| File: | src/lib/libc/db/hash/hash_bigkey.c |
| Warning: | line 200, column 2 Value stored to 'pageno' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: hash_bigkey.c,v 1.19 2015/12/28 22:08:18 mmcc Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 1990, 1993, 1994 |
| 5 | * The Regents of the University of California. All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to Berkeley by |
| 8 | * Margo Seltzer. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * 3. Neither the name of the University nor the names of its contributors |
| 19 | * may be used to endorse or promote products derived from this software |
| 20 | * without specific prior written permission. |
| 21 | * |
| 22 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 23 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 24 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 25 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 27 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 28 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 29 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 30 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 31 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 32 | * SUCH DAMAGE. |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | * PACKAGE: hash |
| 37 | * DESCRIPTION: |
| 38 | * Big key/data handling for the hashing package. |
| 39 | * |
| 40 | * ROUTINES: |
| 41 | * External |
| 42 | * __big_keydata |
| 43 | * __big_split |
| 44 | * __big_insert |
| 45 | * __big_return |
| 46 | * __big_delete |
| 47 | * __find_last_page |
| 48 | * Internal |
| 49 | * collect_key |
| 50 | * collect_data |
| 51 | */ |
| 52 | |
| 53 | #include <errno(*__errno()).h> |
| 54 | #include <stdio.h> |
| 55 | #include <stdlib.h> |
| 56 | #include <string.h> |
| 57 | |
| 58 | #ifdef DEBUG |
| 59 | #include <assert.h> |
| 60 | #endif |
| 61 | |
| 62 | #include <db.h> |
| 63 | #include "hash.h" |
| 64 | #include "page.h" |
| 65 | #include "extern.h" |
| 66 | |
| 67 | #define MINIMUM(a, b)(((a) < (b)) ? (a) : (b)) (((a) < (b)) ? (a) : (b)) |
| 68 | |
| 69 | static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int); |
| 70 | static int collect_data(HTAB *, BUFHEAD *, int, int); |
| 71 | |
| 72 | /* |
| 73 | * Big_insert |
| 74 | * |
| 75 | * You need to do an insert and the key/data pair is too big |
| 76 | * |
| 77 | * Returns: |
| 78 | * 0 ==> OK |
| 79 | *-1 ==> ERROR |
| 80 | */ |
| 81 | int |
| 82 | __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val) |
| 83 | { |
| 84 | u_int16_t *p; |
| 85 | int key_size, n, val_size; |
| 86 | u_int16_t space, move_bytes, off; |
| 87 | char *cp, *key_data, *val_data; |
| 88 | |
| 89 | cp = bufp->page; /* Character pointer of p. */ |
| 90 | p = (u_int16_t *)cp; |
| 91 | |
| 92 | key_data = (char *)key->data; |
| 93 | key_size = key->size; |
| 94 | val_data = (char *)val->data; |
| 95 | val_size = val->size; |
| 96 | |
| 97 | /* First move the Key */ |
| 98 | for (space = FREESPACE(p)((p)[(p)[0]+1]) - BIGOVERHEAD(4*sizeof(u_int16_t)); key_size; |
