespace
2054
2055/// Check whether the type T is a qualified function type, and if it is,
2056/// diagnose that it cannot be contained within the given kind of declarator.
2057static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2058 QualifiedFunctionKind QFK) {
2059 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2060 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2061 if (!FPT ||
2062 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2063 return false;
2064
2065 S.Diag(Loc, diag::err_compound_qualified_function_type)
2066 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2067 << getFunctionQualifiersAsString(FPT);
2068 return true;
2069}
2070
2071bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2072 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2073 if (!FPT ||
2074 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2075 return false;
2076
2077 Diag(Loc, diag::err_qualified_function_typeid)
2078 << T << getFunctionQualifiersAsString(FPT);
2079 return true;
2080}
2081
2082// Helper to deduce addr space of a pointee type in OpenCL mode.
2083static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2084 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2085 !PointeeType->isSamplerT() &&
2086 !PointeeType.hasAddressSpace())
2087 PointeeType = S.getASTContext().getAddrSpaceQualType(
2088 PointeeType, S.getLangOpts().OpenCLGenericAddressSpace
2089 ? LangAS::opencl_generic
2090 : LangAS::opencl_private);
2091 return PointeeType;
2092}
2093
2094/// Build a pointer type.
2095///
2096/// \param T The type to which we'll be building a pointer.
2097///
2098/// \param Loc The location of the entity whose type involves this
2099/// pointer type or, if there is no such entity, the location of the
2100/// type that will have pointer type.
2101///
2102/// \param Entity The name of the entity that involves the pointer
2103/// type, if known.
2104///
2105/// \returns A suitable pointer type, if there are no
2106/// errors. Otherwise, returns a NULL type.
2107QualType Sema::BuildPointerType(QualType T,
2108 SourceLocation Loc, DeclarationName Entity) {
2109 if (T->isReferenceType()) {
2110 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2111 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2112 << getPrintableNameForEntity(Entity) << T;
2113 return QualType();
2114 }
2115
2116 if (T->isFunctionType() && getLangOpts().OpenCL &&
2117 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2118 getLangOpts())) {
2119 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2120 return QualType();
2121 }
2122
2123 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
2124 return QualType();
2125
2126 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType")((void)0);
2127
2128 // In ARC, it is forbidden to build pointers to unqualified pointers.
2129 if (getLangOpts().ObjCAutoRefCount)
2130 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
2131
2132 if (getLangOpts().OpenCL)
2133 T = deduceOpenCLPointeeAddrSpace(*this, T);
2134
2135 // Build the pointer type.
2136 return Context.getPointerType(T);
2137}
2138
2139/// Build a reference type.
2140///
2141/// \param T The type to which we'll be building a reference.
2142///
2143/// \param Loc The location of the entity whose type involves this
2144/// reference type or, if there is no such entity, the location of the
2145/// type that will have reference type.
2146///
2147/// \param Entity The name of the entity that involves the reference
2148/// type, if known.
2149///
2150/// \returns A suitable reference type, if there are no
2151/// errors. Otherwise, returns a NULL type.
2152QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2153 SourceLocation Loc,
2154 DeclarationName Entity) {
2155 assert(Context.getCanonicalType(T) != Context.OverloadTy &&((void)0)
2156 "Unresolved overloaded function type")((void)0);
2157
2158 // C++0x [dcl.ref]p6:
2159 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2160 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2161 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2162 // the type "lvalue reference to T", while an attempt to create the type
2163 // "rvalue reference to cv TR" creates the type TR.
2164 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2165
2166 // C++ [dcl.ref]p4: There shall be no references to references.
2167 //
2168 // According to C++ DR 106, references to references are only
2169 // diagnosed when they are written directly (e.g., "int & &"),
2170 // but not when they happen via a typedef:
2171 //
2172 // typedef int& intref;
2173 // typedef intref& intref2;
2174 //
2175 // Parser::ParseDeclaratorInternal diagnoses the case where
2176 // references are written directly; here, we handle the
2177 // collapsing of references-to-references as described in C++0x.
2178 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2179
2180 // C++ [dcl.ref]p1:
2181 // A declarator that specifies the type "reference to cv void"
2182 // is ill-formed.
2183 if (T->isVoidType()) {
2184 Diag(Loc, diag::err_reference_to_void);
2185 return QualType();
2186 }
2187
2188 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
2189 return QualType();
2190
2191 if (T->isFunctionType() && getLangOpts().OpenCL &&
2192 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2193 getLangOpts())) {
2194 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2195 return QualType();
2196 }
2197
2198 // In ARC, it is forbidden to build references to unqualified pointers.
2199 if (getLangOpts().ObjCAutoRefCount)
2200 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
2201
2202 if (getLangOpts().OpenCL)
2203 T = deduceOpenCLPointeeAddrSpace(*this, T);
2204
2205 // Handle restrict on references.
2206 if (LValueRef)
2207 return Context.getLValueReferenceType(T, SpelledAsLValue);
2208 return Context.getRValueReferenceType(T);
2209}
2210
2211/// Build a Read-only Pipe type.
2212///
2213/// \param T The type to which we'll be building a Pipe.
2214///
2215/// \param Loc We do not use it for now.
2216///
2217/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2218/// NULL type.
2219QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2220 return Context.getReadPipeType(T);
2221}
2222
2223/// Build a Write-only Pipe type.
2224///
2225/// \param T The type to which we'll be building a Pipe.
2226///
2227/// \param Loc We do not use it for now.
2228///
2229/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2230/// NULL type.
2231QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2232 return Context.getWritePipeType(T);
2233}
2234
2235/// Build a extended int type.
2236///
2237/// \param IsUnsigned Boolean representing the signedness of the type.
2238///
2239/// \param BitWidth Size of this int type in bits, or an expression representing
2240/// that.
2241///
2242/// \param Loc Location of the keyword.
2243QualType Sema::BuildExtIntType(bool IsUnsigned, Expr *BitWidth,
2244 SourceLocation Loc) {
2245 if (BitWidth->isInstantiationDependent())
2246 return Context.getDependentExtIntType(IsUnsigned, BitWidth);
2247
2248 llvm::APSInt Bits(32);
2249 ExprResult ICE =
2250 VerifyIntegerConstantExpression(BitWidth, &Bits, /*FIXME*/ AllowFold);
2251
2252 if (ICE.isInvalid())
2253 return QualType();
2254
2255 int64_t NumBits = Bits.getSExtValue();
2256 if (!IsUnsigned && NumBits < 2) {
2257 Diag(Loc, diag::err_ext_int_bad_size) << 0;
2258 return QualType();
2259 }
2260
2261 if (IsUnsigned && NumBits < 1) {
2262 Diag(Loc, diag::err_ext_int_bad_size) << 1;
2263 return QualType();
2264 }
2265
2266 if (NumBits > llvm::IntegerType::MAX_INT_BITS) {
2267 Diag(Loc, diag::err_ext_int_max_size) << IsUnsigned
2268 << llvm::IntegerType::MAX_INT_BITS;
2269 return QualType();
2270 }
2271
2272 return Context.getExtIntType(IsUnsigned, NumBits);
2273}
2274
2275/// Check whether the specified array bound can be evaluated using the relevant
2276/// language rules. If so, returns the possibly-converted expression and sets
2277/// SizeVal to the size. If not, but the expression might be a VLA bound,
2278/// returns ExprResult(). Otherwise, produces a diagnostic and returns
2279/// ExprError().
2280static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2281 llvm::APSInt &SizeVal, unsigned VLADiag,
2282 bool VLAIsError) {
2283 if (S.getLangOpts().CPlusPlus14 &&
2284 (VLAIsError ||
2285 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2286 // C++14 [dcl.array]p1:
2287 // The constant-expression shall be a converted constant expression of
2288 // type std::size_t.
2289 //
2290 // Don't apply this rule if we might be forming a VLA: in that case, we
2291 // allow non-constant expressions and constant-folding. We only need to use
2292 // the converted constant expression rules (to properly convert the source)
2293 // when the source expression is of class type.
2294 return S.CheckConvertedConstantExpression(
2295 ArraySize, S.Context.getSizeType(), SizeVal, Sema::CCEK_ArrayBound);
2296 }
2297
2298 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2299 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2300 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2301 public:
2302 unsigned VLADiag;
2303 bool VLAIsError;
2304 bool IsVLA = false;
2305
2306 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2307 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2308
2309 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2310 QualType T) override {
2311 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2312 }
2313
2314 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2315 SourceLocation Loc) override {
2316 IsVLA = !VLAIsError;
2317 return S.Diag(Loc, VLADiag);
2318 }
2319
2320 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2321 SourceLocation Loc) override {
2322 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2323 }
2324 } Diagnoser(VLADiag, VLAIsError);
2325
2326 ExprResult R =
2327 S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser);
2328 if (Diagnoser.IsVLA)
2329 return ExprResult();
2330 return R;
2331}
2332
2333/// Build an array type.
2334///
2335/// \param T The type of each element in the array.
2336///
2337/// \param ASM C99 array size modifier (e.g., '*', 'static').
2338///
2339/// \param ArraySize Expression describing the size of the array.
2340///
2341/// \param Brackets The range from the opening '[' to the closing ']'.
2342///
2343/// \param Entity The name of the entity that involves the array
2344/// type, if known.
2345///
2346/// \returns A suitable array type, if there are no errors. Otherwise,
2347/// returns a NULL type.
2348QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
2349 Expr *ArraySize, unsigned Quals,
2350 SourceRange Brackets, DeclarationName Entity) {
2351
2352 SourceLocation Loc = Brackets.getBegin();
2353 if (getLangOpts().CPlusPlus) {
2354 // C++ [dcl.array]p1:
2355 // T is called the array element type; this type shall not be a reference
2356 // type, the (possibly cv-qualified) type void, a function type or an
2357 // abstract class type.
2358 //
2359 // C++ [dcl.array]p3:
2360 // When several "array of" specifications are adjacent, [...] only the
2361 // first of the constant expressions that specify the bounds of the arrays
2362 // may be omitted.
2363 //
2364 // Note: function types are handled in the common path with C.
2365 if (T->isReferenceType()) {
2366 Diag(Loc, diag::err_illegal_decl_array_of_references)
2367 << getPrintableNameForEntity(Entity) << T;
2368 return QualType();
2369 }
2370
2371 if (T->isVoidType() || T->isIncompleteArrayType()) {
2372 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2373 return QualType();
2374 }
2375
2376 if (RequireNonAbstractType(Brackets.getBegin(), T,
2377 diag::err_array_of_abstract_type))
2378 return QualType();
2379
2380 // Mentioning a member pointer type for an array type causes us to lock in
2381 // an inheritance model, even if it's inside an unused typedef.
2382 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2383 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2384 if (!MPTy->getClass()->isDependentType())
2385 (void)isCompleteType(Loc, T);
2386
2387 } else {
2388 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2389 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2390 if (RequireCompleteSizedType(Loc, T,
2391 diag::err_array_incomplete_or_sizeless_type))
2392 return QualType();
2393 }
2394
2395 if (T->isSizelessType()) {
2396 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2397 return QualType();
2398 }
2399
2400 if (T->isFunctionType()) {
2401 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2402 << getPrintableNameForEntity(Entity) << T;
2403 return QualType();
2404 }
2405
2406 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2407 // If the element type is a struct or union that contains a variadic
2408 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2409 if (EltTy->getDecl()->hasFlexibleArrayMember())
2410 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2411 } else if (T->isObjCObjectType()) {
2412 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2413 return QualType();
2414 }
2415
2416 // Do placeholder conversions on the array size expression.
2417 if (ArraySize && ArraySize->hasPlaceholderType()) {
2418 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2419 if (Result.isInvalid()) return QualType();
2420 ArraySize = Result.get();
2421 }
2422
2423 // Do lvalue-to-rvalue conversions on the array size expression.
2424 if (ArraySize && !ArraySize->isPRValue()) {
2425 ExprResult Result = DefaultLvalueConversion(ArraySize);
2426 if (Result.isInvalid())
2427 return QualType();
2428
2429 ArraySize = Result.get();
2430 }
2431
2432 // C99 6.7.5.2p1: The size expression shall have integer type.
2433 // C++11 allows contextual conversions to such types.
2434 if (!getLangOpts().CPlusPlus11 &&
2435 ArraySize && !ArraySize->isTypeDependent() &&
2436 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2437 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2438 << ArraySize->getType() << ArraySize->getSourceRange();
2439 return QualType();
2440 }
2441
2442 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2443 unsigned VLADiag;
2444 bool VLAIsError;
2445 if (getLangOpts().OpenCL) {
2446 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2447 VLADiag = diag::err_opencl_vla;
2448 VLAIsError = true;
2449 } else if (getLangOpts().C99) {
2450 VLADiag = diag::warn_vla_used;
2451 VLAIsError = false;
2452 } else if (isSFINAEContext()) {
2453 VLADiag = diag::err_vla_in_sfinae;
2454 VLAIsError = true;
2455 } else {
2456 VLADiag = diag::ext_vla;
2457 VLAIsError = false;
2458 }
2459
2460 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2461 if (!ArraySize) {
2462 if (ASM == ArrayType::Star) {
2463 Diag(Loc, VLADiag);
2464 if (VLAIsError)
2465 return QualType();
2466
2467 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2468 } else {
2469 T = Context.getIncompleteArrayType(T, ASM, Quals);
2470 }
2471 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2472 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2473 } else {
2474 ExprResult R =
2475 checkArraySize(*this, ArraySize, ConstVal, VLADiag, VLAIsError);
2476 if (R.isInvalid())
2477 return QualType();
2478
2479 if (!R.isUsable()) {
2480 // C99: an array with a non-ICE size is a VLA. We accept any expression
2481 // that we can fold to a non-zero positive value as a non-VLA as an
2482 // extension.
2483 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2484 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2485 !T->isConstantSizeType()) {
2486 // C99: an array with an element type that has a non-constant-size is a
2487 // VLA.
2488 // FIXME: Add a note to explain why this isn't a VLA.
2489 Diag(Loc, VLADiag);
2490 if (VLAIsError)
2491 return QualType();
2492 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2493 } else {
2494 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2495 // have a value greater than zero.
2496 // In C++, this follows from narrowing conversions being disallowed.
2497 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2498 if (Entity)
2499 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2500 << getPrintableNameForEntity(Entity)
2501 << ArraySize->getSourceRange();
2502 else
2503 Diag(ArraySize->getBeginLoc(),
2504 diag::err_typecheck_negative_array_size)
2505 << ArraySize->getSourceRange();
2506 return QualType();
2507 }
2508 if (ConstVal == 0) {
2509 // GCC accepts zero sized static arrays. We allow them when
2510 // we're not in a SFINAE context.
2511 Diag(ArraySize->getBeginLoc(),
2512 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2513 : diag::ext_typecheck_zero_array_size)
2514 << ArraySize->getSourceRange();
2515 }
2516
2517 // Is the array too large?
2518 unsigned ActiveSizeBits =
2519 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2520 !T->isIncompleteType() && !T->isUndeducedType())
2521 ? ConstantArrayType::getNumAddressingBits(Context, T, ConstVal)
2522 : ConstVal.getActiveBits();
2523 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2524 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2525 << toString(ConstVal, 10) << ArraySize->getSourceRange();
2526 return QualType();
2527 }
2528
2529 T = Context.getConstantArrayType(T, ConstVal, ArraySize, ASM, Quals);
2530 }
2531 }
2532
2533 if (T->isVariableArrayType() && !Context.getTargetInfo().isVLASupported()) {
2534 // CUDA device code and some other targets don't support VLAs.
2535 targetDiag(Loc, (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2536 ? diag::err_cuda_vla
2537 : diag::err_vla_unsupported)
2538 << ((getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
2539 ? CurrentCUDATarget()
2540 : CFT_InvalidTarget);
2541 }
2542
2543 // If this is not C99, diagnose array size modifiers on non-VLAs.
2544 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2545 (ASM != ArrayType::Normal || Quals != 0)) {
2546 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2547 : diag::ext_c99_array_usage)
2548 << ASM;
2549 }
2550
2551 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2552 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2553 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2554 if (getLangOpts().OpenCL) {
2555 const QualType ArrType = Context.getBaseElementType(T);
2556 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2557 ArrType->isSamplerT() || ArrType->isImageType()) {
2558 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2559 return QualType();
2560 }
2561 }
2562
2563 return T;
2564}
2565
2566QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2567 SourceLocation AttrLoc) {
2568 // The base type must be integer (not Boolean or enumeration) or float, and
2569 // can't already be a vector.
2570 if ((!CurType->isDependentType() &&
2571 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2572 (!CurType->isIntegerType() && !CurType->isRealFloatingType()))) ||
2573 CurType->isArrayType()) {
2574 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2575 return QualType();
2576 }
2577
2578 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2579 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2580 VectorType::GenericVector);
2581
2582 Optional<llvm::APSInt> VecSize = SizeExpr->getIntegerConstantExpr(Context);
2583 if (!VecSize) {
2584 Diag(AttrLoc, diag::err_attribute_argument_type)
2585 << "vector_size" << AANT_ArgumentIntegerConstant
2586 << SizeExpr->getSourceRange();
2587 return QualType();
2588 }
2589
2590 if (CurType->isDependentType())
2591 return Context.getDependentVectorType(CurType, SizeExpr, AttrLoc,
2592 VectorType::GenericVector);
2593
2594 // vecSize is specified in bytes - convert to bits.
2595 if (!VecSize->isIntN(61)) {
2596 // Bit size will overflow uint64.
2597 Diag(AttrLoc, diag::err_attribute_size_too_large)
2598 << SizeExpr->getSourceRange() << "vector";
2599 return QualType();
2600 }
2601 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2602 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(CurType));
2603
2604 if (VectorSizeBits == 0) {
2605 Diag(AttrLoc, diag::err_attribute_zero_size)
2606 << SizeExpr->getSourceRange() << "vector";
2607 return QualType();
2608 }
2609
2610 if (VectorSizeBits % TypeSize) {
2611 Diag(AttrLoc, diag::err_attribute_invalid_size)
2612 << SizeExpr->getSourceRange();
2613 return QualType();
2614 }
2615
2616 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2617 Diag(AttrLoc, diag::err_attribute_size_too_large)
2618 << SizeExpr->getSourceRange() << "vector";
2619 return QualType();
2620 }
2621
2622 return Context.getVectorType(CurType, VectorSizeBits / TypeSize,
2623 VectorType::GenericVector);
2624}
2625
2626/// Build an ext-vector type.
2627///
2628/// Run the required checks for the extended vector type.
2629QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2630 SourceLocation AttrLoc) {
2631 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2632 // in conjunction with complex types (pointers, arrays, functions, etc.).
2633 //
2634 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2635 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2636 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2637 // of bool aren't allowed.
2638 if ((!T->isDependentType() && !T->isIntegerType() &&
2639 !T->isRealFloatingType()) ||
2640 T->isBooleanType()) {
2641 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2642 return QualType();
2643 }
2644
2645 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2646 Optional<llvm::APSInt> vecSize = ArraySize->getIntegerConstantExpr(Context);
2647 if (!vecSize) {
2648 Diag(AttrLoc, diag::err_attribute_argument_type)
2649 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2650 << ArraySize->getSourceRange();
2651 return QualType();
2652 }
2653
2654 if (!vecSize->isIntN(32)) {
2655 Diag(AttrLoc, diag::err_attribute_size_too_large)
2656 << ArraySize->getSourceRange() << "vector";
2657 return QualType();
2658 }
2659 // Unlike gcc's vector_size attribute, the size is specified as the
2660 // number of elements, not the number of bytes.
2661 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2662
2663 if (vectorSize == 0) {
2664 Diag(AttrLoc, diag::err_attribute_zero_size)
2665 << ArraySize->getSourceRange() << "vector";
2666 return QualType();
2667 }
2668
2669 return Context.getExtVectorType(T, vectorSize);
2670 }
2671
2672 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2673}
2674
2675QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2676 SourceLocation AttrLoc) {
2677 assert(Context.getLangOpts().MatrixTypes &&((void)0)
2678 "Should never build a matrix type when it is disabled")((void)0);
2679
2680 // Check element type, if it is not dependent.
2681 if (!ElementTy->isDependentType() &&
2682 !MatrixType::isValidElementType(ElementTy)) {
2683 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2684 return QualType();
2685 }
2686
2687 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2688 NumRows->isValueDependent() || NumCols->isValueDependent())
2689 return Context.getDependentSizedMatrixType(ElementTy, NumRows, NumCols,
2690 AttrLoc);
2691
2692 Optional<llvm::APSInt> ValueRows = NumRows->getIntegerConstantExpr(Context);
2693 Optional<llvm::APSInt> ValueColumns =
2694 NumCols->getIntegerConstantExpr(Context);
2695
2696 auto const RowRange = NumRows->getSourceRange();
2697 auto const ColRange = NumCols->getSourceRange();
2698
2699 // Both are row and column expressions are invalid.
2700 if (!ValueRows && !ValueColumns) {
2701 Diag(AttrLoc, diag::err_attribute_argument_type)
2702 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2703 << ColRange;
2704 return QualType();
2705 }
2706
2707 // Only the row expression is invalid.
2708 if (!ValueRows) {
2709 Diag(AttrLoc, diag::err_attribute_argument_type)
2710 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2711 return QualType();
2712 }
2713
2714 // Only the column expression is invalid.
2715 if (!ValueColumns) {
2716 Diag(AttrLoc, diag::err_attribute_argument_type)
2717 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2718 return QualType();
2719 }
2720
2721 // Check the matrix dimensions.
2722 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2723 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2724 if (MatrixRows == 0 && MatrixColumns == 0) {
2725 Diag(AttrLoc, diag::err_attribute_zero_size)
2726 << "matrix" << RowRange << ColRange;
2727 return QualType();
2728 }
2729 if (MatrixRows == 0) {
2730 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2731 return QualType();
2732 }
2733 if (MatrixColumns == 0) {
2734 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2735 return QualType();
2736 }
2737 if (!ConstantMatrixType::isDimensionValid(MatrixRows)) {
2738 Diag(AttrLoc, diag::err_attribute_size_too_large)
2739 << RowRange << "matrix row";
2740 return QualType();
2741 }
2742 if (!ConstantMatrixType::isDimensionValid(MatrixColumns)) {
2743 Diag(AttrLoc, diag::err_attribute_size_too_large)
2744 << ColRange << "matrix column";
2745 return QualType();
2746 }
2747 return Context.getConstantMatrixType(ElementTy, MatrixRows, MatrixColumns);
2748}
2749
2750bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2751 if (T->isArrayType() || T->isFunctionType()) {
2752 Diag(Loc, diag::err_func_returning_array_function)
2753 << T->isFunctionType() << T;
2754 return true;
2755 }
2756
2757 // Functions cannot return half FP.
2758 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2759 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2760 FixItHint::CreateInsertion(Loc, "*");
2761 return true;
2762 }
2763
2764 // Methods cannot return interface types. All ObjC objects are
2765 // passed by reference.
2766 if (T->isObjCObjectType()) {
2767 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2768 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2769 return true;
2770 }
2771
2772 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2773 T.hasNonTrivialToPrimitiveCopyCUnion())
2774 checkNonTrivialCUnion(T, Loc, NTCUC_FunctionReturn,
2775 NTCUK_Destruct|NTCUK_Copy);
2776
2777 // C++2a [dcl.fct]p12:
2778 // A volatile-qualified return type is deprecated
2779 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
2780 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
2781
2782 return false;
2783}
2784
2785/// Check the extended parameter information. Most of the necessary
2786/// checking should occur when applying the parameter attribute; the
2787/// only other checks required are positional restrictions.
2788static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
2789 const FunctionProtoType::ExtProtoInfo &EPI,
2790 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
2791 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos")((void)0);
2792
2793 bool emittedError = false;
2794 auto actualCC = EPI.ExtInfo.getCC();
2795 enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
2796 auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
2797 bool isCompatible =
2798 (required == RequiredCC::OnlySwift)
2799 ? (actualCC == CC_Swift)
2800 : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
2801 if (isCompatible || emittedError)
2802 return;
2803 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
2804 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
2805 << (required == RequiredCC::OnlySwift);
2806 emittedError = true;
2807 };
2808 for (size_t paramIndex = 0, numParams = paramTypes.size();
2809 paramIndex != numParams; ++paramIndex) {
2810 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
2811 // Nothing interesting to check for orindary-ABI parameters.
2812 case ParameterABI::Ordinary:
2813 continue;
2814
2815 // swift_indirect_result parameters must be a prefix of the function
2816 // arguments.
2817 case ParameterABI::SwiftIndirectResult:
2818 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2819 if (paramIndex != 0 &&
2820 EPI.ExtParameterInfos[paramIndex - 1].getABI()
2821 != ParameterABI::SwiftIndirectResult) {
2822 S.Diag(getParamLoc(paramIndex),
2823 diag::err_swift_indirect_result_not_first);
2824 }
2825 continue;
2826
2827 case ParameterABI::SwiftContext:
2828 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
2829 continue;
2830
2831 // SwiftAsyncContext is not limited to swiftasynccall functions.
2832 case ParameterABI::SwiftAsyncContext:
2833 continue;
2834
2835 // swift_error parameters must be preceded by a swift_context parameter.
2836 case ParameterABI::SwiftErrorResult:
2837 checkCompatible(paramIndex, RequiredCC::OnlySwift);
2838 if (paramIndex == 0 ||
2839 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
2840 ParameterABI::SwiftContext) {
2841 S.Diag(getParamLoc(paramIndex),
2842 diag::err_swift_error_result_not_after_swift_context);
2843 }
2844 continue;
2845 }
2846 llvm_unreachable("bad ABI kind")__builtin_unreachable();
2847 }
2848}
2849
2850QualType Sema::BuildFunctionType(QualType T,
2851 MutableArrayRef<QualType> ParamTypes,
2852 SourceLocation Loc, DeclarationName Entity,
2853 const FunctionProtoType::ExtProtoInfo &EPI) {
2854 bool Invalid = false;
2855
2856 Invalid |= CheckFunctionReturnType(T, Loc);
2857
2858 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2859 // FIXME: Loc is too inprecise here, should use proper locations for args.
2860 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2861 if (ParamType->isVoidType()) {
2862 Diag(Loc, diag::err_param_with_void_type);
2863 Invalid = true;
2864 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2865 // Disallow half FP arguments.
2866 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2867 FixItHint::CreateInsertion(Loc, "*");
2868 Invalid = true;
2869 }
2870
2871 // C++2a [dcl.fct]p4:
2872 // A parameter with volatile-qualified type is deprecated
2873 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
2874 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
2875
2876 ParamTypes[Idx] = ParamType;
2877 }
2878
2879 if (EPI.ExtParameterInfos) {
2880 checkExtParameterInfos(*this, ParamTypes, EPI,
2881 [=](unsigned i) { return Loc; });
2882 }
2883
2884 if (EPI.ExtInfo.getProducesResult()) {
2885 // This is just a warning, so we can't fail to build if we see it.
2886 checkNSReturnsRetainedReturnType(Loc, T);
2887 }
2888
2889 if (Invalid)
2890 return QualType();
2891
2892 return Context.getFunctionType(T, ParamTypes, EPI);
2893}
2894
2895/// Build a member pointer type \c T Class::*.
2896///
2897/// \param T the type to which the member pointer refers.
2898/// \param Class the class type into which the member pointer points.
2899/// \param Loc the location where this type begins
2900/// \param Entity the name of the entity that will have this member pointer type
2901///
2902/// \returns a member pointer type, if successful, or a NULL type if there was
2903/// an error.
2904QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2905 SourceLocation Loc,
2906 DeclarationName Entity) {
2907 // Verify that we're not building a pointer to pointer to function with
2908 // exception specification.
2909 if (CheckDistantExceptionSpec(T)) {
2910 Diag(Loc, diag::err_distant_exception_spec);
2911 return QualType();
2912 }
2913
2914 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2915 // with reference type, or "cv void."
2916 if (T->isReferenceType()) {
2917 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2918 << getPrintableNameForEntity(Entity) << T;
2919 return QualType();
2920 }
2921
2922 if (T->isVoidType()) {
2923 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2924 << getPrintableNameForEntity(Entity);
2925 return QualType();
2926 }
2927
2928 if (!Class->isDependentType() && !Class->isRecordType()) {
2929 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2930 return QualType();
2931 }
2932
2933 if (T->isFunctionType() && getLangOpts().OpenCL &&
2934 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2935 getLangOpts())) {
2936 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2937 return QualType();
2938 }
2939
2940 // Adjust the default free function calling convention to the default method
2941 // calling convention.
2942 bool IsCtorOrDtor =
2943 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2944 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2945 if (T->isFunctionType())
2946 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2947
2948 return Context.getMemberPointerType(T, Class.getTypePtr());
2949}
2950
2951/// Build a block pointer type.
2952///
2953/// \param T The type to which we'll be building a block pointer.
2954///
2955/// \param Loc The source location, used for diagnostics.
2956///
2957/// \param Entity The name of the entity that involves the block pointer
2958/// type, if known.
2959///
2960/// \returns A suitable block pointer type, if there are no
2961/// errors. Otherwise, returns a NULL type.
2962QualType Sema::BuildBlockPointerType(QualType T,
2963 SourceLocation Loc,
2964 DeclarationName Entity) {
2965 if (!T->isFunctionType()) {
2966 Diag(Loc, diag::err_nonfunction_block_type);
2967 return QualType();
2968 }
2969
2970 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2971 return QualType();
2972
2973 if (getLangOpts().OpenCL)
2974 T = deduceOpenCLPointeeAddrSpace(*this, T);
2975
2976 return Context.getBlockPointerType(T);
2977}
2978
2979QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2980 QualType QT = Ty.get();
2981 if (QT.isNull()) {
35
Calling 'QualType::isNull'
41
Returning from 'QualType::isNull'
42
Taking false branch
2982 if (TInfo) *TInfo = nullptr;
2983 return QualType();
2984 }
2985
2986 TypeSourceInfo *DI = nullptr;
43
'DI' initialized to a null pointer value
2987 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
44
Assuming 'LIT' is null
45
Taking false branch
2988 QT = LIT->getType();
2989 DI = LIT->getTypeSourceInfo();
2990 }
2991
2992 if (TInfo
45.1
'TInfo' is non-null
45.1
'TInfo' is non-null
45.1
'TInfo' is non-null
45.1
'TInfo' is non-null
45.1
'TInfo' is non-null
) *TInfo = DI;
46
Taking true branch
47
Null pointer value stored to 'TInfo'
2993 return QT;
2994}
2995
2996static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2997 Qualifiers::ObjCLifetime ownership,
2998 unsigned chunkIndex);
2999
3000/// Given that this is the declaration of a parameter under ARC,
3001/// attempt to infer attributes and such for pointer-to-whatever
3002/// types.
3003static void inferARCWriteback(TypeProcessingState &state,
3004 QualType &declSpecType) {
3005 Sema &S = state.getSema();
3006 Declarator &declarator = state.getDeclarator();
3007
3008 // TODO: should we care about decl qualifiers?
3009
3010 // Check whether the declarator has the expected form. We walk
3011 // from the inside out in order to make the block logic work.
3012 unsigned outermostPointerIndex = 0;
3013 bool isBlockPointer = false;
3014 unsigned numPointers = 0;
3015 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
3016 unsigned chunkIndex = i;
3017 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
3018 switch (chunk.Kind) {
3019 case DeclaratorChunk::Paren:
3020 // Ignore parens.
3021 break;
3022
3023 case DeclaratorChunk::Reference:
3024 case DeclaratorChunk::Pointer:
3025 // Count the number of pointers. Treat references
3026 // interchangeably as pointers; if they're mis-ordered, normal
3027 // type building will discover that.
3028 outermostPointerIndex = chunkIndex;
3029 numPointers++;
3030 break;
3031
3032 case DeclaratorChunk::BlockPointer:
3033 // If we have a pointer to block pointer, that's an acceptable
3034 // indirect reference; anything else is not an application of
3035 // the rules.
3036 if (numPointers != 1) return;
3037 numPointers++;
3038 outermostPointerIndex = chunkIndex;
3039 isBlockPointer = true;
3040
3041 // We don't care about pointer structure in return values here.
3042 goto done;
3043
3044 case DeclaratorChunk::Array: // suppress if written (id[])?
3045 case DeclaratorChunk::Function:
3046 case DeclaratorChunk::MemberPointer:
3047 case DeclaratorChunk::Pipe:
3048 return;
3049 }
3050 }
3051 done:
3052
3053 // If we have *one* pointer, then we want to throw the qualifier on
3054 // the declaration-specifiers, which means that it needs to be a
3055 // retainable object type.
3056 if (numPointers == 1) {
3057 // If it's not a retainable object type, the rule doesn't apply.
3058 if (!declSpecType->isObjCRetainableType()) return;
3059
3060 // If it already has lifetime, don't do anything.
3061 if (declSpecType.getObjCLifetime()) return;
3062
3063 // Otherwise, modify the type in-place.
3064 Qualifiers qs;
3065
3066 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3067 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
3068 else
3069 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
3070 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
3071
3072 // If we have *two* pointers, then we want to throw the qualifier on
3073 // the outermost pointer.
3074 } else if (numPointers == 2) {
3075 // If we don't have a block pointer, we need to check whether the
3076 // declaration-specifiers gave us something that will turn into a
3077 // retainable object pointer after we slap the first pointer on it.
3078 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3079 return;
3080
3081 // Look for an explicit lifetime attribute there.
3082 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
3083 if (chunk.Kind != DeclaratorChunk::Pointer &&
3084 chunk.Kind != DeclaratorChunk::BlockPointer)
3085 return;
3086 for (const ParsedAttr &AL : chunk.getAttrs())
3087 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3088 return;
3089
3090 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
3091 outermostPointerIndex);
3092
3093 // Any other number of pointers/references does not trigger the rule.
3094 } else return;
3095
3096 // TODO: mark whether we did this inference?
3097}
3098
3099void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3100 SourceLocation FallbackLoc,
3101 SourceLocation ConstQualLoc,
3102 SourceLocation VolatileQualLoc,
3103 SourceLocation RestrictQualLoc,
3104 SourceLocation AtomicQualLoc,
3105 SourceLocation UnalignedQualLoc) {
3106 if (!Quals)
3107 return;
3108
3109 struct Qual {
3110 const char *Name;
3111 unsigned Mask;
3112 SourceLocation Loc;
3113 } const QualKinds[5] = {
3114 { "const", DeclSpec::TQ_const, ConstQualLoc },
3115 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
3116 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
3117 { "__unaligned", DeclSpec::TQ_unaligned, UnalignedQualLoc },
3118 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
3119 };
3120
3121 SmallString<32> QualStr;
3122 unsigned NumQuals = 0;
3123 SourceLocation Loc;
3124 FixItHint FixIts[5];
3125
3126 // Build a string naming the redundant qualifiers.
3127 for (auto &E : QualKinds) {
3128 if (Quals & E.Mask) {
3129 if (!QualStr.empty()) QualStr += ' ';
3130 QualStr += E.Name;
3131
3132 // If we have a location for the qualifier, offer a fixit.
3133 SourceLocation QualLoc = E.Loc;
3134 if (QualLoc.isValid()) {
3135 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
3136 if (Loc.isInvalid() ||
3137 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
3138 Loc = QualLoc;
3139 }
3140
3141 ++NumQuals;
3142 }
3143 }
3144
3145 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3146 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3147}
3148
3149// Diagnose pointless type qualifiers on the return type of a function.
3150static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3151 Declarator &D,
3152 unsigned FunctionChunkIndex) {
3153 const DeclaratorChunk::FunctionTypeInfo &FTI =
3154 D.getTypeObject(FunctionChunkIndex).Fun;
3155 if (FTI.hasTrailingReturnType()) {
3156 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3157 RetTy.getLocalCVRQualifiers(),
3158 FTI.getTrailingReturnTypeLoc());
3159 return;
3160 }
3161
3162 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3163 End = D.getNumTypeObjects();
3164 OuterChunkIndex != End; ++OuterChunkIndex) {
3165 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
3166 switch (OuterChunk.Kind) {
3167 case DeclaratorChunk::Paren:
3168 continue;
3169
3170 case DeclaratorChunk::Pointer: {
3171 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3172 S.diagnoseIgnoredQualifiers(
3173 diag::warn_qual_return_type,
3174 PTI.TypeQuals,
3175 SourceLocation(),
3176 PTI.ConstQualLoc,
3177 PTI.VolatileQualLoc,
3178 PTI.RestrictQualLoc,
3179 PTI.AtomicQualLoc,
3180 PTI.UnalignedQualLoc);
3181 return;
3182 }
3183
3184 case DeclaratorChunk::Function:
3185 case DeclaratorChunk::BlockPointer:
3186 case DeclaratorChunk::Reference:
3187 case DeclaratorChunk::Array:
3188 case DeclaratorChunk::MemberPointer:
3189 case DeclaratorChunk::Pipe:
3190 // FIXME: We can't currently provide an accurate source location and a
3191 // fix-it hint for these.
3192 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3193 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3194 RetTy.getCVRQualifiers() | AtomicQual,
3195 D.getIdentifierLoc());
3196 return;
3197 }
3198
3199 llvm_unreachable("unknown declarator chunk kind")__builtin_unreachable();
3200 }
3201
3202 // If the qualifiers come from a conversion function type, don't diagnose
3203 // them -- they're not necessarily redundant, since such a conversion
3204 // operator can be explicitly called as "x.operator const int()".
3205 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3206 return;
3207
3208 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3209 // which are present there.
3210 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3211 D.getDeclSpec().getTypeQualifiers(),
3212 D.getIdentifierLoc(),
3213 D.getDeclSpec().getConstSpecLoc(),
3214 D.getDeclSpec().getVolatileSpecLoc(),
3215 D.getDeclSpec().getRestrictSpecLoc(),
3216 D.getDeclSpec().getAtomicSpecLoc(),
3217 D.getDeclSpec().getUnalignedSpecLoc());
3218}
3219
3220static std::pair<QualType, TypeSourceInfo *>
3221InventTemplateParameter(TypeProcessingState &state, QualType T,
3222 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3223 InventedTemplateParameterInfo &Info) {
3224 Sema &S = state.getSema();
3225 Declarator &D = state.getDeclarator();
3226
3227 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3228 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3229 const bool IsParameterPack = D.hasEllipsis();
3230
3231 // If auto is mentioned in a lambda parameter or abbreviated function
3232 // template context, convert it to a template parameter type.
3233
3234 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3235 // template parameter type. Template parameters are temporarily added
3236 // to the TU until the associated TemplateDecl is created.
3237 TemplateTypeParmDecl *InventedTemplateParam =
3238 TemplateTypeParmDecl::Create(
3239 S.Context, S.Context.getTranslationUnitDecl(),
3240 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3241 /*NameLoc=*/D.getIdentifierLoc(),
3242 TemplateParameterDepth, AutoParameterPosition,
3243 S.InventAbbreviatedTemplateParameterTypeName(
3244 D.getIdentifier(), AutoParameterPosition), false,
3245 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3246 InventedTemplateParam->setImplicit();
3247 Info.TemplateParams.push_back(InventedTemplateParam);
3248
3249 // Attach type constraints to the new parameter.
3250 if (Auto->isConstrained()) {
3251 if (TrailingTSI) {
3252 // The 'auto' appears in a trailing return type we've already built;
3253 // extract its type constraints to attach to the template parameter.
3254 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3255 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3256 bool Invalid = false;
3257 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3258 if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3259 S.DiagnoseUnexpandedParameterPack(AutoLoc.getArgLoc(Idx),
3260 Sema::UPPC_TypeConstraint))
3261 Invalid = true;
3262 TAL.addArgument(AutoLoc.getArgLoc(Idx));
3263 }
3264
3265 if (!Invalid) {
3266 S.AttachTypeConstraint(
3267 AutoLoc.getNestedNameSpecifierLoc(), AutoLoc.getConceptNameInfo(),
3268 AutoLoc.getNamedConcept(),
3269 AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3270 InventedTemplateParam, D.getEllipsisLoc());
3271 }
3272 } else {
3273 // The 'auto' appears in the decl-specifiers; we've not finished forming
3274 // TypeSourceInfo for it yet.
3275 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3276 TemplateArgumentListInfo TemplateArgsInfo;
3277 bool Invalid = false;
3278 if (TemplateId->LAngleLoc.isValid()) {
3279 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3280 TemplateId->NumArgs);
3281 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
3282
3283 if (D.getEllipsisLoc().isInvalid()) {
3284 for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3285 if (S.DiagnoseUnexpandedParameterPack(Arg,
3286 Sema::UPPC_TypeConstraint)) {
3287 Invalid = true;
3288 break;
3289 }
3290 }
3291 }
3292 }
3293 if (!Invalid) {
3294 S.AttachTypeConstraint(
3295 D.getDeclSpec().getTypeSpecScope().getWithLocInContext(S.Context),
3296 DeclarationNameInfo(DeclarationName(TemplateId->Name),
3297 TemplateId->TemplateNameLoc),
3298 cast<ConceptDecl>(TemplateId->Template.get().getAsTemplateDecl()),
3299 TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3300 InventedTemplateParam, D.getEllipsisLoc());
3301 }
3302 }
3303 }
3304
3305 // Replace the 'auto' in the function parameter with this invented
3306 // template type parameter.
3307 // FIXME: Retain some type sugar to indicate that this was written
3308 // as 'auto'?
3309 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3310 QualType NewT = state.ReplaceAutoType(T, Replacement);
3311 TypeSourceInfo *NewTSI =
3312 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TrailingTSI, Replacement)
3313 : nullptr;
3314 return {NewT, NewTSI};
3315}
3316
3317static TypeSourceInfo *
3318GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3319 QualType T, TypeSourceInfo *ReturnTypeInfo);
3320
3321static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3322 TypeSourceInfo *&ReturnTypeInfo) {
3323 Sema &SemaRef = state.getSema();
3324 Declarator &D = state.getDeclarator();
3325 QualType T;
3326 ReturnTypeInfo = nullptr;
3327
3328 // The TagDecl owned by the DeclSpec.
3329 TagDecl *OwnedTagDecl = nullptr;
3330
3331 switch (D.getName().getKind()) {
3332 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3333 case UnqualifiedIdKind::IK_OperatorFunctionId:
3334 case UnqualifiedIdKind::IK_Identifier:
3335 case UnqualifiedIdKind::IK_LiteralOperatorId:
3336 case UnqualifiedIdKind::IK_TemplateId:
3337 T = ConvertDeclSpecToType(state);
3338
3339 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3340 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3341 // Owned declaration is embedded in declarator.
3342 OwnedTagDecl->setEmbeddedInDeclarator(true);
3343 }
3344 break;
3345
3346 case UnqualifiedIdKind::IK_ConstructorName:
3347 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3348 case UnqualifiedIdKind::IK_DestructorName:
3349 // Constructors and destructors don't have return types. Use
3350 // "void" instead.
3351 T = SemaRef.Context.VoidTy;
3352 processTypeAttrs(state, T, TAL_DeclSpec,
3353 D.getMutableDeclSpec().getAttributes());
3354 break;
3355
3356 case UnqualifiedIdKind::IK_DeductionGuideName:
3357 // Deduction guides have a trailing return type and no type in their
3358 // decl-specifier sequence. Use a placeholder return type for now.
3359 T = SemaRef.Context.DependentTy;
3360 break;
3361
3362 case UnqualifiedIdKind::IK_ConversionFunctionId:
3363 // The result type of a conversion function is the type that it
3364 // converts to.
3365 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
3366 &ReturnTypeInfo);
3367 break;
3368 }
3369
3370 if (!D.getAttributes().empty())
3371 distributeTypeAttrsFromDeclarator(state, T);
3372
3373 // Find the deduced type in this type. Look in the trailing return type if we
3374 // have one, otherwise in the DeclSpec type.
3375 // FIXME: The standard wording doesn't currently describe this.
3376 DeducedType *Deduced = T->getContainedDeducedType();
3377 bool DeducedIsTrailingReturnType = false;
3378 if (Deduced && isa<AutoType>(Deduced) && D.hasTrailingReturnType()) {
3379 QualType T = SemaRef.GetTypeFromParser(D.getTrailingReturnType());
3380 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3381 DeducedIsTrailingReturnType = true;
3382 }
3383
3384 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3385 if (Deduced) {
3386 AutoType *Auto = dyn_cast<AutoType>(Deduced);
3387 int Error = -1;
3388
3389 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3390 // class template argument deduction)?
3391 bool IsCXXAutoType =
3392 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3393 bool IsDeducedReturnType = false;
3394
3395 switch (D.getContext()) {
3396 case DeclaratorContext::LambdaExpr:
3397 // Declared return type of a lambda-declarator is implicit and is always
3398 // 'auto'.
3399 break;
3400 case DeclaratorContext::ObjCParameter:
3401 case DeclaratorContext::ObjCResult:
3402 Error = 0;
3403 break;
3404 case DeclaratorContext::RequiresExpr:
3405 Error = 22;
3406 break;
3407 case DeclaratorContext::Prototype:
3408 case DeclaratorContext::LambdaExprParameter: {
3409 InventedTemplateParameterInfo *Info = nullptr;
3410 if (D.getContext() == DeclaratorContext::Prototype) {
3411 // With concepts we allow 'auto' in function parameters.
3412 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3413 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3414 Error = 0;
3415 break;
3416 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3417 Error = 21;
3418 break;
3419 }
3420
3421 Info = &SemaRef.InventedParameterInfos.back();
3422 } else {
3423 // In C++14, generic lambdas allow 'auto' in their parameters.
3424 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3425 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3426 Error = 16;
3427 break;
3428 }
3429 Info = SemaRef.getCurLambda();
3430 assert(Info && "No LambdaScopeInfo on the stack!")((void)0);
3431 }
3432
3433 // We'll deal with inventing template parameters for 'auto' in trailing
3434 // return types when we pick up the trailing return type when processing
3435 // the function chunk.
3436 if (!DeducedIsTrailingReturnType)
3437 T = InventTemplateParameter(state, T, nullptr, Auto, *Info).first;
3438 break;
3439 }
3440 case DeclaratorContext::Member: {
3441 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3442 D.isFunctionDeclarator())
3443 break;
3444 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3445 if (isa<ObjCContainerDecl>(SemaRef.CurContext)) {
3446 Error = 6; // Interface member.
3447 } else {
3448 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
3449 case TTK_Enum: llvm_unreachable("unhandled tag kind")__builtin_unreachable();
3450 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
3451 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
3452 case TTK_Class: Error = 5; /* Class member */ break;
3453 case TTK_Interface: Error = 6; /* Interface member */ break;
3454 }
3455 }
3456 if (D.getDeclSpec().isFriendSpecified())
3457 Error = 20; // Friend type
3458 break;
3459 }
3460 case DeclaratorContext::CXXCatch:
3461 case DeclaratorContext::ObjCCatch:
3462 Error = 7; // Exception declaration
3463 break;
3464 case DeclaratorContext::TemplateParam:
3465 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3466 !SemaRef.getLangOpts().CPlusPlus20)
3467 Error = 19; // Template parameter (until C++20)
3468 else if (!SemaRef.getLangOpts().CPlusPlus17)
3469 Error = 8; // Template parameter (until C++17)
3470 break;
3471 case DeclaratorContext::BlockLiteral:
3472 Error = 9; // Block literal
3473 break;
3474 case DeclaratorContext::TemplateArg:
3475 // Within a template argument list, a deduced template specialization
3476 // type will be reinterpreted as a template template argument.
3477 if (isa<DeducedTemplateSpecializationType>(Deduced) &&
3478 !D.getNumTypeObjects() &&
3479 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3480 break;
3481 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3482 case DeclaratorContext::TemplateTypeArg:
3483 Error = 10; // Template type argument
3484 break;
3485 case DeclaratorContext::AliasDecl:
3486 case DeclaratorContext::AliasTemplate:
3487 Error = 12; // Type alias
3488 break;
3489 case DeclaratorContext::TrailingReturn:
3490 case DeclaratorContext::TrailingReturnVar:
3491 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3492 Error = 13; // Function return type
3493 IsDeducedReturnType = true;
3494 break;
3495 case DeclaratorContext::ConversionId:
3496 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3497 Error = 14; // conversion-type-id
3498 IsDeducedReturnType = true;
3499 break;
3500 case DeclaratorContext::FunctionalCast:
3501 if (isa<DeducedTemplateSpecializationType>(Deduced))
3502 break;
3503 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3504 case DeclaratorContext::TypeName:
3505 Error = 15; // Generic
3506 break;
3507 case DeclaratorContext::File:
3508 case DeclaratorContext::Block:
3509 case DeclaratorContext::ForInit:
3510 case DeclaratorContext::SelectionInit:
3511 case DeclaratorContext::Condition:
3512 // FIXME: P0091R3 (erroneously) does not permit class template argument
3513 // deduction in conditions, for-init-statements, and other declarations
3514 // that are not simple-declarations.
3515 break;
3516 case DeclaratorContext::CXXNew:
3517 // FIXME: P0091R3 does not permit class template argument deduction here,
3518 // but we follow GCC and allow it anyway.
3519 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Deduced))
3520 Error = 17; // 'new' type
3521 break;
3522 case DeclaratorContext::KNRTypeList:
3523 Error = 18; // K&R function parameter
3524 break;
3525 }
3526
3527 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3528 Error = 11;
3529
3530 // In Objective-C it is an error to use 'auto' on a function declarator
3531 // (and everywhere for '__auto_type').
3532 if (D.isFunctionDeclarator() &&
3533 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3534 Error = 13;
3535
3536 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3537 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3538 AutoRange = D.getName().getSourceRange();
3539
3540 if (Error != -1) {
3541 unsigned Kind;
3542 if (Auto) {
3543 switch (Auto->getKeyword()) {
3544 case AutoTypeKeyword::Auto: Kind = 0; break;
3545 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3546 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3547 }
3548 } else {
3549 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&((void)0)
3550 "unknown auto type")((void)0);
3551 Kind = 3;
3552 }
3553
3554 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Deduced);
3555 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3556
3557 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3558 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3559 << QualType(Deduced, 0) << AutoRange;
3560 if (auto *TD = TN.getAsTemplateDecl())
3561 SemaRef.Diag(TD->getLocation(), diag::note_template_decl_here);
3562
3563 T = SemaRef.Context.IntTy;
3564 D.setInvalidType(true);
3565 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3566 // If there was a trailing return type, we already got
3567 // warn_cxx98_compat_trailing_return_type in the parser.
3568 SemaRef.Diag(AutoRange.getBegin(),
3569 D.getContext() == DeclaratorContext::LambdaExprParameter
3570 ? diag::warn_cxx11_compat_generic_lambda
3571 : IsDeducedReturnType
3572 ? diag::warn_cxx11_compat_deduced_return_type
3573 : diag::warn_cxx98_compat_auto_type_specifier)
3574 << AutoRange;
3575 }
3576 }
3577
3578 if (SemaRef.getLangOpts().CPlusPlus &&
3579 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3580 // Check the contexts where C++ forbids the declaration of a new class
3581 // or enumeration in a type-specifier-seq.
3582 unsigned DiagID = 0;
3583 switch (D.getContext()) {
3584 case DeclaratorContext::TrailingReturn:
3585 case DeclaratorContext::TrailingReturnVar:
3586 // Class and enumeration definitions are syntactically not allowed in
3587 // trailing return types.
3588 llvm_unreachable("parser should not have allowed this")__builtin_unreachable();
3589 break;
3590 case DeclaratorContext::File:
3591 case DeclaratorContext::Member:
3592 case DeclaratorContext::Block:
3593 case DeclaratorContext::ForInit:
3594 case DeclaratorContext::SelectionInit:
3595 case DeclaratorContext::BlockLiteral:
3596 case DeclaratorContext::LambdaExpr:
3597 // C++11 [dcl.type]p3:
3598 // A type-specifier-seq shall not define a class or enumeration unless
3599 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3600 // the declaration of a template-declaration.
3601 case DeclaratorContext::AliasDecl:
3602 break;
3603 case DeclaratorContext::AliasTemplate:
3604 DiagID = diag::err_type_defined_in_alias_template;
3605 break;
3606 case DeclaratorContext::TypeName:
3607 case DeclaratorContext::FunctionalCast:
3608 case DeclaratorContext::ConversionId:
3609 case DeclaratorContext::TemplateParam:
3610 case DeclaratorContext::CXXNew:
3611 case DeclaratorContext::CXXCatch:
3612 case DeclaratorContext::ObjCCatch:
3613 case DeclaratorContext::TemplateArg:
3614 case DeclaratorContext::TemplateTypeArg:
3615 DiagID = diag::err_type_defined_in_type_specifier;
3616 break;
3617 case DeclaratorContext::Prototype:
3618 case DeclaratorContext::LambdaExprParameter:
3619 case DeclaratorContext::ObjCParameter:
3620 case DeclaratorContext::ObjCResult:
3621 case DeclaratorContext::KNRTypeList:
3622 case DeclaratorContext::RequiresExpr:
3623 // C++ [dcl.fct]p6:
3624 // Types shall not be defined in return or parameter types.
3625 DiagID = diag::err_type_defined_in_param_type;
3626 break;
3627 case DeclaratorContext::Condition:
3628 // C++ 6.4p2:
3629 // The type-specifier-seq shall not contain typedef and shall not declare
3630 // a new class or enumeration.
3631 DiagID = diag::err_type_defined_in_condition;
3632 break;
3633 }
3634
3635 if (DiagID != 0) {
3636 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3637 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3638 D.setInvalidType(true);
3639 }
3640 }
3641
3642 assert(!T.isNull() && "This function should not return a null type")((void)0);
3643 return T;
3644}
3645
3646/// Produce an appropriate diagnostic for an ambiguity between a function
3647/// declarator and a C++ direct-initializer.
3648static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3649 DeclaratorChunk &DeclType, QualType RT) {
3650 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3651 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity")((void)0);
3652
3653 // If the return type is void there is no ambiguity.
3654 if (RT->isVoidType())
3655 return;
3656
3657 // An initializer for a non-class type can have at most one argument.
3658 if (!RT->isRecordType() && FTI.NumParams > 1)
3659 return;
3660
3661 // An initializer for a reference must have exactly one argument.
3662 if (RT->isReferenceType() && FTI.NumParams != 1)
3663 return;
3664
3665 // Only warn if this declarator is declaring a function at block scope, and
3666 // doesn't have a storage class (such as 'extern') specified.
3667 if (!D.isFunctionDeclarator() ||
3668 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3669 !S.CurContext->isFunctionOrMethod() ||
3670 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3671 return;
3672
3673 // Inside a condition, a direct initializer is not permitted. We allow one to
3674 // be parsed in order to give better diagnostics in condition parsing.
3675 if (D.getContext() == DeclaratorContext::Condition)
3676 return;
3677
3678 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3679
3680 S.Diag(DeclType.Loc,
3681 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3682 : diag::warn_empty_parens_are_function_decl)
3683 << ParenRange;
3684
3685 // If the declaration looks like:
3686 // T var1,
3687 // f();
3688 // and name lookup finds a function named 'f', then the ',' was
3689 // probably intended to be a ';'.
3690 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3691 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3692 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3693 if (Comma.getFileID() != Name.getFileID() ||
3694 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3695 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3696 Sema::LookupOrdinaryName);
3697 if (S.LookupName(Result, S.getCurScope()))
3698 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3699 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3700 << D.getIdentifier();
3701 Result.suppressDiagnostics();
3702 }
3703 }
3704
3705 if (FTI.NumParams > 0) {
3706 // For a declaration with parameters, eg. "T var(T());", suggest adding
3707 // parens around the first parameter to turn the declaration into a
3708 // variable declaration.
3709 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3710 SourceLocation B = Range.getBegin();
3711 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
3712 // FIXME: Maybe we should suggest adding braces instead of parens
3713 // in C++11 for classes that don't have an initializer_list constructor.
3714 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3715 << FixItHint::CreateInsertion(B, "(")
3716 << FixItHint::CreateInsertion(E, ")");
3717 } else {
3718 // For a declaration without parameters, eg. "T var();", suggest replacing
3719 // the parens with an initializer to turn the declaration into a variable
3720 // declaration.
3721 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3722
3723 // Empty parens mean value-initialization, and no parens mean
3724 // default initialization. These are equivalent if the default
3725 // constructor is user-provided or if zero-initialization is a
3726 // no-op.
3727 if (RD && RD->hasDefinition() &&
3728 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3729 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3730 << FixItHint::CreateRemoval(ParenRange);
3731 else {
3732 std::string Init =
3733 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
3734 if (Init.empty() && S.LangOpts.CPlusPlus11)
3735 Init = "{}";
3736 if (!Init.empty())
3737 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3738 << FixItHint::CreateReplacement(ParenRange, Init);
3739 }
3740 }
3741}
3742
3743/// Produce an appropriate diagnostic for a declarator with top-level
3744/// parentheses.
3745static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3746 DeclaratorChunk &Paren = D.getTypeObject(D.getNumTypeObjects() - 1);
3747 assert(Paren.Kind == DeclaratorChunk::Paren &&((void)0)
3748 "do not have redundant top-level parentheses")((void)0);
3749
3750 // This is a syntactic check; we're not interested in cases that arise
3751 // during template instantiation.
3752 if (S.inTemplateInstantiation())
3753 return;
3754
3755 // Check whether this could be intended to be a construction of a temporary
3756 // object in C++ via a function-style cast.
3757 bool CouldBeTemporaryObject =
3758 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
3759 !D.isInvalidType() && D.getIdentifier() &&
3760 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
3761 (T->isRecordType() || T->isDependentType()) &&
3762 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
3763
3764 bool StartsWithDeclaratorId = true;
3765 for (auto &C : D.type_objects()) {
3766 switch (C.Kind) {
3767 case DeclaratorChunk::Paren:
3768 if (&C == &Paren)
3769 continue;
3770 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3771 case DeclaratorChunk::Pointer:
3772 StartsWithDeclaratorId = false;
3773 continue;
3774
3775 case DeclaratorChunk::Array:
3776 if (!C.Arr.NumElts)
3777 CouldBeTemporaryObject = false;
3778 continue;
3779
3780 case DeclaratorChunk::Reference:
3781 // FIXME: Suppress the warning here if there is no initializer; we're
3782 // going to give an error anyway.
3783 // We assume that something like 'T (&x) = y;' is highly likely to not
3784 // be intended to be a temporary object.
3785 CouldBeTemporaryObject = false;
3786 StartsWithDeclaratorId = false;
3787 continue;
3788
3789 case DeclaratorChunk::Function:
3790 // In a new-type-id, function chunks require parentheses.
3791 if (D.getContext() == DeclaratorContext::CXXNew)
3792 return;
3793 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3794 // redundant-parens warning, but we don't know whether the function
3795 // chunk was syntactically valid as an expression here.
3796 CouldBeTemporaryObject = false;
3797 continue;
3798
3799 case DeclaratorChunk::BlockPointer:
3800 case DeclaratorChunk::MemberPointer:
3801 case DeclaratorChunk::Pipe:
3802 // These cannot appear in expressions.
3803 CouldBeTemporaryObject = false;
3804 StartsWithDeclaratorId = false;
3805 continue;
3806 }
3807 }
3808
3809 // FIXME: If there is an initializer, assume that this is not intended to be
3810 // a construction of a temporary object.
3811
3812 // Check whether the name has already been declared; if not, this is not a
3813 // function-style cast.
3814 if (CouldBeTemporaryObject) {
3815 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3816 Sema::LookupOrdinaryName);
3817 if (!S.LookupName(Result, S.getCurScope()))
3818 CouldBeTemporaryObject = false;
3819 Result.suppressDiagnostics();
3820 }
3821
3822 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
3823
3824 if (!CouldBeTemporaryObject) {
3825 // If we have A (::B), the parentheses affect the meaning of the program.
3826 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3827 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3828 // formally unambiguous.
3829 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
3830 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
3831 NNS = NNS->getPrefix()) {
3832 if (NNS->getKind() == NestedNameSpecifier::Global)
3833 return;
3834 }
3835 }
3836
3837 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
3838 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
3839 << FixItHint::CreateRemoval(Paren.EndLoc);
3840 return;
3841 }
3842
3843 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
3844 << ParenRange << D.getIdentifier();
3845 auto *RD = T->getAsCXXRecordDecl();
3846 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
3847 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
3848 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
3849 << D.getIdentifier();
3850 // FIXME: A cast to void is probably a better suggestion in cases where it's
3851 // valid (when there is no initializer and we're not in a condition).
