| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support/Alignment.h |
| Warning: | line 85, column 47 The result of the left shift is undefined due to shifting by '255', which is greater or equal to the width of type 'uint64_t' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | /// \file | |||
| 10 | /// This file is a part of MemorySanitizer, a detector of uninitialized | |||
| 11 | /// reads. | |||
| 12 | /// | |||
| 13 | /// The algorithm of the tool is similar to Memcheck | |||
| 14 | /// (http://goo.gl/QKbem). We associate a few shadow bits with every | |||
| 15 | /// byte of the application memory, poison the shadow of the malloc-ed | |||
| 16 | /// or alloca-ed memory, load the shadow bits on every memory read, | |||
| 17 | /// propagate the shadow bits through some of the arithmetic | |||
| 18 | /// instruction (including MOV), store the shadow bits on every memory | |||
| 19 | /// write, report a bug on some other instructions (e.g. JMP) if the | |||
| 20 | /// associated shadow is poisoned. | |||
| 21 | /// | |||
| 22 | /// But there are differences too. The first and the major one: | |||
| 23 | /// compiler instrumentation instead of binary instrumentation. This | |||
| 24 | /// gives us much better register allocation, possible compiler | |||
| 25 | /// optimizations and a fast start-up. But this brings the major issue | |||
| 26 | /// as well: msan needs to see all program events, including system | |||
| 27 | /// calls and reads/writes in system libraries, so we either need to | |||
| 28 | /// compile *everything* with msan or use a binary translation | |||
| 29 | /// component (e.g. DynamoRIO) to instrument pre-built libraries. | |||
| 30 | /// Another difference from Memcheck is that we use 8 shadow bits per | |||
| 31 | /// byte of application memory and use a direct shadow mapping. This | |||
| 32 | /// greatly simplifies the instrumentation code and avoids races on | |||
| 33 | /// shadow updates (Memcheck is single-threaded so races are not a | |||
| 34 | /// concern there. Memcheck uses 2 shadow bits per byte with a slow | |||
| 35 | /// path storage that uses 8 bits per byte). | |||
| 36 | /// | |||
| 37 | /// The default value of shadow is 0, which means "clean" (not poisoned). | |||
| 38 | /// | |||
| 39 | /// Every module initializer should call __msan_init to ensure that the | |||
| 40 | /// shadow memory is ready. On error, __msan_warning is called. Since | |||
| 41 | /// parameters and return values may be passed via registers, we have a | |||
| 42 | /// specialized thread-local shadow for return values | |||
| 43 | /// (__msan_retval_tls) and parameters (__msan_param_tls). | |||
| 44 | /// | |||
| 45 | /// Origin tracking. | |||
| 46 | /// | |||
| 47 | /// MemorySanitizer can track origins (allocation points) of all uninitialized | |||
| 48 | /// values. This behavior is controlled with a flag (msan-track-origins) and is | |||
| 49 | /// disabled by default. | |||
| 50 | /// | |||
| 51 | /// Origins are 4-byte values created and interpreted by the runtime library. | |||
| 52 | /// They are stored in a second shadow mapping, one 4-byte value for 4 bytes | |||
| 53 | /// of application memory. Propagation of origins is basically a bunch of | |||
| 54 | /// "select" instructions that pick the origin of a dirty argument, if an | |||
| 55 | /// instruction has one. | |||
| 56 | /// | |||
| 57 | /// Every 4 aligned, consecutive bytes of application memory have one origin | |||
| 58 | /// value associated with them. If these bytes contain uninitialized data | |||
| 59 | /// coming from 2 different allocations, the last store wins. Because of this, | |||
| 60 | /// MemorySanitizer reports can show unrelated origins, but this is unlikely in | |||
| 61 | /// practice. | |||
| 62 | /// | |||
| 63 | /// Origins are meaningless for fully initialized values, so MemorySanitizer | |||
| 64 | /// avoids storing origin to memory when a fully initialized value is stored. | |||
| 65 | /// This way it avoids needless overwriting origin of the 4-byte region on | |||
| 66 | /// a short (i.e. 1 byte) clean store, and it is also good for performance. | |||
| 67 | /// | |||
| 68 | /// Atomic handling. | |||
| 69 | /// | |||
| 70 | /// Ideally, every atomic store of application value should update the | |||
| 71 | /// corresponding shadow location in an atomic way. Unfortunately, atomic store | |||