| 99 | space = FREESPACE(p)((p)[(p)[0]+1]) - BIGOVERHEAD(4*sizeof(u_int16_t))) { |
| 100 | move_bytes = MINIMUM(space, key_size)(((space) < (key_size)) ? (space) : (key_size)); |
| 101 | off = OFFSET(p)((p)[(p)[0]+2]) - move_bytes; |
| 102 | memmove(cp + off, key_data, move_bytes); |
| 103 | key_size -= move_bytes; |
| 104 | key_data += move_bytes; |
| 105 | n = p[0]; |
| 106 | p[++n] = off; |
| 107 | p[0] = ++n; |
| 108 | FREESPACE(p)((p)[(p)[0]+1]) = off - PAGE_META(n)(((n)+3) * sizeof(u_int16_t)); |
| 109 | OFFSET(p)((p)[(p)[0]+2]) = off; |
| 110 | p[n] = PARTIAL_KEY1; |
| 111 | bufp = __add_ovflpage(hashp, bufp); |
| 112 | if (!bufp) |
| 113 | return (-1); |
| 114 | n = p[0]; |
| 115 | if (!key_size) { |
| 116 | space = FREESPACE(p)((p)[(p)[0]+1]); |
| 117 | if (space) { |
| 118 | move_bytes = MINIMUM(space, val_size)(((space) < (val_size)) ? (space) : (val_size)); |
| 119 | /* |
| 120 | * If the data would fit exactly in the |
| 121 | * remaining space, we must overflow it to the |
| 122 | * next page; otherwise the invariant that the |
| 123 | * data must end on a page with FREESPACE |
| 124 | * non-zero would fail. |
| 125 | */ |
| 126 | if (space == val_size && val_size == val->size) |
| 127 | goto toolarge; |
| 128 | off = OFFSET(p)((p)[(p)[0]+2]) - move_bytes; |
| 129 | memmove(cp + off, val_data, move_bytes); |
| 130 | val_data += move_bytes; |
| 131 | val_size -= move_bytes; |
| 132 | p[n] = off; |
| 133 | p[n - 2] = FULL_KEY_DATA3; |
| 134 | FREESPACE(p)((p)[(p)[0]+1]) = FREESPACE(p)((p)[(p)[0]+1]) - move_bytes; |
| 135 | OFFSET(p)((p)[(p)[0]+2]) = off; |
| 136 | } else { |
| 137 | toolarge: |
| 138 | p[n - 2] = FULL_KEY2; |
| 139 | } |
| 140 | } |
| 141 | p = (u_int16_t *)bufp->page; |
| 142 | cp = bufp->page; |
| 143 | bufp->flags |= BUF_MOD0x0001; |
| 144 | } |
| 145 | |
| 146 | /* Now move the data */ |
| 147 | for (space = FREESPACE(p)((p)[(p)[0]+1]) - BIGOVERHEAD(4*sizeof(u_int16_t)); val_size; |
| 148 | space = FREESPACE(p)((p)[(p)[0]+1]) - BIGOVERHEAD(4*sizeof(u_int16_t))) { |
| 149 | move_bytes = MINIMUM(space, val_size)(((space) < (val_size)) ? (space) : (val_size)); |
| 150 | /* |
| 151 | * Here's the hack to make sure that if the data ends on the |
| 152 | * same page as the key ends, FREESPACE is at least one. |
| 153 | */ |
| 154 | if (space == val_size && val_size == val->size) |
| 155 | move_bytes--; |
| 156 | off = OFFSET(p)((p)[(p)[0]+2]) - move_bytes; |
| 157 | memmove(cp + off, val_data, move_bytes); |
| 158 | val_size -= move_bytes; |
| 159 | val_data += move_bytes; |
| 160 | n = p[0]; |
| 161 | p[++n] = off; |
| 162 | p[0] = ++n; |
| 163 | FREESPACE(p)((p)[(p)[0]+1]) = off - PAGE_META(n)(((n)+3) * sizeof(u_int16_t)); |
| 164 | OFFSET(p)((p)[(p)[0]+2]) = off; |
| 165 | if (val_size) { |
| 166 | p[n] = FULL_KEY2; |
| 167 | bufp = __add_ovflpage(hashp, bufp); |
| 168 | if (!bufp) |
| 169 | return (-1); |
| 170 | cp = bufp->page; |
| 171 | p = (u_int16_t *)cp; |
| 172 | } else |
| 173 | p[n] = FULL_KEY_DATA3; |
| 174 | bufp->flags |= BUF_MOD0x0001; |
| 175 | } |
| 176 | return (0); |
| 177 | } |
| 178 | |
| 179 | /* |