3852 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
3853 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
3854 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
3855 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
3856 << FixItHint::CreateRemoval(Paren.Loc)
3857 << FixItHint::CreateRemoval(Paren.EndLoc);
3858}
3859
3860/// Helper for figuring out the default CC for a function declarator type. If
3861/// this is the outermost chunk, then we can determine the CC from the
3862/// declarator context. If not, then this could be either a member function
3863/// type or normal function type.
3864static CallingConv getCCForDeclaratorChunk(
3865 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
3866 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
3867 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function)((void)0);
3868
3869 // Check for an explicit CC attribute.
3870 for (const ParsedAttr &AL : AttrList) {
3871 switch (AL.getKind()) {
3872 CALLING_CONV_ATTRS_CASELISTcase ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case
ParsedAttr::AT_StdCall: case ParsedAttr::AT_ThisCall: case ParsedAttr
::AT_RegCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_SwiftCall
: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall
: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_MSABI
: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr
::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr
::AT_PreserveAll
: {
3873 // Ignore attributes that don't validate or can't apply to the
3874 // function type. We'll diagnose the failure to apply them in
3875 // handleFunctionTypeAttr.
3876 CallingConv CC;
3877 if (!S.CheckCallingConvAttr(AL, CC) &&
3878 (!FTI.isVariadic || supportsVariadicCall(CC))) {
3879 return CC;
3880 }
3881 break;
3882 }
3883
3884 default:
3885 break;
3886 }
3887 }
3888
3889 bool IsCXXInstanceMethod = false;
3890
3891 if (S.getLangOpts().CPlusPlus) {
3892 // Look inwards through parentheses to see if this chunk will form a
3893 // member pointer type or if we're the declarator. Any type attributes
3894 // between here and there will override the CC we choose here.
3895 unsigned I = ChunkIndex;
3896 bool FoundNonParen = false;
3897 while (I && !FoundNonParen) {
3898 --I;
3899 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
3900 FoundNonParen = true;
3901 }
3902
3903 if (FoundNonParen) {
3904 // If we're not the declarator, we're a regular function type unless we're
3905 // in a member pointer.
3906 IsCXXInstanceMethod =
3907 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
3908 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
3909 // This can only be a call operator for a lambda, which is an instance
3910 // method.
3911 IsCXXInstanceMethod = true;
3912 } else {
3913 // We're the innermost decl chunk, so must be a function declarator.
3914 assert(D.isFunctionDeclarator())((void)0);
3915
3916 // If we're inside a record, we're declaring a method, but it could be
3917 // explicitly or implicitly static.
3918 IsCXXInstanceMethod =
3919 D.isFirstDeclarationOfMember() &&
3920 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
3921 !D.isStaticMember();
3922 }
3923 }
3924
3925 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
3926 IsCXXInstanceMethod);
3927
3928 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
3929 // and AMDGPU targets, hence it cannot be treated as a calling
3930 // convention attribute. This is the simplest place to infer
3931 // calling convention for OpenCL kernels.
3932 if (S.getLangOpts().OpenCL) {
3933 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
3934 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
3935 CC = CC_OpenCLKernel;
3936 break;
3937 }
3938 }
3939 }
3940
3941 return CC;
3942}
3943
3944namespace {
3945 /// A simple notion of pointer kinds, which matches up with the various
3946 /// pointer declarators.
3947 enum class SimplePointerKind {
3948 Pointer,
3949 BlockPointer,
3950 MemberPointer,
3951 Array,
3952 };
3953} // end anonymous namespace
3954
3955IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
3956 switch (nullability) {
3957 case NullabilityKind::NonNull:
3958 if (!Ident__Nonnull)
3959 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
3960 return Ident__Nonnull;
3961
3962 case NullabilityKind::Nullable:
3963 if (!Ident__Nullable)
3964 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
3965 return Ident__Nullable;
3966
3967 case NullabilityKind::NullableResult:
3968 if (!Ident__Nullable_result)
3969 Ident__Nullable_result = PP.getIdentifierInfo("_Nullable_result");
3970 return Ident__Nullable_result;
3971
3972 case NullabilityKind::Unspecified:
3973 if (!Ident__Null_unspecified)
3974 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
3975 return Ident__Null_unspecified;
3976 }
3977 llvm_unreachable("Unknown nullability kind.")__builtin_unreachable();
3978}
3979
3980/// Retrieve the identifier "NSError".
3981IdentifierInfo *Sema::getNSErrorIdent() {
3982 if (!Ident_NSError)
3983 Ident_NSError = PP.getIdentifierInfo("NSError");
3984
3985 return Ident_NSError;
3986}
3987
3988/// Check whether there is a nullability attribute of any kind in the given
3989/// attribute list.
3990static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
3991 for (const ParsedAttr &AL : attrs) {
3992 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
3993 AL.getKind() == ParsedAttr::AT_TypeNullable ||
3994 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
3995 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
3996 return true;
3997 }
3998
3999 return false;
4000}
4001
4002namespace {
4003 /// Describes the kind of a pointer a declarator describes.
4004 enum class PointerDeclaratorKind {
4005 // Not a pointer.
4006 NonPointer,
4007 // Single-level pointer.
4008 SingleLevelPointer,
4009 // Multi-level pointer (of any pointer kind).
4010 MultiLevelPointer,
4011 // CFFooRef*
4012 MaybePointerToCFRef,
4013 // CFErrorRef*
4014 CFErrorRefPointer,
4015 // NSError**
4016 NSErrorPointerPointer,
4017 };
4018
4019 /// Describes a declarator chunk wrapping a pointer that marks inference as
4020 /// unexpected.
4021 // These values must be kept in sync with diagnostics.
4022 enum class PointerWrappingDeclaratorKind {
4023 /// Pointer is top-level.
4024 None = -1,
4025 /// Pointer is an array element.
4026 Array = 0,
4027 /// Pointer is the referent type of a C++ reference.
4028 Reference = 1
4029 };
4030} // end anonymous namespace
4031
4032/// Classify the given declarator, whose type-specified is \c type, based on
4033/// what kind of pointer it refers to.
4034///
4035/// This is used to determine the default nullability.
4036static PointerDeclaratorKind
4037classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
4038 PointerWrappingDeclaratorKind &wrappingKind) {
4039 unsigned numNormalPointers = 0;
4040
4041 // For any dependent type, we consider it a non-pointer.
4042 if (type->isDependentType())
4043 return PointerDeclaratorKind::NonPointer;
4044
4045 // Look through the declarator chunks to identify pointers.
4046 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
4047 DeclaratorChunk &chunk = declarator.getTypeObject(i);
4048 switch (chunk.Kind) {
4049 case DeclaratorChunk::Array:
4050 if (numNormalPointers == 0)
4051 wrappingKind = PointerWrappingDeclaratorKind::Array;
4052 break;
4053
4054 case DeclaratorChunk::Function:
4055 case DeclaratorChunk::Pipe:
4056 break;
4057
4058 case DeclaratorChunk::BlockPointer:
4059 case DeclaratorChunk::MemberPointer:
4060 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4061 : PointerDeclaratorKind::SingleLevelPointer;
4062
4063 case DeclaratorChunk::Paren:
4064 break;
4065
4066 case DeclaratorChunk::Reference:
4067 if (numNormalPointers == 0)
4068 wrappingKind = PointerWrappingDeclaratorKind::Reference;
4069 break;
4070
4071 case DeclaratorChunk::Pointer:
4072 ++numNormalPointers;
4073 if (numNormalPointers > 2)
4074 return PointerDeclaratorKind::MultiLevelPointer;
4075 break;
4076 }
4077 }
4078
4079 // Then, dig into the type specifier itself.
4080 unsigned numTypeSpecifierPointers = 0;
4081 do {
4082 // Decompose normal pointers.
4083 if (auto ptrType = type->getAs<PointerType>()) {
4084 ++numNormalPointers;
4085
4086 if (numNormalPointers > 2)
4087 return PointerDeclaratorKind::MultiLevelPointer;
4088
4089 type = ptrType->getPointeeType();
4090 ++numTypeSpecifierPointers;
4091 continue;
4092 }
4093
4094 // Decompose block pointers.
4095 if (type->getAs<BlockPointerType>()) {
4096 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4097 : PointerDeclaratorKind::SingleLevelPointer;
4098 }
4099
4100 // Decompose member pointers.
4101 if (type->getAs<MemberPointerType>()) {
4102 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4103 : PointerDeclaratorKind::SingleLevelPointer;
4104 }
4105
4106 // Look at Objective-C object pointers.
4107 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4108 ++numNormalPointers;
4109 ++numTypeSpecifierPointers;
4110
4111 // If this is NSError**, report that.
4112 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4113 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4114 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4115 return PointerDeclaratorKind::NSErrorPointerPointer;
4116 }
4117 }
4118
4119 break;
4120 }
4121
4122 // Look at Objective-C class types.
4123 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4124 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4125 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4126 return PointerDeclaratorKind::NSErrorPointerPointer;
4127 }
4128
4129 break;
4130 }
4131
4132 // If at this point we haven't seen a pointer, we won't see one.
4133 if (numNormalPointers == 0)
4134 return PointerDeclaratorKind::NonPointer;
4135
4136 if (auto recordType = type->getAs<RecordType>()) {
4137 RecordDecl *recordDecl = recordType->getDecl();
4138
4139 // If this is CFErrorRef*, report it as such.
4140 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4141 S.isCFError(recordDecl)) {
4142 return PointerDeclaratorKind::CFErrorRefPointer;
4143 }
4144 break;
4145 }
4146
4147 break;
4148 } while (true);
4149
4150 switch (numNormalPointers) {
4151 case 0:
4152 return PointerDeclaratorKind::NonPointer;
4153
4154 case 1:
4155 return PointerDeclaratorKind::SingleLevelPointer;
4156
4157 case 2:
4158 return PointerDeclaratorKind::MaybePointerToCFRef;
4159
4160 default:
4161 return PointerDeclaratorKind::MultiLevelPointer;
4162 }
4163}
4164
4165bool Sema::isCFError(RecordDecl *RD) {
4166 // If we already know about CFError, test it directly.
4167 if (CFError)
4168 return CFError == RD;
4169
4170 // Check whether this is CFError, which we identify based on its bridge to
4171 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4172 // declared with "objc_bridge_mutable", so look for either one of the two
4173 // attributes.
4174 if (RD->getTagKind() == TTK_Struct) {
4175 IdentifierInfo *bridgedType = nullptr;
4176 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4177 bridgedType = bridgeAttr->getBridgedType();
4178 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4179 bridgedType = bridgeAttr->getBridgedType();
4180
4181 if (bridgedType == getNSErrorIdent()) {
4182 CFError = RD;
4183 return true;
4184 }
4185 }
4186
4187 return false;
4188}
4189
4190static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4191 SourceLocation loc) {
4192 // If we're anywhere in a function, method, or closure context, don't perform
4193 // completeness checks.
4194 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4195 if (ctx->isFunctionOrMethod())
4196 return FileID();
4197
4198 if (ctx->isFileContext())
4199 break;
4200 }
4201
4202 // We only care about the expansion location.
4203 loc = S.SourceMgr.getExpansionLoc(loc);
4204 FileID file = S.SourceMgr.getFileID(loc);
4205 if (file.isInvalid())
4206 return FileID();
4207
4208 // Retrieve file information.
4209 bool invalid = false;
4210 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
4211 if (invalid || !sloc.isFile())
4212 return FileID();
4213
4214 // We don't want to perform completeness checks on the main file or in
4215 // system headers.
4216 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4217 if (fileInfo.getIncludeLoc().isInvalid())
4218 return FileID();
4219 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4220 S.Diags.getSuppressSystemWarnings()) {
4221 return FileID();
4222 }
4223
4224 return file;
4225}
4226
4227/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4228/// taking into account whitespace before and after.
4229template <typename DiagBuilderT>
4230static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4231 SourceLocation PointerLoc,
4232 NullabilityKind Nullability) {
4233 assert(PointerLoc.isValid())((void)0);
4234 if (PointerLoc.isMacroID())
4235 return;
4236
4237 SourceLocation FixItLoc = S.getLocForEndOfToken(PointerLoc);
4238 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4239 return;
4240
4241 const char *NextChar = S.SourceMgr.getCharacterData(FixItLoc);
4242 if (!NextChar)
4243 return;
4244
4245 SmallString<32> InsertionTextBuf{" "};
4246 InsertionTextBuf += getNullabilitySpelling(Nullability);
4247 InsertionTextBuf += " ";
4248 StringRef InsertionText = InsertionTextBuf.str();
4249
4250 if (isWhitespace(*NextChar)) {
4251 InsertionText = InsertionText.drop_back();
4252 } else if (NextChar[-1] == '[') {
4253 if (NextChar[0] == ']')
4254 InsertionText = InsertionText.drop_back().drop_front();
4255 else
4256 InsertionText = InsertionText.drop_front();
4257 } else if (!isIdentifierBody(NextChar[0], /*allow dollar*/true) &&
4258 !isIdentifierBody(NextChar[-1], /*allow dollar*/true)) {
4259 InsertionText = InsertionText.drop_back().drop_front();
4260 }
4261
4262 Diag << FixItHint::CreateInsertion(FixItLoc, InsertionText);
4263}
4264
4265static void emitNullabilityConsistencyWarning(Sema &S,
4266 SimplePointerKind PointerKind,
4267 SourceLocation PointerLoc,
4268 SourceLocation PointerEndLoc) {
4269 assert(PointerLoc.isValid())((void)0);
4270
4271 if (PointerKind == SimplePointerKind::Array) {
4272 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4273 } else {
4274 S.Diag(PointerLoc, diag::warn_nullability_missing)
4275 << static_cast<unsigned>(PointerKind);
4276 }
4277
4278 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4279 if (FixItLoc.isMacroID())
4280 return;
4281
4282 auto addFixIt = [&](NullabilityKind Nullability) {
4283 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4284 Diag << static_cast<unsigned>(Nullability);
4285 Diag << static_cast<unsigned>(PointerKind);
4286 fixItNullability(S, Diag, FixItLoc, Nullability);
4287 };
4288 addFixIt(NullabilityKind::Nullable);
4289 addFixIt(NullabilityKind::NonNull);
4290}
4291
4292/// Complains about missing nullability if the file containing \p pointerLoc
4293/// has other uses of nullability (either the keywords or the \c assume_nonnull
4294/// pragma).
4295///
4296/// If the file has \e not seen other uses of nullability, this particular
4297/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4298static void
4299checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4300 SourceLocation pointerLoc,
4301 SourceLocation pointerEndLoc = SourceLocation()) {
4302 // Determine which file we're performing consistency checking for.
4303 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
4304 if (file.isInvalid())
4305 return;
4306
4307 // If we haven't seen any type nullability in this file, we won't warn now
4308 // about anything.
4309 FileNullability &fileNullability = S.NullabilityMap[file];
4310 if (!fileNullability.SawTypeNullability) {
4311 // If this is the first pointer declarator in the file, and the appropriate
4312 // warning is on, record it in case we need to diagnose it retroactively.
4313 diag::kind diagKind;
4314 if (pointerKind == SimplePointerKind::Array)
4315 diagKind = diag::warn_nullability_missing_array;
4316 else
4317 diagKind = diag::warn_nullability_missing;
4318
4319 if (fileNullability.PointerLoc.isInvalid() &&
4320 !S.Context.getDiagnostics().isIgnored(diagKind, pointerLoc)) {
4321 fileNullability.PointerLoc = pointerLoc;
4322 fileNullability.PointerEndLoc = pointerEndLoc;
4323 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4324 }
4325
4326 return;
4327 }
4328
4329 // Complain about missing nullability.
4330 emitNullabilityConsistencyWarning(S, pointerKind, pointerLoc, pointerEndLoc);
4331}
4332
4333/// Marks that a nullability feature has been used in the file containing
4334/// \p loc.
4335///
4336/// If this file already had pointer types in it that were missing nullability,
4337/// the first such instance is retroactively diagnosed.
4338///
4339/// \sa checkNullabilityConsistency
4340static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4341 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4342 if (file.isInvalid())
4343 return;
4344
4345 FileNullability &fileNullability = S.NullabilityMap[file];
4346 if (fileNullability.SawTypeNullability)
4347 return;
4348 fileNullability.SawTypeNullability = true;
4349
4350 // If we haven't seen any type nullability before, now we have. Retroactively
4351 // diagnose the first unannotated pointer, if there was one.
4352 if (fileNullability.PointerLoc.isInvalid())
4353 return;
4354
4355 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4356 emitNullabilityConsistencyWarning(S, kind, fileNullability.PointerLoc,
4357 fileNullability.PointerEndLoc);
4358}
4359
4360/// Returns true if any of the declarator chunks before \p endIndex include a
4361/// level of indirection: array, pointer, reference, or pointer-to-member.
4362///
4363/// Because declarator chunks are stored in outer-to-inner order, testing
4364/// every chunk before \p endIndex is testing all chunks that embed the current
4365/// chunk as part of their type.
4366///
4367/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4368/// end index, in which case all chunks are tested.
4369static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4370 unsigned i = endIndex;
4371 while (i != 0) {
4372 // Walk outwards along the declarator chunks.
4373 --i;
4374 const DeclaratorChunk &DC = D.getTypeObject(i);
4375 switch (DC.Kind) {
4376 case DeclaratorChunk::Paren:
4377 break;
4378 case DeclaratorChunk::Array:
4379 case DeclaratorChunk::Pointer:
4380 case DeclaratorChunk::Reference:
4381 case DeclaratorChunk::MemberPointer:
4382 return true;
4383 case DeclaratorChunk::Function:
4384 case DeclaratorChunk::BlockPointer:
4385 case DeclaratorChunk::Pipe:
4386 // These are invalid anyway, so just ignore.
4387 break;
4388 }
4389 }
4390 return false;
4391}
4392
4393static bool IsNoDerefableChunk(DeclaratorChunk Chunk) {
4394 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4395 Chunk.Kind == DeclaratorChunk::Array);
4396}
4397
4398template<typename AttrT>
4399static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4400 AL.setUsedAsTypeAttr();
4401 return ::new (Ctx) AttrT(Ctx, AL);
4402}
4403
4404static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4405 NullabilityKind NK) {
4406 switch (NK) {
4407 case NullabilityKind::NonNull:
4408 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4409
4410 case NullabilityKind::Nullable:
4411 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4412
4413 case NullabilityKind::NullableResult:
4414 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4415
4416 case NullabilityKind::Unspecified:
4417 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4418 }
4419 llvm_unreachable("unknown NullabilityKind")__builtin_unreachable();
4420}
4421
4422// Diagnose whether this is a case with the multiple addr spaces.
4423// Returns true if this is an invalid case.
4424// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4425// by qualifiers for two or more different address spaces."
4426static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4427 LangAS ASNew,
4428 SourceLocation AttrLoc) {
4429 if (ASOld != LangAS::Default) {
4430 if (ASOld != ASNew) {
4431 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4432 return true;
4433 }
4434 // Emit a warning if they are identical; it's likely unintended.
4435 S.Diag(AttrLoc,
4436 diag::warn_attribute_address_multiple_identical_qualifiers);
4437 }
4438 return false;
4439}
4440
4441static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4442 QualType declSpecType,
4443 TypeSourceInfo *TInfo) {
4444 // The TypeSourceInfo that this function returns will not be a null type.
4445 // If there is an error, this function will fill in a dummy type as fallback.
4446 QualType T = declSpecType;
4447 Declarator &D = state.getDeclarator();
4448 Sema &S = state.getSema();
4449 ASTContext &Context = S.Context;
4450 const LangOptions &LangOpts = S.getLangOpts();
4451
4452 // The name we're declaring, if any.
4453 DeclarationName Name;
4454 if (D.getIdentifier())
1
Taking false branch
4455 Name = D.getIdentifier();
4456
4457 // Does this declaration declare a typedef-name?
4458 bool IsTypedefName =
4459 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
2
Assuming the condition is false
4460 D.getContext() == DeclaratorContext::AliasDecl ||
3
Assuming the condition is false
4461 D.getContext() == DeclaratorContext::AliasTemplate;
4
Assuming the condition is false
4462
4463 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4464 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4465 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4466 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4467
4468 // If T is 'decltype(auto)', the only declarators we can have are parens
4469 // and at most one function declarator if this is a function declaration.
4470 // If T is a deduced class template specialization type, we can have no
4471 // declarator chunks at all.
4472 if (auto *DT
5.1
'DT' is null
5.1
'DT' is null
5.1
'DT' is null
5.1
'DT' is null
5.1
'DT' is null
= T->getAs<DeducedType>()) {
5
Assuming the object is not a 'DeducedType'
6
Taking false branch
4473 const AutoType *AT = T->getAs<AutoType>();
4474 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(DT);
4475 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4476 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4477 unsigned Index = E - I - 1;
4478 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
4479 unsigned DiagId = IsClassTemplateDeduction
4480 ? diag::err_deduced_class_template_compound_type
4481 : diag::err_decltype_auto_compound_type;
4482 unsigned DiagKind = 0;
4483 switch (DeclChunk.Kind) {
4484 case DeclaratorChunk::Paren:
4485 // FIXME: Rejecting this is a little silly.
4486 if (IsClassTemplateDeduction) {
4487 DiagKind = 4;
4488 break;
4489 }
4490 continue;
4491 case DeclaratorChunk::Function: {
4492 if (IsClassTemplateDeduction) {
4493 DiagKind = 3;
4494 break;
4495 }
4496 unsigned FnIndex;
4497 if (D.isFunctionDeclarationContext() &&
4498 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
4499 continue;
4500 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4501 break;
4502 }
4503 case DeclaratorChunk::Pointer:
4504 case DeclaratorChunk::BlockPointer:
4505 case DeclaratorChunk::MemberPointer:
4506 DiagKind = 0;
4507 break;
4508 case DeclaratorChunk::Reference:
4509 DiagKind = 1;
4510 break;
4511 case DeclaratorChunk::Array:
4512 DiagKind = 2;
4513 break;
4514 case DeclaratorChunk::Pipe:
4515 break;
4516 }
4517
4518 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
4519 D.setInvalidType(true);
4520 break;
4521 }
4522 }
4523 }
4524
4525 // Determine whether we should infer _Nonnull on pointer types.
4526 Optional<NullabilityKind> inferNullability;
4527 bool inferNullabilityCS = false;
4528 bool inferNullabilityInnerOnly = false;
4529 bool inferNullabilityInnerOnlyComplete = false;
4530
4531 // Are we in an assume-nonnull region?
4532 bool inAssumeNonNullRegion = false;
4533 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4534 if (assumeNonNullLoc.isValid()) {
7
Taking false branch
4535 inAssumeNonNullRegion = true;
4536 recordNullabilitySeen(S, assumeNonNullLoc);
4537 }
4538
4539 // Whether to complain about missing nullability specifiers or not.
4540 enum {
4541 /// Never complain.
4542 CAMN_No,
4543 /// Complain on the inner pointers (but not the outermost
4544 /// pointer).
4545 CAMN_InnerPointers,
4546 /// Complain about any pointers that don't have nullability
4547 /// specified or inferred.
4548 CAMN_Yes
4549 } complainAboutMissingNullability = CAMN_No;
4550 unsigned NumPointersRemaining = 0;
4551 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4552
4553 if (IsTypedefName
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
7.1
'IsTypedefName' is false
) {
8
Taking false branch
4554 // For typedefs, we do not infer any nullability (the default),
4555 // and we only complain about missing nullability specifiers on
4556 // inner pointers.
4557 complainAboutMissingNullability = CAMN_InnerPointers;
4558
4559 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4560 !T->getNullability(S.Context)) {
4561 // Note that we allow but don't require nullability on dependent types.
4562 ++NumPointersRemaining;
4563 }
4564
4565 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4566 DeclaratorChunk &chunk = D.getTypeObject(i);
4567 switch (chunk.Kind) {
4568 case DeclaratorChunk::Array:
4569 case DeclaratorChunk::Function:
4570 case DeclaratorChunk::Pipe:
4571 break;
4572
4573 case DeclaratorChunk::BlockPointer:
4574 case DeclaratorChunk::MemberPointer:
4575 ++NumPointersRemaining;
4576 break;
4577
4578 case DeclaratorChunk::Paren:
4579 case DeclaratorChunk::Reference:
4580 continue;
4581
4582 case DeclaratorChunk::Pointer:
4583 ++NumPointersRemaining;
4584 continue;
4585 }
4586 }
4587 } else {
4588 bool isFunctionOrMethod = false;
4589 switch (auto context = state.getDeclarator().getContext()) {
9
Control jumps to 'case Block:' at line 4672
4590 case DeclaratorContext::ObjCParameter:
4591 case DeclaratorContext::ObjCResult:
4592 case DeclaratorContext::Prototype:
4593 case DeclaratorContext::TrailingReturn:
4594 case DeclaratorContext::TrailingReturnVar:
4595 isFunctionOrMethod = true;
4596 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4597
4598 case DeclaratorContext::Member:
4599 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4600 complainAboutMissingNullability = CAMN_No;
4601 break;
4602 }
4603
4604 // Weak properties are inferred to be nullable.
4605 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
4606 inferNullability = NullabilityKind::Nullable;
4607 break;
4608 }
4609
4610 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4611
4612 case DeclaratorContext::File:
4613 case DeclaratorContext::KNRTypeList: {
4614 complainAboutMissingNullability = CAMN_Yes;
4615
4616 // Nullability inference depends on the type and declarator.
4617 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4618 switch (classifyPointerDeclarator(S, T, D, wrappingKind)) {
4619 case PointerDeclaratorKind::NonPointer:
4620 case PointerDeclaratorKind::MultiLevelPointer:
4621 // Cannot infer nullability.
4622 break;
4623
4624 case PointerDeclaratorKind::SingleLevelPointer:
4625 // Infer _Nonnull if we are in an assumes-nonnull region.
4626 if (inAssumeNonNullRegion) {
4627 complainAboutInferringWithinChunk = wrappingKind;
4628 inferNullability = NullabilityKind::NonNull;
4629 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4630 context == DeclaratorContext::ObjCResult);
4631 }
4632 break;
4633
4634 case PointerDeclaratorKind::CFErrorRefPointer:
4635 case PointerDeclaratorKind::NSErrorPointerPointer:
4636 // Within a function or method signature, infer _Nullable at both
4637 // levels.
4638 if (isFunctionOrMethod && inAssumeNonNullRegion)
4639 inferNullability = NullabilityKind::Nullable;
4640 break;
4641
4642 case PointerDeclaratorKind::MaybePointerToCFRef:
4643 if (isFunctionOrMethod) {
4644 // On pointer-to-pointer parameters marked cf_returns_retained or
4645 // cf_returns_not_retained, if the outer pointer is explicit then
4646 // infer the inner pointer as _Nullable.
4647 auto hasCFReturnsAttr =
4648 [](const ParsedAttributesView &AttrList) -> bool {
4649 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4650 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4651 };
4652 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4653 if (hasCFReturnsAttr(D.getAttributes()) ||
4654 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4655 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4656 inferNullability = NullabilityKind::Nullable;
4657 inferNullabilityInnerOnly = true;
4658 }
4659 }
4660 }
4661 break;
4662 }
4663 break;
4664 }
4665
4666 case DeclaratorContext::ConversionId:
4667 complainAboutMissingNullability = CAMN_Yes;
4668 break;
4669
4670 case DeclaratorContext::AliasDecl:
4671 case DeclaratorContext::AliasTemplate:
4672 case DeclaratorContext::Block:
4673 case DeclaratorContext::BlockLiteral:
4674 case DeclaratorContext::Condition:
4675 case DeclaratorContext::CXXCatch:
4676 case DeclaratorContext::CXXNew:
4677 case DeclaratorContext::ForInit:
4678 case DeclaratorContext::SelectionInit:
4679 case DeclaratorContext::LambdaExpr:
4680 case DeclaratorContext::LambdaExprParameter:
4681 case DeclaratorContext::ObjCCatch:
4682 case DeclaratorContext::TemplateParam:
4683 case DeclaratorContext::TemplateArg:
4684 case DeclaratorContext::TemplateTypeArg:
4685 case DeclaratorContext::TypeName:
4686 case DeclaratorContext::FunctionalCast:
4687 case DeclaratorContext::RequiresExpr:
4688 // Don't infer in these contexts.
4689 break;
10
Execution continues on line 4694
4690 }
4691 }
4692
4693 // Local function that returns true if its argument looks like a va_list.
4694 auto isVaList = [&S](QualType T) -> bool {
4695 auto *typedefTy = T->getAs<TypedefType>();
4696 if (!typedefTy)
4697 return false;
4698 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4699 do {
4700 if (typedefTy->getDecl() == vaListTypedef)
4701 return true;
4702 if (auto *name = typedefTy->getDecl()->getIdentifier())
4703 if (name->isStr("va_list"))
4704 return true;
4705 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4706 } while (typedefTy);
4707 return false;
4708 };
4709
4710 // Local function that checks the nullability for a given pointer declarator.
4711 // Returns true if _Nonnull was inferred.
4712 auto inferPointerNullability =
4713 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4714 SourceLocation pointerEndLoc,
4715 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4716 // We've seen a pointer.
4717 if (NumPointersRemaining > 0)
4718 --NumPointersRemaining;
4719
4720 // If a nullability attribute is present, there's nothing to do.
4721 if (hasNullabilityAttr(attrs))
4722 return nullptr;
4723
4724 // If we're supposed to infer nullability, do so now.
4725 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
4726 ParsedAttr::Syntax syntax = inferNullabilityCS
4727 ? ParsedAttr::AS_ContextSensitiveKeyword
4728 : ParsedAttr::AS_Keyword;
4729 ParsedAttr *nullabilityAttr = Pool.create(
4730 S.getNullabilityKeyword(*inferNullability), SourceRange(pointerLoc),
4731 nullptr, SourceLocation(), nullptr, 0, syntax);
4732
4733 attrs.addAtEnd(nullabilityAttr);
4734
4735 if (inferNullabilityCS) {
4736 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4737 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
4738 }
4739
4740 if (pointerLoc.isValid() &&
4741 complainAboutInferringWithinChunk !=
4742 PointerWrappingDeclaratorKind::None) {
4743 auto Diag =
4744 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
4745 Diag << static_cast<int>(complainAboutInferringWithinChunk);
4746 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
4747 }
4748
4749 if (inferNullabilityInnerOnly)
4750 inferNullabilityInnerOnlyComplete = true;
4751 return nullabilityAttr;
4752 }
4753
4754 // If we're supposed to complain about missing nullability, do so
4755 // now if it's truly missing.
4756 switch (complainAboutMissingNullability) {
4757 case CAMN_No:
4758 break;
4759
4760 case CAMN_InnerPointers:
4761 if (NumPointersRemaining == 0)
4762 break;
4763 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4764
4765 case CAMN_Yes:
4766 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
4767 }
4768 return nullptr;
4769 };
4770
4771 // If the type itself could have nullability but does not, infer pointer
4772 // nullability and perform consistency checking.
4773 if (S.CodeSynthesisContexts.empty()) {
11
Taking false branch
4774 if (T->canHaveNullability(/*ResultIfUnknown*/false) &&
4775 !T->getNullability(S.Context)) {
4776 if (isVaList(T)) {
4777 // Record that we've seen a pointer, but do nothing else.
4778 if (NumPointersRemaining > 0)
4779 --NumPointersRemaining;
4780 } else {
4781 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
4782 if (T->isBlockPointerType())
4783 pointerKind = SimplePointerKind::BlockPointer;
4784 else if (T->isMemberPointerType())
4785 pointerKind = SimplePointerKind::MemberPointer;
4786
4787 if (auto *attr = inferPointerNullability(
4788 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
4789 D.getDeclSpec().getEndLoc(),
4790 D.getMutableDeclSpec().getAttributes(),
4791 D.getMutableDeclSpec().getAttributePool())) {
4792 T = state.getAttributedType(
4793 createNullabilityAttr(Context, *attr, *inferNullability), T, T);
4794 }
4795 }
4796 }
4797
4798 if (complainAboutMissingNullability == CAMN_Yes &&
4799 T->isArrayType() && !T->getNullability(S.Context) && !isVaList(T) &&
4800 D.isPrototypeContext() &&
4801 !hasOuterPointerLikeChunk(D, D.getNumTypeObjects())) {
4802 checkNullabilityConsistency(S, SimplePointerKind::Array,
4803 D.getDeclSpec().getTypeSpecTypeLoc());
4804 }
4805 }
4806
4807 bool ExpectNoDerefChunk =
4808 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
4809
4810 // Walk the DeclTypeInfo, building the recursive type as we go.
4811 // DeclTypeInfos are ordered from the identifier out, which is
4812 // opposite of what we want :).
4813 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
12
Assuming 'i' is equal to 'e'
13
Loop condition is false. Execution continues on line 5497
4814 unsigned chunkIndex = e - i - 1;
4815 state.setCurrentChunkIndex(chunkIndex);
4816 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
4817 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
4818 switch (DeclType.Kind) {
4819 case DeclaratorChunk::Paren:
4820 if (i == 0)
4821 warnAboutRedundantParens(S, D, T);
4822 T = S.BuildParenType(T);
4823 break;
4824 case DeclaratorChunk::BlockPointer:
4825 // If blocks are disabled, emit an error.
4826 if (!LangOpts.Blocks)
4827 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
4828
4829 // Handle pointer nullability.
4830 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
4831 DeclType.EndLoc, DeclType.getAttrs(),
4832 state.getDeclarator().getAttributePool());
4833
4834 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
4835 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
4836 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4837 // qualified with const.
4838 if (LangOpts.OpenCL)
4839 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
4840 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
4841 }
4842 break;
4843 case DeclaratorChunk::Pointer:
4844 // Verify that we're not building a pointer to pointer to function with
4845 // exception specification.
4846 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4847 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4848 D.setInvalidType(true);
4849 // Build the type anyway.
4850 }
4851
4852 // Handle pointer nullability
4853 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
4854 DeclType.EndLoc, DeclType.getAttrs(),
4855 state.getDeclarator().getAttributePool());
4856
4857 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
4858 T = Context.getObjCObjectPointerType(T);
4859 if (DeclType.Ptr.TypeQuals)
4860 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4861 break;
4862 }
4863
4864 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4865 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4866 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4867 if (LangOpts.OpenCL) {
4868 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
4869 T->isBlockPointerType()) {
4870 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
4871 D.setInvalidType(true);
4872 }
4873 }
4874
4875 T = S.BuildPointerType(T, DeclType.Loc, Name);
4876 if (DeclType.Ptr.TypeQuals)
4877 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
4878 break;
4879 case DeclaratorChunk::Reference: {
4880 // Verify that we're not building a reference to pointer to function with
4881 // exception specification.
4882 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4883 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4884 D.setInvalidType(true);
4885 // Build the type anyway.
4886 }
4887 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
4888
4889 if (DeclType.Ref.HasRestrict)
4890 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
4891 break;
4892 }
4893 case DeclaratorChunk::Array: {
4894 // Verify that we're not building an array of pointers to function with
4895 // exception specification.
4896 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
4897 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
4898 D.setInvalidType(true);
4899 // Build the type anyway.
4900 }
4901 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
4902 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
4903 ArrayType::ArraySizeModifier ASM;
4904 if (ATI.isStar)
4905 ASM = ArrayType::Star;
4906 else if (ATI.hasStatic)
4907 ASM = ArrayType::Static;
4908 else
4909 ASM = ArrayType::Normal;
4910 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
4911 // FIXME: This check isn't quite right: it allows star in prototypes
4912 // for function definitions, and disallows some edge cases detailed
4913 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
4914 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
4915 ASM = ArrayType::Normal;
4916 D.setInvalidType(true);
4917 }
4918
4919 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
4920 // shall appear only in a declaration of a function parameter with an
4921 // array type, ...
4922 if (ASM == ArrayType::Static || ATI.TypeQuals) {
4923 if (!(D.isPrototypeContext() ||
4924 D.getContext() == DeclaratorContext::KNRTypeList)) {
4925 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
4926 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4927 // Remove the 'static' and the type qualifiers.
4928 if (ASM == ArrayType::Static)
4929 ASM = ArrayType::Normal;
4930 ATI.TypeQuals = 0;
4931 D.setInvalidType(true);
4932 }
4933
4934 // C99 6.7.5.2p1: ... and then only in the outermost array type
4935 // derivation.
4936 if (hasOuterPointerLikeChunk(D, chunkIndex)) {
4937 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
4938 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
4939 if (ASM == ArrayType::Static)
4940 ASM = ArrayType::Normal;
4941 ATI.TypeQuals = 0;
4942 D.setInvalidType(true);
4943 }
4944 }
4945 const AutoType *AT = T->getContainedAutoType();
4946 // Allow arrays of auto if we are a generic lambda parameter.
4947 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
4948 if (AT && D.getContext() != DeclaratorContext::LambdaExprParameter) {
4949 // We've already diagnosed this for decltype(auto).
4950 if (!AT->isDecltypeAuto())
4951 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
4952 << getPrintableNameForEntity(Name) << T;
4953 T = QualType();
4954 break;
4955 }
4956
4957 // Array parameters can be marked nullable as well, although it's not
4958 // necessary if they're marked 'static'.
4959 if (complainAboutMissingNullability == CAMN_Yes &&
4960 !hasNullabilityAttr(DeclType.getAttrs()) &&
4961 ASM != ArrayType::Static &&
4962 D.isPrototypeContext() &&
4963 !hasOuterPointerLikeChunk(D, chunkIndex)) {
4964 checkNullabilityConsistency(S, SimplePointerKind::Array, DeclType.Loc);
4965 }
4966
4967 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
4968 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
4969 break;
4970 }
4971 case DeclaratorChunk::Function: {
4972 // If the function declarator has a prototype (i.e. it is not () and
4973 // does not have a K&R-style identifier list), then the arguments are part
4974 // of the type, otherwise the argument list is ().
4975 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
4976 IsQualifiedFunction =
4977 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
4978
4979 // Check for auto functions and trailing return type and adjust the
4980 // return type accordingly.
4981 if (!D.isInvalidType()) {
4982 // trailing-return-type is only required if we're declaring a function,
4983 // and not, for instance, a pointer to a function.
4984 if (D.getDeclSpec().hasAutoTypeSpec() &&
4985 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
4986 if (!S.getLangOpts().CPlusPlus14) {
4987 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4988 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
4989 ? diag::err_auto_missing_trailing_return
4990 : diag::err_deduced_return_type);
4991 T = Context.IntTy;
4992 D.setInvalidType(true);
4993 } else {
4994 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
4995 diag::warn_cxx11_compat_deduced_return_type);
4996 }
4997 } else if (FTI.hasTrailingReturnType()) {
4998 // T must be exactly 'auto' at this point. See CWG issue 681.
4999 if (isa<ParenType>(T)) {
5000 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
5001 << T << D.getSourceRange();
5002 D.setInvalidType(true);
5003 } else if (D.getName().getKind() ==
5004 UnqualifiedIdKind::IK_DeductionGuideName) {
5005 if (T != Context.DependentTy) {
5006 S.Diag(D.getDeclSpec().getBeginLoc(),
5007 diag::err_deduction_guide_with_complex_decl)
5008 << D.getSourceRange();
5009 D.setInvalidType(true);
5010 }
5011 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
5012 (T.hasQualifiers() || !isa<AutoType>(T) ||
5013 cast<AutoType>(T)->getKeyword() !=
5014 AutoTypeKeyword::Auto ||
5015 cast<AutoType>(T)->isConstrained())) {
5016 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5017 diag::err_trailing_return_without_auto)
5018 << T << D.getDeclSpec().getSourceRange();
5019 D.setInvalidType(true);
5020 }
5021 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
5022 if (T.isNull()) {
5023 // An error occurred parsing the trailing return type.
5024 T = Context.IntTy;
5025 D.setInvalidType(true);
5026 } else if (AutoType *Auto = T->getContainedAutoType()) {
5027 // If the trailing return type contains an `auto`, we may need to
5028 // invent a template parameter for it, for cases like
5029 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5030 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
5031 if (D.getContext() == DeclaratorContext::Prototype)
5032 InventedParamInfo = &S.InventedParameterInfos.back();
5033 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
5034 InventedParamInfo = S.getCurLambda();
5035 if (InventedParamInfo) {
5036 std::tie(T, TInfo) = InventTemplateParameter(
5037 state, T, TInfo, Auto, *InventedParamInfo);
5038 }
5039 }
5040 } else {
5041 // This function type is not the type of the entity being declared,
5042 // so checking the 'auto' is not the responsibility of this chunk.
5043 }
5044 }
5045
5046 // C99 6.7.5.3p1: The return type may not be a function or array type.
5047 // For conversion functions, we'll diagnose this particular error later.
5048 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
5049 (D.getName().getKind() !=
5050 UnqualifiedIdKind::IK_ConversionFunctionId)) {
5051 unsigned diagID = diag::err_func_returning_array_function;
5052 // Last processing chunk in block context means this function chunk
5053 // represents the block.
5054 if (chunkIndex == 0 &&
5055 D.getContext() == DeclaratorContext::BlockLiteral)
5056 diagID = diag::err_block_returning_array_function;
5057 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
5058 T = Context.IntTy;
5059 D.setInvalidType(true);
5060 }
5061
5062 // Do not allow returning half FP value.
5063 // FIXME: This really should be in BuildFunctionType.
5064 if (T->isHalfType()) {
5065 if (S.getLangOpts().OpenCL) {
5066 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5067 S.getLangOpts())) {
5068 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5069 << T << 0 /*pointer hint*/;
5070 D.setInvalidType(true);
5071 }
5072 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5073 S.Diag(D.getIdentifierLoc(),
5074 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5075 D.setInvalidType(true);
5076 }
5077 }
5078
5079 if (LangOpts.OpenCL) {
5080 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5081 // function.
5082 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5083 T->isPipeType()) {
5084 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5085 << T << 1 /*hint off*/;
5086 D.setInvalidType(true);
5087 }
5088 // OpenCL doesn't support variadic functions and blocks
5089 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5090 // We also allow here any toolchain reserved identifiers.
5091 if (FTI.isVariadic &&
5092 !S.getOpenCLOptions().isAvailableOption(
5093 "__cl_clang_variadic_functions", S.getLangOpts()) &&
5094 !(D.getIdentifier() &&
5095 ((D.getIdentifier()->getName() == "printf" &&
5096 (LangOpts.OpenCLCPlusPlus || LangOpts.OpenCLVersion >= 120)) ||
5097 D.getIdentifier()->getName().startswith("__")))) {
5098 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5099 D.setInvalidType(true);
5100 }
5101 }
5102
5103 // Methods cannot return interface types. All ObjC objects are
5104 // passed by reference.
5105 if (T->isObjCObjectType()) {
5106 SourceLocation DiagLoc, FixitLoc;
5107 if (TInfo) {
5108 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5109 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getEndLoc());
5110 } else {
5111 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5112 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getEndLoc());
5113 }
5114 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5115 << 0 << T
5116 << FixItHint::CreateInsertion(FixitLoc, "*");
5117
5118 T = Context.getObjCObjectPointerType(T);
5119 if (TInfo) {
5120 TypeLocBuilder TLB;
5121 TLB.pushFullCopy(TInfo->getTypeLoc());
5122 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5123 TLoc.setStarLoc(FixitLoc);
5124 TInfo = TLB.getTypeSourceInfo(Context, T);
5125 }
5126
5127 D.setInvalidType(true);
5128 }
5129
5130 // cv-qualifiers on return types are pointless except when the type is a
5131 // class type in C++.
5132 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5133 !(S.getLangOpts().CPlusPlus &&
5134 (T->isDependentType() || T->isRecordType()))) {
5135 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5136 D.getFunctionDefinitionKind() ==
5137 FunctionDefinitionKind::Definition) {
5138 // [6.9.1/3] qualified void return is invalid on a C
5139 // function definition. Apparently ok on declarations and
5140 // in C++ though (!)
5141 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5142 } else
5143 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
5144
5145 // C++2a [dcl.fct]p12:
5146 // A volatile-qualified return type is deprecated
5147 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5148 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5149 }
5150
5151 // Objective-C ARC ownership qualifiers are ignored on the function
5152 // return type (by type canonicalization). Complain if this attribute
5153 // was written here.
5154 if (T.getQualifiers().hasObjCLifetime()) {
5155 SourceLocation AttrLoc;
5156 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5157 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
5158 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5159 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5160 AttrLoc = AL.getLoc();
5161 break;
5162 }
5163 }
5164 }
5165 if (AttrLoc.isInvalid()) {
5166 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5167 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5168 AttrLoc = AL.getLoc();
5169 break;
5170 }
5171 }
5172 }
5173
5174 if (AttrLoc.isValid()) {
5175 // The ownership attributes are almost always written via
5176 // the predefined
5177 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5178 if (AttrLoc.isMacroID())
5179 AttrLoc =
5180 S.SourceMgr.getImmediateExpansionRange(AttrLoc).getBegin();
5181
5182 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5183 << T.getQualifiers().getObjCLifetime();
5184 }
5185 }
5186
5187 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5188 // C++ [dcl.fct]p6:
5189 // Types shall not be defined in return or parameter types.
5190 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5191 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5192 << Context.getTypeDeclType(Tag);
5193 }
5194
5195 // Exception specs are not allowed in typedefs. Complain, but add it
5196 // anyway.
5197 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5198 S.Diag(FTI.getExceptionSpecLocBeg(),
5199 diag::err_exception_spec_in_typedef)
5200 << (D.getContext() == DeclaratorContext::AliasDecl ||
5201 D.getContext() == DeclaratorContext::AliasTemplate);
5202
5203 // If we see "T var();" or "T var(T());" at block scope, it is probably
5204 // an attempt to initialize a variable, not a function declaration.
5205 if (FTI.isAmbiguous)
5206 warnAboutAmbiguousFunction(S, D, DeclType, T);
5207
5208 FunctionType::ExtInfo EI(
5209 getCCForDeclaratorChunk(S, D, DeclType.getAttrs(), FTI, chunkIndex));
5210
5211 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus
5212 && !LangOpts.OpenCL) {
5213 // Simple void foo(), where the incoming T is the result type.
5214 T = Context.getFunctionNoProtoType(T, EI);
5215 } else {
5216 // We allow a zero-parameter variadic function in C if the
5217 // function is marked with the "overloadable" attribute. Scan
5218 // for this attribute now.
5219 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus)
5220 if (!D.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable))
5221 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5222
5223 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5224 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5225 // definition.
5226 S.Diag(FTI.Params[0].IdentLoc,
5227 diag::err_ident_list_in_fn_declaration);
5228 D.setInvalidType(true);
5229 // Recover by creating a K&R-style function type.
5230 T = Context.getFunctionNoProtoType(T, EI);
5231 break;
5232 }
5233
5234 FunctionProtoType::ExtProtoInfo EPI;
5235 EPI.ExtInfo = EI;
5236 EPI.Variadic = FTI.isVariadic;
5237 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5238 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5239 EPI.TypeQuals.addCVRUQualifiers(
5240 FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5241 : 0);
5242 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5243 : FTI.RefQualifierIsLValueRef? RQ_LValue
5244 : RQ_RValue;
5245
5246 // Otherwise, we have a function with a parameter list that is
5247 // potentially variadic.
5248 SmallVector<QualType, 16> ParamTys;
5249 ParamTys.reserve(FTI.NumParams);
5250
5251 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5252 ExtParameterInfos(FTI.NumParams);
5253 bool HasAnyInterestingExtParameterInfos = false;
5254
5255 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5256 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
5257 QualType ParamTy = Param->getType();
5258 assert(!ParamTy.isNull() && "Couldn't parse type?")((void)0);
5259
5260 // Look for 'void'. void is allowed only as a single parameter to a
5261 // function with no other parameters (C99 6.7.5.3p10). We record
5262 // int(void) as a FunctionProtoType with an empty parameter list.
5263 if (ParamTy->isVoidType()) {
5264 // If this is something like 'float(int, void)', reject it. 'void'
5265 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5266 // have parameters of incomplete type.
5267 if (FTI.NumParams != 1 || FTI.isVariadic) {
5268 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5269 ParamTy = Context.IntTy;
5270 Param->setType(ParamTy);
5271 } else if (FTI.Params[i].Ident) {
5272 // Reject, but continue to parse 'int(void abc)'.
5273 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5274 ParamTy = Context.IntTy;
5275 Param->setType(ParamTy);
5276 } else {
5277 // Reject, but continue to parse 'float(const void)'.
5278 if (ParamTy.hasQualifiers())
5279 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5280
5281 // Do not add 'void' to the list.
5282 break;
5283 }
5284 } else if (ParamTy->isHalfType()) {
5285 // Disallow half FP parameters.
5286 // FIXME: This really should be in BuildFunctionType.
5287 if (S.getLangOpts().OpenCL) {
5288 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5289 S.getLangOpts())) {
5290 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5291 << ParamTy << 0;
5292 D.setInvalidType();
5293 Param->setInvalidDecl();
5294 }
5295 } else if (!S.getLangOpts().HalfArgsAndReturns) {
5296 S.Diag(Param->getLocation(),
5297 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5298 D.setInvalidType();
5299 }
5300 } else if (!FTI.hasPrototype) {
5301 if (ParamTy->isPromotableIntegerType()) {
5302 ParamTy = Context.getPromotedIntegerType(ParamTy);
5303 Param->setKNRPromoted(true);
5304 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
5305 if (BTy->getKind() == BuiltinType::Float) {
5306 ParamTy = Context.DoubleTy;
5307 Param->setKNRPromoted(true);
5308 }
5309 }
5310 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5311 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5312 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5313 << ParamTy << 1 /*hint off*/;
5314 D.setInvalidType();
5315 }
5316
5317 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5318 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(true);
5319 HasAnyInterestingExtParameterInfos = true;
5320 }
5321
5322 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5323 ExtParameterInfos[i] =
5324 ExtParameterInfos[i].withABI(attr->getABI());
5325 HasAnyInterestingExtParameterInfos = true;
5326 }
5327
5328 if (Param->hasAttr<PassObjectSizeAttr>()) {
5329 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5330 HasAnyInterestingExtParameterInfos = true;
5331 }
5332
5333 if (Param->hasAttr<NoEscapeAttr>()) {
5334 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(true);
5335 HasAnyInterestingExtParameterInfos = true;
5336 }
5337
5338 ParamTys.push_back(ParamTy);
5339 }
5340
5341 if (HasAnyInterestingExtParameterInfos) {
5342 EPI.ExtParameterInfos = ExtParameterInfos.data();
5343 checkExtParameterInfos(S, ParamTys, EPI,
5344 [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5345 }
5346
5347 SmallVector<QualType, 4> Exceptions;
5348 SmallVector<ParsedType, 2> DynamicExceptions;
5349 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5350 Expr *NoexceptExpr = nullptr;
5351
5352 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5353 // FIXME: It's rather inefficient to have to split into two vectors
5354 // here.
5355 unsigned N = FTI.getNumExceptions();
5356 DynamicExceptions.reserve(N);
5357 DynamicExceptionRanges.reserve(N);
5358 for (unsigned I = 0; I != N; ++I) {
5359 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
5360 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
5361 }
5362 } else if (isComputedNoexcept(FTI.getExceptionSpecType())) {
5363 NoexceptExpr = FTI.NoexceptExpr;
5364 }
5365
5366 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
5367 FTI.getExceptionSpecType(),
5368 DynamicExceptions,
5369 DynamicExceptionRanges,
5370 NoexceptExpr,
5371 Exceptions,
5372 EPI.ExceptionSpec);
5373
5374 // FIXME: Set address space from attrs for C++ mode here.
5375 // OpenCLCPlusPlus: A class member function has an address space.
5376 auto IsClassMember = [&]() {
5377 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5378 state.getDeclarator()
5379 .getCXXScopeSpec()
5380 .getScopeRep()
5381 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5382 state.getDeclarator().getContext() ==
5383 DeclaratorContext::Member ||
5384 state.getDeclarator().getContext() ==
5385 DeclaratorContext::LambdaExpr;
5386 };
5387
5388 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5389 LangAS ASIdx = LangAS::Default;
5390 // Take address space attr if any and mark as invalid to avoid adding
5391 // them later while creating QualType.
5392 if (FTI.MethodQualifiers)
5393 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5394 LangAS ASIdxNew = attr.asOpenCLLangAS();
5395 if (DiagnoseMultipleAddrSpaceAttributes(S, ASIdx, ASIdxNew,
5396 attr.getLoc()))
5397 D.setInvalidType(true);
5398 else
5399 ASIdx = ASIdxNew;
5400 }
5401 // If a class member function's address space is not set, set it to
5402 // __generic.
5403 LangAS AS =
5404 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5405 : ASIdx);
5406 EPI.TypeQuals.addAddressSpace(AS);
5407 }
5408 T = Context.getFunctionType(T, ParamTys, EPI);
5409 }
5410 break;
5411 }
5412 case DeclaratorChunk::MemberPointer: {
5413 // The scope spec must refer to a class, or be dependent.
5414 CXXScopeSpec &SS = DeclType.Mem.Scope();
5415 QualType ClsType;
5416
5417 // Handle pointer nullability.
5418 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5419 DeclType.EndLoc, DeclType.getAttrs(),
5420 state.getDeclarator().getAttributePool());
5421
5422 if (SS.isInvalid()) {
5423 // Avoid emitting extra errors if we already errored on the scope.
5424 D.setInvalidType(true);
5425 } else if (S.isDependentScopeSpecifier(SS) ||
5426 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
5427 NestedNameSpecifier *NNS = SS.getScopeRep();
5428 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5429 switch (NNS->getKind()) {
5430 case NestedNameSpecifier::Identifier:
5431 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
5432 NNS->getAsIdentifier());
5433 break;
5434
5435 case NestedNameSpecifier::Namespace:
5436 case NestedNameSpecifier::NamespaceAlias:
5437 case NestedNameSpecifier::Global:
5438 case NestedNameSpecifier::Super:
5439 llvm_unreachable("Nested-name-specifier must name a type")__builtin_unreachable();
5440
5441 case NestedNameSpecifier::TypeSpec:
5442 case NestedNameSpecifier::TypeSpecWithTemplate:
5443 ClsType = QualType(NNS->getAsType(), 0);
5444 // Note: if the NNS has a prefix and ClsType is a nondependent
5445 // TemplateSpecializationType, then the NNS prefix is NOT included
5446 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5447 // NOTE: in particular, no wrap occurs if ClsType already is an
5448 // Elaborated, DependentName, or DependentTemplateSpecialization.
5449 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
5450 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
5451 break;
5452 }
5453 } else {
5454 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5455 diag::err_illegal_decl_mempointer_in_nonclass)
5456 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5457 << DeclType.Mem.Scope().getRange();
5458 D.setInvalidType(true);
5459 }
5460
5461 if (!ClsType.isNull())
5462 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
5463 D.getIdentifier());
5464 if (T.isNull()) {
5465 T = Context.IntTy;
5466 D.setInvalidType(true);
5467 } else if (DeclType.Mem.TypeQuals) {
5468 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
5469 }
5470 break;
5471 }
5472
5473 case DeclaratorChunk::Pipe: {
5474 T = S.BuildReadPipeType(T, DeclType.Loc);
5475 processTypeAttrs(state, T, TAL_DeclSpec,
5476 D.getMutableDeclSpec().getAttributes());
5477 break;
5478 }
5479 }
5480
5481 if (T.isNull()) {
5482 D.setInvalidType(true);
5483 T = Context.IntTy;
5484 }
5485
5486 // See if there are any attributes on this declarator chunk.
5487 processTypeAttrs(state, T, TAL_DeclChunk, DeclType.getAttrs());
5488
5489 if (DeclType.Kind != DeclaratorChunk::Paren) {
5490 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5491 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5492
5493 ExpectNoDerefChunk = state.didParseNoDeref();
5494 }
5495 }
5496
5497 if (ExpectNoDerefChunk)
14
Assuming 'ExpectNoDerefChunk' is false
15
Taking false branch
5498 S.Diag(state.getDeclarator().getBeginLoc(),
5499 diag::warn_noderef_on_non_pointer_or_array);
5500
5501 // GNU warning -Wstrict-prototypes
5502 // Warn if a function declaration is without a prototype.
5503 // This warning is issued for all kinds of unprototyped function
5504 // declarations (i.e. function type typedef, function pointer etc.)
5505 // C99 6.7.5.3p14:
5506 // The empty list in a function declarator that is not part of a definition
5507 // of that function specifies that no information about the number or types
5508 // of the parameters is supplied.
5509 if (!LangOpts.CPlusPlus &&
16
Assuming field 'CPlusPlus' is not equal to 0
5510 D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) {
5511 bool IsBlock = false;
5512 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5513 switch (DeclType.Kind) {
5514 case DeclaratorChunk::BlockPointer:
5515 IsBlock = true;
5516 break;
5517 case DeclaratorChunk::Function: {
5518 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5519 // We supress the warning when there's no LParen location, as this
5520 // indicates the declaration was an implicit declaration, which gets
5521 // warned about separately via -Wimplicit-function-declaration.
5522 if (FTI.NumParams == 0 && !FTI.isVariadic && FTI.getLParenLoc().isValid())
5523 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5524 << IsBlock
5525 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5526 IsBlock = false;
5527 break;
5528 }
5529 default:
5530 break;
5531 }
5532 }
5533 }
5534
5535 assert(!T.isNull() && "T must not be null after this point")((void)0);
5536
5537 if (LangOpts.CPlusPlus
16.1
Field 'CPlusPlus' is not equal to 0
16.1
Field 'CPlusPlus' is not equal to 0
16.1
Field 'CPlusPlus' is not equal to 0
16.1
Field 'CPlusPlus' is not equal to 0
16.1
Field 'CPlusPlus' is not equal to 0
&& T->isFunctionType()) {
17
Taking false branch
5538 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5539 assert(FnTy && "Why oh why is there not a FunctionProtoType here?")((void)0);
5540
5541 // C++ 8.3.5p4:
5542 // A cv-qualifier-seq shall only be part of the function type
5543 // for a nonstatic member function, the function type to which a pointer
5544 // to member refers, or the top-level function type of a function typedef
5545 // declaration.
5546 //
5547 // Core issue 547 also allows cv-qualifiers on function types that are
5548 // top-level template type arguments.
5549 enum { NonMember, Member, DeductionGuide } Kind = NonMember;
5550 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5551 Kind = DeductionGuide;
5552 else if (!D.getCXXScopeSpec().isSet()) {
5553 if ((D.getContext() == DeclaratorContext::Member ||
5554 D.getContext() == DeclaratorContext::LambdaExpr) &&
5555 !D.getDeclSpec().isFriendSpecified())
5556 Kind = Member;
5557 } else {
5558 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
5559 if (!DC || DC->isRecord())
5560 Kind = Member;
5561 }
5562
5563 // C++11 [dcl.fct]p6 (w/DR1417):
5564 // An attempt to specify a function type with a cv-qualifier-seq or a
5565 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5566 // - the function type for a non-static member function,
5567 // - the function type to which a pointer to member refers,
5568 // - the top-level function type of a function typedef declaration or
5569 // alias-declaration,
5570 // - the type-id in the default argument of a type-parameter, or
5571 // - the type-id of a template-argument for a type-parameter
5572 //
5573 // FIXME: Checking this here is insufficient. We accept-invalid on:
5574 //
5575 // template<typename T> struct S { void f(T); };
5576 // S<int() const> s;
5577 //
5578 // ... for instance.
5579 if (IsQualifiedFunction &&
5580 !(Kind == Member &&
5581 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
5582 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5583 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5584 SourceLocation Loc = D.getBeginLoc();
5585 SourceRange RemovalRange;
5586 unsigned I;
5587 if (D.isFunctionDeclarator(I)) {
5588 SmallVector<SourceLocation, 4> RemovalLocs;
5589 const DeclaratorChunk &Chunk = D.getTypeObject(I);
5590 assert(Chunk.Kind == DeclaratorChunk::Function)((void)0);
5591
5592 if (Chunk.Fun.hasRefQualifier())
5593 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
5594
5595 if (Chunk.Fun.hasMethodTypeQualifiers())
5596 Chunk.Fun.MethodQualifiers->forEachQualifier(
5597 [&](DeclSpec::TQ TypeQual, StringRef QualName,
5598 SourceLocation SL) { RemovalLocs.push_back(SL); });
5599
5600 if (!RemovalLocs.empty()) {
5601 llvm::sort(RemovalLocs,
5602 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5603 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5604 Loc = RemovalLocs.front();
5605 }
5606 }
5607
5608 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5609 << Kind << D.isFunctionDeclarator() << T
5610 << getFunctionQualifiersAsString(FnTy)
5611 << FixItHint::CreateRemoval(RemovalRange);
5612
5613 // Strip the cv-qualifiers and ref-qualifiers from the type.