| 72 | /// of two disjoint locations can not be done without severe slowdown. | |||
| 73 | /// | |||
| 74 | /// Therefore, we implement an approximation that may err on the safe side. | |||
| 75 | /// In this implementation, every atomically accessed location in the program | |||
| 76 | /// may only change from (partially) uninitialized to fully initialized, but | |||
| 77 | /// not the other way around. We load the shadow _after_ the application load, | |||
| 78 | /// and we store the shadow _before_ the app store. Also, we always store clean | |||
| 79 | /// shadow (if the application store is atomic). This way, if the store-load | |||
| 80 | /// pair constitutes a happens-before arc, shadow store and load are correctly | |||
| 81 | /// ordered such that the load will get either the value that was stored, or | |||
| 82 | /// some later value (which is always clean). | |||
| 83 | /// | |||
| 84 | /// This does not work very well with Compare-And-Swap (CAS) and | |||
| 85 | /// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW | |||
| 86 | /// must store the new shadow before the app operation, and load the shadow | |||
| 87 | /// after the app operation. Computers don't work this way. Current | |||
| 88 | /// implementation ignores the load aspect of CAS/RMW, always returning a clean | |||
| 89 | /// value. It implements the store part as a simple atomic store by storing a | |||
| 90 | /// clean shadow. | |||
| 91 | /// | |||
| 92 | /// Instrumenting inline assembly. | |||
| 93 | /// | |||
| 94 | /// For inline assembly code LLVM has little idea about which memory locations | |||
| 95 | /// become initialized depending on the arguments. It can be possible to figure | |||
| 96 | /// out which arguments are meant to point to inputs and outputs, but the | |||
| 97 | /// actual semantics can be only visible at runtime. In the Linux kernel it's | |||
| 98 | /// also possible that the arguments only indicate the offset for a base taken | |||
| 99 | /// from a segment register, so it's dangerous to treat any asm() arguments as | |||
| 100 | /// pointers. We take a conservative approach generating calls to | |||
| 101 | /// __msan_instrument_asm_store(ptr, size) | |||
| 102 | /// , which defer the memory unpoisoning to the runtime library. | |||
| 103 | /// The latter can perform more complex address checks to figure out whether | |||
| 104 | /// it's safe to touch the shadow memory. | |||
| 105 | /// Like with atomic operations, we call __msan_instrument_asm_store() before | |||
| 106 | /// the assembly call, so that changes to the shadow memory will be seen by | |||
| 107 | /// other threads together with main memory initialization. | |||
| 108 | /// | |||
| 109 | /// KernelMemorySanitizer (KMSAN) implementation. | |||
| 110 | /// | |||
| 111 | /// The major differences between KMSAN and MSan instrumentation are: | |||
| 112 | /// - KMSAN always tracks the origins and implies msan-keep-going=true; | |||
| 113 | /// - KMSAN allocates shadow and origin memory for each page separately, so | |||
| 114 | /// there are no explicit accesses to shadow and origin in the | |||
| 115 | /// instrumentation. | |||
| 116 | /// Shadow and origin values for a particular X-byte memory location | |||
| 117 | /// (X=1,2,4,8) are accessed through pointers obtained via the | |||
| 118 | /// __msan_metadata_ptr_for_load_X(ptr) | |||
| 119 | /// __msan_metadata_ptr_for_store_X(ptr) | |||
| 120 | /// functions. The corresponding functions check that the X-byte accesses | |||
| 121 | /// are possible and returns the pointers to shadow and origin memory. | |||
| 122 | /// Arbitrary sized accesses are handled with: | |||
| 123 | /// __msan_metadata_ptr_for_load_n(ptr, size) | |||
| 124 | /// __msan_metadata_ptr_for_store_n(ptr, size); | |||
| 125 | /// - TLS variables are stored in a single per-task struct. A call to a | |||
| 126 | /// function __msan_get_context_state() returning a pointer to that struct | |||
| 127 | /// is inserted into every instrumented function before the entry block; | |||
| 128 | /// - __msan_warning() takes a 32-bit origin parameter; | |||
| 129 | /// - local variables are poisoned with __msan_poison_alloca() upon function | |||
| 130 | /// entry and unpoisoned with __msan_unpoison_alloca() before leaving the | |||
| 131 | /// function; | |||
