Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/CodeGen/SelectionDAGNodes.h
Warning:line 1158, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AMDGPUISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp

1//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This is the parent TargetLowering class for hardware code gen
11/// targets.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AMDGPUISelLowering.h"
16#include "AMDGPU.h"
17#include "AMDGPUInstrInfo.h"
18#include "AMDGPUMachineFunction.h"
19#include "GCNSubtarget.h"
20#include "SIMachineFunctionInfo.h"
21#include "llvm/CodeGen/Analysis.h"
22#include "llvm/IR/DiagnosticInfo.h"
23#include "llvm/IR/IntrinsicsAMDGPU.h"
24#include "llvm/Support/CommandLine.h"
25#include "llvm/Support/KnownBits.h"
26#include "llvm/Target/TargetMachine.h"
27
28using namespace llvm;
29
30#include "AMDGPUGenCallingConv.inc"
31
32static cl::opt<bool> AMDGPUBypassSlowDiv(
33 "amdgpu-bypass-slow-div",
34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
35 cl::init(true));
36
37// Find a larger type to do a load / store of a vector with.
38EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
39 unsigned StoreSize = VT.getStoreSizeInBits();
40 if (StoreSize <= 32)
41 return EVT::getIntegerVT(Ctx, StoreSize);
42
43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32")((void)0);
44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
45}
46
47unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
48 EVT VT = Op.getValueType();
49 KnownBits Known = DAG.computeKnownBits(Op);
50 return VT.getSizeInBits() - Known.countMinLeadingZeros();
51}
52
53unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
54 EVT VT = Op.getValueType();
55
56 // In order for this to be a signed 24-bit value, bit 23, must
57 // be a sign bit.
58 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
59}
60
61AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
62 const AMDGPUSubtarget &STI)
63 : TargetLowering(TM), Subtarget(&STI) {
64 // Lower floating point store/load to integer store/load to reduce the number
65 // of patterns in tablegen.
66 setOperationAction(ISD::LOAD, MVT::f32, Promote);
67 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
68
69 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
70 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
71
72 setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
73 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
74
75 setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
76 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
77
78 setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
79 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
80
81 setOperationAction(ISD::LOAD, MVT::v6f32, Promote);
82 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32);
83
84 setOperationAction(ISD::LOAD, MVT::v7f32, Promote);
85 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32);
86
87 setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
88 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
89
90 setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
91 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
92
93 setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
94 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
95
96 setOperationAction(ISD::LOAD, MVT::i64, Promote);
97 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
98
99 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
100 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
101
102 setOperationAction(ISD::LOAD, MVT::f64, Promote);
103 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
104
105 setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
106 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
107
108 setOperationAction(ISD::LOAD, MVT::v3i64, Promote);
109 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32);
110
111 setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
112 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
113
114 setOperationAction(ISD::LOAD, MVT::v3f64, Promote);
115 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32);
116
117 setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
118 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
119
120 setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
121 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
122
123 setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
124 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
125
126 setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
127 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
128
129 setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
130 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
131
132 // There are no 64-bit extloads. These should be done as a 32-bit extload and
133 // an extension to 64-bit.
134 for (MVT VT : MVT::integer_valuetypes()) {
135 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
136 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
137 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
138 }
139
140 for (MVT VT : MVT::integer_valuetypes()) {
141 if (VT == MVT::i64)
142 continue;
143
144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
146 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
147 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
148
149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
150 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
151 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
152 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
153
154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
156 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
158 }
159
160 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
164 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
166 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
169 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
170 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
172 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
173 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
174 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
175 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
176 }
177
178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
179 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
180 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
181 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
182 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
183 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
184 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
185
186 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
187 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
188 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand);
189 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
190 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
191 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
192
193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
195 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand);
196 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
197 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
198 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
199
200 setOperationAction(ISD::STORE, MVT::f32, Promote);
201 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
202
203 setOperationAction(ISD::STORE, MVT::v2f32, Promote);
204 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
205
206 setOperationAction(ISD::STORE, MVT::v3f32, Promote);
207 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
208
209 setOperationAction(ISD::STORE, MVT::v4f32, Promote);
210 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
211
212 setOperationAction(ISD::STORE, MVT::v5f32, Promote);
213 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
214
215 setOperationAction(ISD::STORE, MVT::v6f32, Promote);
216 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32);
217
218 setOperationAction(ISD::STORE, MVT::v7f32, Promote);
219 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32);
220
221 setOperationAction(ISD::STORE, MVT::v8f32, Promote);
222 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
223
224 setOperationAction(ISD::STORE, MVT::v16f32, Promote);
225 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
226
227 setOperationAction(ISD::STORE, MVT::v32f32, Promote);
228 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
229
230 setOperationAction(ISD::STORE, MVT::i64, Promote);
231 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
232
233 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
234 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
235
236 setOperationAction(ISD::STORE, MVT::f64, Promote);
237 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
238
239 setOperationAction(ISD::STORE, MVT::v2f64, Promote);
240 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
241
242 setOperationAction(ISD::STORE, MVT::v3i64, Promote);
243 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32);
244
245 setOperationAction(ISD::STORE, MVT::v3f64, Promote);
246 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32);
247
248 setOperationAction(ISD::STORE, MVT::v4i64, Promote);
249 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
250
251 setOperationAction(ISD::STORE, MVT::v4f64, Promote);
252 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
253
254 setOperationAction(ISD::STORE, MVT::v8i64, Promote);
255 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
256
257 setOperationAction(ISD::STORE, MVT::v8f64, Promote);
258 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
259
260 setOperationAction(ISD::STORE, MVT::v16i64, Promote);
261 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
262
263 setOperationAction(ISD::STORE, MVT::v16f64, Promote);
264 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
265
266 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
267 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
268 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
269 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
270
271 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
272 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
273 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
274 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
275
276 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
277 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
278 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
279 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
280 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
281 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
282 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
283
284 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
285 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
286
287 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
288 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
289
290 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
291 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
292 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand);
293 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand);
294
295 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
296 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
297 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
298 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
299
300 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
301 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
302
303 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
304 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
305 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
306 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
307 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
308 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
309 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
310
311 setOperationAction(ISD::Constant, MVT::i32, Legal);
312 setOperationAction(ISD::Constant, MVT::i64, Legal);
313 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
314 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
315
316 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
317 setOperationAction(ISD::BRIND, MVT::Other, Expand);
318
319 // This is totally unsupported, just custom lower to produce an error.
320 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
321
322 // Library functions. These default to Expand, but we have instructions
323 // for them.
324 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
325 setOperationAction(ISD::FEXP2, MVT::f32, Legal);
326 setOperationAction(ISD::FPOW, MVT::f32, Legal);
327 setOperationAction(ISD::FLOG2, MVT::f32, Legal);
328 setOperationAction(ISD::FABS, MVT::f32, Legal);
329 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
330 setOperationAction(ISD::FRINT, MVT::f32, Legal);
331 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
332 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
333 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
334
335 setOperationAction(ISD::FROUND, MVT::f32, Custom);
336 setOperationAction(ISD::FROUND, MVT::f64, Custom);
337
338 setOperationAction(ISD::FLOG, MVT::f32, Custom);
339 setOperationAction(ISD::FLOG10, MVT::f32, Custom);
340 setOperationAction(ISD::FEXP, MVT::f32, Custom);
341
342
343 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
344 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
345
346 setOperationAction(ISD::FREM, MVT::f16, Custom);
347 setOperationAction(ISD::FREM, MVT::f32, Custom);
348 setOperationAction(ISD::FREM, MVT::f64, Custom);
349
350 // Expand to fneg + fadd.
351 setOperationAction(ISD::FSUB, MVT::f64, Expand);
352
353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom);
360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom);
361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom);
362 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom);
363 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
364 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom);
366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom);
367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom);
376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom);
377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom);
378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom);
379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom);
388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom);
389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
393 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
394 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
395
396 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
397 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
398 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
399
400 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
401 for (MVT VT : ScalarIntVTs) {
402 // These should use [SU]DIVREM, so set them to expand
403 setOperationAction(ISD::SDIV, VT, Expand);
404 setOperationAction(ISD::UDIV, VT, Expand);
405 setOperationAction(ISD::SREM, VT, Expand);
406 setOperationAction(ISD::UREM, VT, Expand);
407
408 // GPU does not have divrem function for signed or unsigned.
409 setOperationAction(ISD::SDIVREM, VT, Custom);
410 setOperationAction(ISD::UDIVREM, VT, Custom);
411
412 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
413 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
414 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
415
416 setOperationAction(ISD::BSWAP, VT, Expand);
417 setOperationAction(ISD::CTTZ, VT, Expand);
418 setOperationAction(ISD::CTLZ, VT, Expand);
419
420 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
421 setOperationAction(ISD::ADDC, VT, Legal);
422 setOperationAction(ISD::SUBC, VT, Legal);
423 setOperationAction(ISD::ADDE, VT, Legal);
424 setOperationAction(ISD::SUBE, VT, Legal);
425 }
426
427 // The hardware supports 32-bit FSHR, but not FSHL.
428 setOperationAction(ISD::FSHR, MVT::i32, Legal);
429
430 // The hardware supports 32-bit ROTR, but not ROTL.
431 setOperationAction(ISD::ROTL, MVT::i32, Expand);
432 setOperationAction(ISD::ROTL, MVT::i64, Expand);
433 setOperationAction(ISD::ROTR, MVT::i64, Expand);
434
435 setOperationAction(ISD::MULHU, MVT::i16, Expand);
436 setOperationAction(ISD::MULHS, MVT::i16, Expand);
437
438 setOperationAction(ISD::MUL, MVT::i64, Expand);
439 setOperationAction(ISD::MULHU, MVT::i64, Expand);
440 setOperationAction(ISD::MULHS, MVT::i64, Expand);
441 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
442 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
443 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
444 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
445 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
446
447 setOperationAction(ISD::SMIN, MVT::i32, Legal);
448 setOperationAction(ISD::UMIN, MVT::i32, Legal);
449 setOperationAction(ISD::SMAX, MVT::i32, Legal);
450 setOperationAction(ISD::UMAX, MVT::i32, Legal);
451
452 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
453 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
454 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
455 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
456
457 static const MVT::SimpleValueType VectorIntTypes[] = {
458 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32};
459
460 for (MVT VT : VectorIntTypes) {
461 // Expand the following operations for the current type by default.
462 setOperationAction(ISD::ADD, VT, Expand);
463 setOperationAction(ISD::AND, VT, Expand);
464 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
465 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
466 setOperationAction(ISD::MUL, VT, Expand);
467 setOperationAction(ISD::MULHU, VT, Expand);
468 setOperationAction(ISD::MULHS, VT, Expand);
469 setOperationAction(ISD::OR, VT, Expand);
470 setOperationAction(ISD::SHL, VT, Expand);
471 setOperationAction(ISD::SRA, VT, Expand);
472 setOperationAction(ISD::SRL, VT, Expand);
473 setOperationAction(ISD::ROTL, VT, Expand);
474 setOperationAction(ISD::ROTR, VT, Expand);
475 setOperationAction(ISD::SUB, VT, Expand);
476 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
477 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
478 setOperationAction(ISD::SDIV, VT, Expand);
479 setOperationAction(ISD::UDIV, VT, Expand);
480 setOperationAction(ISD::SREM, VT, Expand);
481 setOperationAction(ISD::UREM, VT, Expand);
482 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
483 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
484 setOperationAction(ISD::SDIVREM, VT, Expand);
485 setOperationAction(ISD::UDIVREM, VT, Expand);
486 setOperationAction(ISD::SELECT, VT, Expand);
487 setOperationAction(ISD::VSELECT, VT, Expand);
488 setOperationAction(ISD::SELECT_CC, VT, Expand);
489 setOperationAction(ISD::XOR, VT, Expand);
490 setOperationAction(ISD::BSWAP, VT, Expand);
491 setOperationAction(ISD::CTPOP, VT, Expand);
492 setOperationAction(ISD::CTTZ, VT, Expand);
493 setOperationAction(ISD::CTLZ, VT, Expand);
494 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
495 setOperationAction(ISD::SETCC, VT, Expand);
496 }
497
498 static const MVT::SimpleValueType FloatVectorTypes[] = {
499 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32};
500
501 for (MVT VT : FloatVectorTypes) {
502 setOperationAction(ISD::FABS, VT, Expand);
503 setOperationAction(ISD::FMINNUM, VT, Expand);
504 setOperationAction(ISD::FMAXNUM, VT, Expand);
505 setOperationAction(ISD::FADD, VT, Expand);
506 setOperationAction(ISD::FCEIL, VT, Expand);
507 setOperationAction(ISD::FCOS, VT, Expand);
508 setOperationAction(ISD::FDIV, VT, Expand);
509 setOperationAction(ISD::FEXP2, VT, Expand);
510 setOperationAction(ISD::FEXP, VT, Expand);
511 setOperationAction(ISD::FLOG2, VT, Expand);
512 setOperationAction(ISD::FREM, VT, Expand);
513 setOperationAction(ISD::FLOG, VT, Expand);
514 setOperationAction(ISD::FLOG10, VT, Expand);
515 setOperationAction(ISD::FPOW, VT, Expand);
516 setOperationAction(ISD::FFLOOR, VT, Expand);
517 setOperationAction(ISD::FTRUNC, VT, Expand);
518 setOperationAction(ISD::FMUL, VT, Expand);
519 setOperationAction(ISD::FMA, VT, Expand);
520 setOperationAction(ISD::FRINT, VT, Expand);
521 setOperationAction(ISD::FNEARBYINT, VT, Expand);
522 setOperationAction(ISD::FSQRT, VT, Expand);
523 setOperationAction(ISD::FSIN, VT, Expand);
524 setOperationAction(ISD::FSUB, VT, Expand);
525 setOperationAction(ISD::FNEG, VT, Expand);
526 setOperationAction(ISD::VSELECT, VT, Expand);
527 setOperationAction(ISD::SELECT_CC, VT, Expand);
528 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
529 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
530 setOperationAction(ISD::SETCC, VT, Expand);
531 setOperationAction(ISD::FCANONICALIZE, VT, Expand);
532 }
533
534 // This causes using an unrolled select operation rather than expansion with
535 // bit operations. This is in general better, but the alternative using BFI
536 // instructions may be better if the select sources are SGPRs.
537 setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
538 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
539
540 setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
541 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
542
543 setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
544 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
545
546 setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
547 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
548
549 setOperationAction(ISD::SELECT, MVT::v6f32, Promote);
550 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32);
551
552 setOperationAction(ISD::SELECT, MVT::v7f32, Promote);
553 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32);
554
555 // There are no libcalls of any kind.
556 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
557 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
558
559 setSchedulingPreference(Sched::RegPressure);
560 setJumpIsExpensive(true);
561
562 // FIXME: This is only partially true. If we have to do vector compares, any
563 // SGPR pair can be a condition register. If we have a uniform condition, we
564 // are better off doing SALU operations, where there is only one SCC. For now,
565 // we don't have a way of knowing during instruction selection if a condition
566 // will be uniform and we always use vector compares. Assume we are using
567 // vector compares until that is fixed.
568 setHasMultipleConditionRegisters(true);
569
570 setMinCmpXchgSizeInBits(32);
571 setSupportsUnalignedAtomics(false);
572
573 PredictableSelectIsExpensive = false;
574
575 // We want to find all load dependencies for long chains of stores to enable
576 // merging into very wide vectors. The problem is with vectors with > 4
577 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
578 // vectors are a legal type, even though we have to split the loads
579 // usually. When we can more precisely specify load legality per address
580 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
581 // smarter so that they can figure out what to do in 2 iterations without all
582 // N > 4 stores on the same chain.
583 GatherAllAliasesMaxDepth = 16;
584
585 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
586 // about these during lowering.
587 MaxStoresPerMemcpy = 0xffffffff;
588 MaxStoresPerMemmove = 0xffffffff;
589 MaxStoresPerMemset = 0xffffffff;
590
591 // The expansion for 64-bit division is enormous.
592 if (AMDGPUBypassSlowDiv)
593 addBypassSlowDiv(64, 32);
594
595 setTargetDAGCombine(ISD::BITCAST);
596 setTargetDAGCombine(ISD::SHL);
597 setTargetDAGCombine(ISD::SRA);
598 setTargetDAGCombine(ISD::SRL);
599 setTargetDAGCombine(ISD::TRUNCATE);
600 setTargetDAGCombine(ISD::MUL);
601 setTargetDAGCombine(ISD::MULHU);
602 setTargetDAGCombine(ISD::MULHS);
603 setTargetDAGCombine(ISD::SELECT);
604 setTargetDAGCombine(ISD::SELECT_CC);
605 setTargetDAGCombine(ISD::STORE);
606 setTargetDAGCombine(ISD::FADD);
607 setTargetDAGCombine(ISD::FSUB);
608 setTargetDAGCombine(ISD::FNEG);
609 setTargetDAGCombine(ISD::FABS);
610 setTargetDAGCombine(ISD::AssertZext);
611 setTargetDAGCombine(ISD::AssertSext);
612 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
613}
614
615bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const {
616 if (getTargetMachine().Options.NoSignedZerosFPMath)
617 return true;
618
619 const auto Flags = Op.getNode()->getFlags();
620 if (Flags.hasNoSignedZeros())
621 return true;
622
623 return false;
624}
625
626//===----------------------------------------------------------------------===//
627// Target Information
628//===----------------------------------------------------------------------===//
629
630LLVM_READNONE__attribute__((__const__))
631static bool fnegFoldsIntoOp(unsigned Opc) {
632 switch (Opc) {
633 case ISD::FADD:
634 case ISD::FSUB:
635 case ISD::FMUL:
636 case ISD::FMA:
637 case ISD::FMAD:
638 case ISD::FMINNUM:
639 case ISD::FMAXNUM:
640 case ISD::FMINNUM_IEEE:
641 case ISD::FMAXNUM_IEEE:
642 case ISD::FSIN:
643 case ISD::FTRUNC:
644 case ISD::FRINT:
645 case ISD::FNEARBYINT:
646 case ISD::FCANONICALIZE:
647 case AMDGPUISD::RCP:
648 case AMDGPUISD::RCP_LEGACY:
649 case AMDGPUISD::RCP_IFLAG:
650 case AMDGPUISD::SIN_HW:
651 case AMDGPUISD::FMUL_LEGACY:
652 case AMDGPUISD::FMIN_LEGACY:
653 case AMDGPUISD::FMAX_LEGACY:
654 case AMDGPUISD::FMED3:
655 // TODO: handle llvm.amdgcn.fma.legacy
656 return true;
657 default:
658 return false;
659 }
660}
661
662/// \p returns true if the operation will definitely need to use a 64-bit
663/// encoding, and thus will use a VOP3 encoding regardless of the source
664/// modifiers.
665LLVM_READONLY__attribute__((__pure__))
666static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
667 return N->getNumOperands() > 2 || VT == MVT::f64;
668}
669
670// Most FP instructions support source modifiers, but this could be refined
671// slightly.
672LLVM_READONLY__attribute__((__pure__))
673static bool hasSourceMods(const SDNode *N) {
674 if (isa<MemSDNode>(N))
675 return false;
676
677 switch (N->getOpcode()) {
678 case ISD::CopyToReg:
679 case ISD::SELECT:
680 case ISD::FDIV:
681 case ISD::FREM:
682 case ISD::INLINEASM:
683 case ISD::INLINEASM_BR:
684 case AMDGPUISD::DIV_SCALE:
685 case ISD::INTRINSIC_W_CHAIN:
686
687 // TODO: Should really be looking at the users of the bitcast. These are
688 // problematic because bitcasts are used to legalize all stores to integer
689 // types.
690 case ISD::BITCAST:
691 return false;
692 case ISD::INTRINSIC_WO_CHAIN: {
693 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
694 case Intrinsic::amdgcn_interp_p1:
695 case Intrinsic::amdgcn_interp_p2:
696 case Intrinsic::amdgcn_interp_mov:
697 case Intrinsic::amdgcn_interp_p1_f16:
698 case Intrinsic::amdgcn_interp_p2_f16:
699 return false;
700 default:
701 return true;
702 }
703 }
704 default:
705 return true;
706 }
707}
708
709bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
710 unsigned CostThreshold) {
711 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
712 // it is truly free to use a source modifier in all cases. If there are
713 // multiple users but for each one will necessitate using VOP3, there will be
714 // a code size increase. Try to avoid increasing code size unless we know it
715 // will save on the instruction count.
716 unsigned NumMayIncreaseSize = 0;
717 MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
718
719 // XXX - Should this limit number of uses to check?
720 for (const SDNode *U : N->uses()) {
721 if (!hasSourceMods(U))
722 return false;
723
724 if (!opMustUseVOP3Encoding(U, VT)) {
725 if (++NumMayIncreaseSize > CostThreshold)
726 return false;
727 }
728 }
729
730 return true;
731}
732
733EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
734 ISD::NodeType ExtendKind) const {
735 assert(!VT.isVector() && "only scalar expected")((void)0);
736
737 // Round to the next multiple of 32-bits.
738 unsigned Size = VT.getSizeInBits();
739 if (Size <= 32)
740 return MVT::i32;
741 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
742}
743
744MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
745 return MVT::i32;
746}
747
748bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
749 return true;
750}
751
752// The backend supports 32 and 64 bit floating point immediates.
753// FIXME: Why are we reporting vectors of FP immediates as legal?
754bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
755 bool ForCodeSize) const {
756 EVT ScalarVT = VT.getScalarType();
757 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
758 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
759}
760
761// We don't want to shrink f64 / f32 constants.
762bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
763 EVT ScalarVT = VT.getScalarType();
764 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
765}
766
767bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
768 ISD::LoadExtType ExtTy,
769 EVT NewVT) const {
770 // TODO: This may be worth removing. Check regression tests for diffs.
771 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
772 return false;
773
774 unsigned NewSize = NewVT.getStoreSizeInBits();
775
776 // If we are reducing to a 32-bit load or a smaller multi-dword load,
777 // this is always better.
778 if (NewSize >= 32)
779 return true;
780
781 EVT OldVT = N->getValueType(0);
782 unsigned OldSize = OldVT.getStoreSizeInBits();
783
784 MemSDNode *MN = cast<MemSDNode>(N);
785 unsigned AS = MN->getAddressSpace();
786 // Do not shrink an aligned scalar load to sub-dword.
787 // Scalar engine cannot do sub-dword loads.
788 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
789 (AS == AMDGPUAS::CONSTANT_ADDRESS ||
790 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
791 (isa<LoadSDNode>(N) &&
792 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
793 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
794 return false;
795
796 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
797 // extloads, so doing one requires using a buffer_load. In cases where we
798 // still couldn't use a scalar load, using the wider load shouldn't really
799 // hurt anything.
800
801 // If the old size already had to be an extload, there's no harm in continuing
802 // to reduce the width.
803 return (OldSize < 32);
804}
805
806bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
807 const SelectionDAG &DAG,
808 const MachineMemOperand &MMO) const {
809
810 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits())((void)0);
811
812 if (LoadTy.getScalarType() == MVT::i32)
813 return false;
814
815 unsigned LScalarSize = LoadTy.getScalarSizeInBits();
816 unsigned CastScalarSize = CastTy.getScalarSizeInBits();
817
818 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
819 return false;
820
821 bool Fast = false;
822 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
823 CastTy, MMO, &Fast) &&
824 Fast;
825}
826
827// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
828// profitable with the expansion for 64-bit since it's generally good to
829// speculate things.
830// FIXME: These should really have the size as a parameter.
831bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
832 return true;
833}
834
835bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
836 return true;
837}
838
839bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const {
840 switch (N->getOpcode()) {
841 case ISD::EntryToken:
842 case ISD::TokenFactor:
843 return true;
844 case ISD::INTRINSIC_WO_CHAIN: {
845 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
846 switch (IntrID) {
847 case Intrinsic::amdgcn_readfirstlane:
848 case Intrinsic::amdgcn_readlane:
849 return true;
850 }
851 return false;
852 }
853 case ISD::LOAD:
854 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
855 AMDGPUAS::CONSTANT_ADDRESS_32BIT)
856 return true;
857 return false;
858 }
859 return false;
860}
861
862SDValue AMDGPUTargetLowering::getNegatedExpression(
863 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
864 NegatibleCost &Cost, unsigned Depth) const {
865
866 switch (Op.getOpcode()) {
867 case ISD::FMA:
868 case ISD::FMAD: {
869 // Negating a fma is not free if it has users without source mods.
870 if (!allUsesHaveSourceMods(Op.getNode()))
871 return SDValue();
872 break;
873 }
874 default:
875 break;
876 }
877
878 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
879 ForCodeSize, Cost, Depth);
880}
881
882//===---------------------------------------------------------------------===//
883// Target Properties
884//===---------------------------------------------------------------------===//
885
886bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
887 assert(VT.isFloatingPoint())((void)0);
888
889 // Packed operations do not have a fabs modifier.
890 return VT == MVT::f32 || VT == MVT::f64 ||
891 (Subtarget->has16BitInsts() && VT == MVT::f16);
892}
893
894bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
895 assert(VT.isFloatingPoint())((void)0);
896 // Report this based on the end legalized type.
897 VT = VT.getScalarType();
898 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16;
899}
900
901bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
902 unsigned NumElem,
903 unsigned AS) const {
904 return true;
905}
906
907bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
908 // There are few operations which truly have vector input operands. Any vector
909 // operation is going to involve operations on each component, and a
910 // build_vector will be a copy per element, so it always makes sense to use a
911 // build_vector input in place of the extracted element to avoid a copy into a
912 // super register.
913 //
914 // We should probably only do this if all users are extracts only, but this
915 // should be the common case.
916 return true;
917}
918
919bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
920 // Truncate is just accessing a subregister.
921
922 unsigned SrcSize = Source.getSizeInBits();
923 unsigned DestSize = Dest.getSizeInBits();
924
925 return DestSize < SrcSize && DestSize % 32 == 0 ;
926}
927
928bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
929 // Truncate is just accessing a subregister.
930
931 unsigned SrcSize = Source->getScalarSizeInBits();
932 unsigned DestSize = Dest->getScalarSizeInBits();
933
934 if (DestSize== 16 && Subtarget->has16BitInsts())
935 return SrcSize >= 32;
936
937 return DestSize < SrcSize && DestSize % 32 == 0;
938}
939
940bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
941 unsigned SrcSize = Src->getScalarSizeInBits();
942 unsigned DestSize = Dest->getScalarSizeInBits();
943
944 if (SrcSize == 16 && Subtarget->has16BitInsts())
945 return DestSize >= 32;
946
947 return SrcSize == 32 && DestSize == 64;
948}
949
950bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
951 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
952 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
953 // this will enable reducing 64-bit operations the 32-bit, which is always
954 // good.
955
956 if (Src == MVT::i16)
957 return Dest == MVT::i32 ||Dest == MVT::i64 ;
958
959 return Src == MVT::i32 && Dest == MVT::i64;
960}
961
962bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
963 return isZExtFree(Val.getValueType(), VT2);
964}
965
966bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
967 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
968 // limited number of native 64-bit operations. Shrinking an operation to fit
969 // in a single 32-bit register should always be helpful. As currently used,
970 // this is much less general than the name suggests, and is only used in
971 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
972 // not profitable, and may actually be harmful.
973 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
974}
975
976//===---------------------------------------------------------------------===//
977// TargetLowering Callbacks
978//===---------------------------------------------------------------------===//
979
980CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
981 bool IsVarArg) {
982 switch (CC) {
983 case CallingConv::AMDGPU_VS:
984 case CallingConv::AMDGPU_GS:
985 case CallingConv::AMDGPU_PS:
986 case CallingConv::AMDGPU_CS:
987 case CallingConv::AMDGPU_HS:
988 case CallingConv::AMDGPU_ES:
989 case CallingConv::AMDGPU_LS:
990 return CC_AMDGPU;
991 case CallingConv::C:
992 case CallingConv::Fast:
993 case CallingConv::Cold:
994 return CC_AMDGPU_Func;
995 case CallingConv::AMDGPU_Gfx:
996 return CC_SI_Gfx;
997 case CallingConv::AMDGPU_KERNEL:
998 case CallingConv::SPIR_KERNEL:
999 default:
1000 report_fatal_error("Unsupported calling convention for call");
1001 }
1002}
1003
1004CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
1005 bool IsVarArg) {
1006 switch (CC) {
1007 case CallingConv::AMDGPU_KERNEL:
1008 case CallingConv::SPIR_KERNEL:
1009 llvm_unreachable("kernels should not be handled here")__builtin_unreachable();
1010 case CallingConv::AMDGPU_VS:
1011 case CallingConv::AMDGPU_GS:
1012 case CallingConv::AMDGPU_PS:
1013 case CallingConv::AMDGPU_CS:
1014 case CallingConv::AMDGPU_HS:
1015 case CallingConv::AMDGPU_ES:
1016 case CallingConv::AMDGPU_LS:
1017 return RetCC_SI_Shader;
1018 case CallingConv::AMDGPU_Gfx:
1019 return RetCC_SI_Gfx;
1020 case CallingConv::C:
1021 case CallingConv::Fast:
1022 case CallingConv::Cold:
1023 return RetCC_AMDGPU_Func;
1024 default:
1025 report_fatal_error("Unsupported calling convention.");
1026 }
1027}
1028
1029/// The SelectionDAGBuilder will automatically promote function arguments
1030/// with illegal types. However, this does not work for the AMDGPU targets
1031/// since the function arguments are stored in memory as these illegal types.
1032/// In order to handle this properly we need to get the original types sizes
1033/// from the LLVM IR Function and fixup the ISD:InputArg values before
1034/// passing them to AnalyzeFormalArguments()
1035
1036/// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
1037/// input values across multiple registers. Each item in the Ins array
1038/// represents a single value that will be stored in registers. Ins[x].VT is
1039/// the value type of the value that will be stored in the register, so
1040/// whatever SDNode we lower the argument to needs to be this type.
1041///
1042/// In order to correctly lower the arguments we need to know the size of each
1043/// argument. Since Ins[x].VT gives us the size of the register that will
1044/// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1045/// for the orignal function argument so that we can deduce the correct memory
1046/// type to use for Ins[x]. In most cases the correct memory type will be
1047/// Ins[x].ArgVT. However, this will not always be the case. If, for example,
1048/// we have a kernel argument of type v8i8, this argument will be split into
1049/// 8 parts and each part will be represented by its own item in the Ins array.
1050/// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1051/// the argument before it was split. From this, we deduce that the memory type
1052/// for each individual part is i8. We pass the memory type as LocVT to the
1053/// calling convention analysis function and the register type (Ins[x].VT) as
1054/// the ValVT.
1055void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1056 CCState &State,
1057 const SmallVectorImpl<ISD::InputArg> &Ins) const {
1058 const MachineFunction &MF = State.getMachineFunction();
1059 const Function &Fn = MF.getFunction();
1060 LLVMContext &Ctx = Fn.getParent()->getContext();
1061 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1062 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1063 CallingConv::ID CC = Fn.getCallingConv();
1064
1065 Align MaxAlign = Align(1);
1066 uint64_t ExplicitArgOffset = 0;
1067 const DataLayout &DL = Fn.getParent()->getDataLayout();
1068
1069 unsigned InIndex = 0;
1070
1071 for (const Argument &Arg : Fn.args()) {
1072 const bool IsByRef = Arg.hasByRefAttr();
1073 Type *BaseArgTy = Arg.getType();
1074 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy;
1075 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
1076 if (!Alignment)
1077 Alignment = DL.getABITypeAlign(MemArgTy);
1078 MaxAlign = max(Alignment, MaxAlign);
1079 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy);
1080
1081 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1082 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1083
1084 // We're basically throwing away everything passed into us and starting over
1085 // to get accurate in-memory offsets. The "PartOffset" is completely useless
1086 // to us as computed in Ins.
1087 //
1088 // We also need to figure out what type legalization is trying to do to get
1089 // the correct memory offsets.