5614 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5615 EPI.TypeQuals.removeCVRQualifiers();
5616 EPI.RefQualifier = RQ_None;
5617
5618 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
5619 EPI);
5620 // Rebuild any parens around the identifier in the function type.
5621 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5622 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5623 break;
5624 T = S.BuildParenType(T);
5625 }
5626 }
5627 }
5628
5629 // Apply any undistributed attributes from the declarator.
5630 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
5631
5632 // Diagnose any ignored type attributes.
5633 state.diagnoseIgnoredTypeAttrs(T);
5634
5635 // C++0x [dcl.constexpr]p9:
5636 // A constexpr specifier used in an object declaration declares the object
5637 // as const.
5638 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
18
Assuming the condition is false
5639 T->isObjectType())
5640 T.addConst();
5641
5642 // C++2a [dcl.fct]p4:
5643 // A parameter with volatile-qualified type is deprecated
5644 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
19
Assuming the condition is false
5645 (D.getContext() == DeclaratorContext::Prototype ||
5646 D.getContext() == DeclaratorContext::LambdaExprParameter))
5647 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
5648
5649 // If there was an ellipsis in the declarator, the declaration declares a
5650 // parameter pack whose type may be a pack expansion type.
5651 if (D.hasEllipsis()) {
20
Taking false branch
5652 // C++0x [dcl.fct]p13:
5653 // A declarator-id or abstract-declarator containing an ellipsis shall
5654 // only be used in a parameter-declaration. Such a parameter-declaration
5655 // is a parameter pack (14.5.3). [...]
5656 switch (D.getContext()) {
5657 case DeclaratorContext::Prototype:
5658 case DeclaratorContext::LambdaExprParameter:
5659 case DeclaratorContext::RequiresExpr:
5660 // C++0x [dcl.fct]p13:
5661 // [...] When it is part of a parameter-declaration-clause, the
5662 // parameter pack is a function parameter pack (14.5.3). The type T
5663 // of the declarator-id of the function parameter pack shall contain
5664 // a template parameter pack; each template parameter pack in T is
5665 // expanded by the function parameter pack.
5666 //
5667 // We represent function parameter packs as function parameters whose
5668 // type is a pack expansion.
5669 if (!T->containsUnexpandedParameterPack() &&
5670 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
5671 S.Diag(D.getEllipsisLoc(),
5672 diag::err_function_parameter_pack_without_parameter_packs)
5673 << T << D.getSourceRange();
5674 D.setEllipsisLoc(SourceLocation());
5675 } else {
5676 T = Context.getPackExpansionType(T, None, /*ExpectPackInType=*/false);
5677 }
5678 break;
5679 case DeclaratorContext::TemplateParam:
5680 // C++0x [temp.param]p15:
5681 // If a template-parameter is a [...] is a parameter-declaration that
5682 // declares a parameter pack (8.3.5), then the template-parameter is a
5683 // template parameter pack (14.5.3).
5684 //
5685 // Note: core issue 778 clarifies that, if there are any unexpanded
5686 // parameter packs in the type of the non-type template parameter, then
5687 // it expands those parameter packs.
5688 if (T->containsUnexpandedParameterPack())
5689 T = Context.getPackExpansionType(T, None);
5690 else
5691 S.Diag(D.getEllipsisLoc(),
5692 LangOpts.CPlusPlus11
5693 ? diag::warn_cxx98_compat_variadic_templates
5694 : diag::ext_variadic_templates);
5695 break;
5696
5697 case DeclaratorContext::File:
5698 case DeclaratorContext::KNRTypeList:
5699 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
5700 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
5701 case DeclaratorContext::TypeName:
5702 case DeclaratorContext::FunctionalCast:
5703 case DeclaratorContext::CXXNew:
5704 case DeclaratorContext::AliasDecl:
5705 case DeclaratorContext::AliasTemplate:
5706 case DeclaratorContext::Member:
5707 case DeclaratorContext::Block:
5708 case DeclaratorContext::ForInit:
5709 case DeclaratorContext::SelectionInit:
5710 case DeclaratorContext::Condition:
5711 case DeclaratorContext::CXXCatch:
5712 case DeclaratorContext::ObjCCatch:
5713 case DeclaratorContext::BlockLiteral:
5714 case DeclaratorContext::LambdaExpr:
5715 case DeclaratorContext::ConversionId:
5716 case DeclaratorContext::TrailingReturn:
5717 case DeclaratorContext::TrailingReturnVar:
5718 case DeclaratorContext::TemplateArg:
5719 case DeclaratorContext::TemplateTypeArg:
5720 // FIXME: We may want to allow parameter packs in block-literal contexts
5721 // in the future.
5722 S.Diag(D.getEllipsisLoc(),
5723 diag::err_ellipsis_in_declarator_not_parameter);
5724 D.setEllipsisLoc(SourceLocation());
5725 break;
5726 }
5727 }
5728
5729 assert(!T.isNull() && "T must not be null at the end of this function")((void)0);
5730 if (D.isInvalidType())
21
Taking false branch
5731 return Context.getTrivialTypeSourceInfo(T);
5732
5733 return GetTypeSourceInfoForDeclarator(state, T, TInfo);
22
Calling 'GetTypeSourceInfoForDeclarator'
5734}
5735
5736/// GetTypeForDeclarator - Convert the type for the specified
5737/// declarator to Type instances.
5738///
5739/// The result of this call will never be null, but the associated
5740/// type may be a null type if there's an unrecoverable error.
5741TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
5742 // Determine the type of the declarator. Not all forms of declarator
5743 // have a type.
5744
5745 TypeProcessingState state(*this, D);
5746
5747 TypeSourceInfo *ReturnTypeInfo = nullptr;
5748 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5749 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
5750 inferARCWriteback(state, T);
5751
5752 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
5753}
5754
5755static void transferARCOwnershipToDeclSpec(Sema &S,
5756 QualType &declSpecTy,
5757 Qualifiers::ObjCLifetime ownership) {
5758 if (declSpecTy->isObjCRetainableType() &&
5759 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
5760 Qualifiers qs;
5761 qs.addObjCLifetime(ownership);
5762 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
5763 }
5764}
5765
5766static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
5767 Qualifiers::ObjCLifetime ownership,
5768 unsigned chunkIndex) {
5769 Sema &S = state.getSema();
5770 Declarator &D = state.getDeclarator();
5771
5772 // Look for an explicit lifetime attribute.
5773 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
5774 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
5775 return;
5776
5777 const char *attrStr = nullptr;
5778 switch (ownership) {
5779 case Qualifiers::OCL_None: llvm_unreachable("no ownership!")__builtin_unreachable();
5780 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
5781 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
5782 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
5783 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
5784 }
5785
5786 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
5787 Arg->Ident = &S.Context.Idents.get(attrStr);
5788 Arg->Loc = SourceLocation();
5789
5790 ArgsUnion Args(Arg);
5791
5792 // If there wasn't one, add one (with an invalid source location
5793 // so that we don't make an AttributedType for it).
5794 ParsedAttr *attr = D.getAttributePool().create(
5795 &S.Context.Idents.get("objc_ownership"), SourceLocation(),
5796 /*scope*/ nullptr, SourceLocation(),
5797 /*args*/ &Args, 1, ParsedAttr::AS_GNU);
5798 chunk.getAttrs().addAtEnd(attr);
5799 // TODO: mark whether we did this inference?
5800}
5801
5802/// Used for transferring ownership in casts resulting in l-values.
5803static void transferARCOwnership(TypeProcessingState &state,
5804 QualType &declSpecTy,
5805 Qualifiers::ObjCLifetime ownership) {
5806 Sema &S = state.getSema();
5807 Declarator &D = state.getDeclarator();
5808
5809 int inner = -1;
5810 bool hasIndirection = false;
5811 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5812 DeclaratorChunk &chunk = D.getTypeObject(i);
5813 switch (chunk.Kind) {
5814 case DeclaratorChunk::Paren:
5815 // Ignore parens.
5816 break;
5817
5818 case DeclaratorChunk::Array:
5819 case DeclaratorChunk::Reference:
5820 case DeclaratorChunk::Pointer:
5821 if (inner != -1)
5822 hasIndirection = true;
5823 inner = i;
5824 break;
5825
5826 case DeclaratorChunk::BlockPointer:
5827 if (inner != -1)
5828 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
5829 return;
5830
5831 case DeclaratorChunk::Function:
5832 case DeclaratorChunk::MemberPointer:
5833 case DeclaratorChunk::Pipe:
5834 return;
5835 }
5836 }
5837
5838 if (inner == -1)
5839 return;
5840
5841 DeclaratorChunk &chunk = D.getTypeObject(inner);
5842 if (chunk.Kind == DeclaratorChunk::Pointer) {
5843 if (declSpecTy->isObjCRetainableType())
5844 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5845 if (declSpecTy->isObjCObjectType() && hasIndirection)
5846 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
5847 } else {
5848 assert(chunk.Kind == DeclaratorChunk::Array ||((void)0)
5849 chunk.Kind == DeclaratorChunk::Reference)((void)0);
5850 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
5851 }
5852}
5853
5854TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
5855 TypeProcessingState state(*this, D);
5856
5857 TypeSourceInfo *ReturnTypeInfo = nullptr;
5858 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
5859
5860 if (getLangOpts().ObjC) {
5861 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
5862 if (ownership != Qualifiers::OCL_None)
5863 transferARCOwnership(state, declSpecTy, ownership);
5864 }
5865
5866 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
5867}
5868
5869static void fillAttributedTypeLoc(AttributedTypeLoc TL,
5870 TypeProcessingState &State) {
5871 TL.setAttr(State.takeAttrForAttributedType(TL.getTypePtr()));
5872}
5873
5874namespace {
5875 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
5876 Sema &SemaRef;
5877 ASTContext &Context;
5878 TypeProcessingState &State;
5879 const DeclSpec &DS;
5880
5881 public:
5882 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
5883 const DeclSpec &DS)
5884 : SemaRef(S), Context(Context), State(State), DS(DS) {}
5885
5886 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
5887 Visit(TL.getModifiedLoc());
5888 fillAttributedTypeLoc(TL, State);
5889 }
5890 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
5891 Visit(TL.getInnerLoc());
5892 TL.setExpansionLoc(
5893 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
5894 }
5895 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
5896 Visit(TL.getUnqualifiedLoc());
5897 }
5898 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
5899 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5900 }
5901 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
5902 TL.setNameLoc(DS.getTypeSpecTypeLoc());
5903 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
5904 // addition field. What we have is good enough for dispay of location
5905 // of 'fixit' on interface name.
5906 TL.setNameEndLoc(DS.getEndLoc());
5907 }
5908 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
5909 TypeSourceInfo *RepTInfo = nullptr;
5910 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5911 TL.copy(RepTInfo->getTypeLoc());
5912 }
5913 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
5914 TypeSourceInfo *RepTInfo = nullptr;
5915 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
5916 TL.copy(RepTInfo->getTypeLoc());
5917 }
5918 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
5919 TypeSourceInfo *TInfo = nullptr;
5920 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5921
5922 // If we got no declarator info from previous Sema routines,
5923 // just fill with the typespec loc.
5924 if (!TInfo) {
5925 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
5926 return;
5927 }
5928
5929 TypeLoc OldTL = TInfo->getTypeLoc();
5930 if (TInfo->getType()->getAs<ElaboratedType>()) {
5931 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
5932 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
5933 .castAs<TemplateSpecializationTypeLoc>();
5934 TL.copy(NamedTL);
5935 } else {
5936 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
5937 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc())((void)0);
5938 }
5939
5940 }
5941 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
5942 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr)((void)0);
5943 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5944 TL.setParensRange(DS.getTypeofParensRange());
5945 }
5946 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
5947 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType)((void)0);
5948 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
5949 TL.setParensRange(DS.getTypeofParensRange());
5950 assert(DS.getRepAsType())((void)0);
5951 TypeSourceInfo *TInfo = nullptr;
5952 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5953 TL.setUnderlyingTInfo(TInfo);
5954 }
5955 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
5956 // FIXME: This holds only because we only have one unary transform.
5957 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType)((void)0);
5958 TL.setKWLoc(DS.getTypeSpecTypeLoc());
5959 TL.setParensRange(DS.getTypeofParensRange());
5960 assert(DS.getRepAsType())((void)0);
5961 TypeSourceInfo *TInfo = nullptr;
5962 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5963 TL.setUnderlyingTInfo(TInfo);
5964 }
5965 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
5966 // By default, use the source location of the type specifier.
5967 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
5968 if (TL.needsExtraLocalData()) {
5969 // Set info for the written builtin specifiers.
5970 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
5971 // Try to have a meaningful source location.
5972 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
5973 TL.expandBuiltinRange(DS.getTypeSpecSignLoc());
5974 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
5975 TL.expandBuiltinRange(DS.getTypeSpecWidthRange());
5976 }
5977 }
5978 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
5979 ElaboratedTypeKeyword Keyword
5980 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
5981 if (DS.getTypeSpecType() == TST_typename) {
5982 TypeSourceInfo *TInfo = nullptr;
5983 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
5984 if (TInfo) {
5985 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
5986 return;
5987 }
5988 }
5989 TL.setElaboratedKeywordLoc(Keyword != ETK_None
5990 ? DS.getTypeSpecTypeLoc()
5991 : SourceLocation());
5992 const CXXScopeSpec& SS = DS.getTypeSpecScope();
5993 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5994 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
5995 }
5996 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
5997 assert(DS.getTypeSpecType() == TST_typename)((void)0);
5998 TypeSourceInfo *TInfo = nullptr;
5999 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6000 assert(TInfo)((void)0);
6001 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6002 }
6003 void VisitDependentTemplateSpecializationTypeLoc(
6004 DependentTemplateSpecializationTypeLoc TL) {
6005 assert(DS.getTypeSpecType() == TST_typename)((void)0);
6006 TypeSourceInfo *TInfo = nullptr;
6007 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6008 assert(TInfo)((void)0);
6009 TL.copy(
6010 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6011 }
6012 void VisitAutoTypeLoc(AutoTypeLoc TL) {
6013 assert(DS.getTypeSpecType() == TST_auto ||((void)0)
6014 DS.getTypeSpecType() == TST_decltype_auto ||((void)0)
6015 DS.getTypeSpecType() == TST_auto_type ||((void)0)
6016 DS.getTypeSpecType() == TST_unspecified)((void)0);
6017 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6018 if (!DS.isConstrainedAuto())
6019 return;
6020 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6021 if (!TemplateId)
6022 return;
6023 if (DS.getTypeSpecScope().isNotEmpty())
6024 TL.setNestedNameSpecifierLoc(
6025 DS.getTypeSpecScope().getWithLocInContext(Context));
6026 else
6027 TL.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
6028 TL.setTemplateKWLoc(TemplateId->TemplateKWLoc);
6029 TL.setConceptNameLoc(TemplateId->TemplateNameLoc);
6030 TL.setFoundDecl(nullptr);
6031 TL.setLAngleLoc(TemplateId->LAngleLoc);
6032 TL.setRAngleLoc(TemplateId->RAngleLoc);
6033 if (TemplateId->NumArgs == 0)
6034 return;
6035 TemplateArgumentListInfo TemplateArgsInfo;
6036 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6037 TemplateId->NumArgs);
6038 SemaRef.translateTemplateArguments(TemplateArgsPtr, TemplateArgsInfo);
6039 for (unsigned I = 0; I < TemplateId->NumArgs; ++I)
6040 TL.setArgLocInfo(I, TemplateArgsInfo.arguments()[I].getLocInfo());
6041 }
6042 void VisitTagTypeLoc(TagTypeLoc TL) {
6043 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6044 }
6045 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6046 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6047 // or an _Atomic qualifier.
6048 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
32
Assuming the condition is true
33
Taking true branch
6049 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6050 TL.setParensRange(DS.getTypeofParensRange());
6051
6052 TypeSourceInfo *TInfo = nullptr;
6053 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
34
Calling 'Sema::GetTypeFromParser'
48
Returning from 'Sema::GetTypeFromParser'
6054 assert(TInfo)((void)0);
6055 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
49
Called C++ object pointer is null
6056 } else {
6057 TL.setKWLoc(DS.getAtomicSpecLoc());
6058 // No parens, to indicate this was spelled as an _Atomic qualifier.
6059 TL.setParensRange(SourceRange());
6060 Visit(TL.getValueLoc());
6061 }
6062 }
6063
6064 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6065 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6066
6067 TypeSourceInfo *TInfo = nullptr;
6068 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
6069 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
6070 }
6071
6072 void VisitExtIntTypeLoc(ExtIntTypeLoc TL) {
6073 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6074 }
6075
6076 void VisitDependentExtIntTypeLoc(DependentExtIntTypeLoc TL) {
6077 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6078 }
6079
6080 void VisitTypeLoc(TypeLoc TL) {
6081 // FIXME: add other typespec types and change this to an assert.
6082 TL.initialize(Context, DS.getTypeSpecTypeLoc());
6083 }
6084 };
6085
6086 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6087 ASTContext &Context;
6088 TypeProcessingState &State;
6089 const DeclaratorChunk &Chunk;
6090
6091 public:
6092 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6093 const DeclaratorChunk &Chunk)
6094 : Context(Context), State(State), Chunk(Chunk) {}
6095
6096 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6097 llvm_unreachable("qualified type locs not expected here!")__builtin_unreachable();
6098 }
6099 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6100 llvm_unreachable("decayed type locs not expected here!")__builtin_unreachable();
6101 }
6102
6103 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6104 fillAttributedTypeLoc(TL, State);
6105 }
6106 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6107 // nothing
6108 }
6109 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6110 assert(Chunk.Kind == DeclaratorChunk::BlockPointer)((void)0);
6111 TL.setCaretLoc(Chunk.Loc);
6112 }
6113 void VisitPointerTypeLoc(PointerTypeLoc TL) {
6114 assert(Chunk.Kind == DeclaratorChunk::Pointer)((void)0);
6115 TL.setStarLoc(Chunk.Loc);
6116 }
6117 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6118 assert(Chunk.Kind == DeclaratorChunk::Pointer)((void)0);
6119 TL.setStarLoc(Chunk.Loc);
6120 }
6121 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6122 assert(Chunk.Kind == DeclaratorChunk::MemberPointer)((void)0);
6123 const CXXScopeSpec& SS = Chunk.Mem.Scope();
6124 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6125
6126 const Type* ClsTy = TL.getClass();
6127 QualType ClsQT = QualType(ClsTy, 0);
6128 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
6129 // Now copy source location info into the type loc component.
6130 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6131 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6132 case NestedNameSpecifier::Identifier:
6133 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc")((void)0);
6134 {
6135 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6136 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6137 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6138 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6139 }
6140 break;
6141
6142 case NestedNameSpecifier::TypeSpec:
6143 case NestedNameSpecifier::TypeSpecWithTemplate:
6144 if (isa<ElaboratedType>(ClsTy)) {
6145 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6146 ETLoc.setElaboratedKeywordLoc(SourceLocation());
6147 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6148 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6149 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
6150 } else {
6151 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
6152 }
6153 break;
6154
6155 case NestedNameSpecifier::Namespace:
6156 case NestedNameSpecifier::NamespaceAlias:
6157 case NestedNameSpecifier::Global:
6158 case NestedNameSpecifier::Super:
6159 llvm_unreachable("Nested-name-specifier must name a type")__builtin_unreachable();
6160 }
6161
6162 // Finally fill in MemberPointerLocInfo fields.
6163 TL.setStarLoc(Chunk.Mem.StarLoc);
6164 TL.setClassTInfo(ClsTInfo);
6165 }
6166 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6167 assert(Chunk.Kind == DeclaratorChunk::Reference)((void)0);
6168 // 'Amp' is misleading: this might have been originally
6169 /// spelled with AmpAmp.
6170 TL.setAmpLoc(Chunk.Loc);
6171 }
6172 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6173 assert(Chunk.Kind == DeclaratorChunk::Reference)((void)0);
6174 assert(!Chunk.Ref.LValueRef)((void)0);
6175 TL.setAmpAmpLoc(Chunk.Loc);
6176 }
6177 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6178 assert(Chunk.Kind == DeclaratorChunk::Array)((void)0);
6179 TL.setLBracketLoc(Chunk.Loc);
6180 TL.setRBracketLoc(Chunk.EndLoc);
6181 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6182 }
6183 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6184 assert(Chunk.Kind == DeclaratorChunk::Function)((void)0);
6185 TL.setLocalRangeBegin(Chunk.Loc);
6186 TL.setLocalRangeEnd(Chunk.EndLoc);
6187
6188 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6189 TL.setLParenLoc(FTI.getLParenLoc());
6190 TL.setRParenLoc(FTI.getRParenLoc());
6191 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6192 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
6193 TL.setParam(tpi++, Param);
6194 }
6195 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6196 }
6197 void VisitParenTypeLoc(ParenTypeLoc TL) {
6198 assert(Chunk.Kind == DeclaratorChunk::Paren)((void)0);
6199 TL.setLParenLoc(Chunk.Loc);
6200 TL.setRParenLoc(Chunk.EndLoc);
6201 }
6202 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6203 assert(Chunk.Kind == DeclaratorChunk::Pipe)((void)0);
6204 TL.setKWLoc(Chunk.Loc);
6205 }
6206 void VisitExtIntTypeLoc(ExtIntTypeLoc TL) {
6207 TL.setNameLoc(Chunk.Loc);
6208 }
6209 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6210 TL.setExpansionLoc(Chunk.Loc);
6211 }
6212 void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6213 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6214 TL.setNameLoc(Chunk.Loc);
6215 }
6216 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6217 TL.setNameLoc(Chunk.Loc);
6218 }
6219 void
6220 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6221 TL.setNameLoc(Chunk.Loc);
6222 }
6223
6224 void VisitTypeLoc(TypeLoc TL) {
6225 llvm_unreachable("unsupported TypeLoc kind in declarator!")__builtin_unreachable();
6226 }
6227 };
6228} // end anonymous namespace
6229
6230static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6231 SourceLocation Loc;
6232 switch (Chunk.Kind) {
6233 case DeclaratorChunk::Function:
6234 case DeclaratorChunk::Array:
6235 case DeclaratorChunk::Paren:
6236 case DeclaratorChunk::Pipe:
6237 llvm_unreachable("cannot be _Atomic qualified")__builtin_unreachable();
6238
6239 case DeclaratorChunk::Pointer:
6240 Loc = Chunk.Ptr.AtomicQualLoc;
6241 break;
6242
6243 case DeclaratorChunk::BlockPointer:
6244 case DeclaratorChunk::Reference:
6245 case DeclaratorChunk::MemberPointer:
6246 // FIXME: Provide a source location for the _Atomic keyword.
6247 break;
6248 }
6249
6250 ATL.setKWLoc(Loc);
6251 ATL.setParensRange(SourceRange());
6252}
6253
6254static void
6255fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6256 const ParsedAttributesView &Attrs) {
6257 for (const ParsedAttr &AL : Attrs) {
6258 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6259 DASTL.setAttrNameLoc(AL.getLoc());
6260 DASTL.setAttrExprOperand(AL.getArgAsExpr(0));
6261 DASTL.setAttrOperandParensRange(SourceRange());
6262 return;
6263 }
6264 }
6265
6266 llvm_unreachable(__builtin_unreachable()
6267 "no address_space attribute found at the expected location!")__builtin_unreachable();
6268}
6269
6270static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
6271 const ParsedAttributesView &Attrs) {
6272 for (const ParsedAttr &AL : Attrs) {
6273 if (AL.getKind() == ParsedAttr::AT_MatrixType) {
6274 MTL.setAttrNameLoc(AL.getLoc());
6275 MTL.setAttrRowOperand(AL.getArgAsExpr(0));
6276 MTL.setAttrColumnOperand(AL.getArgAsExpr(1));
6277 MTL.setAttrOperandParensRange(SourceRange());
6278 return;
6279 }
6280 }
6281
6282 llvm_unreachable("no matrix_type attribute found at the expected location!")__builtin_unreachable();
6283}
6284
6285/// Create and instantiate a TypeSourceInfo with type source information.
6286///
6287/// \param T QualType referring to the type as written in source code.
6288///
6289/// \param ReturnTypeInfo For declarators whose return type does not show
6290/// up in the normal place in the declaration specifiers (such as a C++
6291/// conversion function), this pointer will refer to a type source information
6292/// for that return type.
6293static TypeSourceInfo *
6294GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6295 QualType T, TypeSourceInfo *ReturnTypeInfo) {
6296 Sema &S = State.getSema();
6297 Declarator &D = State.getDeclarator();
6298
6299 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6300 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6301
6302 // Handle parameter packs whose type is a pack expansion.
6303 if (isa<PackExpansionType>(T)) {
23
Assuming 'T' is not a 'PackExpansionType'
24
Taking false branch
6304 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6305 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6306 }
6307
6308 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
25
Assuming 'i' is equal to 'e'
26
Loop condition is false. Execution continues on line 6346
6309 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6310 // declarator chunk.
6311 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6312 fillAtomicQualLoc(ATL, D.getTypeObject(i));
6313 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6314 }
6315
6316 while (MacroQualifiedTypeLoc TL = CurrTL.getAs<MacroQualifiedTypeLoc>()) {
6317 TL.setExpansionLoc(
6318 State.getExpansionLocForMacroQualifiedType(TL.getTypePtr()));
6319 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6320 }
6321
6322 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
6323 fillAttributedTypeLoc(TL, State);
6324 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6325 }
6326
6327 while (DependentAddressSpaceTypeLoc TL =
6328 CurrTL.getAs<DependentAddressSpaceTypeLoc>()) {
6329 fillDependentAddressSpaceTypeLoc(TL, D.getTypeObject(i).getAttrs());
6330 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6331 }
6332
6333 if (MatrixTypeLoc TL = CurrTL.getAs<MatrixTypeLoc>())
6334 fillMatrixTypeLoc(TL, D.getTypeObject(i).getAttrs());
6335
6336 // FIXME: Ordering here?
6337 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
6338 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6339
6340 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(CurrTL);
6341 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6342 }
6343
6344 // If we have different source information for the return type, use
6345 // that. This really only applies to C++ conversion functions.
6346 if (ReturnTypeInfo) {
27
Assuming 'ReturnTypeInfo' is null
28
Taking false branch
6347 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6348 assert(TL.getFullDataSize() == CurrTL.getFullDataSize())((void)0);
6349 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
6350 } else {
6351 TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(CurrTL);
29
Calling 'TypeLocVisitor::Visit'
6352 }
6353
6354 return TInfo;
6355}
6356
6357/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6358ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6359 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6360 // and Sema during declaration parsing. Try deallocating/caching them when
6361 // it's appropriate, instead of allocating them and keeping them around.
6362 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
6363 TypeAlignment);
6364 new (LocT) LocInfoType(T, TInfo);
6365 assert(LocT->getTypeClass() != T->getTypeClass() &&((void)0)
6366 "LocInfoType's TypeClass conflicts with an existing Type class")((void)0);
6367 return ParsedType::make(QualType(LocT, 0));
6368}
6369
6370void LocInfoType::getAsStringInternal(std::string &Str,
6371 const PrintingPolicy &Policy) const {
6372 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"__builtin_unreachable()
6373 " was used directly instead of getting the QualType through"__builtin_unreachable()
6374 " GetTypeFromParser")__builtin_unreachable();
6375}
6376
6377TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
6378 // C99 6.7.6: Type names have no identifier. This is already validated by
6379 // the parser.
6380 assert(D.getIdentifier() == nullptr &&((void)0)
6381 "Type name should have no identifier!")((void)0);
6382
6383 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6384 QualType T = TInfo->getType();
6385 if (D.isInvalidType())
6386 return true;
6387
6388 // Make sure there are no unused decl attributes on the declarator.
6389 // We don't want to do this for ObjC parameters because we're going
6390 // to apply them to the actual parameter declaration.
6391 // Likewise, we don't want to do this for alias declarations, because
6392 // we are actually going to build a declaration from this eventually.
6393 if (D.getContext() != DeclaratorContext::ObjCParameter &&
6394 D.getContext() != DeclaratorContext::AliasDecl &&
6395 D.getContext() != DeclaratorContext::AliasTemplate)
6396 checkUnusedDeclAttributes(D);
6397
6398 if (getLangOpts().CPlusPlus) {
6399 // Check that there are no default arguments (C++ only).
6400 CheckExtraCXXDefaultArguments(D);
6401 }
6402
6403 return CreateParsedType(T, TInfo);
6404}
6405
6406ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6407 QualType T = Context.getObjCInstanceType();
6408 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6409 return CreateParsedType(T, TInfo);
6410}
6411
6412//===----------------------------------------------------------------------===//
6413// Type Attribute Processing
6414//===----------------------------------------------------------------------===//
6415
6416/// Build an AddressSpace index from a constant expression and diagnose any
6417/// errors related to invalid address_spaces. Returns true on successfully
6418/// building an AddressSpace index.
6419static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6420 const Expr *AddrSpace,
6421 SourceLocation AttrLoc) {
6422 if (!AddrSpace->isValueDependent()) {
6423 Optional<llvm::APSInt> OptAddrSpace =
6424 AddrSpace->getIntegerConstantExpr(S.Context);
6425 if (!OptAddrSpace) {
6426 S.Diag(AttrLoc, diag::err_attribute_argument_type)
6427 << "'address_space'" << AANT_ArgumentIntegerConstant
6428 << AddrSpace->getSourceRange();
6429 return false;
6430 }
6431 llvm::APSInt &addrSpace = *OptAddrSpace;
6432
6433 // Bounds checking.
6434 if (addrSpace.isSigned()) {
6435 if (addrSpace.isNegative()) {
6436 S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6437 << AddrSpace->getSourceRange();
6438 return false;
6439 }
6440 addrSpace.setIsSigned(false);
6441 }
6442
6443 llvm::APSInt max(addrSpace.getBitWidth());
6444 max =
6445 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6446
6447 if (addrSpace > max) {
6448 S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6449 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6450 return false;
6451 }
6452
6453 ASIdx =
6454 getLangASFromTargetAS(static_cast<unsigned>(addrSpace.getZExtValue()));
6455 return true;
6456 }
6457
6458 // Default value for DependentAddressSpaceTypes
6459 ASIdx = LangAS::Default;
6460 return true;
6461}
6462
6463/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6464/// is uninstantiated. If instantiated it will apply the appropriate address
6465/// space to the type. This function allows dependent template variables to be
6466/// used in conjunction with the address_space attribute
6467QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6468 SourceLocation AttrLoc) {
6469 if (!AddrSpace->isValueDependent()) {
6470 if (DiagnoseMultipleAddrSpaceAttributes(*this, T.getAddressSpace(), ASIdx,
6471 AttrLoc))
6472 return QualType();
6473
6474 return Context.getAddrSpaceQualType(T, ASIdx);
6475 }
6476
6477 // A check with similar intentions as checking if a type already has an
6478 // address space except for on a dependent types, basically if the
6479 // current type is already a DependentAddressSpaceType then its already
6480 // lined up to have another address space on it and we can't have
6481 // multiple address spaces on the one pointer indirection
6482 if (T->getAs<DependentAddressSpaceType>()) {
6483 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6484 return QualType();
6485 }
6486
6487 return Context.getDependentAddressSpaceType(T, AddrSpace, AttrLoc);
6488}
6489
6490QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6491 SourceLocation AttrLoc) {
6492 LangAS ASIdx;
6493 if (!BuildAddressSpaceIndex(*this, ASIdx, AddrSpace, AttrLoc))
6494 return QualType();
6495 return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6496}
6497
6498/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6499/// specified type. The attribute contains 1 argument, the id of the address
6500/// space for the type.
6501static void HandleAddressSpaceTypeAttribute(QualType &Type,
6502 const ParsedAttr &Attr,
6503 TypeProcessingState &State) {
6504 Sema &S = State.getSema();
6505
6506 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6507 // qualified by an address-space qualifier."
6508 if (Type->isFunctionType()) {
6509 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6510 Attr.setInvalid();
6511 return;
6512 }
6513
6514 LangAS ASIdx;
6515 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6516
6517 // Check the attribute arguments.
6518 if (Attr.getNumArgs() != 1) {
6519 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6520 << 1;
6521 Attr.setInvalid();
6522 return;
6523 }
6524
6525 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6526 LangAS ASIdx;
6527 if (!BuildAddressSpaceIndex(S, ASIdx, ASArgExpr, Attr.getLoc())) {
6528 Attr.setInvalid();
6529 return;
6530 }
6531
6532 ASTContext &Ctx = S.Context;
6533 auto *ASAttr =
6534 ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6535
6536 // If the expression is not value dependent (not templated), then we can
6537 // apply the address space qualifiers just to the equivalent type.
6538 // Otherwise, we make an AttributedType with the modified and equivalent
6539 // type the same, and wrap it in a DependentAddressSpaceType. When this
6540 // dependent type is resolved, the qualifier is added to the equivalent type
6541 // later.
6542 QualType T;
6543 if (!ASArgExpr->isValueDependent()) {
6544 QualType EquivType =
6545 S.BuildAddressSpaceAttr(Type, ASIdx, ASArgExpr, Attr.getLoc());
6546 if (EquivType.isNull()) {
6547 Attr.setInvalid();
6548 return;
6549 }
6550 T = State.getAttributedType(ASAttr, Type, EquivType);
6551 } else {
6552 T = State.getAttributedType(ASAttr, Type, Type);
6553 T = S.BuildAddressSpaceAttr(T, ASIdx, ASArgExpr, Attr.getLoc());
6554 }
6555
6556 if (!T.isNull())
6557 Type = T;
6558 else
6559 Attr.setInvalid();
6560 } else {
6561 // The keyword-based type attributes imply which address space to use.
6562 ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6563 : Attr.asOpenCLLangAS();
6564
6565 if (ASIdx == LangAS::Default)
6566 llvm_unreachable("Invalid address space")__builtin_unreachable();
6567
6568 if (DiagnoseMultipleAddrSpaceAttributes(S, Type.getAddressSpace(), ASIdx,
6569 Attr.getLoc())) {
6570 Attr.setInvalid();
6571 return;
6572 }
6573
6574 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
6575 }
6576}
6577
6578/// handleObjCOwnershipTypeAttr - Process an objc_ownership
6579/// attribute on the specified type.
6580///
6581/// Returns 'true' if the attribute was handled.
6582static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
6583 ParsedAttr &attr, QualType &type) {
6584 bool NonObjCPointer = false;
6585
6586 if (!type->isDependentType() && !type->isUndeducedType()) {
6587 if (const PointerType *ptr = type->getAs<PointerType>()) {
6588 QualType pointee = ptr->getPointeeType();
6589 if (pointee->isObjCRetainableType() || pointee->isPointerType())
6590 return false;
6591 // It is important not to lose the source info that there was an attribute
6592 // applied to non-objc pointer. We will create an attributed type but
6593 // its type will be the same as the original type.
6594 NonObjCPointer = true;
6595 } else if (!type->isObjCRetainableType()) {
6596 return false;
6597 }
6598
6599 // Don't accept an ownership attribute in the declspec if it would
6600 // just be the return type of a block pointer.
6601 if (state.isProcessingDeclSpec()) {
6602 Declarator &D = state.getDeclarator();
6603 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
6604 /*onlyBlockPointers=*/true))
6605 return false;
6606 }
6607 }
6608
6609 Sema &S = state.getSema();
6610 SourceLocation AttrLoc = attr.getLoc();
6611 if (AttrLoc.isMacroID())
6612 AttrLoc =
6613 S.getSourceManager().getImmediateExpansionRange(AttrLoc).getBegin();
6614
6615 if (!attr.isArgIdent(0)) {
6616 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
6617 << AANT_ArgumentString;
6618 attr.setInvalid();
6619 return true;
6620 }
6621
6622 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6623 Qualifiers::ObjCLifetime lifetime;
6624 if (II->isStr("none"))
6625 lifetime = Qualifiers::OCL_ExplicitNone;
6626 else if (II->isStr("strong"))
6627 lifetime = Qualifiers::OCL_Strong;
6628 else if (II->isStr("weak"))
6629 lifetime = Qualifiers::OCL_Weak;
6630 else if (II->isStr("autoreleasing"))
6631 lifetime = Qualifiers::OCL_Autoreleasing;
6632 else {
6633 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
6634 attr.setInvalid();
6635 return true;
6636 }
6637
6638 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6639 // outside of ARC mode.
6640 if (!S.getLangOpts().ObjCAutoRefCount &&
6641 lifetime != Qualifiers::OCL_Weak &&
6642 lifetime != Qualifiers::OCL_ExplicitNone) {
6643 return true;
6644 }
6645
6646 SplitQualType underlyingType = type.split();
6647
6648 // Check for redundant/conflicting ownership qualifiers.
6649 if (Qualifiers::ObjCLifetime previousLifetime
6650 = type.getQualifiers().getObjCLifetime()) {
6651 // If it's written directly, that's an error.
6652 if (S.Context.hasDirectOwnershipQualifier(type)) {
6653 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
6654 << type;
6655 return true;
6656 }
6657
6658 // Otherwise, if the qualifiers actually conflict, pull sugar off
6659 // and remove the ObjCLifetime qualifiers.
6660 if (previousLifetime != lifetime) {
6661 // It's possible to have multiple local ObjCLifetime qualifiers. We
6662 // can't stop after we reach a type that is directly qualified.
6663 const Type *prevTy = nullptr;
6664 while (!prevTy || prevTy != underlyingType.Ty) {
6665 prevTy = underlyingType.Ty;
6666 underlyingType = underlyingType.getSingleStepDesugaredType();
6667 }
6668 underlyingType.Quals.removeObjCLifetime();
6669 }
6670 }
6671
6672 underlyingType.Quals.addObjCLifetime(lifetime);
6673
6674 if (NonObjCPointer) {
6675 StringRef name = attr.getAttrName()->getName();
6676 switch (lifetime) {
6677 case Qualifiers::OCL_None:
6678 case Qualifiers::OCL_ExplicitNone:
6679 break;
6680 case Qualifiers::OCL_Strong: name = "__strong"; break;
6681 case Qualifiers::OCL_Weak: name = "__weak"; break;
6682 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
6683 }
6684 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
6685 << TDS_ObjCObjOrBlock << type;
6686 }
6687
6688 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6689 // because having both 'T' and '__unsafe_unretained T' exist in the type
6690 // system causes unfortunate widespread consistency problems. (For example,
6691 // they're not considered compatible types, and we mangle them identicially
6692 // as template arguments.) These problems are all individually fixable,
6693 // but it's easier to just not add the qualifier and instead sniff it out
6694 // in specific places using isObjCInertUnsafeUnretainedType().
6695 //
6696 // Doing this does means we miss some trivial consistency checks that
6697 // would've triggered in ARC, but that's better than trying to solve all
6698 // the coexistence problems with __unsafe_unretained.
6699 if (!S.getLangOpts().ObjCAutoRefCount &&
6700 lifetime == Qualifiers::OCL_ExplicitNone) {
6701 type = state.getAttributedType(
6702 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
6703 type, type);
6704 return true;
6705 }
6706
6707 QualType origType = type;
6708 if (!NonObjCPointer)
6709 type = S.Context.getQualifiedType(underlyingType);
6710
6711 // If we have a valid source location for the attribute, use an
6712 // AttributedType instead.
6713 if (AttrLoc.isValid()) {
6714 type = state.getAttributedType(::new (S.Context)
6715 ObjCOwnershipAttr(S.Context, attr, II),
6716 origType, type);
6717 }
6718
6719 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
6720 unsigned diagnostic, QualType type) {
6721 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
6722 S.DelayedDiagnostics.add(
6723 sema::DelayedDiagnostic::makeForbiddenType(
6724 S.getSourceManager().getExpansionLoc(loc),
6725 diagnostic, type, /*ignored*/ 0));
6726 } else {
6727 S.Diag(loc, diagnostic);
6728 }
6729 };
6730
6731 // Sometimes, __weak isn't allowed.
6732 if (lifetime == Qualifiers::OCL_Weak &&
6733 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
6734
6735 // Use a specialized diagnostic if the runtime just doesn't support them.
6736 unsigned diagnostic =
6737 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
6738 : diag::err_arc_weak_no_runtime);
6739
6740 // In any case, delay the diagnostic until we know what we're parsing.
6741 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
6742
6743 attr.setInvalid();
6744 return true;
6745 }
6746
6747 // Forbid __weak for class objects marked as
6748 // objc_arc_weak_reference_unavailable
6749 if (lifetime == Qualifiers::OCL_Weak) {
6750 if (const ObjCObjectPointerType *ObjT =
6751 type->getAs<ObjCObjectPointerType>()) {
6752 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
6753 if (Class->isArcWeakrefUnavailable()) {
6754 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
6755 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
6756 diag::note_class_declared);
6757 }
6758 }
6759 }
6760 }
6761
6762 return true;
6763}
6764
6765/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6766/// attribute on the specified type. Returns true to indicate that
6767/// the attribute was handled, false to indicate that the type does
6768/// not permit the attribute.
6769static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
6770 QualType &type) {
6771 Sema &S = state.getSema();
6772
6773 // Delay if this isn't some kind of pointer.
6774 if (!type->isPointerType() &&
6775 !type->isObjCObjectPointerType() &&
6776 !type->isBlockPointerType())
6777 return false;
6778
6779 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
6780 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
6781 attr.setInvalid();
6782 return true;
6783 }
6784
6785 // Check the attribute arguments.
6786 if (!attr.isArgIdent(0)) {
6787 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
6788 << attr << AANT_ArgumentString;
6789 attr.setInvalid();
6790 return true;
6791 }
6792 Qualifiers::GC GCAttr;
6793 if (attr.getNumArgs() > 1) {
6794 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
6795 << 1;
6796 attr.setInvalid();
6797 return true;
6798 }
6799
6800 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
6801 if (II->isStr("weak"))
6802 GCAttr = Qualifiers::Weak;
6803 else if (II->isStr("strong"))
6804 GCAttr = Qualifiers::Strong;
6805 else {
6806 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
6807 << attr << II;
6808 attr.setInvalid();
6809 return true;
6810 }
6811
6812 QualType origType = type;
6813 type = S.Context.getObjCGCQualType(origType, GCAttr);
6814
6815 // Make an attributed type to preserve the source information.
6816 if (attr.getLoc().isValid())
6817 type = state.getAttributedType(
6818 ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
6819
6820 return true;
6821}
6822
6823namespace {
6824 /// A helper class to unwrap a type down to a function for the
6825 /// purposes of applying attributes there.
6826 ///
6827 /// Use:
6828 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
6829 /// if (unwrapped.isFunctionType()) {
6830 /// const FunctionType *fn = unwrapped.get();
6831 /// // change fn somehow
6832 /// T = unwrapped.wrap(fn);
6833 /// }
6834 struct FunctionTypeUnwrapper {
6835 enum WrapKind {
6836 Desugar,
6837 Attributed,
6838 Parens,
6839 Array,
6840 Pointer,
6841 BlockPointer,
6842 Reference,
6843 MemberPointer,
6844 MacroQualified,
6845 };
6846
6847 QualType Original;
6848 const FunctionType *Fn;
6849 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
6850
6851 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
6852 while (true) {
6853 const Type *Ty = T.getTypePtr();
6854 if (isa<FunctionType>(Ty)) {
6855 Fn = cast<FunctionType>(Ty);
6856 return;
6857 } else if (isa<ParenType>(Ty)) {
6858 T = cast<ParenType>(Ty)->getInnerType();
6859 Stack.push_back(Parens);
6860 } else if (isa<ConstantArrayType>(Ty) || isa<VariableArrayType>(Ty) ||
6861 isa<IncompleteArrayType>(Ty)) {
6862 T = cast<ArrayType>(Ty)->getElementType();
6863 Stack.push_back(Array);
6864 } else if (isa<PointerType>(Ty)) {
6865 T = cast<PointerType>(Ty)->getPointeeType();
6866 Stack.push_back(Pointer);
6867 } else if (isa<BlockPointerType>(Ty)) {
6868 T = cast<BlockPointerType>(Ty)->getPointeeType();
6869 Stack.push_back(BlockPointer);
6870 } else if (isa<MemberPointerType>(Ty)) {
6871 T = cast<MemberPointerType>(Ty)->getPointeeType();
6872 Stack.push_back(MemberPointer);
6873 } else if (isa<ReferenceType>(Ty)) {
6874 T = cast<ReferenceType>(Ty)->getPointeeType();
6875 Stack.push_back(Reference);
6876 } else if (isa<AttributedType>(Ty)) {
6877 T = cast<AttributedType>(Ty)->getEquivalentType();
6878 Stack.push_back(Attributed);
6879 } else if (isa<MacroQualifiedType>(Ty)) {
6880 T = cast<MacroQualifiedType>(Ty)->getUnderlyingType();
6881 Stack.push_back(MacroQualified);
6882 } else {
6883 const Type *DTy = Ty->getUnqualifiedDesugaredType();
6884 if (Ty == DTy) {
6885 Fn = nullptr;
6886 return;
6887 }
6888
6889 T = QualType(DTy, 0);
6890 Stack.push_back(Desugar);
6891 }
6892 }
6893 }
6894
6895 bool isFunctionType() const { return (Fn != nullptr); }
6896 const FunctionType *get() const { return Fn; }
6897
6898 QualType wrap(Sema &S, const FunctionType *New) {
6899 // If T wasn't modified from the unwrapped type, do nothing.
6900 if (New == get()) return Original;
6901
6902 Fn = New;
6903 return wrap(S.Context, Original, 0);
6904 }
6905
6906 private:
6907 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
6908 if (I == Stack.size())
6909 return C.getQualifiedType(Fn, Old.getQualifiers());
6910
6911 // Build up the inner type, applying the qualifiers from the old
6912 // type to the new type.
6913 SplitQualType SplitOld = Old.split();
6914
6915 // As a special case, tail-recurse if there are no qualifiers.
6916 if (SplitOld.Quals.empty())
6917 return wrap(C, SplitOld.Ty, I);
6918 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
6919 }
6920
6921 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
6922 if (I == Stack.size()) return QualType(Fn, 0);
6923
6924 switch (static_cast<WrapKind>(Stack[I++])) {
6925 case Desugar:
6926 // This is the point at which we potentially lose source
6927 // information.
6928 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
6929
6930 case Attributed:
6931 return wrap(C, cast<AttributedType>(Old)->getEquivalentType(), I);
6932
6933 case Parens: {
6934 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
6935 return C.getParenType(New);
6936 }
6937
6938 case MacroQualified:
6939 return wrap(C, cast<MacroQualifiedType>(Old)->getUnderlyingType(), I);
6940
6941 case Array: {
6942 if (const auto *CAT = dyn_cast<ConstantArrayType>(Old)) {
6943 QualType New = wrap(C, CAT->getElementType(), I);
6944 return C.getConstantArrayType(New, CAT->getSize(), CAT->getSizeExpr(),
6945 CAT->getSizeModifier(),
6946 CAT->getIndexTypeCVRQualifiers());
6947 }
6948
6949 if (const auto *VAT = dyn_cast<VariableArrayType>(Old)) {
6950 QualType New = wrap(C, VAT->getElementType(), I);
6951 return C.getVariableArrayType(
6952 New, VAT->getSizeExpr(), VAT->getSizeModifier(),
6953 VAT->getIndexTypeCVRQualifiers(), VAT->getBracketsRange());
6954 }
6955
6956 const auto *IAT = cast<IncompleteArrayType>(Old);
6957 QualType New = wrap(C, IAT->getElementType(), I);
6958 return C.getIncompleteArrayType(New, IAT->getSizeModifier(),
6959 IAT->getIndexTypeCVRQualifiers());
6960 }
6961
6962 case Pointer: {
6963 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
6964 return C.getPointerType(New);
6965 }
6966
6967 case BlockPointer: {
6968 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
6969 return C.getBlockPointerType(New);
6970 }
6971
6972 case MemberPointer: {
6973 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
6974 QualType New = wrap(C, OldMPT->getPointeeType(), I);
6975 return C.getMemberPointerType(New, OldMPT->getClass());
6976 }
6977
6978 case Reference: {
6979 const ReferenceType *OldRef = cast<ReferenceType>(Old);
6980 QualType New = wrap(C, OldRef->getPointeeType(), I);
6981 if (isa<LValueReferenceType>(OldRef))
6982 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
6983 else
6984 return C.getRValueReferenceType(New);
6985 }
6986 }
6987
6988 llvm_unreachable("unknown wrapping kind")__builtin_unreachable();
6989 }
6990 };
6991} // end anonymous namespace
6992
6993static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
6994 ParsedAttr &PAttr, QualType &Type) {
6995 Sema &S = State.getSema();
6996
6997 Attr *A;
6998 switch (PAttr.getKind()) {
6999 default: llvm_unreachable("Unknown attribute kind")__builtin_unreachable();
7000 case ParsedAttr::AT_Ptr32:
7001 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7002 break;
7003 case ParsedAttr::AT_Ptr64:
7004 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7005 break;
7006 case ParsedAttr::AT_SPtr:
7007 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7008 break;
7009 case ParsedAttr::AT_UPtr:
7010 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7011 break;
7012 }
7013
7014 std::bitset<attr::LastAttr> Attrs;
7015 attr::Kind NewAttrKind = A->getKind();
7016 QualType Desugared = Type;
7017 const AttributedType *AT = dyn_cast<AttributedType>(Type);
7018 while (AT) {
7019 Attrs[AT->getAttrKind()] = true;
7020 Desugared = AT->getModifiedType();
7021 AT = dyn_cast<AttributedType>(Desugared);
7022 }
7023
7024 // You cannot specify duplicate type attributes, so if the attribute has
7025 // already been applied, flag it.
7026 if (Attrs[NewAttrKind]) {
7027 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7028 return true;
7029 }
7030 Attrs[NewAttrKind] = true;
7031
7032 // You cannot have both __sptr and __uptr on the same type, nor can you
7033 // have __ptr32 and __ptr64.
7034 if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7035 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7036 << "'__ptr32'"
7037 << "'__ptr64'";
7038 return true;
7039 } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7040 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7041 << "'__sptr'"
7042 << "'__uptr'";
7043 return true;
7044 }
7045
7046 // Pointer type qualifiers can only operate on pointer types, but not
7047 // pointer-to-member types.
7048 //
7049 // FIXME: Should we really be disallowing this attribute if there is any
7050 // type sugar between it and the pointer (other than attributes)? Eg, this
7051 // disallows the attribute on a parenthesized pointer.
7052 // And if so, should we really allow *any* type attribute?
7053 if (!isa<PointerType>(Desugared)) {
7054 if (Type->isMemberPointerType())
7055 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7056 else
7057 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7058 return true;
7059 }
7060
7061 // Add address space to type based on its attributes.
7062 LangAS ASIdx = LangAS::Default;
7063 uint64_t PtrWidth = S.Context.getTargetInfo().getPointerWidth(0);
7064 if (PtrWidth == 32) {
7065 if (Attrs[attr::Ptr64])
7066 ASIdx = LangAS::ptr64;
7067 else if (Attrs[attr::UPtr])
7068 ASIdx = LangAS::ptr32_uptr;
7069 } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7070 if (Attrs[attr::UPtr])
7071 ASIdx = LangAS::ptr32_uptr;
7072 else
7073 ASIdx = LangAS::ptr32_sptr;
7074 }
7075
7076 QualType Pointee = Type->getPointeeType();
7077 if (ASIdx != LangAS::Default)
7078 Pointee = S.Context.getAddrSpaceQualType(
7079 S.Context.removeAddrSpaceQualType(Pointee), ASIdx);
7080 Type = State.getAttributedType(A, Type, S.Context.getPointerType(Pointee));
7081 return false;
7082}
7083
7084/// Map a nullability attribute kind to a nullability kind.
7085static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7086 switch (kind) {
7087 case ParsedAttr::AT_TypeNonNull:
7088 return NullabilityKind::NonNull;
7089
7090 case ParsedAttr::AT_TypeNullable:
7091 return NullabilityKind::Nullable;
7092
7093 case ParsedAttr::AT_TypeNullableResult:
7094 return NullabilityKind::NullableResult;
7095
7096 case ParsedAttr::AT_TypeNullUnspecified:
7097 return NullabilityKind::Unspecified;
7098
7099 default:
7100 llvm_unreachable("not a nullability attribute kind")__builtin_unreachable();
7101 }
7102}
7103
7104/// Applies a nullability type specifier to the given type, if possible.
7105///
7106/// \param state The type processing state.
7107///
7108/// \param type The type to which the nullability specifier will be
7109/// added. On success, this type will be updated appropriately.
7110///
7111/// \param attr The attribute as written on the type.
7112///
7113/// \param allowOnArrayType Whether to accept nullability specifiers on an
7114/// array type (e.g., because it will decay to a pointer).
7115///
7116/// \returns true if a problem has been diagnosed, false on success.
7117static bool checkNullabilityTypeSpecifier(TypeProcessingState &state,
7118 QualType &type,
7119 ParsedAttr &attr,
7120 bool allowOnArrayType) {
7121 Sema &S = state.getSema();
7122
7123 NullabilityKind nullability = mapNullabilityAttrKind(attr.getKind());
7124 SourceLocation nullabilityLoc = attr.getLoc();
7125 bool isContextSensitive = attr.isContextSensitiveKeywordAttribute();
7126
7127 recordNullabilitySeen(S, nullabilityLoc);
7128
7129 // Check for existing nullability attributes on the type.
7130 QualType desugared = type;
7131 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
7132 // Check whether there is already a null
7133 if (auto existingNullability = attributed->getImmediateNullability()) {
7134 // Duplicated nullability.
7135 if (nullability == *existingNullability) {
7136 S.Diag(nullabilityLoc, diag::warn_nullability_duplicate)
7137 << DiagNullabilityKind(nullability, isContextSensitive)
7138 << FixItHint::CreateRemoval(nullabilityLoc);
7139
7140 break;
7141 }
7142
7143 // Conflicting nullability.
7144 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7145 << DiagNullabilityKind(nullability, isContextSensitive)
7146 << DiagNullabilityKind(*existingNullability, false);
7147 return true;
7148 }
7149
7150 desugared = attributed->getModifiedType();
7151 }
7152
7153 // If there is already a different nullability specifier, complain.
7154 // This (unlike the code above) looks through typedefs that might
7155 // have nullability specifiers on them, which means we cannot
7156 // provide a useful Fix-It.
7157 if (auto existingNullability = desugared->getNullability(S.Context)) {
7158 if (nullability != *existingNullability) {
7159 S.Diag(nullabilityLoc, diag::err_nullability_conflicting)
7160 << DiagNullabilityKind(nullability, isContextSensitive)
7161 << DiagNullabilityKind(*existingNullability, false);
7162
7163 // Try to find the typedef with the existing nullability specifier.
7164 if (auto typedefType = desugared->getAs<TypedefType>()) {
7165 TypedefNameDecl *typedefDecl = typedefType->getDecl();
7166 QualType underlyingType = typedefDecl->getUnderlyingType();
7167 if (auto typedefNullability
7168 = AttributedType::stripOuterNullability(underlyingType)) {
7169 if (*typedefNullability == *existingNullability) {
7170 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7171 << DiagNullabilityKind(*existingNullability, false);
7172 }
7173 }
7174 }
7175
7176 return true;
7177 }
7178 }
7179
7180 // If this definitely isn't a pointer type, reject the specifier.
7181 if (!desugared->canHaveNullability() &&
7182 !(allowOnArrayType && desugared->isArrayType())) {
7183 S.Diag(nullabilityLoc, diag::err_nullability_nonpointer)
7184 << DiagNullabilityKind(nullability, isContextSensitive) << type;
7185 return true;
7186 }
7187
7188 // For the context-sensitive keywords/Objective-C property
7189 // attributes, require that the type be a single-level pointer.
7190 if (isContextSensitive) {
7191 // Make sure that the pointee isn't itself a pointer type.
7192 const Type *pointeeType = nullptr;
7193 if (desugared->isArrayType())
7194 pointeeType = desugared->getArrayElementTypeNoTypeQual();
7195 else if (desugared->isAnyPointerType())
7196 pointeeType = desugared->getPointeeType().getTypePtr();
7197
7198 if (pointeeType && (pointeeType->isAnyPointerType() ||
7199 pointeeType->isObjCObjectPointerType() ||
7200 pointeeType->isMemberPointerType())) {
7201 S.Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
7202 << DiagNullabilityKind(nullability, true)
7203 << type;
7204 S.Diag(nullabilityLoc, diag::note_nullability_type_specifier)
7205 << DiagNullabilityKind(nullability, false)
7206 << type
7207 << FixItHint::CreateReplacement(nullabilityLoc,
7208 getNullabilitySpelling(nullability));
7209 return true;
7210 }
7211 }
7212
7213 // Form the attributed type.
7214 type = state.getAttributedType(
7215 createNullabilityAttr(S.Context, attr, nullability), type, type);
7216 return false;
7217}
7218
7219/// Check the application of the Objective-C '__kindof' qualifier to
7220/// the given type.
7221static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7222 ParsedAttr &attr) {
7223 Sema &S = state.getSema();
7224
7225 if (isa<ObjCTypeParamType>(type)) {
7226 // Build the attributed type to record where __kindof occurred.
7227 type = state.getAttributedType(
7228 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7229 return false;
7230 }
7231
7232 // Find out if it's an Objective-C object or object pointer type;
7233 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7234 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7235 : type->getAs<ObjCObjectType>();
7236
7237 // If not, we can't apply __kindof.
7238 if (!objType) {
7239 // FIXME: Handle dependent types that aren't yet object types.
7240 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7241 << type;
7242 return true;
7243 }
7244
7245 // Rebuild the "equivalent" type, which pushes __kindof down into
7246 // the object type.
7247 // There is no need to apply kindof on an unqualified id type.
7248 QualType equivType = S.Context.getObjCObjectType(
7249 objType->getBaseType(), objType->getTypeArgsAsWritten(),
7250 objType->getProtocols(),
7251 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7252
7253 // If we started with an object pointer type, rebuild it.
7254 if (ptrType) {
7255 equivType = S.Context.getObjCObjectPointerType(equivType);
7256 if (auto nullability = type->getNullability(S.Context)) {
7257 // We create a nullability attribute from the __kindof attribute.
7258 // Make sure that will make sense.
7259 assert(attr.getAttributeSpellingListIndex() == 0 &&((void)0)
7260 "multiple spellings for __kindof?")((void)0);
7261 Attr *A = createNullabilityAttr(S.Context, attr, *nullability);
7262 A->setImplicit(true);
7263 equivType = state.getAttributedType(A, equivType, equivType);
7264 }
7265 }
7266
7267 // Build the attributed type to record where __kindof occurred.
7268 type = state.getAttributedType(
7269 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7270 return false;
7271}
7272
7273/// Distribute a nullability type attribute that cannot be applied to
7274/// the type specifier to a pointer, block pointer, or member pointer
7275/// declarator, complaining if necessary.
7276///
7277/// \returns true if the nullability annotation was distributed, false
7278/// otherwise.
7279static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7280 QualType type, ParsedAttr &attr) {
7281 Declarator &declarator = state.getDeclarator();
7282
7283 /// Attempt to move the attribute to the specified chunk.
7284 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7285 // If there is already a nullability attribute there, don't add
7286 // one.
7287 if (hasNullabilityAttr(chunk.getAttrs()))
7288 return false;
7289
7290 // Complain about the nullability qualifier being in the wrong
7291 // place.
7292 enum {
7293 PK_Pointer,
7294 PK_BlockPointer,
7295 PK_MemberPointer,
7296 PK_FunctionPointer,
7297 PK_MemberFunctionPointer,
7298 } pointerKind
7299 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7300 : PK_Pointer)
7301 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7302 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7303
7304 auto diag = state.getSema().Diag(attr.getLoc(),
7305 diag::warn_nullability_declspec)
7306 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7307 attr.isContextSensitiveKeywordAttribute())
7308 << type
7309 << static_cast<unsigned>(pointerKind);
7310
7311 // FIXME: MemberPointer chunks don't carry the location of the *.
7312 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7313 diag << FixItHint::CreateRemoval(attr.getLoc())
7314 << FixItHint::CreateInsertion(
7315 state.getSema().getPreprocessor().getLocForEndOfToken(
7316 chunk.Loc),
7317 " " + attr.getAttrName()->getName().str() + " ");
7318 }
7319
7320 moveAttrFromListToList(attr, state.getCurrentAttributes(),
7321 chunk.getAttrs());
7322 return true;
7323 };
7324
7325 // Move it to the outermost pointer, member pointer, or block
7326 // pointer declarator.