| 132 | /// - the pass doesn't declare any global variables or add global constructors | |||
| 133 | /// to the translation unit. | |||
| 134 | /// | |||
| 135 | /// Also, KMSAN currently ignores uninitialized memory passed into inline asm | |||
| 136 | /// calls, making sure we're on the safe side wrt. possible false positives. | |||
| 137 | /// | |||
| 138 | /// KernelMemorySanitizer only supports X86_64 at the moment. | |||
| 139 | /// | |||
| 140 | // | |||
| 141 | // FIXME: This sanitizer does not yet handle scalable vectors | |||
| 142 | // | |||
| 143 | //===----------------------------------------------------------------------===// | |||
| 144 | ||||
| 145 | #include "llvm/Transforms/Instrumentation/MemorySanitizer.h" | |||
| 146 | #include "llvm/ADT/APInt.h" | |||
| 147 | #include "llvm/ADT/ArrayRef.h" | |||
| 148 | #include "llvm/ADT/DepthFirstIterator.h" | |||
| 149 | #include "llvm/ADT/SmallSet.h" | |||
| 150 | #include "llvm/ADT/SmallString.h" | |||
| 151 | #include "llvm/ADT/SmallVector.h" | |||
| 152 | #include "llvm/ADT/StringExtras.h" | |||
| 153 | #include "llvm/ADT/StringRef.h" | |||
| 154 | #include "llvm/ADT/Triple.h" | |||
| 155 | #include "llvm/Analysis/TargetLibraryInfo.h" | |||
| 156 | #include "llvm/Analysis/ValueTracking.h" | |||
| 157 | #include "llvm/IR/Argument.h" | |||
| 158 | #include "llvm/IR/Attributes.h" | |||
| 159 | #include "llvm/IR/BasicBlock.h" | |||
| 160 | #include "llvm/IR/CallingConv.h" | |||
| 161 | #include "llvm/IR/Constant.h" | |||
| 162 | #include "llvm/IR/Constants.h" | |||
| 163 | #include "llvm/IR/DataLayout.h" | |||
| 164 | #include "llvm/IR/DerivedTypes.h" | |||
| 165 | #include "llvm/IR/Function.h" | |||
| 166 | #include "llvm/IR/GlobalValue.h" | |||
| 167 | #include "llvm/IR/GlobalVariable.h" | |||
| 168 | #include "llvm/IR/IRBuilder.h" | |||
| 169 | #include "llvm/IR/InlineAsm.h" | |||
| 170 | #include "llvm/IR/InstVisitor.h" | |||
| 171 | #include "llvm/IR/InstrTypes.h" | |||
| 172 | #include "llvm/IR/Instruction.h" | |||
| 173 | #include "llvm/IR/Instructions.h" | |||
| 174 | #include "llvm/IR/IntrinsicInst.h" | |||
| 175 | #include "llvm/IR/Intrinsics.h" | |||
| 176 | #include "llvm/IR/IntrinsicsX86.h" | |||
| 177 | #include "llvm/IR/LLVMContext.h" | |||
| 178 | #include "llvm/IR/MDBuilder.h" | |||
| 179 | #include "llvm/IR/Module.h" | |||
| 180 | #include "llvm/IR/Type.h" | |||
| 181 | #include "llvm/IR/Value.h" | |||
| 182 | #include "llvm/IR/ValueMap.h" | |||
| 183 | #include "llvm/InitializePasses.h" | |||
| 184 | #include "llvm/Pass.h" | |||
| 185 | #include "llvm/Support/AtomicOrdering.h" | |||
| 186 | #include "llvm/Support/Casting.h" | |||
| 187 | #include "llvm/Support/CommandLine.h" | |||
| 188 | #include "llvm/Support/Compiler.h" | |||
| 189 | #include "llvm/Support/Debug.h" | |||
| 190 | #include "llvm/Support/ErrorHandling.h" | |||
| 191 | #include "llvm/Support/MathExtras.h" | |||
| 192 | #include "llvm/Support/raw_ostream.h" | |||
| 193 | #include "llvm/Transforms/Instrumentation.h" | |||
| 194 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | |||
| 195 | #include "llvm/Transforms/Utils/Local.h" | |||
| 196 | #include "llvm/Transforms/Utils/ModuleUtils.h" | |||
| 197 | #include <algorithm> | |||
| 198 | #include <cassert> | |||
| 199 | #include <cstddef> | |||
| 200 | #include <cstdint> | |||
| 201 | #include <memory> | |||
| 202 | #include <string> | |||
| 203 | #include <tuple> | |||
| 204 | ||||
| 205 | using namespace llvm; | |||
| 206 | ||||
| 207 | #define DEBUG_TYPE"msan" "msan" | |||
| 208 | ||||
| 209 | static const unsigned kOriginSize = 4; | |||
| 210 | static const Align kMinOriginAlignment = Align(4); | |||
| 211 | static const Align kShadowTLSAlignment = Align(8); | |||
| 212 | ||||
| 213 | // These constants must be kept in sync with the ones in msan.h. | |||
| 214 | static const unsigned kParamTLSSize = 800; | |||
| 215 | static const unsigned kRetvalTLSSize = 800; | |||
| 216 | ||||
| 217 | // Accesses sizes are powers of two: 1, 2, 4, 8. | |||
| 218 | static const size_t kNumberOfAccessSizes = 4; | |||
| 219 | ||||
| 220 | /// Track origins of uninitialized values. | |||
| 221 | /// | |||
| 222 | /// Adds a section to MemorySanitizer report that points to the allocation | |||
| 223 | /// (stack or heap) the uninitialized bits came from originally. | |||
| 224 | static cl::opt<int> ClTrackOrigins("msan-track-origins", | |||