1090
1091 SmallVector<EVT, 16> ValueVTs;
1092 SmallVector<uint64_t, 16> Offsets;
1093 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1094
1095 for (unsigned Value = 0, NumValues = ValueVTs.size();
1096 Value != NumValues; ++Value) {
1097 uint64_t BasePartOffset = Offsets[Value];
1098
1099 EVT ArgVT = ValueVTs[Value];
1100 EVT MemVT = ArgVT;
1101 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1102 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1103
1104 if (NumRegs == 1) {
1105 // This argument is not split, so the IR type is the memory type.
1106 if (ArgVT.isExtended()) {
1107 // We have an extended type, like i24, so we should just use the
1108 // register type.
1109 MemVT = RegisterVT;
1110 } else {
1111 MemVT = ArgVT;
1112 }
1113 } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1114 ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1115 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements())((void)0);
1116 // We have a vector value which has been split into a vector with
1117 // the same scalar type, but fewer elements. This should handle
1118 // all the floating-point vector types.
1119 MemVT = RegisterVT;
1120 } else if (ArgVT.isVector() &&
1121 ArgVT.getVectorNumElements() == NumRegs) {
1122 // This arg has been split so that each element is stored in a separate
1123 // register.
1124 MemVT = ArgVT.getScalarType();
1125 } else if (ArgVT.isExtended()) {
1126 // We have an extended type, like i65.
1127 MemVT = RegisterVT;
1128 } else {
1129 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1130 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0)((void)0);
1131 if (RegisterVT.isInteger()) {
1132 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1133 } else if (RegisterVT.isVector()) {
1134 assert(!RegisterVT.getScalarType().isFloatingPoint())((void)0);
1135 unsigned NumElements = RegisterVT.getVectorNumElements();
1136 assert(MemoryBits % NumElements == 0)((void)0);
1137 // This vector type has been split into another vector type with
1138 // a different elements size.
1139 EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1140 MemoryBits / NumElements);
1141 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1142 } else {
1143 llvm_unreachable("cannot deduce memory type.")__builtin_unreachable();
1144 }
1145 }
1146
1147 // Convert one element vectors to scalar.
1148 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1149 MemVT = MemVT.getScalarType();
1150
1151 // Round up vec3/vec5 argument.
1152 if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1153 assert(MemVT.getVectorNumElements() == 3 ||((void)0)
1154 MemVT.getVectorNumElements() == 5)((void)0);
1155 MemVT = MemVT.getPow2VectorType(State.getContext());
1156 } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1157 MemVT = MemVT.getRoundIntegerType(State.getContext());
1158 }
1159
1160 unsigned PartOffset = 0;
1161 for (unsigned i = 0; i != NumRegs; ++i) {
1162 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1163 BasePartOffset + PartOffset,
1164 MemVT.getSimpleVT(),
1165 CCValAssign::Full));
1166 PartOffset += MemVT.getStoreSize();
1167 }
1168 }
1169 }
1170}
1171
1172SDValue AMDGPUTargetLowering::LowerReturn(
1173 SDValue Chain, CallingConv::ID CallConv,
1174 bool isVarArg,
1175 const SmallVectorImpl<ISD::OutputArg> &Outs,
1176 const SmallVectorImpl<SDValue> &OutVals,
1177 const SDLoc &DL, SelectionDAG &DAG) const {
1178 // FIXME: Fails for r600 tests
1179 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1180 // "wave terminate should not have return values");
1181 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1182}
1183
1184//===---------------------------------------------------------------------===//
1185// Target specific lowering
1186//===---------------------------------------------------------------------===//
1187
1188/// Selects the correct CCAssignFn for a given CallingConvention value.
1189CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1190 bool IsVarArg) {
1191 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1192}
1193
1194CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1195 bool IsVarArg) {
1196 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1197}
1198
1199SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1200 SelectionDAG &DAG,
1201 MachineFrameInfo &MFI,
1202 int ClobberedFI) const {
1203 SmallVector<SDValue, 8> ArgChains;
1204 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1205 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1206
1207 // Include the original chain at the beginning of the list. When this is
1208 // used by target LowerCall hooks, this helps legalize find the
1209 // CALLSEQ_BEGIN node.
1210 ArgChains.push_back(Chain);
1211
1212 // Add a chain value for each stack argument corresponding
1213 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1214 UE = DAG.getEntryNode().getNode()->use_end();
1215 U != UE; ++U) {
1216 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1217 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1218 if (FI->getIndex() < 0) {
1219 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1220 int64_t InLastByte = InFirstByte;
1221 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1222
1223 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1224 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1225 ArgChains.push_back(SDValue(L, 1));
1226 }
1227 }
1228 }
1229 }
1230
1231 // Build a tokenfactor for all the chains.
1232 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1233}
1234
1235SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1236 SmallVectorImpl<SDValue> &InVals,
1237 StringRef Reason) const {
1238 SDValue Callee = CLI.Callee;
1239 SelectionDAG &DAG = CLI.DAG;
1240
1241 const Function &Fn = DAG.getMachineFunction().getFunction();
1242
1243 StringRef FuncName("<unknown>");
1244
1245 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1246 FuncName = G->getSymbol();
1247 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1248 FuncName = G->getGlobal()->getName();
1249
1250 DiagnosticInfoUnsupported NoCalls(
1251 Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1252 DAG.getContext()->diagnose(NoCalls);
1253
1254 if (!CLI.IsTailCall) {
1255 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1256 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1257 }
1258
1259 return DAG.getEntryNode();
1260}
1261
1262SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1263 SmallVectorImpl<SDValue> &InVals) const {
1264 return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1265}
1266
1267SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1268 SelectionDAG &DAG) const {
1269 const Function &Fn = DAG.getMachineFunction().getFunction();
1270
1271 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1272 SDLoc(Op).getDebugLoc());
1273 DAG.getContext()->diagnose(NoDynamicAlloca);
1274 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1275 return DAG.getMergeValues(Ops, SDLoc());
1276}
1277
1278SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1279 SelectionDAG &DAG) const {
1280 switch (Op.getOpcode()) {
1281 default:
1282 Op->print(errs(), &DAG);
1283 llvm_unreachable("Custom lowering code for this "__builtin_unreachable()
1284 "instruction is not implemented yet!")__builtin_unreachable();
1285 break;
1286 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1287 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1288 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1289 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1290 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1291 case ISD::FREM: return LowerFREM(Op, DAG);
1292 case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1293 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1294 case ISD::FRINT: return LowerFRINT(Op, DAG);
1295 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1296 case ISD::FROUND: return LowerFROUND(Op, DAG);
1297 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1298 case ISD::FLOG:
1299 return LowerFLOG(Op, DAG, numbers::ln2f);
1300 case ISD::FLOG10:
1301 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1302 case ISD::FEXP:
1303 return lowerFEXP(Op, DAG);
1304 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1305 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1306 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1307 case ISD::FP_TO_SINT:
1308 case ISD::FP_TO_UINT:
1309 return LowerFP_TO_INT(Op, DAG);
1310 case ISD::CTTZ:
1311 case ISD::CTTZ_ZERO_UNDEF:
1312 case ISD::CTLZ:
1313 case ISD::CTLZ_ZERO_UNDEF:
1314 return LowerCTLZ_CTTZ(Op, DAG);
1315 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1316 }
1317 return Op;
1318}
1319
1320void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1321 SmallVectorImpl<SDValue> &Results,
1322 SelectionDAG &DAG) const {
1323 switch (N->getOpcode()) {
1324 case ISD::SIGN_EXTEND_INREG:
1325 // Different parts of legalization seem to interpret which type of
1326 // sign_extend_inreg is the one to check for custom lowering. The extended
1327 // from type is what really matters, but some places check for custom
1328 // lowering of the result type. This results in trying to use
1329 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1330 // nothing here and let the illegal result integer be handled normally.
1331 return;
1332 default:
1333 return;
1334 }
1335}
1336
1337bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1338 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1339 if (!GVar || !GVar->hasInitializer())
1340 return false;
1341
1342 return !isa<UndefValue>(GVar->getInitializer());
1343}
1344
1345SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1346 SDValue Op,
1347 SelectionDAG &DAG) const {
1348
1349 const DataLayout &DL = DAG.getDataLayout();
1350 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1351 const GlobalValue *GV = G->getGlobal();
1352
1353 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1354 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1355 if (!MFI->isModuleEntryFunction() &&
1356 !GV->getName().equals("llvm.amdgcn.module.lds")) {
1357 SDLoc DL(Op);
1358 const Function &Fn = DAG.getMachineFunction().getFunction();
1359 DiagnosticInfoUnsupported BadLDSDecl(
1360 Fn, "local memory global used by non-kernel function",
1361 DL.getDebugLoc(), DS_Warning);
1362 DAG.getContext()->diagnose(BadLDSDecl);
1363
1364 // We currently don't have a way to correctly allocate LDS objects that
1365 // aren't directly associated with a kernel. We do force inlining of
1366 // functions that use local objects. However, if these dead functions are
1367 // not eliminated, we don't want a compile time error. Just emit a warning
1368 // and a trap, since there should be no callable path here.
1369 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1370 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1371 Trap, DAG.getRoot());
1372 DAG.setRoot(OutputChain);
1373 return DAG.getUNDEF(Op.getValueType());
1374 }
1375
1376 // XXX: What does the value of G->getOffset() mean?
1377 assert(G->getOffset() == 0 &&((void)0)
1378 "Do not know what to do with an non-zero offset")((void)0);
1379
1380 // TODO: We could emit code to handle the initialization somewhere.
1381 if (!hasDefinedInitializer(GV)) {
1382 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1383 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1384 }
1385 }
1386
1387 const Function &Fn = DAG.getMachineFunction().getFunction();
1388 DiagnosticInfoUnsupported BadInit(
1389 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1390 DAG.getContext()->diagnose(BadInit);
1391 return SDValue();
1392}
1393
1394SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1395 SelectionDAG &DAG) const {
1396 SmallVector<SDValue, 8> Args;
1397
1398 EVT VT = Op.getValueType();
1399 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1400 SDLoc SL(Op);
1401 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1402 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1403
1404 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1405 return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1406 }
1407
1408 for (const SDUse &U : Op->ops())
1409 DAG.ExtractVectorElements(U.get(), Args);
1410
1411 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1412}
1413
1414SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1415 SelectionDAG &DAG) const {
1416
1417 SmallVector<SDValue, 8> Args;
1418 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1419 EVT VT = Op.getValueType();
1420 EVT SrcVT = Op.getOperand(0).getValueType();
1421
1422 // For these types, we have some TableGen patterns except if the index is 1
1423 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) ||
1424 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) &&
1425 Start != 1)
1426 return Op;
1427
1428 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1429 VT.getVectorNumElements());
1430
1431 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1432}
1433
1434/// Generate Min/Max node
1435SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1436 SDValue LHS, SDValue RHS,
1437 SDValue True, SDValue False,
1438 SDValue CC,
1439 DAGCombinerInfo &DCI) const {
1440 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1441 return SDValue();
1442
1443 SelectionDAG &DAG = DCI.DAG;
1444 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1445 switch (CCOpcode) {
1446 case ISD::SETOEQ:
1447 case ISD::SETONE:
1448 case ISD::SETUNE:
1449 case ISD::SETNE:
1450 case ISD::SETUEQ:
1451 case ISD::SETEQ:
1452 case ISD::SETFALSE:
1453 case ISD::SETFALSE2:
1454 case ISD::SETTRUE:
1455 case ISD::SETTRUE2:
1456 case ISD::SETUO:
1457 case ISD::SETO:
1458 break;
1459 case ISD::SETULE:
1460 case ISD::SETULT: {
1461 if (LHS == True)
1462 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1463 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1464 }
1465 case ISD::SETOLE:
1466 case ISD::SETOLT:
1467 case ISD::SETLE:
1468 case ISD::SETLT: {
1469 // Ordered. Assume ordered for undefined.
1470
1471 // Only do this after legalization to avoid interfering with other combines
1472 // which might occur.
1473 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1474 !DCI.isCalledByLegalizer())
1475 return SDValue();
1476
1477 // We need to permute the operands to get the correct NaN behavior. The
1478 // selected operand is the second one based on the failing compare with NaN,
1479 // so permute it based on the compare type the hardware uses.
1480 if (LHS == True)
1481 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1482 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1483 }
1484 case ISD::SETUGE:
1485 case ISD::SETUGT: {
1486 if (LHS == True)
1487 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1488 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1489 }
1490 case ISD::SETGT:
1491 case ISD::SETGE:
1492 case ISD::SETOGE:
1493 case ISD::SETOGT: {
1494 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1495 !DCI.isCalledByLegalizer())
1496 return SDValue();
1497
1498 if (LHS == True)
1499 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1500 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1501 }
1502 case ISD::SETCC_INVALID:
1503 llvm_unreachable("Invalid setcc condcode!")__builtin_unreachable();
1504 }
1505 return SDValue();
1506}
1507
1508std::pair<SDValue, SDValue>
1509AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1510 SDLoc SL(Op);
1511
1512 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1513
1514 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1515 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1516
1517 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1518 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1519
1520 return std::make_pair(Lo, Hi);
1521}
1522
1523SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1524 SDLoc SL(Op);
1525
1526 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1527 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1528 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1529}
1530
1531SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1532 SDLoc SL(Op);
1533
1534 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1535 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1536 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1537}
1538
1539// Split a vector type into two parts. The first part is a power of two vector.
1540// The second part is whatever is left over, and is a scalar if it would
1541// otherwise be a 1-vector.
1542std::pair<EVT, EVT>
1543AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1544 EVT LoVT, HiVT;
1545 EVT EltVT = VT.getVectorElementType();
1546 unsigned NumElts = VT.getVectorNumElements();
1547 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1548 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1549 HiVT = NumElts - LoNumElts == 1
1550 ? EltVT
1551 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1552 return std::make_pair(LoVT, HiVT);
1553}
1554
1555// Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1556// scalar.
1557std::pair<SDValue, SDValue>
1558AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1559 const EVT &LoVT, const EVT &HiVT,
1560 SelectionDAG &DAG) const {
1561 assert(LoVT.getVectorNumElements() +((void)0)
1562 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=((void)0)
1563 N.getValueType().getVectorNumElements() &&((void)0)
1564 "More vector elements requested than available!")((void)0);
1565 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1566 DAG.getVectorIdxConstant(0, DL));
1567 SDValue Hi = DAG.getNode(
1568 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1569 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1570 return std::make_pair(Lo, Hi);
1571}
1572
1573SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1574 SelectionDAG &DAG) const {
1575 LoadSDNode *Load = cast<LoadSDNode>(Op);
1576 EVT VT = Op.getValueType();
1577 SDLoc SL(Op);
1578
1579
1580 // If this is a 2 element vector, we really want to scalarize and not create
1581 // weird 1 element vectors.
1582 if (VT.getVectorNumElements() == 2) {
1583 SDValue Ops[2];
1584 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1585 return DAG.getMergeValues(Ops, SL);
1586 }
1587
1588 SDValue BasePtr = Load->getBasePtr();
1589 EVT MemVT = Load->getMemoryVT();
1590
1591 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1592
1593 EVT LoVT, HiVT;
1594 EVT LoMemVT, HiMemVT;
1595 SDValue Lo, Hi;
1596
1597 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1598 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1599 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1600
1601 unsigned Size = LoMemVT.getStoreSize();
1602 unsigned BaseAlign = Load->getAlignment();
1603 unsigned HiAlign = MinAlign(BaseAlign, Size);
1604
1605 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1606 Load->getChain(), BasePtr, SrcValue, LoMemVT,
1607 BaseAlign, Load->getMemOperand()->getFlags());
1608 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size));
1609 SDValue HiLoad =
1610 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1611 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1612 HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1613
1614 SDValue Join;
1615 if (LoVT == HiVT) {
1616 // This is the case that the vector is power of two so was evenly split.
1617 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1618 } else {
1619 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1620 DAG.getVectorIdxConstant(0, SL));
1621 Join = DAG.getNode(
1622 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1623 VT, Join, HiLoad,
1624 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1625 }
1626
1627 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1628 LoLoad.getValue(1), HiLoad.getValue(1))};
1629
1630 return DAG.getMergeValues(Ops, SL);
1631}
1632
1633SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op,
1634 SelectionDAG &DAG) const {
1635 LoadSDNode *Load = cast<LoadSDNode>(Op);
1636 EVT VT = Op.getValueType();
1637 SDValue BasePtr = Load->getBasePtr();
1638 EVT MemVT = Load->getMemoryVT();
1639 SDLoc SL(Op);
1640 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1641 unsigned BaseAlign = Load->getAlignment();
1642 unsigned NumElements = MemVT.getVectorNumElements();
1643
1644 // Widen from vec3 to vec4 when the load is at least 8-byte aligned
1645 // or 16-byte fully dereferenceable. Otherwise, split the vector load.
1646 if (NumElements != 3 ||
1647 (BaseAlign < 8 &&
1648 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout())))
1649 return SplitVectorLoad(Op, DAG);
1650
1651 assert(NumElements == 3)((void)0);
1652
1653 EVT WideVT =
1654 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1655 EVT WideMemVT =
1656 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1657 SDValue WideLoad = DAG.getExtLoad(
1658 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1659 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1660 return DAG.getMergeValues(
1661 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1662 DAG.getVectorIdxConstant(0, SL)),
1663 WideLoad.getValue(1)},
1664 SL);
1665}
1666
1667SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1668 SelectionDAG &DAG) const {
1669 StoreSDNode *Store = cast<StoreSDNode>(Op);
1670 SDValue Val = Store->getValue();
1671 EVT VT = Val.getValueType();
1672
1673 // If this is a 2 element vector, we really want to scalarize and not create
1674 // weird 1 element vectors.
1675 if (VT.getVectorNumElements() == 2)
1676 return scalarizeVectorStore(Store, DAG);
1677
1678 EVT MemVT = Store->getMemoryVT();
1679 SDValue Chain = Store->getChain();
1680 SDValue BasePtr = Store->getBasePtr();
1681 SDLoc SL(Op);
1682
1683 EVT LoVT, HiVT;
1684 EVT LoMemVT, HiMemVT;
1685 SDValue Lo, Hi;
1686
1687 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1688 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1689 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1690
1691 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1692
1693 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1694 unsigned BaseAlign = Store->getAlignment();
1695 unsigned Size = LoMemVT.getStoreSize();
1696 unsigned HiAlign = MinAlign(BaseAlign, Size);
1697
1698 SDValue LoStore =
1699 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1700 Store->getMemOperand()->getFlags());
1701 SDValue HiStore =
1702 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1703 HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1704
1705 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1706}
1707
1708// This is a shortcut for integer division because we have fast i32<->f32
1709// conversions, and fast f32 reciprocal instructions. The fractional part of a
1710// float is enough to accurately represent up to a 24-bit signed integer.
1711SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1712 bool Sign) const {
1713 SDLoc DL(Op);
1714 EVT VT = Op.getValueType();
1715 SDValue LHS = Op.getOperand(0);
1716 SDValue RHS = Op.getOperand(1);
1717 MVT IntVT = MVT::i32;
1718 MVT FltVT = MVT::f32;
1719
1720 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1721 if (LHSSignBits < 9)
1722 return SDValue();
1723
1724 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1725 if (RHSSignBits < 9)
1726 return SDValue();
1727
1728 unsigned BitSize = VT.getSizeInBits();
1729 unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1730 unsigned DivBits = BitSize - SignBits;
1731 if (Sign)
1732 ++DivBits;
1733
1734 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1735 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1736
1737 SDValue jq = DAG.getConstant(1, DL, IntVT);
1738
1739 if (Sign) {
1740 // char|short jq = ia ^ ib;
1741 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1742
1743 // jq = jq >> (bitsize - 2)
1744 jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1745 DAG.getConstant(BitSize - 2, DL, VT));
1746
1747 // jq = jq | 0x1
1748 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1749 }
1750
1751 // int ia = (int)LHS;
1752 SDValue ia = LHS;
1753
1754 // int ib, (int)RHS;
1755 SDValue ib = RHS;
1756
1757 // float fa = (float)ia;
1758 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1759
1760 // float fb = (float)ib;
1761 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1762
1763 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1764 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1765
1766 // fq = trunc(fq);
1767 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1768
1769 // float fqneg = -fq;
1770 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1771
1772 MachineFunction &MF = DAG.getMachineFunction();
1773 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1774
1775 // float fr = mad(fqneg, fb, fa);
1776 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
1777 (unsigned)ISD::FMA :
1778 !MFI->getMode().allFP32Denormals() ?
1779 (unsigned)ISD::FMAD :
1780 (unsigned)AMDGPUISD::FMAD_FTZ;
1781 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1782
1783 // int iq = (int)fq;
1784 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1785
1786 // fr = fabs(fr);
1787 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1788
1789 // fb = fabs(fb);
1790 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1791
1792 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1793
1794 // int cv = fr >= fb;
1795 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1796
1797 // jq = (cv ? jq : 0);
1798 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1799
1800 // dst = iq + jq;
1801 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1802
1803 // Rem needs compensation, it's easier to recompute it
1804 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1805 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1806
1807 // Truncate to number of bits this divide really is.
1808 if (Sign) {
1809 SDValue InRegSize
1810 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1811 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1812 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1813 } else {
1814 SDValue TruncMask = DAG.getConstant((UINT64_C(1)1ULL << DivBits) - 1, DL, VT);
1815 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1816 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1817 }
1818
1819 return DAG.getMergeValues({ Div, Rem }, DL);
1820}
1821
1822void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1823 SelectionDAG &DAG,
1824 SmallVectorImpl<SDValue> &Results) const {
1825 SDLoc DL(Op);
1826 EVT VT = Op.getValueType();
1827
1828 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64")((void)0);
1829
1830 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1831
1832 SDValue One = DAG.getConstant(1, DL, HalfVT);
1833 SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1834
1835 //HiLo split
1836 SDValue LHS = Op.getOperand(0);
1837 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1838 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1839
1840 SDValue RHS = Op.getOperand(1);
1841 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1842 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1843
1844 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1845 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1846
1847 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1848 LHS_Lo, RHS_Lo);
1849
1850 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1851 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1852
1853 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1854 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1855 return;
1856 }
1857
1858 if (isTypeLegal(MVT::i64)) {
1859 MachineFunction &MF = DAG.getMachineFunction();
1860 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1861
1862 // Compute denominator reciprocal.
1863 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1864 (unsigned)ISD::FMA :
1865 !MFI->getMode().allFP32Denormals() ?
1866 (unsigned)ISD::FMAD :
1867 (unsigned)AMDGPUISD::FMAD_FTZ;
1868
1869 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1870 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1871 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1872 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1873 Cvt_Lo);
1874 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1875 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1876 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1877 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1878 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1879 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1880 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1881 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1882 Mul1);
1883 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1884 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1885 SDValue Rcp64 = DAG.getBitcast(VT,
1886 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1887
1888 SDValue Zero64 = DAG.getConstant(0, DL, VT);
1889 SDValue One64 = DAG.getConstant(1, DL, VT);
1890 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1891 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1892
1893 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1894 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1895 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1896 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1897 Zero);
1898 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1899 One);
1900
1901 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1902 Mulhi1_Lo, Zero1);
1903 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1904 Mulhi1_Hi, Add1_Lo.getValue(1));
1905 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1906 SDValue Add1 = DAG.getBitcast(VT,
1907 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1908
1909 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1910 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1911 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1912 Zero);
1913 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1914 One);
1915
1916 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1917 Mulhi2_Lo, Zero1);
1918 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1919 Mulhi2_Hi, Add1_Lo.getValue(1));
1920 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1921 Zero, Add2_Lo.getValue(1));
1922 SDValue Add2 = DAG.getBitcast(VT,
1923 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1924 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1925
1926 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1927
1928 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1929 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1930 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1931 Mul3_Lo, Zero1);
1932 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1933 Mul3_Hi, Sub1_Lo.getValue(1));
1934 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1935 SDValue Sub1 = DAG.getBitcast(VT,
1936 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1937
1938 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1939 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1940 ISD::SETUGE);
1941 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1942 ISD::SETUGE);
1943 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1944
1945 // TODO: Here and below portions of the code can be enclosed into if/endif.
1946 // Currently control flow is unconditional and we have 4 selects after
1947 // potential endif to substitute PHIs.
1948
1949 // if C3 != 0 ...
1950 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1951 RHS_Lo, Zero1);
1952 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1953 RHS_Hi, Sub1_Lo.getValue(1));
1954 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1955 Zero, Sub2_Lo.getValue(1));
1956 SDValue Sub2 = DAG.getBitcast(VT,
1957 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1958
1959 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1960
1961 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1962 ISD::SETUGE);
1963 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1964 ISD::SETUGE);
1965 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1966
1967 // if (C6 != 0)
1968 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1969
1970 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1971 RHS_Lo, Zero1);
1972 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1973 RHS_Hi, Sub2_Lo.getValue(1));
1974 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1975 Zero, Sub3_Lo.getValue(1));
1976 SDValue Sub3 = DAG.getBitcast(VT,
1977 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1978
1979 // endif C6
1980 // endif C3
1981
1982 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1983 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1984
1985 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1986 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1987
1988 Results.push_back(Div);
1989 Results.push_back(Rem);
1990
1991 return;
1992 }
1993
1994 // r600 expandion.
1995 // Get Speculative values
1996 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1997 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1998
1999 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
2000 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
2001 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
2002
2003 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
2004 SDValue DIV_Lo = Zero;
2005
2006 const unsigned halfBitWidth = HalfVT.getSizeInBits();
2007
2008 for (unsigned i = 0; i < halfBitWidth; ++i) {
2009 const unsigned bitPos = halfBitWidth - i - 1;
2010 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
2011 // Get value of high bit
2012 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
2013 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
2014 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
2015
2016 // Shift
2017 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
2018 // Add LHS high bit
2019 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
2020
2021 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
2022 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
2023
2024 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
2025
2026 // Update REM
2027 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
2028 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
2029 }
2030
2031 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
2032 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
2033 Results.push_back(DIV);
2034 Results.push_back(REM);
2035}
2036
2037SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
2038 SelectionDAG &DAG) const {
2039 SDLoc DL(Op);
2040 EVT VT = Op.getValueType();
2041
2042 if (VT == MVT::i64) {
2043 SmallVector<SDValue, 2> Results;
2044 LowerUDIVREM64(Op, DAG, Results);
2045 return DAG.getMergeValues(Results, DL);
2046 }
2047
2048 if (VT == MVT::i32) {
2049 if (SDValue Res = LowerDIVREM24(Op, DAG, false))
2050 return Res;
2051 }
2052
2053 SDValue X = Op.getOperand(0);
2054 SDValue Y = Op.getOperand(1);
2055
2056 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2057 // algorithm used here.
2058
2059 // Initial estimate of inv(y).
2060 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
2061
2062 // One round of UNR.
2063 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
2064 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
2065 Z = DAG.getNode(ISD::ADD, DL, VT, Z,
2066 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
2067
2068 // Quotient/remainder estimate.
2069 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
2070 SDValue R =
2071 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
2072
2073 // First quotient/remainder refinement.
2074 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2075 SDValue One = DAG.getConstant(1, DL, VT);
2076 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2077 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2078 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2079 R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2080 DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2081
2082 // Second quotient/remainder refinement.
2083 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2084 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2085 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2086 R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2087 DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2088
2089 return DAG.getMergeValues({Q, R}, DL);
2090}
2091
2092SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2093 SelectionDAG &DAG) const {
2094 SDLoc DL(Op);
2095 EVT VT = Op.getValueType();
2096
2097 SDValue LHS = Op.getOperand(0);
2098 SDValue RHS = Op.getOperand(1);
2099
2100 SDValue Zero = DAG.getConstant(0, DL, VT);
2101 SDValue NegOne = DAG.getConstant(-1, DL, VT);
2102
2103 if (VT == MVT::i32) {
2104 if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2105 return Res;
2106 }
2107
2108 if (VT == MVT::i64 &&
2109 DAG.ComputeNumSignBits(LHS) > 32 &&
2110 DAG.ComputeNumSignBits(RHS) > 32) {
2111 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2112
2113 //HiLo split
2114 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2115 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2116 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2117 LHS_Lo, RHS_Lo);
2118 SDValue Res[2] = {
2119 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2120 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2121 };
2122 return DAG.getMergeValues(Res, DL);
2123 }
2124
2125 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2126 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2127 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2128 SDValue RSign = LHSign; // Remainder sign is the same as LHS
2129
2130 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2131 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2132
2133 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2134 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2135
2136 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2137 SDValue Rem = Div.getValue(1);
2138
2139 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2140 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2141
2142 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2143 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2144
2145 SDValue Res[2] = {
2146 Div,
2147 Rem
2148 };
2149 return DAG.getMergeValues(Res, DL);
2150}
2151
2152// (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
2153SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2154 SDLoc SL(Op);
2155 EVT VT = Op.getValueType();
2156 auto Flags = Op->getFlags();
2157 SDValue X = Op.getOperand(0);
2158 SDValue Y = Op.getOperand(1);
2159
2160 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags);
2161 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags);
2162 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags);
2163 // TODO: For f32 use FMAD instead if !hasFastFMA32?
2164 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags);
2165}
2166
2167SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2168 SDLoc SL(Op);
2169 SDValue Src = Op.getOperand(0);
2170
2171 // result = trunc(src)
2172 // if (src > 0.0 && src != result)
2173 // result += 1.0
2174
2175 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2176
2177 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2178 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2179
2180 EVT SetCCVT =
2181 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2182
2183 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2184 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2185 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2186
2187 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2188 // TODO: Should this propagate fast-math-flags?
2189 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2190}
2191
2192static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2193 SelectionDAG &DAG) {
2194 const unsigned FractBits = 52;
2195 const unsigned ExpBits = 11;
2196
2197 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2198 Hi,
2199 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2200 DAG.getConstant(ExpBits, SL, MVT::i32));
2201 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2202 DAG.getConstant(1023, SL, MVT::i32));
2203
2204 return Exp;
2205}
2206
2207SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2208 SDLoc SL(Op);
2209 SDValue Src = Op.getOperand(0);
2210
2211 assert(Op.getValueType() == MVT::f64)((void)0);
2212
2213 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2214 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2215
2216 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2217
2218 // Extract the upper half, since this is where we will find the sign and
2219 // exponent.
2220 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
2221
2222 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2223
2224 const unsigned FractBits = 52;
2225
2226 // Extract the sign bit.
2227 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1)1U << 31, SL, MVT::i32);
2228 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2229
2230 // Extend back to 64-bits.
2231 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2232 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2233
2234 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2235 const SDValue FractMask
2236 = DAG.getConstant((UINT64_C(1)1ULL << FractBits) - 1, SL, MVT::i64);
2237
2238 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2239 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2240 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2241
2242 EVT SetCCVT =
2243 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2244
2245 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2246
2247 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2248 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2249
2250 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2251 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2252
2253 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2254}
2255
2256SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2257 SDLoc SL(Op);
2258 SDValue Src = Op.getOperand(0);
2259
2260 assert(Op.getValueType() == MVT::f64)((void)0);
2261
2262 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2263 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2264 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2265
2266 // TODO: Should this propagate fast-math-flags?
2267
2268 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2269 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2270
2271 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2272
2273 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2274 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2275
2276 EVT SetCCVT =
2277 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2278 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2279
2280 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2281}
2282
2283SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2284 // FNEARBYINT and FRINT are the same, except in their handling of FP
2285 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2286 // rint, so just treat them as equivalent.
2287 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2288}
2289
2290// XXX - May require not supporting f32 denormals?
2291
2292// Don't handle v2f16. The extra instructions to scalarize and repack around the
2293// compare and vselect end up producing worse code than scalarizing the whole
2294// operation.
2295SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2296 SDLoc SL(Op);
2297 SDValue X = Op.getOperand(0);
2298 EVT VT = Op.getValueType();
2299
2300 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2301
2302 // TODO: Should this propagate fast-math-flags?
2303
2304 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2305
2306 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2307
2308 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2309 const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2310 const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2311
2312 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2313
2314 EVT SetCCVT =
2315 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2316
2317 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2318
2319 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2320
2321 return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2322}
2323
2324SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2325 SDLoc SL(Op);
2326 SDValue Src = Op.getOperand(0);
2327
2328 // result = trunc(src);
2329 // if (src < 0.0 && src != result)
2330 // result += -1.0.
