| File: | src/lib/libm/src/e_j0f.c |
| Warning: | line 239, column 6 Array access (from variable 'p') results in an undefined pointer dereference |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* e_j0f.c -- float version of e_j0.c. | |||
| 2 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. | |||
| 3 | */ | |||
| 4 | ||||
| 5 | /* | |||
| 6 | * ==================================================== | |||
| 7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |||
| 8 | * | |||
| 9 | * Developed at SunPro, a Sun Microsystems, Inc. business. | |||
| 10 | * Permission to use, copy, modify, and distribute this | |||
| 11 | * software is freely granted, provided that this notice | |||
| 12 | * is preserved. | |||
| 13 | * ==================================================== | |||
| 14 | */ | |||
| 15 | ||||
| 16 | #include "math.h" | |||
| 17 | #include "math_private.h" | |||
| 18 | ||||
| 19 | static float pzerof(float), qzerof(float); | |||
| 20 | ||||
| 21 | static const float | |||
| 22 | huge = 1e30, | |||
| 23 | one = 1.0, | |||
| 24 | invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ | |||
| 25 | tpi = 6.3661974669e-01, /* 0x3f22f983 */ | |||
| 26 | /* R0/S0 on [0, 2.00] */ | |||
| 27 | R02 = 1.5625000000e-02, /* 0x3c800000 */ | |||
| 28 | R03 = -1.8997929874e-04, /* 0xb947352e */ | |||
| 29 | R04 = 1.8295404516e-06, /* 0x35f58e88 */ | |||
| 30 | R05 = -4.6183270541e-09, /* 0xb19eaf3c */ | |||
| 31 | S01 = 1.5619102865e-02, /* 0x3c7fe744 */ | |||
| 32 | S02 = 1.1692678527e-04, /* 0x38f53697 */ | |||
| 33 | S03 = 5.1354652442e-07, /* 0x3509daa6 */ | |||
| 34 | S04 = 1.1661400734e-09; /* 0x30a045e8 */ | |||
| 35 | ||||
| 36 | static const float zero = 0.0; | |||
| 37 | ||||
| 38 | float | |||
| 39 | j0f(float x) | |||
| 40 | { | |||
| 41 | float z, s,c,ss,cc,r,u,v; | |||
| 42 | int32_t hx,ix; | |||
| 43 | ||||
| 44 | GET_FLOAT_WORD(hx,x)do { ieee_float_shape_type gf_u; gf_u.value = (x); (hx) = gf_u .word; } while (0); | |||
| 45 | ix = hx&0x7fffffff; | |||
| 46 | if(ix>=0x7f800000) return one/(x*x); | |||
| 47 | x = fabsf(x); | |||
| 48 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ | |||
| 49 | s = sinf(x); | |||
| 50 | c = cosf(x); | |||
| 51 | ss = s-c; | |||
| 52 | cc = s+c; | |||
| 53 | if(ix<0x7f000000) { /* make sure x+x not overflow */ | |||
| 54 | z = -cosf(x+x); | |||
| 55 | if ((s*c)<zero) cc = z/ss; | |||
| 56 | else ss = z/cc; | |||
| 57 | } | |||
| 58 | /* | |||
| 59 | * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) | |||
| 60 | * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) | |||
| 61 | */ | |||
| 62 | if(ix>0x80000000U) z = (invsqrtpi*cc)/sqrtf(x); | |||
| 63 | else { | |||
| 64 | u = pzerof(x); v = qzerof(x); | |||
| 65 | z = invsqrtpi*(u*cc-v*ss)/sqrtf(x); | |||
| 66 | } | |||
| 67 | return z; | |||
| 68 | } | |||
| 69 | if(ix<0x39000000) { /* |x| < 2**-13 */ | |||
| 70 | if(huge+x>one) { /* raise inexact if x != 0 */ | |||