| 225 | cl::desc("Track origins (allocation sites) of poisoned memory"), | |||
| 226 | cl::Hidden, cl::init(0)); | |||
| 227 | ||||
| 228 | static cl::opt<bool> ClKeepGoing("msan-keep-going", | |||
| 229 | cl::desc("keep going after reporting a UMR"), | |||
| 230 | cl::Hidden, cl::init(false)); | |||
| 231 | ||||
| 232 | static cl::opt<bool> ClPoisonStack("msan-poison-stack", | |||
| 233 | cl::desc("poison uninitialized stack variables"), | |||
| 234 | cl::Hidden, cl::init(true)); | |||
| 235 | ||||
| 236 | static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", | |||
| 237 | cl::desc("poison uninitialized stack variables with a call"), | |||
| 238 | cl::Hidden, cl::init(false)); | |||
| 239 | ||||
| 240 | static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", | |||
| 241 | cl::desc("poison uninitialized stack variables with the given pattern"), | |||
| 242 | cl::Hidden, cl::init(0xff)); | |||
| 243 | ||||
| 244 | static cl::opt<bool> ClPoisonUndef("msan-poison-undef", | |||
| 245 | cl::desc("poison undef temps"), | |||
| 246 | cl::Hidden, cl::init(true)); | |||
| 247 | ||||
| 248 | static cl::opt<bool> ClHandleICmp("msan-handle-icmp", | |||
| 249 | cl::desc("propagate shadow through ICmpEQ and ICmpNE"), | |||
| 250 | cl::Hidden, cl::init(true)); | |||
| 251 | ||||
| 252 | static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", | |||
| 253 | cl::desc("exact handling of relational integer ICmp"), | |||
| 254 | cl::Hidden, cl::init(false)); | |||
| 255 | ||||
| 256 | static cl::opt<bool> ClHandleLifetimeIntrinsics( | |||
| 257 | "msan-handle-lifetime-intrinsics", | |||
| 258 | cl::desc( | |||
| 259 | "when possible, poison scoped variables at the beginning of the scope " | |||
| 260 | "(slower, but more precise)"), | |||
| 261 | cl::Hidden, cl::init(true)); | |||
| 262 | ||||
| 263 | // When compiling the Linux kernel, we sometimes see false positives related to | |||
| 264 | // MSan being unable to understand that inline assembly calls may initialize | |||
| 265 | // local variables. | |||
| 266 | // This flag makes the compiler conservatively unpoison every memory location | |||
| 267 | // passed into an assembly call. Note that this may cause false positives. | |||
| 268 | // Because it's impossible to figure out the array sizes, we can only unpoison | |||
| 269 | // the first sizeof(type) bytes for each type* pointer. | |||
| 270 | // The instrumentation is only enabled in KMSAN builds, and only if | |||
| 271 | // -msan-handle-asm-conservative is on. This is done because we may want to | |||
| 272 | // quickly disable assembly instrumentation when it breaks. | |||
| 273 | static cl::opt<bool> ClHandleAsmConservative( | |||
| 274 | "msan-handle-asm-conservative", | |||
| 275 | cl::desc("conservative handling of inline assembly"), cl::Hidden, | |||
| 276 | cl::init(true)); | |||
| 277 | ||||
| 278 | // This flag controls whether we check the shadow of the address | |||
| 279 | // operand of load or store. Such bugs are very rare, since load from | |||
| 280 | // a garbage address typically results in SEGV, but still happen | |||
| 281 | // (e.g. only lower bits of address are garbage, or the access happens | |||
| 282 | // early at program startup where malloc-ed memory is more likely to | |||
| 283 | // be zeroed. As of 2012-08-28 this flag adds 20% slowdown. | |||
| 284 | static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", | |||
| 285 | cl::desc("report accesses through a pointer which has poisoned shadow"), | |||
| 286 | cl::Hidden, cl::init(true)); | |||
| 287 | ||||
| 288 | static cl::opt<bool> ClEagerChecks( | |||
| 289 | "msan-eager-checks", | |||
| 290 | cl::desc("check arguments and return values at function call boundaries"), | |||
| 291 | cl::Hidden, cl::init(false)); | |||
| 292 | ||||
| 293 | static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", | |||
| 294 | cl::desc("print out instructions with default strict semantics"), | |||
| 295 | cl::Hidden, cl::init(false)); | |||
| 296 | ||||
| 297 | static cl::opt<int> ClInstrumentationWithCallThreshold( | |||
| 298 | "msan-instrumentation-with-call-threshold", | |||
| 299 | cl::desc( | |||
| 300 | "If the function being instrumented requires more than " | |||
| 301 | "this number of checks and origin stores, use callbacks instead of " | |||
| 302 | "inline checks (-1 means never use callbacks)."), | |||