2331
2332 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2333
2334 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2335 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2336
2337 EVT SetCCVT =
2338 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2339
2340 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2341 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2342 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2343
2344 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2345 // TODO: Should this propagate fast-math-flags?
2346 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2347}
2348
2349SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2350 double Log2BaseInverted) const {
2351 EVT VT = Op.getValueType();
2352
2353 SDLoc SL(Op);
2354 SDValue Operand = Op.getOperand(0);
2355 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2356 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2357
2358 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2359}
2360
2361// exp2(M_LOG2E_F * f);
2362SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2363 EVT VT = Op.getValueType();
2364 SDLoc SL(Op);
2365 SDValue Src = Op.getOperand(0);
2366
2367 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2368 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2369 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2370}
2371
2372static bool isCtlzOpc(unsigned Opc) {
2373 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2374}
2375
2376static bool isCttzOpc(unsigned Opc) {
2377 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2378}
2379
2380SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2381 SDLoc SL(Op);
2382 SDValue Src = Op.getOperand(0);
2383 bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF ||
2384 Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF;
2385
2386 unsigned ISDOpc, NewOpc;
2387 if (isCtlzOpc(Op.getOpcode())) {
2388 ISDOpc = ISD::CTLZ_ZERO_UNDEF;
2389 NewOpc = AMDGPUISD::FFBH_U32;
2390 } else if (isCttzOpc(Op.getOpcode())) {
2391 ISDOpc = ISD::CTTZ_ZERO_UNDEF;
2392 NewOpc = AMDGPUISD::FFBL_B32;
2393 } else
2394 llvm_unreachable("Unexpected OPCode!!!")__builtin_unreachable();
2395
2396
2397 if (ZeroUndef && Src.getValueType() == MVT::i32)
2398 return DAG.getNode(NewOpc, SL, MVT::i32, Src);
2399
2400 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2401
2402 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2403 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
2404
2405 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
2406 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
2407
2408 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2409 *DAG.getContext(), MVT::i32);
2410
2411 SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo;
2412 SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ);
2413
2414 SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo);
2415 SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi);
2416
2417 const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32);
2418 SDValue Add, NewOpr;
2419 if (isCtlzOpc(Op.getOpcode())) {
2420 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32);
2421 // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x))
2422 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi);
2423 } else {
2424 Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32);
2425 // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x))
2426 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo);
2427 }
2428
2429 if (!ZeroUndef) {
2430 // Test if the full 64-bit input is zero.
2431
2432 // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32,
2433 // which we probably don't want.
2434 SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi;
2435 SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ);
2436 SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0);
2437
2438 // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction
2439 // with the same cycles, otherwise it is slower.
2440 // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src,
2441 // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ);
2442
2443 const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32);
2444
2445 // The instruction returns -1 for 0 input, but the defined intrinsic
2446 // behavior is to return the number of bits.
2447 NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32,
2448 SrcIsZero, Bits32, NewOpr);
2449 }
2450
2451 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2452}
2453
2454SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2455 bool Signed) const {
2456 // Unsigned
2457 // cul2f(ulong u)
2458 //{
2459 // uint lz = clz(u);
2460 // uint e = (u != 0) ? 127U + 63U - lz : 0;
2461 // u = (u << lz) & 0x7fffffffffffffffUL;
2462 // ulong t = u & 0xffffffffffUL;
2463 // uint v = (e << 23) | (uint)(u >> 40);
2464 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
2465 // return as_float(v + r);
2466 //}
2467 // Signed
2468 // cl2f(long l)
2469 //{
2470 // long s = l >> 63;
2471 // float r = cul2f((l + s) ^ s);
2472 // return s ? -r : r;
2473 //}
2474
2475 SDLoc SL(Op);
2476 SDValue Src = Op.getOperand(0);
2477 SDValue L = Src;
2478
2479 SDValue S;
2480 if (Signed) {
2481 const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64);
2482 S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit);
2483
2484 SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S);
2485 L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S);
2486 }
2487
2488 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(),
2489 *DAG.getContext(), MVT::f32);
2490
2491
2492 SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32);
2493 SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64);
2494 SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L);
2495 LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ);
2496
2497 SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32);
2498 SDValue E = DAG.getSelect(SL, MVT::i32,
2499 DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE),
2500 DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ),
2501 ZeroI32);
2502
2503 SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64,
2504 DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ),
2505 DAG.getConstant((-1ULL) >> 1, SL, MVT::i64));
2506
2507 SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U,
2508 DAG.getConstant(0xffffffffffULL, SL, MVT::i64));
2509
2510 SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64,
2511 U, DAG.getConstant(40, SL, MVT::i64));
2512
2513 SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32,
2514 DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)),
2515 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl));
2516
2517 SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64);
2518 SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT);
2519 SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ);
2520
2521 SDValue One = DAG.getConstant(1, SL, MVT::i32);
2522
2523 SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One);
2524
2525 SDValue R = DAG.getSelect(SL, MVT::i32,
2526 RCmp,
2527 One,
2528 DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32));
2529 R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R);
2530 R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R);
2531
2532 if (!Signed)
2533 return R;
2534
2535 SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R);
2536 return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R);
2537}
2538
2539SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2540 bool Signed) const {
2541 SDLoc SL(Op);
2542 SDValue Src = Op.getOperand(0);
2543
2544 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2545
2546 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2547 DAG.getConstant(0, SL, MVT::i32));
2548 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2549 DAG.getConstant(1, SL, MVT::i32));
2550
2551 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2552 SL, MVT::f64, Hi);
2553
2554 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2555
2556 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2557 DAG.getConstant(32, SL, MVT::i32));
2558 // TODO: Should this propagate fast-math-flags?
2559 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2560}
2561
2562SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2563 SelectionDAG &DAG) const {
2564 // TODO: Factor out code common with LowerSINT_TO_FP.
2565 EVT DestVT = Op.getValueType();
2566 SDValue Src = Op.getOperand(0);
2567 EVT SrcVT = Src.getValueType();
2568
2569 if (SrcVT == MVT::i16) {
2570 if (DestVT == MVT::f16)
2571 return Op;
2572 SDLoc DL(Op);
2573
2574 // Promote src to i32
2575 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2576 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2577 }
2578
2579 assert(SrcVT == MVT::i64 && "operation should be legal")((void)0);
2580
2581 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2582 SDLoc DL(Op);
2583
2584 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2585 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2586 SDValue FPRound =
2587 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2588
2589 return FPRound;
2590 }
2591
2592 if (DestVT == MVT::f32)
2593 return LowerINT_TO_FP32(Op, DAG, false);
2594
2595 assert(DestVT == MVT::f64)((void)0);
2596 return LowerINT_TO_FP64(Op, DAG, false);
2597}
2598
2599SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2600 SelectionDAG &DAG) const {
2601 EVT DestVT = Op.getValueType();
2602
2603 SDValue Src = Op.getOperand(0);
2604 EVT SrcVT = Src.getValueType();
2605
2606 if (SrcVT == MVT::i16) {
2607 if (DestVT == MVT::f16)
2608 return Op;
2609
2610 SDLoc DL(Op);
2611 // Promote src to i32
2612 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2613 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2614 }
2615
2616 assert(SrcVT == MVT::i64 && "operation should be legal")((void)0);
2617
2618 // TODO: Factor out code common with LowerUINT_TO_FP.
2619
2620 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2621 SDLoc DL(Op);
2622 SDValue Src = Op.getOperand(0);
2623
2624 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2625 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2626 SDValue FPRound =
2627 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2628
2629 return FPRound;
2630 }
2631
2632 if (DestVT == MVT::f32)
2633 return LowerINT_TO_FP32(Op, DAG, true);
2634
2635 assert(DestVT == MVT::f64)((void)0);
2636 return LowerINT_TO_FP64(Op, DAG, true);
2637}
2638
2639SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG,
2640 bool Signed) const {
2641 SDLoc SL(Op);
2642
2643 SDValue Src = Op.getOperand(0);
2644 EVT SrcVT = Src.getValueType();
2645
2646 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64)((void)0);
2647
2648 // The basic idea of converting a floating point number into a pair of 32-bit
2649 // integers is illustrated as follows:
2650 //
2651 // tf := trunc(val);
2652 // hif := floor(tf * 2^-32);
2653 // lof := tf - hif * 2^32; // lof is always positive due to floor.
2654 // hi := fptoi(hif);
2655 // lo := fptoi(lof);
2656 //
2657 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src);
2658 SDValue Sign;
2659 if (Signed && SrcVT == MVT::f32) {
2660 // However, a 32-bit floating point number has only 23 bits mantissa and
2661 // it's not enough to hold all the significant bits of `lof` if val is
2662 // negative. To avoid the loss of precision, We need to take the absolute
2663 // value after truncating and flip the result back based on the original
2664 // signedness.
2665 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32,
2666 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc),
2667 DAG.getConstant(31, SL, MVT::i32));
2668 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc);
2669 }
2670
2671 SDValue K0, K1;
2672 if (SrcVT == MVT::f64) {
2673 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)0x3df0000000000000ULL),
2674 SL, SrcVT);
2675 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)0xc1f0000000000000ULL),
2676 SL, SrcVT);
2677 } else {
2678 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)0x2f800000U), SL,
2679 SrcVT);
2680 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)0xcf800000U), SL,
2681 SrcVT);
2682 }
2683 // TODO: Should this propagate fast-math-flags?
2684 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0);
2685
2686 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul);
2687
2688 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc);
2689
2690 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT
2691 : ISD::FP_TO_UINT,
2692 SL, MVT::i32, FloorMul);
2693 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2694
2695 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2696 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}));
2697
2698 if (Signed && SrcVT == MVT::f32) {
2699 assert(Sign)((void)0);
2700 // Flip the result based on the signedness, which is either all 0s or 1s.
2701 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2702 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign}));
2703 // r := xor(r, sign) - sign;
2704 Result =
2705 DAG.getNode(ISD::SUB, SL, MVT::i64,
2706 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign);
2707 }
2708
2709 return Result;
2710}
2711
2712SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2713 SDLoc DL(Op);
2714 SDValue N0 = Op.getOperand(0);
2715
2716 // Convert to target node to get known bits
2717 if (N0.getValueType() == MVT::f32)
2718 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2719
2720 if (getTargetMachine().Options.UnsafeFPMath) {
2721 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2722 return SDValue();
2723 }
2724
2725 assert(N0.getSimpleValueType() == MVT::f64)((void)0);
2726
2727 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2728 const unsigned ExpMask = 0x7ff;
2729 const unsigned ExpBiasf64 = 1023;
2730 const unsigned ExpBiasf16 = 15;
2731 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2732 SDValue One = DAG.getConstant(1, DL, MVT::i32);
2733 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2734 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2735 DAG.getConstant(32, DL, MVT::i64));
2736 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2737 U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2738 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2739 DAG.getConstant(20, DL, MVT::i64));
2740 E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2741 DAG.getConstant(ExpMask, DL, MVT::i32));
2742 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2743 // add the f16 bias (15) to get the biased exponent for the f16 format.
2744 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2745 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2746
2747 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2748 DAG.getConstant(8, DL, MVT::i32));
2749 M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2750 DAG.getConstant(0xffe, DL, MVT::i32));
2751
2752 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2753 DAG.getConstant(0x1ff, DL, MVT::i32));
2754 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2755
2756 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2757 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2758
2759 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2760 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2761 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2762 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2763
2764 // N = M | (E << 12);
2765 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2766 DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2767 DAG.getConstant(12, DL, MVT::i32)));
2768
2769 // B = clamp(1-E, 0, 13);
2770 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2771 One, E);
2772 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2773 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2774 DAG.getConstant(13, DL, MVT::i32));
2775
2776 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2777 DAG.getConstant(0x1000, DL, MVT::i32));
2778
2779 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2780 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2781 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2782 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2783
2784 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2785 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2786 DAG.getConstant(0x7, DL, MVT::i32));
2787 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2788 DAG.getConstant(2, DL, MVT::i32));
2789 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2790 One, Zero, ISD::SETEQ);
2791 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2792 One, Zero, ISD::SETGT);
2793 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2794 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2795
2796 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2797 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2798 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2799 I, V, ISD::SETEQ);
2800
2801 // Extract the sign bit.
2802 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2803 DAG.getConstant(16, DL, MVT::i32));
2804 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2805 DAG.getConstant(0x8000, DL, MVT::i32));
2806
2807 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2808 return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2809}
2810
2811SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op,
2812 SelectionDAG &DAG) const {
2813 SDValue Src = Op.getOperand(0);
2814 unsigned OpOpcode = Op.getOpcode();
2815 EVT SrcVT = Src.getValueType();
2816 EVT DestVT = Op.getValueType();
2817
2818 // Will be selected natively
2819 if (SrcVT == MVT::f16 && DestVT == MVT::i16)
2820 return Op;
2821
2822 // Promote i16 to i32
2823 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
2824 SDLoc DL(Op);
2825
2826 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2827 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32);
2828 }
2829
2830 if (SrcVT == MVT::f16 ||
2831 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2832 SDLoc DL(Op);
2833
2834 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2835 unsigned Ext =
2836 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2837 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32);
2838 }
2839
2840 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64))
2841 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT);
2842
2843 return SDValue();
2844}
2845
2846SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2847 SelectionDAG &DAG) const {
2848 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2849 MVT VT = Op.getSimpleValueType();
2850 MVT ScalarVT = VT.getScalarType();
2851
2852 assert(VT.isVector())((void)0);
2853
2854 SDValue Src = Op.getOperand(0);
2855 SDLoc DL(Op);
2856
2857 // TODO: Don't scalarize on Evergreen?
2858 unsigned NElts = VT.getVectorNumElements();
2859 SmallVector<SDValue, 8> Args;
2860 DAG.ExtractVectorElements(Src, Args, 0, NElts);
2861
2862 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2863 for (unsigned I = 0; I < NElts; ++I)
2864 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2865
2866 return DAG.getBuildVector(VT, DL, Args);
2867}
2868
2869//===----------------------------------------------------------------------===//
2870// Custom DAG optimizations
2871//===----------------------------------------------------------------------===//
2872
2873static bool isU24(SDValue Op, SelectionDAG &DAG) {
2874 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2875}
2876
2877static bool isI24(SDValue Op, SelectionDAG &DAG) {
2878 EVT VT = Op.getValueType();
2879 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2880 // as unsigned 24-bit values.
2881 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2882}
2883
2884static SDValue simplifyMul24(SDNode *Node24,
2885 TargetLowering::DAGCombinerInfo &DCI) {
2886 SelectionDAG &DAG = DCI.DAG;
2887 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2888 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2889
2890 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2891 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2892 unsigned NewOpcode = Node24->getOpcode();
2893 if (IsIntrin) {
2894 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2895 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2896 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2897 }
2898
2899 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2900
2901 // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2902 // the operands to have other uses, but will only perform simplifications that
2903 // involve bypassing some nodes for this user.
2904 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2905 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2906 if (DemandedLHS || DemandedRHS)
2907 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2908 DemandedLHS ? DemandedLHS : LHS,
2909 DemandedRHS ? DemandedRHS : RHS);
2910
2911 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2912 // operands if this node is the only user.
2913 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2914 return SDValue(Node24, 0);
2915 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2916 return SDValue(Node24, 0);
2917
2918 return SDValue();
2919}
2920
2921template <typename IntTy>
2922static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2923 uint32_t Width, const SDLoc &DL) {
2924 if (Width + Offset < 32) {
2925 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2926 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2927 return DAG.getConstant(Result, DL, MVT::i32);
2928 }
2929
2930 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2931}
2932
2933static bool hasVolatileUser(SDNode *Val) {
2934 for (SDNode *U : Val->uses()) {
2935 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2936 if (M->isVolatile())
2937 return true;
2938 }
2939 }
2940
2941 return false;
2942}
2943
2944bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2945 // i32 vectors are the canonical memory type.
2946 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2947 return false;
2948
2949 if (!VT.isByteSized())
2950 return false;
2951
2952 unsigned Size = VT.getStoreSize();
2953
2954 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2955 return false;
2956
2957 if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2958 return false;
2959
2960 return true;
2961}
2962
2963// Replace load of an illegal type with a store of a bitcast to a friendlier
2964// type.
2965SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2966 DAGCombinerInfo &DCI) const {
2967 if (!DCI.isBeforeLegalize())
2968 return SDValue();
2969
2970 LoadSDNode *LN = cast<LoadSDNode>(N);
2971 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2972 return SDValue();
2973
2974 SDLoc SL(N);
2975 SelectionDAG &DAG = DCI.DAG;
2976 EVT VT = LN->getMemoryVT();
2977
2978 unsigned Size = VT.getStoreSize();
2979 Align Alignment = LN->getAlign();
2980 if (Alignment < Size && isTypeLegal(VT)) {
2981 bool IsFast;
2982 unsigned AS = LN->getAddressSpace();
2983
2984 // Expand unaligned loads earlier than legalization. Due to visitation order
2985 // problems during legalization, the emitted instructions to pack and unpack
2986 // the bytes again are not eliminated in the case of an unaligned copy.
2987 if (!allowsMisalignedMemoryAccesses(
2988 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) {
2989 SDValue Ops[2];
2990
2991 if (VT.isVector())
2992 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
2993 else
2994 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
2995
2996 return DAG.getMergeValues(Ops, SDLoc(N));
2997 }
2998
2999 if (!IsFast)
3000 return SDValue();
3001 }
3002
3003 if (!shouldCombineMemoryType(VT))
3004 return SDValue();
3005
3006 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3007
3008 SDValue NewLoad
3009 = DAG.getLoad(NewVT, SL, LN->getChain(),
3010 LN->getBasePtr(), LN->getMemOperand());
3011
3012 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
3013 DCI.CombineTo(N, BC, NewLoad.getValue(1));
3014 return SDValue(N, 0);
3015}
3016
3017// Replace store of an illegal type with a store of a bitcast to a friendlier
3018// type.
3019SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
3020 DAGCombinerInfo &DCI) const {
3021 if (!DCI.isBeforeLegalize())
3022 return SDValue();
3023
3024 StoreSDNode *SN = cast<StoreSDNode>(N);
3025 if (!SN->isSimple() || !ISD::isNormalStore(SN))
3026 return SDValue();
3027
3028 EVT VT = SN->getMemoryVT();
3029 unsigned Size = VT.getStoreSize();
3030
3031 SDLoc SL(N);
3032 SelectionDAG &DAG = DCI.DAG;
3033 Align Alignment = SN->getAlign();
3034 if (Alignment < Size && isTypeLegal(VT)) {
3035 bool IsFast;
3036 unsigned AS = SN->getAddressSpace();
3037
3038 // Expand unaligned stores earlier than legalization. Due to visitation
3039 // order problems during legalization, the emitted instructions to pack and
3040 // unpack the bytes again are not eliminated in the case of an unaligned
3041 // copy.
3042 if (!allowsMisalignedMemoryAccesses(
3043 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) {
3044 if (VT.isVector())
3045 return scalarizeVectorStore(SN, DAG);
3046
3047 return expandUnalignedStore(SN, DAG);
3048 }
3049
3050 if (!IsFast)
3051 return SDValue();
3052 }
3053
3054 if (!shouldCombineMemoryType(VT))
3055 return SDValue();
3056
3057 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3058 SDValue Val = SN->getValue();
3059
3060 //DCI.AddToWorklist(Val.getNode());
3061
3062 bool OtherUses = !Val.hasOneUse();
3063 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3064 if (OtherUses) {
3065 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3066 DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3067 }
3068
3069 return DAG.getStore(SN->getChain(), SL, CastVal,
3070 SN->getBasePtr(), SN->getMemOperand());
3071}
3072
3073// FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3074// but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3075// issues.
3076SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3077 DAGCombinerInfo &DCI) const {
3078 SelectionDAG &DAG = DCI.DAG;
3079 SDValue N0 = N->getOperand(0);
3080
3081 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3082 // (vt2 (truncate (assertzext vt0:x, vt1)))
3083 if (N0.getOpcode() == ISD::TRUNCATE) {
3084 SDValue N1 = N->getOperand(1);
3085 EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3086 SDLoc SL(N);
3087
3088 SDValue Src = N0.getOperand(0);
3089 EVT SrcVT = Src.getValueType();
3090 if (SrcVT.bitsGE(ExtVT)) {
3091 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3092 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3093 }
3094 }
3095
3096 return SDValue();
3097}
3098
3099SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3100 SDNode *N, DAGCombinerInfo &DCI) const {
3101 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3102 switch (IID) {
3103 case Intrinsic::amdgcn_mul_i24:
3104 case Intrinsic::amdgcn_mul_u24:
3105 return simplifyMul24(N, DCI);
3106 case Intrinsic::amdgcn_fract:
3107 case Intrinsic::amdgcn_rsq:
3108 case Intrinsic::amdgcn_rcp_legacy:
3109 case Intrinsic::amdgcn_rsq_legacy:
3110 case Intrinsic::amdgcn_rsq_clamp:
3111 case Intrinsic::amdgcn_ldexp: {
3112 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3113 SDValue Src = N->getOperand(1);
3114 return Src.isUndef() ? Src : SDValue();
3115 }
3116 default:
3117 return SDValue();
3118 }
3119}
3120
3121/// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3122/// binary operation \p Opc to it with the corresponding constant operands.
3123SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3124 DAGCombinerInfo &DCI, const SDLoc &SL,
3125 unsigned Opc, SDValue LHS,
3126 uint32_t ValLo, uint32_t ValHi) const {
3127 SelectionDAG &DAG = DCI.DAG;
3128 SDValue Lo, Hi;
3129 std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3130
3131 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3132 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3133
3134 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3135 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3136
3137 // Re-visit the ands. It's possible we eliminated one of them and it could
3138 // simplify the vector.
3139 DCI.AddToWorklist(Lo.getNode());
3140 DCI.AddToWorklist(Hi.getNode());
3141
3142 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3143 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3144}
3145
3146SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3147 DAGCombinerInfo &DCI) const {
3148 EVT VT = N->getValueType(0);
3149
3150 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3151 if (!RHS)
3152 return SDValue();
3153
3154 SDValue LHS = N->getOperand(0);
3155 unsigned RHSVal = RHS->getZExtValue();
3156 if (!RHSVal)
3157 return LHS;
3158
3159 SDLoc SL(N);
3160 SelectionDAG &DAG = DCI.DAG;
3161
3162 switch (LHS->getOpcode()) {
3163 default:
3164 break;
3165 case ISD::ZERO_EXTEND:
3166 case ISD::SIGN_EXTEND:
3167 case ISD::ANY_EXTEND: {
3168 SDValue X = LHS->getOperand(0);
3169
3170 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3171 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3172 // Prefer build_vector as the canonical form if packed types are legal.
3173 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3174 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3175 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3176 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3177 }
3178
3179 // shl (ext x) => zext (shl x), if shift does not overflow int
3180 if (VT != MVT::i64)
3181 break;
3182 KnownBits Known = DAG.computeKnownBits(X);
3183 unsigned LZ = Known.countMinLeadingZeros();
3184 if (LZ < RHSVal)
3185 break;
3186 EVT XVT = X.getValueType();
3187 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3188 return DAG.getZExtOrTrunc(Shl, SL, VT);
3189 }
3190 }
3191
3192 if (VT != MVT::i64)
3193 return SDValue();
3194
3195 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3196
3197 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3198 // common case, splitting this into a move and a 32-bit shift is faster and
3199 // the same code size.
3200 if (RHSVal < 32)
3201 return SDValue();
3202
3203 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3204
3205 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3206 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3207
3208 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3209
3210 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3211 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3212}
3213
3214SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3215 DAGCombinerInfo &DCI) const {
3216 if (N->getValueType(0) != MVT::i64)
3217 return SDValue();
3218
3219 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3220 if (!RHS)
3221 return SDValue();
3222
3223 SelectionDAG &DAG = DCI.DAG;
3224 SDLoc SL(N);
3225 unsigned RHSVal = RHS->getZExtValue();
3226
3227 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3228 if (RHSVal == 32) {
3229 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3230 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3231 DAG.getConstant(31, SL, MVT::i32));
3232
3233 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3234 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3235 }
3236
3237 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3238 if (RHSVal == 63) {
3239 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3240 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3241 DAG.getConstant(31, SL, MVT::i32));
3242 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3243 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3244 }
3245
3246 return SDValue();
3247}
3248
3249SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3250 DAGCombinerInfo &DCI) const {
3251 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3252 if (!RHS)
3253 return SDValue();
3254
3255 EVT VT = N->getValueType(0);
3256 SDValue LHS = N->getOperand(0);
3257 unsigned ShiftAmt = RHS->getZExtValue();
3258 SelectionDAG &DAG = DCI.DAG;
3259 SDLoc SL(N);
3260
3261 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3262 // this improves the ability to match BFE patterns in isel.
3263 if (LHS.getOpcode() == ISD::AND) {
3264 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3265 if (Mask->getAPIntValue().isShiftedMask() &&
3266 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3267 return DAG.getNode(
3268 ISD::AND, SL, VT,
3269 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3270 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3271 }
3272 }
3273 }
3274
3275 if (VT != MVT::i64)
3276 return SDValue();
3277
3278 if (ShiftAmt < 32)
3279 return SDValue();
3280
3281 // srl i64:x, C for C >= 32
3282 // =>
3283 // build_pair (srl hi_32(x), C - 32), 0
3284 SDValue One = DAG.getConstant(1, SL, MVT::i32);
3285 SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3286
3287 SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS);
3288 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One);
3289
3290 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3291 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3292
3293 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3294
3295 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3296}
3297
3298SDValue AMDGPUTargetLowering::performTruncateCombine(
3299 SDNode *N, DAGCombinerInfo &DCI) const {
3300 SDLoc SL(N);
3301 SelectionDAG &DAG = DCI.DAG;
3302 EVT VT = N->getValueType(0);
3303 SDValue Src = N->getOperand(0);
3304
3305 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3306 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3307 SDValue Vec = Src.getOperand(0);
3308 if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3309 SDValue Elt0 = Vec.getOperand(0);
3310 EVT EltVT = Elt0.getValueType();
3311 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) {
3312 if (EltVT.isFloatingPoint()) {
3313 Elt0 = DAG.getNode(ISD::BITCAST, SL,
3314 EltVT.changeTypeToInteger(), Elt0);
3315 }
3316
3317 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3318 }
3319 }
3320 }
3321
3322 // Equivalent of above for accessing the high element of a vector as an
3323 // integer operation.
3324 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3325 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3326 if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3327 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3328 SDValue BV = stripBitcast(Src.getOperand(0));
3329 if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3330 BV.getValueType().getVectorNumElements() == 2) {
3331 SDValue SrcElt = BV.getOperand(1);
3332 EVT SrcEltVT = SrcElt.getValueType();
3333 if (SrcEltVT.isFloatingPoint()) {
3334 SrcElt = DAG.getNode(ISD::BITCAST, SL,
3335 SrcEltVT.changeTypeToInteger(), SrcElt);
3336 }
3337
3338 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3339 }
3340 }
3341 }
3342 }
3343
3344 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3345 //
3346 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3347 // i16 (trunc (srl (i32 (trunc x), K)))
3348 if (VT.getScalarSizeInBits() < 32) {
3349 EVT SrcVT = Src.getValueType();
3350 if (SrcVT.getScalarSizeInBits() > 32 &&
3351 (Src.getOpcode() == ISD::SRL ||
3352 Src.getOpcode() == ISD::SRA ||
3353 Src.getOpcode() == ISD::SHL)) {
3354 SDValue Amt = Src.getOperand(1);
3355 KnownBits Known = DAG.computeKnownBits(Amt);
3356 unsigned Size = VT.getScalarSizeInBits();
3357 if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3358 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3359 EVT MidVT = VT.isVector() ?
3360 EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3361 VT.getVectorNumElements()) : MVT::i32;
3362
3363 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3364 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3365 Src.getOperand(0));
3366 DCI.AddToWorklist(Trunc.getNode());
3367
3368 if (Amt.getValueType() != NewShiftVT) {
3369 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3370 DCI.AddToWorklist(Amt.getNode());
3371 }
3372
3373 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3374 Trunc, Amt);
3375 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3376 }
3377 }
3378 }
3379
3380 return SDValue();
3381}
3382
3383// We need to specifically handle i64 mul here to avoid unnecessary conversion
3384// instructions. If we only match on the legalized i64 mul expansion,
3385// SimplifyDemandedBits will be unable to remove them because there will be
3386// multiple uses due to the separate mul + mulh[su].
3387static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3388 SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3389 if (Size <= 32) {
3390 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3391 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3392 }
3393
3394 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3395 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3396
3397 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3398 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3399
3400 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi);
3401}
3402
3403SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3404 DAGCombinerInfo &DCI) const {
3405 EVT VT = N->getValueType(0);
3406
3407 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3408 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3409 // unnecessarily). isDivergent() is used as an approximation of whether the
3410 // value is in an SGPR.
3411 if (!N->isDivergent())
3412 return SDValue();
3413
3414 unsigned Size = VT.getSizeInBits();
3415 if (VT.isVector() || Size > 64)
3416 return SDValue();
3417
3418 // There are i16 integer mul/mad.
3419 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3420 return SDValue();
3421
3422 SelectionDAG &DAG = DCI.DAG;
3423 SDLoc DL(N);
3424
3425 SDValue N0 = N->getOperand(0);
3426 SDValue N1 = N->getOperand(1);
3427
3428 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3429 // in the source into any_extends if the result of the mul is truncated. Since
3430 // we can assume the high bits are whatever we want, use the underlying value
3431 // to avoid the unknown high bits from interfering.
3432 if (N0.getOpcode() == ISD::ANY_EXTEND)
3433 N0 = N0.getOperand(0);
3434
3435 if (N1.getOpcode() == ISD::ANY_EXTEND)
3436 N1 = N1.getOperand(0);
3437
3438 SDValue Mul;
3439
3440 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3441 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3442 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3443 Mul = getMul24(DAG, DL, N0, N1, Size, false);
3444 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3445 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3446 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3447 Mul = getMul24(DAG, DL, N0, N1, Size, true);
3448 } else {
3449 return SDValue();
3450 }
3451
3452 // We need to use sext even for MUL_U24, because MUL_U24 is used
3453 // for signed multiply of 8 and 16-bit types.
3454 return DAG.getSExtOrTrunc(Mul, DL, VT);
3455}
3456
3457SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3458 DAGCombinerInfo &DCI) const {
3459 EVT VT = N->getValueType(0);
3460
3461 if (!Subtarget->hasMulI24() || VT.isVector())
3462 return SDValue();
3463
3464 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3465 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3466 // unnecessarily). isDivergent() is used as an approximation of whether the
3467 // value is in an SGPR.
3468 // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3469 // valu op anyway)
3470 if (Subtarget->hasSMulHi() && !N->isDivergent())
3471 return SDValue();
3472
3473 SelectionDAG &DAG = DCI.DAG;
3474 SDLoc DL(N);
3475
3476 SDValue N0 = N->getOperand(0);
3477 SDValue N1 = N->getOperand(1);
3478
3479 if (!isI24(N0, DAG) || !isI24(N1, DAG))
3480 return SDValue();
3481
3482 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3483 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3484
3485 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3486 DCI.AddToWorklist(Mulhi.getNode());
3487 return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3488}
3489
3490SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3491 DAGCombinerInfo &DCI) const {
3492 EVT VT = N->getValueType(0);
3493
3494 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3495 return SDValue();
3496
3497 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3498 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3499 // unnecessarily). isDivergent() is used as an approximation of whether the
3500 // value is in an SGPR.