| 71 | if(ix<0x32000000) return one; /* |x|<2**-27 */ | |||
| 72 | else return one - (float)0.25*x*x; | |||
| 73 | } | |||
| 74 | } | |||
| 75 | z = x*x; | |||
| 76 | r = z*(R02+z*(R03+z*(R04+z*R05))); | |||
| 77 | s = one+z*(S01+z*(S02+z*(S03+z*S04))); | |||
| 78 | if(ix < 0x3F800000) { /* |x| < 1.00 */ | |||
| 79 | return one + z*((float)-0.25+(r/s)); | |||
| 80 | } else { | |||
| 81 | u = (float)0.5*x; | |||
| 82 | return((one+u)*(one-u)+z*(r/s)); | |||
| 83 | } | |||
| 84 | } | |||
| 85 | DEF_NONSTD(j0f)__asm__(".global " "j0f" " ; " "j0f" " = " "_libm_j0f"); | |||
| 86 | ||||
| 87 | static const float | |||
| 88 | u00 = -7.3804296553e-02, /* 0xbd9726b5 */ | |||
| 89 | u01 = 1.7666645348e-01, /* 0x3e34e80d */ | |||
| 90 | u02 = -1.3818567619e-02, /* 0xbc626746 */ | |||
| 91 | u03 = 3.4745343146e-04, /* 0x39b62a69 */ | |||
| 92 | u04 = -3.8140706238e-06, /* 0xb67ff53c */ | |||
| 93 | u05 = 1.9559013964e-08, /* 0x32a802ba */ | |||
| 94 | u06 = -3.9820518410e-11, /* 0xae2f21eb */ | |||
| 95 | v01 = 1.2730483897e-02, /* 0x3c509385 */ | |||
| 96 | v02 = 7.6006865129e-05, /* 0x389f65e0 */ | |||
| 97 | v03 = 2.5915085189e-07, /* 0x348b216c */ | |||
| 98 | v04 = 4.4111031494e-10; /* 0x2ff280c2 */ | |||
| 99 | ||||
| 100 | float | |||
| 101 | y0f(float x) | |||
| 102 | { | |||
| 103 | float z, s,c,ss,cc,u,v; | |||
| 104 | int32_t hx,ix; | |||
| 105 | ||||
| 106 | GET_FLOAT_WORD(hx,x)do { ieee_float_shape_type gf_u; gf_u.value = (x); (hx) = gf_u .word; } while (0); | |||
| ||||
| 107 | ix = 0x7fffffff&hx; | |||
| 108 | /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ | |||
| 109 | if(ix>=0x7f800000) return one/(x+x*x); | |||
| 110 | if(ix==0) return -one/zero; | |||
| 111 | if(hx<0) return zero/zero; | |||
| 112 | if(ix >= 0x40000000) { /* |x| >= 2.0 */ | |||
| 113 | /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) | |||
| 114 | * where x0 = x-pi/4 | |||
| 115 | * Better formula: | |||
| 116 | * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) | |||
| 117 | * = 1/sqrt(2) * (sin(x) + cos(x)) | |||
| 118 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) | |||
| 119 | * = 1/sqrt(2) * (sin(x) - cos(x)) | |||
| 120 | * To avoid cancellation, use | |||
| 121 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) | |||
| 122 | * to compute the worse one. | |||
| 123 | */ | |||
| 124 | s = sinf(x); | |||
| 125 | c = cosf(x); | |||
| 126 | ss = s-c; | |||
| 127 | cc = s+c; | |||
| 128 | /* | |||
| 129 | * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) | |||
| 130 | * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) | |||
| 131 | */ | |||
| 132 | if(ix<0x7f000000) { /* make sure x+x not overflow */ | |||
| 133 | z = -cosf(x+x); | |||
| 134 | if ((s*c)<zero) cc = z/ss; | |||
| 135 | else ss = z/cc; | |||
| 136 | } | |||
| 137 | if(ix
| |||
| 138 | else { | |||
| 139 | u = pzerof(x); v = qzerof(x); | |||