| 303 | cl::Hidden, cl::init(3500)); | |||
| 304 | ||||
| 305 | static cl::opt<bool> | |||
| 306 | ClEnableKmsan("msan-kernel", | |||
| 307 | cl::desc("Enable KernelMemorySanitizer instrumentation"), | |||
| 308 | cl::Hidden, cl::init(false)); | |||
| 309 | ||||
| 310 | // This is an experiment to enable handling of cases where shadow is a non-zero | |||
| 311 | // compile-time constant. For some unexplainable reason they were silently | |||
| 312 | // ignored in the instrumentation. | |||
| 313 | static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", | |||
| 314 | cl::desc("Insert checks for constant shadow values"), | |||
| 315 | cl::Hidden, cl::init(false)); | |||
| 316 | ||||
| 317 | // This is off by default because of a bug in gold: | |||
| 318 | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 | |||
| 319 | static cl::opt<bool> ClWithComdat("msan-with-comdat", | |||
| 320 | cl::desc("Place MSan constructors in comdat sections"), | |||
| 321 | cl::Hidden, cl::init(false)); | |||
| 322 | ||||
| 323 | // These options allow to specify custom memory map parameters | |||
| 324 | // See MemoryMapParams for details. | |||
| 325 | static cl::opt<uint64_t> ClAndMask("msan-and-mask", | |||
| 326 | cl::desc("Define custom MSan AndMask"), | |||
| 327 | cl::Hidden, cl::init(0)); | |||
| 328 | ||||
| 329 | static cl::opt<uint64_t> ClXorMask("msan-xor-mask", | |||
| 330 | cl::desc("Define custom MSan XorMask"), | |||
| 331 | cl::Hidden, cl::init(0)); | |||
| 332 | ||||
| 333 | static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", | |||
| 334 | cl::desc("Define custom MSan ShadowBase"), | |||
| 335 | cl::Hidden, cl::init(0)); | |||
| 336 | ||||
| 337 | static cl::opt<uint64_t> ClOriginBase("msan-origin-base", | |||
| 338 | cl::desc("Define custom MSan OriginBase"), | |||
| 339 | cl::Hidden, cl::init(0)); | |||
| 340 | ||||
| 341 | const char kMsanModuleCtorName[] = "msan.module_ctor"; | |||
| 342 | const char kMsanInitName[] = "__msan_init"; | |||
| 343 | ||||
| 344 | namespace { | |||
| 345 | ||||
| 346 | // Memory map parameters used in application-to-shadow address calculation. | |||
| 347 | // Offset = (Addr & ~AndMask) ^ XorMask | |||
| 348 | // Shadow = ShadowBase + Offset | |||
| 349 | // Origin = OriginBase + Offset | |||
| 350 | struct MemoryMapParams { | |||
| 351 | uint64_t AndMask; | |||
| 352 | uint64_t XorMask; | |||
| 353 | uint64_t ShadowBase; | |||
| 354 | uint64_t OriginBase; | |||
| 355 | }; | |||
| 356 | ||||
| 357 | struct PlatformMemoryMapParams { | |||
| 358 | const MemoryMapParams *bits32; | |||
| 359 | const MemoryMapParams *bits64; | |||
| 360 | }; | |||
| 361 | ||||
| 362 | } // end anonymous namespace | |||
| 363 | ||||
| 364 | // i386 Linux | |||
| 365 | static const MemoryMapParams Linux_I386_MemoryMapParams = { | |||
| 366 | 0x000080000000, // AndMask | |||
| 367 | 0, // XorMask (not used) | |||
| 368 | 0, // ShadowBase (not used) | |||
| 369 | 0x000040000000, // OriginBase | |||
| 370 | }; | |||
| 371 | ||||
| 372 | // x86_64 Linux | |||
| 373 | static const MemoryMapParams Linux_X86_64_MemoryMapParams = { | |||
| 374 | #ifdef MSAN_LINUX_X86_64_OLD_MAPPING | |||
| 375 | 0x400000000000, // AndMask | |||
| 376 | 0, // XorMask (not used) | |||
| 377 | 0, // ShadowBase (not used) | |||
| 378 | 0x200000000000, // OriginBase | |||
| 379 | #else | |||
| 380 | 0, // AndMask (not used) | |||
| 381 | 0x500000000000, // XorMask | |||
| 382 | 0, // ShadowBase (not used) | |||
| 383 | 0x100000000000, // OriginBase | |||
| 384 | #endif | |||
| 385 | }; | |||
| 386 | ||||
| 387 | // mips64 Linux | |||
| 388 | static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { | |||
| 389 | 0, // AndMask (not used) | |||
| 390 | 0x008000000000, // XorMask | |||
| 391 | 0, // ShadowBase (not used) | |||
| 392 | 0x002000000000, // OriginBase | |||
| 393 | }; | |||
| 394 | ||||
| 395 | // ppc64 Linux | |||
| 396 | static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { | |||
| 397 | 0xE00000000000, // AndMask | |||
| 398 | 0x100000000000, // XorMask | |||
| 399 | 0x080000000000, // ShadowBase | |||
| 400 | 0x1C0000000000, // OriginBase | |||
| 401 | }; | |||
| 402 | ||||
| 403 | // s390x Linux | |||
| 404 | static const MemoryMapParams Linux_S390X_MemoryMapParams = { | |||
| 405 | 0xC00000000000, // AndMask | |||
| 406 | 0, // XorMask (not used) | |||