3501 // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3502 // valu op anyway)
3503 if (Subtarget->hasSMulHi() && !N->isDivergent())
3504 return SDValue();
3505
3506 SelectionDAG &DAG = DCI.DAG;
3507 SDLoc DL(N);
3508
3509 SDValue N0 = N->getOperand(0);
3510 SDValue N1 = N->getOperand(1);
3511
3512 if (!isU24(N0, DAG) || !isU24(N1, DAG))
3513 return SDValue();
3514
3515 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3516 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3517
3518 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3519 DCI.AddToWorklist(Mulhi.getNode());
3520 return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3521}
3522
3523static bool isNegativeOne(SDValue Val) {
3524 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3525 return C->isAllOnesValue();
3526 return false;
3527}
3528
3529SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3530 SDValue Op,
3531 const SDLoc &DL,
3532 unsigned Opc) const {
3533 EVT VT = Op.getValueType();
3534 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3535 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3536 LegalVT != MVT::i16))
3537 return SDValue();
3538
3539 if (VT != MVT::i32)
3540 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3541
3542 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3543 if (VT != MVT::i32)
3544 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3545
3546 return FFBX;
3547}
3548
3549// The native instructions return -1 on 0 input. Optimize out a select that
3550// produces -1 on 0.
3551//
3552// TODO: If zero is not undef, we could also do this if the output is compared
3553// against the bitwidth.
3554//
3555// TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3556SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3557 SDValue LHS, SDValue RHS,
3558 DAGCombinerInfo &DCI) const {
3559 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3560 if (!CmpRhs || !CmpRhs->isNullValue())
3561 return SDValue();
3562
3563 SelectionDAG &DAG = DCI.DAG;
3564 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3565 SDValue CmpLHS = Cond.getOperand(0);
3566
3567 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3568 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3569 if (CCOpcode == ISD::SETEQ &&
3570 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3571 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3572 unsigned Opc =
3573 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3574 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3575 }
3576
3577 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3578 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3579 if (CCOpcode == ISD::SETNE &&
3580 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3581 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3582 unsigned Opc =
3583 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3584
3585 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3586 }
3587
3588 return SDValue();
3589}
3590
3591static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3592 unsigned Op,
3593 const SDLoc &SL,
3594 SDValue Cond,
3595 SDValue N1,
3596 SDValue N2) {
3597 SelectionDAG &DAG = DCI.DAG;
3598 EVT VT = N1.getValueType();
3599
3600 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3601 N1.getOperand(0), N2.getOperand(0));
3602 DCI.AddToWorklist(NewSelect.getNode());
3603 return DAG.getNode(Op, SL, VT, NewSelect);
3604}
3605
3606// Pull a free FP operation out of a select so it may fold into uses.
3607//
3608// select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3609// select c, (fneg x), k -> fneg (select c, x, (fneg k))
3610//
3611// select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3612// select c, (fabs x), +k -> fabs (select c, x, k)
3613static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3614 SDValue N) {
3615 SelectionDAG &DAG = DCI.DAG;
3616 SDValue Cond = N.getOperand(0);
3617 SDValue LHS = N.getOperand(1);
3618 SDValue RHS = N.getOperand(2);
3619
3620 EVT VT = N.getValueType();
3621 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3622 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3623 return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3624 SDLoc(N), Cond, LHS, RHS);
3625 }
3626
3627 bool Inv = false;
3628 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3629 std::swap(LHS, RHS);
3630 Inv = true;
3631 }
3632
3633 // TODO: Support vector constants.
3634 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3635 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3636 SDLoc SL(N);
3637 // If one side is an fneg/fabs and the other is a constant, we can push the
3638 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3639 SDValue NewLHS = LHS.getOperand(0);
3640 SDValue NewRHS = RHS;
3641
3642 // Careful: if the neg can be folded up, don't try to pull it back down.
3643 bool ShouldFoldNeg = true;
3644
3645 if (NewLHS.hasOneUse()) {
3646 unsigned Opc = NewLHS.getOpcode();
3647 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3648 ShouldFoldNeg = false;
3649 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3650 ShouldFoldNeg = false;
3651 }
3652
3653 if (ShouldFoldNeg) {
3654 if (LHS.getOpcode() == ISD::FNEG)
3655 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3656 else if (CRHS->isNegative())
3657 return SDValue();
3658
3659 if (Inv)
3660 std::swap(NewLHS, NewRHS);
3661
3662 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3663 Cond, NewLHS, NewRHS);
3664 DCI.AddToWorklist(NewSelect.getNode());
3665 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3666 }
3667 }
3668
3669 return SDValue();
3670}
3671
3672
3673SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3674 DAGCombinerInfo &DCI) const {
3675 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3676 return Folded;
3677
3678 SDValue Cond = N->getOperand(0);
3679 if (Cond.getOpcode() != ISD::SETCC)
3680 return SDValue();
3681
3682 EVT VT = N->getValueType(0);
3683 SDValue LHS = Cond.getOperand(0);
3684 SDValue RHS = Cond.getOperand(1);
3685 SDValue CC = Cond.getOperand(2);
3686
3687 SDValue True = N->getOperand(1);
3688 SDValue False = N->getOperand(2);
3689
3690 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3691 SelectionDAG &DAG = DCI.DAG;
3692 if (DAG.isConstantValueOfAnyType(True) &&
3693 !DAG.isConstantValueOfAnyType(False)) {
3694 // Swap cmp + select pair to move constant to false input.
3695 // This will allow using VOPC cndmasks more often.
3696 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3697
3698 SDLoc SL(N);
3699 ISD::CondCode NewCC =
3700 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3701
3702 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3703 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3704 }
3705
3706 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3707 SDValue MinMax
3708 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3709 // Revisit this node so we can catch min3/max3/med3 patterns.
3710 //DCI.AddToWorklist(MinMax.getNode());
3711 return MinMax;
3712 }
3713 }
3714
3715 // There's no reason to not do this if the condition has other uses.
3716 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3717}
3718
3719static bool isInv2Pi(const APFloat &APF) {
3720 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3721 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3722 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3723
3724 return APF.bitwiseIsEqual(KF16) ||
3725 APF.bitwiseIsEqual(KF32) ||
3726 APF.bitwiseIsEqual(KF64);
3727}
3728
3729// 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3730// additional cost to negate them.
3731bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3732 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3733 if (C->isZero() && !C->isNegative())
3734 return true;
3735
3736 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3737 return true;
3738 }
3739
3740 return false;
3741}
3742
3743static unsigned inverseMinMax(unsigned Opc) {
3744 switch (Opc) {
3745 case ISD::FMAXNUM:
3746 return ISD::FMINNUM;
3747 case ISD::FMINNUM:
3748 return ISD::FMAXNUM;
3749 case ISD::FMAXNUM_IEEE:
3750 return ISD::FMINNUM_IEEE;
3751 case ISD::FMINNUM_IEEE:
3752 return ISD::FMAXNUM_IEEE;
3753 case AMDGPUISD::FMAX_LEGACY:
3754 return AMDGPUISD::FMIN_LEGACY;
3755 case AMDGPUISD::FMIN_LEGACY:
3756 return AMDGPUISD::FMAX_LEGACY;
3757 default:
3758 llvm_unreachable("invalid min/max opcode")__builtin_unreachable();
3759 }
3760}
3761
3762SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3763 DAGCombinerInfo &DCI) const {
3764 SelectionDAG &DAG = DCI.DAG;
3765 SDValue N0 = N->getOperand(0);
3766 EVT VT = N->getValueType(0);
3767
3768 unsigned Opc = N0.getOpcode();
3769
3770 // If the input has multiple uses and we can either fold the negate down, or
3771 // the other uses cannot, give up. This both prevents unprofitable
3772 // transformations and infinite loops: we won't repeatedly try to fold around
3773 // a negate that has no 'good' form.
3774 if (N0.hasOneUse()) {
3775 // This may be able to fold into the source, but at a code size cost. Don't
3776 // fold if the fold into the user is free.
3777 if (allUsesHaveSourceMods(N, 0))
3778 return SDValue();
3779 } else {
3780 if (fnegFoldsIntoOp(Opc) &&
3781 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3782 return SDValue();
3783 }
3784
3785 SDLoc SL(N);
3786 switch (Opc) {
3787 case ISD::FADD: {
3788 if (!mayIgnoreSignedZero(N0))
3789 return SDValue();
3790
3791 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3792 SDValue LHS = N0.getOperand(0);
3793 SDValue RHS = N0.getOperand(1);
3794
3795 if (LHS.getOpcode() != ISD::FNEG)
3796 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3797 else
3798 LHS = LHS.getOperand(0);
3799
3800 if (RHS.getOpcode() != ISD::FNEG)
3801 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3802 else
3803 RHS = RHS.getOperand(0);
3804
3805 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3806 if (Res.getOpcode() != ISD::FADD)
3807 return SDValue(); // Op got folded away.
3808 if (!N0.hasOneUse())
3809 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3810 return Res;
3811 }
3812 case ISD::FMUL:
3813 case AMDGPUISD::FMUL_LEGACY: {
3814 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3815 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3816 SDValue LHS = N0.getOperand(0);
3817 SDValue RHS = N0.getOperand(1);
3818
3819 if (LHS.getOpcode() == ISD::FNEG)
3820 LHS = LHS.getOperand(0);
3821 else if (RHS.getOpcode() == ISD::FNEG)
3822 RHS = RHS.getOperand(0);
3823 else
3824 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3825
3826 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3827 if (Res.getOpcode() != Opc)
3828 return SDValue(); // Op got folded away.
3829 if (!N0.hasOneUse())
3830 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3831 return Res;
3832 }
3833 case ISD::FMA:
3834 case ISD::FMAD: {
3835 // TODO: handle llvm.amdgcn.fma.legacy
3836 if (!mayIgnoreSignedZero(N0))
3837 return SDValue();
3838
3839 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3840 SDValue LHS = N0.getOperand(0);
3841 SDValue MHS = N0.getOperand(1);
3842 SDValue RHS = N0.getOperand(2);
3843
3844 if (LHS.getOpcode() == ISD::FNEG)
3845 LHS = LHS.getOperand(0);
3846 else if (MHS.getOpcode() == ISD::FNEG)
3847 MHS = MHS.getOperand(0);
3848 else
3849 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3850
3851 if (RHS.getOpcode() != ISD::FNEG)
3852 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3853 else
3854 RHS = RHS.getOperand(0);
3855
3856 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3857 if (Res.getOpcode() != Opc)
3858 return SDValue(); // Op got folded away.
3859 if (!N0.hasOneUse())
3860 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3861 return Res;
3862 }
3863 case ISD::FMAXNUM:
3864 case ISD::FMINNUM:
3865 case ISD::FMAXNUM_IEEE:
3866 case ISD::FMINNUM_IEEE:
3867 case AMDGPUISD::FMAX_LEGACY:
3868 case AMDGPUISD::FMIN_LEGACY: {
3869 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3870 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3871 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3872 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3873
3874 SDValue LHS = N0.getOperand(0);
3875 SDValue RHS = N0.getOperand(1);
3876
3877 // 0 doesn't have a negated inline immediate.
3878 // TODO: This constant check should be generalized to other operations.
3879 if (isConstantCostlierToNegate(RHS))
3880 return SDValue();
3881
3882 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3883 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3884 unsigned Opposite = inverseMinMax(Opc);
3885
3886 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3887 if (Res.getOpcode() != Opposite)
3888 return SDValue(); // Op got folded away.
3889 if (!N0.hasOneUse())
3890 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3891 return Res;
3892 }
3893 case AMDGPUISD::FMED3: {
3894 SDValue Ops[3];
3895 for (unsigned I = 0; I < 3; ++I)
3896 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3897
3898 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3899 if (Res.getOpcode() != AMDGPUISD::FMED3)
3900 return SDValue(); // Op got folded away.
3901
3902 if (!N0.hasOneUse()) {
3903 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res);
3904 DAG.ReplaceAllUsesWith(N0, Neg);
3905
3906 for (SDNode *U : Neg->uses())
3907 DCI.AddToWorklist(U);
3908 }
3909
3910 return Res;
3911 }
3912 case ISD::FP_EXTEND:
3913 case ISD::FTRUNC:
3914 case ISD::FRINT:
3915 case ISD::FNEARBYINT: // XXX - Should fround be handled?
3916 case ISD::FSIN:
3917 case ISD::FCANONICALIZE:
3918 case AMDGPUISD::RCP:
3919 case AMDGPUISD::RCP_LEGACY:
3920 case AMDGPUISD::RCP_IFLAG:
3921 case AMDGPUISD::SIN_HW: {
3922 SDValue CvtSrc = N0.getOperand(0);
3923 if (CvtSrc.getOpcode() == ISD::FNEG) {
3924 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3925 // (fneg (rcp (fneg x))) -> (rcp x)
3926 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3927 }
3928
3929 if (!N0.hasOneUse())
3930 return SDValue();
3931
3932 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3933 // (fneg (rcp x)) -> (rcp (fneg x))
3934 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3935 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3936 }
3937 case ISD::FP_ROUND: {
3938 SDValue CvtSrc = N0.getOperand(0);
3939
3940 if (CvtSrc.getOpcode() == ISD::FNEG) {
3941 // (fneg (fp_round (fneg x))) -> (fp_round x)
3942 return DAG.getNode(ISD::FP_ROUND, SL, VT,
3943 CvtSrc.getOperand(0), N0.getOperand(1));
3944 }
3945
3946 if (!N0.hasOneUse())
3947 return SDValue();
3948
3949 // (fneg (fp_round x)) -> (fp_round (fneg x))
3950 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3951 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3952 }
3953 case ISD::FP16_TO_FP: {
3954 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3955 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3956 // Put the fneg back as a legal source operation that can be matched later.
3957 SDLoc SL(N);
3958
3959 SDValue Src = N0.getOperand(0);
3960 EVT SrcVT = Src.getValueType();
3961
3962 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3963 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3964 DAG.getConstant(0x8000, SL, SrcVT));
3965 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3966 }
3967 default:
3968 return SDValue();
3969 }
3970}
3971
3972SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3973 DAGCombinerInfo &DCI) const {
3974 SelectionDAG &DAG = DCI.DAG;
3975 SDValue N0 = N->getOperand(0);
3976
3977 if (!N0.hasOneUse())
3978 return SDValue();
3979
3980 switch (N0.getOpcode()) {
3981 case ISD::FP16_TO_FP: {
3982 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal")((void)0);
3983 SDLoc SL(N);
3984 SDValue Src = N0.getOperand(0);
3985 EVT SrcVT = Src.getValueType();
3986
3987 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3988 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3989 DAG.getConstant(0x7fff, SL, SrcVT));
3990 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
3991 }
3992 default:
3993 return SDValue();
3994 }
3995}
3996
3997SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
3998 DAGCombinerInfo &DCI) const {
3999 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
4000 if (!CFP)
4001 return SDValue();
4002
4003 // XXX - Should this flush denormals?
4004 const APFloat &Val = CFP->getValueAPF();
4005 APFloat One(Val.getSemantics(), "1.0");
4006 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
4007}
4008
4009SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
4010 DAGCombinerInfo &DCI) const {
4011 SelectionDAG &DAG = DCI.DAG;
4012 SDLoc DL(N);
4013
4014 switch(N->getOpcode()) {
1
Control jumps to 'case BFE_I32:' at line 4113
4015 default:
4016 break;
4017 case ISD::BITCAST: {
4018 EVT DestVT = N->getValueType(0);
4019
4020 // Push casts through vector builds. This helps avoid emitting a large
4021 // number of copies when materializing floating point vector constants.
4022 //
4023 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
4024 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
4025 if (DestVT.isVector()) {
4026 SDValue Src = N->getOperand(0);
4027 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
4028 EVT SrcVT = Src.getValueType();
4029 unsigned NElts = DestVT.getVectorNumElements();
4030
4031 if (SrcVT.getVectorNumElements() == NElts) {
4032 EVT DestEltVT = DestVT.getVectorElementType();
4033
4034 SmallVector<SDValue, 8> CastedElts;
4035 SDLoc SL(N);
4036 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
4037 SDValue Elt = Src.getOperand(I);
4038 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
4039 }
4040
4041 return DAG.getBuildVector(DestVT, SL, CastedElts);
4042 }
4043 }
4044 }
4045
4046 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector())
4047 break;
4048
4049 // Fold bitcasts of constants.
4050 //
4051 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4052 // TODO: Generalize and move to DAGCombiner
4053 SDValue Src = N->getOperand(0);
4054 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4055 SDLoc SL(N);
4056 uint64_t CVal = C->getZExtValue();
4057 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4058 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4059 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4060 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4061 }
4062
4063 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4064 const APInt &Val = C->getValueAPF().bitcastToAPInt();
4065 SDLoc SL(N);
4066 uint64_t CVal = Val.getZExtValue();
4067 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4068 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4069 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4070
4071 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4072 }
4073
4074 break;
4075 }
4076 case ISD::SHL: {
4077 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4078 break;
4079
4080 return performShlCombine(N, DCI);
4081 }
4082 case ISD::SRL: {
4083 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4084 break;
4085
4086 return performSrlCombine(N, DCI);
4087 }
4088 case ISD::SRA: {
4089 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4090 break;
4091
4092 return performSraCombine(N, DCI);
4093 }
4094 case ISD::TRUNCATE:
4095 return performTruncateCombine(N, DCI);
4096 case ISD::MUL:
4097 return performMulCombine(N, DCI);
4098 case ISD::MULHS:
4099 return performMulhsCombine(N, DCI);
4100 case ISD::MULHU:
4101 return performMulhuCombine(N, DCI);
4102 case AMDGPUISD::MUL_I24:
4103 case AMDGPUISD::MUL_U24:
4104 case AMDGPUISD::MULHI_I24:
4105 case AMDGPUISD::MULHI_U24:
4106 return simplifyMul24(N, DCI);
4107 case ISD::SELECT:
4108 return performSelectCombine(N, DCI);
4109 case ISD::FNEG:
4110 return performFNegCombine(N, DCI);
4111 case ISD::FABS:
4112 return performFAbsCombine(N, DCI);
4113 case AMDGPUISD::BFE_I32:
4114 case AMDGPUISD::BFE_U32: {
4115 assert(!N->getValueType(0).isVector() &&((void)0)
4116 "Vector handling of BFE not implemented")((void)0);
4117 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4118 if (!Width)
2
Assuming 'Width' is non-null
3
Taking false branch
4119 break;
4120
4121 uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4122 if (WidthVal == 0)
4
Assuming 'WidthVal' is not equal to 0
5
Taking false branch
4123 return DAG.getConstant(0, DL, MVT::i32);
4124
4125 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4126 if (!Offset)
6
Assuming 'Offset' is non-null
7
Taking false branch
4127 break;
4128
4129 SDValue BitsFrom = N->getOperand(0);
8
Value assigned to 'BitsFrom.Node'
4130 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4131
4132 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4133
4134 if (OffsetVal == 0) {
9
Assuming 'OffsetVal' is not equal to 0
10
Taking false branch
4135 // This is already sign / zero extended, so try to fold away extra BFEs.
4136 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4137
4138 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4139 if (OpSignBits >= SignBits)
4140 return BitsFrom;
4141
4142 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4143 if (Signed) {
4144 // This is a sign_extend_inreg. Replace it to take advantage of existing
4145 // DAG Combines. If not eliminated, we will match back to BFE during
4146 // selection.
4147
4148 // TODO: The sext_inreg of extended types ends, although we can could
4149 // handle them in a single BFE.
4150 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4151 DAG.getValueType(SmallVT));
4152 }
4153
4154 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4155 }
4156
4157 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
11
Calling 'dyn_cast<llvm::ConstantSDNode, llvm::SDValue>'
24
Returning from 'dyn_cast<llvm::ConstantSDNode, llvm::SDValue>'
25
Assuming 'CVal' is null
26
Taking false branch
4158 if (Signed) {
4159 return constantFoldBFE<int32_t>(DAG,
4160 CVal->getSExtValue(),
4161 OffsetVal,
4162 WidthVal,
4163 DL);
4164 }
4165
4166 return constantFoldBFE<uint32_t>(DAG,
4167 CVal->getZExtValue(),
4168 OffsetVal,
4169 WidthVal,
4170 DL);
4171 }
4172
4173 if ((OffsetVal + WidthVal) >= 32 &&
27
Assuming the condition is false
4174 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4175 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4176 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4177 BitsFrom, ShiftVal);
4178 }
4179
4180 if (BitsFrom.hasOneUse()) {
28
Calling 'SDValue::hasOneUse'
4181 APInt Demanded = APInt::getBitsSet(32,
4182 OffsetVal,
4183 OffsetVal + WidthVal);
4184
4185 KnownBits Known;
4186 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4187 !DCI.isBeforeLegalizeOps());
4188 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4189 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4190 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4191 DCI.CommitTargetLoweringOpt(TLO);
4192 }
4193 }
4194
4195 break;
4196 }
4197 case ISD::LOAD:
4198 return performLoadCombine(N, DCI);
4199 case ISD::STORE:
4200 return performStoreCombine(N, DCI);
4201 case AMDGPUISD::RCP:
4202 case AMDGPUISD::RCP_IFLAG:
4203 return performRcpCombine(N, DCI);
4204 case ISD::AssertZext:
4205 case ISD::AssertSext:
4206 return performAssertSZExtCombine(N, DCI);
4207 case ISD::INTRINSIC_WO_CHAIN:
4208 return performIntrinsicWOChainCombine(N, DCI);
4209 }
4210 return SDValue();
4211}
4212
4213//===----------------------------------------------------------------------===//
4214// Helper functions
4215//===----------------------------------------------------------------------===//
4216
4217SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4218 const TargetRegisterClass *RC,
4219 Register Reg, EVT VT,
4220 const SDLoc &SL,
4221 bool RawReg) const {
4222 MachineFunction &MF = DAG.getMachineFunction();
4223 MachineRegisterInfo &MRI = MF.getRegInfo();
4224 Register VReg;
4225
4226 if (!MRI.isLiveIn(Reg)) {
4227 VReg = MRI.createVirtualRegister(RC);
4228 MRI.addLiveIn(Reg, VReg);
4229 } else {
4230 VReg = MRI.getLiveInVirtReg(Reg);
4231 }
4232
4233 if (RawReg)
4234 return DAG.getRegister(VReg, VT);
4235
4236 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4237}
4238
4239// This may be called multiple times, and nothing prevents creating multiple
4240// objects at the same offset. See if we already defined this object.
4241static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4242 int64_t Offset) {
4243 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4244 if (MFI.getObjectOffset(I) == Offset) {
4245 assert(MFI.getObjectSize(I) == Size)((void)0);
4246 return I;
4247 }
4248 }
4249
4250 return MFI.CreateFixedObject(Size, Offset, true);
4251}
4252
4253SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4254 EVT VT,
4255 const SDLoc &SL,
4256 int64_t Offset) const {
4257 MachineFunction &MF = DAG.getMachineFunction();
4258 MachineFrameInfo &MFI = MF.getFrameInfo();
4259 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4260
4261 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4262 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4263
4264 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4),
4265 MachineMemOperand::MODereferenceable |
4266 MachineMemOperand::MOInvariant);
4267}
4268
4269SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4270 const SDLoc &SL,
4271 SDValue Chain,
4272 SDValue ArgVal,
4273 int64_t Offset) const {
4274 MachineFunction &MF = DAG.getMachineFunction();
4275 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4276 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4277
4278 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4279 // Stores to the argument stack area are relative to the stack pointer.
4280 SDValue SP =
4281 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32);
4282 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr);
4283 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4),
4284 MachineMemOperand::MODereferenceable);
4285 return Store;
4286}
4287
4288SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4289 const TargetRegisterClass *RC,
4290 EVT VT, const SDLoc &SL,
4291 const ArgDescriptor &Arg) const {
4292 assert(Arg && "Attempting to load missing argument")((void)0);