| 140 | z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); | |||
| 141 | } | |||
| 142 | return z; | |||
| 143 | } | |||
| 144 | if(ix<=0x32000000) { /* x < 2**-27 */ | |||
| 145 | return(u00 + tpi*logf(x)); | |||
| 146 | } | |||
| 147 | z = x*x; | |||
| 148 | u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); | |||
| 149 | v = one+z*(v01+z*(v02+z*(v03+z*v04))); | |||
| 150 | return(u/v + tpi*(j0f(x)*logf(x))); | |||
| 151 | } | |||
| 152 | DEF_NONSTD(y0f)__asm__(".global " "y0f" " ; " "y0f" " = " "_libm_y0f"); | |||
| 153 | ||||
| 154 | /* The asymptotic expansions of pzero is | |||
| 155 | * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. | |||
| 156 | * For x >= 2, We approximate pzero by | |||
| 157 | * pzero(x) = 1 + (R/S) | |||
| 158 | * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 | |||
| 159 | * S = 1 + pS0*s^2 + ... + pS4*s^10 | |||
| 160 | * and | |||
| 161 | * | pzero(x)-1-R/S | <= 2 ** ( -60.26) | |||
| 162 | */ | |||
| 163 | static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ | |||
| 164 | 0.0000000000e+00, /* 0x00000000 */ | |||
| 165 | -7.0312500000e-02, /* 0xbd900000 */ | |||
| 166 | -8.0816707611e+00, /* 0xc1014e86 */ | |||
| 167 | -2.5706311035e+02, /* 0xc3808814 */ | |||
| 168 | -2.4852163086e+03, /* 0xc51b5376 */ | |||
| 169 | -5.2530439453e+03, /* 0xc5a4285a */ | |||
| 170 | }; | |||
| 171 | static const float pS8[5] = { | |||
| 172 | 1.1653436279e+02, /* 0x42e91198 */ | |||
| 173 | 3.8337448730e+03, /* 0x456f9beb */ | |||
| 174 | 4.0597855469e+04, /* 0x471e95db */ | |||
| 175 | 1.1675296875e+05, /* 0x47e4087c */ | |||
| 176 | 4.7627726562e+04, /* 0x473a0bba */ | |||
| 177 | }; | |||
| 178 | static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ | |||
| 179 | -1.1412546255e-11, /* 0xad48c58a */ | |||
| 180 | -7.0312492549e-02, /* 0xbd8fffff */ | |||
| 181 | -4.1596107483e+00, /* 0xc0851b88 */ | |||
| 182 | -6.7674766541e+01, /* 0xc287597b */ | |||
| 183 | -3.3123129272e+02, /* 0xc3a59d9b */ | |||
| 184 | -3.4643338013e+02, /* 0xc3ad3779 */ | |||
| 185 | }; | |||
| 186 | static const float pS5[5] = { | |||
| 187 | 6.0753936768e+01, /* 0x42730408 */ | |||
| 188 | 1.0512523193e+03, /* 0x44836813 */ | |||
| 189 | 5.9789707031e+03, /* 0x45bad7c4 */ | |||
| 190 | 9.6254453125e+03, /* 0x461665c8 */ | |||
| 191 | 2.4060581055e+03, /* 0x451660ee */ | |||
| 192 | }; | |||
| 193 | ||||
| 194 | static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ | |||
| 195 | -2.5470459075e-09, /* 0xb12f081b */ | |||
| 196 | -7.0311963558e-02, /* 0xbd8fffb8 */ | |||
| 197 | -2.4090321064e+00, /* 0xc01a2d95 */ | |||
| 198 | -2.1965976715e+01, /* 0xc1afba52 */ | |||
| 199 | -5.8079170227e+01, /* 0xc2685112 */ | |||
| 200 | -3.1447946548e+01, /* 0xc1fb9565 */ | |||
| 201 | }; | |||
| 202 | static const float pS3[5] = { | |||
| 203 | 3.5856033325e+01, /* 0x420f6c94 */ | |||
| 204 | 3.6151397705e+02, /* 0x43b4c1ca */ | |||
| 205 | 1.1936077881e+03, /* 0x44953373 */ | |||