| 180 | * Called when bufp's page contains a partial key (index should be 1) |
| 181 | * |
| 182 | * All pages in the big key/data pair except bufp are freed. We cannot |
| 183 | * free bufp because the page pointing to it is lost and we can't get rid |
| 184 | * of its pointer. |
| 185 | * |
| 186 | * Returns: |
| 187 | * 0 => OK |
| 188 | *-1 => ERROR |
| 189 | */ |
| 190 | int |
| 191 | __big_delete(HTAB *hashp, BUFHEAD *bufp) |
| 192 | { |
| 193 | BUFHEAD *last_bfp, *rbufp; |
| 194 | u_int16_t *bp, pageno; |
| 195 | int key_done, n; |
| 196 | |
| 197 | rbufp = bufp; |
| 198 | last_bfp = NULL((void *)0); |
| 199 | bp = (u_int16_t *)bufp->page; |
| 200 | pageno = 0; |
Value stored to 'pageno' is never read | |
| 201 | key_done = 0; |
| 202 | |
| 203 | while (!key_done || (bp[2] != FULL_KEY_DATA3)) { |
| 204 | if (bp[2] == FULL_KEY2 || bp[2] == FULL_KEY_DATA3) |
| 205 | key_done = 1; |
| 206 | |
| 207 | /* |
| 208 | * If there is freespace left on a FULL_KEY_DATA page, then |
| 209 | * the data is short and fits entirely on this page, and this |
| 210 | * is the last page. |
| 211 | */ |
| 212 | if (bp[2] == FULL_KEY_DATA3 && FREESPACE(bp)((bp)[(bp)[0]+1])) |
| 213 | break; |
| 214 | pageno = bp[bp[0] - 1]; |
| 215 | rbufp->flags |= BUF_MOD0x0001; |
| 216 | rbufp = __get_buf(hashp, pageno, rbufp, 0); |
| 217 | if (last_bfp) |
| 218 | __free_ovflpage(hashp, last_bfp); |
| 219 | last_bfp = rbufp; |
| 220 | if (!rbufp) |
| 221 | return (-1); /* Error. */ |
| 222 | bp = (u_int16_t *)rbufp->page; |
| 223 | } |
| 224 | |
| 225 | /* |
| 226 | * If we get here then rbufp points to the last page of the big |
| 227 | * key/data pair. Bufp points to the first one -- it should now be |
| 228 | * empty pointing to the next page after this pair. Can't free it |
| 229 | * because we don't have the page pointing to it. |
| 230 | */ |
| 231 | |
| 232 | /* This is information from the last page of the pair. */ |
| 233 | n = bp[0]; |
| 234 | pageno = bp[n - 1]; |
| 235 | |
| 236 | /* Now, bp is the first page of the pair. */ |
| 237 | bp = (u_int16_t *)bufp->page; |
| 238 | if (n > 2) { |
| 239 | /* There is an overflow page. */ |
| 240 | bp[1] = pageno; |
| 241 | bp[2] = OVFLPAGE0; |
| 242 | bufp->ovfl = rbufp->ovfl; |
| 243 | } else |
| 244 | /* This is the last page. */ |
| 245 | bufp->ovfl = NULL((void *)0); |
| 246 | n -= 2; |
| 247 | bp[0] = n; |
| 248 | FREESPACE(bp)((bp)[(bp)[0]+1]) = hashp->BSIZEhdr.bsize - PAGE_META(n)(((n)+3) * sizeof(u_int16_t)); |
| 249 | OFFSET(bp)((bp)[(bp)[0]+2]) = hashp->BSIZEhdr.bsize; |
| 250 | |
| 251 | bufp->flags |= BUF_MOD0x0001; |
| 252 | if (rbufp) |
| 253 | __free_ovflpage(hashp, rbufp); |
| 254 | if (last_bfp && last_bfp != rbufp) |
| 255 | __free_ovflpage(hashp, last_bfp); |
| 256 | |
| 257 | hashp->NKEYShdr.nkeys--; |
| 258 | return (0); |
| 259 | } |
| 260 | /* |
| 261 | * Returns: |
| 262 | * 0 = key not found |
| 263 | * -1 = get next overflow page |
| 264 | * -2 means key not found and this is big key/data |
| 265 | * -3 error |
| 266 | */ |
| 267 | int |
| 268 | __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size) |