| 407 | 0x080000000000, // ShadowBase | |||
| 408 | 0x1C0000000000, // OriginBase | |||
| 409 | }; | |||
| 410 | ||||
| 411 | // aarch64 Linux | |||
| 412 | static const MemoryMapParams Linux_AArch64_MemoryMapParams = { | |||
| 413 | 0, // AndMask (not used) | |||
| 414 | 0x06000000000, // XorMask | |||
| 415 | 0, // ShadowBase (not used) | |||
| 416 | 0x01000000000, // OriginBase | |||
| 417 | }; | |||
| 418 | ||||
| 419 | // i386 FreeBSD | |||
| 420 | static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { | |||
| 421 | 0x000180000000, // AndMask | |||
| 422 | 0x000040000000, // XorMask | |||
| 423 | 0x000020000000, // ShadowBase | |||
| 424 | 0x000700000000, // OriginBase | |||
| 425 | }; | |||
| 426 | ||||
| 427 | // x86_64 FreeBSD | |||
| 428 | static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { | |||
| 429 | 0xc00000000000, // AndMask | |||
| 430 | 0x200000000000, // XorMask | |||
| 431 | 0x100000000000, // ShadowBase | |||
| 432 | 0x380000000000, // OriginBase | |||
| 433 | }; | |||
| 434 | ||||
| 435 | // x86_64 NetBSD | |||
| 436 | static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { | |||
| 437 | 0, // AndMask | |||
| 438 | 0x500000000000, // XorMask | |||
| 439 | 0, // ShadowBase | |||
| 440 | 0x100000000000, // OriginBase | |||
| 441 | }; | |||
| 442 | ||||
| 443 | static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { | |||
| 444 | &Linux_I386_MemoryMapParams, | |||
| 445 | &Linux_X86_64_MemoryMapParams, | |||
| 446 | }; | |||
| 447 | ||||
| 448 | static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { | |||
| 449 | nullptr, | |||
| 450 | &Linux_MIPS64_MemoryMapParams, | |||
| 451 | }; | |||
| 452 | ||||
| 453 | static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { | |||
| 454 | nullptr, | |||
| 455 | &Linux_PowerPC64_MemoryMapParams, | |||
| 456 | }; | |||
| 457 | ||||
| 458 | static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { | |||
| 459 | nullptr, | |||
| 460 | &Linux_S390X_MemoryMapParams, | |||
| 461 | }; | |||
| 462 | ||||
| 463 | static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { | |||
| 464 | nullptr, | |||
| 465 | &Linux_AArch64_MemoryMapParams, | |||
| 466 | }; | |||
| 467 | ||||
| 468 | static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { | |||
| 469 | &FreeBSD_I386_MemoryMapParams, | |||
| 470 | &FreeBSD_X86_64_MemoryMapParams, | |||
| 471 | }; | |||
| 472 | ||||
| 473 | static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { | |||
| 474 | nullptr, | |||
| 475 | &NetBSD_X86_64_MemoryMapParams, | |||
| 476 | }; | |||
| 477 | ||||
| 478 | namespace { | |||
| 479 | ||||
| 480 | /// Instrument functions of a module to detect uninitialized reads. | |||
| 481 | /// | |||
| 482 | /// Instantiating MemorySanitizer inserts the msan runtime library API function | |||
| 483 | /// declarations into the module if they don't exist already. Instantiating | |||
| 484 | /// ensures the __msan_init function is in the list of global constructors for | |||
| 485 | /// the module. | |||
| 486 | class MemorySanitizer { | |||
| 487 | public: | |||
| 488 | MemorySanitizer(Module &M, MemorySanitizerOptions Options) | |||
| 489 | : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), | |||
| 490 | Recover(Options.Recover) { | |||
| 491 | initializeModule(M); | |||
| 492 | } | |||
| 493 | ||||
| 494 | // MSan cannot be moved or copied because of MapParams. | |||
| 495 | MemorySanitizer(MemorySanitizer &&) = delete; | |||
| 496 | MemorySanitizer &operator=(MemorySanitizer &&) = delete; | |||
| 497 | MemorySanitizer(const MemorySanitizer &) = delete; | |||
| 498 | MemorySanitizer &operator=(const MemorySanitizer &) = delete; | |||
| 499 | ||||
| 500 | bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); | |||
| 501 | ||||
| 502 | private: | |||
| 503 | friend struct MemorySanitizerVisitor; | |||
| 504 | friend struct VarArgAMD64Helper; | |||
| 505 | friend struct VarArgMIPS64Helper; | |||
| 506 | friend struct VarArgAArch64Helper; | |||
| 507 | friend struct VarArgPowerPC64Helper; | |||
| 508 | friend struct VarArgSystemZHelper; | |||
| 509 | ||||
| 510 | void initializeModule(Module &M); | |||
| 511 | void initializeCallbacks(Module &M); | |||
| 512 | void createKernelApi(Module &M); | |||
| 513 | void createUserspaceApi(Module &M); | |||
| 514 | ||||
| 515 | /// True if we're compiling the Linux kernel. | |||