| 206 | 1.1279968262e+03, /* 0x448cffe6 */ | |||
| 207 | 1.7358093262e+02, /* 0x432d94b8 */ | |||
| 208 | }; | |||
| 209 | ||||
| 210 | static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ | |||
| 211 | -8.8753431271e-08, /* 0xb3be98b7 */ | |||
| 212 | -7.0303097367e-02, /* 0xbd8ffb12 */ | |||
| 213 | -1.4507384300e+00, /* 0xbfb9b1cc */ | |||
| 214 | -7.6356959343e+00, /* 0xc0f4579f */ | |||
| 215 | -1.1193166733e+01, /* 0xc1331736 */ | |||
| 216 | -3.2336456776e+00, /* 0xc04ef40d */ | |||
| 217 | }; | |||
| 218 | static const float pS2[5] = { | |||
| 219 | 2.2220300674e+01, /* 0x41b1c32d */ | |||
| 220 | 1.3620678711e+02, /* 0x430834f0 */ | |||
| 221 | 2.7047027588e+02, /* 0x43873c32 */ | |||
| 222 | 1.5387539673e+02, /* 0x4319e01a */ | |||
| 223 | 1.4657617569e+01, /* 0x416a859a */ | |||
| 224 | }; | |||
| 225 | ||||
| 226 | static float | |||
| 227 | pzerof(float x) | |||
| 228 | { | |||
| 229 | const float *p,*q; | |||
| 230 | float z,r,s; | |||
| 231 | int32_t ix; | |||
| 232 | GET_FLOAT_WORD(ix,x)do { ieee_float_shape_type gf_u; gf_u.value = (x); (ix) = gf_u .word; } while (0); | |||
| 233 | ix &= 0x7fffffff; | |||
| 234 | if(ix>=0x41000000) {p = pR8; q= pS8;} | |||
| 235 | else if(ix>=0x40f71c58){p = pR5; q= pS5;} | |||
| 236 | else if(ix>=0x4036db68){p = pR3; q= pS3;} | |||
| 237 | else if(ix>=0x40000000){p = pR2; q= pS2;} | |||
| 238 | z = one/(x*x); | |||
| 239 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); | |||
| ||||
| 240 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); | |||
| 241 | return one+ r/s; | |||
| 242 | } | |||
| 243 | ||||
| 244 | ||||
| 245 | /* For x >= 8, the asymptotic expansions of qzero is | |||
| 246 | * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. | |||
| 247 | * We approximate pzero by | |||
| 248 | * qzero(x) = s*(-1.25 + (R/S)) | |||
| 249 | * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 | |||
| 250 | * S = 1 + qS0*s^2 + ... + qS5*s^12 | |||
| 251 | * and | |||
| 252 | * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) | |||
| 253 | */ | |||
| 254 | static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ | |||
| 255 | 0.0000000000e+00, /* 0x00000000 */ | |||
| 256 | 7.3242187500e-02, /* 0x3d960000 */ | |||
| 257 | 1.1768206596e+01, /* 0x413c4a93 */ | |||
| 258 | 5.5767340088e+02, /* 0x440b6b19 */ | |||
| 259 | 8.8591972656e+03, /* 0x460a6cca */ | |||
| 260 | 3.7014625000e+04, /* 0x471096a0 */ | |||
| 261 | }; | |||
| 262 | static const float qS8[6] = { | |||
| 263 | 1.6377603149e+02, /* 0x4323c6aa */ | |||
| 264 | 8.0983447266e+03, /* 0x45fd12c2 */ | |||
| 265 | 1.4253829688e+05, /* 0x480b3293 */ | |||
| 266 | 8.0330925000e+05, /* 0x49441ed4 */ | |||
| 267 | 8.4050156250e+05, /* 0x494d3359 */ | |||
| 268 | -3.4389928125e+05, /* 0xc8a7eb69 */ | |||
| 269 | }; | |||
| 270 | ||||
| 271 | static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ | |||