7327 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7328 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
7329 switch (chunk.Kind) {
7330 case DeclaratorChunk::Pointer:
7331 case DeclaratorChunk::BlockPointer:
7332 case DeclaratorChunk::MemberPointer:
7333 return moveToChunk(chunk, false);
7334
7335 case DeclaratorChunk::Paren:
7336 case DeclaratorChunk::Array:
7337 continue;
7338
7339 case DeclaratorChunk::Function:
7340 // Try to move past the return type to a function/block/member
7341 // function pointer.
7342 if (DeclaratorChunk *dest = maybeMovePastReturnType(
7343 declarator, i,
7344 /*onlyBlockPointers=*/false)) {
7345 return moveToChunk(*dest, true);
7346 }
7347
7348 return false;
7349
7350 // Don't walk through these.
7351 case DeclaratorChunk::Reference:
7352 case DeclaratorChunk::Pipe:
7353 return false;
7354 }
7355 }
7356
7357 return false;
7358}
7359
7360static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7361 assert(!Attr.isInvalid())((void)0);
7362 switch (Attr.getKind()) {
7363 default:
7364 llvm_unreachable("not a calling convention attribute")__builtin_unreachable();
7365 case ParsedAttr::AT_CDecl:
7366 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7367 case ParsedAttr::AT_FastCall:
7368 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7369 case ParsedAttr::AT_StdCall:
7370 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7371 case ParsedAttr::AT_ThisCall:
7372 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7373 case ParsedAttr::AT_RegCall:
7374 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7375 case ParsedAttr::AT_Pascal:
7376 return createSimpleAttr<PascalAttr>(Ctx, Attr);
7377 case ParsedAttr::AT_SwiftCall:
7378 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7379 case ParsedAttr::AT_SwiftAsyncCall:
7380 return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7381 case ParsedAttr::AT_VectorCall:
7382 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7383 case ParsedAttr::AT_AArch64VectorPcs:
7384 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7385 case ParsedAttr::AT_Pcs: {
7386 // The attribute may have had a fixit applied where we treated an
7387 // identifier as a string literal. The contents of the string are valid,
7388 // but the form may not be.
7389 StringRef Str;
7390 if (Attr.isArgExpr(0))
7391 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
7392 else
7393 Str = Attr.getArgAsIdent(0)->Ident->getName();
7394 PcsAttr::PCSType Type;
7395 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7396 llvm_unreachable("already validated the attribute")__builtin_unreachable();
7397 return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7398 }
7399 case ParsedAttr::AT_IntelOclBicc:
7400 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7401 case ParsedAttr::AT_MSABI:
7402 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7403 case ParsedAttr::AT_SysVABI:
7404 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7405 case ParsedAttr::AT_PreserveMost:
7406 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7407 case ParsedAttr::AT_PreserveAll:
7408 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7409 }
7410 llvm_unreachable("unexpected attribute kind!")__builtin_unreachable();
7411}
7412
7413/// Process an individual function attribute. Returns true to
7414/// indicate that the attribute was handled, false if it wasn't.
7415static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7416 QualType &type) {
7417 Sema &S = state.getSema();
7418
7419 FunctionTypeUnwrapper unwrapped(S, type);
7420
7421 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
7422 if (S.CheckAttrNoArgs(attr))
7423 return true;
7424
7425 // Delay if this is not a function type.
7426 if (!unwrapped.isFunctionType())
7427 return false;
7428
7429 // Otherwise we can process right away.
7430 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
7431 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7432 return true;
7433 }
7434
7435 if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
7436 // Delay if this is not a function type.
7437 if (!unwrapped.isFunctionType())
7438 return false;
7439
7440 // Ignore if we don't have CMSE enabled.
7441 if (!S.getLangOpts().Cmse) {
7442 S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
7443 attr.setInvalid();
7444 return true;
7445 }
7446
7447 // Otherwise we can process right away.
7448 FunctionType::ExtInfo EI =
7449 unwrapped.get()->getExtInfo().withCmseNSCall(true);
7450 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7451 return true;
7452 }
7453
7454 // ns_returns_retained is not always a type attribute, but if we got
7455 // here, we're treating it as one right now.
7456 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
7457 if (attr.getNumArgs()) return true;
7458
7459 // Delay if this is not a function type.
7460 if (!unwrapped.isFunctionType())
7461 return false;
7462
7463 // Check whether the return type is reasonable.
7464 if (S.checkNSReturnsRetainedReturnType(attr.getLoc(),
7465 unwrapped.get()->getReturnType()))
7466 return true;
7467
7468 // Only actually change the underlying type in ARC builds.
7469 QualType origType = type;
7470 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
7471 FunctionType::ExtInfo EI
7472 = unwrapped.get()->getExtInfo().withProducesResult(true);
7473 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7474 }
7475 type = state.getAttributedType(
7476 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
7477 origType, type);
7478 return true;
7479 }
7480
7481 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
7482 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7483 return true;
7484
7485 // Delay if this is not a function type.
7486 if (!unwrapped.isFunctionType())
7487 return false;
7488
7489 FunctionType::ExtInfo EI =
7490 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(true);
7491 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7492 return true;
7493 }
7494
7495 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
7496 if (!S.getLangOpts().CFProtectionBranch) {
7497 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
7498 attr.setInvalid();
7499 return true;
7500 }
7501
7502 if (S.CheckAttrTarget(attr) || S.CheckAttrNoArgs(attr))
7503 return true;
7504
7505 // If this is not a function type, warning will be asserted by subject
7506 // check.
7507 if (!unwrapped.isFunctionType())
7508 return true;
7509
7510 FunctionType::ExtInfo EI =
7511 unwrapped.get()->getExtInfo().withNoCfCheck(true);
7512 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7513 return true;
7514 }
7515
7516 if (attr.getKind() == ParsedAttr::AT_Regparm) {
7517 unsigned value;
7518 if (S.CheckRegparmAttr(attr, value))
7519 return true;
7520
7521 // Delay if this is not a function type.
7522 if (!unwrapped.isFunctionType())
7523 return false;
7524
7525 // Diagnose regparm with fastcall.
7526 const FunctionType *fn = unwrapped.get();
7527 CallingConv CC = fn->getCallConv();
7528 if (CC == CC_X86FastCall) {
7529 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7530 << FunctionType::getNameForCallConv(CC)
7531 << "regparm";
7532 attr.setInvalid();
7533 return true;
7534 }
7535
7536 FunctionType::ExtInfo EI =
7537 unwrapped.get()->getExtInfo().withRegParm(value);
7538 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7539 return true;
7540 }
7541
7542 if (attr.getKind() == ParsedAttr::AT_NoThrow) {
7543 // Delay if this is not a function type.
7544 if (!unwrapped.isFunctionType())
7545 return false;
7546
7547 if (S.CheckAttrNoArgs(attr)) {
7548 attr.setInvalid();
7549 return true;
7550 }
7551
7552 // Otherwise we can process right away.
7553 auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
7554
7555 // MSVC ignores nothrow if it is in conflict with an explicit exception
7556 // specification.
7557 if (Proto->hasExceptionSpec()) {
7558 switch (Proto->getExceptionSpecType()) {
7559 case EST_None:
7560 llvm_unreachable("This doesn't have an exception spec!")__builtin_unreachable();
7561
7562 case EST_DynamicNone:
7563 case EST_BasicNoexcept:
7564 case EST_NoexceptTrue:
7565 case EST_NoThrow:
7566 // Exception spec doesn't conflict with nothrow, so don't warn.
7567 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7568 case EST_Unparsed:
7569 case EST_Uninstantiated:
7570 case EST_DependentNoexcept:
7571 case EST_Unevaluated:
7572 // We don't have enough information to properly determine if there is a
7573 // conflict, so suppress the warning.
7574 break;
7575 case EST_Dynamic:
7576 case EST_MSAny:
7577 case EST_NoexceptFalse:
7578 S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
7579 break;
7580 }
7581 return true;
7582 }
7583
7584 type = unwrapped.wrap(
7585 S, S.Context
7586 .getFunctionTypeWithExceptionSpec(
7587 QualType{Proto, 0},
7588 FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
7589 ->getAs<FunctionType>());
7590 return true;
7591 }
7592
7593 // Delay if the type didn't work out to a function.
7594 if (!unwrapped.isFunctionType()) return false;
7595
7596 // Otherwise, a calling convention.
7597 CallingConv CC;
7598 if (S.CheckCallingConvAttr(attr, CC))
7599 return true;
7600
7601 const FunctionType *fn = unwrapped.get();
7602 CallingConv CCOld = fn->getCallConv();
7603 Attr *CCAttr = getCCTypeAttr(S.Context, attr);
7604
7605 if (CCOld != CC) {
7606 // Error out on when there's already an attribute on the type
7607 // and the CCs don't match.
7608 if (S.getCallingConvAttributedType(type)) {
7609 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7610 << FunctionType::getNameForCallConv(CC)
7611 << FunctionType::getNameForCallConv(CCOld);
7612 attr.setInvalid();
7613 return true;
7614 }
7615 }
7616
7617 // Diagnose use of variadic functions with calling conventions that
7618 // don't support them (e.g. because they're callee-cleanup).
7619 // We delay warning about this on unprototyped function declarations
7620 // until after redeclaration checking, just in case we pick up a
7621 // prototype that way. And apparently we also "delay" warning about
7622 // unprototyped function types in general, despite not necessarily having
7623 // much ability to diagnose it later.
7624 if (!supportsVariadicCall(CC)) {
7625 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
7626 if (FnP && FnP->isVariadic()) {
7627 // stdcall and fastcall are ignored with a warning for GCC and MS
7628 // compatibility.
7629 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
7630 return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
7631 << FunctionType::getNameForCallConv(CC)
7632 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
7633
7634 attr.setInvalid();
7635 return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
7636 << FunctionType::getNameForCallConv(CC);
7637 }
7638 }
7639
7640 // Also diagnose fastcall with regparm.
7641 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
7642 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
7643 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
7644 attr.setInvalid();
7645 return true;
7646 }
7647
7648 // Modify the CC from the wrapped function type, wrap it all back, and then
7649 // wrap the whole thing in an AttributedType as written. The modified type
7650 // might have a different CC if we ignored the attribute.
7651 QualType Equivalent;
7652 if (CCOld == CC) {
7653 Equivalent = type;
7654 } else {
7655 auto EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
7656 Equivalent =
7657 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
7658 }
7659 type = state.getAttributedType(CCAttr, type, Equivalent);
7660 return true;
7661}
7662
7663bool Sema::hasExplicitCallingConv(QualType T) {
7664 const AttributedType *AT;
7665
7666 // Stop if we'd be stripping off a typedef sugar node to reach the
7667 // AttributedType.
7668 while ((AT = T->getAs<AttributedType>()) &&
7669 AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
7670 if (AT->isCallingConv())
7671 return true;
7672 T = AT->getModifiedType();
7673 }
7674 return false;
7675}
7676
7677void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
7678 SourceLocation Loc) {
7679 FunctionTypeUnwrapper Unwrapped(*this, T);
7680 const FunctionType *FT = Unwrapped.get();
7681 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
7682 cast<FunctionProtoType>(FT)->isVariadic());
7683 CallingConv CurCC = FT->getCallConv();
7684 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
7685
7686 if (CurCC == ToCC)
7687 return;
7688
7689 // MS compiler ignores explicit calling convention attributes on structors. We
7690 // should do the same.
7691 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
7692 // Issue a warning on ignored calling convention -- except of __stdcall.
7693 // Again, this is what MS compiler does.
7694 if (CurCC != CC_X86StdCall)
7695 Diag(Loc, diag::warn_cconv_unsupported)
7696 << FunctionType::getNameForCallConv(CurCC)
7697 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
7698 // Default adjustment.
7699 } else {
7700 // Only adjust types with the default convention. For example, on Windows
7701 // we should adjust a __cdecl type to __thiscall for instance methods, and a
7702 // __thiscall type to __cdecl for static methods.
7703 CallingConv DefaultCC =
7704 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
7705
7706 if (CurCC != DefaultCC || DefaultCC == ToCC)
7707 return;
7708
7709 if (hasExplicitCallingConv(T))
7710 return;
7711 }
7712
7713 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
7714 QualType Wrapped = Unwrapped.wrap(*this, FT);
7715 T = Context.getAdjustedType(T, Wrapped);
7716}
7717
7718/// HandleVectorSizeAttribute - this attribute is only applicable to integral
7719/// and float scalars, although arrays, pointers, and function return values are
7720/// allowed in conjunction with this construct. Aggregates with this attribute
7721/// are invalid, even if they are of the same size as a corresponding scalar.
7722/// The raw attribute should contain precisely 1 argument, the vector size for
7723/// the variable, measured in bytes. If curType and rawAttr are well formed,
7724/// this routine will return a new vector type.
7725static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
7726 Sema &S) {
7727 // Check the attribute arguments.
7728 if (Attr.getNumArgs() != 1) {
7729 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7730 << 1;
7731 Attr.setInvalid();
7732 return;
7733 }
7734
7735 Expr *SizeExpr = Attr.getArgAsExpr(0);
7736 QualType T = S.BuildVectorType(CurType, SizeExpr, Attr.getLoc());
7737 if (!T.isNull())
7738 CurType = T;
7739 else
7740 Attr.setInvalid();
7741}
7742
7743/// Process the OpenCL-like ext_vector_type attribute when it occurs on
7744/// a type.
7745static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7746 Sema &S) {
7747 // check the attribute arguments.
7748 if (Attr.getNumArgs() != 1) {
7749 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7750 << 1;
7751 return;
7752 }
7753
7754 Expr *SizeExpr = Attr.getArgAsExpr(0);
7755 QualType T = S.BuildExtVectorType(CurType, SizeExpr, Attr.getLoc());
7756 if (!T.isNull())
7757 CurType = T;
7758}
7759
7760static bool isPermittedNeonBaseType(QualType &Ty,
7761 VectorType::VectorKind VecKind, Sema &S) {
7762 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
7763 if (!BTy)
7764 return false;
7765
7766 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
7767
7768 // Signed poly is mathematically wrong, but has been baked into some ABIs by
7769 // now.
7770 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
7771 Triple.getArch() == llvm::Triple::aarch64_32 ||
7772 Triple.getArch() == llvm::Triple::aarch64_be;
7773 if (VecKind == VectorType::NeonPolyVector) {
7774 if (IsPolyUnsigned) {
7775 // AArch64 polynomial vectors are unsigned.
7776 return BTy->getKind() == BuiltinType::UChar ||
7777 BTy->getKind() == BuiltinType::UShort ||
7778 BTy->getKind() == BuiltinType::ULong ||
7779 BTy->getKind() == BuiltinType::ULongLong;
7780 } else {
7781 // AArch32 polynomial vectors are signed.
7782 return BTy->getKind() == BuiltinType::SChar ||
7783 BTy->getKind() == BuiltinType::Short ||
7784 BTy->getKind() == BuiltinType::LongLong;
7785 }
7786 }
7787
7788 // Non-polynomial vector types: the usual suspects are allowed, as well as
7789 // float64_t on AArch64.
7790 if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
7791 BTy->getKind() == BuiltinType::Double)
7792 return true;
7793
7794 return BTy->getKind() == BuiltinType::SChar ||
7795 BTy->getKind() == BuiltinType::UChar ||
7796 BTy->getKind() == BuiltinType::Short ||
7797 BTy->getKind() == BuiltinType::UShort ||
7798 BTy->getKind() == BuiltinType::Int ||
7799 BTy->getKind() == BuiltinType::UInt ||
7800 BTy->getKind() == BuiltinType::Long ||
7801 BTy->getKind() == BuiltinType::ULong ||
7802 BTy->getKind() == BuiltinType::LongLong ||
7803 BTy->getKind() == BuiltinType::ULongLong ||
7804 BTy->getKind() == BuiltinType::Float ||
7805 BTy->getKind() == BuiltinType::Half ||
7806 BTy->getKind() == BuiltinType::BFloat16;
7807}
7808
7809static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
7810 llvm::APSInt &Result) {
7811 const auto *AttrExpr = Attr.getArgAsExpr(0);
7812 if (!AttrExpr->isTypeDependent() && !AttrExpr->isValueDependent()) {
7813 if (Optional<llvm::APSInt> Res =
7814 AttrExpr->getIntegerConstantExpr(S.Context)) {
7815 Result = *Res;
7816 return true;
7817 }
7818 }
7819 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
7820 << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
7821 Attr.setInvalid();
7822 return false;
7823}
7824
7825/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
7826/// "neon_polyvector_type" attributes are used to create vector types that
7827/// are mangled according to ARM's ABI. Otherwise, these types are identical
7828/// to those created with the "vector_size" attribute. Unlike "vector_size"
7829/// the argument to these Neon attributes is the number of vector elements,
7830/// not the vector size in bytes. The vector width and element type must
7831/// match one of the standard Neon vector types.
7832static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
7833 Sema &S, VectorType::VectorKind VecKind) {
7834 // Target must have NEON (or MVE, whose vectors are similar enough
7835 // not to need a separate attribute)
7836 if (!S.Context.getTargetInfo().hasFeature("neon") &&
7837 !S.Context.getTargetInfo().hasFeature("mve")) {
7838 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
7839 << Attr << "'neon' or 'mve'";
7840 Attr.setInvalid();
7841 return;
7842 }
7843 // Check the attribute arguments.
7844 if (Attr.getNumArgs() != 1) {
7845 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
7846 << 1;
7847 Attr.setInvalid();
7848 return;
7849 }
7850 // The number of elements must be an ICE.
7851 llvm::APSInt numEltsInt(32);
7852 if (!verifyValidIntegerConstantExpr(S, Attr, numEltsInt))
7853 return;
7854
7855 // Only certain element types are supported for Neon vectors.
7856 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
7857 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
7858 Attr.setInvalid();
7859 return;
7860 }
7861
7862 // The total size of the vector must be 64 or 128 bits.
7863 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
7864 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
7865 unsigned vecSize = typeSize * numElts;
7866 if (vecSize != 64 && vecSize != 128) {
7867 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
7868 Attr.setInvalid();
7869 return;
7870 }
7871
7872 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
7873}
7874
7875/// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
7876/// used to create fixed-length versions of sizeless SVE types defined by
7877/// the ACLE, such as svint32_t and svbool_t.
7878static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
7879 Sema &S) {
7880 // Target must have SVE.
7881 if (!S.Context.getTargetInfo().hasFeature("sve")) {
7882 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
7883 Attr.setInvalid();
7884 return;
7885 }
7886
7887 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified.
7888 if (!S.getLangOpts().ArmSveVectorBits) {
7889 S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
7890 << Attr;
7891 Attr.setInvalid();
7892 return;
7893 }
7894
7895 // Check the attribute arguments.
7896 if (Attr.getNumArgs() != 1) {
7897 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
7898 << Attr << 1;
7899 Attr.setInvalid();
7900 return;
7901 }
7902
7903 // The vector size must be an integer constant expression.
7904 llvm::APSInt SveVectorSizeInBits(32);
7905 if (!verifyValidIntegerConstantExpr(S, Attr, SveVectorSizeInBits))
7906 return;
7907
7908 unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
7909
7910 // The attribute vector size must match -msve-vector-bits.
7911 if (VecSize != S.getLangOpts().ArmSveVectorBits) {
7912 S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
7913 << VecSize << S.getLangOpts().ArmSveVectorBits;
7914 Attr.setInvalid();
7915 return;
7916 }
7917
7918 // Attribute can only be attached to a single SVE vector or predicate type.
7919 if (!CurType->isVLSTBuiltinType()) {
7920 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
7921 << Attr << CurType;
7922 Attr.setInvalid();
7923 return;
7924 }
7925
7926 const auto *BT = CurType->castAs<BuiltinType>();
7927
7928 QualType EltType = CurType->getSveEltType(S.Context);
7929 unsigned TypeSize = S.Context.getTypeSize(EltType);
7930 VectorType::VectorKind VecKind = VectorType::SveFixedLengthDataVector;
7931 if (BT->getKind() == BuiltinType::SveBool) {
7932 // Predicates are represented as i8.
7933 VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
7934 VecKind = VectorType::SveFixedLengthPredicateVector;
7935 } else
7936 VecSize /= TypeSize;
7937 CurType = S.Context.getVectorType(EltType, VecSize, VecKind);
7938}
7939
7940static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
7941 QualType &CurType,
7942 ParsedAttr &Attr) {
7943 const VectorType *VT = dyn_cast<VectorType>(CurType);
7944 if (!VT || VT->getVectorKind() != VectorType::NeonVector) {
7945 State.getSema().Diag(Attr.getLoc(),
7946 diag::err_attribute_arm_mve_polymorphism);
7947 Attr.setInvalid();
7948 return;
7949 }
7950
7951 CurType =
7952 State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
7953 State.getSema().Context, Attr),
7954 CurType, CurType);
7955}
7956
7957/// Handle OpenCL Access Qualifier Attribute.
7958static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
7959 Sema &S) {
7960 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
7961 if (!(CurType->isImageType() || CurType->isPipeType())) {
7962 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
7963 Attr.setInvalid();
7964 return;
7965 }
7966
7967 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
7968 QualType BaseTy = TypedefTy->desugar();
7969
7970 std::string PrevAccessQual;
7971 if (BaseTy->isPipeType()) {
7972 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
7973 OpenCLAccessAttr *Attr =
7974 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
7975 PrevAccessQual = Attr->getSpelling();
7976 } else {
7977 PrevAccessQual = "read_only";
7978 }
7979 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
7980
7981 switch (ImgType->getKind()) {
7982 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7983 case BuiltinType::Id: \
7984 PrevAccessQual = #Access; \
7985 break;
7986 #include "clang/Basic/OpenCLImageTypes.def"
7987 default:
7988 llvm_unreachable("Unable to find corresponding image type.")__builtin_unreachable();
7989 }
7990 } else {
7991 llvm_unreachable("unexpected type")__builtin_unreachable();
7992 }
7993 StringRef AttrName = Attr.getAttrName()->getName();
7994 if (PrevAccessQual == AttrName.ltrim("_")) {
7995 // Duplicated qualifiers
7996 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
7997 << AttrName << Attr.getRange();
7998 } else {
7999 // Contradicting qualifiers
8000 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8001 }
8002
8003 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8004 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8005 } else if (CurType->isPipeType()) {
8006 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8007 QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8008 CurType = S.Context.getWritePipeType(ElemType);
8009 }
8010 }
8011}
8012
8013/// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8014static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8015 Sema &S) {
8016 if (!S.getLangOpts().MatrixTypes) {
8017 S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8018 return;
8019 }
8020
8021 if (Attr.getNumArgs() != 2) {
8022 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8023 << Attr << 2;
8024 return;
8025 }
8026
8027 Expr *RowsExpr = Attr.getArgAsExpr(0);
8028 Expr *ColsExpr = Attr.getArgAsExpr(1);
8029 QualType T = S.BuildMatrixType(CurType, RowsExpr, ColsExpr, Attr.getLoc());
8030 if (!T.isNull())
8031 CurType = T;
8032}
8033
8034static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8035 QualType &CurType,
8036 ParsedAttr &Attr) {
8037 if (State.getDeclarator().isDeclarationOfFunction()) {
8038 CurType = State.getAttributedType(
8039 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8040 CurType, CurType);
8041 }
8042}
8043
8044static bool isAddressSpaceKind(const ParsedAttr &attr) {
8045 auto attrKind = attr.getKind();
8046
8047 return attrKind == ParsedAttr::AT_AddressSpace ||
8048 attrKind == ParsedAttr::AT_OpenCLPrivateAddressSpace ||
8049 attrKind == ParsedAttr::AT_OpenCLGlobalAddressSpace ||
8050 attrKind == ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace ||
8051 attrKind == ParsedAttr::AT_OpenCLGlobalHostAddressSpace ||
8052 attrKind == ParsedAttr::AT_OpenCLLocalAddressSpace ||
8053 attrKind == ParsedAttr::AT_OpenCLConstantAddressSpace ||
8054 attrKind == ParsedAttr::AT_OpenCLGenericAddressSpace;
8055}
8056
8057static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8058 TypeAttrLocation TAL,
8059 ParsedAttributesView &attrs) {
8060 // Scan through and apply attributes to this type where it makes sense. Some
8061 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8062 // type, but others can be present in the type specifiers even though they
8063 // apply to the decl. Here we apply type attributes and ignore the rest.
8064
8065 // This loop modifies the list pretty frequently, but we still need to make
8066 // sure we visit every element once. Copy the attributes list, and iterate
8067 // over that.
8068 ParsedAttributesView AttrsCopy{attrs};
8069
8070 state.setParsedNoDeref(false);
8071
8072 for (ParsedAttr &attr : AttrsCopy) {
8073
8074 // Skip attributes that were marked to be invalid.
8075 if (attr.isInvalid())
8076 continue;
8077
8078 if (attr.isStandardAttributeSyntax()) {
8079 // [[gnu::...]] attributes are treated as declaration attributes, so may
8080 // not appertain to a DeclaratorChunk. If we handle them as type
8081 // attributes, accept them in that position and diagnose the GCC
8082 // incompatibility.
8083 if (attr.isGNUScope()) {
8084 bool IsTypeAttr = attr.isTypeAttr();
8085 if (TAL == TAL_DeclChunk) {
8086 state.getSema().Diag(attr.getLoc(),
8087 IsTypeAttr
8088 ? diag::warn_gcc_ignores_type_attr
8089 : diag::warn_cxx11_gnu_attribute_on_type)
8090 << attr;
8091 if (!IsTypeAttr)
8092 continue;
8093 }
8094 } else if (TAL != TAL_DeclChunk && !isAddressSpaceKind(attr)) {
8095 // Otherwise, only consider type processing for a C++11 attribute if
8096 // it's actually been applied to a type.
8097 // We also allow C++11 address_space and
8098 // OpenCL language address space attributes to pass through.
8099 continue;
8100 }
8101 }
8102
8103 // If this is an attribute we can handle, do so now,
8104 // otherwise, add it to the FnAttrs list for rechaining.
8105 switch (attr.getKind()) {
8106 default:
8107 // A [[]] attribute on a declarator chunk must appertain to a type.
8108 if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk) {
8109 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8110 << attr;
8111 attr.setUsedAsTypeAttr();
8112 }
8113 break;
8114
8115 case ParsedAttr::UnknownAttribute:
8116 if (attr.isStandardAttributeSyntax() && TAL == TAL_DeclChunk)
8117 state.getSema().Diag(attr.getLoc(),
8118 diag::warn_unknown_attribute_ignored)
8119 << attr << attr.getRange();
8120 break;
8121
8122 case ParsedAttr::IgnoredAttribute:
8123 break;
8124
8125 case ParsedAttr::AT_MayAlias:
8126 // FIXME: This attribute needs to actually be handled, but if we ignore
8127 // it it breaks large amounts of Linux software.
8128 attr.setUsedAsTypeAttr();
8129 break;
8130 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8131 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8132 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8133 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8134 case ParsedAttr::AT_OpenCLLocalAddressSpace:
8135 case ParsedAttr::AT_OpenCLConstantAddressSpace:
8136 case ParsedAttr::AT_OpenCLGenericAddressSpace:
8137 case ParsedAttr::AT_AddressSpace:
8138 HandleAddressSpaceTypeAttribute(type, attr, state);
8139 attr.setUsedAsTypeAttr();
8140 break;
8141 OBJC_POINTER_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_ObjCGC: case ParsedAttr::AT_ObjCOwnership:
8142 if (!handleObjCPointerTypeAttr(state, attr, type))
8143 distributeObjCPointerTypeAttr(state, attr, type);
8144 attr.setUsedAsTypeAttr();
8145 break;
8146 case ParsedAttr::AT_VectorSize:
8147 HandleVectorSizeAttr(type, attr, state.getSema());
8148 attr.setUsedAsTypeAttr();
8149 break;
8150 case ParsedAttr::AT_ExtVectorType:
8151 HandleExtVectorTypeAttr(type, attr, state.getSema());
8152 attr.setUsedAsTypeAttr();
8153 break;
8154 case ParsedAttr::AT_NeonVectorType:
8155 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8156 VectorType::NeonVector);
8157 attr.setUsedAsTypeAttr();
8158 break;
8159 case ParsedAttr::AT_NeonPolyVectorType:
8160 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
8161 VectorType::NeonPolyVector);
8162 attr.setUsedAsTypeAttr();
8163 break;
8164 case ParsedAttr::AT_ArmSveVectorBits:
8165 HandleArmSveVectorBitsTypeAttr(type, attr, state.getSema());
8166 attr.setUsedAsTypeAttr();
8167 break;
8168 case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8169 HandleArmMveStrictPolymorphismAttr(state, type, attr);
8170 attr.setUsedAsTypeAttr();
8171 break;
8172 }
8173 case ParsedAttr::AT_OpenCLAccess:
8174 HandleOpenCLAccessAttr(type, attr, state.getSema());
8175 attr.setUsedAsTypeAttr();
8176 break;
8177 case ParsedAttr::AT_LifetimeBound:
8178 if (TAL == TAL_DeclChunk)
8179 HandleLifetimeBoundAttr(state, type, attr);
8180 break;
8181
8182 case ParsedAttr::AT_NoDeref: {
8183 ASTContext &Ctx = state.getSema().Context;
8184 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8185 type, type);
8186 attr.setUsedAsTypeAttr();
8187 state.setParsedNoDeref(true);
8188 break;
8189 }
8190
8191 case ParsedAttr::AT_MatrixType:
8192 HandleMatrixTypeAttr(type, attr, state.getSema());
8193 attr.setUsedAsTypeAttr();
8194 break;
8195
8196 MS_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_Ptr32: case ParsedAttr::AT_Ptr64: case ParsedAttr
::AT_SPtr: case ParsedAttr::AT_UPtr
:
8197 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
8198 attr.setUsedAsTypeAttr();
8199 break;
8200
8201
8202 NULLABILITY_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_TypeNonNull: case ParsedAttr::AT_TypeNullable
: case ParsedAttr::AT_TypeNullableResult: case ParsedAttr::AT_TypeNullUnspecified
:
8203 // Either add nullability here or try to distribute it. We
8204 // don't want to distribute the nullability specifier past any
8205 // dependent type, because that complicates the user model.
8206 if (type->canHaveNullability() || type->isDependentType() ||
8207 type->isArrayType() ||
8208 !distributeNullabilityTypeAttr(state, type, attr)) {
8209 unsigned endIndex;
8210 if (TAL == TAL_DeclChunk)
8211 endIndex = state.getCurrentChunkIndex();
8212 else
8213 endIndex = state.getDeclarator().getNumTypeObjects();
8214 bool allowOnArrayType =
8215 state.getDeclarator().isPrototypeContext() &&
8216 !hasOuterPointerLikeChunk(state.getDeclarator(), endIndex);
8217 if (checkNullabilityTypeSpecifier(
8218 state,
8219 type,
8220 attr,
8221 allowOnArrayType)) {
8222 attr.setInvalid();
8223 }
8224
8225 attr.setUsedAsTypeAttr();
8226 }
8227 break;
8228
8229 case ParsedAttr::AT_ObjCKindOf:
8230 // '__kindof' must be part of the decl-specifiers.
8231 switch (TAL) {
8232 case TAL_DeclSpec:
8233 break;
8234
8235 case TAL_DeclChunk:
8236 case TAL_DeclName:
8237 state.getSema().Diag(attr.getLoc(),
8238 diag::err_objc_kindof_wrong_position)
8239 << FixItHint::CreateRemoval(attr.getLoc())
8240 << FixItHint::CreateInsertion(
8241 state.getDeclarator().getDeclSpec().getBeginLoc(),
8242 "__kindof ");
8243 break;
8244 }
8245
8246 // Apply it regardless.
8247 if (checkObjCKindOfType(state, type, attr))
8248 attr.setInvalid();
8249 break;
8250
8251 case ParsedAttr::AT_NoThrow:
8252 // Exception Specifications aren't generally supported in C mode throughout
8253 // clang, so revert to attribute-based handling for C.
8254 if (!state.getSema().getLangOpts().CPlusPlus)
8255 break;
8256 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8257 FUNCTION_TYPE_ATTRS_CASELISTcase ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NoReturn
: case ParsedAttr::AT_Regparm: case ParsedAttr::AT_CmseNSCall
: case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: case ParsedAttr
::AT_AnyX86NoCfCheck: case ParsedAttr::AT_CDecl: case ParsedAttr
::AT_FastCall: case ParsedAttr::AT_StdCall: case ParsedAttr::
AT_ThisCall: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_Pascal
: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall
: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_AArch64VectorPcs
: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case
ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr
::AT_PreserveMost: case ParsedAttr::AT_PreserveAll
:
8258 attr.setUsedAsTypeAttr();
8259
8260 // Never process function type attributes as part of the
8261 // declaration-specifiers.
8262 if (TAL == TAL_DeclSpec)
8263 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
8264
8265 // Otherwise, handle the possible delays.
8266 else if (!handleFunctionTypeAttr(state, attr, type))
8267 distributeFunctionTypeAttr(state, attr, type);
8268 break;
8269 case ParsedAttr::AT_AcquireHandle: {
8270 if (!type->isFunctionType())
8271 return;
8272
8273 if (attr.getNumArgs() != 1) {
8274 state.getSema().Diag(attr.getLoc(),
8275 diag::err_attribute_wrong_number_arguments)
8276 << attr << 1;
8277 attr.setInvalid();
8278 return;
8279 }
8280
8281 StringRef HandleType;
8282 if (!state.getSema().checkStringLiteralArgumentAttr(attr, 0, HandleType))
8283 return;
8284 type = state.getAttributedType(
8285 AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
8286 type, type);
8287 attr.setUsedAsTypeAttr();
8288 break;
8289 }
8290 }
8291
8292 // Handle attributes that are defined in a macro. We do not want this to be
8293 // applied to ObjC builtin attributes.
8294 if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
8295 !type.getQualifiers().hasObjCLifetime() &&
8296 !type.getQualifiers().hasObjCGCAttr() &&
8297 attr.getKind() != ParsedAttr::AT_ObjCGC &&
8298 attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
8299 const IdentifierInfo *MacroII = attr.getMacroIdentifier();
8300 type = state.getSema().Context.getMacroQualifiedType(type, MacroII);
8301 state.setExpansionLocForMacroQualifiedType(
8302 cast<MacroQualifiedType>(type.getTypePtr()),
8303 attr.getMacroExpansionLoc());
8304 }
8305 }
8306
8307 if (!state.getSema().getLangOpts().OpenCL ||
8308 type.getAddressSpace() != LangAS::Default)
8309 return;
8310}
8311
8312void Sema::completeExprArrayBound(Expr *E) {
8313 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
8314 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8315 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
8316 auto *Def = Var->getDefinition();
8317 if (!Def) {
8318 SourceLocation PointOfInstantiation = E->getExprLoc();
8319 runWithSufficientStackSpace(PointOfInstantiation, [&] {
8320 InstantiateVariableDefinition(PointOfInstantiation, Var);
8321 });
8322 Def = Var->getDefinition();
8323
8324 // If we don't already have a point of instantiation, and we managed
8325 // to instantiate a definition, this is the point of instantiation.
8326 // Otherwise, we don't request an end-of-TU instantiation, so this is
8327 // not a point of instantiation.
8328 // FIXME: Is this really the right behavior?
8329 if (Var->getPointOfInstantiation().isInvalid() && Def) {
8330 assert(Var->getTemplateSpecializationKind() ==((void)0)
8331 TSK_ImplicitInstantiation &&((void)0)
8332 "explicit instantiation with no point of instantiation")((void)0);
8333 Var->setTemplateSpecializationKind(
8334 Var->getTemplateSpecializationKind(), PointOfInstantiation);
8335 }
8336 }
8337
8338 // Update the type to the definition's type both here and within the
8339 // expression.
8340 if (Def) {
8341 DRE->setDecl(Def);
8342 QualType T = Def->getType();
8343 DRE->setType(T);
8344 // FIXME: Update the type on all intervening expressions.
8345 E->setType(T);
8346 }
8347
8348 // We still go on to try to complete the type independently, as it
8349 // may also require instantiations or diagnostics if it remains
8350 // incomplete.
8351 }
8352 }
8353 }
8354}
8355
8356QualType Sema::getCompletedType(Expr *E) {
8357 // Incomplete array types may be completed by the initializer attached to
8358 // their definitions. For static data members of class templates and for
8359 // variable templates, we need to instantiate the definition to get this
8360 // initializer and complete the type.
8361 if (E->getType()->isIncompleteArrayType())
8362 completeExprArrayBound(E);
8363
8364 // FIXME: Are there other cases which require instantiating something other
8365 // than the type to complete the type of an expression?
8366
8367 return E->getType();
8368}
8369
8370/// Ensure that the type of the given expression is complete.
8371///
8372/// This routine checks whether the expression \p E has a complete type. If the
8373/// expression refers to an instantiable construct, that instantiation is
8374/// performed as needed to complete its type. Furthermore
8375/// Sema::RequireCompleteType is called for the expression's type (or in the
8376/// case of a reference type, the referred-to type).
8377///
8378/// \param E The expression whose type is required to be complete.
8379/// \param Kind Selects which completeness rules should be applied.
8380/// \param Diagnoser The object that will emit a diagnostic if the type is
8381/// incomplete.
8382///
8383/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8384/// otherwise.
8385bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
8386 TypeDiagnoser &Diagnoser) {
8387 return RequireCompleteType(E->getExprLoc(), getCompletedType(E), Kind,
8388 Diagnoser);
8389}
8390
8391bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
8392 BoundTypeDiagnoser<> Diagnoser(DiagID);
8393 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
8394}
8395
8396/// Ensure that the type T is a complete type.
8397///
8398/// This routine checks whether the type @p T is complete in any
8399/// context where a complete type is required. If @p T is a complete
8400/// type, returns false. If @p T is a class template specialization,
8401/// this routine then attempts to perform class template
8402/// instantiation. If instantiation fails, or if @p T is incomplete
8403/// and cannot be completed, issues the diagnostic @p diag (giving it
8404/// the type @p T) and returns true.
8405///
8406/// @param Loc The location in the source that the incomplete type
8407/// diagnostic should refer to.
8408///
8409/// @param T The type that this routine is examining for completeness.
8410///
8411/// @param Kind Selects which completeness rules should be applied.
8412///
8413/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8414/// @c false otherwise.
8415bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8416 CompleteTypeKind Kind,
8417 TypeDiagnoser &Diagnoser) {
8418 if (RequireCompleteTypeImpl(Loc, T, Kind, &Diagnoser))
8419 return true;
8420 if (const TagType *Tag = T->getAs<TagType>()) {
8421 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
8422 Tag->getDecl()->setCompleteDefinitionRequired();
8423 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
8424 }
8425 }
8426 return false;
8427}
8428
8429bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
8430 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
8431 if (!Suggested)
8432 return false;
8433
8434 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8435 // and isolate from other C++ specific checks.
8436 StructuralEquivalenceContext Ctx(
8437 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
8438 StructuralEquivalenceKind::Default,
8439 false /*StrictTypeSpelling*/, true /*Complain*/,
8440 true /*ErrorOnTagTypeMismatch*/);
8441 return Ctx.IsEquivalent(D, Suggested);
8442}
8443
8444/// Determine whether there is any declaration of \p D that was ever a
8445/// definition (perhaps before module merging) and is currently visible.
8446/// \param D The definition of the entity.
8447/// \param Suggested Filled in with the declaration that should be made visible
8448/// in order to provide a definition of this entity.
8449/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8450/// not defined. This only matters for enums with a fixed underlying
8451/// type, since in all other cases, a type is complete if and only if it
8452/// is defined.
8453bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
8454 bool OnlyNeedComplete) {
8455 // Easy case: if we don't have modules, all declarations are visible.
8456 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
8457 return true;
8458
8459 // If this definition was instantiated from a template, map back to the
8460 // pattern from which it was instantiated.
8461 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
8462 // We're in the middle of defining it; this definition should be treated
8463 // as visible.
8464 return true;
8465 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
8466 if (auto *Pattern = RD->getTemplateInstantiationPattern())
8467 RD = Pattern;
8468 D = RD->getDefinition();
8469 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
8470 if (auto *Pattern = ED->getTemplateInstantiationPattern())
8471 ED = Pattern;
8472 if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
8473 // If the enum has a fixed underlying type, it may have been forward
8474 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8475 // the enum and assign it the underlying type of `int`. Since we're only
8476 // looking for a complete type (not a definition), any visible declaration
8477 // of it will do.
8478 *Suggested = nullptr;
8479 for (auto *Redecl : ED->redecls()) {
8480 if (isVisible(Redecl))
8481 return true;
8482 if (Redecl->isThisDeclarationADefinition() ||
8483 (Redecl->isCanonicalDecl() && !*Suggested))
8484 *Suggested = Redecl;
8485 }
8486 return false;
8487 }
8488 D = ED->getDefinition();
8489 } else if (auto *FD = dyn_cast<FunctionDecl>(D)) {
8490 if (auto *Pattern = FD->getTemplateInstantiationPattern())
8491 FD = Pattern;
8492 D = FD->getDefinition();
8493 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
8494 if (auto *Pattern = VD->getTemplateInstantiationPattern())
8495 VD = Pattern;
8496 D = VD->getDefinition();
8497 }
8498 assert(D && "missing definition for pattern of instantiated definition")((void)0);
8499
8500 *Suggested = D;
8501
8502 auto DefinitionIsVisible = [&] {
8503 // The (primary) definition might be in a visible module.
8504 if (isVisible(D))
8505 return true;
8506
8507 // A visible module might have a merged definition instead.
8508 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D)
8509 : hasVisibleMergedDefinition(D)) {
8510 if (CodeSynthesisContexts.empty() &&
8511 !getLangOpts().ModulesLocalVisibility) {
8512 // Cache the fact that this definition is implicitly visible because
8513 // there is a visible merged definition.
8514 D->setVisibleDespiteOwningModule();
8515 }
8516 return true;
8517 }
8518
8519 return false;
8520 };
8521
8522 if (DefinitionIsVisible())
8523 return true;
8524
8525 // The external source may have additional definitions of this entity that are
8526 // visible, so complete the redeclaration chain now and ask again.
8527 if (auto *Source = Context.getExternalSource()) {
8528 Source->CompleteRedeclChain(D);
8529 return DefinitionIsVisible();
8530 }
8531
8532 return false;
8533}
8534
8535/// Locks in the inheritance model for the given class and all of its bases.
8536static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
8537 RD = RD->getMostRecentNonInjectedDecl();
8538 if (!RD->hasAttr<MSInheritanceAttr>()) {
8539 MSInheritanceModel IM;
8540 bool BestCase = false;
8541 switch (S.MSPointerToMemberRepresentationMethod) {
8542 case LangOptions::PPTMK_BestCase:
8543 BestCase = true;
8544 IM = RD->calculateInheritanceModel();
8545 break;
8546 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
8547 IM = MSInheritanceModel::Single;
8548 break;
8549 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
8550 IM = MSInheritanceModel::Multiple;
8551 break;
8552 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
8553 IM = MSInheritanceModel::Unspecified;
8554 break;
8555 }
8556
8557 SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
8558 ? S.ImplicitMSInheritanceAttrLoc
8559 : RD->getSourceRange();
8560 RD->addAttr(MSInheritanceAttr::CreateImplicit(
8561 S.getASTContext(), BestCase, Loc, AttributeCommonInfo::AS_Microsoft,
8562 MSInheritanceAttr::Spelling(IM)));
8563 S.Consumer.AssignInheritanceModel(RD);
8564 }
8565}
8566
8567/// The implementation of RequireCompleteType
8568bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
8569 CompleteTypeKind Kind,
8570 TypeDiagnoser *Diagnoser) {
8571 // FIXME: Add this assertion to make sure we always get instantiation points.
8572 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8573 // FIXME: Add this assertion to help us flush out problems with
8574 // checking for dependent types and type-dependent expressions.
8575 //
8576 // assert(!T->isDependentType() &&
8577 // "Can't ask whether a dependent type is complete");
8578
8579 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
8580 if (!MPTy->getClass()->isDependentType()) {
8581 if (getLangOpts().CompleteMemberPointers &&
8582 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8583 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
8584 diag::err_memptr_incomplete))
8585 return true;
8586
8587 // We lock in the inheritance model once somebody has asked us to ensure
8588 // that a pointer-to-member type is complete.
8589 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
8590 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
8591 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
8592 }
8593 }
8594 }
8595
8596 NamedDecl *Def = nullptr;
8597 bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
8598 bool Incomplete = (T->isIncompleteType(&Def) ||
8599 (!AcceptSizeless && T->isSizelessBuiltinType()));
8600
8601 // Check that any necessary explicit specializations are visible. For an
8602 // enum, we just need the declaration, so don't check this.
8603 if (Def && !isa<EnumDecl>(Def))
8604 checkSpecializationVisibility(Loc, Def);
8605
8606 // If we have a complete type, we're done.
8607 if (!Incomplete) {
8608 // If we know about the definition but it is not visible, complain.
8609 NamedDecl *SuggestedDef = nullptr;
8610 if (Def &&
8611 !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
8612 // If the user is going to see an error here, recover by making the
8613 // definition visible.
8614 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
8615 if (Diagnoser && SuggestedDef)
8616 diagnoseMissingImport(Loc, SuggestedDef, MissingImportKind::Definition,
8617 /*Recover*/TreatAsComplete);
8618 return !TreatAsComplete;
8619 } else if (Def && !TemplateInstCallbacks.empty()) {
8620 CodeSynthesisContext TempInst;
8621 TempInst.Kind = CodeSynthesisContext::Memoization;
8622 TempInst.Template = Def;
8623 TempInst.Entity = Def;
8624 TempInst.PointOfInstantiation = Loc;
8625 atTemplateBegin(TemplateInstCallbacks, *this, TempInst);
8626 atTemplateEnd(TemplateInstCallbacks, *this, TempInst);
8627 }
8628
8629 return false;
8630 }
8631
8632 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Def);
8633 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Def);
8634
8635 // Give the external source a chance to provide a definition of the type.
8636 // This is kept separate from completing the redeclaration chain so that
8637 // external sources such as LLDB can avoid synthesizing a type definition
8638 // unless it's actually needed.
8639 if (Tag || IFace) {
8640 // Avoid diagnosing invalid decls as incomplete.
8641 if (Def->isInvalidDecl())
8642 return true;
8643
8644 // Give the external AST source a chance to complete the type.
8645 if (auto *Source = Context.getExternalSource()) {
8646 if (Tag && Tag->hasExternalLexicalStorage())
8647 Source->CompleteType(Tag);
8648 if (IFace && IFace->hasExternalLexicalStorage())
8649 Source->CompleteType(IFace);
8650 // If the external source completed the type, go through the motions
8651 // again to ensure we're allowed to use the completed type.
8652 if (!T->isIncompleteType())
8653 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8654 }
8655 }
8656
8657 // If we have a class template specialization or a class member of a
8658 // class template specialization, or an array with known size of such,
8659 // try to instantiate it.
8660 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Tag)) {
8661 bool Instantiated = false;
8662 bool Diagnosed = false;
8663 if (RD->isDependentContext()) {
8664 // Don't try to instantiate a dependent class (eg, a member template of
8665 // an instantiated class template specialization).
8666 // FIXME: Can this ever happen?
8667 } else if (auto *ClassTemplateSpec =
8668 dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
8669 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
8670 runWithSufficientStackSpace(Loc, [&] {
8671 Diagnosed = InstantiateClassTemplateSpecialization(
8672 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
8673 /*Complain=*/Diagnoser);
8674 });
8675 Instantiated = true;
8676 }
8677 } else {
8678 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
8679 if (!RD->isBeingDefined() && Pattern) {
8680 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
8681 assert(MSI && "Missing member specialization information?")((void)0);
8682 // This record was instantiated from a class within a template.
8683 if (MSI->getTemplateSpecializationKind() !=
8684 TSK_ExplicitSpecialization) {
8685 runWithSufficientStackSpace(Loc, [&] {
8686 Diagnosed = InstantiateClass(Loc, RD, Pattern,
8687 getTemplateInstantiationArgs(RD),
8688 TSK_ImplicitInstantiation,
8689 /*Complain=*/Diagnoser);
8690 });
8691 Instantiated = true;
8692 }
8693 }
8694 }
8695
8696 if (Instantiated) {
8697 // Instantiate* might have already complained that the template is not
8698 // defined, if we asked it to.
8699 if (Diagnoser && Diagnosed)
8700 return true;
8701 // If we instantiated a definition, check that it's usable, even if
8702 // instantiation produced an error, so that repeated calls to this
8703 // function give consistent answers.
8704 if (!T->isIncompleteType())
8705 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
8706 }
8707 }
8708
8709 // FIXME: If we didn't instantiate a definition because of an explicit
8710 // specialization declaration, check that it's visible.
8711
8712 if (!Diagnoser)
8713 return true;
8714
8715 Diagnoser->diagnose(*this, Loc, T);
8716
8717 // If the type was a forward declaration of a class/struct/union
8718 // type, produce a note.
8719 if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
8720 Diag(Tag->getLocation(),
8721 Tag->isBeingDefined() ? diag::note_type_being_defined
8722 : diag::note_forward_declaration)
8723 << Context.getTagDeclType(Tag);
8724
8725 // If the Objective-C class was a forward declaration, produce a note.
8726 if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
8727 Diag(IFace->getLocation(), diag::note_forward_class);
8728
8729 // If we have external information that we can use to suggest a fix,
8730 // produce a note.
8731 if (ExternalSource)
8732 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
8733
8734 return true;
8735}
8736
8737bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
8738 CompleteTypeKind Kind, unsigned DiagID) {
8739 BoundTypeDiagnoser<> Diagnoser(DiagID);
8740 return RequireCompleteType(Loc, T, Kind, Diagnoser);
8741}
8742
8743/// Get diagnostic %select index for tag kind for
8744/// literal type diagnostic message.
8745/// WARNING: Indexes apply to particular diagnostics only!
8746///
8747/// \returns diagnostic %select index.
8748static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
8749 switch (Tag) {
8750 case TTK_Struct: return 0;
8751 case TTK_Interface: return 1;
8752 case TTK_Class: return 2;
8753 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!")__builtin_unreachable();
8754 }
8755}
8756
8757/// Ensure that the type T is a literal type.
8758///
8759/// This routine checks whether the type @p T is a literal type. If @p T is an
8760/// incomplete type, an attempt is made to complete it. If @p T is a literal
8761/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
8762/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
8763/// it the type @p T), along with notes explaining why the type is not a
8764/// literal type, and returns true.
8765///
8766/// @param Loc The location in the source that the non-literal type
8767/// diagnostic should refer to.
8768///
8769/// @param T The type that this routine is examining for literalness.
8770///
8771/// @param Diagnoser Emits a diagnostic if T is not a literal type.
8772///
8773/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
8774/// @c false otherwise.
8775bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
8776 TypeDiagnoser &Diagnoser) {
8777 assert(!T->isDependentType() && "type should not be dependent")((void)0);
8778
8779 QualType ElemType = Context.getBaseElementType(T);
8780 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
8781 T->isLiteralType(Context))
8782 return false;
8783
8784 Diagnoser.diagnose(*this, Loc, T);
8785
8786 if (T->isVariableArrayType())
8787 return true;
8788
8789 const RecordType *RT = ElemType->getAs<RecordType>();
8790 if (!RT)
8791 return true;
8792
8793 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
8794
8795 // A partially-defined class type can't be a literal type, because a literal
8796 // class type must have a trivial destructor (which can't be checked until
8797 // the class definition is complete).
8798 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
8799 return true;
8800
8801 // [expr.prim.lambda]p3:
8802 // This class type is [not] a literal type.
8803 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
8804 Diag(RD->getLocation(), diag::note_non_literal_lambda);
8805 return true;
8806 }
8807
8808 // If the class has virtual base classes, then it's not an aggregate, and
8809 // cannot have any constexpr constructors or a trivial default constructor,
8810 // so is non-literal. This is better to diagnose than the resulting absence
8811 // of constexpr constructors.
8812 if (RD->getNumVBases()) {
8813 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
8814 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
8815 for (const auto &I : RD->vbases())
8816 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
8817 << I.getSourceRange();
8818 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
8819 !RD->hasTrivialDefaultConstructor()) {
8820 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
8821 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
8822 for (const auto &I : RD->bases()) {
8823 if (!I.getType()->isLiteralType(Context)) {
8824 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
8825 << RD << I.getType() << I.getSourceRange();
8826 return true;
8827 }
8828 }
8829 for (const auto *I : RD->fields()) {
8830 if (!I->getType()->isLiteralType(Context) ||
8831 I->getType().isVolatileQualified()) {
8832 Diag(I->getLocation(), diag::note_non_literal_field)
8833 << RD << I << I->getType()
8834 << I->getType().isVolatileQualified();
8835 return true;
8836 }
8837 }
8838 } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
8839 : !RD->hasTrivialDestructor()) {
8840 // All fields and bases are of literal types, so have trivial or constexpr
8841 // destructors. If this class's destructor is non-trivial / non-constexpr,
8842 // it must be user-declared.
8843 CXXDestructorDecl *Dtor = RD->getDestructor();
8844 assert(Dtor && "class has literal fields and bases but no dtor?")((void)0);
8845 if (!Dtor)
8846 return true;
8847
8848 if (getLangOpts().CPlusPlus20) {
8849 Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
8850 << RD;
8851 } else {
8852 Diag(Dtor->getLocation(), Dtor->isUserProvided()
8853 ? diag::note_non_literal_user_provided_dtor
8854 : diag::note_non_literal_nontrivial_dtor)
8855 << RD;
8856 if (!Dtor->isUserProvided())
8857 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
8858 /*Diagnose*/ true);
8859 }
8860 }
8861
8862 return true;
8863}
8864
8865bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
8866 BoundTypeDiagnoser<> Diagnoser(DiagID);
8867 return RequireLiteralType(Loc, T, Diagnoser);
8868}
8869
8870/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
8871/// by the nested-name-specifier contained in SS, and that is (re)declared by
8872/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
8873QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
8874 const CXXScopeSpec &SS, QualType T,
8875 TagDecl *OwnedTagDecl) {
8876 if (T.isNull())
8877 return T;
8878 NestedNameSpecifier *NNS;
8879 if (SS.isValid())
8880 NNS = SS.getScopeRep();
8881 else {
8882 if (Keyword == ETK_None)
8883 return T;
8884 NNS = nullptr;
8885 }
8886 return Context.getElaboratedType(Keyword, NNS, T, OwnedTagDecl);
8887}
8888
8889QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
8890 assert(!E->hasPlaceholderType() && "unexpected placeholder")((void)0);
8891
8892 if (!getLangOpts().CPlusPlus && E->refersToBitField())
8893 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
8894
8895 if (!E->isTypeDependent()) {
8896 QualType T = E->getType();
8897 if (const TagType *TT = T->getAs<TagType>())
8898 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
8899 }
8900 return Context.getTypeOfExprType(E);
8901}
8902
8903/// getDecltypeForParenthesizedExpr - Given an expr, will return the type for
8904/// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
8905/// and class member access into account.
8906QualType Sema::getDecltypeForParenthesizedExpr(Expr *E) {
8907 // C++11 [dcl.type.simple]p4:
8908 // [...]
8909 QualType T = E->getType();
8910 switch (E->getValueKind()) {
8911 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
8912 // type of e;
8913 case VK_XValue:
8914 return Context.getRValueReferenceType(T);
8915 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
8916 // type of e;
8917 case VK_LValue:
8918 return Context.getLValueReferenceType(T);
8919 // - otherwise, decltype(e) is the type of e.
8920 case VK_PRValue:
8921 return T;
8922 }
8923 llvm_unreachable("Unknown value kind")__builtin_unreachable();
8924}
8925
8926/// getDecltypeForExpr - Given an expr, will return the decltype for
8927/// that expression, according to the rules in C++11
8928/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
8929static QualType getDecltypeForExpr(Sema &S, Expr *E) {
8930 if (E->isTypeDependent())
8931 return S.Context.DependentTy;
8932
8933 Expr *IDExpr = E;
8934 if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(E))
8935 IDExpr = ImplCastExpr->getSubExpr();
8936
8937 // C++11 [dcl.type.simple]p4:
8938 // The type denoted by decltype(e) is defined as follows:
8939
8940 // C++20:
8941 // - if E is an unparenthesized id-expression naming a non-type
8942 // template-parameter (13.2), decltype(E) is the type of the
8943 // template-parameter after performing any necessary type deduction
8944 // Note that this does not pick up the implicit 'const' for a template
8945 // parameter object. This rule makes no difference before C++20 so we apply
8946 // it unconditionally.
8947 if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(IDExpr))
8948 return SNTTPE->getParameterType(S.Context);
8949
8950 // - if e is an unparenthesized id-expression or an unparenthesized class
8951 // member access (5.2.5), decltype(e) is the type of the entity named
8952 // by e. If there is no such entity, or if e names a set of overloaded
8953 // functions, the program is ill-formed;
8954 //
8955 // We apply the same rules for Objective-C ivar and property references.
8956 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(IDExpr)) {
8957 const ValueDecl *VD = DRE->getDecl();
8958 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(VD))
8959 return TPO->getType().getUnqualifiedType();
8960 return VD->getType();
8961 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(IDExpr)) {
8962 if (const ValueDecl *VD = ME->getMemberDecl())
8963 if (isa<FieldDecl>(VD) || isa<VarDecl>(VD))
8964 return VD->getType();
8965 } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(IDExpr)) {
8966 return IR->getDecl()->getType();
8967 } else if (const ObjCPropertyRefExpr *PR =
8968 dyn_cast<ObjCPropertyRefExpr>(IDExpr)) {
8969 if (PR->isExplicitProperty())
8970 return PR->getExplicitProperty()->getType();
8971 } else if (auto *PE = dyn_cast<PredefinedExpr>(IDExpr)) {
8972 return PE->getType();
8973 }
8974
8975 // C++11 [expr.lambda.prim]p18:
8976 // Every occurrence of decltype((x)) where x is a possibly
8977 // parenthesized id-expression that names an entity of automatic
8978 // storage duration is treated as if x were transformed into an
8979 // access to a corresponding data member of the closure type that
8980 // would have been declared if x were an odr-use of the denoted
8981 // entity.
8982 using namespace sema;
8983 if (S.getCurLambda()) {
8984 if (isa<ParenExpr>(IDExpr)) {
8985 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(IDExpr->IgnoreParens())) {
8986 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
8987 QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
8988 if (!T.isNull())
8989 return S.Context.getLValueReferenceType(T);
8990 }
8991 }
8992 }
8993 }
8994
8995 return S.getDecltypeForParenthesizedExpr(E);
8996}
8997
8998QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
8999 bool AsUnevaluated) {
9000 assert(!E->hasPlaceholderType() && "unexpected placeholder")((void)0);
9001
9002 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9003 !E->isInstantiationDependent() && E->HasSideEffects(Context, false)) {
9004 // The expression operand for decltype is in an unevaluated expression
9005 // context, so side effects could result in unintended consequences.
9006 // Exclude instantiation-dependent expressions, because 'decltype' is often
9007 // used to build SFINAE gadgets.
9008 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9009 }
9010
9011 return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
9012}
9013
9014QualType Sema::BuildUnaryTransformType(QualType BaseType,
9015 UnaryTransformType::UTTKind UKind,
9016 SourceLocation Loc) {
9017 switch (UKind) {
9018 case UnaryTransformType::EnumUnderlyingType:
9019 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
9020 Diag(Loc, diag::err_only_enums_have_underlying_types);
9021 return QualType();
9022 } else {
9023 QualType Underlying = BaseType;
9024 if (!BaseType->isDependentType()) {
9025 // The enum could be incomplete if we're parsing its definition or
9026 // recovering from an error.
9027 NamedDecl *FwdDecl = nullptr;
9028 if (BaseType->isIncompleteType(&FwdDecl)) {
9029 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9030 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9031 return QualType();
9032 }
9033
9034 EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9035 assert(ED && "EnumType has no EnumDecl")((void)0);
9036
9037 DiagnoseUseOfDecl(ED, Loc);
9038
9039 Underlying = ED->getIntegerType();
9040 assert(!Underlying.isNull())((void)0);
9041 }
9042 return Context.getUnaryTransformType(BaseType, Underlying,
9043 UnaryTransformType::EnumUnderlyingType);
9044 }
9045 }
9046 llvm_unreachable("unknown unary transform type")__builtin_unreachable();
9047}
9048
9049QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
9050 if (!T->isDependentType()) {
9051 // FIXME: It isn't entirely clear whether incomplete atomic types
9052 // are allowed or not; for simplicity, ban them for the moment.