| 516 | bool CompileKernel; | |||
| 517 | /// Track origins (allocation points) of uninitialized values. | |||
| 518 | int TrackOrigins; | |||
| 519 | bool Recover; | |||
| 520 | ||||
| 521 | LLVMContext *C; | |||
| 522 | Type *IntptrTy; | |||
| 523 | Type *OriginTy; | |||
| 524 | ||||
| 525 | // XxxTLS variables represent the per-thread state in MSan and per-task state | |||
| 526 | // in KMSAN. | |||
| 527 | // For the userspace these point to thread-local globals. In the kernel land | |||
| 528 | // they point to the members of a per-task struct obtained via a call to | |||
| 529 | // __msan_get_context_state(). | |||
| 530 | ||||
| 531 | /// Thread-local shadow storage for function parameters. | |||
| 532 | Value *ParamTLS; | |||
| 533 | ||||
| 534 | /// Thread-local origin storage for function parameters. | |||
| 535 | Value *ParamOriginTLS; | |||
| 536 | ||||
| 537 | /// Thread-local shadow storage for function return value. | |||
| 538 | Value *RetvalTLS; | |||
| 539 | ||||
| 540 | /// Thread-local origin storage for function return value. | |||
| 541 | Value *RetvalOriginTLS; | |||
| 542 | ||||
| 543 | /// Thread-local shadow storage for in-register va_arg function | |||
| 544 | /// parameters (x86_64-specific). | |||
| 545 | Value *VAArgTLS; | |||
| 546 | ||||
| 547 | /// Thread-local shadow storage for in-register va_arg function | |||
| 548 | /// parameters (x86_64-specific). | |||
| 549 | Value *VAArgOriginTLS; | |||
| 550 | ||||
| 551 | /// Thread-local shadow storage for va_arg overflow area | |||
| 552 | /// (x86_64-specific). | |||
| 553 | Value *VAArgOverflowSizeTLS; | |||
| 554 | ||||
| 555 | /// Are the instrumentation callbacks set up? | |||
| 556 | bool CallbacksInitialized = false; | |||
| 557 | ||||
| 558 | /// The run-time callback to print a warning. | |||
| 559 | FunctionCallee WarningFn; | |||
| 560 | ||||
| 561 | // These arrays are indexed by log2(AccessSize). | |||
| 562 | FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; | |||
| 563 | FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; | |||
| 564 | ||||
| 565 | /// Run-time helper that generates a new origin value for a stack | |||
| 566 | /// allocation. | |||
| 567 | FunctionCallee MsanSetAllocaOrigin4Fn; | |||
| 568 | ||||
| 569 | /// Run-time helper that poisons stack on function entry. | |||
| 570 | FunctionCallee MsanPoisonStackFn; | |||
| 571 | ||||
| 572 | /// Run-time helper that records a store (or any event) of an | |||
| 573 | /// uninitialized value and returns an updated origin id encoding this info. | |||
| 574 | FunctionCallee MsanChainOriginFn; | |||
| 575 | ||||
| 576 | /// Run-time helper that paints an origin over a region. | |||
| 577 | FunctionCallee MsanSetOriginFn; | |||
| 578 | ||||
| 579 | /// MSan runtime replacements for memmove, memcpy and memset. | |||
| 580 | FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; | |||
| 581 | ||||
| 582 | /// KMSAN callback for task-local function argument shadow. | |||
| 583 | StructType *MsanContextStateTy; | |||
| 584 | FunctionCallee MsanGetContextStateFn; | |||
| 585 | ||||
| 586 | /// Functions for poisoning/unpoisoning local variables | |||
| 587 | FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; | |||
| 588 | ||||
| 589 | /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin | |||
| 590 | /// pointers. | |||
| 591 | FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; | |||
| 592 | FunctionCallee MsanMetadataPtrForLoad_1_8[4]; | |||
| 593 | FunctionCallee MsanMetadataPtrForStore_1_8[4]; | |||
| 594 | FunctionCallee MsanInstrumentAsmStoreFn; | |||
| 595 | ||||
| 596 | /// Helper to choose between different MsanMetadataPtrXxx(). | |||
| 597 | FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); | |||
| 598 | ||||
| 599 | /// Memory map parameters used in application-to-shadow calculation. | |||
| 600 | const MemoryMapParams *MapParams; | |||
| 601 | ||||
| 602 | /// Custom memory map parameters used when -msan-shadow-base or | |||
| 603 | // -msan-origin-base is provided. | |||
| 604 | MemoryMapParams CustomMapParams; | |||
| 605 | ||||
| 606 | MDNode *ColdCallWeights; | |||
| 607 | ||||
| 608 | /// Branch weights for origin store. | |||
| 609 | MDNode *OriginStoreWeights; | |||
| 610 | }; | |||
| 611 | ||||
| 612 | void insertModuleCtor(Module &M) { | |||
| 613 | getOrCreateSanitizerCtorAndInitFunctions( | |||