4293
4294 SDValue V = Arg.isRegister() ?
4295 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4296 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4297
4298 if (!Arg.isMasked())
4299 return V;
4300
4301 unsigned Mask = Arg.getMask();
4302 unsigned Shift = countTrailingZeros<unsigned>(Mask);
4303 V = DAG.getNode(ISD::SRL, SL, VT, V,
4304 DAG.getShiftAmountConstant(Shift, VT, SL));
4305 return DAG.getNode(ISD::AND, SL, VT, V,
4306 DAG.getConstant(Mask >> Shift, SL, VT));
4307}
4308
4309uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4310 const MachineFunction &MF, const ImplicitParameter Param) const {
4311 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4312 const AMDGPUSubtarget &ST =
4313 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4314 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4315 const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4316 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4317 ExplicitArgOffset;
4318 switch (Param) {
4319 case GRID_DIM:
4320 return ArgOffset;
4321 case GRID_OFFSET:
4322 return ArgOffset + 4;
4323 }
4324 llvm_unreachable("unexpected implicit parameter type")__builtin_unreachable();
4325}
4326
4327#define NODE_NAME_CASE(node)case AMDGPUISD::node: return "node"; case AMDGPUISD::node: return #node;
4328
4329const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4330 switch ((AMDGPUISD::NodeType)Opcode) {
4331 case AMDGPUISD::FIRST_NUMBER: break;
4332 // AMDIL DAG nodes
4333 NODE_NAME_CASE(UMUL)case AMDGPUISD::UMUL: return "UMUL";;
4334 NODE_NAME_CASE(BRANCH_COND)case AMDGPUISD::BRANCH_COND: return "BRANCH_COND";;
4335
4336 // AMDGPU DAG nodes
4337 NODE_NAME_CASE(IF)case AMDGPUISD::IF: return "IF";
4338 NODE_NAME_CASE(ELSE)case AMDGPUISD::ELSE: return "ELSE";
4339 NODE_NAME_CASE(LOOP)case AMDGPUISD::LOOP: return "LOOP";
4340 NODE_NAME_CASE(CALL)case AMDGPUISD::CALL: return "CALL";
4341 NODE_NAME_CASE(TC_RETURN)case AMDGPUISD::TC_RETURN: return "TC_RETURN";
4342 NODE_NAME_CASE(TRAP)case AMDGPUISD::TRAP: return "TRAP";
4343 NODE_NAME_CASE(RET_FLAG)case AMDGPUISD::RET_FLAG: return "RET_FLAG";
4344 NODE_NAME_CASE(RETURN_TO_EPILOG)case AMDGPUISD::RETURN_TO_EPILOG: return "RETURN_TO_EPILOG";
4345 NODE_NAME_CASE(ENDPGM)case AMDGPUISD::ENDPGM: return "ENDPGM";
4346 NODE_NAME_CASE(DWORDADDR)case AMDGPUISD::DWORDADDR: return "DWORDADDR";
4347 NODE_NAME_CASE(FRACT)case AMDGPUISD::FRACT: return "FRACT";
4348 NODE_NAME_CASE(SETCC)case AMDGPUISD::SETCC: return "SETCC";
4349 NODE_NAME_CASE(SETREG)case AMDGPUISD::SETREG: return "SETREG";
4350 NODE_NAME_CASE(DENORM_MODE)case AMDGPUISD::DENORM_MODE: return "DENORM_MODE";
4351 NODE_NAME_CASE(FMA_W_CHAIN)case AMDGPUISD::FMA_W_CHAIN: return "FMA_W_CHAIN";
4352 NODE_NAME_CASE(FMUL_W_CHAIN)case AMDGPUISD::FMUL_W_CHAIN: return "FMUL_W_CHAIN";
4353 NODE_NAME_CASE(CLAMP)case AMDGPUISD::CLAMP: return "CLAMP";
4354 NODE_NAME_CASE(COS_HW)case AMDGPUISD::COS_HW: return "COS_HW";
4355 NODE_NAME_CASE(SIN_HW)case AMDGPUISD::SIN_HW: return "SIN_HW";
4356 NODE_NAME_CASE(FMAX_LEGACY)case AMDGPUISD::FMAX_LEGACY: return "FMAX_LEGACY";
4357 NODE_NAME_CASE(FMIN_LEGACY)case AMDGPUISD::FMIN_LEGACY: return "FMIN_LEGACY";
4358 NODE_NAME_CASE(FMAX3)case AMDGPUISD::FMAX3: return "FMAX3";
4359 NODE_NAME_CASE(SMAX3)case AMDGPUISD::SMAX3: return "SMAX3";
4360 NODE_NAME_CASE(UMAX3)case AMDGPUISD::UMAX3: return "UMAX3";
4361 NODE_NAME_CASE(FMIN3)case AMDGPUISD::FMIN3: return "FMIN3";
4362 NODE_NAME_CASE(SMIN3)case AMDGPUISD::SMIN3: return "SMIN3";
4363 NODE_NAME_CASE(UMIN3)case AMDGPUISD::UMIN3: return "UMIN3";
4364 NODE_NAME_CASE(FMED3)case AMDGPUISD::FMED3: return "FMED3";
4365 NODE_NAME_CASE(SMED3)case AMDGPUISD::SMED3: return "SMED3";
4366 NODE_NAME_CASE(UMED3)case AMDGPUISD::UMED3: return "UMED3";
4367 NODE_NAME_CASE(FDOT2)case AMDGPUISD::FDOT2: return "FDOT2";
4368 NODE_NAME_CASE(URECIP)case AMDGPUISD::URECIP: return "URECIP";
4369 NODE_NAME_CASE(DIV_SCALE)case AMDGPUISD::DIV_SCALE: return "DIV_SCALE";
4370 NODE_NAME_CASE(DIV_FMAS)case AMDGPUISD::DIV_FMAS: return "DIV_FMAS";
4371 NODE_NAME_CASE(DIV_FIXUP)case AMDGPUISD::DIV_FIXUP: return "DIV_FIXUP";
4372 NODE_NAME_CASE(FMAD_FTZ)case AMDGPUISD::FMAD_FTZ: return "FMAD_FTZ";
4373 NODE_NAME_CASE(RCP)case AMDGPUISD::RCP: return "RCP";
4374 NODE_NAME_CASE(RSQ)case AMDGPUISD::RSQ: return "RSQ";
4375 NODE_NAME_CASE(RCP_LEGACY)case AMDGPUISD::RCP_LEGACY: return "RCP_LEGACY";
4376 NODE_NAME_CASE(RCP_IFLAG)case AMDGPUISD::RCP_IFLAG: return "RCP_IFLAG";
4377 NODE_NAME_CASE(FMUL_LEGACY)case AMDGPUISD::FMUL_LEGACY: return "FMUL_LEGACY";
4378 NODE_NAME_CASE(RSQ_CLAMP)case AMDGPUISD::RSQ_CLAMP: return "RSQ_CLAMP";
4379 NODE_NAME_CASE(LDEXP)case AMDGPUISD::LDEXP: return "LDEXP";
4380 NODE_NAME_CASE(FP_CLASS)case AMDGPUISD::FP_CLASS: return "FP_CLASS";
4381 NODE_NAME_CASE(DOT4)case AMDGPUISD::DOT4: return "DOT4";
4382 NODE_NAME_CASE(CARRY)case AMDGPUISD::CARRY: return "CARRY";
4383 NODE_NAME_CASE(BORROW)case AMDGPUISD::BORROW: return "BORROW";
4384 NODE_NAME_CASE(BFE_U32)case AMDGPUISD::BFE_U32: return "BFE_U32";
4385 NODE_NAME_CASE(BFE_I32)case AMDGPUISD::BFE_I32: return "BFE_I32";
4386 NODE_NAME_CASE(BFI)case AMDGPUISD::BFI: return "BFI";
4387 NODE_NAME_CASE(BFM)case AMDGPUISD::BFM: return "BFM";
4388 NODE_NAME_CASE(FFBH_U32)case AMDGPUISD::FFBH_U32: return "FFBH_U32";
4389 NODE_NAME_CASE(FFBH_I32)case AMDGPUISD::FFBH_I32: return "FFBH_I32";
4390 NODE_NAME_CASE(FFBL_B32)case AMDGPUISD::FFBL_B32: return "FFBL_B32";
4391 NODE_NAME_CASE(MUL_U24)case AMDGPUISD::MUL_U24: return "MUL_U24";
4392 NODE_NAME_CASE(MUL_I24)case AMDGPUISD::MUL_I24: return "MUL_I24";
4393 NODE_NAME_CASE(MULHI_U24)case AMDGPUISD::MULHI_U24: return "MULHI_U24";
4394 NODE_NAME_CASE(MULHI_I24)case AMDGPUISD::MULHI_I24: return "MULHI_I24";
4395 NODE_NAME_CASE(MAD_U24)case AMDGPUISD::MAD_U24: return "MAD_U24";
4396 NODE_NAME_CASE(MAD_I24)case AMDGPUISD::MAD_I24: return "MAD_I24";
4397 NODE_NAME_CASE(MAD_I64_I32)case AMDGPUISD::MAD_I64_I32: return "MAD_I64_I32";
4398 NODE_NAME_CASE(MAD_U64_U32)case AMDGPUISD::MAD_U64_U32: return "MAD_U64_U32";
4399 NODE_NAME_CASE(PERM)case AMDGPUISD::PERM: return "PERM";
4400 NODE_NAME_CASE(TEXTURE_FETCH)case AMDGPUISD::TEXTURE_FETCH: return "TEXTURE_FETCH";
4401 NODE_NAME_CASE(R600_EXPORT)case AMDGPUISD::R600_EXPORT: return "R600_EXPORT";
4402 NODE_NAME_CASE(CONST_ADDRESS)case AMDGPUISD::CONST_ADDRESS: return "CONST_ADDRESS";
4403 NODE_NAME_CASE(REGISTER_LOAD)case AMDGPUISD::REGISTER_LOAD: return "REGISTER_LOAD";
4404 NODE_NAME_CASE(REGISTER_STORE)case AMDGPUISD::REGISTER_STORE: return "REGISTER_STORE";
4405 NODE_NAME_CASE(SAMPLE)case AMDGPUISD::SAMPLE: return "SAMPLE";
4406 NODE_NAME_CASE(SAMPLEB)case AMDGPUISD::SAMPLEB: return "SAMPLEB";
4407 NODE_NAME_CASE(SAMPLED)case AMDGPUISD::SAMPLED: return "SAMPLED";
4408 NODE_NAME_CASE(SAMPLEL)case AMDGPUISD::SAMPLEL: return "SAMPLEL";
4409 NODE_NAME_CASE(CVT_F32_UBYTE0)case AMDGPUISD::CVT_F32_UBYTE0: return "CVT_F32_UBYTE0";
4410 NODE_NAME_CASE(CVT_F32_UBYTE1)case AMDGPUISD::CVT_F32_UBYTE1: return "CVT_F32_UBYTE1";
4411 NODE_NAME_CASE(CVT_F32_UBYTE2)case AMDGPUISD::CVT_F32_UBYTE2: return "CVT_F32_UBYTE2";
4412 NODE_NAME_CASE(CVT_F32_UBYTE3)case AMDGPUISD::CVT_F32_UBYTE3: return "CVT_F32_UBYTE3";
4413 NODE_NAME_CASE(CVT_PKRTZ_F16_F32)case AMDGPUISD::CVT_PKRTZ_F16_F32: return "CVT_PKRTZ_F16_F32"
;
4414 NODE_NAME_CASE(CVT_PKNORM_I16_F32)case AMDGPUISD::CVT_PKNORM_I16_F32: return "CVT_PKNORM_I16_F32"
;
4415 NODE_NAME_CASE(CVT_PKNORM_U16_F32)case AMDGPUISD::CVT_PKNORM_U16_F32: return "CVT_PKNORM_U16_F32"
;
4416 NODE_NAME_CASE(CVT_PK_I16_I32)case AMDGPUISD::CVT_PK_I16_I32: return "CVT_PK_I16_I32";
4417 NODE_NAME_CASE(CVT_PK_U16_U32)case AMDGPUISD::CVT_PK_U16_U32: return "CVT_PK_U16_U32";
4418 NODE_NAME_CASE(FP_TO_FP16)case AMDGPUISD::FP_TO_FP16: return "FP_TO_FP16";
4419 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)case AMDGPUISD::BUILD_VERTICAL_VECTOR: return "BUILD_VERTICAL_VECTOR"
;
4420 NODE_NAME_CASE(CONST_DATA_PTR)case AMDGPUISD::CONST_DATA_PTR: return "CONST_DATA_PTR";
4421 NODE_NAME_CASE(PC_ADD_REL_OFFSET)case AMDGPUISD::PC_ADD_REL_OFFSET: return "PC_ADD_REL_OFFSET"
;
4422 NODE_NAME_CASE(LDS)case AMDGPUISD::LDS: return "LDS";
4423 NODE_NAME_CASE(DUMMY_CHAIN)case AMDGPUISD::DUMMY_CHAIN: return "DUMMY_CHAIN";
4424 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4425 NODE_NAME_CASE(LOAD_D16_HI)case AMDGPUISD::LOAD_D16_HI: return "LOAD_D16_HI";
4426 NODE_NAME_CASE(LOAD_D16_LO)case AMDGPUISD::LOAD_D16_LO: return "LOAD_D16_LO";
4427 NODE_NAME_CASE(LOAD_D16_HI_I8)case AMDGPUISD::LOAD_D16_HI_I8: return "LOAD_D16_HI_I8";
4428 NODE_NAME_CASE(LOAD_D16_HI_U8)case AMDGPUISD::LOAD_D16_HI_U8: return "LOAD_D16_HI_U8";
4429 NODE_NAME_CASE(LOAD_D16_LO_I8)case AMDGPUISD::LOAD_D16_LO_I8: return "LOAD_D16_LO_I8";
4430 NODE_NAME_CASE(LOAD_D16_LO_U8)case AMDGPUISD::LOAD_D16_LO_U8: return "LOAD_D16_LO_U8";
4431 NODE_NAME_CASE(STORE_MSKOR)case AMDGPUISD::STORE_MSKOR: return "STORE_MSKOR";
4432 NODE_NAME_CASE(LOAD_CONSTANT)case AMDGPUISD::LOAD_CONSTANT: return "LOAD_CONSTANT";
4433 NODE_NAME_CASE(TBUFFER_STORE_FORMAT)case AMDGPUISD::TBUFFER_STORE_FORMAT: return "TBUFFER_STORE_FORMAT"
;
4434 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)case AMDGPUISD::TBUFFER_STORE_FORMAT_D16: return "TBUFFER_STORE_FORMAT_D16"
;
4435 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)case AMDGPUISD::TBUFFER_LOAD_FORMAT: return "TBUFFER_LOAD_FORMAT"
;
4436 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)case AMDGPUISD::TBUFFER_LOAD_FORMAT_D16: return "TBUFFER_LOAD_FORMAT_D16"
;
4437 NODE_NAME_CASE(DS_ORDERED_COUNT)case AMDGPUISD::DS_ORDERED_COUNT: return "DS_ORDERED_COUNT";
4438 NODE_NAME_CASE(ATOMIC_CMP_SWAP)case AMDGPUISD::ATOMIC_CMP_SWAP: return "ATOMIC_CMP_SWAP";
4439 NODE_NAME_CASE(ATOMIC_INC)case AMDGPUISD::ATOMIC_INC: return "ATOMIC_INC";
4440 NODE_NAME_CASE(ATOMIC_DEC)case AMDGPUISD::ATOMIC_DEC: return "ATOMIC_DEC";
4441 NODE_NAME_CASE(ATOMIC_LOAD_FMIN)case AMDGPUISD::ATOMIC_LOAD_FMIN: return "ATOMIC_LOAD_FMIN";
4442 NODE_NAME_CASE(ATOMIC_LOAD_FMAX)case AMDGPUISD::ATOMIC_LOAD_FMAX: return "ATOMIC_LOAD_FMAX";
4443 NODE_NAME_CASE(BUFFER_LOAD)case AMDGPUISD::BUFFER_LOAD: return "BUFFER_LOAD";
4444 NODE_NAME_CASE(BUFFER_LOAD_UBYTE)case AMDGPUISD::BUFFER_LOAD_UBYTE: return "BUFFER_LOAD_UBYTE"
;
4445 NODE_NAME_CASE(BUFFER_LOAD_USHORT)case AMDGPUISD::BUFFER_LOAD_USHORT: return "BUFFER_LOAD_USHORT"
;
4446 NODE_NAME_CASE(BUFFER_LOAD_BYTE)case AMDGPUISD::BUFFER_LOAD_BYTE: return "BUFFER_LOAD_BYTE";
4447 NODE_NAME_CASE(BUFFER_LOAD_SHORT)case AMDGPUISD::BUFFER_LOAD_SHORT: return "BUFFER_LOAD_SHORT"
;
4448 NODE_NAME_CASE(BUFFER_LOAD_FORMAT)case AMDGPUISD::BUFFER_LOAD_FORMAT: return "BUFFER_LOAD_FORMAT"
;
4449 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)case AMDGPUISD::BUFFER_LOAD_FORMAT_D16: return "BUFFER_LOAD_FORMAT_D16"
;
4450 NODE_NAME_CASE(SBUFFER_LOAD)case AMDGPUISD::SBUFFER_LOAD: return "SBUFFER_LOAD";
4451 NODE_NAME_CASE(BUFFER_STORE)case AMDGPUISD::BUFFER_STORE: return "BUFFER_STORE";
4452 NODE_NAME_CASE(BUFFER_STORE_BYTE)case AMDGPUISD::BUFFER_STORE_BYTE: return "BUFFER_STORE_BYTE"
;
4453 NODE_NAME_CASE(BUFFER_STORE_SHORT)case AMDGPUISD::BUFFER_STORE_SHORT: return "BUFFER_STORE_SHORT"
;
4454 NODE_NAME_CASE(BUFFER_STORE_FORMAT)case AMDGPUISD::BUFFER_STORE_FORMAT: return "BUFFER_STORE_FORMAT"
;
4455 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)case AMDGPUISD::BUFFER_STORE_FORMAT_D16: return "BUFFER_STORE_FORMAT_D16"
;
4456 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)case AMDGPUISD::BUFFER_ATOMIC_SWAP: return "BUFFER_ATOMIC_SWAP"
;
4457 NODE_NAME_CASE(BUFFER_ATOMIC_ADD)case AMDGPUISD::BUFFER_ATOMIC_ADD: return "BUFFER_ATOMIC_ADD"
;
4458 NODE_NAME_CASE(BUFFER_ATOMIC_SUB)case AMDGPUISD::BUFFER_ATOMIC_SUB: return "BUFFER_ATOMIC_SUB"
;
4459 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)case AMDGPUISD::BUFFER_ATOMIC_SMIN: return "BUFFER_ATOMIC_SMIN"
;
4460 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)case AMDGPUISD::BUFFER_ATOMIC_UMIN: return "BUFFER_ATOMIC_UMIN"
;
4461 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)case AMDGPUISD::BUFFER_ATOMIC_SMAX: return "BUFFER_ATOMIC_SMAX"
;
4462 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)case AMDGPUISD::BUFFER_ATOMIC_UMAX: return "BUFFER_ATOMIC_UMAX"
;
4463 NODE_NAME_CASE(BUFFER_ATOMIC_AND)case AMDGPUISD::BUFFER_ATOMIC_AND: return "BUFFER_ATOMIC_AND"
;
4464 NODE_NAME_CASE(BUFFER_ATOMIC_OR)case AMDGPUISD::BUFFER_ATOMIC_OR: return "BUFFER_ATOMIC_OR";
4465 NODE_NAME_CASE(BUFFER_ATOMIC_XOR)case AMDGPUISD::BUFFER_ATOMIC_XOR: return "BUFFER_ATOMIC_XOR"
;
4466 NODE_NAME_CASE(BUFFER_ATOMIC_INC)case AMDGPUISD::BUFFER_ATOMIC_INC: return "BUFFER_ATOMIC_INC"
;
4467 NODE_NAME_CASE(BUFFER_ATOMIC_DEC)case AMDGPUISD::BUFFER_ATOMIC_DEC: return "BUFFER_ATOMIC_DEC"
;
4468 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: return "BUFFER_ATOMIC_CMPSWAP"
;
4469 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)case AMDGPUISD::BUFFER_ATOMIC_CSUB: return "BUFFER_ATOMIC_CSUB"
;
4470 NODE_NAME_CASE(BUFFER_ATOMIC_FADD)case AMDGPUISD::BUFFER_ATOMIC_FADD: return "BUFFER_ATOMIC_FADD"
;
4471 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN)case AMDGPUISD::BUFFER_ATOMIC_FMIN: return "BUFFER_ATOMIC_FMIN"
;
4472 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX)case AMDGPUISD::BUFFER_ATOMIC_FMAX: return "BUFFER_ATOMIC_FMAX"
;
4473
4474 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4475 }
4476 return nullptr;
4477}
4478
4479SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4480 SelectionDAG &DAG, int Enabled,
4481 int &RefinementSteps,
4482 bool &UseOneConstNR,
4483 bool Reciprocal) const {
4484 EVT VT = Operand.getValueType();
4485
4486 if (VT == MVT::f32) {
4487 RefinementSteps = 0;
4488 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4489 }
4490
4491 // TODO: There is also f64 rsq instruction, but the documentation is less
4492 // clear on its precision.
4493
4494 return SDValue();
4495}
4496
4497SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4498 SelectionDAG &DAG, int Enabled,
4499 int &RefinementSteps) const {
4500 EVT VT = Operand.getValueType();
4501
4502 if (VT == MVT::f32) {
4503 // Reciprocal, < 1 ulp error.
4504 //
4505 // This reciprocal approximation converges to < 0.5 ulp error with one
4506 // newton rhapson performed with two fused multiple adds (FMAs).
4507
4508 RefinementSteps = 0;
4509 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4510 }
4511
4512 // TODO: There is also f64 rcp instruction, but the documentation is less
4513 // clear on its precision.
4514
4515 return SDValue();
4516}
4517
4518void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4519 const SDValue Op, KnownBits &Known,
4520 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4521
4522 Known.resetAll(); // Don't know anything.
4523
4524 unsigned Opc = Op.getOpcode();
4525
4526 switch (Opc) {
4527 default:
4528 break;
4529 case AMDGPUISD::CARRY:
4530 case AMDGPUISD::BORROW: {
4531 Known.Zero = APInt::getHighBitsSet(32, 31);
4532 break;
4533 }
4534
4535 case AMDGPUISD::BFE_I32:
4536 case AMDGPUISD::BFE_U32: {
4537 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4538 if (!CWidth)
4539 return;
4540
4541 uint32_t Width = CWidth->getZExtValue() & 0x1f;
4542
4543 if (Opc == AMDGPUISD::BFE_U32)
4544 Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4545
4546 break;
4547 }
4548 case AMDGPUISD::FP_TO_FP16: {
4549 unsigned BitWidth = Known.getBitWidth();
4550
4551 // High bits are zero.
4552 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4553 break;
4554 }
4555 case AMDGPUISD::MUL_U24:
4556 case AMDGPUISD::MUL_I24: {
4557 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4558 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4559 unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4560 RHSKnown.countMinTrailingZeros();
4561 Known.Zero.setLowBits(std::min(TrailZ, 32u));
4562 // Skip extra check if all bits are known zeros.
4563 if (TrailZ >= 32)
4564 break;
4565
4566 // Truncate to 24 bits.
4567 LHSKnown = LHSKnown.trunc(24);
4568 RHSKnown = RHSKnown.trunc(24);
4569
4570 if (Opc == AMDGPUISD::MUL_I24) {
4571 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4572 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4573 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4574 if (MaxValBits >= 32)
4575 break;
4576 bool LHSNegative = LHSKnown.isNegative();
4577 bool LHSNonNegative = LHSKnown.isNonNegative();
4578 bool LHSPositive = LHSKnown.isStrictlyPositive();
4579 bool RHSNegative = RHSKnown.isNegative();
4580 bool RHSNonNegative = RHSKnown.isNonNegative();
4581 bool RHSPositive = RHSKnown.isStrictlyPositive();
4582
4583 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4584 Known.Zero.setHighBits(32 - MaxValBits);
4585 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4586 Known.One.setHighBits(32 - MaxValBits);
4587 } else {
4588 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4589 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4590 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4591 if (MaxValBits >= 32)
4592 break;
4593 Known.Zero.setHighBits(32 - MaxValBits);
4594 }
4595 break;
4596 }
4597 case AMDGPUISD::PERM: {
4598 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4599 if (!CMask)
4600 return;
4601
4602 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4603 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4604 unsigned Sel = CMask->getZExtValue();
4605
4606 for (unsigned I = 0; I < 32; I += 8) {
4607 unsigned SelBits = Sel & 0xff;
4608 if (SelBits < 4) {
4609 SelBits *= 8;
4610 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4611 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4612 } else if (SelBits < 7) {
4613 SelBits = (SelBits & 3) * 8;
4614 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4615 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4616 } else if (SelBits == 0x0c) {
4617 Known.Zero |= 0xFFull << I;
4618 } else if (SelBits > 0x0c) {
4619 Known.One |= 0xFFull << I;
4620 }
4621 Sel >>= 8;
4622 }
4623 break;
4624 }
4625 case AMDGPUISD::BUFFER_LOAD_UBYTE: {
4626 Known.Zero.setHighBits(24);
4627 break;
4628 }
4629 case AMDGPUISD::BUFFER_LOAD_USHORT: {
4630 Known.Zero.setHighBits(16);
4631 break;
4632 }
4633 case AMDGPUISD::LDS: {
4634 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4635 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4636
4637 Known.Zero.setHighBits(16);
4638 Known.Zero.setLowBits(Log2(Alignment));
4639 break;
4640 }
4641 case ISD::INTRINSIC_WO_CHAIN: {
4642 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4643 switch (IID) {
4644 case Intrinsic::amdgcn_mbcnt_lo:
4645 case Intrinsic::amdgcn_mbcnt_hi: {
4646 const GCNSubtarget &ST =
4647 DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4648 // These return at most the wavefront size - 1.
4649 unsigned Size = Op.getValueType().getSizeInBits();
4650 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4651 break;
4652 }
4653 default:
4654 break;
4655 }
4656 }
4657 }
4658}
4659
4660unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4661 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4662 unsigned Depth) const {
4663 switch (Op.getOpcode()) {
4664 case AMDGPUISD::BFE_I32: {
4665 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4666 if (!Width)
4667 return 1;
4668
4669 unsigned SignBits = 32 - Width->getZExtValue() + 1;
4670 if (!isNullConstant(Op.getOperand(1)))
4671 return SignBits;
4672
4673 // TODO: Could probably figure something out with non-0 offsets.
4674 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4675 return std::max(SignBits, Op0SignBits);
4676 }
4677
4678 case AMDGPUISD::BFE_U32: {
4679 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4680 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4681 }
4682
4683 case AMDGPUISD::CARRY:
4684 case AMDGPUISD::BORROW:
4685 return 31;
4686 case AMDGPUISD::BUFFER_LOAD_BYTE:
4687 return 25;
4688 case AMDGPUISD::BUFFER_LOAD_SHORT:
4689 return 17;
4690 case AMDGPUISD::BUFFER_LOAD_UBYTE:
4691 return 24;
4692 case AMDGPUISD::BUFFER_LOAD_USHORT:
4693 return 16;
4694 case AMDGPUISD::FP_TO_FP16:
4695 return 16;
4696 default:
4697 return 1;
4698 }
4699}
4700
4701unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4702 GISelKnownBits &Analysis, Register R,
4703 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4704 unsigned Depth) const {
4705 const MachineInstr *MI = MRI.getVRegDef(R);
4706 if (!MI)
4707 return 1;
4708
4709 // TODO: Check range metadata on MMO.
4710 switch (MI->getOpcode()) {
4711 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4712 return 25;
4713 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4714 return 17;
4715 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4716 return 24;
4717 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4718 return 16;
4719 default:
4720 return 1;
4721 }
4722}
4723
4724bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4725 const SelectionDAG &DAG,
4726 bool SNaN,
4727 unsigned Depth) const {
4728 unsigned Opcode = Op.getOpcode();
4729 switch (Opcode) {
4730 case AMDGPUISD::FMIN_LEGACY:
4731 case AMDGPUISD::FMAX_LEGACY: {
4732 if (SNaN)
4733 return true;
4734
4735 // TODO: Can check no nans on one of the operands for each one, but which
4736 // one?
4737 return false;
4738 }
4739 case AMDGPUISD::FMUL_LEGACY:
4740 case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4741 if (SNaN)
4742 return true;
4743 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4744 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4745 }
4746 case AMDGPUISD::FMED3:
4747 case AMDGPUISD::FMIN3:
4748 case AMDGPUISD::FMAX3:
4749 case AMDGPUISD::FMAD_FTZ: {
4750 if (SNaN)
4751 return true;
4752 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4753 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4754 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4755 }
4756 case AMDGPUISD::CVT_F32_UBYTE0:
4757 case AMDGPUISD::CVT_F32_UBYTE1:
4758 case AMDGPUISD::CVT_F32_UBYTE2:
4759 case AMDGPUISD::CVT_F32_UBYTE3:
4760 return true;
4761
4762 case AMDGPUISD::RCP:
4763 case AMDGPUISD::RSQ:
4764 case AMDGPUISD::RCP_LEGACY:
4765 case AMDGPUISD::RSQ_CLAMP: {
4766 if (SNaN)
4767 return true;
4768
4769 // TODO: Need is known positive check.
4770 return false;
4771 }
4772 case AMDGPUISD::LDEXP:
4773 case AMDGPUISD::FRACT: {
4774 if (SNaN)
4775 return true;
4776 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4777 }
4778 case AMDGPUISD::DIV_SCALE:
4779 case AMDGPUISD::DIV_FMAS:
4780 case AMDGPUISD::DIV_FIXUP:
4781 // TODO: Refine on operands.
4782 return SNaN;
4783 case AMDGPUISD::SIN_HW:
4784 case AMDGPUISD::COS_HW: {
4785 // TODO: Need check for infinity
4786 return SNaN;
4787 }
4788 case ISD::INTRINSIC_WO_CHAIN: {
4789 unsigned IntrinsicID
4790 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4791 // TODO: Handle more intrinsics
4792 switch (IntrinsicID) {
4793 case Intrinsic::amdgcn_cubeid:
4794 return true;
4795
4796 case Intrinsic::amdgcn_frexp_mant: {
4797 if (SNaN)
4798 return true;
4799 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4800 }
4801 case Intrinsic::amdgcn_cvt_pkrtz: {
4802 if (SNaN)
4803 return true;
4804 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4805 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4806 }
4807 case Intrinsic::amdgcn_rcp:
4808 case Intrinsic::amdgcn_rsq:
4809 case Intrinsic::amdgcn_rcp_legacy:
4810 case Intrinsic::amdgcn_rsq_legacy:
4811 case Intrinsic::amdgcn_rsq_clamp: {
4812 if (SNaN)
4813 return true;
4814
4815 // TODO: Need is known positive check.
4816 return false;
4817 }
4818 case Intrinsic::amdgcn_trig_preop:
4819 case Intrinsic::amdgcn_fdot2:
4820 // TODO: Refine on operand
4821 return SNaN;
4822 case Intrinsic::amdgcn_fma_legacy:
4823 if (SNaN)
4824 return true;
4825 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4826 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) &&
4827 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1);
4828 default:
4829 return false;
4830 }
4831 }
4832 default:
4833 return false;
4834 }
4835}
4836
4837TargetLowering::AtomicExpansionKind
4838AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4839 switch (RMW->getOperation()) {
4840 case AtomicRMWInst::Nand:
4841 case AtomicRMWInst::FAdd:
4842 case AtomicRMWInst::FSub:
4843 return AtomicExpansionKind::CmpXChg;
4844 default:
4845 return AtomicExpansionKind::None;
4846 }
4847}
4848
4849bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal(
4850 unsigned Opc, LLT Ty1, LLT Ty2) const {
4851 return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64));
4852}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Casting.h

1//===- llvm/Support/Casting.h - Allow flexible, checked, casts --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the isa<X>(), cast<X>(), dyn_cast<X>(), cast_or_null<X>(),
10// and dyn_cast_or_null<X>() templates.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_CASTING_H
15#define LLVM_SUPPORT_CASTING_H
16
17#include "llvm/Support/Compiler.h"
18#include "llvm/Support/type_traits.h"
19#include <cassert>
20#include <memory>
21#include <type_traits>
22
23namespace llvm {
24
25//===----------------------------------------------------------------------===//
26// isa<x> Support Templates
27//===----------------------------------------------------------------------===//
28
29// Define a template that can be specialized by smart pointers to reflect the
30// fact that they are automatically dereferenced, and are not involved with the
31// template selection process... the default implementation is a noop.
32//
33template<typename From> struct simplify_type {
34 using SimpleType = From; // The real type this represents...
35
36 // An accessor to get the real value...
37 static SimpleType &getSimplifiedValue(From &Val) { return Val; }
38};
39
40template<typename From> struct simplify_type<const From> {
41 using NonConstSimpleType = typename simplify_type<From>::SimpleType;
42 using SimpleType =
43 typename add_const_past_pointer<NonConstSimpleType>::type;
44 using RetType =
45 typename add_lvalue_reference_if_not_pointer<SimpleType>::type;
46
47 static RetType getSimplifiedValue(const From& Val) {
48 return simplify_type<From>::getSimplifiedValue(const_cast<From&>(Val));
49 }
50};
51
52// The core of the implementation of isa<X> is here; To and From should be
53// the names of classes. This template can be specialized to customize the
54// implementation of isa<> without rewriting it from scratch.
55template <typename To, typename From, typename Enabler = void>
56struct isa_impl {
57 static inline bool doit(const From &Val) {
58 return To::classof(&Val);
59 }
60};
61
62/// Always allow upcasts, and perform no dynamic check for them.
63template <typename To, typename From>
64struct isa_impl<To, From, std::enable_if_t<std::is_base_of<To, From>::value>> {
65 static inline bool doit(const From &) { return true; }
66};
67
68template <typename To, typename From> struct isa_impl_cl {
69 static inline bool doit(const From &Val) {
70 return isa_impl<To, From>::doit(Val);
71 }
72};
73
74template <typename To, typename From> struct isa_impl_cl<To, const From> {
75 static inline bool doit(const From &Val) {
76 return isa_impl<To, From>::doit(Val);
77 }
78};
79
80template <typename To, typename From>
81struct isa_impl_cl<To, const std::unique_ptr<From>> {
82 static inline bool doit(const std::unique_ptr<From> &Val) {
83 assert(Val && "isa<> used on a null pointer")((void)0);
84 return isa_impl_cl<To, From>::doit(*Val);
85 }
86};
87
88template <typename To, typename From> struct isa_impl_cl<To, From*> {
89 static inline bool doit(const From *Val) {
90 assert(Val && "isa<> used on a null pointer")((void)0);
91 return isa_impl<To, From>::doit(*Val);
92 }
93};
94
95template <typename To, typename From> struct isa_impl_cl<To, From*const> {
96 static inline bool doit(const From *Val) {
97 assert(Val && "isa<> used on a null pointer")((void)0);
98 return isa_impl<To, From>::doit(*Val);
99 }
100};
101
102template <typename To, typename From> struct isa_impl_cl<To, const From*> {
103 static inline bool doit(const From *Val) {
104 assert(Val && "isa<> used on a null pointer")((void)0);
105 return isa_impl<To, From>::doit(*Val);
106 }
107};
108
109template <typename To, typename From> struct isa_impl_cl<To, const From*const> {
110 static inline bool doit(const From *Val) {
111 assert(Val && "isa<> used on a null pointer")((void)0);
112 return isa_impl<To, From>::doit(*Val);
113 }
114};
115
116template<typename To, typename From, typename SimpleFrom>
117struct isa_impl_wrap {
118 // When From != SimplifiedType, we can simplify the type some more by using
119 // the simplify_type template.
120 static bool doit(const From &Val) {
121 return isa_impl_wrap<To, SimpleFrom,
122 typename simplify_type<SimpleFrom>::SimpleType>::doit(
123 simplify_type<const From>::getSimplifiedValue(Val));
124 }
125};
126
127template<typename To, typename FromTy>
128struct isa_impl_wrap<To, FromTy, FromTy> {
129 // When From == SimpleType, we are as simple as we are going to get.
130 static bool doit(const FromTy &Val) {
131 return isa_impl_cl<To,FromTy>::doit(Val);
132 }
133};
134
135// isa<X> - Return true if the parameter to the template is an instance of one
136// of the template type arguments. Used like this:
137//
138// if (isa<Type>(myVal)) { ... }
139// if (isa<Type0, Type1, Type2>(myVal)) { ... }
140//
141template <class X, class Y> LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
142 return isa_impl_wrap<X, const Y,
143 typename simplify_type<const Y>::SimpleType>::doit(Val);
144}
145
146template <typename First, typename Second, typename... Rest, typename Y>
147LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa(const Y &Val) {
148 return isa<First>(Val) || isa<Second, Rest...>(Val);
149}
150
151// isa_and_nonnull<X> - Functionally identical to isa, except that a null value
152// is accepted.
153//
154template <typename... X, class Y>
155LLVM_NODISCARD[[clang::warn_unused_result]] inline bool isa_and_nonnull(const Y &Val) {
156 if (!Val)
157 return false;
158 return isa<X...>(Val);
159}
160
161//===----------------------------------------------------------------------===//
162// cast<x> Support Templates
163//===----------------------------------------------------------------------===//
164
165template<class To, class From> struct cast_retty;
166
167// Calculate what type the 'cast' function should return, based on a requested
168// type of To and a source type of From.
169template<class To, class From> struct cast_retty_impl {
170 using ret_type = To &; // Normal case, return Ty&
171};
172template<class To, class From> struct cast_retty_impl<To, const From> {
173 using ret_type = const To &; // Normal case, return Ty&
174};
175
176template<class To, class From> struct cast_retty_impl<To, From*> {
177 using ret_type = To *; // Pointer arg case, return Ty*
178};
179
180template<class To, class From> struct cast_retty_impl<To, const From*> {
181 using ret_type = const To *; // Constant pointer arg case, return const Ty*
182};
183
184template<class To, class From> struct cast_retty_impl<To, const From*const> {
185 using ret_type = const To *; // Constant pointer arg case, return const Ty*
186};
187
188template <class To, class From>
189struct cast_retty_impl<To, std::unique_ptr<From>> {
190private:
191 using PointerType = typename cast_retty_impl<To, From *>::ret_type;
192 using ResultType = std::remove_pointer_t<PointerType>;
193
194public:
195 using ret_type = std::unique_ptr<ResultType>;
196};
197
198template<class To, class From, class SimpleFrom>
199struct cast_retty_wrap {
200 // When the simplified type and the from type are not the same, use the type
201 // simplifier to reduce the type, then reuse cast_retty_impl to get the
202 // resultant type.
203 using ret_type = typename cast_retty<To, SimpleFrom>::ret_type;
204};
205
206template<class To, class FromTy>
207struct cast_retty_wrap<To, FromTy, FromTy> {
208 // When the simplified type is equal to the from type, use it directly.
209 using ret_type = typename cast_retty_impl<To,FromTy>::ret_type;
210};
211
212template<class To, class From>
213struct cast_retty {
214 using ret_type = typename cast_retty_wrap<
215 To, From, typename simplify_type<From>::SimpleType>::ret_type;
216};
217
218// Ensure the non-simple values are converted using the simplify_type template
219// that may be specialized by smart pointers...
220//
221template<class To, class From, class SimpleFrom> struct cast_convert_val {
222 // This is not a simple type, use the template to simplify it...
223 static typename cast_retty<To, From>::ret_type doit(From &Val) {
224 return cast_convert_val<To, SimpleFrom,
19
Returning without writing to 'Val.Node'
225 typename simplify_type<SimpleFrom>::SimpleType>::doit(
226 simplify_type<From>::getSimplifiedValue(Val));
16
Calling 'simplify_type::getSimplifiedValue'
18
Returning from 'simplify_type::getSimplifiedValue'
227 }
228};
229
230template<class To, class FromTy> struct cast_convert_val<To,FromTy,FromTy> {
231 // This _is_ a simple type, just cast it.
232 static typename cast_retty<To, FromTy>::ret_type doit(const FromTy &Val) {
233 typename cast_retty<To, FromTy>::ret_type Res2
234 = (typename cast_retty<To, FromTy>::ret_type)const_cast<FromTy&>(Val);
235 return Res2;
236 }
237};
238
239template <class X> struct is_simple_type {
240 static const bool value =
241 std::is_same<X, typename simplify_type<X>::SimpleType>::value;
242};
243
244// cast<X> - Return the argument parameter cast to the specified type. This
245// casting operator asserts that the type is correct, so it does not return null
246// on failure. It does not allow a null argument (use cast_or_null for that).