9053 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
9054 return QualType();
9055
9056 int DisallowedKind = -1;
9057 if (T->isArrayType())
9058 DisallowedKind = 1;
9059 else if (T->isFunctionType())
9060 DisallowedKind = 2;
9061 else if (T->isReferenceType())
9062 DisallowedKind = 3;
9063 else if (T->isAtomicType())
9064 DisallowedKind = 4;
9065 else if (T.hasQualifiers())
9066 DisallowedKind = 5;
9067 else if (T->isSizelessType())
9068 DisallowedKind = 6;
9069 else if (!T.isTriviallyCopyableType(Context))
9070 // Some other non-trivially-copyable type (probably a C++ class)
9071 DisallowedKind = 7;
9072 else if (T->isExtIntType()) {
9073 DisallowedKind = 8;
9074 }
9075
9076 if (DisallowedKind != -1) {
9077 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
9078 return QualType();
9079 }
9080
9081 // FIXME: Do we need any handling for ARC here?
9082 }
9083
9084 // Build the pointer type.
9085 return Context.getAtomicType(T);
9086}

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/AST/TypeLocVisitor.h

1//===--- TypeLocVisitor.h - Visitor for TypeLoc subclasses ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the TypeLocVisitor interface.
10//
11//===----------------------------------------------------------------------===//
12#ifndef LLVM_CLANG_AST_TYPELOCVISITOR_H
13#define LLVM_CLANG_AST_TYPELOCVISITOR_H
14
15#include "clang/AST/TypeLoc.h"
16#include "llvm/Support/ErrorHandling.h"
17
18namespace clang {
19
20#define DISPATCH(CLASSNAME) \
21 return static_cast<ImplClass*>(this)-> \
22 Visit##CLASSNAME(TyLoc.castAs<CLASSNAME>())
23
24template<typename ImplClass, typename RetTy=void>
25class TypeLocVisitor {
26public:
27 RetTy Visit(TypeLoc TyLoc) {
28 switch (TyLoc.getTypeLocClass()) {
29#define ABSTRACT_TYPELOC(CLASS, PARENT)
30#define TYPELOC(CLASS, PARENT) \
31 case TypeLoc::CLASS: DISPATCH(CLASS##TypeLoc);
32#include "clang/AST/TypeLocNodes.def"
33 }
34 llvm_unreachable("unexpected type loc class!")__builtin_unreachable();
35 }
36
37 RetTy Visit(UnqualTypeLoc TyLoc) {
38 switch (TyLoc.getTypeLocClass()) {
30
Control jumps to 'case Atomic:' at line 28
39#define ABSTRACT_TYPELOC(CLASS, PARENT)
40#define TYPELOC(CLASS, PARENT) \
41 case TypeLoc::CLASS: DISPATCH(CLASS##TypeLoc);
42#include "clang/AST/TypeLocNodes.def"
43 }
44 llvm_unreachable("unexpected type loc class!")__builtin_unreachable();
45 }
46
47#define TYPELOC(CLASS, PARENT) \
48 RetTy Visit##CLASS##TypeLoc(CLASS##TypeLoc TyLoc) { \
49 DISPATCH(PARENT); \
50 }
51#include "clang/AST/TypeLocNodes.def"
52
53 RetTy VisitTypeLoc(TypeLoc TyLoc) { return RetTy(); }
54};
55
56#undef DISPATCH
57
58} // end namespace clang
59
60#endif // LLVM_CLANG_AST_TYPELOCVISITOR_H

/usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/AST/TypeNodes.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* An x-macro database of Clang type nodes *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef ABSTRACT_TYPE
10# define ABSTRACT_TYPE(Class, Base) TYPE(Class, Base)
11#endif
12#ifndef NON_CANONICAL_TYPE
13# define NON_CANONICAL_TYPE(Class, Base) TYPE(Class, Base)
14#endif
15#ifndef DEPENDENT_TYPE
16# define DEPENDENT_TYPE(Class, Base) TYPE(Class, Base)
17#endif
18#ifndef NON_CANONICAL_UNLESS_DEPENDENT_TYPE
19# define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) TYPE(Class, Base)
20#endif
21NON_CANONICAL_TYPE(Adjusted, Type)
22NON_CANONICAL_TYPE(Decayed, AdjustedType)
23ABSTRACT_TYPE(Array, Type)
24TYPE(ConstantArray, ArrayType)
25DEPENDENT_TYPE(DependentSizedArray, ArrayType)
26TYPE(IncompleteArray, ArrayType)
27TYPE(VariableArray, ArrayType)
28TYPE(Atomic, Type)
31
Calling 'TypeSpecLocFiller::VisitAtomicTypeLoc'
29NON_CANONICAL_TYPE(Attributed, Type)
30TYPE(BlockPointer, Type)
31TYPE(Builtin, Type)
32TYPE(Complex, Type)
33NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Decltype, Type)
34ABSTRACT_TYPE(Deduced, Type)
35TYPE(Auto, DeducedType)
36TYPE(DeducedTemplateSpecialization, DeducedType)
37DEPENDENT_TYPE(DependentAddressSpace, Type)
38DEPENDENT_TYPE(DependentExtInt, Type)
39DEPENDENT_TYPE(DependentName, Type)
40DEPENDENT_TYPE(DependentSizedExtVector, Type)
41DEPENDENT_TYPE(DependentTemplateSpecialization, Type)
42DEPENDENT_TYPE(DependentVector, Type)
43NON_CANONICAL_TYPE(Elaborated, Type)
44TYPE(ExtInt, Type)
45ABSTRACT_TYPE(Function, Type)
46TYPE(FunctionNoProto, FunctionType)
47TYPE(FunctionProto, FunctionType)
48DEPENDENT_TYPE(InjectedClassName, Type)
49NON_CANONICAL_TYPE(MacroQualified, Type)
50ABSTRACT_TYPE(Matrix, Type)
51TYPE(ConstantMatrix, MatrixType)
52DEPENDENT_TYPE(DependentSizedMatrix, MatrixType)
53TYPE(MemberPointer, Type)
54TYPE(ObjCObjectPointer, Type)
55TYPE(ObjCObject, Type)
56TYPE(ObjCInterface, ObjCObjectType)
57NON_CANONICAL_TYPE(ObjCTypeParam, Type)
58DEPENDENT_TYPE(PackExpansion, Type)
59NON_CANONICAL_TYPE(Paren, Type)
60TYPE(Pipe, Type)
61TYPE(Pointer, Type)
62ABSTRACT_TYPE(Reference, Type)
63TYPE(LValueReference, ReferenceType)
64TYPE(RValueReference, ReferenceType)
65DEPENDENT_TYPE(SubstTemplateTypeParmPack, Type)
66NON_CANONICAL_TYPE(SubstTemplateTypeParm, Type)
67ABSTRACT_TYPE(Tag, Type)
68TYPE(Enum, TagType)
69TYPE(Record, TagType)
70NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TemplateSpecialization, Type)
71DEPENDENT_TYPE(TemplateTypeParm, Type)
72NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOfExpr, Type)
73NON_CANONICAL_UNLESS_DEPENDENT_TYPE(TypeOf, Type)
74NON_CANONICAL_TYPE(Typedef, Type)
75NON_CANONICAL_UNLESS_DEPENDENT_TYPE(UnaryTransform, Type)
76DEPENDENT_TYPE(UnresolvedUsing, Type)
77TYPE(Vector, Type)
78TYPE(ExtVector, VectorType)
79#ifdef LAST_TYPE
80LAST_TYPE(ExtVector)
81#undef LAST_TYPE
82#endif
83#ifdef LEAF_TYPE
84LEAF_TYPE(Builtin)
85LEAF_TYPE(Enum)
86LEAF_TYPE(InjectedClassName)
87LEAF_TYPE(ObjCInterface)
88LEAF_TYPE(Record)
89LEAF_TYPE(TemplateTypeParm)
90#undef LEAF_TYPE
91#endif
92#undef TYPE
93#undef ABSTRACT_TYPE
94#undef ABSTRACT_TYPE
95#undef NON_CANONICAL_TYPE
96#undef DEPENDENT_TYPE
97#undef NON_CANONICAL_UNLESS_DEPENDENT_TYPE

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0);
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0);
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((void)0);
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((void)0);
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)((void)0);
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)((void)0);
344 assert(!hasObjCLifetime())((void)0);
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((void)0);
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)((void)0);
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)((void)0);
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0);
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0);
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((void)0);
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||((void)0)
463 !hasAddressSpace() || !qs.hasAddressSpace())((void)0);
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((void)0)
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((void)0);
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||((void)0)
467 !hasObjCLifetime() || !qs.hasObjCLifetime())((void)0);
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
490 B == LangAS::sycl_global_host)) ||
491 // Consider pointer size address spaces to be equivalent to default.
492 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
493 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
494 // Default is a superset of SYCL address spaces.
495 (A == LangAS::Default &&
496 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
497 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
498 B == LangAS::sycl_global_host));
499 }
500
501 /// Returns true if the address space in these qualifiers is equal to or
502 /// a superset of the address space in the argument qualifiers.
503 bool isAddressSpaceSupersetOf(Qualifiers other) const {
504 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
505 }
506
507 /// Determines if these qualifiers compatibly include another set.
508 /// Generally this answers the question of whether an object with the other
509 /// qualifiers can be safely used as an object with these qualifiers.
510 bool compatiblyIncludes(Qualifiers other) const {
511 return isAddressSpaceSupersetOf(other) &&
512 // ObjC GC qualifiers can match, be added, or be removed, but can't
513 // be changed.
514 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
515 !other.hasObjCGCAttr()) &&
516 // ObjC lifetime qualifiers must match exactly.
517 getObjCLifetime() == other.getObjCLifetime() &&
518 // CVR qualifiers may subset.
519 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
520 // U qualifier may superset.
521 (!other.hasUnaligned() || hasUnaligned());
522 }
523
524 /// Determines if these qualifiers compatibly include another set of
525 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
526 ///
527 /// One set of Objective-C lifetime qualifiers compatibly includes the other
528 /// if the lifetime qualifiers match, or if both are non-__weak and the
529 /// including set also contains the 'const' qualifier, or both are non-__weak
530 /// and one is None (which can only happen in non-ARC modes).
531 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
532 if (getObjCLifetime() == other.getObjCLifetime())
533 return true;
534
535 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
536 return false;
537
538 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
539 return true;
540
541 return hasConst();
542 }
543
544 /// Determine whether this set of qualifiers is a strict superset of
545 /// another set of qualifiers, not considering qualifier compatibility.
546 bool isStrictSupersetOf(Qualifiers Other) const;
547
548 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
549 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
550
551 explicit operator bool() const { return hasQualifiers(); }
552
553 Qualifiers &operator+=(Qualifiers R) {
554 addQualifiers(R);
555 return *this;
556 }
557
558 // Union two qualifier sets. If an enumerated qualifier appears
559 // in both sets, use the one from the right.
560 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
561 L += R;
562 return L;
563 }
564
565 Qualifiers &operator-=(Qualifiers R) {
566 removeQualifiers(R);
567 return *this;
568 }
569
570 /// Compute the difference between two qualifier sets.
571 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
572 L -= R;
573 return L;
574 }
575
576 std::string getAsString() const;
577 std::string getAsString(const PrintingPolicy &Policy) const;
578
579 static std::string getAddrSpaceAsString(LangAS AS);
580
581 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
582 void print(raw_ostream &OS, const PrintingPolicy &Policy,
583 bool appendSpaceIfNonEmpty = false) const;
584
585 void Profile(llvm::FoldingSetNodeID &ID) const {
586 ID.AddInteger(Mask);
587 }
588
589private:
590 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
591 // |C R V|U|GCAttr|Lifetime|AddressSpace|
592 uint32_t Mask = 0;
593
594 static const uint32_t UMask = 0x8;
595 static const uint32_t UShift = 3;
596 static const uint32_t GCAttrMask = 0x30;
597 static const uint32_t GCAttrShift = 4;
598 static const uint32_t LifetimeMask = 0x1C0;
599 static const uint32_t LifetimeShift = 6;
600 static const uint32_t AddressSpaceMask =
601 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
602 static const uint32_t AddressSpaceShift = 9;
603};
604
605/// A std::pair-like structure for storing a qualified type split
606/// into its local qualifiers and its locally-unqualified type.
607struct SplitQualType {
608 /// The locally-unqualified type.
609 const Type *Ty = nullptr;
610
611 /// The local qualifiers.
612 Qualifiers Quals;
613
614 SplitQualType() = default;
615 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
616
617 SplitQualType getSingleStepDesugaredType() const; // end of this file
618
619 // Make std::tie work.
620 std::pair<const Type *,Qualifiers> asPair() const {
621 return std::pair<const Type *, Qualifiers>(Ty, Quals);
622 }
623
624 friend bool operator==(SplitQualType a, SplitQualType b) {
625 return a.Ty == b.Ty && a.Quals == b.Quals;
626 }
627 friend bool operator!=(SplitQualType a, SplitQualType b) {
628 return a.Ty != b.Ty || a.Quals != b.Quals;
629 }
630};
631
632/// The kind of type we are substituting Objective-C type arguments into.
633///
634/// The kind of substitution affects the replacement of type parameters when
635/// no concrete type information is provided, e.g., when dealing with an
636/// unspecialized type.
637enum class ObjCSubstitutionContext {
638 /// An ordinary type.
639 Ordinary,
640
641 /// The result type of a method or function.
642 Result,
643
644 /// The parameter type of a method or function.
645 Parameter,
646
647 /// The type of a property.
648 Property,
649
650 /// The superclass of a type.
651 Superclass,
652};
653
654/// A (possibly-)qualified type.
655///
656/// For efficiency, we don't store CV-qualified types as nodes on their
657/// own: instead each reference to a type stores the qualifiers. This
658/// greatly reduces the number of nodes we need to allocate for types (for
659/// example we only need one for 'int', 'const int', 'volatile int',
660/// 'const volatile int', etc).
661///
662/// As an added efficiency bonus, instead of making this a pair, we
663/// just store the two bits we care about in the low bits of the
664/// pointer. To handle the packing/unpacking, we make QualType be a
665/// simple wrapper class that acts like a smart pointer. A third bit
666/// indicates whether there are extended qualifiers present, in which
667/// case the pointer points to a special structure.
668class QualType {
669 friend class QualifierCollector;
670
671 // Thankfully, these are efficiently composable.
672 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
673 Qualifiers::FastWidth> Value;
674
675 const ExtQuals *getExtQualsUnsafe() const {
676 return Value.getPointer().get<const ExtQuals*>();
677 }
678
679 const Type *getTypePtrUnsafe() const {
680 return Value.getPointer().get<const Type*>();
681 }
682
683 const ExtQualsTypeCommonBase *getCommonPtr() const {
684 assert(!isNull() && "Cannot retrieve a NULL type pointer")((void)0);
685 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
686 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
687 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
688 }
689
690public:
691 QualType() = default;
692 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
693 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
694
695 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
696 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
697
698 /// Retrieves a pointer to the underlying (unqualified) type.
699 ///
700 /// This function requires that the type not be NULL. If the type might be
701 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
702 const Type *getTypePtr() const;
703
704 const Type *getTypePtrOrNull() const;
705
706 /// Retrieves a pointer to the name of the base type.
707 const IdentifierInfo *getBaseTypeIdentifier() const;
708
709 /// Divides a QualType into its unqualified type and a set of local
710 /// qualifiers.
711 SplitQualType split() const;
712
713 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
714
715 static QualType getFromOpaquePtr(const void *Ptr) {
716 QualType T;
717 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
718 return T;
719 }
720
721 const Type &operator*() const {
722 return *getTypePtr();
723 }
724
725 const Type *operator->() const {
726 return getTypePtr();
727 }
728
729 bool isCanonical() const;
730 bool isCanonicalAsParam() const;
731
732 /// Return true if this QualType doesn't point to a type yet.
733 bool isNull() const {
734 return Value.getPointer().isNull();
36
Calling 'PointerUnion::isNull'
39
Returning from 'PointerUnion::isNull'
40
Returning zero, which participates in a condition later
735 }
736
737 /// Determine whether this particular QualType instance has the
738 /// "const" qualifier set, without looking through typedefs that may have
739 /// added "const" at a different level.
740 bool isLocalConstQualified() const {
741 return (getLocalFastQualifiers() & Qualifiers::Const);
742 }
743
744 /// Determine whether this type is const-qualified.
745 bool isConstQualified() const;
746
747 /// Determine whether this particular QualType instance has the
748 /// "restrict" qualifier set, without looking through typedefs that may have
749 /// added "restrict" at a different level.
750 bool isLocalRestrictQualified() const {
751 return (getLocalFastQualifiers() & Qualifiers::Restrict);
752 }
753
754 /// Determine whether this type is restrict-qualified.
755 bool isRestrictQualified() const;
756
757 /// Determine whether this particular QualType instance has the
758 /// "volatile" qualifier set, without looking through typedefs that may have
759 /// added "volatile" at a different level.
760 bool isLocalVolatileQualified() const {
761 return (getLocalFastQualifiers() & Qualifiers::Volatile);
762 }
763
764 /// Determine whether this type is volatile-qualified.
765 bool isVolatileQualified() const;
766
767 /// Determine whether this particular QualType instance has any
768 /// qualifiers, without looking through any typedefs that might add
769 /// qualifiers at a different level.
770 bool hasLocalQualifiers() const {
771 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
772 }
773
774 /// Determine whether this type has any qualifiers.
775 bool hasQualifiers() const;
776
777 /// Determine whether this particular QualType instance has any
778 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
779 /// instance.
780 bool hasLocalNonFastQualifiers() const {
781 return Value.getPointer().is<const ExtQuals*>();
782 }
783
784 /// Retrieve the set of qualifiers local to this particular QualType
785 /// instance, not including any qualifiers acquired through typedefs or
786 /// other sugar.
787 Qualifiers getLocalQualifiers() const;
788
789 /// Retrieve the set of qualifiers applied to this type.
790 Qualifiers getQualifiers() const;
791
792 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
793 /// local to this particular QualType instance, not including any qualifiers
794 /// acquired through typedefs or other sugar.
795 unsigned getLocalCVRQualifiers() const {
796 return getLocalFastQualifiers();
797 }
798
799 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
800 /// applied to this type.
801 unsigned getCVRQualifiers() const;
802
803 bool isConstant(const ASTContext& Ctx) const {
804 return QualType::isConstant(*this, Ctx);
805 }
806
807 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
808 bool isPODType(const ASTContext &Context) const;
809
810 /// Return true if this is a POD type according to the rules of the C++98
811 /// standard, regardless of the current compilation's language.
812 bool isCXX98PODType(const ASTContext &Context) const;
813
814 /// Return true if this is a POD type according to the more relaxed rules
815 /// of the C++11 standard, regardless of the current compilation's language.
816 /// (C++0x [basic.types]p9). Note that, unlike
817 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
818 bool isCXX11PODType(const ASTContext &Context) const;
819
820 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
821 bool isTrivialType(const ASTContext &Context) const;
822
823 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
824 bool isTriviallyCopyableType(const ASTContext &Context) const;
825
826
827 /// Returns true if it is a class and it might be dynamic.
828 bool mayBeDynamicClass() const;
829
830 /// Returns true if it is not a class or if the class might not be dynamic.
831 bool mayBeNotDynamicClass() const;
832
833 // Don't promise in the API that anything besides 'const' can be
834 // easily added.
835
836 /// Add the `const` type qualifier to this QualType.
837 void addConst() {
838 addFastQualifiers(Qualifiers::Const);
839 }
840 QualType withConst() const {
841 return withFastQualifiers(Qualifiers::Const);
842 }
843
844 /// Add the `volatile` type qualifier to this QualType.
845 void addVolatile() {
846 addFastQualifiers(Qualifiers::Volatile);
847 }
848 QualType withVolatile() const {
849 return withFastQualifiers(Qualifiers::Volatile);
850 }
851
852 /// Add the `restrict` qualifier to this QualType.
853 void addRestrict() {
854 addFastQualifiers(Qualifiers::Restrict);
855 }
856 QualType withRestrict() const {
857 return withFastQualifiers(Qualifiers::Restrict);
858 }
859
860 QualType withCVRQualifiers(unsigned CVR) const {
861 return withFastQualifiers(CVR);
862 }
863
864 void addFastQualifiers(unsigned TQs) {
865 assert(!(TQs & ~Qualifiers::FastMask)((void)0)
866 && "non-fast qualifier bits set in mask!")((void)0);
867 Value.setInt(Value.getInt() | TQs);
868 }
869
870 void removeLocalConst();
871 void removeLocalVolatile();
872 void removeLocalRestrict();
873 void removeLocalCVRQualifiers(unsigned Mask);
874
875 void removeLocalFastQualifiers() { Value.setInt(0); }
876 void removeLocalFastQualifiers(unsigned Mask) {
877 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((void)0);
878 Value.setInt(Value.getInt() & ~Mask);
879 }
880
881 // Creates a type with the given qualifiers in addition to any
882 // qualifiers already on this type.
883 QualType withFastQualifiers(unsigned TQs) const {
884 QualType T = *this;
885 T.addFastQualifiers(TQs);
886 return T;
887 }
888
889 // Creates a type with exactly the given fast qualifiers, removing
890 // any existing fast qualifiers.
891 QualType withExactLocalFastQualifiers(unsigned TQs) const {
892 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
893 }
894
895 // Removes fast qualifiers, but leaves any extended qualifiers in place.
896 QualType withoutLocalFastQualifiers() const {
897 QualType T = *this;
898 T.removeLocalFastQualifiers();
899 return T;
900 }
901
902 QualType getCanonicalType() const;
903
904 /// Return this type with all of the instance-specific qualifiers
905 /// removed, but without removing any qualifiers that may have been applied
906 /// through typedefs.
907 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
908
909 /// Retrieve the unqualified variant of the given type,
910 /// removing as little sugar as possible.
911 ///
912 /// This routine looks through various kinds of sugar to find the
913 /// least-desugared type that is unqualified. For example, given:
914 ///
915 /// \code
916 /// typedef int Integer;
917 /// typedef const Integer CInteger;
918 /// typedef CInteger DifferenceType;
919 /// \endcode
920 ///
921 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
922 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
923 ///
924 /// The resulting type might still be qualified if it's sugar for an array
925 /// type. To strip qualifiers even from within a sugared array type, use
926 /// ASTContext::getUnqualifiedArrayType.
927 inline QualType getUnqualifiedType() const;
928
929 /// Retrieve the unqualified variant of the given type, removing as little
930 /// sugar as possible.
931 ///
932 /// Like getUnqualifiedType(), but also returns the set of
933 /// qualifiers that were built up.
934 ///
935 /// The resulting type might still be qualified if it's sugar for an array
936 /// type. To strip qualifiers even from within a sugared array type, use
937 /// ASTContext::getUnqualifiedArrayType.
938 inline SplitQualType getSplitUnqualifiedType() const;
939
940 /// Determine whether this type is more qualified than the other
941 /// given type, requiring exact equality for non-CVR qualifiers.
942 bool isMoreQualifiedThan(QualType Other) const;
943
944 /// Determine whether this type is at least as qualified as the other
945 /// given type, requiring exact equality for non-CVR qualifiers.
946 bool isAtLeastAsQualifiedAs(QualType Other) const;
947
948 QualType getNonReferenceType() const;
949
950 /// Determine the type of a (typically non-lvalue) expression with the
951 /// specified result type.
952 ///
953 /// This routine should be used for expressions for which the return type is
954 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
955 /// an lvalue. It removes a top-level reference (since there are no
956 /// expressions of reference type) and deletes top-level cvr-qualifiers
957 /// from non-class types (in C++) or all types (in C).
958 QualType getNonLValueExprType(const ASTContext &Context) const;
959
960 /// Remove an outer pack expansion type (if any) from this type. Used as part
961 /// of converting the type of a declaration to the type of an expression that
962 /// references that expression. It's meaningless for an expression to have a
963 /// pack expansion type.
964 QualType getNonPackExpansionType() const;
965
966 /// Return the specified type with any "sugar" removed from
967 /// the type. This takes off typedefs, typeof's etc. If the outer level of
968 /// the type is already concrete, it returns it unmodified. This is similar
969 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
970 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
971 /// concrete.
972 ///
973 /// Qualifiers are left in place.
974 QualType getDesugaredType(const ASTContext &Context) const {
975 return getDesugaredType(*this, Context);
976 }
977
978 SplitQualType getSplitDesugaredType() const {
979 return getSplitDesugaredType(*this);
980 }
981
982 /// Return the specified type with one level of "sugar" removed from
983 /// the type.
984 ///
985 /// This routine takes off the first typedef, typeof, etc. If the outer level
986 /// of the type is already concrete, it returns it unmodified.
987 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
988 return getSingleStepDesugaredTypeImpl(*this, Context);
989 }
990
991 /// Returns the specified type after dropping any
992 /// outer-level parentheses.
993 QualType IgnoreParens() const {
994 if (isa<ParenType>(*this))
995 return QualType::IgnoreParens(*this);
996 return *this;
997 }
998
999 /// Indicate whether the specified types and qualifiers are identical.
1000 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1001 return LHS.Value == RHS.Value;
1002 }
1003 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1004 return LHS.Value != RHS.Value;
1005 }
1006 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1007 return LHS.Value < RHS.Value;
1008 }
1009
1010 static std::string getAsString(SplitQualType split,
1011 const PrintingPolicy &Policy) {
1012 return getAsString(split.Ty, split.Quals, Policy);
1013 }
1014 static std::string getAsString(const Type *ty, Qualifiers qs,
1015 const PrintingPolicy &Policy);
1016
1017 std::string getAsString() const;
1018 std::string getAsString(const PrintingPolicy &Policy) const;
1019
1020 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1021 const Twine &PlaceHolder = Twine(),
1022 unsigned Indentation = 0) const;
1023
1024 static void print(SplitQualType split, raw_ostream &OS,
1025 const PrintingPolicy &policy, const Twine &PlaceHolder,
1026 unsigned Indentation = 0) {
1027 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1028 }
1029
1030 static void print(const Type *ty, Qualifiers qs,
1031 raw_ostream &OS, const PrintingPolicy &policy,
1032 const Twine &PlaceHolder,
1033 unsigned Indentation = 0);
1034
1035 void getAsStringInternal(std::string &Str,
1036 const PrintingPolicy &Policy) const;
1037
1038 static void getAsStringInternal(SplitQualType split, std::string &out,
1039 const PrintingPolicy &policy) {
1040 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1041 }
1042
1043 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1044 std::string &out,
1045 const PrintingPolicy &policy);
1046
1047 class StreamedQualTypeHelper {
1048 const QualType &T;
1049 const PrintingPolicy &Policy;
1050 const Twine &PlaceHolder;
1051 unsigned Indentation;
1052
1053 public:
1054 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1055 const Twine &PlaceHolder, unsigned Indentation)
1056 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1057 Indentation(Indentation) {}
1058
1059 friend raw_ostream &operator<<(raw_ostream &OS,
1060 const StreamedQualTypeHelper &SQT) {
1061 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1062 return OS;
1063 }
1064 };
1065
1066 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1067 const Twine &PlaceHolder = Twine(),
1068 unsigned Indentation = 0) const {
1069 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1070 }
1071
1072 void dump(const char *s) const;
1073 void dump() const;
1074 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1075
1076 void Profile(llvm::FoldingSetNodeID &ID) const {
1077 ID.AddPointer(getAsOpaquePtr());
1078 }
1079
1080 /// Check if this type has any address space qualifier.
1081 inline bool hasAddressSpace() const;
1082
1083 /// Return the address space of this type.
1084 inline LangAS getAddressSpace() const;
1085
1086 /// Returns true if address space qualifiers overlap with T address space
1087 /// qualifiers.
1088 /// OpenCL C defines conversion rules for pointers to different address spaces
1089 /// and notion of overlapping address spaces.
1090 /// CL1.1 or CL1.2:
1091 /// address spaces overlap iff they are they same.
1092 /// OpenCL C v2.0 s6.5.5 adds:
1093 /// __generic overlaps with any address space except for __constant.
1094 bool isAddressSpaceOverlapping(QualType T) const {
1095 Qualifiers Q = getQualifiers();
1096 Qualifiers TQ = T.getQualifiers();
1097 // Address spaces overlap if at least one of them is a superset of another
1098 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1099 }
1100
1101 /// Returns gc attribute of this type.
1102 inline Qualifiers::GC getObjCGCAttr() const;
1103
1104 /// true when Type is objc's weak.
1105 bool isObjCGCWeak() const {
1106 return getObjCGCAttr() == Qualifiers::Weak;
1107 }
1108
1109 /// true when Type is objc's strong.
1110 bool isObjCGCStrong() const {
1111 return getObjCGCAttr() == Qualifiers::Strong;
1112 }
1113
1114 /// Returns lifetime attribute of this type.
1115 Qualifiers::ObjCLifetime getObjCLifetime() const {
1116 return getQualifiers().getObjCLifetime();
1117 }
1118
1119 bool hasNonTrivialObjCLifetime() const {
1120 return getQualifiers().hasNonTrivialObjCLifetime();
1121 }
1122
1123 bool hasStrongOrWeakObjCLifetime() const {
1124 return getQualifiers().hasStrongOrWeakObjCLifetime();
1125 }
1126
1127 // true when Type is objc's weak and weak is enabled but ARC isn't.
1128 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1129
1130 enum PrimitiveDefaultInitializeKind {
1131 /// The type does not fall into any of the following categories. Note that
1132 /// this case is zero-valued so that values of this enum can be used as a
1133 /// boolean condition for non-triviality.
1134 PDIK_Trivial,
1135
1136 /// The type is an Objective-C retainable pointer type that is qualified
1137 /// with the ARC __strong qualifier.
1138 PDIK_ARCStrong,
1139
1140 /// The type is an Objective-C retainable pointer type that is qualified
1141 /// with the ARC __weak qualifier.
1142 PDIK_ARCWeak,
1143
1144 /// The type is a struct containing a field whose type is not PCK_Trivial.
1145 PDIK_Struct
1146 };
1147
1148 /// Functions to query basic properties of non-trivial C struct types.
1149
1150 /// Check if this is a non-trivial type that would cause a C struct
1151 /// transitively containing this type to be non-trivial to default initialize
1152 /// and return the kind.
1153 PrimitiveDefaultInitializeKind
1154 isNonTrivialToPrimitiveDefaultInitialize() const;
1155
1156 enum PrimitiveCopyKind {
1157 /// The type does not fall into any of the following categories. Note that
1158 /// this case is zero-valued so that values of this enum can be used as a
1159 /// boolean condition for non-triviality.
1160 PCK_Trivial,
1161
1162 /// The type would be trivial except that it is volatile-qualified. Types
1163 /// that fall into one of the other non-trivial cases may additionally be
1164 /// volatile-qualified.
1165 PCK_VolatileTrivial,
1166
1167 /// The type is an Objective-C retainable pointer type that is qualified
1168 /// with the ARC __strong qualifier.
1169 PCK_ARCStrong,
1170
1171 /// The type is an Objective-C retainable pointer type that is qualified
1172 /// with the ARC __weak qualifier.
1173 PCK_ARCWeak,
1174
1175 /// The type is a struct containing a field whose type is neither
1176 /// PCK_Trivial nor PCK_VolatileTrivial.
1177 /// Note that a C++ struct type does not necessarily match this; C++ copying
1178 /// semantics are too complex to express here, in part because they depend
1179 /// on the exact constructor or assignment operator that is chosen by
1180 /// overload resolution to do the copy.
1181 PCK_Struct
1182 };
1183
1184 /// Check if this is a non-trivial type that would cause a C struct
1185 /// transitively containing this type to be non-trivial to copy and return the
1186 /// kind.
1187 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1188
1189 /// Check if this is a non-trivial type that would cause a C struct
1190 /// transitively containing this type to be non-trivial to destructively
1191 /// move and return the kind. Destructive move in this context is a C++-style
1192 /// move in which the source object is placed in a valid but unspecified state
1193 /// after it is moved, as opposed to a truly destructive move in which the
1194 /// source object is placed in an uninitialized state.
1195 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1196
1197 enum DestructionKind {
1198 DK_none,
1199 DK_cxx_destructor,
1200 DK_objc_strong_lifetime,
1201 DK_objc_weak_lifetime,
1202 DK_nontrivial_c_struct
1203 };
1204
1205 /// Returns a nonzero value if objects of this type require
1206 /// non-trivial work to clean up after. Non-zero because it's
1207 /// conceivable that qualifiers (objc_gc(weak)?) could make
1208 /// something require destruction.
1209 DestructionKind isDestructedType() const {
1210 return isDestructedTypeImpl(*this);
1211 }
1212
1213 /// Check if this is or contains a C union that is non-trivial to
1214 /// default-initialize, which is a union that has a member that is non-trivial
1215 /// to default-initialize. If this returns true,
1216 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1217 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1218
1219 /// Check if this is or contains a C union that is non-trivial to destruct,
1220 /// which is a union that has a member that is non-trivial to destruct. If
1221 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1222 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1223
1224 /// Check if this is or contains a C union that is non-trivial to copy, which
1225 /// is a union that has a member that is non-trivial to copy. If this returns
1226 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1227 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1228
1229 /// Determine whether expressions of the given type are forbidden
1230 /// from being lvalues in C.
1231 ///
1232 /// The expression types that are forbidden to be lvalues are:
1233 /// - 'void', but not qualified void
1234 /// - function types
1235 ///
1236 /// The exact rule here is C99 6.3.2.1:
1237 /// An lvalue is an expression with an object type or an incomplete
1238 /// type other than void.
1239 bool isCForbiddenLValueType() const;
1240
1241 /// Substitute type arguments for the Objective-C type parameters used in the
1242 /// subject type.
1243 ///
1244 /// \param ctx ASTContext in which the type exists.
1245 ///
1246 /// \param typeArgs The type arguments that will be substituted for the
1247 /// Objective-C type parameters in the subject type, which are generally
1248 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1249 /// parameters will be replaced with their bounds or id/Class, as appropriate
1250 /// for the context.
1251 ///
1252 /// \param context The context in which the subject type was written.
1253 ///
1254 /// \returns the resulting type.
1255 QualType substObjCTypeArgs(ASTContext &ctx,
1256 ArrayRef<QualType> typeArgs,
1257 ObjCSubstitutionContext context) const;
1258
1259 /// Substitute type arguments from an object type for the Objective-C type
1260 /// parameters used in the subject type.
1261 ///
1262 /// This operation combines the computation of type arguments for
1263 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1264 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1265 /// callers that need to perform a single substitution in isolation.
1266 ///
1267 /// \param objectType The type of the object whose member type we're
1268 /// substituting into. For example, this might be the receiver of a message
1269 /// or the base of a property access.
1270 ///
1271 /// \param dc The declaration context from which the subject type was
1272 /// retrieved, which indicates (for example) which type parameters should
1273 /// be substituted.
1274 ///
1275 /// \param context The context in which the subject type was written.
1276 ///
1277 /// \returns the subject type after replacing all of the Objective-C type
1278 /// parameters with their corresponding arguments.
1279 QualType substObjCMemberType(QualType objectType,
1280 const DeclContext *dc,
1281 ObjCSubstitutionContext context) const;
1282
1283 /// Strip Objective-C "__kindof" types from the given type.
1284 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1285
1286 /// Remove all qualifiers including _Atomic.
1287 QualType getAtomicUnqualifiedType() const;
1288
1289private:
1290 // These methods are implemented in a separate translation unit;
1291 // "static"-ize them to avoid creating temporary QualTypes in the
1292 // caller.
1293 static bool isConstant(QualType T, const ASTContext& Ctx);
1294 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1295 static SplitQualType getSplitDesugaredType(QualType T);
1296 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1297 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1298 const ASTContext &C);
1299 static QualType IgnoreParens(QualType T);
1300 static DestructionKind isDestructedTypeImpl(QualType type);
1301
1302 /// Check if \param RD is or contains a non-trivial C union.
1303 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1304 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1305 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1306};
1307
1308} // namespace clang
1309
1310namespace llvm {
1311
1312/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1313/// to a specific Type class.
1314template<> struct simplify_type< ::clang::QualType> {
1315 using SimpleType = const ::clang::Type *;
1316
1317 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1318 return Val.getTypePtr();
1319 }
1320};
1321
1322// Teach SmallPtrSet that QualType is "basically a pointer".
1323template<>
1324struct PointerLikeTypeTraits<clang::QualType> {
1325 static inline void *getAsVoidPointer(clang::QualType P) {
1326 return P.getAsOpaquePtr();
1327 }
1328
1329 static inline clang::QualType getFromVoidPointer(void *P) {
1330 return clang::QualType::getFromOpaquePtr(P);
1331 }
1332
1333 // Various qualifiers go in low bits.
1334 static constexpr int NumLowBitsAvailable = 0;
1335};
1336
1337} // namespace llvm
1338
1339namespace clang {
1340
1341/// Base class that is common to both the \c ExtQuals and \c Type
1342/// classes, which allows \c QualType to access the common fields between the
1343/// two.
1344class ExtQualsTypeCommonBase {
1345 friend class ExtQuals;
1346 friend class QualType;
1347 friend class Type;
1348
1349 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1350 /// a self-referential pointer (for \c Type).
1351 ///
1352 /// This pointer allows an efficient mapping from a QualType to its
1353 /// underlying type pointer.
1354 const Type *const BaseType;
1355
1356 /// The canonical type of this type. A QualType.
1357 QualType CanonicalType;
1358
1359 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1360 : BaseType(baseType), CanonicalType(canon) {}
1361};
1362
1363/// We can encode up to four bits in the low bits of a
1364/// type pointer, but there are many more type qualifiers that we want
1365/// to be able to apply to an arbitrary type. Therefore we have this
1366/// struct, intended to be heap-allocated and used by QualType to
1367/// store qualifiers.
1368///
1369/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1370/// in three low bits on the QualType pointer; a fourth bit records whether
1371/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1372/// Objective-C GC attributes) are much more rare.
1373class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1374 // NOTE: changing the fast qualifiers should be straightforward as
1375 // long as you don't make 'const' non-fast.
1376 // 1. Qualifiers:
1377 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1378 // Fast qualifiers must occupy the low-order bits.
1379 // b) Update Qualifiers::FastWidth and FastMask.
1380 // 2. QualType:
1381 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1382 // b) Update remove{Volatile,Restrict}, defined near the end of
1383 // this header.
1384 // 3. ASTContext:
1385 // a) Update get{Volatile,Restrict}Type.
1386
1387 /// The immutable set of qualifiers applied by this node. Always contains
1388 /// extended qualifiers.
1389 Qualifiers Quals;
1390
1391 ExtQuals *this_() { return this; }
1392
1393public:
1394 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1395 : ExtQualsTypeCommonBase(baseType,
1396 canon.isNull() ? QualType(this_(), 0) : canon),
1397 Quals(quals) {
1398 assert(Quals.hasNonFastQualifiers()((void)0)
1399 && "ExtQuals created with no fast qualifiers")((void)0);
1400 assert(!Quals.hasFastQualifiers()((void)0)
1401 && "ExtQuals created with fast qualifiers")((void)0);
1402 }
1403
1404 Qualifiers getQualifiers() const { return Quals; }
1405
1406 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1407 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1408
1409 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1410 Qualifiers::ObjCLifetime getObjCLifetime() const {
1411 return Quals.getObjCLifetime();
1412 }
1413
1414 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1415 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1416
1417 const Type *getBaseType() const { return BaseType; }
1418
1419public:
1420 void Profile(llvm::FoldingSetNodeID &ID) const {
1421 Profile(ID, getBaseType(), Quals);
1422 }
1423
1424 static void Profile(llvm::FoldingSetNodeID &ID,
1425 const Type *BaseType,
1426 Qualifiers Quals) {
1427 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((void)0);
1428 ID.AddPointer(BaseType);
1429 Quals.Profile(ID);
1430 }
1431};
1432
1433/// The kind of C++11 ref-qualifier associated with a function type.
1434/// This determines whether a member function's "this" object can be an
1435/// lvalue, rvalue, or neither.
1436enum RefQualifierKind {
1437 /// No ref-qualifier was provided.
1438 RQ_None = 0,
1439
1440 /// An lvalue ref-qualifier was provided (\c &).
1441 RQ_LValue,
1442
1443 /// An rvalue ref-qualifier was provided (\c &&).
1444 RQ_RValue
1445};
1446
1447/// Which keyword(s) were used to create an AutoType.
1448enum class AutoTypeKeyword {
1449 /// auto
1450 Auto,
1451
1452 /// decltype(auto)
1453 DecltypeAuto,
1454
1455 /// __auto_type (GNU extension)
1456 GNUAutoType
1457};
1458
1459/// The base class of the type hierarchy.
1460///
1461/// A central concept with types is that each type always has a canonical
1462/// type. A canonical type is the type with any typedef names stripped out
1463/// of it or the types it references. For example, consider:
1464///
1465/// typedef int foo;
1466/// typedef foo* bar;
1467/// 'int *' 'foo *' 'bar'
1468///
1469/// There will be a Type object created for 'int'. Since int is canonical, its
1470/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1471/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1472/// there is a PointerType that represents 'int*', which, like 'int', is
1473/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1474/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1475/// is also 'int*'.
1476///
1477/// Non-canonical types are useful for emitting diagnostics, without losing
1478/// information about typedefs being used. Canonical types are useful for type
1479/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1480/// about whether something has a particular form (e.g. is a function type),
1481/// because they implicitly, recursively, strip all typedefs out of a type.
1482///
1483/// Types, once created, are immutable.
1484///
1485class alignas(8) Type : public ExtQualsTypeCommonBase {
1486public:
1487 enum TypeClass {
1488#define TYPE(Class, Base) Class,
1489#define LAST_TYPE(Class) TypeLast = Class
1490#define ABSTRACT_TYPE(Class, Base)
1491#include "clang/AST/TypeNodes.inc"
1492 };
1493
1494private:
1495 /// Bitfields required by the Type class.
1496 class TypeBitfields {
1497 friend class Type;
1498 template <class T> friend class TypePropertyCache;
1499
1500 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1501 unsigned TC : 8;
1502
1503 /// Store information on the type dependency.
1504 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1505
1506 /// True if the cache (i.e. the bitfields here starting with
1507 /// 'Cache') is valid.
1508 mutable unsigned CacheValid : 1;
1509
1510 /// Linkage of this type.
1511 mutable unsigned CachedLinkage : 3;
1512
1513 /// Whether this type involves and local or unnamed types.
1514 mutable unsigned CachedLocalOrUnnamed : 1;
1515
1516 /// Whether this type comes from an AST file.
1517 mutable unsigned FromAST : 1;
1518
1519 bool isCacheValid() const {
1520 return CacheValid;
1521 }
1522
1523 Linkage getLinkage() const {
1524 assert(isCacheValid() && "getting linkage from invalid cache")((void)0);
1525 return static_cast<Linkage>(CachedLinkage);
1526 }
1527
1528 bool hasLocalOrUnnamedType() const {
1529 assert(isCacheValid() && "getting linkage from invalid cache")((void)0);
1530 return CachedLocalOrUnnamed;
1531 }
1532 };
1533 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1534
1535protected:
1536 // These classes allow subclasses to somewhat cleanly pack bitfields
1537 // into Type.
1538
1539 class ArrayTypeBitfields {
1540 friend class ArrayType;
1541
1542 unsigned : NumTypeBits;
1543
1544 /// CVR qualifiers from declarations like
1545 /// 'int X[static restrict 4]'. For function parameters only.
1546 unsigned IndexTypeQuals : 3;
1547
1548 /// Storage class qualifiers from declarations like
1549 /// 'int X[static restrict 4]'. For function parameters only.
1550 /// Actually an ArrayType::ArraySizeModifier.
1551 unsigned SizeModifier : 3;
1552 };
1553
1554 class ConstantArrayTypeBitfields {
1555 friend class ConstantArrayType;
1556
1557 unsigned : NumTypeBits + 3 + 3;
1558
1559 /// Whether we have a stored size expression.
1560 unsigned HasStoredSizeExpr : 1;
1561 };
1562
1563 class BuiltinTypeBitfields {
1564 friend class BuiltinType;
1565
1566 unsigned : NumTypeBits;
1567
1568 /// The kind (BuiltinType::Kind) of builtin type this is.
1569 unsigned Kind : 8;
1570 };
1571
1572 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1573 /// Only common bits are stored here. Additional uncommon bits are stored
1574 /// in a trailing object after FunctionProtoType.
1575 class FunctionTypeBitfields {
1576 friend class FunctionProtoType;
1577 friend class FunctionType;
1578
1579 unsigned : NumTypeBits;
1580
1581 /// Extra information which affects how the function is called, like
1582 /// regparm and the calling convention.
1583 unsigned ExtInfo : 13;
1584
1585 /// The ref-qualifier associated with a \c FunctionProtoType.
1586 ///
1587 /// This is a value of type \c RefQualifierKind.
1588 unsigned RefQualifier : 2;
1589
1590 /// Used only by FunctionProtoType, put here to pack with the
1591 /// other bitfields.
1592 /// The qualifiers are part of FunctionProtoType because...
1593 ///
1594 /// C++ 8.3.5p4: The return type, the parameter type list and the
1595 /// cv-qualifier-seq, [...], are part of the function type.
1596 unsigned FastTypeQuals : Qualifiers::FastWidth;
1597 /// Whether this function has extended Qualifiers.
1598 unsigned HasExtQuals : 1;
1599
1600 /// The number of parameters this function has, not counting '...'.
1601 /// According to [implimits] 8 bits should be enough here but this is
1602 /// somewhat easy to exceed with metaprogramming and so we would like to
1603 /// keep NumParams as wide as reasonably possible.
1604 unsigned NumParams : 16;
1605
1606 /// The type of exception specification this function has.
1607 unsigned ExceptionSpecType : 4;
1608
1609 /// Whether this function has extended parameter information.
1610 unsigned HasExtParameterInfos : 1;
1611
1612 /// Whether the function is variadic.
1613 unsigned Variadic : 1;
1614
1615 /// Whether this function has a trailing return type.
1616 unsigned HasTrailingReturn : 1;
1617 };
1618
1619 class ObjCObjectTypeBitfields {
1620 friend class ObjCObjectType;
1621
1622 unsigned : NumTypeBits;
1623
1624 /// The number of type arguments stored directly on this object type.
1625 unsigned NumTypeArgs : 7;
1626
1627 /// The number of protocols stored directly on this object type.
1628 unsigned NumProtocols : 6;
1629
1630 /// Whether this is a "kindof" type.
1631 unsigned IsKindOf : 1;
1632 };
1633
1634 class ReferenceTypeBitfields {
1635 friend class ReferenceType;
1636
1637 unsigned : NumTypeBits;
1638
1639 /// True if the type was originally spelled with an lvalue sigil.
1640 /// This is never true of rvalue references but can also be false
1641 /// on lvalue references because of C++0x [dcl.typedef]p9,
1642 /// as follows:
1643 ///
1644 /// typedef int &ref; // lvalue, spelled lvalue
1645 /// typedef int &&rvref; // rvalue
1646 /// ref &a; // lvalue, inner ref, spelled lvalue
1647 /// ref &&a; // lvalue, inner ref
1648 /// rvref &a; // lvalue, inner ref, spelled lvalue
1649 /// rvref &&a; // rvalue, inner ref
1650 unsigned SpelledAsLValue : 1;
1651
1652 /// True if the inner type is a reference type. This only happens
1653 /// in non-canonical forms.
1654 unsigned InnerRef : 1;
1655 };
1656
1657 class TypeWithKeywordBitfields {
1658 friend class TypeWithKeyword;
1659
1660 unsigned : NumTypeBits;
1661
1662 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1663 unsigned Keyword : 8;
1664 };
1665
1666 enum { NumTypeWithKeywordBits = 8 };
1667
1668 class ElaboratedTypeBitfields {
1669 friend class ElaboratedType;
1670
1671 unsigned : NumTypeBits;
1672 unsigned : NumTypeWithKeywordBits;
1673
1674 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1675 unsigned HasOwnedTagDecl : 1;
1676 };
1677
1678 class VectorTypeBitfields {
1679 friend class VectorType;
1680 friend class DependentVectorType;
1681
1682 unsigned : NumTypeBits;
1683
1684 /// The kind of vector, either a generic vector type or some
1685 /// target-specific vector type such as for AltiVec or Neon.
1686 unsigned VecKind : 3;
1687 /// The number of elements in the vector.
1688 uint32_t NumElements;
1689 };
1690
1691 class AttributedTypeBitfields {
1692 friend class AttributedType;
1693
1694 unsigned : NumTypeBits;
1695
1696 /// An AttributedType::Kind
1697 unsigned AttrKind : 32 - NumTypeBits;
1698 };
1699
1700 class AutoTypeBitfields {
1701 friend class AutoType;
1702
1703 unsigned : NumTypeBits;
1704
1705 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1706 /// or '__auto_type'? AutoTypeKeyword value.
1707 unsigned Keyword : 2;
1708
1709 /// The number of template arguments in the type-constraints, which is
1710 /// expected to be able to hold at least 1024 according to [implimits].
1711 /// However as this limit is somewhat easy to hit with template
1712 /// metaprogramming we'd prefer to keep it as large as possible.
1713 /// At the moment it has been left as a non-bitfield since this type
1714 /// safely fits in 64 bits as an unsigned, so there is no reason to
1715 /// introduce the performance impact of a bitfield.
1716 unsigned NumArgs;
1717 };
1718
1719 class SubstTemplateTypeParmPackTypeBitfields {
1720 friend class SubstTemplateTypeParmPackType;
1721
1722 unsigned : NumTypeBits;
1723
1724 /// The number of template arguments in \c Arguments, which is
1725 /// expected to be able to hold at least 1024 according to [implimits].
1726 /// However as this limit is somewhat easy to hit with template
1727 /// metaprogramming we'd prefer to keep it as large as possible.
1728 /// At the moment it has been left as a non-bitfield since this type
1729 /// safely fits in 64 bits as an unsigned, so there is no reason to
1730 /// introduce the performance impact of a bitfield.
1731 unsigned NumArgs;
1732 };
1733
1734 class TemplateSpecializationTypeBitfields {
1735 friend class TemplateSpecializationType;
1736
1737 unsigned : NumTypeBits;
1738
1739 /// Whether this template specialization type is a substituted type alias.
1740 unsigned TypeAlias : 1;
1741
1742 /// The number of template arguments named in this class template
1743 /// specialization, which is expected to be able to hold at least 1024
1744 /// according to [implimits]. However, as this limit is somewhat easy to
1745 /// hit with template metaprogramming we'd prefer to keep it as large
1746 /// as possible. At the moment it has been left as a non-bitfield since
1747 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1748 /// to introduce the performance impact of a bitfield.
1749 unsigned NumArgs;
1750 };
1751
1752 class DependentTemplateSpecializationTypeBitfields {
1753 friend class DependentTemplateSpecializationType;
1754
1755 unsigned : NumTypeBits;
1756 unsigned : NumTypeWithKeywordBits;
1757
1758 /// The number of template arguments named in this class template
1759 /// specialization, which is expected to be able to hold at least 1024
1760 /// according to [implimits]. However, as this limit is somewhat easy to
1761 /// hit with template metaprogramming we'd prefer to keep it as large
1762 /// as possible. At the moment it has been left as a non-bitfield since
1763 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1764 /// to introduce the performance impact of a bitfield.
1765 unsigned NumArgs;
1766 };
1767
1768 class PackExpansionTypeBitfields {
1769 friend class PackExpansionType;
1770
1771 unsigned : NumTypeBits;
1772
1773 /// The number of expansions that this pack expansion will
1774 /// generate when substituted (+1), which is expected to be able to
1775 /// hold at least 1024 according to [implimits]. However, as this limit
1776 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1777 /// keep it as large as possible. At the moment it has been left as a
1778 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1779 /// there is no reason to introduce the performance impact of a bitfield.
1780 ///
1781 /// This field will only have a non-zero value when some of the parameter
1782 /// packs that occur within the pattern have been substituted but others
1783 /// have not.
1784 unsigned NumExpansions;
1785 };
1786
1787 union {
1788 TypeBitfields TypeBits;
1789 ArrayTypeBitfields ArrayTypeBits;
1790 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1791 AttributedTypeBitfields AttributedTypeBits;
1792 AutoTypeBitfields AutoTypeBits;
1793 BuiltinTypeBitfields BuiltinTypeBits;
1794 FunctionTypeBitfields FunctionTypeBits;
1795 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1796 ReferenceTypeBitfields ReferenceTypeBits;
1797 TypeWithKeywordBitfields TypeWithKeywordBits;
1798 ElaboratedTypeBitfields ElaboratedTypeBits;
1799 VectorTypeBitfields VectorTypeBits;
1800 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1801 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1802 DependentTemplateSpecializationTypeBitfields
1803 DependentTemplateSpecializationTypeBits;
1804 PackExpansionTypeBitfields PackExpansionTypeBits;
1805 };
1806
1807private:
1808 template <class T> friend class TypePropertyCache;
1809
1810 /// Set whether this type comes from an AST file.
1811 void setFromAST(bool V = true) const {
1812 TypeBits.FromAST = V;
1813 }
1814
1815protected:
1816 friend class ASTContext;
1817
1818 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1819 : ExtQualsTypeCommonBase(this,
1820 canon.isNull() ? QualType(this_(), 0) : canon) {
1821 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1822 "changing bitfields changed sizeof(Type)!");
1823 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1824 "Insufficient alignment!");
1825 TypeBits.TC = tc;
1826 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1827 TypeBits.CacheValid = false;
1828 TypeBits.CachedLocalOrUnnamed = false;
1829 TypeBits.CachedLinkage = NoLinkage;
1830 TypeBits.FromAST = false;
1831 }
1832
1833 // silence VC++ warning C4355: 'this' : used in base member initializer list
1834 Type *this_() { return this; }
1835
1836 void setDependence(TypeDependence D) {
1837 TypeBits.Dependence = static_cast<unsigned>(D);
1838 }
1839
1840 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1841
1842public:
1843 friend class ASTReader;
1844 friend class ASTWriter;
1845 template <class T> friend class serialization::AbstractTypeReader;
1846 template <class T> friend class serialization::AbstractTypeWriter;
1847
1848 Type(const Type &) = delete;
1849 Type(Type &&) = delete;
1850 Type &operator=(const Type &) = delete;
1851 Type &operator=(Type &&) = delete;
1852
1853 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1854
1855 /// Whether this type comes from an AST file.
1856 bool isFromAST() const { return TypeBits.FromAST; }
1857
1858 /// Whether this type is or contains an unexpanded parameter
1859 /// pack, used to support C++0x variadic templates.
1860 ///
1861 /// A type that contains a parameter pack shall be expanded by the
1862 /// ellipsis operator at some point. For example, the typedef in the
1863 /// following example contains an unexpanded parameter pack 'T':
1864 ///
1865 /// \code
1866 /// template<typename ...T>
1867 /// struct X {
1868 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1869 /// };
1870 /// \endcode
1871 ///
1872 /// Note that this routine does not specify which
1873 bool containsUnexpandedParameterPack() const {
1874 return getDependence() & TypeDependence::UnexpandedPack;
1875 }
1876
1877 /// Determines if this type would be canonical if it had no further
1878 /// qualification.
1879 bool isCanonicalUnqualified() const {
1880 return CanonicalType == QualType(this, 0);
1881 }
1882
1883 /// Pull a single level of sugar off of this locally-unqualified type.
1884 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1885 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1886 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1887
1888 /// As an extension, we classify types as one of "sized" or "sizeless";
1889 /// every type is one or the other. Standard types are all sized;
1890 /// sizeless types are purely an extension.
1891 ///
1892 /// Sizeless types contain data with no specified size, alignment,
1893 /// or layout.
1894 bool isSizelessType() const;
1895 bool isSizelessBuiltinType() const;
1896
1897 /// Determines if this is a sizeless type supported by the
1898 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1899 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1900 bool isVLSTBuiltinType() const;
1901
1902 /// Returns the representative type for the element of an SVE builtin type.
1903 /// This is used to represent fixed-length SVE vectors created with the
1904 /// 'arm_sve_vector_bits' type attribute as VectorType.
1905 QualType getSveEltType(const ASTContext &Ctx) const;
1906
1907 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1908 /// object types, function types, and incomplete types.
1909
1910 /// Return true if this is an incomplete type.
1911 /// A type that can describe objects, but which lacks information needed to
1912 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1913 /// routine will need to determine if the size is actually required.
1914 ///
1915 /// Def If non-null, and the type refers to some kind of declaration
1916 /// that can be completed (such as a C struct, C++ class, or Objective-C
1917 /// class), will be set to the declaration.
1918 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1919
1920 /// Return true if this is an incomplete or object
1921 /// type, in other words, not a function type.
1922 bool isIncompleteOrObjectType() const {
1923 return !isFunctionType();
1924 }
1925
1926 /// Determine whether this type is an object type.
1927 bool isObjectType() const {
1928 // C++ [basic.types]p8:
1929 // An object type is a (possibly cv-qualified) type that is not a
1930 // function type, not a reference type, and not a void type.
1931 return !isReferenceType() && !isFunctionType() && !isVoidType();
1932 }
1933
1934 /// Return true if this is a literal type
1935 /// (C++11 [basic.types]p10)
1936 bool isLiteralType(const ASTContext &Ctx) const;
1937
1938 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1939 bool isStructuralType() const;
1940
1941 /// Test if this type is a standard-layout type.
1942 /// (C++0x [basic.type]p9)
1943 bool isStandardLayoutType() const;
1944
1945 /// Helper methods to distinguish type categories. All type predicates
1946 /// operate on the canonical type, ignoring typedefs and qualifiers.
1947
1948 /// Returns true if the type is a builtin type.
1949 bool isBuiltinType() const;
1950
1951 /// Test for a particular builtin type.
1952 bool isSpecificBuiltinType(unsigned K) const;
1953
1954 /// Test for a type which does not represent an actual type-system type but
1955 /// is instead used as a placeholder for various convenient purposes within
1956 /// Clang. All such types are BuiltinTypes.
1957 bool isPlaceholderType() const;
1958 const BuiltinType *getAsPlaceholderType() const;
1959
1960 /// Test for a specific placeholder type.
1961 bool isSpecificPlaceholderType(unsigned K) const;
1962
1963 /// Test for a placeholder type other than Overload; see
1964 /// BuiltinType::isNonOverloadPlaceholderType.
1965 bool isNonOverloadPlaceholderType() const;
1966
1967 /// isIntegerType() does *not* include complex integers (a GCC extension).
1968 /// isComplexIntegerType() can be used to test for complex integers.
1969 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1970 bool isEnumeralType() const;
1971
1972 /// Determine whether this type is a scoped enumeration type.
1973 bool isScopedEnumeralType() const;
1974 bool isBooleanType() const;
1975 bool isCharType() const;
1976 bool isWideCharType() const;
1977 bool isChar8Type() const;
1978 bool isChar16Type() const;
1979 bool isChar32Type() const;
1980 bool isAnyCharacterType() const;
1981 bool isIntegralType(const ASTContext &Ctx) const;
1982
1983 /// Determine whether this type is an integral or enumeration type.
1984 bool isIntegralOrEnumerationType() const;
1985
1986 /// Determine whether this type is an integral or unscoped enumeration type.
1987 bool isIntegralOrUnscopedEnumerationType() const;
1988 bool isUnscopedEnumerationType() const;
1989
1990 /// Floating point categories.
1991 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1992 /// isComplexType() does *not* include complex integers (a GCC extension).
1993 /// isComplexIntegerType() can be used to test for complex integers.
1994 bool isComplexType() const; // C99 6.2.5p11 (complex)
1995 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1996 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1997 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1998 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1999 bool isBFloat16Type() const;
2000 bool isFloat128Type() const;
2001 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2002 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2003 bool isVoidType() const; // C99 6.2.5p19
2004 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2005 bool isAggregateType() const;
2006 bool isFundamentalType() const;
2007 bool isCompoundType() const;
2008
2009 // Type Predicates: Check to see if this type is structurally the specified
2010 // type, ignoring typedefs and qualifiers.