| 269 | { |
| 270 | u_int16_t *bp; |
| 271 | char *p; |
| 272 | int ksize; |
| 273 | u_int16_t bytes; |
| 274 | char *kkey; |
| 275 | |
| 276 | bp = (u_int16_t *)bufp->page; |
| 277 | p = bufp->page; |
| 278 | ksize = size; |
| 279 | kkey = key; |
| 280 | |
| 281 | for (bytes = hashp->BSIZEhdr.bsize - bp[ndx]; |
| 282 | bytes <= size && bp[ndx + 1] == PARTIAL_KEY1; |
| 283 | bytes = hashp->BSIZEhdr.bsize - bp[ndx]) { |
| 284 | if (memcmp(p + bp[ndx], kkey, bytes)) |
| 285 | return (-2); |
| 286 | kkey += bytes; |
| 287 | ksize -= bytes; |
| 288 | bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0); |
| 289 | if (!bufp) |
| 290 | return (-3); |
| 291 | p = bufp->page; |
| 292 | bp = (u_int16_t *)p; |
| 293 | ndx = 1; |
| 294 | } |
| 295 | |
| 296 | if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) { |
| 297 | #ifdef HASH_STATISTICS |
| 298 | ++hash_collisions; |
| 299 | #endif |
| 300 | return (-2); |
| 301 | } else |
| 302 | return (ndx); |
| 303 | } |
| 304 | |
| 305 | /* |
| 306 | * Given the buffer pointer of the first overflow page of a big pair, |
| 307 | * find the end of the big pair |
| 308 | * |
| 309 | * This will set bpp to the buffer header of the last page of the big pair. |
| 310 | * It will return the pageno of the overflow page following the last page |
| 311 | * of the pair; 0 if there isn't any (i.e. big pair is the last key in the |
| 312 | * bucket) |
| 313 | */ |
| 314 | u_int16_t |
| 315 | __find_last_page(HTAB *hashp, BUFHEAD **bpp) |
| 316 | { |
| 317 | BUFHEAD *bufp; |
| 318 | u_int16_t *bp, pageno; |
| 319 | int n; |
| 320 | |
| 321 | bufp = *bpp; |
| 322 | bp = (u_int16_t *)bufp->page; |
| 323 | for (;;) { |
| 324 | n = bp[0]; |
| 325 | |
| 326 | /* |
| 327 | * This is the last page if: the tag is FULL_KEY_DATA and |
| 328 | * either only 2 entries OVFLPAGE marker is explicit there |
| 329 | * is freespace on the page. |
| 330 | */ |
| 331 | if (bp[2] == FULL_KEY_DATA3 && |
| 332 | ((n == 2) || (bp[n] == OVFLPAGE0) || (FREESPACE(bp)((bp)[(bp)[0]+1])))) |
| 333 | break; |
| 334 | |
| 335 | pageno = bp[n - 1]; |
| 336 | bufp = __get_buf(hashp, pageno, bufp, 0); |
| 337 | if (!bufp) |
| 338 | return (0); /* Need to indicate an error! */ |
| 339 | bp = (u_int16_t *)bufp->page; |
| 340 | } |
| 341 | |
| 342 | *bpp = bufp; |
| 343 | if (bp[0] > 2) |
| 344 | return (bp[3]); |
| 345 | else |
| 346 | return (0); |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * Return the data for the key/data pair that begins on this page at this |
| 351 | * index (index should always be 1). |
| 352 | */ |
| 353 | int |
| 354 | __big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current) |
| 355 | { |
| 356 | BUFHEAD *save_p; |
| 357 | u_int16_t *bp, len, off, save_addr; |
| 358 | char *tp; |
| 359 | |
| 360 | bp = (u_int16_t *)bufp->page; |
| 361 | while (bp[ndx + 1] == PARTIAL_KEY1) { |
| 362 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
| 363 | if (!bufp) |
| 364 | return (-1); |
| 365 | bp = (u_int16_t *)bufp->page; |
| 366 | ndx = 1; |
| 367 | } |
| 368 | |
| 369 | if (bp[ndx + 1] == FULL_KEY2) { |