247// It is typically used like this:
248//
249// cast<Instruction>(myVal)->getParent()
250//
251template <class X, class Y>
252inline std::enable_if_t<!is_simple_type<Y>::value,
253 typename cast_retty<X, const Y>::ret_type>
254cast(const Y &Val) {
255 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((void)0);
256 return cast_convert_val<
257 X, const Y, typename simplify_type<const Y>::SimpleType>::doit(Val);
258}
259
260template <class X, class Y>
261inline typename cast_retty<X, Y>::ret_type cast(Y &Val) {
262 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((void)0);
263 return cast_convert_val<X, Y,
15
Calling 'cast_convert_val::doit'
20
Returning from 'cast_convert_val::doit'
21
Returning without writing to 'Val.Node'
264 typename simplify_type<Y>::SimpleType>::doit(Val);
265}
266
267template <class X, class Y>
268inline typename cast_retty<X, Y *>::ret_type cast(Y *Val) {
269 assert(isa<X>(Val) && "cast<Ty>() argument of incompatible type!")((void)0);
270 return cast_convert_val<X, Y*,
271 typename simplify_type<Y*>::SimpleType>::doit(Val);
272}
273
274template <class X, class Y>
275inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
276cast(std::unique_ptr<Y> &&Val) {
277 assert(isa<X>(Val.get()) && "cast<Ty>() argument of incompatible type!")((void)0);
278 using ret_type = typename cast_retty<X, std::unique_ptr<Y>>::ret_type;
279 return ret_type(
280 cast_convert_val<X, Y *, typename simplify_type<Y *>::SimpleType>::doit(
281 Val.release()));
282}
283
284// cast_or_null<X> - Functionally identical to cast, except that a null value is
285// accepted.
286//
287template <class X, class Y>
288LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
289 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
290cast_or_null(const Y &Val) {
291 if (!Val)
292 return nullptr;
293 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((void)0);
294 return cast<X>(Val);
295}
296
297template <class X, class Y>
298LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
299 typename cast_retty<X, Y>::ret_type>
300cast_or_null(Y &Val) {
301 if (!Val)
302 return nullptr;
303 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((void)0);
304 return cast<X>(Val);
305}
306
307template <class X, class Y>
308LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
309cast_or_null(Y *Val) {
310 if (!Val) return nullptr;
311 assert(isa<X>(Val) && "cast_or_null<Ty>() argument of incompatible type!")((void)0);
312 return cast<X>(Val);
313}
314
315template <class X, class Y>
316inline typename cast_retty<X, std::unique_ptr<Y>>::ret_type
317cast_or_null(std::unique_ptr<Y> &&Val) {
318 if (!Val)
319 return nullptr;
320 return cast<X>(std::move(Val));
321}
322
323// dyn_cast<X> - Return the argument parameter cast to the specified type. This
324// casting operator returns null if the argument is of the wrong type, so it can
325// be used to test for a type as well as cast if successful. This should be
326// used in the context of an if statement like this:
327//
328// if (const Instruction *I = dyn_cast<Instruction>(myVal)) { ... }
329//
330
331template <class X, class Y>
332LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
333 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
334dyn_cast(const Y &Val) {
335 return isa<X>(Val) ? cast<X>(Val) : nullptr;
336}
337
338template <class X, class Y>
339LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y>::ret_type dyn_cast(Y &Val) {
340 return isa<X>(Val) ? cast<X>(Val) : nullptr;
12
Assuming 'Val' is a 'ConstantSDNode'
13
'?' condition is true
14
Calling 'cast<llvm::ConstantSDNode, llvm::SDValue>'
22
Returning from 'cast<llvm::ConstantSDNode, llvm::SDValue>'
23
Returning without writing to 'Val.Node'
341}
342
343template <class X, class Y>
344LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type dyn_cast(Y *Val) {
345 return isa<X>(Val) ? cast<X>(Val) : nullptr;
346}
347
348// dyn_cast_or_null<X> - Functionally identical to dyn_cast, except that a null
349// value is accepted.
350//
351template <class X, class Y>
352LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<
353 !is_simple_type<Y>::value, typename cast_retty<X, const Y>::ret_type>
354dyn_cast_or_null(const Y &Val) {
355 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
356}
357
358template <class X, class Y>
359LLVM_NODISCARD[[clang::warn_unused_result]] inline std::enable_if_t<!is_simple_type<Y>::value,
360 typename cast_retty<X, Y>::ret_type>
361dyn_cast_or_null(Y &Val) {
362 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
363}
364
365template <class X, class Y>
366LLVM_NODISCARD[[clang::warn_unused_result]] inline typename cast_retty<X, Y *>::ret_type
367dyn_cast_or_null(Y *Val) {
368 return (Val && isa<X>(Val)) ? cast<X>(Val) : nullptr;
369}
370
371// unique_dyn_cast<X> - Given a unique_ptr<Y>, try to return a unique_ptr<X>,
372// taking ownership of the input pointer iff isa<X>(Val) is true. If the
373// cast is successful, From refers to nullptr on exit and the casted value
374// is returned. If the cast is unsuccessful, the function returns nullptr
375// and From is unchanged.
376template <class X, class Y>
377LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &Val)
378 -> decltype(cast<X>(Val)) {
379 if (!isa<X>(Val))
380 return nullptr;
381 return cast<X>(std::move(Val));
382}
383
384template <class X, class Y>
385LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast(std::unique_ptr<Y> &&Val) {
386 return unique_dyn_cast<X, Y>(Val);
387}
388
389// dyn_cast_or_null<X> - Functionally identical to unique_dyn_cast, except that
390// a null value is accepted.
391template <class X, class Y>
392LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &Val)
393 -> decltype(cast<X>(Val)) {
394 if (!Val)
395 return nullptr;
396 return unique_dyn_cast<X, Y>(Val);
397}
398
399template <class X, class Y>
400LLVM_NODISCARD[[clang::warn_unused_result]] inline auto unique_dyn_cast_or_null(std::unique_ptr<Y> &&Val) {
401 return unique_dyn_cast_or_null<X, Y>(Val);
402}
403
404} // end namespace llvm
405
406#endif // LLVM_SUPPORT_CASTING_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/CodeGen/SelectionDAGNodes.h

1//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the SDNode class and derived classes, which are used to
10// represent the nodes and operations present in a SelectionDAG. These nodes
11// and operations are machine code level operations, with some similarities to
12// the GCC RTL representation.
13//
14// Clients should include the SelectionDAG.h file instead of this file directly.
15//
16//===----------------------------------------------------------------------===//
17
18#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19#define LLVM_CODEGEN_SELECTIONDAGNODES_H
20
21#include "llvm/ADT/APFloat.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/BitVector.h"
24#include "llvm/ADT/FoldingSet.h"
25#include "llvm/ADT/GraphTraits.h"
26#include "llvm/ADT/SmallPtrSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/ilist_node.h"
29#include "llvm/ADT/iterator.h"
30#include "llvm/ADT/iterator_range.h"
31#include "llvm/CodeGen/ISDOpcodes.h"
32#include "llvm/CodeGen/MachineMemOperand.h"
33#include "llvm/CodeGen/Register.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/IR/Constants.h"
36#include "llvm/IR/DebugLoc.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/Metadata.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/Support/AlignOf.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Support/TypeSize.h"
47#include <algorithm>
48#include <cassert>
49#include <climits>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <iterator>
54#include <string>
55#include <tuple>
56
57namespace llvm {
58
59class APInt;
60class Constant;
61template <typename T> struct DenseMapInfo;
62class GlobalValue;
63class MachineBasicBlock;
64class MachineConstantPoolValue;
65class MCSymbol;
66class raw_ostream;
67class SDNode;
68class SelectionDAG;
69class Type;
70class Value;
71
72void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
73 bool force = false);
74
75/// This represents a list of ValueType's that has been intern'd by
76/// a SelectionDAG. Instances of this simple value class are returned by
77/// SelectionDAG::getVTList(...).
78///
79struct SDVTList {
80 const EVT *VTs;
81 unsigned int NumVTs;
82};
83
84namespace ISD {
85
86 /// Node predicates
87
88/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
89/// same constant or undefined, return true and return the constant value in
90/// \p SplatValue.
91bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
92
93/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
94/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
95/// true, it only checks BUILD_VECTOR.
96bool isConstantSplatVectorAllOnes(const SDNode *N,
97 bool BuildVectorOnly = false);
98
99/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
100/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
101/// only checks BUILD_VECTOR.
102bool isConstantSplatVectorAllZeros(const SDNode *N,
103 bool BuildVectorOnly = false);
104
105/// Return true if the specified node is a BUILD_VECTOR where all of the
106/// elements are ~0 or undef.
107bool isBuildVectorAllOnes(const SDNode *N);
108
109/// Return true if the specified node is a BUILD_VECTOR where all of the
110/// elements are 0 or undef.
111bool isBuildVectorAllZeros(const SDNode *N);
112
113/// Return true if the specified node is a BUILD_VECTOR node of all
114/// ConstantSDNode or undef.
115bool isBuildVectorOfConstantSDNodes(const SDNode *N);
116
117/// Return true if the specified node is a BUILD_VECTOR node of all
118/// ConstantFPSDNode or undef.
119bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
120
121/// Return true if the node has at least one operand and all operands of the
122/// specified node are ISD::UNDEF.
123bool allOperandsUndef(const SDNode *N);
124
125} // end namespace ISD
126
127//===----------------------------------------------------------------------===//
128/// Unlike LLVM values, Selection DAG nodes may return multiple
129/// values as the result of a computation. Many nodes return multiple values,
130/// from loads (which define a token and a return value) to ADDC (which returns
131/// a result and a carry value), to calls (which may return an arbitrary number
132/// of values).
133///
134/// As such, each use of a SelectionDAG computation must indicate the node that
135/// computes it as well as which return value to use from that node. This pair
136/// of information is represented with the SDValue value type.
137///
138class SDValue {
139 friend struct DenseMapInfo<SDValue>;
140
141 SDNode *Node = nullptr; // The node defining the value we are using.
142 unsigned ResNo = 0; // Which return value of the node we are using.
143
144public:
145 SDValue() = default;
146 SDValue(SDNode *node, unsigned resno);
147
148 /// get the index which selects a specific result in the SDNode
149 unsigned getResNo() const { return ResNo; }
150
151 /// get the SDNode which holds the desired result
152 SDNode *getNode() const { return Node; }
153
154 /// set the SDNode
155 void setNode(SDNode *N) { Node = N; }
156
157 inline SDNode *operator->() const { return Node; }
158
159 bool operator==(const SDValue &O) const {
160 return Node == O.Node && ResNo == O.ResNo;
161 }
162 bool operator!=(const SDValue &O) const {
163 return !operator==(O);
164 }
165 bool operator<(const SDValue &O) const {
166 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
167 }
168 explicit operator bool() const {
169 return Node != nullptr;
170 }
171
172 SDValue getValue(unsigned R) const {
173 return SDValue(Node, R);
174 }
175
176 /// Return true if this node is an operand of N.
177 bool isOperandOf(const SDNode *N) const;
178
179 /// Return the ValueType of the referenced return value.
180 inline EVT getValueType() const;
181
182 /// Return the simple ValueType of the referenced return value.
183 MVT getSimpleValueType() const {
184 return getValueType().getSimpleVT();
185 }
186
187 /// Returns the size of the value in bits.
188 ///
189 /// If the value type is a scalable vector type, the scalable property will
190 /// be set and the runtime size will be a positive integer multiple of the
191 /// base size.
192 TypeSize getValueSizeInBits() const {
193 return getValueType().getSizeInBits();
194 }
195
196 uint64_t getScalarValueSizeInBits() const {
197 return getValueType().getScalarType().getFixedSizeInBits();
198 }
199
200 // Forwarding methods - These forward to the corresponding methods in SDNode.
201 inline unsigned getOpcode() const;
202 inline unsigned getNumOperands() const;
203 inline const SDValue &getOperand(unsigned i) const;
204 inline uint64_t getConstantOperandVal(unsigned i) const;
205 inline const APInt &getConstantOperandAPInt(unsigned i) const;
206 inline bool isTargetMemoryOpcode() const;
207 inline bool isTargetOpcode() const;
208 inline bool isMachineOpcode() const;
209 inline bool isUndef() const;
210 inline unsigned getMachineOpcode() const;
211 inline const DebugLoc &getDebugLoc() const;
212 inline void dump() const;
213 inline void dump(const SelectionDAG *G) const;
214 inline void dumpr() const;
215 inline void dumpr(const SelectionDAG *G) const;
216
217 /// Return true if this operand (which must be a chain) reaches the
218 /// specified operand without crossing any side-effecting instructions.
219 /// In practice, this looks through token factors and non-volatile loads.
220 /// In order to remain efficient, this only
221 /// looks a couple of nodes in, it does not do an exhaustive search.
222 bool reachesChainWithoutSideEffects(SDValue Dest,
223 unsigned Depth = 2) const;
224
225 /// Return true if there are no nodes using value ResNo of Node.
226 inline bool use_empty() const;
227
228 /// Return true if there is exactly one node using value ResNo of Node.
229 inline bool hasOneUse() const;
230};
231
232template<> struct DenseMapInfo<SDValue> {
233 static inline SDValue getEmptyKey() {
234 SDValue V;
235 V.ResNo = -1U;
236 return V;
237 }
238
239 static inline SDValue getTombstoneKey() {
240 SDValue V;
241 V.ResNo = -2U;
242 return V;
243 }
244
245 static unsigned getHashValue(const SDValue &Val) {
246 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
247 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
248 }
249
250 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
251 return LHS == RHS;
252 }
253};
254
255/// Allow casting operators to work directly on
256/// SDValues as if they were SDNode*'s.
257template<> struct simplify_type<SDValue> {
258 using SimpleType = SDNode *;
259
260 static SimpleType getSimplifiedValue(SDValue &Val) {
261 return Val.getNode();
17
Returning without writing to 'Val.Node'
262 }
263};
264template<> struct simplify_type<const SDValue> {
265 using SimpleType = /*const*/ SDNode *;
266
267 static SimpleType getSimplifiedValue(const SDValue &Val) {
268 return Val.getNode();
269 }
270};
271
272/// Represents a use of a SDNode. This class holds an SDValue,
273/// which records the SDNode being used and the result number, a
274/// pointer to the SDNode using the value, and Next and Prev pointers,
275/// which link together all the uses of an SDNode.
276///
277class SDUse {
278 /// Val - The value being used.
279 SDValue Val;
280 /// User - The user of this value.
281 SDNode *User = nullptr;
282 /// Prev, Next - Pointers to the uses list of the SDNode referred by
283 /// this operand.
284 SDUse **Prev = nullptr;
285 SDUse *Next = nullptr;
286
287public:
288 SDUse() = default;
289 SDUse(const SDUse &U) = delete;
290 SDUse &operator=(const SDUse &) = delete;
291
292 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
293 operator const SDValue&() const { return Val; }
294
295 /// If implicit conversion to SDValue doesn't work, the get() method returns
296 /// the SDValue.
297 const SDValue &get() const { return Val; }
298
299 /// This returns the SDNode that contains this Use.
300 SDNode *getUser() { return User; }
301
302 /// Get the next SDUse in the use list.
303 SDUse *getNext() const { return Next; }
304
305 /// Convenience function for get().getNode().
306 SDNode *getNode() const { return Val.getNode(); }
307 /// Convenience function for get().getResNo().
308 unsigned getResNo() const { return Val.getResNo(); }
309 /// Convenience function for get().getValueType().
310 EVT getValueType() const { return Val.getValueType(); }
311
312 /// Convenience function for get().operator==
313 bool operator==(const SDValue &V) const {
314 return Val == V;
315 }
316
317 /// Convenience function for get().operator!=
318 bool operator!=(const SDValue &V) const {
319 return Val != V;
320 }
321
322 /// Convenience function for get().operator<
323 bool operator<(const SDValue &V) const {
324 return Val < V;
325 }
326
327private:
328 friend class SelectionDAG;
329 friend class SDNode;
330 // TODO: unfriend HandleSDNode once we fix its operand handling.
331 friend class HandleSDNode;
332
333 void setUser(SDNode *p) { User = p; }
334
335 /// Remove this use from its existing use list, assign it the
336 /// given value, and add it to the new value's node's use list.
337 inline void set(const SDValue &V);
338 /// Like set, but only supports initializing a newly-allocated
339 /// SDUse with a non-null value.
340 inline void setInitial(const SDValue &V);
341 /// Like set, but only sets the Node portion of the value,
342 /// leaving the ResNo portion unmodified.
343 inline void setNode(SDNode *N);
344
345 void addToList(SDUse **List) {
346 Next = *List;
347 if (Next) Next->Prev = &Next;
348 Prev = List;
349 *List = this;
350 }
351
352 void removeFromList() {
353 *Prev = Next;
354 if (Next) Next->Prev = Prev;
355 }
356};
357
358/// simplify_type specializations - Allow casting operators to work directly on
359/// SDValues as if they were SDNode*'s.
360template<> struct simplify_type<SDUse> {
361 using SimpleType = SDNode *;
362
363 static SimpleType getSimplifiedValue(SDUse &Val) {
364 return Val.getNode();
365 }
366};
367
368/// These are IR-level optimization flags that may be propagated to SDNodes.
369/// TODO: This data structure should be shared by the IR optimizer and the
370/// the backend.
371struct SDNodeFlags {
372private:
373 bool NoUnsignedWrap : 1;
374 bool NoSignedWrap : 1;
375 bool Exact : 1;
376 bool NoNaNs : 1;
377 bool NoInfs : 1;
378 bool NoSignedZeros : 1;
379 bool AllowReciprocal : 1;
380 bool AllowContract : 1;
381 bool ApproximateFuncs : 1;
382 bool AllowReassociation : 1;
383
384 // We assume instructions do not raise floating-point exceptions by default,
385 // and only those marked explicitly may do so. We could choose to represent
386 // this via a positive "FPExcept" flags like on the MI level, but having a
387 // negative "NoFPExcept" flag here (that defaults to true) makes the flag
388 // intersection logic more straightforward.
389 bool NoFPExcept : 1;
390
391public:
392 /// Default constructor turns off all optimization flags.
393 SDNodeFlags()
394 : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
395 NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
396 AllowContract(false), ApproximateFuncs(false),
397 AllowReassociation(false), NoFPExcept(false) {}
398
399 /// Propagate the fast-math-flags from an IR FPMathOperator.
400 void copyFMF(const FPMathOperator &FPMO) {
401 setNoNaNs(FPMO.hasNoNaNs());
402 setNoInfs(FPMO.hasNoInfs());
403 setNoSignedZeros(FPMO.hasNoSignedZeros());
404 setAllowReciprocal(FPMO.hasAllowReciprocal());
405 setAllowContract(FPMO.hasAllowContract());
406 setApproximateFuncs(FPMO.hasApproxFunc());
407 setAllowReassociation(FPMO.hasAllowReassoc());
408 }
409
410 // These are mutators for each flag.
411 void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
412 void setNoSignedWrap(bool b) { NoSignedWrap = b; }
413 void setExact(bool b) { Exact = b; }
414 void setNoNaNs(bool b) { NoNaNs = b; }
415 void setNoInfs(bool b) { NoInfs = b; }
416 void setNoSignedZeros(bool b) { NoSignedZeros = b; }
417 void setAllowReciprocal(bool b) { AllowReciprocal = b; }
418 void setAllowContract(bool b) { AllowContract = b; }
419 void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
420 void setAllowReassociation(bool b) { AllowReassociation = b; }
421 void setNoFPExcept(bool b) { NoFPExcept = b; }
422
423 // These are accessors for each flag.
424 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
425 bool hasNoSignedWrap() const { return NoSignedWrap; }
426 bool hasExact() const { return Exact; }
427 bool hasNoNaNs() const { return NoNaNs; }
428 bool hasNoInfs() const { return NoInfs; }
429 bool hasNoSignedZeros() const { return NoSignedZeros; }
430 bool hasAllowReciprocal() const { return AllowReciprocal; }
431 bool hasAllowContract() const { return AllowContract; }
432 bool hasApproximateFuncs() const { return ApproximateFuncs; }
433 bool hasAllowReassociation() const { return AllowReassociation; }
434 bool hasNoFPExcept() const { return NoFPExcept; }
435
436 /// Clear any flags in this flag set that aren't also set in Flags. All
437 /// flags will be cleared if Flags are undefined.
438 void intersectWith(const SDNodeFlags Flags) {
439 NoUnsignedWrap &= Flags.NoUnsignedWrap;
440 NoSignedWrap &= Flags.NoSignedWrap;
441 Exact &= Flags.Exact;
442 NoNaNs &= Flags.NoNaNs;
443 NoInfs &= Flags.NoInfs;
444 NoSignedZeros &= Flags.NoSignedZeros;
445 AllowReciprocal &= Flags.AllowReciprocal;
446 AllowContract &= Flags.AllowContract;
447 ApproximateFuncs &= Flags.ApproximateFuncs;
448 AllowReassociation &= Flags.AllowReassociation;
449 NoFPExcept &= Flags.NoFPExcept;
450 }
451};
452
453/// Represents one node in the SelectionDAG.
454///
455class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
456private:
457 /// The operation that this node performs.
458 int16_t NodeType;
459
460protected:
461 // We define a set of mini-helper classes to help us interpret the bits in our
462 // SubclassData. These are designed to fit within a uint16_t so they pack
463 // with NodeType.
464
465#if defined(_AIX) && (!defined(__GNUC__4) || defined(__clang__1))
466// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
467// and give the `pack` pragma push semantics.
468#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")pack(2)
469#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")pack(pop)
470#else
471#define BEGIN_TWO_BYTE_PACK()
472#define END_TWO_BYTE_PACK()
473#endif
474
475BEGIN_TWO_BYTE_PACK()
476 class SDNodeBitfields {
477 friend class SDNode;
478 friend class MemIntrinsicSDNode;
479 friend class MemSDNode;
480 friend class SelectionDAG;
481
482 uint16_t HasDebugValue : 1;
483 uint16_t IsMemIntrinsic : 1;
484 uint16_t IsDivergent : 1;
485 };
486 enum { NumSDNodeBits = 3 };
487
488 class ConstantSDNodeBitfields {
489 friend class ConstantSDNode;
490
491 uint16_t : NumSDNodeBits;
492
493 uint16_t IsOpaque : 1;
494 };
495
496 class MemSDNodeBitfields {
497 friend class MemSDNode;
498 friend class MemIntrinsicSDNode;
499 friend class AtomicSDNode;
500
501 uint16_t : NumSDNodeBits;
502
503 uint16_t IsVolatile : 1;
504 uint16_t IsNonTemporal : 1;
505 uint16_t IsDereferenceable : 1;
506 uint16_t IsInvariant : 1;
507 };
508 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
509
510 class LSBaseSDNodeBitfields {
511 friend class LSBaseSDNode;
512 friend class MaskedLoadStoreSDNode;
513 friend class MaskedGatherScatterSDNode;
514
515 uint16_t : NumMemSDNodeBits;
516
517 // This storage is shared between disparate class hierarchies to hold an
518 // enumeration specific to the class hierarchy in use.
519 // LSBaseSDNode => enum ISD::MemIndexedMode
520 // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
521 // MaskedGatherScatterSDNode => enum ISD::MemIndexType
522 uint16_t AddressingMode : 3;
523 };
524 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
525
526 class LoadSDNodeBitfields {
527 friend class LoadSDNode;
528 friend class MaskedLoadSDNode;
529 friend class MaskedGatherSDNode;
530
531 uint16_t : NumLSBaseSDNodeBits;
532
533 uint16_t ExtTy : 2; // enum ISD::LoadExtType
534 uint16_t IsExpanding : 1;
535 };
536
537 class StoreSDNodeBitfields {
538 friend class StoreSDNode;
539 friend class MaskedStoreSDNode;
540 friend class MaskedScatterSDNode;
541
542 uint16_t : NumLSBaseSDNodeBits;
543
544 uint16_t IsTruncating : 1;
545 uint16_t IsCompressing : 1;
546 };
547
548 union {
549 char RawSDNodeBits[sizeof(uint16_t)];
550 SDNodeBitfields SDNodeBits;
551 ConstantSDNodeBitfields ConstantSDNodeBits;
552 MemSDNodeBitfields MemSDNodeBits;
553 LSBaseSDNodeBitfields LSBaseSDNodeBits;
554 LoadSDNodeBitfields LoadSDNodeBits;
555 StoreSDNodeBitfields StoreSDNodeBits;
556 };
557END_TWO_BYTE_PACK()
558#undef BEGIN_TWO_BYTE_PACK
559#undef END_TWO_BYTE_PACK
560
561 // RawSDNodeBits must cover the entirety of the union. This means that all of
562 // the union's members must have size <= RawSDNodeBits. We write the RHS as
563 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
564 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
565 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
566 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
567 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
568 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
569 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
570
571private:
572 friend class SelectionDAG;
573 // TODO: unfriend HandleSDNode once we fix its operand handling.
574 friend class HandleSDNode;
575
576 /// Unique id per SDNode in the DAG.
577 int NodeId = -1;
578
579 /// The values that are used by this operation.
580 SDUse *OperandList = nullptr;
581
582 /// The types of the values this node defines. SDNode's may
583 /// define multiple values simultaneously.
584 const EVT *ValueList;
585
586 /// List of uses for this SDNode.
587 SDUse *UseList = nullptr;
588
589 /// The number of entries in the Operand/Value list.
590 unsigned short NumOperands = 0;
591 unsigned short NumValues;
592
593 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
594 // original LLVM instructions.
595 // This is used for turning off scheduling, because we'll forgo
596 // the normal scheduling algorithms and output the instructions according to
597 // this ordering.
598 unsigned IROrder;
599
600 /// Source line information.
601 DebugLoc debugLoc;
602
603 /// Return a pointer to the specified value type.
604 static const EVT *getValueTypeList(EVT VT);
605
606 SDNodeFlags Flags;
607
608public:
609 /// Unique and persistent id per SDNode in the DAG.
610 /// Used for debug printing.
611 uint16_t PersistentId;
612
613 //===--------------------------------------------------------------------===//
614 // Accessors
615 //
616
617 /// Return the SelectionDAG opcode value for this node. For
618 /// pre-isel nodes (those for which isMachineOpcode returns false), these
619 /// are the opcode values in the ISD and <target>ISD namespaces. For
620 /// post-isel opcodes, see getMachineOpcode.
621 unsigned getOpcode() const { return (unsigned short)NodeType; }
622
623 /// Test if this node has a target-specific opcode (in the
624 /// \<target\>ISD namespace).
625 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
626
627 /// Test if this node has a target-specific opcode that may raise
628 /// FP exceptions (in the \<target\>ISD namespace and greater than
629 /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
630 /// opcode are currently automatically considered to possibly raise
631 /// FP exceptions as well.
632 bool isTargetStrictFPOpcode() const {
633 return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
634 }
635
636 /// Test if this node has a target-specific
637 /// memory-referencing opcode (in the \<target\>ISD namespace and
638 /// greater than FIRST_TARGET_MEMORY_OPCODE).
639 bool isTargetMemoryOpcode() const {
640 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
641 }
642
643 /// Return true if the type of the node type undefined.
644 bool isUndef() const { return NodeType == ISD::UNDEF; }
645
646 /// Test if this node is a memory intrinsic (with valid pointer information).
647 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
648 /// non-memory intrinsics (with chains) that are not really instances of
649 /// MemSDNode. For such nodes, we need some extra state to determine the
650 /// proper classof relationship.
651 bool isMemIntrinsic() const {
652 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
653 NodeType == ISD::INTRINSIC_VOID) &&
654 SDNodeBits.IsMemIntrinsic;
655 }
656
657 /// Test if this node is a strict floating point pseudo-op.
658 bool isStrictFPOpcode() {
659 switch (NodeType) {
660 default:
661 return false;
662 case ISD::STRICT_FP16_TO_FP:
663 case ISD::STRICT_FP_TO_FP16:
664#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
665 case ISD::STRICT_##DAGN:
666#include "llvm/IR/ConstrainedOps.def"
667 return true;
668 }
669 }
670
671 /// Test if this node has a post-isel opcode, directly
672 /// corresponding to a MachineInstr opcode.
673 bool isMachineOpcode() const { return NodeType < 0; }
674
675 /// This may only be called if isMachineOpcode returns
676 /// true. It returns the MachineInstr opcode value that the node's opcode
677 /// corresponds to.
678 unsigned getMachineOpcode() const {
679 assert(isMachineOpcode() && "Not a MachineInstr opcode!")((void)0);
680 return ~NodeType;
681 }
682
683 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
684 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
685
686 bool isDivergent() const { return SDNodeBits.IsDivergent; }
687
688 /// Return true if there are no uses of this node.
689 bool use_empty() const { return UseList == nullptr; }
690
691 /// Return true if there is exactly one use of this node.
692 bool hasOneUse() const { return hasSingleElement(uses()); }
693
694 /// Return the number of uses of this node. This method takes
695 /// time proportional to the number of uses.
696 size_t use_size() const { return std::distance(use_begin(), use_end()); }
697
698 /// Return the unique node id.
699 int getNodeId() const { return NodeId; }
700
701 /// Set unique node id.
702 void setNodeId(int Id) { NodeId = Id; }
703
704 /// Return the node ordering.
705 unsigned getIROrder() const { return IROrder; }
706
707 /// Set the node ordering.
708 void setIROrder(unsigned Order) { IROrder = Order; }
709
710 /// Return the source location info.
711 const DebugLoc &getDebugLoc() const { return debugLoc; }
712
713 /// Set source location info. Try to avoid this, putting
714 /// it in the constructor is preferable.
715 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
716
717 /// This class provides iterator support for SDUse
718 /// operands that use a specific SDNode.
719 class use_iterator {
720 friend class SDNode;
721
722 SDUse *Op = nullptr;
723
724 explicit use_iterator(SDUse *op) : Op(op) {}
725
726 public:
727 using iterator_category = std::forward_iterator_tag;
728 using value_type = SDUse;
729 using difference_type = std::ptrdiff_t;
730 using pointer = value_type *;
731 using reference = value_type &;
732
733 use_iterator() = default;
734 use_iterator(const use_iterator &I) : Op(I.Op) {}
735
736 bool operator==(const use_iterator &x) const {
737 return Op == x.Op;
738 }
739 bool operator!=(const use_iterator &x) const {
740 return !operator==(x);
741 }
742
743 /// Return true if this iterator is at the end of uses list.
744 bool atEnd() const { return Op == nullptr; }
745
746 // Iterator traversal: forward iteration only.
747 use_iterator &operator++() { // Preincrement
748 assert(Op && "Cannot increment end iterator!")((void)0);
749 Op = Op->getNext();
750 return *this;
751 }
752
753 use_iterator operator++(int) { // Postincrement
754 use_iterator tmp = *this; ++*this; return tmp;
755 }
756
757 /// Retrieve a pointer to the current user node.
758 SDNode *operator*() const {
759 assert(Op && "Cannot dereference end iterator!")((void)0);
760 return Op->getUser();
761 }
762
763 SDNode *operator->() const { return operator*(); }
764
765 SDUse &getUse() const { return *Op; }
766
767 /// Retrieve the operand # of this use in its user.
768 unsigned getOperandNo() const {
769 assert(Op && "Cannot dereference end iterator!")((void)0);
770 return (unsigned)(Op - Op->getUser()->OperandList);
771 }
772 };
773
774 /// Provide iteration support to walk over all uses of an SDNode.
775 use_iterator use_begin() const {
776 return use_iterator(UseList);
777 }
778
779 static use_iterator use_end() { return use_iterator(nullptr); }
780
781 inline iterator_range<use_iterator> uses() {
782 return make_range(use_begin(), use_end());
783 }
784 inline iterator_range<use_iterator> uses() const {
785 return make_range(use_begin(), use_end());
786 }
787
788 /// Return true if there are exactly NUSES uses of the indicated value.
789 /// This method ignores uses of other values defined by this operation.
790 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
791
792 /// Return true if there are any use of the indicated value.
793 /// This method ignores uses of other values defined by this operation.
794 bool hasAnyUseOfValue(unsigned Value) const;
795
796 /// Return true if this node is the only use of N.