2011 bool isFunctionType() const;
2012 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2013 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2014 bool isPointerType() const;
2015 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2016 bool isBlockPointerType() const;
2017 bool isVoidPointerType() const;
2018 bool isReferenceType() const;
2019 bool isLValueReferenceType() const;
2020 bool isRValueReferenceType() const;
2021 bool isObjectPointerType() const;
2022 bool isFunctionPointerType() const;
2023 bool isFunctionReferenceType() const;
2024 bool isMemberPointerType() const;
2025 bool isMemberFunctionPointerType() const;
2026 bool isMemberDataPointerType() const;
2027 bool isArrayType() const;
2028 bool isConstantArrayType() const;
2029 bool isIncompleteArrayType() const;
2030 bool isVariableArrayType() const;
2031 bool isDependentSizedArrayType() const;
2032 bool isRecordType() const;
2033 bool isClassType() const;
2034 bool isStructureType() const;
2035 bool isObjCBoxableRecordType() const;
2036 bool isInterfaceType() const;
2037 bool isStructureOrClassType() const;
2038 bool isUnionType() const;
2039 bool isComplexIntegerType() const; // GCC _Complex integer type.
2040 bool isVectorType() const; // GCC vector type.
2041 bool isExtVectorType() const; // Extended vector type.
2042 bool isMatrixType() const; // Matrix type.
2043 bool isConstantMatrixType() const; // Constant matrix type.
2044 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2045 bool isObjCObjectPointerType() const; // pointer to ObjC object
2046 bool isObjCRetainableType() const; // ObjC object or block pointer
2047 bool isObjCLifetimeType() const; // (array of)* retainable type
2048 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2049 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2050 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2051 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2052 // for the common case.
2053 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2054 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2055 bool isObjCQualifiedIdType() const; // id<foo>
2056 bool isObjCQualifiedClassType() const; // Class<foo>
2057 bool isObjCObjectOrInterfaceType() const;
2058 bool isObjCIdType() const; // id
2059 bool isDecltypeType() const;
2060 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2061 /// qualifier?
2062 ///
2063 /// This approximates the answer to the following question: if this
2064 /// translation unit were compiled in ARC, would this type be qualified
2065 /// with __unsafe_unretained?
2066 bool isObjCInertUnsafeUnretainedType() const {
2067 return hasAttr(attr::ObjCInertUnsafeUnretained);
2068 }
2069
2070 /// Whether the type is Objective-C 'id' or a __kindof type of an
2071 /// object type, e.g., __kindof NSView * or __kindof id
2072 /// <NSCopying>.
2073 ///
2074 /// \param bound Will be set to the bound on non-id subtype types,
2075 /// which will be (possibly specialized) Objective-C class type, or
2076 /// null for 'id.
2077 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2078 const ObjCObjectType *&bound) const;
2079
2080 bool isObjCClassType() const; // Class
2081
2082 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2083 /// Class type, e.g., __kindof Class <NSCopying>.
2084 ///
2085 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2086 /// here because Objective-C's type system cannot express "a class
2087 /// object for a subclass of NSFoo".
2088 bool isObjCClassOrClassKindOfType() const;
2089
2090 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2091 bool isObjCSelType() const; // Class
2092 bool isObjCBuiltinType() const; // 'id' or 'Class'
2093 bool isObjCARCBridgableType() const;
2094 bool isCARCBridgableType() const;
2095 bool isTemplateTypeParmType() const; // C++ template type parameter
2096 bool isNullPtrType() const; // C++11 std::nullptr_t
2097 bool isNothrowT() const; // C++ std::nothrow_t
2098 bool isAlignValT() const; // C++17 std::align_val_t
2099 bool isStdByteType() const; // C++17 std::byte
2100 bool isAtomicType() const; // C11 _Atomic()
2101 bool isUndeducedAutoType() const; // C++11 auto or
2102 // C++14 decltype(auto)
2103 bool isTypedefNameType() const; // typedef or alias template
2104
2105#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2106 bool is##Id##Type() const;
2107#include "clang/Basic/OpenCLImageTypes.def"
2108
2109 bool isImageType() const; // Any OpenCL image type
2110
2111 bool isSamplerT() const; // OpenCL sampler_t
2112 bool isEventT() const; // OpenCL event_t
2113 bool isClkEventT() const; // OpenCL clk_event_t
2114 bool isQueueT() const; // OpenCL queue_t
2115 bool isReserveIDT() const; // OpenCL reserve_id_t
2116
2117#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2118 bool is##Id##Type() const;
2119#include "clang/Basic/OpenCLExtensionTypes.def"
2120 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2121 bool isOCLIntelSubgroupAVCType() const;
2122 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2123
2124 bool isPipeType() const; // OpenCL pipe type
2125 bool isExtIntType() const; // Extended Int Type
2126 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2127
2128 /// Determines if this type, which must satisfy
2129 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2130 /// than implicitly __strong.
2131 bool isObjCARCImplicitlyUnretainedType() const;
2132
2133 /// Check if the type is the CUDA device builtin surface type.
2134 bool isCUDADeviceBuiltinSurfaceType() const;
2135 /// Check if the type is the CUDA device builtin texture type.
2136 bool isCUDADeviceBuiltinTextureType() const;
2137
2138 /// Return the implicit lifetime for this type, which must not be dependent.
2139 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2140
2141 enum ScalarTypeKind {
2142 STK_CPointer,
2143 STK_BlockPointer,
2144 STK_ObjCObjectPointer,
2145 STK_MemberPointer,
2146 STK_Bool,
2147 STK_Integral,
2148 STK_Floating,
2149 STK_IntegralComplex,
2150 STK_FloatingComplex,
2151 STK_FixedPoint
2152 };
2153
2154 /// Given that this is a scalar type, classify it.
2155 ScalarTypeKind getScalarTypeKind() const;
2156
2157 TypeDependence getDependence() const {
2158 return static_cast<TypeDependence>(TypeBits.Dependence);
2159 }
2160
2161 /// Whether this type is an error type.
2162 bool containsErrors() const {
2163 return getDependence() & TypeDependence::Error;
2164 }
2165
2166 /// Whether this type is a dependent type, meaning that its definition
2167 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2168 bool isDependentType() const {
2169 return getDependence() & TypeDependence::Dependent;
2170 }
2171
2172 /// Determine whether this type is an instantiation-dependent type,
2173 /// meaning that the type involves a template parameter (even if the
2174 /// definition does not actually depend on the type substituted for that
2175 /// template parameter).
2176 bool isInstantiationDependentType() const {
2177 return getDependence() & TypeDependence::Instantiation;
2178 }
2179
2180 /// Determine whether this type is an undeduced type, meaning that
2181 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2182 /// deduced.
2183 bool isUndeducedType() const;
2184
2185 /// Whether this type is a variably-modified type (C99 6.7.5).
2186 bool isVariablyModifiedType() const {
2187 return getDependence() & TypeDependence::VariablyModified;
2188 }
2189
2190 /// Whether this type involves a variable-length array type
2191 /// with a definite size.
2192 bool hasSizedVLAType() const;
2193
2194 /// Whether this type is or contains a local or unnamed type.
2195 bool hasUnnamedOrLocalType() const;
2196
2197 bool isOverloadableType() const;
2198
2199 /// Determine wither this type is a C++ elaborated-type-specifier.
2200 bool isElaboratedTypeSpecifier() const;
2201
2202 bool canDecayToPointerType() const;
2203
2204 /// Whether this type is represented natively as a pointer. This includes
2205 /// pointers, references, block pointers, and Objective-C interface,
2206 /// qualified id, and qualified interface types, as well as nullptr_t.
2207 bool hasPointerRepresentation() const;
2208
2209 /// Whether this type can represent an objective pointer type for the
2210 /// purpose of GC'ability
2211 bool hasObjCPointerRepresentation() const;
2212
2213 /// Determine whether this type has an integer representation
2214 /// of some sort, e.g., it is an integer type or a vector.
2215 bool hasIntegerRepresentation() const;
2216
2217 /// Determine whether this type has an signed integer representation
2218 /// of some sort, e.g., it is an signed integer type or a vector.
2219 bool hasSignedIntegerRepresentation() const;
2220
2221 /// Determine whether this type has an unsigned integer representation
2222 /// of some sort, e.g., it is an unsigned integer type or a vector.
2223 bool hasUnsignedIntegerRepresentation() const;
2224
2225 /// Determine whether this type has a floating-point representation
2226 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2227 bool hasFloatingRepresentation() const;
2228
2229 // Type Checking Functions: Check to see if this type is structurally the
2230 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2231 // the best type we can.
2232 const RecordType *getAsStructureType() const;
2233 /// NOTE: getAs*ArrayType are methods on ASTContext.
2234 const RecordType *getAsUnionType() const;
2235 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2236 const ObjCObjectType *getAsObjCInterfaceType() const;
2237
2238 // The following is a convenience method that returns an ObjCObjectPointerType
2239 // for object declared using an interface.
2240 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2241 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2242 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2243 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2244
2245 /// Retrieves the CXXRecordDecl that this type refers to, either
2246 /// because the type is a RecordType or because it is the injected-class-name
2247 /// type of a class template or class template partial specialization.
2248 CXXRecordDecl *getAsCXXRecordDecl() const;
2249
2250 /// Retrieves the RecordDecl this type refers to.
2251 RecordDecl *getAsRecordDecl() const;
2252
2253 /// Retrieves the TagDecl that this type refers to, either
2254 /// because the type is a TagType or because it is the injected-class-name
2255 /// type of a class template or class template partial specialization.
2256 TagDecl *getAsTagDecl() const;
2257
2258 /// If this is a pointer or reference to a RecordType, return the
2259 /// CXXRecordDecl that the type refers to.
2260 ///
2261 /// If this is not a pointer or reference, or the type being pointed to does
2262 /// not refer to a CXXRecordDecl, returns NULL.
2263 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2264
2265 /// Get the DeducedType whose type will be deduced for a variable with
2266 /// an initializer of this type. This looks through declarators like pointer
2267 /// types, but not through decltype or typedefs.
2268 DeducedType *getContainedDeducedType() const;
2269
2270 /// Get the AutoType whose type will be deduced for a variable with
2271 /// an initializer of this type. This looks through declarators like pointer
2272 /// types, but not through decltype or typedefs.
2273 AutoType *getContainedAutoType() const {
2274 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2275 }
2276
2277 /// Determine whether this type was written with a leading 'auto'
2278 /// corresponding to a trailing return type (possibly for a nested
2279 /// function type within a pointer to function type or similar).
2280 bool hasAutoForTrailingReturnType() const;
2281
2282 /// Member-template getAs<specific type>'. Look through sugar for
2283 /// an instance of \<specific type>. This scheme will eventually
2284 /// replace the specific getAsXXXX methods above.
2285 ///
2286 /// There are some specializations of this member template listed
2287 /// immediately following this class.
2288 template <typename T> const T *getAs() const;
2289
2290 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2291 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2292 /// This is used when you need to walk over sugar nodes that represent some
2293 /// kind of type adjustment from a type that was written as a \<specific type>
2294 /// to another type that is still canonically a \<specific type>.
2295 template <typename T> const T *getAsAdjusted() const;
2296
2297 /// A variant of getAs<> for array types which silently discards
2298 /// qualifiers from the outermost type.
2299 const ArrayType *getAsArrayTypeUnsafe() const;
2300
2301 /// Member-template castAs<specific type>. Look through sugar for
2302 /// the underlying instance of \<specific type>.
2303 ///
2304 /// This method has the same relationship to getAs<T> as cast<T> has
2305 /// to dyn_cast<T>; which is to say, the underlying type *must*
2306 /// have the intended type, and this method will never return null.
2307 template <typename T> const T *castAs() const;
2308
2309 /// A variant of castAs<> for array type which silently discards
2310 /// qualifiers from the outermost type.
2311 const ArrayType *castAsArrayTypeUnsafe() const;
2312
2313 /// Determine whether this type had the specified attribute applied to it
2314 /// (looking through top-level type sugar).
2315 bool hasAttr(attr::Kind AK) const;
2316
2317 /// Get the base element type of this type, potentially discarding type
2318 /// qualifiers. This should never be used when type qualifiers
2319 /// are meaningful.
2320 const Type *getBaseElementTypeUnsafe() const;
2321
2322 /// If this is an array type, return the element type of the array,
2323 /// potentially with type qualifiers missing.
2324 /// This should never be used when type qualifiers are meaningful.
2325 const Type *getArrayElementTypeNoTypeQual() const;
2326
2327 /// If this is a pointer type, return the pointee type.
2328 /// If this is an array type, return the array element type.
2329 /// This should never be used when type qualifiers are meaningful.
2330 const Type *getPointeeOrArrayElementType() const;
2331
2332 /// If this is a pointer, ObjC object pointer, or block
2333 /// pointer, this returns the respective pointee.
2334 QualType getPointeeType() const;
2335
2336 /// Return the specified type with any "sugar" removed from the type,
2337 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2338 const Type *getUnqualifiedDesugaredType() const;
2339
2340 /// More type predicates useful for type checking/promotion
2341 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2342
2343 /// Return true if this is an integer type that is
2344 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2345 /// or an enum decl which has a signed representation.
2346 bool isSignedIntegerType() const;
2347
2348 /// Return true if this is an integer type that is
2349 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2350 /// or an enum decl which has an unsigned representation.
2351 bool isUnsignedIntegerType() const;
2352
2353 /// Determines whether this is an integer type that is signed or an
2354 /// enumeration types whose underlying type is a signed integer type.
2355 bool isSignedIntegerOrEnumerationType() const;
2356
2357 /// Determines whether this is an integer type that is unsigned or an
2358 /// enumeration types whose underlying type is a unsigned integer type.
2359 bool isUnsignedIntegerOrEnumerationType() const;
2360
2361 /// Return true if this is a fixed point type according to
2362 /// ISO/IEC JTC1 SC22 WG14 N1169.
2363 bool isFixedPointType() const;
2364
2365 /// Return true if this is a fixed point or integer type.
2366 bool isFixedPointOrIntegerType() const;
2367
2368 /// Return true if this is a saturated fixed point type according to
2369 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2370 bool isSaturatedFixedPointType() const;
2371
2372 /// Return true if this is a saturated fixed point type according to
2373 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2374 bool isUnsaturatedFixedPointType() const;
2375
2376 /// Return true if this is a fixed point type that is signed according
2377 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2378 bool isSignedFixedPointType() const;
2379
2380 /// Return true if this is a fixed point type that is unsigned according
2381 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2382 bool isUnsignedFixedPointType() const;
2383
2384 /// Return true if this is not a variable sized type,
2385 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2386 /// incomplete types.
2387 bool isConstantSizeType() const;
2388
2389 /// Returns true if this type can be represented by some
2390 /// set of type specifiers.
2391 bool isSpecifierType() const;
2392
2393 /// Determine the linkage of this type.
2394 Linkage getLinkage() const;
2395
2396 /// Determine the visibility of this type.
2397 Visibility getVisibility() const {
2398 return getLinkageAndVisibility().getVisibility();
2399 }
2400
2401 /// Return true if the visibility was explicitly set is the code.
2402 bool isVisibilityExplicit() const {
2403 return getLinkageAndVisibility().isVisibilityExplicit();
2404 }
2405
2406 /// Determine the linkage and visibility of this type.
2407 LinkageInfo getLinkageAndVisibility() const;
2408
2409 /// True if the computed linkage is valid. Used for consistency
2410 /// checking. Should always return true.
2411 bool isLinkageValid() const;
2412
2413 /// Determine the nullability of the given type.
2414 ///
2415 /// Note that nullability is only captured as sugar within the type
2416 /// system, not as part of the canonical type, so nullability will
2417 /// be lost by canonicalization and desugaring.
2418 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2419
2420 /// Determine whether the given type can have a nullability
2421 /// specifier applied to it, i.e., if it is any kind of pointer type.
2422 ///
2423 /// \param ResultIfUnknown The value to return if we don't yet know whether
2424 /// this type can have nullability because it is dependent.
2425 bool canHaveNullability(bool ResultIfUnknown = true) const;
2426
2427 /// Retrieve the set of substitutions required when accessing a member
2428 /// of the Objective-C receiver type that is declared in the given context.
2429 ///
2430 /// \c *this is the type of the object we're operating on, e.g., the
2431 /// receiver for a message send or the base of a property access, and is
2432 /// expected to be of some object or object pointer type.
2433 ///
2434 /// \param dc The declaration context for which we are building up a
2435 /// substitution mapping, which should be an Objective-C class, extension,
2436 /// category, or method within.
2437 ///
2438 /// \returns an array of type arguments that can be substituted for
2439 /// the type parameters of the given declaration context in any type described
2440 /// within that context, or an empty optional to indicate that no
2441 /// substitution is required.
2442 Optional<ArrayRef<QualType>>
2443 getObjCSubstitutions(const DeclContext *dc) const;
2444
2445 /// Determines if this is an ObjC interface type that may accept type
2446 /// parameters.
2447 bool acceptsObjCTypeParams() const;
2448
2449 const char *getTypeClassName() const;
2450
2451 QualType getCanonicalTypeInternal() const {
2452 return CanonicalType;
2453 }
2454
2455 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2456 void dump() const;
2457 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2458};
2459
2460/// This will check for a TypedefType by removing any existing sugar
2461/// until it reaches a TypedefType or a non-sugared type.
2462template <> const TypedefType *Type::getAs() const;
2463
2464/// This will check for a TemplateSpecializationType by removing any
2465/// existing sugar until it reaches a TemplateSpecializationType or a
2466/// non-sugared type.
2467template <> const TemplateSpecializationType *Type::getAs() const;
2468
2469/// This will check for an AttributedType by removing any existing sugar
2470/// until it reaches an AttributedType or a non-sugared type.
2471template <> const AttributedType *Type::getAs() const;
2472
2473// We can do canonical leaf types faster, because we don't have to
2474// worry about preserving child type decoration.
2475#define TYPE(Class, Base)
2476#define LEAF_TYPE(Class) \
2477template <> inline const Class##Type *Type::getAs() const { \
2478 return dyn_cast<Class##Type>(CanonicalType); \
2479} \
2480template <> inline const Class##Type *Type::castAs() const { \
2481 return cast<Class##Type>(CanonicalType); \
2482}
2483#include "clang/AST/TypeNodes.inc"
2484
2485/// This class is used for builtin types like 'int'. Builtin
2486/// types are always canonical and have a literal name field.
2487class BuiltinType : public Type {
2488public:
2489 enum Kind {
2490// OpenCL image types
2491#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2492#include "clang/Basic/OpenCLImageTypes.def"
2493// OpenCL extension types
2494#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2495#include "clang/Basic/OpenCLExtensionTypes.def"
2496// SVE Types
2497#define SVE_TYPE(Name, Id, SingletonId) Id,
2498#include "clang/Basic/AArch64SVEACLETypes.def"
2499// PPC MMA Types
2500#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2501#include "clang/Basic/PPCTypes.def"
2502// RVV Types
2503#define RVV_TYPE(Name, Id, SingletonId) Id,
2504#include "clang/Basic/RISCVVTypes.def"
2505// All other builtin types
2506#define BUILTIN_TYPE(Id, SingletonId) Id,
2507#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2508#include "clang/AST/BuiltinTypes.def"
2509 };
2510
2511private:
2512 friend class ASTContext; // ASTContext creates these.
2513
2514 BuiltinType(Kind K)
2515 : Type(Builtin, QualType(),
2516 K == Dependent ? TypeDependence::DependentInstantiation
2517 : TypeDependence::None) {
2518 BuiltinTypeBits.Kind = K;
2519 }
2520
2521public:
2522 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2523 StringRef getName(const PrintingPolicy &Policy) const;
2524
2525 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2526 // The StringRef is null-terminated.
2527 StringRef str = getName(Policy);
2528 assert(!str.empty() && str.data()[str.size()] == '\0')((void)0);
2529 return str.data();
2530 }
2531
2532 bool isSugared() const { return false; }
2533 QualType desugar() const { return QualType(this, 0); }
2534
2535 bool isInteger() const {
2536 return getKind() >= Bool && getKind() <= Int128;
2537 }
2538
2539 bool isSignedInteger() const {
2540 return getKind() >= Char_S && getKind() <= Int128;
2541 }
2542
2543 bool isUnsignedInteger() const {
2544 return getKind() >= Bool && getKind() <= UInt128;
2545 }
2546
2547 bool isFloatingPoint() const {
2548 return getKind() >= Half && getKind() <= Float128;
2549 }
2550
2551 /// Determines whether the given kind corresponds to a placeholder type.
2552 static bool isPlaceholderTypeKind(Kind K) {
2553 return K >= Overload;
2554 }
2555
2556 /// Determines whether this type is a placeholder type, i.e. a type
2557 /// which cannot appear in arbitrary positions in a fully-formed
2558 /// expression.
2559 bool isPlaceholderType() const {
2560 return isPlaceholderTypeKind(getKind());
2561 }
2562
2563 /// Determines whether this type is a placeholder type other than
2564 /// Overload. Most placeholder types require only syntactic
2565 /// information about their context in order to be resolved (e.g.
2566 /// whether it is a call expression), which means they can (and
2567 /// should) be resolved in an earlier "phase" of analysis.
2568 /// Overload expressions sometimes pick up further information
2569 /// from their context, like whether the context expects a
2570 /// specific function-pointer type, and so frequently need
2571 /// special treatment.
2572 bool isNonOverloadPlaceholderType() const {
2573 return getKind() > Overload;
2574 }
2575
2576 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2577};
2578
2579/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2580/// types (_Complex float etc) as well as the GCC integer complex extensions.
2581class ComplexType : public Type, public llvm::FoldingSetNode {
2582 friend class ASTContext; // ASTContext creates these.
2583
2584 QualType ElementType;
2585
2586 ComplexType(QualType Element, QualType CanonicalPtr)
2587 : Type(Complex, CanonicalPtr, Element->getDependence()),
2588 ElementType(Element) {}
2589
2590public:
2591 QualType getElementType() const { return ElementType; }
2592
2593 bool isSugared() const { return false; }
2594 QualType desugar() const { return QualType(this, 0); }
2595
2596 void Profile(llvm::FoldingSetNodeID &ID) {
2597 Profile(ID, getElementType());
2598 }
2599
2600 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2601 ID.AddPointer(Element.getAsOpaquePtr());
2602 }
2603
2604 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2605};
2606
2607/// Sugar for parentheses used when specifying types.
2608class ParenType : public Type, public llvm::FoldingSetNode {
2609 friend class ASTContext; // ASTContext creates these.
2610
2611 QualType Inner;
2612
2613 ParenType(QualType InnerType, QualType CanonType)
2614 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2615
2616public:
2617 QualType getInnerType() const { return Inner; }
2618
2619 bool isSugared() const { return true; }
2620 QualType desugar() const { return getInnerType(); }
2621
2622 void Profile(llvm::FoldingSetNodeID &ID) {
2623 Profile(ID, getInnerType());
2624 }
2625
2626 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2627 Inner.Profile(ID);
2628 }
2629
2630 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2631};
2632
2633/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2634class PointerType : public Type, public llvm::FoldingSetNode {
2635 friend class ASTContext; // ASTContext creates these.
2636
2637 QualType PointeeType;
2638
2639 PointerType(QualType Pointee, QualType CanonicalPtr)
2640 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2641 PointeeType(Pointee) {}
2642
2643public:
2644 QualType getPointeeType() const { return PointeeType; }
2645
2646 bool isSugared() const { return false; }
2647 QualType desugar() const { return QualType(this, 0); }
2648
2649 void Profile(llvm::FoldingSetNodeID &ID) {
2650 Profile(ID, getPointeeType());
2651 }
2652
2653 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2654 ID.AddPointer(Pointee.getAsOpaquePtr());
2655 }
2656
2657 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2658};
2659
2660/// Represents a type which was implicitly adjusted by the semantic
2661/// engine for arbitrary reasons. For example, array and function types can
2662/// decay, and function types can have their calling conventions adjusted.
2663class AdjustedType : public Type, public llvm::FoldingSetNode {
2664 QualType OriginalTy;
2665 QualType AdjustedTy;
2666
2667protected:
2668 friend class ASTContext; // ASTContext creates these.
2669
2670 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2671 QualType CanonicalPtr)
2672 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2673 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2674
2675public:
2676 QualType getOriginalType() const { return OriginalTy; }
2677 QualType getAdjustedType() const { return AdjustedTy; }
2678
2679 bool isSugared() const { return true; }
2680 QualType desugar() const { return AdjustedTy; }
2681
2682 void Profile(llvm::FoldingSetNodeID &ID) {
2683 Profile(ID, OriginalTy, AdjustedTy);
2684 }
2685
2686 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2687 ID.AddPointer(Orig.getAsOpaquePtr());
2688 ID.AddPointer(New.getAsOpaquePtr());
2689 }
2690
2691 static bool classof(const Type *T) {
2692 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2693 }
2694};
2695
2696/// Represents a pointer type decayed from an array or function type.
2697class DecayedType : public AdjustedType {
2698 friend class ASTContext; // ASTContext creates these.
2699
2700 inline
2701 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2702
2703public:
2704 QualType getDecayedType() const { return getAdjustedType(); }
2705
2706 inline QualType getPointeeType() const;
2707
2708 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2709};
2710
2711/// Pointer to a block type.
2712/// This type is to represent types syntactically represented as
2713/// "void (^)(int)", etc. Pointee is required to always be a function type.
2714class BlockPointerType : public Type, public llvm::FoldingSetNode {
2715 friend class ASTContext; // ASTContext creates these.
2716
2717 // Block is some kind of pointer type
2718 QualType PointeeType;
2719
2720 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2721 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2722 PointeeType(Pointee) {}
2723
2724public:
2725 // Get the pointee type. Pointee is required to always be a function type.
2726 QualType getPointeeType() const { return PointeeType; }
2727
2728 bool isSugared() const { return false; }
2729 QualType desugar() const { return QualType(this, 0); }
2730
2731 void Profile(llvm::FoldingSetNodeID &ID) {
2732 Profile(ID, getPointeeType());
2733 }
2734
2735 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2736 ID.AddPointer(Pointee.getAsOpaquePtr());
2737 }
2738
2739 static bool classof(const Type *T) {
2740 return T->getTypeClass() == BlockPointer;
2741 }
2742};
2743
2744/// Base for LValueReferenceType and RValueReferenceType
2745class ReferenceType : public Type, public llvm::FoldingSetNode {
2746 QualType PointeeType;
2747
2748protected:
2749 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2750 bool SpelledAsLValue)
2751 : Type(tc, CanonicalRef, Referencee->getDependence()),
2752 PointeeType(Referencee) {
2753 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2754 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2755 }
2756
2757public:
2758 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2759 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2760
2761 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2762
2763 QualType getPointeeType() const {
2764 // FIXME: this might strip inner qualifiers; okay?
2765 const ReferenceType *T = this;
2766 while (T->isInnerRef())
2767 T = T->PointeeType->castAs<ReferenceType>();
2768 return T->PointeeType;
2769 }
2770
2771 void Profile(llvm::FoldingSetNodeID &ID) {
2772 Profile(ID, PointeeType, isSpelledAsLValue());
2773 }
2774
2775 static void Profile(llvm::FoldingSetNodeID &ID,
2776 QualType Referencee,
2777 bool SpelledAsLValue) {
2778 ID.AddPointer(Referencee.getAsOpaquePtr());
2779 ID.AddBoolean(SpelledAsLValue);
2780 }
2781
2782 static bool classof(const Type *T) {
2783 return T->getTypeClass() == LValueReference ||
2784 T->getTypeClass() == RValueReference;
2785 }
2786};
2787
2788/// An lvalue reference type, per C++11 [dcl.ref].
2789class LValueReferenceType : public ReferenceType {
2790 friend class ASTContext; // ASTContext creates these
2791
2792 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2793 bool SpelledAsLValue)
2794 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2795 SpelledAsLValue) {}
2796
2797public:
2798 bool isSugared() const { return false; }
2799 QualType desugar() const { return QualType(this, 0); }
2800
2801 static bool classof(const Type *T) {
2802 return T->getTypeClass() == LValueReference;
2803 }
2804};
2805
2806/// An rvalue reference type, per C++11 [dcl.ref].
2807class RValueReferenceType : public ReferenceType {
2808 friend class ASTContext; // ASTContext creates these
2809
2810 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2811 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2812
2813public:
2814 bool isSugared() const { return false; }
2815 QualType desugar() const { return QualType(this, 0); }
2816
2817 static bool classof(const Type *T) {
2818 return T->getTypeClass() == RValueReference;
2819 }
2820};
2821
2822/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2823///
2824/// This includes both pointers to data members and pointer to member functions.
2825class MemberPointerType : public Type, public llvm::FoldingSetNode {
2826 friend class ASTContext; // ASTContext creates these.
2827
2828 QualType PointeeType;
2829
2830 /// The class of which the pointee is a member. Must ultimately be a
2831 /// RecordType, but could be a typedef or a template parameter too.
2832 const Type *Class;
2833
2834 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2835 : Type(MemberPointer, CanonicalPtr,
2836 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2837 Pointee->getDependence()),
2838 PointeeType(Pointee), Class(Cls) {}
2839
2840public:
2841 QualType getPointeeType() const { return PointeeType; }
2842
2843 /// Returns true if the member type (i.e. the pointee type) is a
2844 /// function type rather than a data-member type.
2845 bool isMemberFunctionPointer() const {
2846 return PointeeType->isFunctionProtoType();
2847 }
2848
2849 /// Returns true if the member type (i.e. the pointee type) is a
2850 /// data type rather than a function type.
2851 bool isMemberDataPointer() const {
2852 return !PointeeType->isFunctionProtoType();
2853 }
2854
2855 const Type *getClass() const { return Class; }
2856 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2857
2858 bool isSugared() const { return false; }
2859 QualType desugar() const { return QualType(this, 0); }
2860
2861 void Profile(llvm::FoldingSetNodeID &ID) {
2862 Profile(ID, getPointeeType(), getClass());
2863 }
2864
2865 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2866 const Type *Class) {
2867 ID.AddPointer(Pointee.getAsOpaquePtr());
2868 ID.AddPointer(Class);
2869 }
2870
2871 static bool classof(const Type *T) {
2872 return T->getTypeClass() == MemberPointer;
2873 }
2874};
2875
2876/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2877class ArrayType : public Type, public llvm::FoldingSetNode {
2878public:
2879 /// Capture whether this is a normal array (e.g. int X[4])
2880 /// an array with a static size (e.g. int X[static 4]), or an array
2881 /// with a star size (e.g. int X[*]).
2882 /// 'static' is only allowed on function parameters.
2883 enum ArraySizeModifier {
2884 Normal, Static, Star
2885 };
2886
2887private:
2888 /// The element type of the array.
2889 QualType ElementType;
2890
2891protected:
2892 friend class ASTContext; // ASTContext creates these.
2893
2894 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2895 unsigned tq, const Expr *sz = nullptr);
2896
2897public:
2898 QualType getElementType() const { return ElementType; }
2899
2900 ArraySizeModifier getSizeModifier() const {
2901 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2902 }
2903
2904 Qualifiers getIndexTypeQualifiers() const {
2905 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2906 }
2907
2908 unsigned getIndexTypeCVRQualifiers() const {
2909 return ArrayTypeBits.IndexTypeQuals;
2910 }
2911
2912 static bool classof(const Type *T) {
2913 return T->getTypeClass() == ConstantArray ||
2914 T->getTypeClass() == VariableArray ||
2915 T->getTypeClass() == IncompleteArray ||
2916 T->getTypeClass() == DependentSizedArray;
2917 }
2918};
2919
2920/// Represents the canonical version of C arrays with a specified constant size.
2921/// For example, the canonical type for 'int A[4 + 4*100]' is a
2922/// ConstantArrayType where the element type is 'int' and the size is 404.
2923class ConstantArrayType final
2924 : public ArrayType,
2925 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2926 friend class ASTContext; // ASTContext creates these.
2927 friend TrailingObjects;
2928
2929 llvm::APInt Size; // Allows us to unique the type.
2930
2931 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2932 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2933 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2934 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2935 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2936 assert(!can.isNull() && "canonical constant array should not have size")((void)0);
2937 *getTrailingObjects<const Expr*>() = sz;
2938 }
2939 }
2940
2941 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2942 return ConstantArrayTypeBits.HasStoredSizeExpr;
2943 }
2944
2945public:
2946 const llvm::APInt &getSize() const { return Size; }
2947 const Expr *getSizeExpr() const {
2948 return ConstantArrayTypeBits.HasStoredSizeExpr
2949 ? *getTrailingObjects<const Expr *>()
2950 : nullptr;
2951 }
2952 bool isSugared() const { return false; }
2953 QualType desugar() const { return QualType(this, 0); }
2954
2955 /// Determine the number of bits required to address a member of
2956 // an array with the given element type and number of elements.
2957 static unsigned getNumAddressingBits(const ASTContext &Context,
2958 QualType ElementType,
2959 const llvm::APInt &NumElements);
2960
2961 /// Determine the maximum number of active bits that an array's size
2962 /// can require, which limits the maximum size of the array.
2963 static unsigned getMaxSizeBits(const ASTContext &Context);
2964
2965 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2966 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2967 getSizeModifier(), getIndexTypeCVRQualifiers());
2968 }
2969
2970 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2971 QualType ET, const llvm::APInt &ArraySize,
2972 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2973 unsigned TypeQuals);
2974
2975 static bool classof(const Type *T) {
2976 return T->getTypeClass() == ConstantArray;
2977 }
2978};
2979
2980/// Represents a C array with an unspecified size. For example 'int A[]' has
2981/// an IncompleteArrayType where the element type is 'int' and the size is
2982/// unspecified.
2983class IncompleteArrayType : public ArrayType {
2984 friend class ASTContext; // ASTContext creates these.
2985
2986 IncompleteArrayType(QualType et, QualType can,
2987 ArraySizeModifier sm, unsigned tq)
2988 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2989
2990public:
2991 friend class StmtIteratorBase;
2992
2993 bool isSugared() const { return false; }
2994 QualType desugar() const { return QualType(this, 0); }
2995
2996 static bool classof(const Type *T) {
2997 return T->getTypeClass() == IncompleteArray;
2998 }
2999
3000 void Profile(llvm::FoldingSetNodeID &ID) {
3001 Profile(ID, getElementType(), getSizeModifier(),
3002 getIndexTypeCVRQualifiers());
3003 }
3004
3005 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3006 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3007 ID.AddPointer(ET.getAsOpaquePtr());
3008 ID.AddInteger(SizeMod);
3009 ID.AddInteger(TypeQuals);
3010 }
3011};
3012
3013/// Represents a C array with a specified size that is not an
3014/// integer-constant-expression. For example, 'int s[x+foo()]'.
3015/// Since the size expression is an arbitrary expression, we store it as such.
3016///
3017/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3018/// should not be: two lexically equivalent variable array types could mean
3019/// different things, for example, these variables do not have the same type
3020/// dynamically:
3021///
3022/// void foo(int x) {
3023/// int Y[x];
3024/// ++x;
3025/// int Z[x];
3026/// }
3027class VariableArrayType : public ArrayType {
3028 friend class ASTContext; // ASTContext creates these.
3029
3030 /// An assignment-expression. VLA's are only permitted within
3031 /// a function block.
3032 Stmt *SizeExpr;
3033
3034 /// The range spanned by the left and right array brackets.
3035 SourceRange Brackets;
3036
3037 VariableArrayType(QualType et, QualType can, Expr *e,
3038 ArraySizeModifier sm, unsigned tq,
3039 SourceRange brackets)
3040 : ArrayType(VariableArray, et, can, sm, tq, e),
3041 SizeExpr((Stmt*) e), Brackets(brackets) {}
3042
3043public:
3044 friend class StmtIteratorBase;
3045
3046 Expr *getSizeExpr() const {
3047 // We use C-style casts instead of cast<> here because we do not wish
3048 // to have a dependency of Type.h on Stmt.h/Expr.h.
3049 return (Expr*) SizeExpr;
3050 }
3051
3052 SourceRange getBracketsRange() const { return Brackets; }
3053 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3054 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3055
3056 bool isSugared() const { return false; }
3057 QualType desugar() const { return QualType(this, 0); }
3058
3059 static bool classof(const Type *T) {
3060 return T->getTypeClass() == VariableArray;
3061 }
3062
3063 void Profile(llvm::FoldingSetNodeID &ID) {
3064 llvm_unreachable("Cannot unique VariableArrayTypes.")__builtin_unreachable();
3065 }
3066};
3067
3068/// Represents an array type in C++ whose size is a value-dependent expression.
3069///
3070/// For example:
3071/// \code
3072/// template<typename T, int Size>
3073/// class array {
3074/// T data[Size];
3075/// };
3076/// \endcode
3077///
3078/// For these types, we won't actually know what the array bound is
3079/// until template instantiation occurs, at which point this will
3080/// become either a ConstantArrayType or a VariableArrayType.
3081class DependentSizedArrayType : public ArrayType {
3082 friend class ASTContext; // ASTContext creates these.
3083
3084 const ASTContext &Context;
3085
3086 /// An assignment expression that will instantiate to the
3087 /// size of the array.
3088 ///
3089 /// The expression itself might be null, in which case the array
3090 /// type will have its size deduced from an initializer.
3091 Stmt *SizeExpr;
3092
3093 /// The range spanned by the left and right array brackets.
3094 SourceRange Brackets;
3095
3096 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3097 Expr *e, ArraySizeModifier sm, unsigned tq,
3098 SourceRange brackets);
3099
3100public:
3101 friend class StmtIteratorBase;
3102
3103 Expr *getSizeExpr() const {
3104 // We use C-style casts instead of cast<> here because we do not wish
3105 // to have a dependency of Type.h on Stmt.h/Expr.h.
3106 return (Expr*) SizeExpr;
3107 }
3108
3109 SourceRange getBracketsRange() const { return Brackets; }
3110 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3111 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3112
3113 bool isSugared() const { return false; }
3114 QualType desugar() const { return QualType(this, 0); }
3115
3116 static bool classof(const Type *T) {
3117 return T->getTypeClass() == DependentSizedArray;
3118 }
3119
3120 void Profile(llvm::FoldingSetNodeID &ID) {
3121 Profile(ID, Context, getElementType(),
3122 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3123 }
3124
3125 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3126 QualType ET, ArraySizeModifier SizeMod,
3127 unsigned TypeQuals, Expr *E);
3128};
3129
3130/// Represents an extended address space qualifier where the input address space
3131/// value is dependent. Non-dependent address spaces are not represented with a
3132/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3133///
3134/// For example:
3135/// \code
3136/// template<typename T, int AddrSpace>
3137/// class AddressSpace {
3138/// typedef T __attribute__((address_space(AddrSpace))) type;
3139/// }
3140/// \endcode
3141class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3142 friend class ASTContext;
3143
3144 const ASTContext &Context;
3145 Expr *AddrSpaceExpr;
3146 QualType PointeeType;
3147 SourceLocation loc;
3148
3149 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3150 QualType can, Expr *AddrSpaceExpr,
3151 SourceLocation loc);
3152
3153public:
3154 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3155 QualType getPointeeType() const { return PointeeType; }
3156 SourceLocation getAttributeLoc() const { return loc; }
3157
3158 bool isSugared() const { return false; }
3159 QualType desugar() const { return QualType(this, 0); }
3160
3161 static bool classof(const Type *T) {
3162 return T->getTypeClass() == DependentAddressSpace;
3163 }
3164
3165 void Profile(llvm::FoldingSetNodeID &ID) {
3166 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3167 }
3168
3169 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3170 QualType PointeeType, Expr *AddrSpaceExpr);
3171};
3172
3173/// Represents an extended vector type where either the type or size is
3174/// dependent.
3175///
3176/// For example:
3177/// \code
3178/// template<typename T, int Size>
3179/// class vector {
3180/// typedef T __attribute__((ext_vector_type(Size))) type;
3181/// }
3182/// \endcode
3183class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3184 friend class ASTContext;
3185
3186 const ASTContext &Context;
3187 Expr *SizeExpr;
3188
3189 /// The element type of the array.
3190 QualType ElementType;
3191
3192 SourceLocation loc;
3193
3194 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3195 QualType can, Expr *SizeExpr, SourceLocation loc);
3196
3197public:
3198 Expr *getSizeExpr() const { return SizeExpr; }
3199 QualType getElementType() const { return ElementType; }
3200 SourceLocation getAttributeLoc() const { return loc; }
3201
3202 bool isSugared() const { return false; }
3203 QualType desugar() const { return QualType(this, 0); }
3204
3205 static bool classof(const Type *T) {
3206 return T->getTypeClass() == DependentSizedExtVector;
3207 }
3208
3209 void Profile(llvm::FoldingSetNodeID &ID) {
3210 Profile(ID, Context, getElementType(), getSizeExpr());
3211 }
3212
3213 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3214 QualType ElementType, Expr *SizeExpr);
3215};
3216
3217
3218/// Represents a GCC generic vector type. This type is created using
3219/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3220/// bytes; or from an Altivec __vector or vector declaration.
3221/// Since the constructor takes the number of vector elements, the
3222/// client is responsible for converting the size into the number of elements.
3223class VectorType : public Type, public llvm::FoldingSetNode {
3224public:
3225 enum VectorKind {
3226 /// not a target-specific vector type
3227 GenericVector,
3228
3229 /// is AltiVec vector
3230 AltiVecVector,
3231
3232 /// is AltiVec 'vector Pixel'
3233 AltiVecPixel,
3234
3235 /// is AltiVec 'vector bool ...'
3236 AltiVecBool,
3237
3238 /// is ARM Neon vector
3239 NeonVector,
3240
3241 /// is ARM Neon polynomial vector
3242 NeonPolyVector,
3243
3244 /// is AArch64 SVE fixed-length data vector
3245 SveFixedLengthDataVector,
3246
3247 /// is AArch64 SVE fixed-length predicate vector
3248 SveFixedLengthPredicateVector
3249 };
3250
3251protected:
3252 friend class ASTContext; // ASTContext creates these.
3253
3254 /// The element type of the vector.
3255 QualType ElementType;
3256
3257 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3258 VectorKind vecKind);
3259
3260 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3261 QualType canonType, VectorKind vecKind);
3262
3263public:
3264 QualType getElementType() const { return ElementType; }
3265 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3266
3267 bool isSugared() const { return false; }
3268 QualType desugar() const { return QualType(this, 0); }
3269
3270 VectorKind getVectorKind() const {
3271 return VectorKind(VectorTypeBits.VecKind);
3272 }
3273
3274 void Profile(llvm::FoldingSetNodeID &ID) {
3275 Profile(ID, getElementType(), getNumElements(),
3276 getTypeClass(), getVectorKind());
3277 }
3278
3279 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3280 unsigned NumElements, TypeClass TypeClass,
3281 VectorKind VecKind) {
3282 ID.AddPointer(ElementType.getAsOpaquePtr());
3283 ID.AddInteger(NumElements);
3284 ID.AddInteger(TypeClass);
3285 ID.AddInteger(VecKind);
3286 }
3287
3288 static bool classof(const Type *T) {
3289 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3290 }
3291};
3292
3293/// Represents a vector type where either the type or size is dependent.
3294////
3295/// For example:
3296/// \code
3297/// template<typename T, int Size>
3298/// class vector {
3299/// typedef T __attribute__((vector_size(Size))) type;
3300/// }
3301/// \endcode
3302class DependentVectorType : public Type, public llvm::FoldingSetNode {
3303 friend class ASTContext;
3304
3305 const ASTContext &Context;
3306 QualType ElementType;
3307 Expr *SizeExpr;
3308 SourceLocation Loc;
3309
3310 DependentVectorType(const ASTContext &Context, QualType ElementType,
3311 QualType CanonType, Expr *SizeExpr,
3312 SourceLocation Loc, VectorType::VectorKind vecKind);
3313
3314public:
3315 Expr *getSizeExpr() const { return SizeExpr; }
3316 QualType getElementType() const { return ElementType; }
3317 SourceLocation getAttributeLoc() const { return Loc; }
3318 VectorType::VectorKind getVectorKind() const {
3319 return VectorType::VectorKind(VectorTypeBits.VecKind);
3320 }
3321
3322 bool isSugared() const { return false; }
3323 QualType desugar() const { return QualType(this, 0); }
3324
3325 static bool classof(const Type *T) {
3326 return T->getTypeClass() == DependentVector;
3327 }
3328
3329 void Profile(llvm::FoldingSetNodeID &ID) {
3330 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3331 }
3332
3333 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3334 QualType ElementType, const Expr *SizeExpr,
3335 VectorType::VectorKind VecKind);
3336};
3337
3338/// ExtVectorType - Extended vector type. This type is created using
3339/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3340/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3341/// class enables syntactic extensions, like Vector Components for accessing
3342/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3343/// Shading Language).
3344class ExtVectorType : public VectorType {
3345 friend class ASTContext; // ASTContext creates these.
3346
3347 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3348 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3349
3350public:
3351 static int getPointAccessorIdx(char c) {
3352 switch (c) {
3353 default: return -1;
3354 case 'x': case 'r': return 0;
3355 case 'y': case 'g': return 1;
3356 case 'z': case 'b': return 2;
3357 case 'w': case 'a': return 3;
3358 }
3359 }
3360
3361 static int getNumericAccessorIdx(char c) {
3362 switch (c) {
3363 default: return -1;
3364 case '0': return 0;
3365 case '1': return 1;
3366 case '2': return 2;
3367 case '3': return 3;
3368 case '4': return 4;
3369 case '5': return 5;
3370 case '6': return 6;
3371 case '7': return 7;
3372 case '8': return 8;
3373 case '9': return 9;
3374 case 'A':
3375 case 'a': return 10;
3376 case 'B':
3377 case 'b': return 11;
3378 case 'C':
3379 case 'c': return 12;
3380 case 'D':
3381 case 'd': return 13;
3382 case 'E':
3383 case 'e': return 14;
3384 case 'F':
3385 case 'f': return 15;
3386 }
3387 }
3388
3389 static int getAccessorIdx(char c, bool isNumericAccessor) {
3390 if (isNumericAccessor)
3391 return getNumericAccessorIdx(c);
3392 else
3393 return getPointAccessorIdx(c);
3394 }
3395
3396 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3397 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3398 return unsigned(idx-1) < getNumElements();
3399 return false;
3400 }
3401
3402 bool isSugared() const { return false; }
3403 QualType desugar() const { return QualType(this, 0); }
3404
3405 static bool classof(const Type *T) {
3406 return T->getTypeClass() == ExtVector;
3407 }
3408};
3409
3410/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3411/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3412/// number of rows and "columns" specifies the number of columns.
3413class MatrixType : public Type, public llvm::FoldingSetNode {
3414protected:
3415 friend class ASTContext;
3416
3417 /// The element type of the matrix.
3418 QualType ElementType;
3419
3420 MatrixType(QualType ElementTy, QualType CanonElementTy);
3421
3422 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3423 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3424
3425public:
3426 /// Returns type of the elements being stored in the matrix
3427 QualType getElementType() const { return ElementType; }
3428
3429 /// Valid elements types are the following:
3430 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3431 /// and _Bool
3432 /// * the standard floating types float or double
3433 /// * a half-precision floating point type, if one is supported on the target
3434 static bool isValidElementType(QualType T) {
3435 return T->isDependentType() ||
3436 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3437 }
3438
3439 bool isSugared() const { return false; }
3440 QualType desugar() const { return QualType(this, 0); }
3441
3442 static bool classof(const Type *T) {
3443 return T->getTypeClass() == ConstantMatrix ||
3444 T->getTypeClass() == DependentSizedMatrix;
3445 }
3446};
3447
3448/// Represents a concrete matrix type with constant number of rows and columns
3449class ConstantMatrixType final : public MatrixType {
3450protected:
3451 friend class ASTContext;
3452
3453 /// The element type of the matrix.
3454 // FIXME: Appears to be unused? There is also MatrixType::ElementType...
3455 QualType ElementType;
3456
3457 /// Number of rows and columns.
3458 unsigned NumRows;
3459 unsigned NumColumns;
3460
3461 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3462
3463 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3464 unsigned NColumns, QualType CanonElementType);
3465
3466 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3467 unsigned NColumns, QualType CanonElementType);
3468
3469public:
3470 /// Returns the number of rows in the matrix.
3471 unsigned getNumRows() const { return NumRows; }
3472
3473 /// Returns the number of columns in the matrix.
3474 unsigned getNumColumns() const { return NumColumns; }
3475
3476 /// Returns the number of elements required to embed the matrix into a vector.
3477 unsigned getNumElementsFlattened() const {
3478 return getNumRows() * getNumColumns();
3479 }
3480
3481 /// Returns true if \p NumElements is a valid matrix dimension.
3482 static constexpr bool isDimensionValid(size_t NumElements) {
3483 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3484 }
3485
3486 /// Returns the maximum number of elements per dimension.
3487 static constexpr unsigned getMaxElementsPerDimension() {
3488 return MaxElementsPerDimension;
3489 }
3490
3491 void Profile(llvm::FoldingSetNodeID &ID) {
3492 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3493 getTypeClass());
3494 }
3495
3496 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3497 unsigned NumRows, unsigned NumColumns,
3498 TypeClass TypeClass) {
3499 ID.AddPointer(ElementType.getAsOpaquePtr());
3500 ID.AddInteger(NumRows);
3501 ID.AddInteger(NumColumns);
3502 ID.AddInteger(TypeClass);
3503 }
3504
3505 static bool classof(const Type *T) {
3506 return T->getTypeClass() == ConstantMatrix;
3507 }
3508};
3509
3510/// Represents a matrix type where the type and the number of rows and columns
3511/// is dependent on a template.
3512class DependentSizedMatrixType final : public MatrixType {
3513 friend class ASTContext;
3514
3515 const ASTContext &Context;
3516 Expr *RowExpr;
3517 Expr *ColumnExpr;
3518
3519 SourceLocation loc;
3520
3521 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3522 QualType CanonicalType, Expr *RowExpr,
3523 Expr *ColumnExpr, SourceLocation loc);
3524
3525public:
3526 QualType getElementType() const { return ElementType; }
3527 Expr *getRowExpr() const { return RowExpr; }
3528 Expr *getColumnExpr() const { return ColumnExpr; }
3529 SourceLocation getAttributeLoc() const { return loc; }
3530
3531 bool isSugared() const { return false; }
3532 QualType desugar() const { return QualType(this, 0); }
3533
3534 static bool classof(const Type *T) {
3535 return T->getTypeClass() == DependentSizedMatrix;
3536 }
3537
3538 void Profile(llvm::FoldingSetNodeID &ID) {
3539 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3540 }
3541
3542 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3543 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3544};
3545
3546/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3547/// class of FunctionNoProtoType and FunctionProtoType.
3548class FunctionType : public Type {
3549 // The type returned by the function.
3550 QualType ResultType;
3551
3552public:
3553 /// Interesting information about a specific parameter that can't simply
3554 /// be reflected in parameter's type. This is only used by FunctionProtoType
3555 /// but is in FunctionType to make this class available during the
3556 /// specification of the bases of FunctionProtoType.
3557 ///
3558 /// It makes sense to model language features this way when there's some
3559 /// sort of parameter-specific override (such as an attribute) that
3560 /// affects how the function is called. For example, the ARC ns_consumed
3561 /// attribute changes whether a parameter is passed at +0 (the default)
3562 /// or +1 (ns_consumed). This must be reflected in the function type,
3563 /// but isn't really a change to the parameter type.
3564 ///
3565 /// One serious disadvantage of modelling language features this way is
3566 /// that they generally do not work with language features that attempt
3567 /// to destructure types. For example, template argument deduction will
3568 /// not be able to match a parameter declared as
3569 /// T (*)(U)
3570 /// against an argument of type
3571 /// void (*)(__attribute__((ns_consumed)) id)
3572 /// because the substitution of T=void, U=id into the former will
3573 /// not produce the latter.
3574 class ExtParameterInfo {
3575 enum {
3576 ABIMask = 0x0F,
3577 IsConsumed = 0x10,
3578 HasPassObjSize = 0x20,
3579 IsNoEscape = 0x40,
3580 };
3581 unsigned char Data = 0;
3582
3583 public:
3584 ExtParameterInfo() = default;
3585
3586 /// Return the ABI treatment of this parameter.
3587 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3588 ExtParameterInfo withABI(ParameterABI kind) const {
3589 ExtParameterInfo copy = *this;
3590 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3591 return copy;
3592 }
3593
3594 /// Is this parameter considered "consumed" by Objective-C ARC?
3595 /// Consumed parameters must have retainable object type.
3596 bool isConsumed() const { return (Data & IsConsumed); }
3597 ExtParameterInfo withIsConsumed(bool consumed) const {
3598 ExtParameterInfo copy = *this;
3599 if (consumed)
3600 copy.Data |= IsConsumed;
3601 else
3602 copy.Data &= ~IsConsumed;
3603 return copy;
3604 }
3605
3606 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3607 ExtParameterInfo withHasPassObjectSize() const {
3608 ExtParameterInfo Copy = *this;
3609 Copy.Data |= HasPassObjSize;
3610 return Copy;
3611 }
3612
3613 bool isNoEscape() const { return Data & IsNoEscape; }
3614 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3615 ExtParameterInfo Copy = *this;
3616 if (NoEscape)
3617 Copy.Data |= IsNoEscape;
3618 else
3619 Copy.Data &= ~IsNoEscape;
3620 return Copy;
3621 }
3622
3623 unsigned char getOpaqueValue() const { return Data; }
3624 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3625 ExtParameterInfo result;
3626 result.Data = data;
3627 return result;
3628 }
3629
3630 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3631 return lhs.Data == rhs.Data;
3632 }
3633
3634 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3635 return lhs.Data != rhs.Data;
3636 }
3637 };
3638
3639 /// A class which abstracts out some details necessary for
3640 /// making a call.
3641 ///
3642 /// It is not actually used directly for storing this information in
3643 /// a FunctionType, although FunctionType does currently use the
3644 /// same bit-pattern.
3645 ///
3646 // If you add a field (say Foo), other than the obvious places (both,
3647 // constructors, compile failures), what you need to update is
3648 // * Operator==
3649 // * getFoo
3650 // * withFoo
3651 // * functionType. Add Foo, getFoo.
3652 // * ASTContext::getFooType
3653 // * ASTContext::mergeFunctionTypes
3654 // * FunctionNoProtoType::Profile
3655 // * FunctionProtoType::Profile
3656 // * TypePrinter::PrintFunctionProto
3657 // * AST read and write
3658 // * Codegen
3659 class ExtInfo {
3660 friend class FunctionType;
3661
3662 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3663 // adjust the Bits field below, and if you add bits, you'll need to adjust
3664 // Type::FunctionTypeBitfields::ExtInfo as well.
3665
3666 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3667 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3668 //
3669 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3670 enum { CallConvMask = 0x1F };
3671 enum { NoReturnMask = 0x20 };
3672 enum { ProducesResultMask = 0x40 };
3673 enum { NoCallerSavedRegsMask = 0x80 };
3674 enum {
3675 RegParmMask = 0x700,
3676 RegParmOffset = 8
3677 };
3678 enum { NoCfCheckMask = 0x800 };
3679 enum { CmseNSCallMask = 0x1000 };
3680 uint16_t Bits = CC_C;
3681
3682 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3683
3684 public:
3685 // Constructor with no defaults. Use this when you know that you
3686 // have all the elements (when reading an AST file for example).
3687 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3688 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3689 bool cmseNSCall) {
3690 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")((void)0);
3691 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3692 (producesResult ? ProducesResultMask : 0) |
3693 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3694 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3695 (NoCfCheck ? NoCfCheckMask : 0) |
3696 (cmseNSCall ? CmseNSCallMask : 0);
3697 }
3698
3699 // Constructor with all defaults. Use when for example creating a
3700 // function known to use defaults.
3701 ExtInfo() = default;
3702
3703 // Constructor with just the calling convention, which is an important part
3704 // of the canonical type.
3705 ExtInfo(CallingConv CC) : Bits(CC) {}
3706
3707 bool getNoReturn() const { return Bits & NoReturnMask; }
3708 bool getProducesResult() const { return Bits & ProducesResultMask; }
3709 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3710 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3711 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3712 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3713
3714 unsigned getRegParm() const {
3715 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3716 if (RegParm > 0)
3717 --RegParm;
3718 return RegParm;
3719 }
3720
3721 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3722
3723 bool operator==(ExtInfo Other) const {
3724 return Bits == Other.Bits;
3725 }
3726 bool operator!=(ExtInfo Other) const {
3727 return Bits != Other.Bits;
3728 }
3729
3730 // Note that we don't have setters. That is by design, use
3731 // the following with methods instead of mutating these objects.
3732
3733 ExtInfo withNoReturn(bool noReturn) const {
3734 if (noReturn)
3735 return ExtInfo(Bits | NoReturnMask);
3736 else
3737 return ExtInfo(Bits & ~NoReturnMask);
3738 }
3739
3740 ExtInfo withProducesResult(bool producesResult) const {
3741 if (producesResult)
3742 return ExtInfo(Bits | ProducesResultMask);
3743 else
3744 return ExtInfo(Bits & ~ProducesResultMask);
3745 }
3746
3747 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3748 if (cmseNSCall)
3749 return ExtInfo(Bits | CmseNSCallMask);
3750 else
3751 return ExtInfo(Bits & ~CmseNSCallMask);
3752 }
3753
3754 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3755 if (noCallerSavedRegs)
3756 return ExtInfo(Bits | NoCallerSavedRegsMask);
3757 else
3758 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3759 }
3760
3761 ExtInfo withNoCfCheck(bool noCfCheck) const {
3762 if (noCfCheck)
3763 return ExtInfo(Bits | NoCfCheckMask);
3764 else
3765 return ExtInfo(Bits & ~NoCfCheckMask);
3766 }
3767
3768 ExtInfo withRegParm(unsigned RegParm) const {
3769 assert(RegParm < 7 && "Invalid regparm value")((void)0);
3770 return ExtInfo((Bits & ~RegParmMask) |
3771 ((RegParm + 1) << RegParmOffset));
3772 }
3773
3774 ExtInfo withCallingConv(CallingConv cc) const {
3775 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3776 }
3777
3778 void Profile(llvm::FoldingSetNodeID &ID) const {
3779 ID.AddInteger(Bits);
3780 }
3781 };
3782
3783 /// A simple holder for a QualType representing a type in an
3784 /// exception specification. Unfortunately needed by FunctionProtoType
3785 /// because TrailingObjects cannot handle repeated types.
3786 struct ExceptionType { QualType Type; };
3787
3788 /// A simple holder for various uncommon bits which do not fit in
3789 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3790 /// alignment of subsequent objects in TrailingObjects. You must update
3791 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3792 struct alignas(void *) FunctionTypeExtraBitfields {
3793 /// The number of types in the exception specification.
3794 /// A whole unsigned is not needed here and according to
3795 /// [implimits] 8 bits would be enough here.
3796 unsigned NumExceptionType;
3797 };
3798
3799protected:
3800 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3801 TypeDependence Dependence, ExtInfo Info)
3802 : Type(tc, Canonical, Dependence), ResultType(res) {
3803 FunctionTypeBits.ExtInfo = Info.Bits;
3804 }
3805
3806 Qualifiers getFastTypeQuals() const {
3807 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3808 }
3809
3810public:
3811 QualType getReturnType() const { return ResultType; }
3812
3813 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3814 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3815
3816 /// Determine whether this function type includes the GNU noreturn
3817 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3818 /// type.
3819 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3820
3821 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3822 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3823 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3824
3825 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3826 "Const, volatile and restrict are assumed to be a subset of "
3827 "the fast qualifiers.");
3828
3829 bool isConst() const { return getFastTypeQuals().hasConst(); }
3830 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3831 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3832
3833 /// Determine the type of an expression that calls a function of
3834 /// this type.
3835 QualType getCallResultType(const ASTContext &Context) const {
3836 return getReturnType().getNonLValueExprType(Context);
3837 }
3838
3839 static StringRef getNameForCallConv(CallingConv CC);
3840
3841 static bool classof(const Type *T) {
3842 return T->getTypeClass() == FunctionNoProto ||
3843 T->getTypeClass() == FunctionProto;
3844 }
3845};
3846
3847/// Represents a K&R-style 'int foo()' function, which has
3848/// no information available about its arguments.
3849class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3850 friend class ASTContext; // ASTContext creates these.
3851
3852 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3853 : FunctionType(FunctionNoProto, Result, Canonical,
3854 Result->getDependence() &
3855 ~(TypeDependence::DependentInstantiation |
3856 TypeDependence::UnexpandedPack),
3857 Info) {}
3858
3859public:
3860 // No additional state past what FunctionType provides.