| 370 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
| 371 | if (!bufp) |
| 372 | return (-1); |
| 373 | bp = (u_int16_t *)bufp->page; |
| 374 | save_p = bufp; |
| 375 | save_addr = save_p->addr; |
| 376 | off = bp[1]; |
| 377 | len = 0; |
| 378 | } else |
| 379 | if (!FREESPACE(bp)((bp)[(bp)[0]+1])) { |
| 380 | /* |
| 381 | * This is a hack. We can't distinguish between |
| 382 | * FULL_KEY_DATA that contains complete data or |
| 383 | * incomplete data, so we require that if the data |
| 384 | * is complete, there is at least 1 byte of free |
| 385 | * space left. |
| 386 | */ |
| 387 | off = bp[bp[0]]; |
| 388 | len = bp[1] - off; |
| 389 | save_p = bufp; |
| 390 | save_addr = bufp->addr; |
| 391 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
| 392 | if (!bufp) |
| 393 | return (-1); |
| 394 | bp = (u_int16_t *)bufp->page; |
| 395 | } else { |
| 396 | /* The data is all on one page. */ |
| 397 | tp = (char *)bp; |
| 398 | off = bp[bp[0]]; |
| 399 | val->data = (u_char *)tp + off; |
| 400 | val->size = bp[1] - off; |
| 401 | if (set_current) { |
| 402 | if (bp[0] == 2) { /* No more buckets in |
| 403 | * chain */ |
| 404 | hashp->cpage = NULL((void *)0); |
| 405 | hashp->cbucket++; |
| 406 | hashp->cndx = 1; |
| 407 | } else { |
| 408 | hashp->cpage = __get_buf(hashp, |
| 409 | bp[bp[0] - 1], bufp, 0); |
| 410 | if (!hashp->cpage) |
| 411 | return (-1); |
| 412 | hashp->cndx = 1; |
| 413 | if (!((u_int16_t *) |
| 414 | hashp->cpage->page)[0]) { |
| 415 | hashp->cbucket++; |
| 416 | hashp->cpage = NULL((void *)0); |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | return (0); |
| 421 | } |
| 422 | |
| 423 | val->size = (size_t)collect_data(hashp, bufp, (int)len, set_current); |
| 424 | if (val->size == (size_t)-1) |
| 425 | return (-1); |
| 426 | if (save_p->addr != save_addr) { |
| 427 | /* We are pretty short on buffers. */ |
| 428 | errno(*__errno()) = EINVAL22; /* OUT OF BUFFERS */ |
| 429 | return (-1); |
| 430 | } |
| 431 | memmove(hashp->tmp_buf, (save_p->page) + off, len); |
| 432 | val->data = (u_char *)hashp->tmp_buf; |
| 433 | return (0); |
| 434 | } |
| 435 | /* |
| 436 | * Count how big the total datasize is by recursing through the pages. Then |
| 437 | * allocate a buffer and copy the data as you recurse up. |
| 438 | */ |
| 439 | static int |
| 440 | collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set) |
| 441 | { |
| 442 | u_int16_t *bp; |
| 443 | char *p; |
| 444 | BUFHEAD *xbp; |
| 445 | u_int16_t save_addr; |
| 446 | int mylen, totlen; |
| 447 | |
| 448 | p = bufp->page; |
| 449 | bp = (u_int16_t *)p; |
| 450 | mylen = hashp->BSIZEhdr.bsize - bp[1]; |
| 451 | save_addr = bufp->addr; |
| 452 | |
| 453 | if (bp[2] == FULL_KEY_DATA3) { /* End of Data */ |
| 454 | totlen = len + mylen; |
| 455 | free(hashp->tmp_buf); |
| 456 | if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL((void *)0)) |
| 457 | return (-1); |
| 458 | if (set) { |
| 459 | hashp->cndx = 1; |
| 460 | if (bp[0] == 2) { /* No more buckets in chain */ |
| 461 | hashp->cpage = NULL((void *)0); |
| 462 | hashp->cbucket++; |