797 bool isOnlyUserOf(const SDNode *N) const;
798
799 /// Return true if this node is an operand of N.
800 bool isOperandOf(const SDNode *N) const;
801
802 /// Return true if this node is a predecessor of N.
803 /// NOTE: Implemented on top of hasPredecessor and every bit as
804 /// expensive. Use carefully.
805 bool isPredecessorOf(const SDNode *N) const {
806 return N->hasPredecessor(this);
807 }
808
809 /// Return true if N is a predecessor of this node.
810 /// N is either an operand of this node, or can be reached by recursively
811 /// traversing up the operands.
812 /// NOTE: This is an expensive method. Use it carefully.
813 bool hasPredecessor(const SDNode *N) const;
814
815 /// Returns true if N is a predecessor of any node in Worklist. This
816 /// helper keeps Visited and Worklist sets externally to allow unions
817 /// searches to be performed in parallel, caching of results across
818 /// queries and incremental addition to Worklist. Stops early if N is
819 /// found but will resume. Remember to clear Visited and Worklists
820 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
821 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
822 /// topologically ordered (Operands have strictly smaller node id) and search
823 /// can be pruned leveraging this.
824 static bool hasPredecessorHelper(const SDNode *N,
825 SmallPtrSetImpl<const SDNode *> &Visited,
826 SmallVectorImpl<const SDNode *> &Worklist,
827 unsigned int MaxSteps = 0,
828 bool TopologicalPrune = false) {
829 SmallVector<const SDNode *, 8> DeferredNodes;
830 if (Visited.count(N))
831 return true;
832
833 // Node Id's are assigned in three places: As a topological
834 // ordering (> 0), during legalization (results in values set to
835 // 0), new nodes (set to -1). If N has a topolgical id then we
836 // know that all nodes with ids smaller than it cannot be
837 // successors and we need not check them. Filter out all node
838 // that can't be matches. We add them to the worklist before exit
839 // in case of multiple calls. Note that during selection the topological id
840 // may be violated if a node's predecessor is selected before it. We mark
841 // this at selection negating the id of unselected successors and
842 // restricting topological pruning to positive ids.
843
844 int NId = N->getNodeId();
845 // If we Invalidated the Id, reconstruct original NId.
846 if (NId < -1)
847 NId = -(NId + 1);
848
849 bool Found = false;
850 while (!Worklist.empty()) {
851 const SDNode *M = Worklist.pop_back_val();
852 int MId = M->getNodeId();
853 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
854 (MId > 0) && (MId < NId)) {
855 DeferredNodes.push_back(M);
856 continue;
857 }
858 for (const SDValue &OpV : M->op_values()) {
859 SDNode *Op = OpV.getNode();
860 if (Visited.insert(Op).second)
861 Worklist.push_back(Op);
862 if (Op == N)
863 Found = true;
864 }
865 if (Found)
866 break;
867 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
868 break;
869 }
870 // Push deferred nodes back on worklist.
871 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
872 // If we bailed early, conservatively return found.
873 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
874 return true;
875 return Found;
876 }
877
878 /// Return true if all the users of N are contained in Nodes.
879 /// NOTE: Requires at least one match, but doesn't require them all.
880 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
881
882 /// Return the number of values used by this operation.
883 unsigned getNumOperands() const { return NumOperands; }
884
885 /// Return the maximum number of operands that a SDNode can hold.
886 static constexpr size_t getMaxNumOperands() {
887 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
888 }
889
890 /// Helper method returns the integer value of a ConstantSDNode operand.
891 inline uint64_t getConstantOperandVal(unsigned Num) const;
892
893 /// Helper method returns the APInt of a ConstantSDNode operand.
894 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
895
896 const SDValue &getOperand(unsigned Num) const {
897 assert(Num < NumOperands && "Invalid child # of SDNode!")((void)0);
898 return OperandList[Num];
899 }
900
901 using op_iterator = SDUse *;
902
903 op_iterator op_begin() const { return OperandList; }
904 op_iterator op_end() const { return OperandList+NumOperands; }
905 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
906
907 /// Iterator for directly iterating over the operand SDValue's.
908 struct value_op_iterator
909 : iterator_adaptor_base<value_op_iterator, op_iterator,
910 std::random_access_iterator_tag, SDValue,
911 ptrdiff_t, value_op_iterator *,
912 value_op_iterator *> {
913 explicit value_op_iterator(SDUse *U = nullptr)
914 : iterator_adaptor_base(U) {}
915
916 const SDValue &operator*() const { return I->get(); }
917 };
918
919 iterator_range<value_op_iterator> op_values() const {
920 return make_range(value_op_iterator(op_begin()),
921 value_op_iterator(op_end()));
922 }
923
924 SDVTList getVTList() const {
925 SDVTList X = { ValueList, NumValues };
926 return X;
927 }
928
929 /// If this node has a glue operand, return the node
930 /// to which the glue operand points. Otherwise return NULL.
931 SDNode *getGluedNode() const {
932 if (getNumOperands() != 0 &&
933 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
934 return getOperand(getNumOperands()-1).getNode();
935 return nullptr;
936 }
937
938 /// If this node has a glue value with a user, return
939 /// the user (there is at most one). Otherwise return NULL.
940 SDNode *getGluedUser() const {
941 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
942 if (UI.getUse().get().getValueType() == MVT::Glue)
943 return *UI;
944 return nullptr;
945 }
946
947 SDNodeFlags getFlags() const { return Flags; }
948 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
949
950 /// Clear any flags in this node that aren't also set in Flags.
951 /// If Flags is not in a defined state then this has no effect.
952 void intersectFlagsWith(const SDNodeFlags Flags);
953
954 /// Return the number of values defined/returned by this operator.
955 unsigned getNumValues() const { return NumValues; }
956
957 /// Return the type of a specified result.
958 EVT getValueType(unsigned ResNo) const {
959 assert(ResNo < NumValues && "Illegal result number!")((void)0);
960 return ValueList[ResNo];
961 }
962
963 /// Return the type of a specified result as a simple type.
964 MVT getSimpleValueType(unsigned ResNo) const {
965 return getValueType(ResNo).getSimpleVT();
966 }
967
968 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
969 ///
970 /// If the value type is a scalable vector type, the scalable property will
971 /// be set and the runtime size will be a positive integer multiple of the
972 /// base size.
973 TypeSize getValueSizeInBits(unsigned ResNo) const {
974 return getValueType(ResNo).getSizeInBits();
975 }
976
977 using value_iterator = const EVT *;
978
979 value_iterator value_begin() const { return ValueList; }
980 value_iterator value_end() const { return ValueList+NumValues; }
981 iterator_range<value_iterator> values() const {
982 return llvm::make_range(value_begin(), value_end());
983 }
984
985 /// Return the opcode of this operation for printing.
986 std::string getOperationName(const SelectionDAG *G = nullptr) const;
987 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
988 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
989 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
990 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
991 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
992
993 /// Print a SelectionDAG node and all children down to
994 /// the leaves. The given SelectionDAG allows target-specific nodes
995 /// to be printed in human-readable form. Unlike printr, this will
996 /// print the whole DAG, including children that appear multiple
997 /// times.
998 ///
999 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1000
1001 /// Print a SelectionDAG node and children up to
1002 /// depth "depth." The given SelectionDAG allows target-specific
1003 /// nodes to be printed in human-readable form. Unlike printr, this
1004 /// will print children that appear multiple times wherever they are
1005 /// used.
1006 ///
1007 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1008 unsigned depth = 100) const;
1009
1010 /// Dump this node, for debugging.
1011 void dump() const;
1012
1013 /// Dump (recursively) this node and its use-def subgraph.
1014 void dumpr() const;
1015
1016 /// Dump this node, for debugging.
1017 /// The given SelectionDAG allows target-specific nodes to be printed
1018 /// in human-readable form.
1019 void dump(const SelectionDAG *G) const;
1020
1021 /// Dump (recursively) this node and its use-def subgraph.
1022 /// The given SelectionDAG allows target-specific nodes to be printed
1023 /// in human-readable form.
1024 void dumpr(const SelectionDAG *G) const;
1025
1026 /// printrFull to dbgs(). The given SelectionDAG allows
1027 /// target-specific nodes to be printed in human-readable form.
1028 /// Unlike dumpr, this will print the whole DAG, including children
1029 /// that appear multiple times.
1030 void dumprFull(const SelectionDAG *G = nullptr) const;
1031
1032 /// printrWithDepth to dbgs(). The given
1033 /// SelectionDAG allows target-specific nodes to be printed in
1034 /// human-readable form. Unlike dumpr, this will print children
1035 /// that appear multiple times wherever they are used.
1036 ///
1037 void dumprWithDepth(const SelectionDAG *G = nullptr,
1038 unsigned depth = 100) const;
1039
1040 /// Gather unique data for the node.
1041 void Profile(FoldingSetNodeID &ID) const;
1042
1043 /// This method should only be used by the SDUse class.
1044 void addUse(SDUse &U) { U.addToList(&UseList); }
1045
1046protected:
1047 static SDVTList getSDVTList(EVT VT) {
1048 SDVTList Ret = { getValueTypeList(VT), 1 };
1049 return Ret;
1050 }
1051
1052 /// Create an SDNode.
1053 ///
1054 /// SDNodes are created without any operands, and never own the operand
1055 /// storage. To add operands, see SelectionDAG::createOperands.
1056 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1057 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1058 IROrder(Order), debugLoc(std::move(dl)) {
1059 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1060 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")((void)0);
1061 assert(NumValues == VTs.NumVTs &&((void)0)
1062 "NumValues wasn't wide enough for its operands!")((void)0);
1063 }
1064
1065 /// Release the operands and set this node to have zero operands.
1066 void DropOperands();
1067};
1068
1069/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1070/// into SDNode creation functions.
1071/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1072/// from the original Instruction, and IROrder is the ordinal position of
1073/// the instruction.
1074/// When an SDNode is created after the DAG is being built, both DebugLoc and
1075/// the IROrder are propagated from the original SDNode.
1076/// So SDLoc class provides two constructors besides the default one, one to
1077/// be used by the DAGBuilder, the other to be used by others.
1078class SDLoc {
1079private:
1080 DebugLoc DL;
1081 int IROrder = 0;
1082
1083public:
1084 SDLoc() = default;
1085 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1086 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1087 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1088 assert(Order >= 0 && "bad IROrder")((void)0);
1089 if (I)
1090 DL = I->getDebugLoc();
1091 }
1092
1093 unsigned getIROrder() const { return IROrder; }
1094 const DebugLoc &getDebugLoc() const { return DL; }
1095};
1096
1097// Define inline functions from the SDValue class.
1098
1099inline SDValue::SDValue(SDNode *node, unsigned resno)
1100 : Node(node), ResNo(resno) {
1101 // Explicitly check for !ResNo to avoid use-after-free, because there are
1102 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1103 // combines.
1104 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&((void)0)
1105 "Invalid result number for the given node!")((void)0);
1106 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.")((void)0);
1107}
1108
1109inline unsigned SDValue::getOpcode() const {
1110 return Node->getOpcode();
1111}
1112
1113inline EVT SDValue::getValueType() const {
1114 return Node->getValueType(ResNo);
1115}
1116
1117inline unsigned SDValue::getNumOperands() const {
1118 return Node->getNumOperands();
1119}
1120
1121inline const SDValue &SDValue::getOperand(unsigned i) const {
1122 return Node->getOperand(i);
1123}
1124
1125inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1126 return Node->getConstantOperandVal(i);
1127}
1128
1129inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1130 return Node->getConstantOperandAPInt(i);
1131}
1132
1133inline bool SDValue::isTargetOpcode() const {
1134 return Node->isTargetOpcode();
1135}
1136
1137inline bool SDValue::isTargetMemoryOpcode() const {
1138 return Node->isTargetMemoryOpcode();
1139}
1140
1141inline bool SDValue::isMachineOpcode() const {
1142 return Node->isMachineOpcode();
1143}
1144
1145inline unsigned SDValue::getMachineOpcode() const {
1146 return Node->getMachineOpcode();
1147}
1148
1149inline bool SDValue::isUndef() const {
1150 return Node->isUndef();
1151}
1152
1153inline bool SDValue::use_empty() const {
1154 return !Node->hasAnyUseOfValue(ResNo);
1155}
1156
1157inline bool SDValue::hasOneUse() const {
1158 return Node->hasNUsesOfValue(1, ResNo);
29
Called C++ object pointer is null
1159}
1160
1161inline const DebugLoc &SDValue::getDebugLoc() const {
1162 return Node->getDebugLoc();
1163}
1164
1165inline void SDValue::dump() const {
1166 return Node->dump();
1167}
1168
1169inline void SDValue::dump(const SelectionDAG *G) const {
1170 return Node->dump(G);
1171}
1172
1173inline void SDValue::dumpr() const {
1174 return Node->dumpr();
1175}
1176
1177inline void SDValue::dumpr(const SelectionDAG *G) const {
1178 return Node->dumpr(G);
1179}
1180
1181// Define inline functions from the SDUse class.
1182
1183inline void SDUse::set(const SDValue &V) {
1184 if (Val.getNode()) removeFromList();
1185 Val = V;
1186 if (V.getNode()) V.getNode()->addUse(*this);
1187}
1188
1189inline void SDUse::setInitial(const SDValue &V) {
1190 Val = V;
1191 V.getNode()->addUse(*this);
1192}
1193
1194inline void SDUse::setNode(SDNode *N) {
1195 if (Val.getNode()) removeFromList();
1196 Val.setNode(N);
1197 if (N) N->addUse(*this);
1198}
1199
1200/// This class is used to form a handle around another node that
1201/// is persistent and is updated across invocations of replaceAllUsesWith on its
1202/// operand. This node should be directly created by end-users and not added to
1203/// the AllNodes list.
1204class HandleSDNode : public SDNode {
1205 SDUse Op;
1206
1207public:
1208 explicit HandleSDNode(SDValue X)
1209 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1210 // HandleSDNodes are never inserted into the DAG, so they won't be
1211 // auto-numbered. Use ID 65535 as a sentinel.
1212 PersistentId = 0xffff;
1213
1214 // Manually set up the operand list. This node type is special in that it's
1215 // always stack allocated and SelectionDAG does not manage its operands.
1216 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1217 // be so special.
1218 Op.setUser(this);
1219 Op.setInitial(X);
1220 NumOperands = 1;
1221 OperandList = &Op;
1222 }
1223 ~HandleSDNode();
1224
1225 const SDValue &getValue() const { return Op; }
1226};
1227
1228class AddrSpaceCastSDNode : public SDNode {
1229private:
1230 unsigned SrcAddrSpace;
1231 unsigned DestAddrSpace;
1232
1233public:
1234 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1235 unsigned SrcAS, unsigned DestAS);
1236
1237 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1238 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1239
1240 static bool classof(const SDNode *N) {
1241 return N->getOpcode() == ISD::ADDRSPACECAST;
1242 }
1243};
1244
1245/// This is an abstract virtual class for memory operations.
1246class MemSDNode : public SDNode {
1247private:
1248 // VT of in-memory value.
1249 EVT MemoryVT;
1250
1251protected:
1252 /// Memory reference information.
1253 MachineMemOperand *MMO;
1254
1255public:
1256 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1257 EVT memvt, MachineMemOperand *MMO);
1258
1259 bool readMem() const { return MMO->isLoad(); }
1260 bool writeMem() const { return MMO->isStore(); }
1261
1262 /// Returns alignment and volatility of the memory access
1263 Align getOriginalAlign() const { return MMO->getBaseAlign(); }
1264 Align getAlign() const { return MMO->getAlign(); }
1265 // FIXME: Remove once transition to getAlign is over.
1266 unsigned getAlignment() const { return MMO->getAlign().value(); }
1267
1268 /// Return the SubclassData value, without HasDebugValue. This contains an
1269 /// encoding of the volatile flag, as well as bits used by subclasses. This
1270 /// function should only be used to compute a FoldingSetNodeID value.
1271 /// The HasDebugValue bit is masked out because CSE map needs to match
1272 /// nodes with debug info with nodes without debug info. Same is about
1273 /// isDivergent bit.
1274 unsigned getRawSubclassData() const {
1275 uint16_t Data;
1276 union {
1277 char RawSDNodeBits[sizeof(uint16_t)];
1278 SDNodeBitfields SDNodeBits;
1279 };
1280 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1281 SDNodeBits.HasDebugValue = 0;
1282 SDNodeBits.IsDivergent = false;
1283 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1284 return Data;
1285 }
1286
1287 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1288 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1289 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1290 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1291
1292 // Returns the offset from the location of the access.
1293 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1294
1295 /// Returns the AA info that describes the dereference.
1296 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1297
1298 /// Returns the Ranges that describes the dereference.
1299 const MDNode *getRanges() const { return MMO->getRanges(); }
1300
1301 /// Returns the synchronization scope ID for this memory operation.
1302 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1303
1304 /// Return the atomic ordering requirements for this memory operation. For
1305 /// cmpxchg atomic operations, return the atomic ordering requirements when
1306 /// store occurs.
1307 AtomicOrdering getSuccessOrdering() const {
1308 return MMO->getSuccessOrdering();
1309 }
1310
1311 /// Return a single atomic ordering that is at least as strong as both the
1312 /// success and failure orderings for an atomic operation. (For operations
1313 /// other than cmpxchg, this is equivalent to getSuccessOrdering().)
1314 AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
1315
1316 /// Return true if the memory operation ordering is Unordered or higher.
1317 bool isAtomic() const { return MMO->isAtomic(); }
1318
1319 /// Returns true if the memory operation doesn't imply any ordering
1320 /// constraints on surrounding memory operations beyond the normal memory
1321 /// aliasing rules.
1322 bool isUnordered() const { return MMO->isUnordered(); }
1323
1324 /// Returns true if the memory operation is neither atomic or volatile.
1325 bool isSimple() const { return !isAtomic() && !isVolatile(); }
1326
1327 /// Return the type of the in-memory value.
1328 EVT getMemoryVT() const { return MemoryVT; }
1329
1330 /// Return a MachineMemOperand object describing the memory
1331 /// reference performed by operation.
1332 MachineMemOperand *getMemOperand() const { return MMO; }
1333
1334 const MachinePointerInfo &getPointerInfo() const {
1335 return MMO->getPointerInfo();
1336 }
1337
1338 /// Return the address space for the associated pointer
1339 unsigned getAddressSpace() const {
1340 return getPointerInfo().getAddrSpace();
1341 }
1342
1343 /// Update this MemSDNode's MachineMemOperand information
1344 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1345 /// This must only be used when the new alignment applies to all users of
1346 /// this MachineMemOperand.
1347 void refineAlignment(const MachineMemOperand *NewMMO) {
1348 MMO->refineAlignment(NewMMO);
1349 }
1350
1351 const SDValue &getChain() const { return getOperand(0); }
1352
1353 const SDValue &getBasePtr() const {
1354 switch (getOpcode()) {
1355 case ISD::STORE:
1356 case ISD::MSTORE:
1357 return getOperand(2);
1358 case ISD::MGATHER:
1359 case ISD::MSCATTER:
1360 return getOperand(3);
1361 default:
1362 return getOperand(1);
1363 }
1364 }
1365
1366 // Methods to support isa and dyn_cast
1367 static bool classof(const SDNode *N) {
1368 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1369 // with either an intrinsic or a target opcode.
1370 switch (N->getOpcode()) {
1371 case ISD::LOAD:
1372 case ISD::STORE:
1373 case ISD::PREFETCH:
1374 case ISD::ATOMIC_CMP_SWAP:
1375 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
1376 case ISD::ATOMIC_SWAP:
1377 case ISD::ATOMIC_LOAD_ADD:
1378 case ISD::ATOMIC_LOAD_SUB:
1379 case ISD::ATOMIC_LOAD_AND:
1380 case ISD::ATOMIC_LOAD_CLR:
1381 case ISD::ATOMIC_LOAD_OR:
1382 case ISD::ATOMIC_LOAD_XOR:
1383 case ISD::ATOMIC_LOAD_NAND:
1384 case ISD::ATOMIC_LOAD_MIN:
1385 case ISD::ATOMIC_LOAD_MAX:
1386 case ISD::ATOMIC_LOAD_UMIN:
1387 case ISD::ATOMIC_LOAD_UMAX:
1388 case ISD::ATOMIC_LOAD_FADD:
1389 case ISD::ATOMIC_LOAD_FSUB:
1390 case ISD::ATOMIC_LOAD:
1391 case ISD::ATOMIC_STORE:
1392 case ISD::MLOAD:
1393 case ISD::MSTORE:
1394 case ISD::MGATHER:
1395 case ISD::MSCATTER:
1396 return true;
1397 default:
1398 return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
1399 }
1400 }
1401};
1402
1403/// This is an SDNode representing atomic operations.
1404class AtomicSDNode : public MemSDNode {
1405public:
1406 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1407 EVT MemVT, MachineMemOperand *MMO)
1408 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1409 assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||((void)0)
1410 MMO->isAtomic()) && "then why are we using an AtomicSDNode?")((void)0);
1411 }
1412
1413 const SDValue &getBasePtr() const { return getOperand(1); }
1414 const SDValue &getVal() const { return getOperand(2); }
1415
1416 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1417 /// otherwise.
1418 bool isCompareAndSwap() const {
1419 unsigned Op = getOpcode();
1420 return Op == ISD::ATOMIC_CMP_SWAP ||
1421 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1422 }
1423
1424 /// For cmpxchg atomic operations, return the atomic ordering requirements
1425 /// when store does not occur.
1426 AtomicOrdering getFailureOrdering() const {
1427 assert(isCompareAndSwap() && "Must be cmpxchg operation")((void)0);
1428 return MMO->getFailureOrdering();
1429 }
1430
1431 // Methods to support isa and dyn_cast
1432 static bool classof(const SDNode *N) {
1433 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1434 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1435 N->getOpcode() == ISD::ATOMIC_SWAP ||
1436 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1437 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1438 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1439 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1440 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1441 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1442 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1443 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1444 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1445 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1446 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1447 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1448 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1449 N->getOpcode() == ISD::ATOMIC_LOAD ||
1450 N->getOpcode() == ISD::ATOMIC_STORE;
1451 }
1452};
1453
1454/// This SDNode is used for target intrinsics that touch
1455/// memory and need an associated MachineMemOperand. Its opcode may be
1456/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1457/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1458class MemIntrinsicSDNode : public MemSDNode {
1459public:
1460 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1461 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1462 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1463 SDNodeBits.IsMemIntrinsic = true;
1464 }
1465
1466 // Methods to support isa and dyn_cast
1467 static bool classof(const SDNode *N) {
1468 // We lower some target intrinsics to their target opcode
1469 // early a node with a target opcode can be of this class
1470 return N->isMemIntrinsic() ||
1471 N->getOpcode() == ISD::PREFETCH ||
1472 N->isTargetMemoryOpcode();
1473 }
1474};
1475
1476/// This SDNode is used to implement the code generator
1477/// support for the llvm IR shufflevector instruction. It combines elements
1478/// from two input vectors into a new input vector, with the selection and
1479/// ordering of elements determined by an array of integers, referred to as
1480/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1481/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1482/// An index of -1 is treated as undef, such that the code generator may put
1483/// any value in the corresponding element of the result.
1484class ShuffleVectorSDNode : public SDNode {
1485 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1486 // is freed when the SelectionDAG object is destroyed.
1487 const int *Mask;
1488
1489protected:
1490 friend class SelectionDAG;
1491
1492 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1493 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1494
1495public:
1496 ArrayRef<int> getMask() const {
1497 EVT VT = getValueType(0);
1498 return makeArrayRef(Mask, VT.getVectorNumElements());
1499 }
1500
1501 int getMaskElt(unsigned Idx) const {
1502 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!")((void)0);
1503 return Mask[Idx];
1504 }
1505
1506 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1507
1508 int getSplatIndex() const {
1509 assert(isSplat() && "Cannot get splat index for non-splat!")((void)0);
1510 EVT VT = getValueType(0);
1511 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
1512 if (Mask[i] >= 0)
1513 return Mask[i];
1514
1515 // We can choose any index value here and be correct because all elements
1516 // are undefined. Return 0 for better potential for callers to simplify.
1517 return 0;
1518 }
1519
1520 static bool isSplatMask(const int *Mask, EVT VT);
1521
1522 /// Change values in a shuffle permute mask assuming
1523 /// the two vector operands have swapped position.
1524 static void commuteMask(MutableArrayRef<int> Mask) {
1525 unsigned NumElems = Mask.size();
1526 for (unsigned i = 0; i != NumElems; ++i) {
1527 int idx = Mask[i];
1528 if (idx < 0)
1529 continue;
1530 else if (idx < (int)NumElems)
1531 Mask[i] = idx + NumElems;
1532 else
1533 Mask[i] = idx - NumElems;
1534 }
1535 }
1536
1537 static bool classof(const SDNode *N) {
1538 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1539 }
1540};
1541
1542class ConstantSDNode : public SDNode {
1543 friend class SelectionDAG;
1544
1545 const ConstantInt *Value;
1546
1547 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1548 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1549 getSDVTList(VT)),
1550 Value(val) {
1551 ConstantSDNodeBits.IsOpaque = isOpaque;
1552 }
1553
1554public:
1555 const ConstantInt *getConstantIntValue() const { return Value; }
1556 const APInt &getAPIntValue() const { return Value->getValue(); }
1557 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1558 int64_t getSExtValue() const { return Value->getSExtValue(); }
1559 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX0xffffffffffffffffULL) {
1560 return Value->getLimitedValue(Limit);
1561 }
1562 MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
1563 Align getAlignValue() const { return Value->getAlignValue(); }
1564
1565 bool isOne() const { return Value->isOne(); }
1566 bool isNullValue() const { return Value->isZero(); }
1567 bool isAllOnesValue() const { return Value->isMinusOne(); }
1568 bool isMaxSignedValue() const { return Value->isMaxValue(true); }
1569 bool isMinSignedValue() const { return Value->isMinValue(true); }
1570
1571 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1572
1573 static bool classof(const SDNode *N) {
1574 return N->getOpcode() == ISD::Constant ||
1575 N->getOpcode() == ISD::TargetConstant;
1576 }
1577};
1578
1579uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1580 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1581}
1582
1583const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1584 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1585}
1586
1587class ConstantFPSDNode : public SDNode {
1588 friend class SelectionDAG;
1589
1590 const ConstantFP *Value;
1591
1592 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1593 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1594 DebugLoc(), getSDVTList(VT)),
1595 Value(val) {}
1596
1597public:
1598 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1599 const ConstantFP *getConstantFPValue() const { return Value; }
1600
1601 /// Return true if the value is positive or negative zero.
1602 bool isZero() const { return Value->isZero(); }
1603
1604 /// Return true if the value is a NaN.
1605 bool isNaN() const { return Value->isNaN(); }
1606
1607 /// Return true if the value is an infinity
1608 bool isInfinity() const { return Value->isInfinity(); }
1609
1610 /// Return true if the value is negative.
1611 bool isNegative() const { return Value->isNegative(); }
1612
1613 /// We don't rely on operator== working on double values, as
1614 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1615 /// As such, this method can be used to do an exact bit-for-bit comparison of
1616 /// two floating point values.
1617
1618 /// We leave the version with the double argument here because it's just so
1619 /// convenient to write "2.0" and the like. Without this function we'd
1620 /// have to duplicate its logic everywhere it's called.
1621 bool isExactlyValue(double V) const {
1622 return Value->getValueAPF().isExactlyValue(V);
1623 }
1624 bool isExactlyValue(const APFloat& V) const;
1625
1626 static bool isValueValidForType(EVT VT, const APFloat& Val);
1627
1628 static bool classof(const SDNode *N) {
1629 return N->getOpcode() == ISD::ConstantFP ||
1630 N->getOpcode() == ISD::TargetConstantFP;
1631 }
1632};
1633
1634/// Returns true if \p V is a constant integer zero.
1635bool isNullConstant(SDValue V);
1636
1637/// Returns true if \p V is an FP constant with a value of positive zero.
1638bool isNullFPConstant(SDValue V);
1639
1640/// Returns true if \p V is an integer constant with all bits set.
1641bool isAllOnesConstant(SDValue V);
1642
1643/// Returns true if \p V is a constant integer one.
1644bool isOneConstant(SDValue V);
1645
1646/// Return the non-bitcasted source operand of \p V if it exists.
1647/// If \p V is not a bitcasted value, it is returned as-is.
1648SDValue peekThroughBitcasts(SDValue V);
1649
1650/// Return the non-bitcasted and one-use source operand of \p V if it exists.
1651/// If \p V is not a bitcasted one-use value, it is returned as-is.
1652SDValue peekThroughOneUseBitcasts(SDValue V);
1653
1654/// Return the non-extracted vector source operand of \p V if it exists.
1655/// If \p V is not an extracted subvector, it is returned as-is.
1656SDValue peekThroughExtractSubvectors(SDValue V);
1657
1658/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1659/// constant is canonicalized to be operand 1.
1660bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
1661
1662/// Returns the SDNode if it is a constant splat BuildVector or constant int.
1663ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
1664 bool AllowTruncation = false);
1665
1666/// Returns the SDNode if it is a demanded constant splat BuildVector or
1667/// constant int.
1668ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
1669 bool AllowUndefs = false,
1670 bool AllowTruncation = false);
1671
1672/// Returns the SDNode if it is a constant splat BuildVector or constant float.
1673ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1674
1675/// Returns the SDNode if it is a demanded constant splat BuildVector or
1676/// constant float.
1677ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
1678 bool AllowUndefs = false);
1679
1680/// Return true if the value is a constant 0 integer or a splatted vector of
1681/// a constant 0 integer (with no undefs by default).
1682/// Build vector implicit truncation is not an issue for null values.
1683bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1684
1685/// Return true if the value is a constant 1 integer or a splatted vector of a
1686/// constant 1 integer (with no undefs).
1687/// Does not permit build vector implicit truncation.
1688bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
1689
1690/// Return true if the value is a constant -1 integer or a splatted vector of a
1691/// constant -1 integer (with no undefs).
1692/// Does not permit build vector implicit truncation.
1693bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
1694
1695/// Return true if \p V is either a integer or FP constant.
1696inline bool isIntOrFPConstant(SDValue V) {
1697 return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
1698}
1699
1700class GlobalAddressSDNode : public SDNode {
1701 friend class SelectionDAG;
1702
1703 const GlobalValue *TheGlobal;
1704 int64_t Offset;
1705 unsigned TargetFlags;
1706
1707 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1708 const GlobalValue *GA, EVT VT, int64_t o,
1709 unsigned TF);
1710
1711public:
1712 const GlobalValue *getGlobal() const { return TheGlobal; }
1713 int64_t getOffset() const { return Offset; }
1714 unsigned getTargetFlags() const { return TargetFlags; }
1715 // Return the address space this GlobalAddress belongs to.
1716 unsigned getAddressSpace() const;
1717
1718 static bool classof(const SDNode *N) {
1719 return N->getOpcode() == ISD::GlobalAddress ||
1720 N->getOpcode() == ISD::TargetGlobalAddress ||
1721 N->getOpcode() == ISD::GlobalTLSAddress ||
1722 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1723 }
1724};
1725
1726class FrameIndexSDNode : public SDNode {
1727 friend class SelectionDAG;
1728
1729 int FI;
1730
1731 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1732 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1733 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1734 }
1735
1736public:
1737 int getIndex() const { return FI; }
1738
1739 static bool classof(const SDNode *N) {
1740 return N->getOpcode() == ISD::FrameIndex ||
1741 N->getOpcode() == ISD::TargetFrameIndex;
1742 }
1743};
1744
1745/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1746/// the offet and size that are started/ended in the underlying FrameIndex.
1747class LifetimeSDNode : public SDNode {
1748 friend class SelectionDAG;
1749 int64_t Size;
1750 int64_t Offset; // -1 if offset is unknown.