3861
3862 bool isSugared() const { return false; }
3863 QualType desugar() const { return QualType(this, 0); }
3864
3865 void Profile(llvm::FoldingSetNodeID &ID) {
3866 Profile(ID, getReturnType(), getExtInfo());
3867 }
3868
3869 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3870 ExtInfo Info) {
3871 Info.Profile(ID);
3872 ID.AddPointer(ResultType.getAsOpaquePtr());
3873 }
3874
3875 static bool classof(const Type *T) {
3876 return T->getTypeClass() == FunctionNoProto;
3877 }
3878};
3879
3880/// Represents a prototype with parameter type info, e.g.
3881/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3882/// parameters, not as having a single void parameter. Such a type can have
3883/// an exception specification, but this specification is not part of the
3884/// canonical type. FunctionProtoType has several trailing objects, some of
3885/// which optional. For more information about the trailing objects see
3886/// the first comment inside FunctionProtoType.
3887class FunctionProtoType final
3888 : public FunctionType,
3889 public llvm::FoldingSetNode,
3890 private llvm::TrailingObjects<
3891 FunctionProtoType, QualType, SourceLocation,
3892 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3893 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3894 friend class ASTContext; // ASTContext creates these.
3895 friend TrailingObjects;
3896
3897 // FunctionProtoType is followed by several trailing objects, some of
3898 // which optional. They are in order:
3899 //
3900 // * An array of getNumParams() QualType holding the parameter types.
3901 // Always present. Note that for the vast majority of FunctionProtoType,
3902 // these will be the only trailing objects.
3903 //
3904 // * Optionally if the function is variadic, the SourceLocation of the
3905 // ellipsis.
3906 //
3907 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3908 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3909 // a single FunctionTypeExtraBitfields. Present if and only if
3910 // hasExtraBitfields() is true.
3911 //
3912 // * Optionally exactly one of:
3913 // * an array of getNumExceptions() ExceptionType,
3914 // * a single Expr *,
3915 // * a pair of FunctionDecl *,
3916 // * a single FunctionDecl *
3917 // used to store information about the various types of exception
3918 // specification. See getExceptionSpecSize for the details.
3919 //
3920 // * Optionally an array of getNumParams() ExtParameterInfo holding
3921 // an ExtParameterInfo for each of the parameters. Present if and
3922 // only if hasExtParameterInfos() is true.
3923 //
3924 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3925 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3926 // if hasExtQualifiers() is true.
3927 //
3928 // The optional FunctionTypeExtraBitfields has to be before the data
3929 // related to the exception specification since it contains the number
3930 // of exception types.
3931 //
3932 // We put the ExtParameterInfos last. If all were equal, it would make
3933 // more sense to put these before the exception specification, because
3934 // it's much easier to skip past them compared to the elaborate switch
3935 // required to skip the exception specification. However, all is not
3936 // equal; ExtParameterInfos are used to model very uncommon features,
3937 // and it's better not to burden the more common paths.
3938
3939public:
3940 /// Holds information about the various types of exception specification.
3941 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3942 /// used to group together the various bits of information about the
3943 /// exception specification.
3944 struct ExceptionSpecInfo {
3945 /// The kind of exception specification this is.
3946 ExceptionSpecificationType Type = EST_None;
3947
3948 /// Explicitly-specified list of exception types.
3949 ArrayRef<QualType> Exceptions;
3950
3951 /// Noexcept expression, if this is a computed noexcept specification.
3952 Expr *NoexceptExpr = nullptr;
3953
3954 /// The function whose exception specification this is, for
3955 /// EST_Unevaluated and EST_Uninstantiated.
3956 FunctionDecl *SourceDecl = nullptr;
3957
3958 /// The function template whose exception specification this is instantiated
3959 /// from, for EST_Uninstantiated.
3960 FunctionDecl *SourceTemplate = nullptr;
3961
3962 ExceptionSpecInfo() = default;
3963
3964 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3965 };
3966
3967 /// Extra information about a function prototype. ExtProtoInfo is not
3968 /// stored as such in FunctionProtoType but is used to group together
3969 /// the various bits of extra information about a function prototype.
3970 struct ExtProtoInfo {
3971 FunctionType::ExtInfo ExtInfo;
3972 bool Variadic : 1;
3973 bool HasTrailingReturn : 1;
3974 Qualifiers TypeQuals;
3975 RefQualifierKind RefQualifier = RQ_None;
3976 ExceptionSpecInfo ExceptionSpec;
3977 const ExtParameterInfo *ExtParameterInfos = nullptr;
3978 SourceLocation EllipsisLoc;
3979
3980 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3981
3982 ExtProtoInfo(CallingConv CC)
3983 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3984
3985 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3986 ExtProtoInfo Result(*this);
3987 Result.ExceptionSpec = ESI;
3988 return Result;
3989 }
3990 };
3991
3992private:
3993 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3994 return getNumParams();
3995 }
3996
3997 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3998 return isVariadic();
3999 }
4000
4001 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4002 return hasExtraBitfields();
4003 }
4004
4005 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4006 return getExceptionSpecSize().NumExceptionType;
4007 }
4008
4009 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4010 return getExceptionSpecSize().NumExprPtr;
4011 }
4012
4013 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4014 return getExceptionSpecSize().NumFunctionDeclPtr;
4015 }
4016
4017 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4018 return hasExtParameterInfos() ? getNumParams() : 0;
4019 }
4020
4021 /// Determine whether there are any argument types that
4022 /// contain an unexpanded parameter pack.
4023 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4024 unsigned numArgs) {
4025 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4026 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4027 return true;
4028
4029 return false;
4030 }
4031
4032 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4033 QualType canonical, const ExtProtoInfo &epi);
4034
4035 /// This struct is returned by getExceptionSpecSize and is used to
4036 /// translate an ExceptionSpecificationType to the number and kind
4037 /// of trailing objects related to the exception specification.
4038 struct ExceptionSpecSizeHolder {
4039 unsigned NumExceptionType;
4040 unsigned NumExprPtr;
4041 unsigned NumFunctionDeclPtr;
4042 };
4043
4044 /// Return the number and kind of trailing objects
4045 /// related to the exception specification.
4046 static ExceptionSpecSizeHolder
4047 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4048 switch (EST) {
4049 case EST_None:
4050 case EST_DynamicNone:
4051 case EST_MSAny:
4052 case EST_BasicNoexcept:
4053 case EST_Unparsed:
4054 case EST_NoThrow:
4055 return {0, 0, 0};
4056
4057 case EST_Dynamic:
4058 return {NumExceptions, 0, 0};
4059
4060 case EST_DependentNoexcept:
4061 case EST_NoexceptFalse:
4062 case EST_NoexceptTrue:
4063 return {0, 1, 0};
4064
4065 case EST_Uninstantiated:
4066 return {0, 0, 2};
4067
4068 case EST_Unevaluated:
4069 return {0, 0, 1};
4070 }
4071 llvm_unreachable("bad exception specification kind")__builtin_unreachable();
4072 }
4073
4074 /// Return the number and kind of trailing objects
4075 /// related to the exception specification.
4076 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4077 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4078 }
4079
4080 /// Whether the trailing FunctionTypeExtraBitfields is present.
4081 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4082 // If the exception spec type is EST_Dynamic then we have > 0 exception
4083 // types and the exact number is stored in FunctionTypeExtraBitfields.
4084 return EST == EST_Dynamic;
4085 }
4086
4087 /// Whether the trailing FunctionTypeExtraBitfields is present.
4088 bool hasExtraBitfields() const {
4089 return hasExtraBitfields(getExceptionSpecType());
4090 }
4091
4092 bool hasExtQualifiers() const {
4093 return FunctionTypeBits.HasExtQuals;
4094 }
4095
4096public:
4097 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4098
4099 QualType getParamType(unsigned i) const {
4100 assert(i < getNumParams() && "invalid parameter index")((void)0);
4101 return param_type_begin()[i];
4102 }
4103
4104 ArrayRef<QualType> getParamTypes() const {
4105 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4106 }
4107
4108 ExtProtoInfo getExtProtoInfo() const {
4109 ExtProtoInfo EPI;
4110 EPI.ExtInfo = getExtInfo();
4111 EPI.Variadic = isVariadic();
4112 EPI.EllipsisLoc = getEllipsisLoc();
4113 EPI.HasTrailingReturn = hasTrailingReturn();
4114 EPI.ExceptionSpec = getExceptionSpecInfo();
4115 EPI.TypeQuals = getMethodQuals();
4116 EPI.RefQualifier = getRefQualifier();
4117 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4118 return EPI;
4119 }
4120
4121 /// Get the kind of exception specification on this function.
4122 ExceptionSpecificationType getExceptionSpecType() const {
4123 return static_cast<ExceptionSpecificationType>(
4124 FunctionTypeBits.ExceptionSpecType);
4125 }
4126
4127 /// Return whether this function has any kind of exception spec.
4128 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4129
4130 /// Return whether this function has a dynamic (throw) exception spec.
4131 bool hasDynamicExceptionSpec() const {
4132 return isDynamicExceptionSpec(getExceptionSpecType());
4133 }
4134
4135 /// Return whether this function has a noexcept exception spec.
4136 bool hasNoexceptExceptionSpec() const {
4137 return isNoexceptExceptionSpec(getExceptionSpecType());
4138 }
4139
4140 /// Return whether this function has a dependent exception spec.
4141 bool hasDependentExceptionSpec() const;
4142
4143 /// Return whether this function has an instantiation-dependent exception
4144 /// spec.
4145 bool hasInstantiationDependentExceptionSpec() const;
4146
4147 /// Return all the available information about this type's exception spec.
4148 ExceptionSpecInfo getExceptionSpecInfo() const {
4149 ExceptionSpecInfo Result;
4150 Result.Type = getExceptionSpecType();
4151 if (Result.Type == EST_Dynamic) {
4152 Result.Exceptions = exceptions();
4153 } else if (isComputedNoexcept(Result.Type)) {
4154 Result.NoexceptExpr = getNoexceptExpr();
4155 } else if (Result.Type == EST_Uninstantiated) {
4156 Result.SourceDecl = getExceptionSpecDecl();
4157 Result.SourceTemplate = getExceptionSpecTemplate();
4158 } else if (Result.Type == EST_Unevaluated) {
4159 Result.SourceDecl = getExceptionSpecDecl();
4160 }
4161 return Result;
4162 }
4163
4164 /// Return the number of types in the exception specification.
4165 unsigned getNumExceptions() const {
4166 return getExceptionSpecType() == EST_Dynamic
4167 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4168 ->NumExceptionType
4169 : 0;
4170 }
4171
4172 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4173 QualType getExceptionType(unsigned i) const {
4174 assert(i < getNumExceptions() && "Invalid exception number!")((void)0);
4175 return exception_begin()[i];
4176 }
4177
4178 /// Return the expression inside noexcept(expression), or a null pointer
4179 /// if there is none (because the exception spec is not of this form).
4180 Expr *getNoexceptExpr() const {
4181 if (!isComputedNoexcept(getExceptionSpecType()))
4182 return nullptr;
4183 return *getTrailingObjects<Expr *>();
4184 }
4185
4186 /// If this function type has an exception specification which hasn't
4187 /// been determined yet (either because it has not been evaluated or because
4188 /// it has not been instantiated), this is the function whose exception
4189 /// specification is represented by this type.
4190 FunctionDecl *getExceptionSpecDecl() const {
4191 if (getExceptionSpecType() != EST_Uninstantiated &&
4192 getExceptionSpecType() != EST_Unevaluated)
4193 return nullptr;
4194 return getTrailingObjects<FunctionDecl *>()[0];
4195 }
4196
4197 /// If this function type has an uninstantiated exception
4198 /// specification, this is the function whose exception specification
4199 /// should be instantiated to find the exception specification for
4200 /// this type.
4201 FunctionDecl *getExceptionSpecTemplate() const {
4202 if (getExceptionSpecType() != EST_Uninstantiated)
4203 return nullptr;
4204 return getTrailingObjects<FunctionDecl *>()[1];
4205 }
4206
4207 /// Determine whether this function type has a non-throwing exception
4208 /// specification.
4209 CanThrowResult canThrow() const;
4210
4211 /// Determine whether this function type has a non-throwing exception
4212 /// specification. If this depends on template arguments, returns
4213 /// \c ResultIfDependent.
4214 bool isNothrow(bool ResultIfDependent = false) const {
4215 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4216 }
4217
4218 /// Whether this function prototype is variadic.
4219 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4220
4221 SourceLocation getEllipsisLoc() const {
4222 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4223 : SourceLocation();
4224 }
4225
4226 /// Determines whether this function prototype contains a
4227 /// parameter pack at the end.
4228 ///
4229 /// A function template whose last parameter is a parameter pack can be
4230 /// called with an arbitrary number of arguments, much like a variadic
4231 /// function.
4232 bool isTemplateVariadic() const;
4233
4234 /// Whether this function prototype has a trailing return type.
4235 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4236
4237 Qualifiers getMethodQuals() const {
4238 if (hasExtQualifiers())
4239 return *getTrailingObjects<Qualifiers>();
4240 else
4241 return getFastTypeQuals();
4242 }
4243
4244 /// Retrieve the ref-qualifier associated with this function type.
4245 RefQualifierKind getRefQualifier() const {
4246 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4247 }
4248
4249 using param_type_iterator = const QualType *;
4250 using param_type_range = llvm::iterator_range<param_type_iterator>;
4251
4252 param_type_range param_types() const {
4253 return param_type_range(param_type_begin(), param_type_end());
4254 }
4255
4256 param_type_iterator param_type_begin() const {
4257 return getTrailingObjects<QualType>();
4258 }
4259
4260 param_type_iterator param_type_end() const {
4261 return param_type_begin() + getNumParams();
4262 }
4263
4264 using exception_iterator = const QualType *;
4265
4266 ArrayRef<QualType> exceptions() const {
4267 return llvm::makeArrayRef(exception_begin(), exception_end());
4268 }
4269
4270 exception_iterator exception_begin() const {
4271 return reinterpret_cast<exception_iterator>(
4272 getTrailingObjects<ExceptionType>());
4273 }
4274
4275 exception_iterator exception_end() const {
4276 return exception_begin() + getNumExceptions();
4277 }
4278
4279 /// Is there any interesting extra information for any of the parameters
4280 /// of this function type?
4281 bool hasExtParameterInfos() const {
4282 return FunctionTypeBits.HasExtParameterInfos;
4283 }
4284
4285 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4286 assert(hasExtParameterInfos())((void)0);
4287 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4288 getNumParams());
4289 }
4290
4291 /// Return a pointer to the beginning of the array of extra parameter
4292 /// information, if present, or else null if none of the parameters
4293 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4294 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4295 if (!hasExtParameterInfos())
4296 return nullptr;
4297 return getTrailingObjects<ExtParameterInfo>();
4298 }
4299
4300 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4301 assert(I < getNumParams() && "parameter index out of range")((void)0);
4302 if (hasExtParameterInfos())
4303 return getTrailingObjects<ExtParameterInfo>()[I];
4304 return ExtParameterInfo();
4305 }
4306
4307 ParameterABI getParameterABI(unsigned I) const {
4308 assert(I < getNumParams() && "parameter index out of range")((void)0);
4309 if (hasExtParameterInfos())
4310 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4311 return ParameterABI::Ordinary;
4312 }
4313
4314 bool isParamConsumed(unsigned I) const {
4315 assert(I < getNumParams() && "parameter index out of range")((void)0);
4316 if (hasExtParameterInfos())
4317 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4318 return false;
4319 }
4320
4321 bool isSugared() const { return false; }
4322 QualType desugar() const { return QualType(this, 0); }
4323
4324 void printExceptionSpecification(raw_ostream &OS,
4325 const PrintingPolicy &Policy) const;
4326
4327 static bool classof(const Type *T) {
4328 return T->getTypeClass() == FunctionProto;
4329 }
4330
4331 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4332 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4333 param_type_iterator ArgTys, unsigned NumArgs,
4334 const ExtProtoInfo &EPI, const ASTContext &Context,
4335 bool Canonical);
4336};
4337
4338/// Represents the dependent type named by a dependently-scoped
4339/// typename using declaration, e.g.
4340/// using typename Base<T>::foo;
4341///
4342/// Template instantiation turns these into the underlying type.
4343class UnresolvedUsingType : public Type {
4344 friend class ASTContext; // ASTContext creates these.
4345
4346 UnresolvedUsingTypenameDecl *Decl;
4347
4348 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4349 : Type(UnresolvedUsing, QualType(),
4350 TypeDependence::DependentInstantiation),
4351 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4352
4353public:
4354 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4355
4356 bool isSugared() const { return false; }
4357 QualType desugar() const { return QualType(this, 0); }
4358
4359 static bool classof(const Type *T) {
4360 return T->getTypeClass() == UnresolvedUsing;
4361 }
4362
4363 void Profile(llvm::FoldingSetNodeID &ID) {
4364 return Profile(ID, Decl);
4365 }
4366
4367 static void Profile(llvm::FoldingSetNodeID &ID,
4368 UnresolvedUsingTypenameDecl *D) {
4369 ID.AddPointer(D);
4370 }
4371};
4372
4373class TypedefType : public Type {
4374 TypedefNameDecl *Decl;
4375
4376private:
4377 friend class ASTContext; // ASTContext creates these.
4378
4379 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4380 QualType can);
4381
4382public:
4383 TypedefNameDecl *getDecl() const { return Decl; }
4384
4385 bool isSugared() const { return true; }
4386 QualType desugar() const;
4387
4388 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4389};
4390
4391/// Sugar type that represents a type that was qualified by a qualifier written
4392/// as a macro invocation.
4393class MacroQualifiedType : public Type {
4394 friend class ASTContext; // ASTContext creates these.
4395
4396 QualType UnderlyingTy;
4397 const IdentifierInfo *MacroII;
4398
4399 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4400 const IdentifierInfo *MacroII)
4401 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4402 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4403 assert(isa<AttributedType>(UnderlyingTy) &&((void)0)
4404 "Expected a macro qualified type to only wrap attributed types.")((void)0);
4405 }
4406
4407public:
4408 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4409 QualType getUnderlyingType() const { return UnderlyingTy; }
4410
4411 /// Return this attributed type's modified type with no qualifiers attached to
4412 /// it.
4413 QualType getModifiedType() const;
4414
4415 bool isSugared() const { return true; }
4416 QualType desugar() const;
4417
4418 static bool classof(const Type *T) {
4419 return T->getTypeClass() == MacroQualified;
4420 }
4421};
4422
4423/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4424class TypeOfExprType : public Type {
4425 Expr *TOExpr;
4426
4427protected:
4428 friend class ASTContext; // ASTContext creates these.
4429
4430 TypeOfExprType(Expr *E, QualType can = QualType());
4431
4432public:
4433 Expr *getUnderlyingExpr() const { return TOExpr; }
4434
4435 /// Remove a single level of sugar.
4436 QualType desugar() const;
4437
4438 /// Returns whether this type directly provides sugar.
4439 bool isSugared() const;
4440
4441 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4442};
4443
4444/// Internal representation of canonical, dependent
4445/// `typeof(expr)` types.
4446///
4447/// This class is used internally by the ASTContext to manage
4448/// canonical, dependent types, only. Clients will only see instances
4449/// of this class via TypeOfExprType nodes.
4450class DependentTypeOfExprType
4451 : public TypeOfExprType, public llvm::FoldingSetNode {
4452 const ASTContext &Context;
4453
4454public:
4455 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4456 : TypeOfExprType(E), Context(Context) {}
4457
4458 void Profile(llvm::FoldingSetNodeID &ID) {
4459 Profile(ID, Context, getUnderlyingExpr());
4460 }
4461
4462 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4463 Expr *E);
4464};
4465
4466/// Represents `typeof(type)`, a GCC extension.
4467class TypeOfType : public Type {
4468 friend class ASTContext; // ASTContext creates these.
4469
4470 QualType TOType;
4471
4472 TypeOfType(QualType T, QualType can)
4473 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4474 assert(!isa<TypedefType>(can) && "Invalid canonical type")((void)0);
4475 }
4476
4477public:
4478 QualType getUnderlyingType() const { return TOType; }
4479
4480 /// Remove a single level of sugar.
4481 QualType desugar() const { return getUnderlyingType(); }
4482
4483 /// Returns whether this type directly provides sugar.
4484 bool isSugared() const { return true; }
4485
4486 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4487};
4488
4489/// Represents the type `decltype(expr)` (C++11).
4490class DecltypeType : public Type {
4491 Expr *E;
4492 QualType UnderlyingType;
4493
4494protected:
4495 friend class ASTContext; // ASTContext creates these.
4496
4497 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4498
4499public:
4500 Expr *getUnderlyingExpr() const { return E; }
4501 QualType getUnderlyingType() const { return UnderlyingType; }
4502
4503 /// Remove a single level of sugar.
4504 QualType desugar() const;
4505
4506 /// Returns whether this type directly provides sugar.
4507 bool isSugared() const;
4508
4509 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4510};
4511
4512/// Internal representation of canonical, dependent
4513/// decltype(expr) types.
4514///
4515/// This class is used internally by the ASTContext to manage
4516/// canonical, dependent types, only. Clients will only see instances
4517/// of this class via DecltypeType nodes.
4518class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4519 const ASTContext &Context;
4520
4521public:
4522 DependentDecltypeType(const ASTContext &Context, Expr *E);
4523
4524 void Profile(llvm::FoldingSetNodeID &ID) {
4525 Profile(ID, Context, getUnderlyingExpr());
4526 }
4527
4528 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4529 Expr *E);
4530};
4531
4532/// A unary type transform, which is a type constructed from another.
4533class UnaryTransformType : public Type {
4534public:
4535 enum UTTKind {
4536 EnumUnderlyingType
4537 };
4538
4539private:
4540 /// The untransformed type.
4541 QualType BaseType;
4542
4543 /// The transformed type if not dependent, otherwise the same as BaseType.
4544 QualType UnderlyingType;
4545
4546 UTTKind UKind;
4547
4548protected:
4549 friend class ASTContext;
4550
4551 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4552 QualType CanonicalTy);
4553
4554public:
4555 bool isSugared() const { return !isDependentType(); }
4556 QualType desugar() const { return UnderlyingType; }
4557
4558 QualType getUnderlyingType() const { return UnderlyingType; }
4559 QualType getBaseType() const { return BaseType; }
4560
4561 UTTKind getUTTKind() const { return UKind; }
4562
4563 static bool classof(const Type *T) {
4564 return T->getTypeClass() == UnaryTransform;
4565 }
4566};
4567
4568/// Internal representation of canonical, dependent
4569/// __underlying_type(type) types.
4570///
4571/// This class is used internally by the ASTContext to manage
4572/// canonical, dependent types, only. Clients will only see instances
4573/// of this class via UnaryTransformType nodes.
4574class DependentUnaryTransformType : public UnaryTransformType,
4575 public llvm::FoldingSetNode {
4576public:
4577 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4578 UTTKind UKind);
4579
4580 void Profile(llvm::FoldingSetNodeID &ID) {
4581 Profile(ID, getBaseType(), getUTTKind());
4582 }
4583
4584 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4585 UTTKind UKind) {
4586 ID.AddPointer(BaseType.getAsOpaquePtr());
4587 ID.AddInteger((unsigned)UKind);
4588 }
4589};
4590
4591class TagType : public Type {
4592 friend class ASTReader;
4593 template <class T> friend class serialization::AbstractTypeReader;
4594
4595 /// Stores the TagDecl associated with this type. The decl may point to any
4596 /// TagDecl that declares the entity.
4597 TagDecl *decl;
4598
4599protected:
4600 TagType(TypeClass TC, const TagDecl *D, QualType can);
4601
4602public:
4603 TagDecl *getDecl() const;
4604
4605 /// Determines whether this type is in the process of being defined.
4606 bool isBeingDefined() const;
4607
4608 static bool classof(const Type *T) {
4609 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4610 }
4611};
4612
4613/// A helper class that allows the use of isa/cast/dyncast
4614/// to detect TagType objects of structs/unions/classes.
4615class RecordType : public TagType {
4616protected:
4617 friend class ASTContext; // ASTContext creates these.
4618
4619 explicit RecordType(const RecordDecl *D)
4620 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4621 explicit RecordType(TypeClass TC, RecordDecl *D)
4622 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4623
4624public:
4625 RecordDecl *getDecl() const {
4626 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4627 }
4628
4629 /// Recursively check all fields in the record for const-ness. If any field
4630 /// is declared const, return true. Otherwise, return false.
4631 bool hasConstFields() const;
4632
4633 bool isSugared() const { return false; }
4634 QualType desugar() const { return QualType(this, 0); }
4635
4636 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4637};
4638
4639/// A helper class that allows the use of isa/cast/dyncast
4640/// to detect TagType objects of enums.
4641class EnumType : public TagType {
4642 friend class ASTContext; // ASTContext creates these.
4643
4644 explicit EnumType(const EnumDecl *D)
4645 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4646
4647public:
4648 EnumDecl *getDecl() const {
4649 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4650 }
4651
4652 bool isSugared() const { return false; }
4653 QualType desugar() const { return QualType(this, 0); }
4654
4655 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4656};
4657
4658/// An attributed type is a type to which a type attribute has been applied.
4659///
4660/// The "modified type" is the fully-sugared type to which the attributed
4661/// type was applied; generally it is not canonically equivalent to the
4662/// attributed type. The "equivalent type" is the minimally-desugared type
4663/// which the type is canonically equivalent to.
4664///
4665/// For example, in the following attributed type:
4666/// int32_t __attribute__((vector_size(16)))
4667/// - the modified type is the TypedefType for int32_t
4668/// - the equivalent type is VectorType(16, int32_t)
4669/// - the canonical type is VectorType(16, int)
4670class AttributedType : public Type, public llvm::FoldingSetNode {
4671public:
4672 using Kind = attr::Kind;
4673
4674private:
4675 friend class ASTContext; // ASTContext creates these
4676
4677 QualType ModifiedType;
4678 QualType EquivalentType;
4679
4680 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4681 QualType equivalent)
4682 : Type(Attributed, canon, equivalent->getDependence()),
4683 ModifiedType(modified), EquivalentType(equivalent) {
4684 AttributedTypeBits.AttrKind = attrKind;
4685 }
4686
4687public:
4688 Kind getAttrKind() const {
4689 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4690 }
4691
4692 QualType getModifiedType() const { return ModifiedType; }
4693 QualType getEquivalentType() const { return EquivalentType; }
4694
4695 bool isSugared() const { return true; }
4696 QualType desugar() const { return getEquivalentType(); }
4697
4698 /// Does this attribute behave like a type qualifier?
4699 ///
4700 /// A type qualifier adjusts a type to provide specialized rules for
4701 /// a specific object, like the standard const and volatile qualifiers.
4702 /// This includes attributes controlling things like nullability,
4703 /// address spaces, and ARC ownership. The value of the object is still
4704 /// largely described by the modified type.
4705 ///
4706 /// In contrast, many type attributes "rewrite" their modified type to
4707 /// produce a fundamentally different type, not necessarily related in any
4708 /// formalizable way to the original type. For example, calling convention
4709 /// and vector attributes are not simple type qualifiers.
4710 ///
4711 /// Type qualifiers are often, but not always, reflected in the canonical
4712 /// type.
4713 bool isQualifier() const;
4714
4715 bool isMSTypeSpec() const;
4716
4717 bool isCallingConv() const;
4718
4719 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4720
4721 /// Retrieve the attribute kind corresponding to the given
4722 /// nullability kind.
4723 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4724 switch (kind) {
4725 case NullabilityKind::NonNull:
4726 return attr::TypeNonNull;
4727
4728 case NullabilityKind::Nullable:
4729 return attr::TypeNullable;
4730
4731 case NullabilityKind::NullableResult:
4732 return attr::TypeNullableResult;
4733
4734 case NullabilityKind::Unspecified:
4735 return attr::TypeNullUnspecified;
4736 }
4737 llvm_unreachable("Unknown nullability kind.")__builtin_unreachable();
4738 }
4739
4740 /// Strip off the top-level nullability annotation on the given
4741 /// type, if it's there.
4742 ///
4743 /// \param T The type to strip. If the type is exactly an
4744 /// AttributedType specifying nullability (without looking through
4745 /// type sugar), the nullability is returned and this type changed
4746 /// to the underlying modified type.
4747 ///
4748 /// \returns the top-level nullability, if present.
4749 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4750
4751 void Profile(llvm::FoldingSetNodeID &ID) {
4752 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4753 }
4754
4755 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4756 QualType modified, QualType equivalent) {
4757 ID.AddInteger(attrKind);
4758 ID.AddPointer(modified.getAsOpaquePtr());
4759 ID.AddPointer(equivalent.getAsOpaquePtr());
4760 }
4761
4762 static bool classof(const Type *T) {
4763 return T->getTypeClass() == Attributed;
4764 }
4765};
4766
4767class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4768 friend class ASTContext; // ASTContext creates these
4769
4770 // Helper data collector for canonical types.
4771 struct CanonicalTTPTInfo {
4772 unsigned Depth : 15;
4773 unsigned ParameterPack : 1;
4774 unsigned Index : 16;
4775 };
4776
4777 union {
4778 // Info for the canonical type.
4779 CanonicalTTPTInfo CanTTPTInfo;
4780
4781 // Info for the non-canonical type.
4782 TemplateTypeParmDecl *TTPDecl;
4783 };
4784
4785 /// Build a non-canonical type.
4786 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4787 : Type(TemplateTypeParm, Canon,
4788 TypeDependence::DependentInstantiation |
4789 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4790 TTPDecl(TTPDecl) {}
4791
4792 /// Build the canonical type.
4793 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4794 : Type(TemplateTypeParm, QualType(this, 0),
4795 TypeDependence::DependentInstantiation |
4796 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4797 CanTTPTInfo.Depth = D;
4798 CanTTPTInfo.Index = I;
4799 CanTTPTInfo.ParameterPack = PP;
4800 }
4801
4802 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4803 QualType Can = getCanonicalTypeInternal();
4804 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4805 }
4806
4807public:
4808 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4809 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4810 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4811
4812 TemplateTypeParmDecl *getDecl() const {
4813 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4814 }
4815
4816 IdentifierInfo *getIdentifier() const;
4817
4818 bool isSugared() const { return false; }
4819 QualType desugar() const { return QualType(this, 0); }
4820
4821 void Profile(llvm::FoldingSetNodeID &ID) {
4822 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4823 }
4824
4825 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4826 unsigned Index, bool ParameterPack,
4827 TemplateTypeParmDecl *TTPDecl) {
4828 ID.AddInteger(Depth);
4829 ID.AddInteger(Index);
4830 ID.AddBoolean(ParameterPack);
4831 ID.AddPointer(TTPDecl);
4832 }
4833
4834 static bool classof(const Type *T) {
4835 return T->getTypeClass() == TemplateTypeParm;
4836 }
4837};
4838
4839/// Represents the result of substituting a type for a template
4840/// type parameter.
4841///
4842/// Within an instantiated template, all template type parameters have
4843/// been replaced with these. They are used solely to record that a
4844/// type was originally written as a template type parameter;
4845/// therefore they are never canonical.
4846class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4847 friend class ASTContext;
4848
4849 // The original type parameter.
4850 const TemplateTypeParmType *Replaced;
4851
4852 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4853 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4854 Replaced(Param) {}
4855
4856public:
4857 /// Gets the template parameter that was substituted for.
4858 const TemplateTypeParmType *getReplacedParameter() const {
4859 return Replaced;
4860 }
4861
4862 /// Gets the type that was substituted for the template
4863 /// parameter.
4864 QualType getReplacementType() const {
4865 return getCanonicalTypeInternal();
4866 }
4867
4868 bool isSugared() const { return true; }
4869 QualType desugar() const { return getReplacementType(); }
4870
4871 void Profile(llvm::FoldingSetNodeID &ID) {
4872 Profile(ID, getReplacedParameter(), getReplacementType());
4873 }
4874
4875 static void Profile(llvm::FoldingSetNodeID &ID,
4876 const TemplateTypeParmType *Replaced,
4877 QualType Replacement) {
4878 ID.AddPointer(Replaced);
4879 ID.AddPointer(Replacement.getAsOpaquePtr());
4880 }
4881
4882 static bool classof(const Type *T) {
4883 return T->getTypeClass() == SubstTemplateTypeParm;
4884 }
4885};
4886
4887/// Represents the result of substituting a set of types for a template
4888/// type parameter pack.
4889///
4890/// When a pack expansion in the source code contains multiple parameter packs
4891/// and those parameter packs correspond to different levels of template
4892/// parameter lists, this type node is used to represent a template type
4893/// parameter pack from an outer level, which has already had its argument pack
4894/// substituted but that still lives within a pack expansion that itself
4895/// could not be instantiated. When actually performing a substitution into
4896/// that pack expansion (e.g., when all template parameters have corresponding
4897/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4898/// at the current pack substitution index.
4899class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4900 friend class ASTContext;
4901
4902 /// The original type parameter.
4903 const TemplateTypeParmType *Replaced;
4904
4905 /// A pointer to the set of template arguments that this
4906 /// parameter pack is instantiated with.
4907 const TemplateArgument *Arguments;
4908
4909 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4910 QualType Canon,
4911 const TemplateArgument &ArgPack);
4912
4913public:
4914 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4915
4916 /// Gets the template parameter that was substituted for.
4917 const TemplateTypeParmType *getReplacedParameter() const {
4918 return Replaced;
4919 }
4920
4921 unsigned getNumArgs() const {
4922 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4923 }
4924
4925 bool isSugared() const { return false; }
4926 QualType desugar() const { return QualType(this, 0); }
4927
4928 TemplateArgument getArgumentPack() const;
4929
4930 void Profile(llvm::FoldingSetNodeID &ID);
4931 static void Profile(llvm::FoldingSetNodeID &ID,
4932 const TemplateTypeParmType *Replaced,
4933 const TemplateArgument &ArgPack);
4934
4935 static bool classof(const Type *T) {
4936 return T->getTypeClass() == SubstTemplateTypeParmPack;
4937 }
4938};
4939
4940/// Common base class for placeholders for types that get replaced by
4941/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4942/// class template types, and constrained type names.
4943///
4944/// These types are usually a placeholder for a deduced type. However, before
4945/// the initializer is attached, or (usually) if the initializer is
4946/// type-dependent, there is no deduced type and the type is canonical. In
4947/// the latter case, it is also a dependent type.
4948class DeducedType : public Type {
4949protected:
4950 DeducedType(TypeClass TC, QualType DeducedAsType,
4951 TypeDependence ExtraDependence)
4952 : Type(TC,
4953 // FIXME: Retain the sugared deduced type?
4954 DeducedAsType.isNull() ? QualType(this, 0)
4955 : DeducedAsType.getCanonicalType(),
4956 ExtraDependence | (DeducedAsType.isNull()
4957 ? TypeDependence::None
4958 : DeducedAsType->getDependence() &
4959 ~TypeDependence::VariablyModified)) {}
4960
4961public:
4962 bool isSugared() const { return !isCanonicalUnqualified(); }
4963 QualType desugar() const { return getCanonicalTypeInternal(); }
4964
4965 /// Get the type deduced for this placeholder type, or null if it's
4966 /// either not been deduced or was deduced to a dependent type.
4967 QualType getDeducedType() const {
4968 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4969 }
4970 bool isDeduced() const {
4971 return !isCanonicalUnqualified() || isDependentType();
4972 }
4973
4974 static bool classof(const Type *T) {
4975 return T->getTypeClass() == Auto ||
4976 T->getTypeClass() == DeducedTemplateSpecialization;
4977 }
4978};
4979
4980/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
4981/// by a type-constraint.
4982class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
4983 friend class ASTContext; // ASTContext creates these
4984
4985 ConceptDecl *TypeConstraintConcept;
4986
4987 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4988 TypeDependence ExtraDependence, ConceptDecl *CD,
4989 ArrayRef<TemplateArgument> TypeConstraintArgs);
4990
4991 const TemplateArgument *getArgBuffer() const {
4992 return reinterpret_cast<const TemplateArgument*>(this+1);
4993 }
4994
4995 TemplateArgument *getArgBuffer() {
4996 return reinterpret_cast<TemplateArgument*>(this+1);
4997 }
4998
4999public:
5000 /// Retrieve the template arguments.
5001 const TemplateArgument *getArgs() const {
5002 return getArgBuffer();
5003 }
5004
5005 /// Retrieve the number of template arguments.
5006 unsigned getNumArgs() const {
5007 return AutoTypeBits.NumArgs;
5008 }
5009
5010 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5011
5012 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5013 return {getArgs(), getNumArgs()};
5014 }
5015
5016 ConceptDecl *getTypeConstraintConcept() const {
5017 return TypeConstraintConcept;
5018 }
5019
5020 bool isConstrained() const {
5021 return TypeConstraintConcept != nullptr;
5022 }
5023
5024 bool isDecltypeAuto() const {
5025 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5026 }
5027
5028 AutoTypeKeyword getKeyword() const {
5029 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5030 }
5031
5032 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5033 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5034 getTypeConstraintConcept(), getTypeConstraintArguments());
5035 }
5036
5037 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5038 QualType Deduced, AutoTypeKeyword Keyword,
5039 bool IsDependent, ConceptDecl *CD,
5040 ArrayRef<TemplateArgument> Arguments);
5041
5042 static bool classof(const Type *T) {
5043 return T->getTypeClass() == Auto;
5044 }
5045};
5046
5047/// Represents a C++17 deduced template specialization type.
5048class DeducedTemplateSpecializationType : public DeducedType,
5049 public llvm::FoldingSetNode {
5050 friend class ASTContext; // ASTContext creates these
5051
5052 /// The name of the template whose arguments will be deduced.
5053 TemplateName Template;
5054
5055 DeducedTemplateSpecializationType(TemplateName Template,
5056 QualType DeducedAsType,
5057 bool IsDeducedAsDependent)
5058 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5059 toTypeDependence(Template.getDependence()) |
5060 (IsDeducedAsDependent
5061 ? TypeDependence::DependentInstantiation
5062 : TypeDependence::None)),
5063 Template(Template) {}
5064
5065public:
5066 /// Retrieve the name of the template that we are deducing.
5067 TemplateName getTemplateName() const { return Template;}
5068
5069 void Profile(llvm::FoldingSetNodeID &ID) {
5070 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5071 }
5072
5073 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5074 QualType Deduced, bool IsDependent) {
5075 Template.Profile(ID);
5076 ID.AddPointer(Deduced.getAsOpaquePtr());
5077 ID.AddBoolean(IsDependent);
5078 }
5079
5080 static bool classof(const Type *T) {
5081 return T->getTypeClass() == DeducedTemplateSpecialization;
5082 }
5083};
5084
5085/// Represents a type template specialization; the template
5086/// must be a class template, a type alias template, or a template
5087/// template parameter. A template which cannot be resolved to one of
5088/// these, e.g. because it is written with a dependent scope
5089/// specifier, is instead represented as a
5090/// @c DependentTemplateSpecializationType.
5091///
5092/// A non-dependent template specialization type is always "sugar",
5093/// typically for a \c RecordType. For example, a class template
5094/// specialization type of \c vector<int> will refer to a tag type for
5095/// the instantiation \c std::vector<int, std::allocator<int>>
5096///
5097/// Template specializations are dependent if either the template or
5098/// any of the template arguments are dependent, in which case the
5099/// type may also be canonical.
5100///
5101/// Instances of this type are allocated with a trailing array of
5102/// TemplateArguments, followed by a QualType representing the
5103/// non-canonical aliased type when the template is a type alias
5104/// template.
5105class alignas(8) TemplateSpecializationType
5106 : public Type,
5107 public llvm::FoldingSetNode {
5108 friend class ASTContext; // ASTContext creates these
5109
5110 /// The name of the template being specialized. This is
5111 /// either a TemplateName::Template (in which case it is a
5112 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5113 /// TypeAliasTemplateDecl*), a
5114 /// TemplateName::SubstTemplateTemplateParmPack, or a
5115 /// TemplateName::SubstTemplateTemplateParm (in which case the
5116 /// replacement must, recursively, be one of these).
5117 TemplateName Template;
5118
5119 TemplateSpecializationType(TemplateName T,
5120 ArrayRef<TemplateArgument> Args,
5121 QualType Canon,
5122 QualType Aliased);
5123
5124public:
5125 /// Determine whether any of the given template arguments are dependent.
5126 ///
5127 /// The converted arguments should be supplied when known; whether an
5128 /// argument is dependent can depend on the conversions performed on it
5129 /// (for example, a 'const int' passed as a template argument might be
5130 /// dependent if the parameter is a reference but non-dependent if the
5131 /// parameter is an int).
5132 ///
5133 /// Note that the \p Args parameter is unused: this is intentional, to remind
5134 /// the caller that they need to pass in the converted arguments, not the
5135 /// specified arguments.
5136 static bool
5137 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5138 ArrayRef<TemplateArgument> Converted);
5139 static bool
5140 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5141 ArrayRef<TemplateArgument> Converted);
5142 static bool anyInstantiationDependentTemplateArguments(
5143 ArrayRef<TemplateArgumentLoc> Args);
5144
5145 /// True if this template specialization type matches a current
5146 /// instantiation in the context in which it is found.
5147 bool isCurrentInstantiation() const {
5148 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5149 }
5150
5151 /// Determine if this template specialization type is for a type alias
5152 /// template that has been substituted.
5153 ///
5154 /// Nearly every template specialization type whose template is an alias
5155 /// template will be substituted. However, this is not the case when
5156 /// the specialization contains a pack expansion but the template alias
5157 /// does not have a corresponding parameter pack, e.g.,
5158 ///
5159 /// \code
5160 /// template<typename T, typename U, typename V> struct S;
5161 /// template<typename T, typename U> using A = S<T, int, U>;
5162 /// template<typename... Ts> struct X {
5163 /// typedef A<Ts...> type; // not a type alias
5164 /// };
5165 /// \endcode
5166 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5167
5168 /// Get the aliased type, if this is a specialization of a type alias
5169 /// template.
5170 QualType getAliasedType() const {
5171 assert(isTypeAlias() && "not a type alias template specialization")((void)0);
5172 return *reinterpret_cast<const QualType*>(end());
5173 }
5174
5175 using iterator = const TemplateArgument *;
5176
5177 iterator begin() const { return getArgs(); }
5178 iterator end() const; // defined inline in TemplateBase.h
5179
5180 /// Retrieve the name of the template that we are specializing.
5181 TemplateName getTemplateName() const { return Template; }
5182
5183 /// Retrieve the template arguments.
5184 const TemplateArgument *getArgs() const {
5185 return reinterpret_cast<const TemplateArgument *>(this + 1);
5186 }
5187
5188 /// Retrieve the number of template arguments.
5189 unsigned getNumArgs() const {
5190 return TemplateSpecializationTypeBits.NumArgs;
5191 }
5192
5193 /// Retrieve a specific template argument as a type.
5194 /// \pre \c isArgType(Arg)
5195 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5196
5197 ArrayRef<TemplateArgument> template_arguments() const {
5198 return {getArgs(), getNumArgs()};
5199 }
5200
5201 bool isSugared() const {
5202 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5203 }
5204
5205 QualType desugar() const {
5206 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5207 }
5208
5209 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5210 Profile(ID, Template, template_arguments(), Ctx);
5211 if (isTypeAlias())
5212 getAliasedType().Profile(ID);
5213 }
5214
5215 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5216 ArrayRef<TemplateArgument> Args,
5217 const ASTContext &Context);
5218
5219 static bool classof(const Type *T) {
5220 return T->getTypeClass() == TemplateSpecialization;
5221 }
5222};
5223
5224/// Print a template argument list, including the '<' and '>'
5225/// enclosing the template arguments.
5226void printTemplateArgumentList(raw_ostream &OS,
5227 ArrayRef<TemplateArgument> Args,
5228 const PrintingPolicy &Policy,
5229 const TemplateParameterList *TPL = nullptr);
5230
5231void printTemplateArgumentList(raw_ostream &OS,
5232 ArrayRef<TemplateArgumentLoc> Args,
5233 const PrintingPolicy &Policy,
5234 const TemplateParameterList *TPL = nullptr);
5235
5236void printTemplateArgumentList(raw_ostream &OS,
5237 const TemplateArgumentListInfo &Args,
5238 const PrintingPolicy &Policy,
5239 const TemplateParameterList *TPL = nullptr);
5240
5241/// The injected class name of a C++ class template or class
5242/// template partial specialization. Used to record that a type was
5243/// spelled with a bare identifier rather than as a template-id; the
5244/// equivalent for non-templated classes is just RecordType.
5245///
5246/// Injected class name types are always dependent. Template
5247/// instantiation turns these into RecordTypes.
5248///
5249/// Injected class name types are always canonical. This works
5250/// because it is impossible to compare an injected class name type
5251/// with the corresponding non-injected template type, for the same
5252/// reason that it is impossible to directly compare template
5253/// parameters from different dependent contexts: injected class name
5254/// types can only occur within the scope of a particular templated
5255/// declaration, and within that scope every template specialization
5256/// will canonicalize to the injected class name (when appropriate
5257/// according to the rules of the language).
5258class InjectedClassNameType : public Type {
5259 friend class ASTContext; // ASTContext creates these.
5260 friend class ASTNodeImporter;
5261 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5262 // currently suitable for AST reading, too much
5263 // interdependencies.
5264 template <class T> friend class serialization::AbstractTypeReader;
5265
5266 CXXRecordDecl *Decl;
5267
5268 /// The template specialization which this type represents.
5269 /// For example, in
5270 /// template <class T> class A { ... };
5271 /// this is A<T>, whereas in
5272 /// template <class X, class Y> class A<B<X,Y> > { ... };
5273 /// this is A<B<X,Y> >.
5274 ///
5275 /// It is always unqualified, always a template specialization type,
5276 /// and always dependent.
5277 QualType InjectedType;
5278
5279 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5280 : Type(InjectedClassName, QualType(),
5281 TypeDependence::DependentInstantiation),
5282 Decl(D), InjectedType(TST) {
5283 assert(isa<TemplateSpecializationType>(TST))((void)0);
5284 assert(!TST.hasQualifiers())((void)0);
5285 assert(TST->isDependentType())((void)0);
5286 }
5287
5288public:
5289 QualType getInjectedSpecializationType() const { return InjectedType; }
5290
5291 const TemplateSpecializationType *getInjectedTST() const {
5292 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5293 }
5294
5295 TemplateName getTemplateName() const {
5296 return getInjectedTST()->getTemplateName();
5297 }
5298
5299 CXXRecordDecl *getDecl() const;
5300
5301 bool isSugared() const { return false; }
5302 QualType desugar() const { return QualType(this, 0); }
5303
5304 static bool classof(const Type *T) {
5305 return T->getTypeClass() == InjectedClassName;
5306 }
5307};
5308
5309/// The kind of a tag type.
5310enum TagTypeKind {
5311 /// The "struct" keyword.
5312 TTK_Struct,
5313
5314 /// The "__interface" keyword.
5315 TTK_Interface,
5316
5317 /// The "union" keyword.
5318 TTK_Union,
5319
5320 /// The "class" keyword.
5321 TTK_Class,
5322
5323 /// The "enum" keyword.
5324 TTK_Enum
5325};
5326
5327/// The elaboration keyword that precedes a qualified type name or
5328/// introduces an elaborated-type-specifier.
5329enum ElaboratedTypeKeyword {
5330 /// The "struct" keyword introduces the elaborated-type-specifier.
5331 ETK_Struct,
5332
5333 /// The "__interface" keyword introduces the elaborated-type-specifier.
5334 ETK_Interface,
5335
5336 /// The "union" keyword introduces the elaborated-type-specifier.
5337 ETK_Union,
5338
5339 /// The "class" keyword introduces the elaborated-type-specifier.
5340 ETK_Class,
5341
5342 /// The "enum" keyword introduces the elaborated-type-specifier.
5343 ETK_Enum,
5344
5345 /// The "typename" keyword precedes the qualified type name, e.g.,
5346 /// \c typename T::type.
5347 ETK_Typename,
5348
5349 /// No keyword precedes the qualified type name.
5350 ETK_None
5351};
5352
5353/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5354/// The keyword in stored in the free bits of the base class.
5355/// Also provides a few static helpers for converting and printing
5356/// elaborated type keyword and tag type kind enumerations.
5357class TypeWithKeyword : public Type {
5358protected:
5359 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5360 QualType Canonical, TypeDependence Dependence)
5361 : Type(tc, Canonical, Dependence) {
5362 TypeWithKeywordBits.Keyword = Keyword;
5363 }
5364
5365public:
5366 ElaboratedTypeKeyword getKeyword() const {
5367 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5368 }
5369
5370 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5371 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5372
5373 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5374 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5375 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5376
5377 /// Converts a TagTypeKind into an elaborated type keyword.
5378 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5379
5380 /// Converts an elaborated type keyword into a TagTypeKind.
5381 /// It is an error to provide an elaborated type keyword
5382 /// which *isn't* a tag kind here.
5383 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5384
5385 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5386
5387 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5388
5389 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5390 return getKeywordName(getKeywordForTagTypeKind(Kind));
5391 }
5392
5393 class CannotCastToThisType {};
5394 static CannotCastToThisType classof(const Type *);
5395};
5396
5397/// Represents a type that was referred to using an elaborated type
5398/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5399/// or both.
5400///
5401/// This type is used to keep track of a type name as written in the
5402/// source code, including tag keywords and any nested-name-specifiers.
5403/// The type itself is always "sugar", used to express what was written
5404/// in the source code but containing no additional semantic information.
5405class ElaboratedType final
5406 : public TypeWithKeyword,
5407 public llvm::FoldingSetNode,
5408 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5409 friend class ASTContext; // ASTContext creates these
5410 friend TrailingObjects;
5411
5412 /// The nested name specifier containing the qualifier.
5413 NestedNameSpecifier *NNS;
5414
5415 /// The type that this qualified name refers to.
5416 QualType NamedType;
5417
5418 /// The (re)declaration of this tag type owned by this occurrence is stored
5419 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5420 /// it, or obtain a null pointer if there is none.
5421
5422 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5423 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5424 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5425 // Any semantic dependence on the qualifier will have
5426 // been incorporated into NamedType. We still need to
5427 // track syntactic (instantiation / error / pack)
5428 // dependence on the qualifier.
5429 NamedType->getDependence() |
5430 (NNS ? toSyntacticDependence(
5431 toTypeDependence(NNS->getDependence()))
5432 : TypeDependence::None)),
5433 NNS(NNS), NamedType(NamedType) {
5434 ElaboratedTypeBits.HasOwnedTagDecl = false;
5435 if (OwnedTagDecl) {
5436 ElaboratedTypeBits.HasOwnedTagDecl = true;
5437 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5438 }
5439 assert(!(Keyword == ETK_None && NNS == nullptr) &&((void)0)
5440 "ElaboratedType cannot have elaborated type keyword "((void)0)
5441 "and name qualifier both null.")((void)0);
5442 }
5443
5444public:
5445 /// Retrieve the qualification on this type.
5446 NestedNameSpecifier *getQualifier() const { return NNS; }
5447
5448 /// Retrieve the type named by the qualified-id.
5449 QualType getNamedType() const { return NamedType; }
5450
5451 /// Remove a single level of sugar.
5452 QualType desugar() const { return getNamedType(); }
5453
5454 /// Returns whether this type directly provides sugar.
5455 bool isSugared() const { return true; }
5456
5457 /// Return the (re)declaration of this type owned by this occurrence of this
5458 /// type, or nullptr if there is none.
5459 TagDecl *getOwnedTagDecl() const {
5460 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5461 : nullptr;
5462 }
5463
5464 void Profile(llvm::FoldingSetNodeID &ID) {
5465 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5466 }
5467
5468 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5469 NestedNameSpecifier *NNS, QualType NamedType,
5470 TagDecl *OwnedTagDecl) {
5471 ID.AddInteger(Keyword);
5472 ID.AddPointer(NNS);
5473 NamedType.Profile(ID);
5474 ID.AddPointer(OwnedTagDecl);
5475 }
5476
5477 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5478};
5479
5480/// Represents a qualified type name for which the type name is
5481/// dependent.
5482///
5483/// DependentNameType represents a class of dependent types that involve a
5484/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5485/// name of a type. The DependentNameType may start with a "typename" (for a
5486/// typename-specifier), "class", "struct", "union", or "enum" (for a
5487/// dependent elaborated-type-specifier), or nothing (in contexts where we
5488/// know that we must be referring to a type, e.g., in a base class specifier).
5489/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5490/// mode, this type is used with non-dependent names to delay name lookup until
5491/// instantiation.
5492class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5493 friend class ASTContext; // ASTContext creates these
5494
5495 /// The nested name specifier containing the qualifier.
5496 NestedNameSpecifier *NNS;
5497
5498 /// The type that this typename specifier refers to.
5499 const IdentifierInfo *Name;
5500
5501 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5502 const IdentifierInfo *Name, QualType CanonType)
5503 : TypeWithKeyword(Keyword, DependentName, CanonType,
5504 TypeDependence::DependentInstantiation |
5505 toTypeDependence(NNS->getDependence())),
5506 NNS(NNS), Name(Name) {}
5507
5508public:
5509 /// Retrieve the qualification on this type.
5510 NestedNameSpecifier *getQualifier() const { return NNS; }
5511
5512 /// Retrieve the type named by the typename specifier as an identifier.
5513 ///
5514 /// This routine will return a non-NULL identifier pointer when the
5515 /// form of the original typename was terminated by an identifier,
5516 /// e.g., "typename T::type".
5517 const IdentifierInfo *getIdentifier() const {
5518 return Name;
5519 }
5520
5521 bool isSugared() const { return false; }
5522 QualType desugar() const { return QualType(this, 0); }
5523
5524 void Profile(llvm::FoldingSetNodeID &ID) {
5525 Profile(ID, getKeyword(), NNS, Name);
5526 }
5527
5528 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5529 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5530 ID.AddInteger(Keyword);
5531 ID.AddPointer(NNS);
5532 ID.AddPointer(Name);
5533 }
5534
5535 static bool classof(const Type *T) {
5536 return T->getTypeClass() == DependentName;
5537 }
5538};
5539
5540/// Represents a template specialization type whose template cannot be
5541/// resolved, e.g.
5542/// A<T>::template B<T>
5543class alignas(8) DependentTemplateSpecializationType
5544 : public TypeWithKeyword,
5545 public llvm::FoldingSetNode {
5546 friend class ASTContext; // ASTContext creates these
5547
5548 /// The nested name specifier containing the qualifier.
5549 NestedNameSpecifier *NNS;
5550
5551 /// The identifier of the template.
5552 const IdentifierInfo *Name;
5553
5554 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5555 NestedNameSpecifier *NNS,
5556 const IdentifierInfo *Name,
5557 ArrayRef<TemplateArgument> Args,
5558 QualType Canon);
5559
5560 const TemplateArgument *getArgBuffer() const {
5561 return reinterpret_cast<const TemplateArgument*>(this+1);
5562 }
5563
5564 TemplateArgument *getArgBuffer() {
5565 return reinterpret_cast<TemplateArgument*>(this+1);
5566 }
5567
5568public:
5569 NestedNameSpecifier *getQualifier() const { return NNS; }
5570 const IdentifierInfo *getIdentifier() const { return Name; }
5571
5572 /// Retrieve the template arguments.
5573 const TemplateArgument *getArgs() const {
5574 return getArgBuffer();
5575 }
5576
5577 /// Retrieve the number of template arguments.
5578 unsigned getNumArgs() const {
5579 return DependentTemplateSpecializationTypeBits.NumArgs;
5580 }
5581
5582 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5583
5584 ArrayRef<TemplateArgument> template_arguments() const {
5585 return {getArgs(), getNumArgs()};
5586 }
5587
5588 using iterator = const TemplateArgument *;
5589
5590 iterator begin() const { return getArgs(); }
5591 iterator end() const; // inline in TemplateBase.h
5592
5593 bool isSugared() const { return false; }
5594 QualType desugar() const { return QualType(this, 0); }
5595
5596 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5597 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5598 }
5599
5600 static void Profile(llvm::FoldingSetNodeID &ID,
5601 const ASTContext &Context,
5602 ElaboratedTypeKeyword Keyword,
5603 NestedNameSpecifier *Qualifier,
5604 const IdentifierInfo *Name,
5605 ArrayRef<TemplateArgument> Args);
5606
5607 static bool classof(const Type *T) {
5608 return T->getTypeClass() == DependentTemplateSpecialization;
5609 }
5610};
5611
5612/// Represents a pack expansion of types.
5613///
5614/// Pack expansions are part of C++11 variadic templates. A pack
5615/// expansion contains a pattern, which itself contains one or more
5616/// "unexpanded" parameter packs. When instantiated, a pack expansion
5617/// produces a series of types, each instantiated from the pattern of
5618/// the expansion, where the Ith instantiation of the pattern uses the
5619/// Ith arguments bound to each of the unexpanded parameter packs. The
5620/// pack expansion is considered to "expand" these unexpanded
5621/// parameter packs.
5622///
5623/// \code
5624/// template<typename ...Types> struct tuple;
5625///
5626/// template<typename ...Types>
5627/// struct tuple_of_references {
5628/// typedef tuple<Types&...> type;
5629/// };
5630/// \endcode
5631///
5632/// Here, the pack expansion \c Types&... is represented via a
5633/// PackExpansionType whose pattern is Types&.
5634class PackExpansionType : public Type, public llvm::FoldingSetNode {
5635 friend class ASTContext; // ASTContext creates these
5636
5637 /// The pattern of the pack expansion.
5638 QualType Pattern;
5639
5640 PackExpansionType(QualType Pattern, QualType Canon,
5641 Optional<unsigned> NumExpansions)
5642 : Type(PackExpansion, Canon,
5643 (Pattern->getDependence() | TypeDependence::Dependent |
5644 TypeDependence::Instantiation) &
5645 ~TypeDependence::UnexpandedPack),
5646 Pattern(Pattern) {
5647 PackExpansionTypeBits.NumExpansions =
5648 NumExpansions ? *NumExpansions + 1 : 0;
5649 }
5650
5651public:
5652 /// Retrieve the pattern of this pack expansion, which is the
5653 /// type that will be repeatedly instantiated when instantiating the
5654 /// pack expansion itself.
5655 QualType getPattern() const { return Pattern; }
5656
5657 /// Retrieve the number of expansions that this pack expansion will
5658 /// generate, if known.
5659 Optional<unsigned> getNumExpansions() const {
5660 if (PackExpansionTypeBits.NumExpansions)
5661 return PackExpansionTypeBits.NumExpansions - 1;
5662 return None;
5663 }
5664
5665 bool isSugared() const { return false; }
5666 QualType desugar() const { return QualType(this, 0); }
5667
5668 void Profile(llvm::FoldingSetNodeID &ID) {
5669 Profile(ID, getPattern(), getNumExpansions());
5670 }
5671
5672 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5673 Optional<unsigned> NumExpansions) {
5674 ID.AddPointer(Pattern.getAsOpaquePtr());
5675 ID.AddBoolean(NumExpansions.hasValue());
5676 if (NumExpansions)
5677 ID.AddInteger(*NumExpansions);
5678 }
5679
5680 static bool classof(const Type *T) {
5681 return T->getTypeClass() == PackExpansion;
5682 }
5683};
5684
5685/// This class wraps the list of protocol qualifiers. For types that can
5686/// take ObjC protocol qualifers, they can subclass this class.
5687template <class T>
5688class ObjCProtocolQualifiers {
5689protected:
5690 ObjCProtocolQualifiers() = default;
5691
5692 ObjCProtocolDecl * const *getProtocolStorage() const {
5693 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5694 }
5695
5696 ObjCProtocolDecl **getProtocolStorage() {
5697 return static_cast<T*>(this)->getProtocolStorageImpl();
5698 }
5699
5700 void setNumProtocols(unsigned N) {
5701 static_cast<T*>(this)->setNumProtocolsImpl(N);
5702 }
5703
5704 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5705 setNumProtocols(protocols.size());
5706 assert(getNumProtocols() == protocols.size() &&((void)0)
5707 "bitfield overflow in protocol count")((void)0);
5708 if (!protocols.empty())
5709 memcpy(getProtocolStorage(), protocols.data(),
5710 protocols.size() * sizeof(ObjCProtocolDecl*));
5711 }
5712
5713public:
5714 using qual_iterator = ObjCProtocolDecl * const *;
5715 using qual_range = llvm::iterator_range<qual_iterator>;
5716
5717 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5718 qual_iterator qual_begin() const { return getProtocolStorage(); }
5719 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5720
5721 bool qual_empty() const { return getNumProtocols() == 0; }
5722
5723 /// Return the number of qualifying protocols in this type, or 0 if
5724 /// there are none.