| 463 | } else { |
| 464 | hashp->cpage = |
| 465 | __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
| 466 | if (!hashp->cpage) |
| 467 | return (-1); |
| 468 | else if (!((u_int16_t *)hashp->cpage->page)[0]) { |
| 469 | hashp->cbucket++; |
| 470 | hashp->cpage = NULL((void *)0); |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | } else { |
| 475 | xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
| 476 | if (!xbp || ((totlen = |
| 477 | collect_data(hashp, xbp, len + mylen, set)) < 1)) |
| 478 | return (-1); |
| 479 | } |
| 480 | if (bufp->addr != save_addr) { |
| 481 | errno(*__errno()) = EINVAL22; /* Out of buffers. */ |
| 482 | return (-1); |
| 483 | } |
| 484 | memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen); |
| 485 | return (totlen); |
| 486 | } |
| 487 | |
| 488 | /* |
| 489 | * Fill in the key and data for this big pair. |
| 490 | */ |
| 491 | int |
| 492 | __big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set) |
| 493 | { |
| 494 | key->size = (size_t)collect_key(hashp, bufp, 0, val, set); |
| 495 | if (key->size == (size_t)-1) |
| 496 | return (-1); |
| 497 | key->data = (u_char *)hashp->tmp_key; |
| 498 | return (0); |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * Count how big the total key size is by recursing through the pages. Then |
| 503 | * collect the data, allocate a buffer and copy the key as you recurse up. |
| 504 | */ |
| 505 | static int |
| 506 | collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set) |
| 507 | { |
| 508 | BUFHEAD *xbp; |
| 509 | char *p; |
| 510 | int mylen, totlen; |
| 511 | u_int16_t *bp, save_addr; |
| 512 | |
| 513 | p = bufp->page; |
| 514 | bp = (u_int16_t *)p; |
| 515 | mylen = hashp->BSIZEhdr.bsize - bp[1]; |
| 516 | |
| 517 | save_addr = bufp->addr; |
| 518 | totlen = len + mylen; |
| 519 | if (bp[2] == FULL_KEY2 || bp[2] == FULL_KEY_DATA3) { /* End of Key. */ |
| 520 | free(hashp->tmp_key); |
| 521 | if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL((void *)0)) |
| 522 | return (-1); |
| 523 | if (__big_return(hashp, bufp, 1, val, set)) |
| 524 | return (-1); |
| 525 | } else { |
| 526 | xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
| 527 | if (!xbp || ((totlen = |
| 528 | collect_key(hashp, xbp, totlen, val, set)) < 1)) |
| 529 | return (-1); |
| 530 | } |
| 531 | if (bufp->addr != save_addr) { |
| 532 | errno(*__errno()) = EINVAL22; /* MIS -- OUT OF BUFFERS */ |
| 533 | return (-1); |
| 534 | } |
| 535 | memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen); |
| 536 | return (totlen); |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * Returns: |
| 541 | * 0 => OK |
| 542 | * -1 => error |
| 543 | */ |
| 544 | int |
| 545 | __big_split(HTAB *hashp, |
| 546 | BUFHEAD *op, /* Pointer to where to put keys that go in old bucket */ |
| 547 | BUFHEAD *np, /* Pointer to new bucket page */ |
| 548 | BUFHEAD *big_keyp, /* Pointer to first page containing the big key/data */ |
| 549 | int addr, /* Address of big_keyp */ |
| 550 | u_int32_t obucket, /* Old Bucket */ |
| 551 | SPLIT_RETURN *ret) |
| 552 | { |
| 553 | BUFHEAD *bp, *tmpp; |