1751
1752 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1753 SDVTList VTs, int64_t Size, int64_t Offset)
1754 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1755public:
1756 int64_t getFrameIndex() const {
1757 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1758 }
1759
1760 bool hasOffset() const { return Offset >= 0; }
1761 int64_t getOffset() const {
1762 assert(hasOffset() && "offset is unknown")((void)0);
1763 return Offset;
1764 }
1765 int64_t getSize() const {
1766 assert(hasOffset() && "offset is unknown")((void)0);
1767 return Size;
1768 }
1769
1770 // Methods to support isa and dyn_cast
1771 static bool classof(const SDNode *N) {
1772 return N->getOpcode() == ISD::LIFETIME_START ||
1773 N->getOpcode() == ISD::LIFETIME_END;
1774 }
1775};
1776
1777/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
1778/// the index of the basic block being probed. A pseudo probe serves as a place
1779/// holder and will be removed at the end of compilation. It does not have any
1780/// operand because we do not want the instruction selection to deal with any.
1781class PseudoProbeSDNode : public SDNode {
1782 friend class SelectionDAG;
1783 uint64_t Guid;
1784 uint64_t Index;
1785 uint32_t Attributes;
1786
1787 PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
1788 SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
1789 : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
1790 Attributes(Attr) {}
1791
1792public:
1793 uint64_t getGuid() const { return Guid; }
1794 uint64_t getIndex() const { return Index; }
1795 uint32_t getAttributes() const { return Attributes; }
1796
1797 // Methods to support isa and dyn_cast
1798 static bool classof(const SDNode *N) {
1799 return N->getOpcode() == ISD::PSEUDO_PROBE;
1800 }
1801};
1802
1803class JumpTableSDNode : public SDNode {
1804 friend class SelectionDAG;
1805
1806 int JTI;
1807 unsigned TargetFlags;
1808
1809 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
1810 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1811 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1812 }
1813
1814public:
1815 int getIndex() const { return JTI; }
1816 unsigned getTargetFlags() const { return TargetFlags; }
1817
1818 static bool classof(const SDNode *N) {
1819 return N->getOpcode() == ISD::JumpTable ||
1820 N->getOpcode() == ISD::TargetJumpTable;
1821 }
1822};
1823
1824class ConstantPoolSDNode : public SDNode {
1825 friend class SelectionDAG;
1826
1827 union {
1828 const Constant *ConstVal;
1829 MachineConstantPoolValue *MachineCPVal;
1830 } Val;
1831 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1832 Align Alignment; // Minimum alignment requirement of CP.
1833 unsigned TargetFlags;
1834
1835 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1836 Align Alignment, unsigned TF)
1837 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1838 DebugLoc(), getSDVTList(VT)),
1839 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1840 assert(Offset >= 0 && "Offset is too large")((void)0);
1841 Val.ConstVal = c;
1842 }
1843
1844 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
1845 Align Alignment, unsigned TF)
1846 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1847 DebugLoc(), getSDVTList(VT)),
1848 Offset(o), Alignment(Alignment), TargetFlags(TF) {
1849 assert(Offset >= 0 && "Offset is too large")((void)0);
1850 Val.MachineCPVal = v;
1851 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT8-1);
1852 }
1853
1854public:
1855 bool isMachineConstantPoolEntry() const {
1856 return Offset < 0;
1857 }
1858
1859 const Constant *getConstVal() const {
1860 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type")((void)0);
1861 return Val.ConstVal;
1862 }
1863
1864 MachineConstantPoolValue *getMachineCPVal() const {
1865 assert(isMachineConstantPoolEntry() && "Wrong constantpool type")((void)0);
1866 return Val.MachineCPVal;
1867 }
1868
1869 int getOffset() const {
1870 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT8-1));
1871 }
1872
1873 // Return the alignment of this constant pool object, which is either 0 (for
1874 // default alignment) or the desired value.
1875 Align getAlign() const { return Alignment; }
1876 unsigned getTargetFlags() const { return TargetFlags; }
1877
1878 Type *getType() const;
1879
1880 static bool classof(const SDNode *N) {
1881 return N->getOpcode() == ISD::ConstantPool ||
1882 N->getOpcode() == ISD::TargetConstantPool;
1883 }
1884};
1885
1886/// Completely target-dependent object reference.
1887class TargetIndexSDNode : public SDNode {
1888 friend class SelectionDAG;
1889
1890 unsigned TargetFlags;
1891 int Index;
1892 int64_t Offset;
1893
1894public:
1895 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
1896 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1897 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1898
1899 unsigned getTargetFlags() const { return TargetFlags; }
1900 int getIndex() const { return Index; }
1901 int64_t getOffset() const { return Offset; }
1902
1903 static bool classof(const SDNode *N) {
1904 return N->getOpcode() == ISD::TargetIndex;
1905 }
1906};
1907
1908class BasicBlockSDNode : public SDNode {
1909 friend class SelectionDAG;
1910
1911 MachineBasicBlock *MBB;
1912
1913 /// Debug info is meaningful and potentially useful here, but we create
1914 /// blocks out of order when they're jumped to, which makes it a bit
1915 /// harder. Let's see if we need it first.
1916 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1917 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1918 {}
1919
1920public:
1921 MachineBasicBlock *getBasicBlock() const { return MBB; }
1922
1923 static bool classof(const SDNode *N) {
1924 return N->getOpcode() == ISD::BasicBlock;
1925 }
1926};
1927
1928/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1929class BuildVectorSDNode : public SDNode {
1930public:
1931 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1932 explicit BuildVectorSDNode() = delete;
1933
1934 /// Check if this is a constant splat, and if so, find the
1935 /// smallest element size that splats the vector. If MinSplatBits is
1936 /// nonzero, the element size must be at least that large. Note that the
1937 /// splat element may be the entire vector (i.e., a one element vector).
1938 /// Returns the splat element value in SplatValue. Any undefined bits in
1939 /// that value are zero, and the corresponding bits in the SplatUndef mask
1940 /// are set. The SplatBitSize value is set to the splat element size in
1941 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1942 /// undefined. isBigEndian describes the endianness of the target.
1943 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1944 unsigned &SplatBitSize, bool &HasAnyUndefs,
1945 unsigned MinSplatBits = 0,
1946 bool isBigEndian = false) const;
1947
1948 /// Returns the demanded splatted value or a null value if this is not a
1949 /// splat.
1950 ///
1951 /// The DemandedElts mask indicates the elements that must be in the splat.
1952 /// If passed a non-null UndefElements bitvector, it will resize it to match
1953 /// the vector width and set the bits where elements are undef.
1954 SDValue getSplatValue(const APInt &DemandedElts,
1955 BitVector *UndefElements = nullptr) const;
1956
1957 /// Returns the splatted value or a null value if this is not a splat.
1958 ///
1959 /// If passed a non-null UndefElements bitvector, it will resize it to match
1960 /// the vector width and set the bits where elements are undef.
1961 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1962
1963 /// Find the shortest repeating sequence of values in the build vector.
1964 ///
1965 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1966 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1967 ///
1968 /// Currently this must be a power-of-2 build vector.
1969 /// The DemandedElts mask indicates the elements that must be present,
1970 /// undemanded elements in Sequence may be null (SDValue()). If passed a
1971 /// non-null UndefElements bitvector, it will resize it to match the original
1972 /// vector width and set the bits where elements are undef. If result is
1973 /// false, Sequence will be empty.
1974 bool getRepeatedSequence(const APInt &DemandedElts,
1975 SmallVectorImpl<SDValue> &Sequence,
1976 BitVector *UndefElements = nullptr) const;
1977
1978 /// Find the shortest repeating sequence of values in the build vector.
1979 ///
1980 /// e.g. { u, X, u, X, u, u, X, u } -> { X }
1981 /// { X, Y, u, Y, u, u, X, u } -> { X, Y }
1982 ///
1983 /// Currently this must be a power-of-2 build vector.
1984 /// If passed a non-null UndefElements bitvector, it will resize it to match
1985 /// the original vector width and set the bits where elements are undef.
1986 /// If result is false, Sequence will be empty.
1987 bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
1988 BitVector *UndefElements = nullptr) const;
1989
1990 /// Returns the demanded splatted constant or null if this is not a constant
1991 /// splat.
1992 ///
1993 /// The DemandedElts mask indicates the elements that must be in the splat.
1994 /// If passed a non-null UndefElements bitvector, it will resize it to match
1995 /// the vector width and set the bits where elements are undef.
1996 ConstantSDNode *
1997 getConstantSplatNode(const APInt &DemandedElts,
1998 BitVector *UndefElements = nullptr) const;
1999
2000 /// Returns the splatted constant or null if this is not a constant
2001 /// splat.
2002 ///
2003 /// If passed a non-null UndefElements bitvector, it will resize it to match
2004 /// the vector width and set the bits where elements are undef.
2005 ConstantSDNode *
2006 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
2007
2008 /// Returns the demanded splatted constant FP or null if this is not a
2009 /// constant FP splat.
2010 ///
2011 /// The DemandedElts mask indicates the elements that must be in the splat.
2012 /// If passed a non-null UndefElements bitvector, it will resize it to match
2013 /// the vector width and set the bits where elements are undef.
2014 ConstantFPSDNode *
2015 getConstantFPSplatNode(const APInt &DemandedElts,
2016 BitVector *UndefElements = nullptr) const;
2017
2018 /// Returns the splatted constant FP or null if this is not a constant
2019 /// FP splat.
2020 ///
2021 /// If passed a non-null UndefElements bitvector, it will resize it to match
2022 /// the vector width and set the bits where elements are undef.
2023 ConstantFPSDNode *
2024 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
2025
2026 /// If this is a constant FP splat and the splatted constant FP is an
2027 /// exact power or 2, return the log base 2 integer value. Otherwise,
2028 /// return -1.
2029 ///
2030 /// The BitWidth specifies the necessary bit precision.
2031 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
2032 uint32_t BitWidth) const;
2033
2034 bool isConstant() const;
2035
2036 static bool classof(const SDNode *N) {
2037 return N->getOpcode() == ISD::BUILD_VECTOR;
2038 }
2039};
2040
2041/// An SDNode that holds an arbitrary LLVM IR Value. This is
2042/// used when the SelectionDAG needs to make a simple reference to something
2043/// in the LLVM IR representation.
2044///
2045class SrcValueSDNode : public SDNode {
2046 friend class SelectionDAG;
2047
2048 const Value *V;
2049
2050 /// Create a SrcValue for a general value.
2051 explicit SrcValueSDNode(const Value *v)
2052 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
2053
2054public:
2055 /// Return the contained Value.
2056 const Value *getValue() const { return V; }
2057
2058 static bool classof(const SDNode *N) {
2059 return N->getOpcode() == ISD::SRCVALUE;
2060 }
2061};
2062
2063class MDNodeSDNode : public SDNode {
2064 friend class SelectionDAG;
2065
2066 const MDNode *MD;
2067
2068 explicit MDNodeSDNode(const MDNode *md)
2069 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
2070 {}
2071
2072public:
2073 const MDNode *getMD() const { return MD; }
2074
2075 static bool classof(const SDNode *N) {
2076 return N->getOpcode() == ISD::MDNODE_SDNODE;
2077 }
2078};
2079
2080class RegisterSDNode : public SDNode {
2081 friend class SelectionDAG;
2082
2083 Register Reg;
2084
2085 RegisterSDNode(Register reg, EVT VT)
2086 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
2087
2088public:
2089 Register getReg() const { return Reg; }
2090
2091 static bool classof(const SDNode *N) {
2092 return N->getOpcode() == ISD::Register;
2093 }
2094};
2095
2096class RegisterMaskSDNode : public SDNode {
2097 friend class SelectionDAG;
2098
2099 // The memory for RegMask is not owned by the node.
2100 const uint32_t *RegMask;
2101
2102 RegisterMaskSDNode(const uint32_t *mask)
2103 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
2104 RegMask(mask) {}
2105
2106public:
2107 const uint32_t *getRegMask() const { return RegMask; }
2108
2109 static bool classof(const SDNode *N) {
2110 return N->getOpcode() == ISD::RegisterMask;
2111 }
2112};
2113
2114class BlockAddressSDNode : public SDNode {
2115 friend class SelectionDAG;
2116
2117 const BlockAddress *BA;
2118 int64_t Offset;
2119 unsigned TargetFlags;
2120
2121 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
2122 int64_t o, unsigned Flags)
2123 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
2124 BA(ba), Offset(o), TargetFlags(Flags) {}
2125
2126public:
2127 const BlockAddress *getBlockAddress() const { return BA; }
2128 int64_t getOffset() const { return Offset; }
2129 unsigned getTargetFlags() const { return TargetFlags; }
2130
2131 static bool classof(const SDNode *N) {
2132 return N->getOpcode() == ISD::BlockAddress ||
2133 N->getOpcode() == ISD::TargetBlockAddress;
2134 }
2135};
2136
2137class LabelSDNode : public SDNode {
2138 friend class SelectionDAG;
2139
2140 MCSymbol *Label;
2141
2142 LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
2143 : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
2144 assert(LabelSDNode::classof(this) && "not a label opcode")((void)0);
2145 }
2146
2147public:
2148 MCSymbol *getLabel() const { return Label; }
2149
2150 static bool classof(const SDNode *N) {
2151 return N->getOpcode() == ISD::EH_LABEL ||
2152 N->getOpcode() == ISD::ANNOTATION_LABEL;
2153 }
2154};
2155
2156class ExternalSymbolSDNode : public SDNode {
2157 friend class SelectionDAG;
2158
2159 const char *Symbol;
2160 unsigned TargetFlags;
2161
2162 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
2163 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
2164 DebugLoc(), getSDVTList(VT)),
2165 Symbol(Sym), TargetFlags(TF) {}
2166
2167public:
2168 const char *getSymbol() const { return Symbol; }
2169 unsigned getTargetFlags() const { return TargetFlags; }
2170
2171 static bool classof(const SDNode *N) {
2172 return N->getOpcode() == ISD::ExternalSymbol ||
2173 N->getOpcode() == ISD::TargetExternalSymbol;
2174 }
2175};
2176
2177class MCSymbolSDNode : public SDNode {
2178 friend class SelectionDAG;
2179
2180 MCSymbol *Symbol;
2181
2182 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2183 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2184
2185public:
2186 MCSymbol *getMCSymbol() const { return Symbol; }
2187
2188 static bool classof(const SDNode *N) {
2189 return N->getOpcode() == ISD::MCSymbol;
2190 }
2191};
2192
2193class CondCodeSDNode : public SDNode {
2194 friend class SelectionDAG;
2195
2196 ISD::CondCode Condition;
2197
2198 explicit CondCodeSDNode(ISD::CondCode Cond)
2199 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2200 Condition(Cond) {}
2201
2202public:
2203 ISD::CondCode get() const { return Condition; }
2204
2205 static bool classof(const SDNode *N) {
2206 return N->getOpcode() == ISD::CONDCODE;
2207 }
2208};
2209
2210/// This class is used to represent EVT's, which are used
2211/// to parameterize some operations.
2212class VTSDNode : public SDNode {
2213 friend class SelectionDAG;
2214
2215 EVT ValueType;
2216
2217 explicit VTSDNode(EVT VT)
2218 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2219 ValueType(VT) {}
2220
2221public:
2222 EVT getVT() const { return ValueType; }
2223
2224 static bool classof(const SDNode *N) {
2225 return N->getOpcode() == ISD::VALUETYPE;
2226 }
2227};
2228
2229/// Base class for LoadSDNode and StoreSDNode
2230class LSBaseSDNode : public MemSDNode {
2231public:
2232 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2233 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2234 MachineMemOperand *MMO)
2235 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2236 LSBaseSDNodeBits.AddressingMode = AM;
2237 assert(getAddressingMode() == AM && "Value truncated")((void)0);
2238 }
2239
2240 const SDValue &getOffset() const {
2241 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2242 }
2243
2244 /// Return the addressing mode for this load or store:
2245 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2246 ISD::MemIndexedMode getAddressingMode() const {
2247 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2248 }
2249
2250 /// Return true if this is a pre/post inc/dec load/store.
2251 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2252
2253 /// Return true if this is NOT a pre/post inc/dec load/store.
2254 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2255
2256 static bool classof(const SDNode *N) {
2257 return N->getOpcode() == ISD::LOAD ||
2258 N->getOpcode() == ISD::STORE;
2259 }
2260};
2261
2262/// This class is used to represent ISD::LOAD nodes.
2263class LoadSDNode : public LSBaseSDNode {
2264 friend class SelectionDAG;
2265
2266 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2267 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2268 MachineMemOperand *MMO)
2269 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2270 LoadSDNodeBits.ExtTy = ETy;
2271 assert(readMem() && "Load MachineMemOperand is not a load!")((void)0);
2272 assert(!writeMem() && "Load MachineMemOperand is a store!")((void)0);
2273 }
2274
2275public:
2276 /// Return whether this is a plain node,
2277 /// or one of the varieties of value-extending loads.
2278 ISD::LoadExtType getExtensionType() const {
2279 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2280 }
2281
2282 const SDValue &getBasePtr() const { return getOperand(1); }
2283 const SDValue &getOffset() const { return getOperand(2); }
2284
2285 static bool classof(const SDNode *N) {
2286 return N->getOpcode() == ISD::LOAD;
2287 }
2288};
2289
2290/// This class is used to represent ISD::STORE nodes.
2291class StoreSDNode : public LSBaseSDNode {
2292 friend class SelectionDAG;
2293
2294 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2295 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2296 MachineMemOperand *MMO)
2297 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2298 StoreSDNodeBits.IsTruncating = isTrunc;
2299 assert(!readMem() && "Store MachineMemOperand is a load!")((void)0);
2300 assert(writeMem() && "Store MachineMemOperand is not a store!")((void)0);
2301 }
2302
2303public:
2304 /// Return true if the op does a truncation before store.
2305 /// For integers this is the same as doing a TRUNCATE and storing the result.
2306 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2307 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2308 void setTruncatingStore(bool Truncating) {
2309 StoreSDNodeBits.IsTruncating = Truncating;
2310 }
2311
2312 const SDValue &getValue() const { return getOperand(1); }
2313 const SDValue &getBasePtr() const { return getOperand(2); }
2314 const SDValue &getOffset() const { return getOperand(3); }
2315
2316 static bool classof(const SDNode *N) {
2317 return N->getOpcode() == ISD::STORE;
2318 }
2319};
2320
2321/// This base class is used to represent MLOAD and MSTORE nodes
2322class MaskedLoadStoreSDNode : public MemSDNode {
2323public:
2324 friend class SelectionDAG;
2325
2326 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2327 const DebugLoc &dl, SDVTList VTs,
2328 ISD::MemIndexedMode AM, EVT MemVT,
2329 MachineMemOperand *MMO)
2330 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2331 LSBaseSDNodeBits.AddressingMode = AM;
2332 assert(getAddressingMode() == AM && "Value truncated")((void)0);
2333 }
2334
2335 // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
2336 // MaskedStoreSDNode (Chain, data, ptr, offset, mask)
2337 // Mask is a vector of i1 elements
2338 const SDValue &getOffset() const {
2339 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2340 }
2341 const SDValue &getMask() const {
2342 return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
2343 }
2344
2345 /// Return the addressing mode for this load or store:
2346 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2347 ISD::MemIndexedMode getAddressingMode() const {
2348 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2349 }
2350
2351 /// Return true if this is a pre/post inc/dec load/store.
2352 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2353
2354 /// Return true if this is NOT a pre/post inc/dec load/store.
2355 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2356
2357 static bool classof(const SDNode *N) {
2358 return N->getOpcode() == ISD::MLOAD ||
2359 N->getOpcode() == ISD::MSTORE;
2360 }
2361};
2362
2363/// This class is used to represent an MLOAD node
2364class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2365public:
2366 friend class SelectionDAG;
2367
2368 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2369 ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
2370 bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
2371 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
2372 LoadSDNodeBits.ExtTy = ETy;
2373 LoadSDNodeBits.IsExpanding = IsExpanding;
2374 }
2375
2376 ISD::LoadExtType getExtensionType() const {
2377 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2378 }
2379
2380 const SDValue &getBasePtr() const { return getOperand(1); }
2381 const SDValue &getOffset() const { return getOperand(2); }
2382 const SDValue &getMask() const { return getOperand(3); }
2383 const SDValue &getPassThru() const { return getOperand(4); }
2384
2385 static bool classof(const SDNode *N) {
2386 return N->getOpcode() == ISD::MLOAD;
2387 }
2388
2389 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2390};
2391
2392/// This class is used to represent an MSTORE node
2393class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2394public:
2395 friend class SelectionDAG;
2396
2397 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2398 ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
2399 EVT MemVT, MachineMemOperand *MMO)
2400 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
2401 StoreSDNodeBits.IsTruncating = isTrunc;
2402 StoreSDNodeBits.IsCompressing = isCompressing;
2403 }
2404
2405 /// Return true if the op does a truncation before store.
2406 /// For integers this is the same as doing a TRUNCATE and storing the result.
2407 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2408 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2409
2410 /// Returns true if the op does a compression to the vector before storing.
2411 /// The node contiguously stores the active elements (integers or floats)
2412 /// in src (those with their respective bit set in writemask k) to unaligned
2413 /// memory at base_addr.
2414 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2415
2416 const SDValue &getValue() const { return getOperand(1); }
2417 const SDValue &getBasePtr() const { return getOperand(2); }
2418 const SDValue &getOffset() const { return getOperand(3); }
2419 const SDValue &getMask() const { return getOperand(4); }
2420
2421 static bool classof(const SDNode *N) {
2422 return N->getOpcode() == ISD::MSTORE;
2423 }
2424};
2425
2426/// This is a base class used to represent
2427/// MGATHER and MSCATTER nodes
2428///
2429class MaskedGatherScatterSDNode : public MemSDNode {
2430public:
2431 friend class SelectionDAG;
2432
2433 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2434 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2435 MachineMemOperand *MMO, ISD::MemIndexType IndexType)
2436 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2437 LSBaseSDNodeBits.AddressingMode = IndexType;
2438 assert(getIndexType() == IndexType && "Value truncated")((void)0);
2439 }
2440
2441 /// How is Index applied to BasePtr when computing addresses.
2442 ISD::MemIndexType getIndexType() const {
2443 return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
2444 }
2445 void setIndexType(ISD::MemIndexType IndexType) {
2446 LSBaseSDNodeBits.AddressingMode = IndexType;
2447 }
2448 bool isIndexScaled() const {
2449 return (getIndexType() == ISD::SIGNED_SCALED) ||
2450 (getIndexType() == ISD::UNSIGNED_SCALED);
2451 }
2452 bool isIndexSigned() const {
2453 return (getIndexType() == ISD::SIGNED_SCALED) ||
2454 (getIndexType() == ISD::SIGNED_UNSCALED);
2455 }
2456
2457 // In the both nodes address is Op1, mask is Op2:
2458 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2459 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2460 // Mask is a vector of i1 elements
2461 const SDValue &getBasePtr() const { return getOperand(3); }
2462 const SDValue &getIndex() const { return getOperand(4); }
2463 const SDValue &getMask() const { return getOperand(2); }
2464 const SDValue &getScale() const { return getOperand(5); }
2465
2466 static bool classof(const SDNode *N) {
2467 return N->getOpcode() == ISD::MGATHER ||
2468 N->getOpcode() == ISD::MSCATTER;
2469 }
2470};
2471
2472/// This class is used to represent an MGATHER node
2473///
2474class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2475public:
2476 friend class SelectionDAG;
2477
2478 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2479 EVT MemVT, MachineMemOperand *MMO,
2480 ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
2481 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
2482 IndexType) {
2483 LoadSDNodeBits.ExtTy = ETy;
2484 }
2485
2486 const SDValue &getPassThru() const { return getOperand(1); }
2487
2488 ISD::LoadExtType getExtensionType() const {
2489 return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
2490 }
2491
2492 static bool classof(const SDNode *N) {
2493 return N->getOpcode() == ISD::MGATHER;
2494 }
2495};
2496
2497/// This class is used to represent an MSCATTER node
2498///
2499class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2500public:
2501 friend class SelectionDAG;
2502
2503 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2504 EVT MemVT, MachineMemOperand *MMO,
2505 ISD::MemIndexType IndexType, bool IsTrunc)
2506 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
2507 IndexType) {
2508 StoreSDNodeBits.IsTruncating = IsTrunc;
2509 }
2510
2511 /// Return true if the op does a truncation before store.
2512 /// For integers this is the same as doing a TRUNCATE and storing the result.
2513 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2514 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2515
2516 const SDValue &getValue() const { return getOperand(1); }
2517
2518 static bool classof(const SDNode *N) {
2519 return N->getOpcode() == ISD::MSCATTER;
2520 }
2521};
2522
2523/// An SDNode that represents everything that will be needed
2524/// to construct a MachineInstr. These nodes are created during the
2525/// instruction selection proper phase.
2526///
2527/// Note that the only supported way to set the `memoperands` is by calling the
2528/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2529/// inside the DAG rather than in the node.
2530class MachineSDNode : public SDNode {
2531private:
2532 friend class SelectionDAG;
2533
2534 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2535 : SDNode(Opc, Order, DL, VTs) {}
2536
2537 // We use a pointer union between a single `MachineMemOperand` pointer and
2538 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2539 // the number of these is zero, the single pointer variant used when the
2540 // number is one, and the array is used for larger numbers.
2541 //
2542 // The array is allocated via the `SelectionDAG`'s allocator and so will
2543 // always live until the DAG is cleaned up and doesn't require ownership here.
2544 //
2545 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2546 // subclasses aren't managed in a conforming C++ manner. See the comments on
2547 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2548 // constraint here is that these don't manage memory with their constructor or
2549 // destructor and can be initialized to a good state even if they start off
2550 // uninitialized.
2551 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2552
2553 // Note that this could be folded into the above `MemRefs` member if doing so
2554 // is advantageous at some point. We don't need to store this in most cases.
2555 // However, at the moment this doesn't appear to make the allocation any
2556 // smaller and makes the code somewhat simpler to read.
2557 int NumMemRefs = 0;
2558
2559public:
2560 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2561
2562 ArrayRef<MachineMemOperand *> memoperands() const {
2563 // Special case the common cases.
2564 if (NumMemRefs == 0)
2565 return {};
2566 if (NumMemRefs == 1)
2567 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2568
2569 // Otherwise we have an actual array.
2570 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2571 }
2572 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2573 mmo_iterator memoperands_end() const { return memoperands().end(); }
2574 bool memoperands_empty() const { return memoperands().empty(); }
2575
2576 /// Clear out the memory reference descriptor list.
2577 void clearMemRefs() {
2578 MemRefs = nullptr;
2579 NumMemRefs = 0;
2580 }
2581
2582 static bool classof(const SDNode *N) {
2583 return N->isMachineOpcode();
2584 }
2585};
2586
2587/// An SDNode that records if a register contains a value that is guaranteed to
2588/// be aligned accordingly.
2589class AssertAlignSDNode : public SDNode {
2590 Align Alignment;
2591
2592public:
2593 AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
2594 : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
2595
2596 Align getAlign() const { return Alignment; }
2597
2598 static bool classof(const SDNode *N) {
2599 return N->getOpcode() == ISD::AssertAlign;
2600 }
2601};
2602
2603class SDNodeIterator {
2604 const SDNode *Node;
2605 unsigned Operand;
2606
2607 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2608
2609public:
2610 using iterator_category = std::forward_iterator_tag;
2611 using value_type = SDNode;
2612 using difference_type = std::ptrdiff_t;
2613 using pointer = value_type *;
2614 using reference = value_type &;
2615
2616 bool operator==(const SDNodeIterator& x) const {
2617 return Operand == x.Operand;
2618 }
2619 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2620
2621 pointer operator*() const {
2622 return Node->getOperand(Operand).getNode();
2623 }
2624 pointer operator->() const { return operator*(); }
2625
2626 SDNodeIterator& operator++() { // Preincrement
2627 ++Operand;
2628 return *this;
2629 }
2630 SDNodeIterator operator++(int) { // Postincrement
2631 SDNodeIterator tmp = *this; ++*this; return tmp;
2632 }
2633 size_t operator-(SDNodeIterator Other) const {
2634 assert(Node == Other.Node &&((void)0)
2635 "Cannot compare iterators of two different nodes!")((void)0);
2636 return Operand - Other.Operand;
2637 }
2638
2639 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2640 static SDNodeIterator end (const SDNode *N) {
2641 return SDNodeIterator(N, N->getNumOperands());
2642 }
2643
2644 unsigned getOperand() const { return Operand; }
2645 const SDNode *getNode() const { return Node; }
2646};
2647
2648template <> struct GraphTraits<SDNode*> {
2649 using NodeRef = SDNode *;
2650 using ChildIteratorType = SDNodeIterator;
2651
2652 static NodeRef getEntryNode(SDNode *N) { return N; }
2653
2654 static ChildIteratorType child_begin(NodeRef N) {
2655 return SDNodeIterator::begin(N);
2656 }
2657
2658 static ChildIteratorType child_end(NodeRef N) {
2659 return SDNodeIterator::end(N);
2660 }
2661};
2662
2663/// A representation of the largest SDNode, for use in sizeof().
2664///
2665/// This needs to be a union because the largest node differs on 32 bit systems
2666/// with 4 and 8 byte pointer alignment, respectively.
2667using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2668 BlockAddressSDNode,
2669 GlobalAddressSDNode,
2670 PseudoProbeSDNode>;
2671
2672/// The SDNode class with the greatest alignment requirement.
2673using MostAlignedSDNode = GlobalAddressSDNode;
2674
2675namespace ISD {
2676
2677 /// Returns true if the specified node is a non-extending and unindexed load.
2678 inline bool isNormalLoad(const SDNode *N) {
2679 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2680 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2681 Ld->getAddressingMode() == ISD::UNINDEXED;
2682 }
2683
2684 /// Returns true if the specified node is a non-extending load.
2685 inline bool isNON_EXTLoad(const SDNode *N) {
2686 return isa<LoadSDNode>(N) &&
2687 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2688 }
2689
2690 /// Returns true if the specified node is a EXTLOAD.
2691 inline bool isEXTLoad(const SDNode *N) {
2692 return isa<LoadSDNode>(N) &&
2693 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2694 }
2695
2696 /// Returns true if the specified node is a SEXTLOAD.
2697 inline bool isSEXTLoad(const SDNode *N) {
2698 return isa<LoadSDNode>(N) &&
2699 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2700 }
2701
2702 /// Returns true if the specified node is a ZEXTLOAD.
2703 inline bool isZEXTLoad(const SDNode *N) {
2704 return isa<LoadSDNode>(N) &&
2705 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2706 }
2707
2708 /// Returns true if the specified node is an unindexed load.
2709 inline bool isUNINDEXEDLoad(const SDNode *N) {
2710 return isa<LoadSDNode>(N) &&
2711 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2712 }
2713
2714 /// Returns true if the specified node is a non-truncating
2715 /// and unindexed store.
2716 inline bool isNormalStore(const SDNode *N) {
2717 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2718 return St && !St->isTruncatingStore() &&
2719 St->getAddressingMode() == ISD::UNINDEXED;
2720 }
2721
2722 /// Returns true if the specified node is an unindexed store.
2723 inline bool isUNINDEXEDStore(const SDNode *N) {
2724 return isa<StoreSDNode>(N) &&
2725 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2726 }
2727
2728 /// Attempt to match a unary predicate against a scalar/splat constant or
2729 /// every element of a constant BUILD_VECTOR.
2730 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2731 bool matchUnaryPredicate(SDValue Op,
2732 std::function<bool(ConstantSDNode *)> Match,
2733 bool AllowUndefs = false);
2734
2735 /// Attempt to match a binary predicate against a pair of scalar/splat
2736 /// constants or every element of a pair of constant BUILD_VECTORs.
2737 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2738 /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
2739 bool matchBinaryPredicate(
2740 SDValue LHS, SDValue RHS,
2741 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2742 bool AllowUndefs = false, bool AllowTypeMismatch = false);
2743
2744 /// Returns true if the specified value is the overflow result from one
2745 /// of the overflow intrinsic nodes.
2746 inline bool isOverflowIntrOpRes(SDValue Op) {
2747 unsigned Opc = Op.getOpcode();
2748 return (Op.getResNo() == 1 &&
2749 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
2750 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
2751 }
2752
2753} // end namespace ISD
2754
2755} // end namespace llvm
2756
2757#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H