| 272 | 1.8408595828e-11, /* 0x2da1ec79 */ | |||
| 273 | 7.3242180049e-02, /* 0x3d95ffff */ | |||
| 274 | 5.8356351852e+00, /* 0x40babd86 */ | |||
| 275 | 1.3511157227e+02, /* 0x43071c90 */ | |||
| 276 | 1.0272437744e+03, /* 0x448067cd */ | |||
| 277 | 1.9899779053e+03, /* 0x44f8bf4b */ | |||
| 278 | }; | |||
| 279 | static const float qS5[6] = { | |||
| 280 | 8.2776611328e+01, /* 0x42a58da0 */ | |||
| 281 | 2.0778142090e+03, /* 0x4501dd07 */ | |||
| 282 | 1.8847289062e+04, /* 0x46933e94 */ | |||
| 283 | 5.6751113281e+04, /* 0x475daf1d */ | |||
| 284 | 3.5976753906e+04, /* 0x470c88c1 */ | |||
| 285 | -5.3543427734e+03, /* 0xc5a752be */ | |||
| 286 | }; | |||
| 287 | ||||
| 288 | static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ | |||
| 289 | 4.3774099900e-09, /* 0x3196681b */ | |||
| 290 | 7.3241114616e-02, /* 0x3d95ff70 */ | |||
| 291 | 3.3442313671e+00, /* 0x405607e3 */ | |||
| 292 | 4.2621845245e+01, /* 0x422a7cc5 */ | |||
| 293 | 1.7080809021e+02, /* 0x432acedf */ | |||
| 294 | 1.6673394775e+02, /* 0x4326bbe4 */ | |||
| 295 | }; | |||
| 296 | static const float qS3[6] = { | |||
| 297 | 4.8758872986e+01, /* 0x42430916 */ | |||
| 298 | 7.0968920898e+02, /* 0x44316c1c */ | |||
| 299 | 3.7041481934e+03, /* 0x4567825f */ | |||
| 300 | 6.4604252930e+03, /* 0x45c9e367 */ | |||
| 301 | 2.5163337402e+03, /* 0x451d4557 */ | |||
| 302 | -1.4924745178e+02, /* 0xc3153f59 */ | |||
| 303 | }; | |||
| 304 | ||||
| 305 | static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ | |||
| 306 | 1.5044444979e-07, /* 0x342189db */ | |||
| 307 | 7.3223426938e-02, /* 0x3d95f62a */ | |||
| 308 | 1.9981917143e+00, /* 0x3fffc4bf */ | |||
| 309 | 1.4495602608e+01, /* 0x4167edfd */ | |||
| 310 | 3.1666231155e+01, /* 0x41fd5471 */ | |||
| 311 | 1.6252708435e+01, /* 0x4182058c */ | |||
| 312 | }; | |||
| 313 | static const float qS2[6] = { | |||
| 314 | 3.0365585327e+01, /* 0x41f2ecb8 */ | |||
| 315 | 2.6934811401e+02, /* 0x4386ac8f */ | |||
| 316 | 8.4478375244e+02, /* 0x44533229 */ | |||
| 317 | 8.8293585205e+02, /* 0x445cbbe5 */ | |||
| 318 | 2.1266638184e+02, /* 0x4354aa98 */ | |||
| 319 | -5.3109550476e+00, /* 0xc0a9f358 */ | |||
| 320 | }; | |||
| 321 | ||||
| 322 | static float | |||
| 323 | qzerof(float x) | |||
| 324 | { | |||
| 325 | const float *p,*q; | |||
| 326 | float s,r,z; | |||
| 327 | int32_t ix; | |||
| 328 | GET_FLOAT_WORD(ix,x)do { ieee_float_shape_type gf_u; gf_u.value = (x); (ix) = gf_u .word; } while (0); | |||
| 329 | ix &= 0x7fffffff; | |||
| 330 | if(ix>=0x41000000) {p = qR8; q= qS8;} | |||
| 331 | else if(ix>=0x40f71c58){p = qR5; q= qS5;} | |||
| 332 | else if(ix>=0x4036db68){p = qR3; q= qS3;} | |||
| 333 | else if(ix>=0x40000000){p = qR2; q= qS2;} | |||
| 334 | z = one/(x*x); | |||
| 335 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); | |||
| 336 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); | |||
| 337 | return (-(float).125 + r/s)/x; | |||
| 338 | } |