| 554 | DBT key, val; |
| 555 | u_int32_t change; |
| 556 | u_int16_t free_space, n, off, *tp; |
| 557 | |
| 558 | bp = big_keyp; |
| 559 | |
| 560 | /* Now figure out where the big key/data goes */ |
| 561 | if (__big_keydata(hashp, big_keyp, &key, &val, 0)) |
| 562 | return (-1); |
| 563 | change = (__call_hash(hashp, key.data, key.size) != obucket); |
| 564 | |
| 565 | if ((ret->next_addr = __find_last_page(hashp, &big_keyp))) { |
| 566 | if (!(ret->nextp = |
| 567 | __get_buf(hashp, ret->next_addr, big_keyp, 0))) |
| 568 | return (-1); |
| 569 | } else |
| 570 | ret->nextp = NULL((void *)0); |
| 571 | |
| 572 | /* Now make one of np/op point to the big key/data pair */ |
| 573 | #ifdef DEBUG |
| 574 | assert(np->ovfl == NULL((void *)0)); |
| 575 | #endif |
| 576 | if (change) |
| 577 | tmpp = np; |
| 578 | else |
| 579 | tmpp = op; |
| 580 | |
| 581 | tmpp->flags |= BUF_MOD0x0001; |
| 582 | #ifdef DEBUG1 |
| 583 | (void)fprintf(stderr(&__sF[2]), |
| 584 | "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr, |
| 585 | (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0)); |
| 586 | #endif |
| 587 | tmpp->ovfl = bp; /* one of op/np point to big_keyp */ |
| 588 | tp = (u_int16_t *)tmpp->page; |
| 589 | #ifdef DEBUG |
| 590 | assert(FREESPACE(tp)((tp)[(tp)[0]+1]) >= OVFLSIZE(2*sizeof(u_int16_t))); |
| 591 | #endif |
| 592 | n = tp[0]; |
| 593 | off = OFFSET(tp)((tp)[(tp)[0]+2]); |
| 594 | free_space = FREESPACE(tp)((tp)[(tp)[0]+1]); |
| 595 | tp[++n] = (u_int16_t)addr; |
| 596 | tp[++n] = OVFLPAGE0; |
| 597 | tp[0] = n; |
| 598 | OFFSET(tp)((tp)[(tp)[0]+2]) = off; |
| 599 | FREESPACE(tp)((tp)[(tp)[0]+1]) = free_space - OVFLSIZE(2*sizeof(u_int16_t)); |
| 600 | |
| 601 | /* |
| 602 | * Finally, set the new and old return values. BIG_KEYP contains a |
| 603 | * pointer to the last page of the big key_data pair. Make sure that |
| 604 | * big_keyp has no following page (2 elements) or create an empty |
| 605 | * following page. |
| 606 | */ |
| 607 | |
| 608 | ret->newp = np; |
| 609 | ret->oldp = op; |
| 610 | |
| 611 | tp = (u_int16_t *)big_keyp->page; |
| 612 | big_keyp->flags |= BUF_MOD0x0001; |
| 613 | if (tp[0] > 2) { |
| 614 | /* |
| 615 | * There may be either one or two offsets on this page. If |
| 616 | * there is one, then the overflow page is linked on normally |
| 617 | * and tp[4] is OVFLPAGE. If there are two, tp[4] contains |
| 618 | * the second offset and needs to get stuffed in after the |
| 619 | * next overflow page is added. |
| 620 | */ |
| 621 | n = tp[4]; |
| 622 | free_space = FREESPACE(tp)((tp)[(tp)[0]+1]); |
| 623 | off = OFFSET(tp)((tp)[(tp)[0]+2]); |
| 624 | tp[0] -= 2; |
| 625 | FREESPACE(tp)((tp)[(tp)[0]+1]) = free_space + OVFLSIZE(2*sizeof(u_int16_t)); |
| 626 | OFFSET(tp)((tp)[(tp)[0]+2]) = off; |
| 627 | tmpp = __add_ovflpage(hashp, big_keyp); |
| 628 | if (!tmpp) |
| 629 | return (-1); |
| 630 | tp[4] = n; |
| 631 | } else |
| 632 | tmpp = big_keyp; |
| 633 | |
| 634 | if (change) |
| 635 | ret->newp = tmpp; |
| 636 | else |
| 637 | ret->oldp = tmpp; |
| 638 | return (0); |
| 639 | } |