5725 unsigned getNumProtocols() const {
5726 return static_cast<const T*>(this)->getNumProtocolsImpl();
5727 }
5728
5729 /// Fetch a protocol by index.
5730 ObjCProtocolDecl *getProtocol(unsigned I) const {
5731 assert(I < getNumProtocols() && "Out-of-range protocol access")((void)0);
5732 return qual_begin()[I];
5733 }
5734
5735 /// Retrieve all of the protocol qualifiers.
5736 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5737 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5738 }
5739};
5740
5741/// Represents a type parameter type in Objective C. It can take
5742/// a list of protocols.
5743class ObjCTypeParamType : public Type,
5744 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5745 public llvm::FoldingSetNode {
5746 friend class ASTContext;
5747 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5748
5749 /// The number of protocols stored on this type.
5750 unsigned NumProtocols : 6;
5751
5752 ObjCTypeParamDecl *OTPDecl;
5753
5754 /// The protocols are stored after the ObjCTypeParamType node. In the
5755 /// canonical type, the list of protocols are sorted alphabetically
5756 /// and uniqued.
5757 ObjCProtocolDecl **getProtocolStorageImpl();
5758
5759 /// Return the number of qualifying protocols in this interface type,
5760 /// or 0 if there are none.
5761 unsigned getNumProtocolsImpl() const {
5762 return NumProtocols;
5763 }
5764
5765 void setNumProtocolsImpl(unsigned N) {
5766 NumProtocols = N;
5767 }
5768
5769 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5770 QualType can,
5771 ArrayRef<ObjCProtocolDecl *> protocols);
5772
5773public:
5774 bool isSugared() const { return true; }
5775 QualType desugar() const { return getCanonicalTypeInternal(); }
5776
5777 static bool classof(const Type *T) {
5778 return T->getTypeClass() == ObjCTypeParam;
5779 }
5780
5781 void Profile(llvm::FoldingSetNodeID &ID);
5782 static void Profile(llvm::FoldingSetNodeID &ID,
5783 const ObjCTypeParamDecl *OTPDecl,
5784 QualType CanonicalType,
5785 ArrayRef<ObjCProtocolDecl *> protocols);
5786
5787 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5788};
5789
5790/// Represents a class type in Objective C.
5791///
5792/// Every Objective C type is a combination of a base type, a set of
5793/// type arguments (optional, for parameterized classes) and a list of
5794/// protocols.
5795///
5796/// Given the following declarations:
5797/// \code
5798/// \@class C<T>;
5799/// \@protocol P;
5800/// \endcode
5801///
5802/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5803/// with base C and no protocols.
5804///
5805/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5806/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5807/// protocol list.
5808/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5809/// and protocol list [P].
5810///
5811/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5812/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5813/// and no protocols.
5814///
5815/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5816/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5817/// this should get its own sugar class to better represent the source.
5818class ObjCObjectType : public Type,
5819 public ObjCProtocolQualifiers<ObjCObjectType> {
5820 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5821
5822 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5823 // after the ObjCObjectPointerType node.
5824 // ObjCObjectType.NumProtocols - the number of protocols stored
5825 // after the type arguments of ObjCObjectPointerType node.
5826 //
5827 // These protocols are those written directly on the type. If
5828 // protocol qualifiers ever become additive, the iterators will need
5829 // to get kindof complicated.
5830 //
5831 // In the canonical object type, these are sorted alphabetically
5832 // and uniqued.
5833
5834 /// Either a BuiltinType or an InterfaceType or sugar for either.
5835 QualType BaseType;
5836
5837 /// Cached superclass type.
5838 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5839 CachedSuperClassType;
5840
5841 QualType *getTypeArgStorage();
5842 const QualType *getTypeArgStorage() const {
5843 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5844 }
5845
5846 ObjCProtocolDecl **getProtocolStorageImpl();
5847 /// Return the number of qualifying protocols in this interface type,
5848 /// or 0 if there are none.
5849 unsigned getNumProtocolsImpl() const {
5850 return ObjCObjectTypeBits.NumProtocols;
5851 }
5852 void setNumProtocolsImpl(unsigned N) {
5853 ObjCObjectTypeBits.NumProtocols = N;
5854 }
5855
5856protected:
5857 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5858
5859 ObjCObjectType(QualType Canonical, QualType Base,
5860 ArrayRef<QualType> typeArgs,
5861 ArrayRef<ObjCProtocolDecl *> protocols,
5862 bool isKindOf);
5863
5864 ObjCObjectType(enum Nonce_ObjCInterface)
5865 : Type(ObjCInterface, QualType(), TypeDependence::None),
5866 BaseType(QualType(this_(), 0)) {
5867 ObjCObjectTypeBits.NumProtocols = 0;
5868 ObjCObjectTypeBits.NumTypeArgs = 0;
5869 ObjCObjectTypeBits.IsKindOf = 0;
5870 }
5871
5872 void computeSuperClassTypeSlow() const;
5873
5874public:
5875 /// Gets the base type of this object type. This is always (possibly
5876 /// sugar for) one of:
5877 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5878 /// user, which is a typedef for an ObjCObjectPointerType)
5879 /// - the 'Class' builtin type (same caveat)
5880 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5881 QualType getBaseType() const { return BaseType; }
5882
5883 bool isObjCId() const {
5884 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5885 }
5886
5887 bool isObjCClass() const {
5888 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5889 }
5890
5891 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5892 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5893 bool isObjCUnqualifiedIdOrClass() const {
5894 if (!qual_empty()) return false;
5895 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5896 return T->getKind() == BuiltinType::ObjCId ||
5897 T->getKind() == BuiltinType::ObjCClass;
5898 return false;
5899 }
5900 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5901 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5902
5903 /// Gets the interface declaration for this object type, if the base type
5904 /// really is an interface.
5905 ObjCInterfaceDecl *getInterface() const;
5906
5907 /// Determine whether this object type is "specialized", meaning
5908 /// that it has type arguments.
5909 bool isSpecialized() const;
5910
5911 /// Determine whether this object type was written with type arguments.
5912 bool isSpecializedAsWritten() const {
5913 return ObjCObjectTypeBits.NumTypeArgs > 0;
5914 }
5915
5916 /// Determine whether this object type is "unspecialized", meaning
5917 /// that it has no type arguments.
5918 bool isUnspecialized() const { return !isSpecialized(); }
5919
5920 /// Determine whether this object type is "unspecialized" as
5921 /// written, meaning that it has no type arguments.
5922 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5923
5924 /// Retrieve the type arguments of this object type (semantically).
5925 ArrayRef<QualType> getTypeArgs() const;
5926
5927 /// Retrieve the type arguments of this object type as they were
5928 /// written.
5929 ArrayRef<QualType> getTypeArgsAsWritten() const {
5930 return llvm::makeArrayRef(getTypeArgStorage(),
5931 ObjCObjectTypeBits.NumTypeArgs);
5932 }
5933
5934 /// Whether this is a "__kindof" type as written.
5935 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5936
5937 /// Whether this ia a "__kindof" type (semantically).
5938 bool isKindOfType() const;
5939
5940 /// Retrieve the type of the superclass of this object type.
5941 ///
5942 /// This operation substitutes any type arguments into the
5943 /// superclass of the current class type, potentially producing a
5944 /// specialization of the superclass type. Produces a null type if
5945 /// there is no superclass.
5946 QualType getSuperClassType() const {
5947 if (!CachedSuperClassType.getInt())
5948 computeSuperClassTypeSlow();
5949
5950 assert(CachedSuperClassType.getInt() && "Superclass not set?")((void)0);
5951 return QualType(CachedSuperClassType.getPointer(), 0);
5952 }
5953
5954 /// Strip off the Objective-C "kindof" type and (with it) any
5955 /// protocol qualifiers.
5956 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5957
5958 bool isSugared() const { return false; }
5959 QualType desugar() const { return QualType(this, 0); }
5960
5961 static bool classof(const Type *T) {
5962 return T->getTypeClass() == ObjCObject ||
5963 T->getTypeClass() == ObjCInterface;
5964 }
5965};
5966
5967/// A class providing a concrete implementation
5968/// of ObjCObjectType, so as to not increase the footprint of
5969/// ObjCInterfaceType. Code outside of ASTContext and the core type
5970/// system should not reference this type.
5971class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5972 friend class ASTContext;
5973
5974 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5975 // will need to be modified.
5976
5977 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5978 ArrayRef<QualType> typeArgs,
5979 ArrayRef<ObjCProtocolDecl *> protocols,
5980 bool isKindOf)
5981 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5982
5983public:
5984 void Profile(llvm::FoldingSetNodeID &ID);
5985 static void Profile(llvm::FoldingSetNodeID &ID,
5986 QualType Base,
5987 ArrayRef<QualType> typeArgs,
5988 ArrayRef<ObjCProtocolDecl *> protocols,
5989 bool isKindOf);
5990};
5991
5992inline QualType *ObjCObjectType::getTypeArgStorage() {
5993 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5994}
5995
5996inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5997 return reinterpret_cast<ObjCProtocolDecl**>(
5998 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5999}
6000
6001inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
6002 return reinterpret_cast<ObjCProtocolDecl**>(
6003 static_cast<ObjCTypeParamType*>(this)+1);
6004}
6005
6006/// Interfaces are the core concept in Objective-C for object oriented design.
6007/// They basically correspond to C++ classes. There are two kinds of interface
6008/// types: normal interfaces like `NSString`, and qualified interfaces, which
6009/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6010///
6011/// ObjCInterfaceType guarantees the following properties when considered
6012/// as a subtype of its superclass, ObjCObjectType:
6013/// - There are no protocol qualifiers. To reinforce this, code which
6014/// tries to invoke the protocol methods via an ObjCInterfaceType will
6015/// fail to compile.
6016/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6017/// T->getBaseType() == QualType(T, 0).
6018class ObjCInterfaceType : public ObjCObjectType {
6019 friend class ASTContext; // ASTContext creates these.
6020 friend class ASTReader;
6021 friend class ObjCInterfaceDecl;
6022 template <class T> friend class serialization::AbstractTypeReader;
6023
6024 mutable ObjCInterfaceDecl *Decl;
6025
6026 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6027 : ObjCObjectType(Nonce_ObjCInterface),
6028 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6029
6030public:
6031 /// Get the declaration of this interface.
6032 ObjCInterfaceDecl *getDecl() const { return Decl; }
6033
6034 bool isSugared() const { return false; }
6035 QualType desugar() const { return QualType(this, 0); }
6036
6037 static bool classof(const Type *T) {
6038 return T->getTypeClass() == ObjCInterface;
6039 }
6040
6041 // Nonsense to "hide" certain members of ObjCObjectType within this
6042 // class. People asking for protocols on an ObjCInterfaceType are
6043 // not going to get what they want: ObjCInterfaceTypes are
6044 // guaranteed to have no protocols.
6045 enum {
6046 qual_iterator,
6047 qual_begin,
6048 qual_end,
6049 getNumProtocols,
6050 getProtocol
6051 };
6052};
6053
6054inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6055 QualType baseType = getBaseType();
6056 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6057 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6058 return T->getDecl();
6059
6060 baseType = ObjT->getBaseType();
6061 }
6062
6063 return nullptr;
6064}
6065
6066/// Represents a pointer to an Objective C object.
6067///
6068/// These are constructed from pointer declarators when the pointee type is
6069/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6070/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6071/// and 'Class<P>' are translated into these.
6072///
6073/// Pointers to pointers to Objective C objects are still PointerTypes;
6074/// only the first level of pointer gets it own type implementation.
6075class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6076 friend class ASTContext; // ASTContext creates these.
6077
6078 QualType PointeeType;
6079
6080 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6081 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6082 PointeeType(Pointee) {}
6083
6084public:
6085 /// Gets the type pointed to by this ObjC pointer.
6086 /// The result will always be an ObjCObjectType or sugar thereof.
6087 QualType getPointeeType() const { return PointeeType; }
6088
6089 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6090 ///
6091 /// This method is equivalent to getPointeeType() except that
6092 /// it discards any typedefs (or other sugar) between this
6093 /// type and the "outermost" object type. So for:
6094 /// \code
6095 /// \@class A; \@protocol P; \@protocol Q;
6096 /// typedef A<P> AP;
6097 /// typedef A A1;
6098 /// typedef A1<P> A1P;
6099 /// typedef A1P<Q> A1PQ;
6100 /// \endcode
6101 /// For 'A*', getObjectType() will return 'A'.
6102 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6103 /// For 'AP*', getObjectType() will return 'A<P>'.
6104 /// For 'A1*', getObjectType() will return 'A'.
6105 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6106 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6107 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6108 /// adding protocols to a protocol-qualified base discards the
6109 /// old qualifiers (for now). But if it didn't, getObjectType()
6110 /// would return 'A1P<Q>' (and we'd have to make iterating over
6111 /// qualifiers more complicated).
6112 const ObjCObjectType *getObjectType() const {
6113 return PointeeType->castAs<ObjCObjectType>();
6114 }
6115
6116 /// If this pointer points to an Objective C
6117 /// \@interface type, gets the type for that interface. Any protocol
6118 /// qualifiers on the interface are ignored.
6119 ///
6120 /// \return null if the base type for this pointer is 'id' or 'Class'
6121 const ObjCInterfaceType *getInterfaceType() const;
6122
6123 /// If this pointer points to an Objective \@interface
6124 /// type, gets the declaration for that interface.
6125 ///
6126 /// \return null if the base type for this pointer is 'id' or 'Class'
6127 ObjCInterfaceDecl *getInterfaceDecl() const {
6128 return getObjectType()->getInterface();
6129 }
6130
6131 /// True if this is equivalent to the 'id' type, i.e. if
6132 /// its object type is the primitive 'id' type with no protocols.
6133 bool isObjCIdType() const {
6134 return getObjectType()->isObjCUnqualifiedId();
6135 }
6136
6137 /// True if this is equivalent to the 'Class' type,
6138 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6139 bool isObjCClassType() const {
6140 return getObjectType()->isObjCUnqualifiedClass();
6141 }
6142
6143 /// True if this is equivalent to the 'id' or 'Class' type,
6144 bool isObjCIdOrClassType() const {
6145 return getObjectType()->isObjCUnqualifiedIdOrClass();
6146 }
6147
6148 /// True if this is equivalent to 'id<P>' for some non-empty set of
6149 /// protocols.
6150 bool isObjCQualifiedIdType() const {
6151 return getObjectType()->isObjCQualifiedId();
6152 }
6153
6154 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6155 /// protocols.
6156 bool isObjCQualifiedClassType() const {
6157 return getObjectType()->isObjCQualifiedClass();
6158 }
6159
6160 /// Whether this is a "__kindof" type.
6161 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6162
6163 /// Whether this type is specialized, meaning that it has type arguments.
6164 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6165
6166 /// Whether this type is specialized, meaning that it has type arguments.
6167 bool isSpecializedAsWritten() const {
6168 return getObjectType()->isSpecializedAsWritten();
6169 }
6170
6171 /// Whether this type is unspecialized, meaning that is has no type arguments.
6172 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6173
6174 /// Determine whether this object type is "unspecialized" as
6175 /// written, meaning that it has no type arguments.
6176 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6177
6178 /// Retrieve the type arguments for this type.
6179 ArrayRef<QualType> getTypeArgs() const {
6180 return getObjectType()->getTypeArgs();
6181 }
6182
6183 /// Retrieve the type arguments for this type.
6184 ArrayRef<QualType> getTypeArgsAsWritten() const {
6185 return getObjectType()->getTypeArgsAsWritten();
6186 }
6187
6188 /// An iterator over the qualifiers on the object type. Provided
6189 /// for convenience. This will always iterate over the full set of
6190 /// protocols on a type, not just those provided directly.
6191 using qual_iterator = ObjCObjectType::qual_iterator;
6192 using qual_range = llvm::iterator_range<qual_iterator>;
6193
6194 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6195
6196 qual_iterator qual_begin() const {
6197 return getObjectType()->qual_begin();
6198 }
6199
6200 qual_iterator qual_end() const {
6201 return getObjectType()->qual_end();
6202 }
6203
6204 bool qual_empty() const { return getObjectType()->qual_empty(); }
6205
6206 /// Return the number of qualifying protocols on the object type.
6207 unsigned getNumProtocols() const {
6208 return getObjectType()->getNumProtocols();
6209 }
6210
6211 /// Retrieve a qualifying protocol by index on the object type.
6212 ObjCProtocolDecl *getProtocol(unsigned I) const {
6213 return getObjectType()->getProtocol(I);
6214 }
6215
6216 bool isSugared() const { return false; }
6217 QualType desugar() const { return QualType(this, 0); }
6218
6219 /// Retrieve the type of the superclass of this object pointer type.
6220 ///
6221 /// This operation substitutes any type arguments into the
6222 /// superclass of the current class type, potentially producing a
6223 /// pointer to a specialization of the superclass type. Produces a
6224 /// null type if there is no superclass.
6225 QualType getSuperClassType() const;
6226
6227 /// Strip off the Objective-C "kindof" type and (with it) any
6228 /// protocol qualifiers.
6229 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6230 const ASTContext &ctx) const;
6231
6232 void Profile(llvm::FoldingSetNodeID &ID) {
6233 Profile(ID, getPointeeType());
6234 }
6235
6236 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6237 ID.AddPointer(T.getAsOpaquePtr());
6238 }
6239
6240 static bool classof(const Type *T) {
6241 return T->getTypeClass() == ObjCObjectPointer;
6242 }
6243};
6244
6245class AtomicType : public Type, public llvm::FoldingSetNode {
6246 friend class ASTContext; // ASTContext creates these.
6247
6248 QualType ValueType;
6249
6250 AtomicType(QualType ValTy, QualType Canonical)
6251 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6252
6253public:
6254 /// Gets the type contained by this atomic type, i.e.
6255 /// the type returned by performing an atomic load of this atomic type.
6256 QualType getValueType() const { return ValueType; }
6257
6258 bool isSugared() const { return false; }
6259 QualType desugar() const { return QualType(this, 0); }
6260
6261 void Profile(llvm::FoldingSetNodeID &ID) {
6262 Profile(ID, getValueType());
6263 }
6264
6265 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6266 ID.AddPointer(T.getAsOpaquePtr());
6267 }
6268
6269 static bool classof(const Type *T) {
6270 return T->getTypeClass() == Atomic;
6271 }
6272};
6273
6274/// PipeType - OpenCL20.
6275class PipeType : public Type, public llvm::FoldingSetNode {
6276 friend class ASTContext; // ASTContext creates these.
6277
6278 QualType ElementType;
6279 bool isRead;
6280
6281 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6282 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6283 ElementType(elemType), isRead(isRead) {}
6284
6285public:
6286 QualType getElementType() const { return ElementType; }
6287
6288 bool isSugared() const { return false; }
6289
6290 QualType desugar() const { return QualType(this, 0); }
6291
6292 void Profile(llvm::FoldingSetNodeID &ID) {
6293 Profile(ID, getElementType(), isReadOnly());
6294 }
6295
6296 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6297 ID.AddPointer(T.getAsOpaquePtr());
6298 ID.AddBoolean(isRead);
6299 }
6300
6301 static bool classof(const Type *T) {
6302 return T->getTypeClass() == Pipe;
6303 }
6304
6305 bool isReadOnly() const { return isRead; }
6306};
6307
6308/// A fixed int type of a specified bitwidth.
6309class ExtIntType final : public Type, public llvm::FoldingSetNode {
6310 friend class ASTContext;
6311 unsigned IsUnsigned : 1;
6312 unsigned NumBits : 24;
6313
6314protected:
6315 ExtIntType(bool isUnsigned, unsigned NumBits);
6316
6317public:
6318 bool isUnsigned() const { return IsUnsigned; }
6319 bool isSigned() const { return !IsUnsigned; }
6320 unsigned getNumBits() const { return NumBits; }
6321
6322 bool isSugared() const { return false; }
6323 QualType desugar() const { return QualType(this, 0); }
6324
6325 void Profile(llvm::FoldingSetNodeID &ID) {
6326 Profile(ID, isUnsigned(), getNumBits());
6327 }
6328
6329 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6330 unsigned NumBits) {
6331 ID.AddBoolean(IsUnsigned);
6332 ID.AddInteger(NumBits);
6333 }
6334
6335 static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; }
6336};
6337
6338class DependentExtIntType final : public Type, public llvm::FoldingSetNode {
6339 friend class ASTContext;
6340 const ASTContext &Context;
6341 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6342
6343protected:
6344 DependentExtIntType(const ASTContext &Context, bool IsUnsigned,
6345 Expr *NumBits);
6346
6347public:
6348 bool isUnsigned() const;
6349 bool isSigned() const { return !isUnsigned(); }
6350 Expr *getNumBitsExpr() const;
6351
6352 bool isSugared() const { return false; }
6353 QualType desugar() const { return QualType(this, 0); }
6354
6355 void Profile(llvm::FoldingSetNodeID &ID) {
6356 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6357 }
6358 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6359 bool IsUnsigned, Expr *NumBitsExpr);
6360
6361 static bool classof(const Type *T) {
6362 return T->getTypeClass() == DependentExtInt;
6363 }
6364};
6365
6366/// A qualifier set is used to build a set of qualifiers.
6367class QualifierCollector : public Qualifiers {
6368public:
6369 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6370
6371 /// Collect any qualifiers on the given type and return an
6372 /// unqualified type. The qualifiers are assumed to be consistent
6373 /// with those already in the type.
6374 const Type *strip(QualType type) {
6375 addFastQualifiers(type.getLocalFastQualifiers());
6376 if (!type.hasLocalNonFastQualifiers())
6377 return type.getTypePtrUnsafe();
6378
6379 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6380 addConsistentQualifiers(extQuals->getQualifiers());
6381 return extQuals->getBaseType();
6382 }
6383
6384 /// Apply the collected qualifiers to the given type.
6385 QualType apply(const ASTContext &Context, QualType QT) const;
6386
6387 /// Apply the collected qualifiers to the given type.
6388 QualType apply(const ASTContext &Context, const Type* T) const;
6389};
6390
6391/// A container of type source information.
6392///
6393/// A client can read the relevant info using TypeLoc wrappers, e.g:
6394/// @code
6395/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6396/// TL.getBeginLoc().print(OS, SrcMgr);
6397/// @endcode
6398class alignas(8) TypeSourceInfo {
6399 // Contains a memory block after the class, used for type source information,
6400 // allocated by ASTContext.
6401 friend class ASTContext;
6402
6403 QualType Ty;
6404
6405 TypeSourceInfo(QualType ty) : Ty(ty) {}
6406
6407public:
6408 /// Return the type wrapped by this type source info.
6409 QualType getType() const { return Ty; }
6410
6411 /// Return the TypeLoc wrapper for the type source info.
6412 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6413
6414 /// Override the type stored in this TypeSourceInfo. Use with caution!
6415 void overrideType(QualType T) { Ty = T; }
6416};
6417
6418// Inline function definitions.
6419
6420inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6421 SplitQualType desugar =
6422 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6423 desugar.Quals.addConsistentQualifiers(Quals);
6424 return desugar;
6425}
6426
6427inline const Type *QualType::getTypePtr() const {
6428 return getCommonPtr()->BaseType;
6429}
6430
6431inline const Type *QualType::getTypePtrOrNull() const {
6432 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6433}
6434
6435inline SplitQualType QualType::split() const {
6436 if (!hasLocalNonFastQualifiers())
6437 return SplitQualType(getTypePtrUnsafe(),
6438 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6439
6440 const ExtQuals *eq = getExtQualsUnsafe();
6441 Qualifiers qs = eq->getQualifiers();
6442 qs.addFastQualifiers(getLocalFastQualifiers());
6443 return SplitQualType(eq->getBaseType(), qs);
6444}
6445
6446inline Qualifiers QualType::getLocalQualifiers() const {
6447 Qualifiers Quals;
6448 if (hasLocalNonFastQualifiers())
6449 Quals = getExtQualsUnsafe()->getQualifiers();
6450 Quals.addFastQualifiers(getLocalFastQualifiers());
6451 return Quals;
6452}
6453
6454inline Qualifiers QualType::getQualifiers() const {
6455 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6456 quals.addFastQualifiers(getLocalFastQualifiers());
6457 return quals;
6458}
6459
6460inline unsigned QualType::getCVRQualifiers() const {
6461 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6462 cvr |= getLocalCVRQualifiers();
6463 return cvr;
6464}
6465
6466inline QualType QualType::getCanonicalType() const {
6467 QualType canon = getCommonPtr()->CanonicalType;
6468 return canon.withFastQualifiers(getLocalFastQualifiers());
6469}
6470
6471inline bool QualType::isCanonical() const {
6472 return getTypePtr()->isCanonicalUnqualified();
6473}
6474
6475inline bool QualType::isCanonicalAsParam() const {
6476 if (!isCanonical()) return false;
6477 if (hasLocalQualifiers()) return false;
6478
6479 const Type *T = getTypePtr();
6480 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6481 return false;
6482
6483 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6484}
6485
6486inline bool QualType::isConstQualified() const {
6487 return isLocalConstQualified() ||
6488 getCommonPtr()->CanonicalType.isLocalConstQualified();
6489}
6490
6491inline bool QualType::isRestrictQualified() const {
6492 return isLocalRestrictQualified() ||
6493 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6494}
6495
6496
6497inline bool QualType::isVolatileQualified() const {
6498 return isLocalVolatileQualified() ||
6499 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6500}
6501
6502inline bool QualType::hasQualifiers() const {
6503 return hasLocalQualifiers() ||
6504 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6505}
6506
6507inline QualType QualType::getUnqualifiedType() const {
6508 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6509 return QualType(getTypePtr(), 0);
6510
6511 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6512}
6513
6514inline SplitQualType QualType::getSplitUnqualifiedType() const {
6515 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6516 return split();
6517
6518 return getSplitUnqualifiedTypeImpl(*this);
6519}
6520
6521inline void QualType::removeLocalConst() {
6522 removeLocalFastQualifiers(Qualifiers::Const);
6523}
6524
6525inline void QualType::removeLocalRestrict() {
6526 removeLocalFastQualifiers(Qualifiers::Restrict);
6527}
6528
6529inline void QualType::removeLocalVolatile() {
6530 removeLocalFastQualifiers(Qualifiers::Volatile);
6531}
6532
6533inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6534 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((void)0);
6535 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6536 "Fast bits differ from CVR bits!");
6537
6538 // Fast path: we don't need to touch the slow qualifiers.
6539 removeLocalFastQualifiers(Mask);
6540}
6541
6542/// Check if this type has any address space qualifier.
6543inline bool QualType::hasAddressSpace() const {
6544 return getQualifiers().hasAddressSpace();
6545}
6546
6547/// Return the address space of this type.
6548inline LangAS QualType::getAddressSpace() const {
6549 return getQualifiers().getAddressSpace();
6550}
6551
6552/// Return the gc attribute of this type.
6553inline Qualifiers::GC QualType::getObjCGCAttr() const {
6554 return getQualifiers().getObjCGCAttr();
6555}
6556
6557inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6558 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6559 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6560 return false;
6561}
6562
6563inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6564 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6565 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6566 return false;
6567}
6568
6569inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6570 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6571 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6572 return false;
6573}
6574
6575inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6576 if (const auto *PT = t.getAs<PointerType>()) {
6577 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6578 return FT->getExtInfo();
6579 } else if (const auto *FT = t.getAs<FunctionType>())
6580 return FT->getExtInfo();
6581
6582 return FunctionType::ExtInfo();
6583}
6584
6585inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6586 return getFunctionExtInfo(*t);
6587}
6588
6589/// Determine whether this type is more
6590/// qualified than the Other type. For example, "const volatile int"
6591/// is more qualified than "const int", "volatile int", and
6592/// "int". However, it is not more qualified than "const volatile
6593/// int".
6594inline bool QualType::isMoreQualifiedThan(QualType other) const {
6595 Qualifiers MyQuals = getQualifiers();
6596 Qualifiers OtherQuals = other.getQualifiers();
6597 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6598}
6599
6600/// Determine whether this type is at last
6601/// as qualified as the Other type. For example, "const volatile
6602/// int" is at least as qualified as "const int", "volatile int",
6603/// "int", and "const volatile int".
6604inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6605 Qualifiers OtherQuals = other.getQualifiers();
6606
6607 // Ignore __unaligned qualifier if this type is a void.
6608 if (getUnqualifiedType()->isVoidType())
6609 OtherQuals.removeUnaligned();
6610
6611 return getQualifiers().compatiblyIncludes(OtherQuals);
6612}
6613
6614/// If Type is a reference type (e.g., const
6615/// int&), returns the type that the reference refers to ("const
6616/// int"). Otherwise, returns the type itself. This routine is used
6617/// throughout Sema to implement C++ 5p6:
6618///
6619/// If an expression initially has the type "reference to T" (8.3.2,
6620/// 8.5.3), the type is adjusted to "T" prior to any further
6621/// analysis, the expression designates the object or function
6622/// denoted by the reference, and the expression is an lvalue.
6623inline QualType QualType::getNonReferenceType() const {
6624 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6625 return RefType->getPointeeType();
6626 else
6627 return *this;
6628}
6629
6630inline bool QualType::isCForbiddenLValueType() const {
6631 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6632 getTypePtr()->isFunctionType());
6633}
6634
6635/// Tests whether the type is categorized as a fundamental type.
6636///
6637/// \returns True for types specified in C++0x [basic.fundamental].
6638inline bool Type::isFundamentalType() const {
6639 return isVoidType() ||
6640 isNullPtrType() ||
6641 // FIXME: It's really annoying that we don't have an
6642 // 'isArithmeticType()' which agrees with the standard definition.
6643 (isArithmeticType() && !isEnumeralType());
6644}
6645
6646/// Tests whether the type is categorized as a compound type.
6647///
6648/// \returns True for types specified in C++0x [basic.compound].
6649inline bool Type::isCompoundType() const {
6650 // C++0x [basic.compound]p1:
6651 // Compound types can be constructed in the following ways:
6652 // -- arrays of objects of a given type [...];
6653 return isArrayType() ||
6654 // -- functions, which have parameters of given types [...];
6655 isFunctionType() ||
6656 // -- pointers to void or objects or functions [...];
6657 isPointerType() ||
6658 // -- references to objects or functions of a given type. [...]
6659 isReferenceType() ||
6660 // -- classes containing a sequence of objects of various types, [...];
6661 isRecordType() ||
6662 // -- unions, which are classes capable of containing objects of different
6663 // types at different times;
6664 isUnionType() ||
6665 // -- enumerations, which comprise a set of named constant values. [...];
6666 isEnumeralType() ||
6667 // -- pointers to non-static class members, [...].
6668 isMemberPointerType();
6669}
6670
6671inline bool Type::isFunctionType() const {
6672 return isa<FunctionType>(CanonicalType);
6673}
6674
6675inline bool Type::isPointerType() const {
6676 return isa<PointerType>(CanonicalType);
6677}
6678
6679inline bool Type::isAnyPointerType() const {
6680 return isPointerType() || isObjCObjectPointerType();
6681}
6682
6683inline bool Type::isBlockPointerType() const {
6684 return isa<BlockPointerType>(CanonicalType);
6685}
6686
6687inline bool Type::isReferenceType() const {
6688 return isa<ReferenceType>(CanonicalType);
6689}
6690
6691inline bool Type::isLValueReferenceType() const {
6692 return isa<LValueReferenceType>(CanonicalType);
6693}
6694
6695inline bool Type::isRValueReferenceType() const {
6696 return isa<RValueReferenceType>(CanonicalType);
6697}
6698
6699inline bool Type::isObjectPointerType() const {
6700 // Note: an "object pointer type" is not the same thing as a pointer to an
6701 // object type; rather, it is a pointer to an object type or a pointer to cv
6702 // void.
6703 if (const auto *T = getAs<PointerType>())
6704 return !T->getPointeeType()->isFunctionType();
6705 else
6706 return false;
6707}
6708
6709inline bool Type::isFunctionPointerType() const {
6710 if (const auto *T = getAs<PointerType>())
6711 return T->getPointeeType()->isFunctionType();
6712 else
6713 return false;
6714}
6715
6716inline bool Type::isFunctionReferenceType() const {
6717 if (const auto *T = getAs<ReferenceType>())
6718 return T->getPointeeType()->isFunctionType();
6719 else
6720 return false;
6721}
6722
6723inline bool Type::isMemberPointerType() const {
6724 return isa<MemberPointerType>(CanonicalType);
6725}
6726
6727inline bool Type::isMemberFunctionPointerType() const {
6728 if (const auto *T = getAs<MemberPointerType>())
6729 return T->isMemberFunctionPointer();
6730 else
6731 return false;
6732}
6733
6734inline bool Type::isMemberDataPointerType() const {
6735 if (const auto *T = getAs<MemberPointerType>())
6736 return T->isMemberDataPointer();
6737 else
6738 return false;
6739}
6740
6741inline bool Type::isArrayType() const {
6742 return isa<ArrayType>(CanonicalType);
6743}
6744
6745inline bool Type::isConstantArrayType() const {
6746 return isa<ConstantArrayType>(CanonicalType);
6747}
6748
6749inline bool Type::isIncompleteArrayType() const {
6750 return isa<IncompleteArrayType>(CanonicalType);
6751}
6752
6753inline bool Type::isVariableArrayType() const {
6754 return isa<VariableArrayType>(CanonicalType);
6755}
6756
6757inline bool Type::isDependentSizedArrayType() const {
6758 return isa<DependentSizedArrayType>(CanonicalType);
6759}
6760
6761inline bool Type::isBuiltinType() const {
6762 return isa<BuiltinType>(CanonicalType);
6763}
6764
6765inline bool Type::isRecordType() const {
6766 return isa<RecordType>(CanonicalType);
6767}
6768
6769inline bool Type::isEnumeralType() const {
6770 return isa<EnumType>(CanonicalType);
6771}
6772
6773inline bool Type::isAnyComplexType() const {
6774 return isa<ComplexType>(CanonicalType);
6775}
6776
6777inline bool Type::isVectorType() const {
6778 return isa<VectorType>(CanonicalType);
6779}
6780
6781inline bool Type::isExtVectorType() const {
6782 return isa<ExtVectorType>(CanonicalType);
6783}
6784
6785inline bool Type::isMatrixType() const {
6786 return isa<MatrixType>(CanonicalType);
6787}
6788
6789inline bool Type::isConstantMatrixType() const {
6790 return isa<ConstantMatrixType>(CanonicalType);
6791}
6792
6793inline bool Type::isDependentAddressSpaceType() const {
6794 return isa<DependentAddressSpaceType>(CanonicalType);
6795}
6796
6797inline bool Type::isObjCObjectPointerType() const {
6798 return isa<ObjCObjectPointerType>(CanonicalType);
6799}
6800
6801inline bool Type::isObjCObjectType() const {
6802 return isa<ObjCObjectType>(CanonicalType);
6803}
6804
6805inline bool Type::isObjCObjectOrInterfaceType() const {
6806 return isa<ObjCInterfaceType>(CanonicalType) ||
6807 isa<ObjCObjectType>(CanonicalType);
6808}
6809
6810inline bool Type::isAtomicType() const {
6811 return isa<AtomicType>(CanonicalType);
6812}
6813
6814inline bool Type::isUndeducedAutoType() const {
6815 return isa<AutoType>(CanonicalType);
6816}
6817
6818inline bool Type::isObjCQualifiedIdType() const {
6819 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6820 return OPT->isObjCQualifiedIdType();
6821 return false;
6822}
6823
6824inline bool Type::isObjCQualifiedClassType() const {
6825 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6826 return OPT->isObjCQualifiedClassType();
6827 return false;
6828}
6829
6830inline bool Type::isObjCIdType() const {
6831 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6832 return OPT->isObjCIdType();
6833 return false;
6834}
6835
6836inline bool Type::isObjCClassType() const {
6837 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6838 return OPT->isObjCClassType();
6839 return false;
6840}
6841
6842inline bool Type::isObjCSelType() const {
6843 if (const auto *OPT = getAs<PointerType>())
6844 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6845 return false;
6846}
6847
6848inline bool Type::isObjCBuiltinType() const {
6849 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6850}
6851
6852inline bool Type::isDecltypeType() const {
6853 return isa<DecltypeType>(this);
6854}
6855
6856#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6857 inline bool Type::is##Id##Type() const { \
6858 return isSpecificBuiltinType(BuiltinType::Id); \
6859 }
6860#include "clang/Basic/OpenCLImageTypes.def"
6861
6862inline bool Type::isSamplerT() const {
6863 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6864}
6865
6866inline bool Type::isEventT() const {
6867 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6868}
6869
6870inline bool Type::isClkEventT() const {
6871 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6872}
6873
6874inline bool Type::isQueueT() const {
6875 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6876}
6877
6878inline bool Type::isReserveIDT() const {
6879 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6880}
6881
6882inline bool Type::isImageType() const {
6883#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6884 return
6885#include "clang/Basic/OpenCLImageTypes.def"
6886 false; // end boolean or operation
6887}
6888
6889inline bool Type::isPipeType() const {
6890 return isa<PipeType>(CanonicalType);
6891}
6892
6893inline bool Type::isExtIntType() const {
6894 return isa<ExtIntType>(CanonicalType);
6895}
6896
6897#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6898 inline bool Type::is##Id##Type() const { \
6899 return isSpecificBuiltinType(BuiltinType::Id); \
6900 }
6901#include "clang/Basic/OpenCLExtensionTypes.def"
6902
6903inline bool Type::isOCLIntelSubgroupAVCType() const {
6904#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6905 isOCLIntelSubgroupAVC##Id##Type() ||
6906 return
6907#include "clang/Basic/OpenCLExtensionTypes.def"
6908 false; // end of boolean or operation
6909}
6910
6911inline bool Type::isOCLExtOpaqueType() const {
6912#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6913 return
6914#include "clang/Basic/OpenCLExtensionTypes.def"
6915 false; // end of boolean or operation
6916}
6917
6918inline bool Type::isOpenCLSpecificType() const {
6919 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6920 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6921}
6922
6923inline bool Type::isTemplateTypeParmType() const {
6924 return isa<TemplateTypeParmType>(CanonicalType);
6925}
6926
6927inline bool Type::isSpecificBuiltinType(unsigned K) const {
6928 if (const BuiltinType *BT = getAs<BuiltinType>()) {
6929 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
6930 }
6931 return false;
6932}
6933
6934inline bool Type::isPlaceholderType() const {
6935 if (const auto *BT = dyn_cast<BuiltinType>(this))
6936 return BT->isPlaceholderType();
6937 return false;
6938}
6939
6940inline const BuiltinType *Type::getAsPlaceholderType() const {
6941 if (const auto *BT = dyn_cast<BuiltinType>(this))
6942 if (BT->isPlaceholderType())
6943 return BT;
6944 return nullptr;
6945}
6946
6947inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6948 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((void)0);
6949 return isSpecificBuiltinType(K);
6950}
6951
6952inline bool Type::isNonOverloadPlaceholderType() const {
6953 if (const auto *BT = dyn_cast<BuiltinType>(this))
6954 return BT->isNonOverloadPlaceholderType();
6955 return false;
6956}
6957
6958inline bool Type::isVoidType() const {
6959 return isSpecificBuiltinType(BuiltinType::Void);
6960}
6961
6962inline bool Type::isHalfType() const {
6963 // FIXME: Should we allow complex __fp16? Probably not.
6964 return isSpecificBuiltinType(BuiltinType::Half);
6965}
6966
6967inline bool Type::isFloat16Type() const {
6968 return isSpecificBuiltinType(BuiltinType::Float16);
6969}
6970
6971inline bool Type::isBFloat16Type() const {
6972 return isSpecificBuiltinType(BuiltinType::BFloat16);
6973}
6974
6975inline bool Type::isFloat128Type() const {
6976 return isSpecificBuiltinType(BuiltinType::Float128);
6977}
6978
6979inline bool Type::isNullPtrType() const {
6980 return isSpecificBuiltinType(BuiltinType::NullPtr);
6981}
6982
6983bool IsEnumDeclComplete(EnumDecl *);
6984bool IsEnumDeclScoped(EnumDecl *);
6985
6986inline bool Type::isIntegerType() const {
6987 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6988 return BT->getKind() >= BuiltinType::Bool &&
6989 BT->getKind() <= BuiltinType::Int128;
6990 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6991 // Incomplete enum types are not treated as integer types.
6992 // FIXME: In C++, enum types are never integer types.
6993 return IsEnumDeclComplete(ET->getDecl()) &&
6994 !IsEnumDeclScoped(ET->getDecl());
6995 }
6996 return isExtIntType();
6997}
6998
6999inline bool Type::isFixedPointType() const {
7000 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7001 return BT->getKind() >= BuiltinType::ShortAccum &&
7002 BT->getKind() <= BuiltinType::SatULongFract;
7003 }
7004 return false;
7005}
7006
7007inline bool Type::isFixedPointOrIntegerType() const {
7008 return isFixedPointType() || isIntegerType();
7009}
7010
7011inline bool Type::isSaturatedFixedPointType() const {
7012 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7013 return BT->getKind() >= BuiltinType::SatShortAccum &&
7014 BT->getKind() <= BuiltinType::SatULongFract;
7015 }
7016 return false;
7017}
7018
7019inline bool Type::isUnsaturatedFixedPointType() const {
7020 return isFixedPointType() && !isSaturatedFixedPointType();
7021}
7022
7023inline bool Type::isSignedFixedPointType() const {
7024 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7025 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7026 BT->getKind() <= BuiltinType::LongAccum) ||
7027 (BT->getKind() >= BuiltinType::ShortFract &&
7028 BT->getKind() <= BuiltinType::LongFract) ||
7029 (BT->getKind() >= BuiltinType::SatShortAccum &&
7030 BT->getKind() <= BuiltinType::SatLongAccum) ||
7031 (BT->getKind() >= BuiltinType::SatShortFract &&
7032 BT->getKind() <= BuiltinType::SatLongFract));
7033 }
7034 return false;
7035}
7036
7037inline bool Type::isUnsignedFixedPointType() const {
7038 return isFixedPointType() && !isSignedFixedPointType();
7039}
7040
7041inline bool Type::isScalarType() const {
7042 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7043 return BT->getKind() > BuiltinType::Void &&
7044 BT->getKind() <= BuiltinType::NullPtr;
7045 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7046 // Enums are scalar types, but only if they are defined. Incomplete enums
7047 // are not treated as scalar types.
7048 return IsEnumDeclComplete(ET->getDecl());
7049 return isa<PointerType>(CanonicalType) ||
7050 isa<BlockPointerType>(CanonicalType) ||
7051 isa<MemberPointerType>(CanonicalType) ||
7052 isa<ComplexType>(CanonicalType) ||
7053 isa<ObjCObjectPointerType>(CanonicalType) ||
7054 isExtIntType();
7055}
7056
7057inline bool Type::isIntegralOrEnumerationType() const {
7058 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7059 return BT->getKind() >= BuiltinType::Bool &&
7060 BT->getKind() <= BuiltinType::Int128;
7061
7062 // Check for a complete enum type; incomplete enum types are not properly an
7063 // enumeration type in the sense required here.
7064 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7065 return IsEnumDeclComplete(ET->getDecl());
7066
7067 return isExtIntType();
7068}
7069
7070inline bool Type::isBooleanType() const {
7071 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7072 return BT->getKind() == BuiltinType::Bool;
7073 return false;
7074}
7075
7076inline bool Type::isUndeducedType() const {
7077 auto *DT = getContainedDeducedType();
7078 return DT && !DT->isDeduced();
7079}
7080
7081/// Determines whether this is a type for which one can define
7082/// an overloaded operator.
7083inline bool Type::isOverloadableType() const {
7084 return isDependentType() || isRecordType() || isEnumeralType();
7085}
7086
7087/// Determines whether this type is written as a typedef-name.
7088inline bool Type::isTypedefNameType() const {
7089 if (getAs<TypedefType>())
7090 return true;
7091 if (auto *TST = getAs<TemplateSpecializationType>())
7092 return TST->isTypeAlias();
7093 return false;
7094}
7095
7096/// Determines whether this type can decay to a pointer type.
7097inline bool Type::canDecayToPointerType() const {
7098 return isFunctionType() || isArrayType();
7099}
7100
7101inline bool Type::hasPointerRepresentation() const {
7102 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7103 isObjCObjectPointerType() || isNullPtrType());
7104}
7105
7106inline bool Type::hasObjCPointerRepresentation() const {
7107 return isObjCObjectPointerType();
7108}
7109
7110inline const Type *Type::getBaseElementTypeUnsafe() const {
7111 const Type *type = this;
7112 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7113 type = arrayType->getElementType().getTypePtr();
7114 return type;
7115}
7116
7117inline const Type *Type::getPointeeOrArrayElementType() const {
7118 const Type *type = this;
7119 if (type->isAnyPointerType())
7120 return type->getPointeeType().getTypePtr();
7121 else if (type->isArrayType())
7122 return type->getBaseElementTypeUnsafe();
7123 return type;
7124}
7125/// Insertion operator for partial diagnostics. This allows sending adress
7126/// spaces into a diagnostic with <<.
7127inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7128 LangAS AS) {
7129 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7130 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7131 return PD;
7132}
7133
7134/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7135/// into a diagnostic with <<.
7136inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7137 Qualifiers Q) {
7138 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7139 DiagnosticsEngine::ArgumentKind::ak_qual);
7140 return PD;
7141}
7142
7143/// Insertion operator for partial diagnostics. This allows sending QualType's
7144/// into a diagnostic with <<.
7145inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7146 QualType T) {
7147 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
7148 DiagnosticsEngine::ak_qualtype);
7149 return PD;
7150}
7151
7152// Helper class template that is used by Type::getAs to ensure that one does
7153// not try to look through a qualified type to get to an array type.
7154template <typename T>
7155using TypeIsArrayType =
7156 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7157 std::is_base_of<ArrayType, T>::value>;
7158
7159// Member-template getAs<specific type>'.
7160template <typename T> const T *Type::getAs() const {
7161 static_assert(!TypeIsArrayType<T>::value,
7162 "ArrayType cannot be used with getAs!");
7163
7164 // If this is directly a T type, return it.
7165 if (const auto *Ty = dyn_cast<T>(this))
7166 return Ty;
7167
7168 // If the canonical form of this type isn't the right kind, reject it.
7169 if (!isa<T>(CanonicalType))
7170 return nullptr;
7171
7172 // If this is a typedef for the type, strip the typedef off without
7173 // losing all typedef information.
7174 return cast<T>(getUnqualifiedDesugaredType());
7175}
7176
7177template <typename T> const T *Type::getAsAdjusted() const {
7178 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7179
7180 // If this is directly a T type, return it.
7181 if (const auto *Ty = dyn_cast<T>(this))
7182 return Ty;
7183
7184 // If the canonical form of this type isn't the right kind, reject it.
7185 if (!isa<T>(CanonicalType))
7186 return nullptr;
7187
7188 // Strip off type adjustments that do not modify the underlying nature of the
7189 // type.
7190 const Type *Ty = this;
7191 while (Ty) {
7192 if (const auto *A = dyn_cast<AttributedType>(Ty))
7193 Ty = A->getModifiedType().getTypePtr();
7194 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7195 Ty = E->desugar().getTypePtr();
7196 else if (const auto *P = dyn_cast<ParenType>(Ty))
7197 Ty = P->desugar().getTypePtr();
7198 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7199 Ty = A->desugar().getTypePtr();
7200 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7201 Ty = M->desugar().getTypePtr();
7202 else
7203 break;
7204 }
7205
7206 // Just because the canonical type is correct does not mean we can use cast<>,
7207 // since we may not have stripped off all the sugar down to the base type.
7208 return dyn_cast<T>(Ty);
7209}
7210
7211inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7212 // If this is directly an array type, return it.
7213 if (const auto *arr = dyn_cast<ArrayType>(this))
7214 return arr;
7215
7216 // If the canonical form of this type isn't the right kind, reject it.
7217 if (!isa<ArrayType>(CanonicalType))
7218 return nullptr;
7219
7220 // If this is a typedef for the type, strip the typedef off without
7221 // losing all typedef information.
7222 return cast<ArrayType>(getUnqualifiedDesugaredType());
7223}
7224
7225template <typename T> const T *Type::castAs() const {
7226 static_assert(!TypeIsArrayType<T>::value,
7227 "ArrayType cannot be used with castAs!");
7228
7229 if (const auto *ty = dyn_cast<T>(this)) return ty;
7230 assert(isa<T>(CanonicalType))((void)0);
7231 return cast<T>(getUnqualifiedDesugaredType());
7232}
7233
7234inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7235 assert(isa<ArrayType>(CanonicalType))((void)0);
7236 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7237 return cast<ArrayType>(getUnqualifiedDesugaredType());
7238}
7239
7240DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7241 QualType CanonicalPtr)
7242 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7243#ifndef NDEBUG1
7244 QualType Adjusted = getAdjustedType();
7245 (void)AttributedType::stripOuterNullability(Adjusted);
7246 assert(isa<PointerType>(Adjusted))((void)0);
7247#endif
7248}
7249
7250QualType DecayedType::getPointeeType() const {
7251 QualType Decayed = getDecayedType();
7252 (void)AttributedType::stripOuterNullability(Decayed);
7253 return cast<PointerType>(Decayed)->getPointeeType();
7254}
7255
7256// Get the decimal string representation of a fixed point type, represented
7257// as a scaled integer.
7258// TODO: At some point, we should change the arguments to instead just accept an
7259// APFixedPoint instead of APSInt and scale.
7260void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7261 unsigned Scale);
7262
7263} // namespace clang
7264
7265#endif // LLVM_CLANG_AST_TYPE_H

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include/llvm/ADT/PointerUnion.h

1//===- llvm/ADT/PointerUnion.h - Discriminated Union of 2 Ptrs --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the PointerUnion class, which is a discriminated union of
10// pointer types.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_POINTERUNION_H
15#define LLVM_ADT_POINTERUNION_H
16
17#include "llvm/ADT/DenseMapInfo.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/Support/PointerLikeTypeTraits.h"
20#include <cassert>
21#include <cstddef>
22#include <cstdint>
23
24namespace llvm {
25
26template <typename T> struct PointerUnionTypeSelectorReturn {
27 using Return = T;
28};
29
30/// Get a type based on whether two types are the same or not.
31///
32/// For:
33///
34/// \code
35/// using Ret = typename PointerUnionTypeSelector<T1, T2, EQ, NE>::Return;
36/// \endcode
37///
38/// Ret will be EQ type if T1 is same as T2 or NE type otherwise.
39template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
40struct PointerUnionTypeSelector {
41 using Return = typename PointerUnionTypeSelectorReturn<RET_NE>::Return;
42};
43
44template <typename T, typename RET_EQ, typename RET_NE>
45struct PointerUnionTypeSelector<T, T, RET_EQ, RET_NE> {
46 using Return = typename PointerUnionTypeSelectorReturn<RET_EQ>::Return;
47};
48
49template <typename T1, typename T2, typename RET_EQ, typename RET_NE>
50struct PointerUnionTypeSelectorReturn<
51 PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>> {
52 using Return =
53 typename PointerUnionTypeSelector<T1, T2, RET_EQ, RET_NE>::Return;
54};
55
56namespace pointer_union_detail {
57 /// Determine the number of bits required to store integers with values < n.
58 /// This is ceil(log2(n)).
59 constexpr int bitsRequired(unsigned n) {
60 return n > 1 ? 1 + bitsRequired((n + 1) / 2) : 0;
61 }
62
63 template <typename... Ts> constexpr int lowBitsAvailable() {
64 return std::min<int>({PointerLikeTypeTraits<Ts>::NumLowBitsAvailable...});
65 }
66
67 /// Find the index of a type in a list of types. TypeIndex<T, Us...>::Index
68 /// is the index of T in Us, or sizeof...(Us) if T does not appear in the
69 /// list.
70 template <typename T, typename ...Us> struct TypeIndex;
71 template <typename T, typename ...Us> struct TypeIndex<T, T, Us...> {
72 static constexpr int Index = 0;
73 };
74 template <typename T, typename U, typename... Us>
75 struct TypeIndex<T, U, Us...> {
76 static constexpr int Index = 1 + TypeIndex<T, Us...>::Index;
77 };
78 template <typename T> struct TypeIndex<T> {
79 static constexpr int Index = 0;
80 };
81
82 /// Find the first type in a list of types.
83 template <typename T, typename...> struct GetFirstType {
84 using type = T;
85 };
86
87 /// Provide PointerLikeTypeTraits for void* that is used by PointerUnion
88 /// for the template arguments.
89 template <typename ...PTs> class PointerUnionUIntTraits {
90 public:
91 static inline void *getAsVoidPointer(void *P) { return P; }
92 static inline void *getFromVoidPointer(void *P) { return P; }
93 static constexpr int NumLowBitsAvailable = lowBitsAvailable<PTs...>();
94 };
95
96 template <typename Derived, typename ValTy, int I, typename ...Types>
97 class PointerUnionMembers;
98
99 template <typename Derived, typename ValTy, int I>
100 class PointerUnionMembers<Derived, ValTy, I> {
101 protected:
102 ValTy Val;
103 PointerUnionMembers() = default;
104 PointerUnionMembers(ValTy Val) : Val(Val) {}
105
106 friend struct PointerLikeTypeTraits<Derived>;
107 };
108
109 template <typename Derived, typename ValTy, int I, typename Type,
110 typename ...Types>
111 class PointerUnionMembers<Derived, ValTy, I, Type, Types...>
112 : public PointerUnionMembers<Derived, ValTy, I + 1, Types...> {
113 using Base = PointerUnionMembers<Derived, ValTy, I + 1, Types...>;
114 public:
115 using Base::Base;
116 PointerUnionMembers() = default;
117 PointerUnionMembers(Type V)
118 : Base(ValTy(const_cast<void *>(
119 PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
120 I)) {}
121
122 using Base::operator=;
123 Derived &operator=(Type V) {
124 this->Val = ValTy(
125 const_cast<void *>(PointerLikeTypeTraits<Type>::getAsVoidPointer(V)),
126 I);
127 return static_cast<Derived &>(*this);
128 };
129 };
130}
131
132/// A discriminated union of two or more pointer types, with the discriminator
133/// in the low bit of the pointer.
134///
135/// This implementation is extremely efficient in space due to leveraging the
136/// low bits of the pointer, while exposing a natural and type-safe API.
137///
138/// Common use patterns would be something like this:
139/// PointerUnion<int*, float*> P;
140/// P = (int*)0;
141/// printf("%d %d", P.is<int*>(), P.is<float*>()); // prints "1 0"
142/// X = P.get<int*>(); // ok.
143/// Y = P.get<float*>(); // runtime assertion failure.
144/// Z = P.get<double*>(); // compile time failure.
145/// P = (float*)0;
146/// Y = P.get<float*>(); // ok.
147/// X = P.get<int*>(); // runtime assertion failure.
148template <typename... PTs>
149class PointerUnion
150 : public pointer_union_detail::PointerUnionMembers<
151 PointerUnion<PTs...>,
152 PointerIntPair<
153 void *, pointer_union_detail::bitsRequired(sizeof...(PTs)), int,
154 pointer_union_detail::PointerUnionUIntTraits<PTs...>>,
155 0, PTs...> {
156 // The first type is special because we want to directly cast a pointer to a
157 // default-initialized union to a pointer to the first type. But we don't
158 // want PointerUnion to be a 'template <typename First, typename ...Rest>'
159 // because it's much more convenient to have a name for the whole pack. So
160 // split off the first type here.
161 using First = typename pointer_union_detail::GetFirstType<PTs...>::type;
162 using Base = typename PointerUnion::PointerUnionMembers;
163
164public:
165 PointerUnion() = default;
166
167 PointerUnion(std::nullptr_t) : PointerUnion() {}
168 using Base::Base;
169
170 /// Test if the pointer held in the union is null, regardless of
171 /// which type it is.
172 bool isNull() const { return !this->Val.getPointer(); }
37
Assuming the condition is false
38
Returning zero, which participates in a condition later
173
174 explicit operator bool() const { return !isNull(); }
175
176 /// Test if the Union currently holds the type matching T.
177 template <typename T> bool is() const {
178 constexpr int Index = pointer_union_detail::TypeIndex<T, PTs...>::Index;
179 static_assert(Index < sizeof...(PTs),
180 "PointerUnion::is<T> given type not in the union");
181 return this->Val.getInt() == Index;
182 }
183
184 /// Returns the value of the specified pointer type.
185 ///
186 /// If the specified pointer type is incorrect, assert.
187 template <typename T> T get() const {
188 assert(is<T>() && "Invalid accessor called")((void)0);
189 return PointerLikeTypeTraits<T>::getFromVoidPointer(this->Val.getPointer());
190 }
191
192 /// Returns the current pointer if it is of the specified pointer type,
193 /// otherwise returns null.
194 template <typename T> T dyn_cast() const {
195 if (is<T>())
196 return get<T>();
197 return T();
198 }
199
200 /// If the union is set to the first pointer type get an address pointing to
201 /// it.
202 First const *getAddrOfPtr1() const {
203 return const_cast<PointerUnion *>(this)->getAddrOfPtr1();
204 }
205
206 /// If the union is set to the first pointer type get an address pointing to
207 /// it.
208 First *getAddrOfPtr1() {
209 assert(is<First>() && "Val is not the first pointer")((void)0);
210 assert(((void)0)
211 PointerLikeTypeTraits<First>::getAsVoidPointer(get<First>()) ==((void)0)
212 this->Val.getPointer() &&((void)0)
213 "Can't get the address because PointerLikeTypeTraits changes the ptr")((void)0);
214 return const_cast<First *>(
215 reinterpret_cast<const First *>(this->Val.getAddrOfPointer()));
216 }
217
218 /// Assignment from nullptr which just clears the union.
219 const PointerUnion &operator=(std::nullptr_t) {
220 this->Val.initWithPointer(nullptr);
221 return *this;
222 }
223
224 /// Assignment from elements of the union.
225 using Base::operator=;
226
227 void *getOpaqueValue() const { return this->Val.getOpaqueValue(); }
228 static inline PointerUnion getFromOpaqueValue(void *VP) {
229 PointerUnion V;
230 V.Val = decltype(V.Val)::getFromOpaqueValue(VP);
231 return V;
232 }
233};
234
235template <typename ...PTs>
236bool operator==(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
237 return lhs.getOpaqueValue() == rhs.getOpaqueValue();
238}
239
240template <typename ...PTs>
241bool operator!=(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
242 return lhs.getOpaqueValue() != rhs.getOpaqueValue();
243}
244
245template <typename ...PTs>
246bool operator<(PointerUnion<PTs...> lhs, PointerUnion<PTs...> rhs) {
247 return lhs.getOpaqueValue() < rhs.getOpaqueValue();
248}
249
250// Teach SmallPtrSet that PointerUnion is "basically a pointer", that has
251// # low bits available = min(PT1bits,PT2bits)-1.
252template <typename ...PTs>
253struct PointerLikeTypeTraits<PointerUnion<PTs...>> {
254 static inline void *getAsVoidPointer(const PointerUnion<PTs...> &P) {
255 return P.getOpaqueValue();
256 }
257
258 static inline PointerUnion<PTs...> getFromVoidPointer(void *P) {
259 return PointerUnion<PTs...>::getFromOpaqueValue(P);
260 }
261
262 // The number of bits available are the min of the pointer types minus the
263 // bits needed for the discriminator.
264 static constexpr int NumLowBitsAvailable = PointerLikeTypeTraits<decltype(
265 PointerUnion<PTs...>::Val)>::NumLowBitsAvailable;
266};
267
268// Teach DenseMap how to use PointerUnions as keys.
269template <typename ...PTs> struct DenseMapInfo<PointerUnion<PTs...>> {
270 using Union = PointerUnion<PTs...>;
271 using FirstInfo =
272 DenseMapInfo<typename pointer_union_detail::GetFirstType<PTs...>::type>;
273
274 static inline Union getEmptyKey() { return Union(FirstInfo::getEmptyKey()); }
275
276 static inline Union getTombstoneKey() {
277 return Union(FirstInfo::getTombstoneKey());
278 }
279
280 static unsigned getHashValue(const Union &UnionVal) {
281 intptr_t key = (intptr_t)UnionVal.getOpaqueValue();
282 return DenseMapInfo<intptr_t>::getHashValue(key);
283 }
284
285 static bool isEqual(const Union &LHS, const Union &RHS) {
286 return LHS == RHS;
287 }
288};
289
290} // end namespace llvm
291
292#endif // LLVM_ADT_POINTERUNION_H