| 614 | M, kMsanModuleCtorName, kMsanInitName, | |||
| 615 | /*InitArgTypes=*/{}, | |||
| 616 | /*InitArgs=*/{}, | |||
| 617 | // This callback is invoked when the functions are created the first | |||
| 618 | // time. Hook them into the global ctors list in that case: | |||
| 619 | [&](Function *Ctor, FunctionCallee) { | |||
| 620 | if (!ClWithComdat) { | |||
| 621 | appendToGlobalCtors(M, Ctor, 0); | |||
| 622 | return; | |||
| 623 | } | |||
| 624 | Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); | |||
| 625 | Ctor->setComdat(MsanCtorComdat); | |||
| 626 | appendToGlobalCtors(M, Ctor, 0, Ctor); | |||
| 627 | }); | |||
| 628 | } | |||
| 629 | ||||
| 630 | /// A legacy function pass for msan instrumentation. | |||
| 631 | /// | |||
| 632 | /// Instruments functions to detect uninitialized reads. | |||
| 633 | struct MemorySanitizerLegacyPass : public FunctionPass { | |||
| 634 | // Pass identification, replacement for typeid. | |||
| 635 | static char ID; | |||
| 636 | ||||
| 637 | MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) | |||
| 638 | : FunctionPass(ID), Options(Options) { | |||
| 639 | initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); | |||
| 640 | } | |||
| 641 | StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } | |||
| 642 | ||||
| 643 | void getAnalysisUsage(AnalysisUsage &AU) const override { | |||
| 644 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | |||
| 645 | } | |||
| 646 | ||||
| 647 | bool runOnFunction(Function &F) override { | |||
| 648 | return MSan->sanitizeFunction( | |||
| 649 | F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); | |||
| 650 | } | |||
| 651 | bool doInitialization(Module &M) override; | |||
| 652 | ||||
| 653 | Optional<MemorySanitizer> MSan; | |||
| 654 | MemorySanitizerOptions Options; | |||
| 655 | }; | |||
| 656 | ||||
| 657 | template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { | |||
| 658 | return (Opt.getNumOccurrences() > 0) ? Opt : Default; | |||
| 659 | } | |||
| 660 | ||||
| 661 | } // end anonymous namespace | |||
| 662 | ||||
| 663 | MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) | |||
| 664 | : Kernel(getOptOrDefault(ClEnableKmsan, K)), | |||
| 665 | TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), | |||
| 666 | Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} | |||
| 667 | ||||
| 668 | PreservedAnalyses MemorySanitizerPass::run(Function &F, | |||
| 669 | FunctionAnalysisManager &FAM) { | |||
| 670 | MemorySanitizer Msan(*F.getParent(), Options); | |||
| 671 | if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) | |||
| 672 | return PreservedAnalyses::none(); | |||
| 673 | return PreservedAnalyses::all(); | |||
| 674 | } | |||
| 675 | ||||
| 676 | PreservedAnalyses MemorySanitizerPass::run(Module &M, | |||
| 677 | ModuleAnalysisManager &AM) { | |||
| 678 | if (Options.Kernel) | |||
| 679 | return PreservedAnalyses::all(); | |||
| 680 | insertModuleCtor(M); | |||
| 681 | return PreservedAnalyses::none(); | |||
| 682 | } | |||
| 683 | ||||
| 684 | char MemorySanitizerLegacyPass::ID = 0; | |||
| 685 | ||||
| 686 | INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan",static void *initializeMemorySanitizerLegacyPassPassOnce(PassRegistry &Registry) { | |||
| 687 | "MemorySanitizer: detects uninitialized reads.", false,static void *initializeMemorySanitizerLegacyPassPassOnce(PassRegistry &Registry) { | |||
| 688 | false)static void *initializeMemorySanitizerLegacyPassPassOnce(PassRegistry &Registry) { | |||
| 689 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | |||
| 690 | INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan",PassInfo *PI = new PassInfo( "MemorySanitizer: detects uninitialized reads." , "msan", &MemorySanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<MemorySanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeMemorySanitizerLegacyPassPassFlag; void llvm::initializeMemorySanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeMemorySanitizerLegacyPassPassFlag , initializeMemorySanitizerLegacyPassPassOnce, std::ref(Registry )); } | |||
| 691 | "MemorySanitizer: detects uninitialized reads.", false,PassInfo *PI = new PassInfo( "MemorySanitizer: detects uninitialized reads." , "msan", &MemorySanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<MemorySanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeMemorySanitizerLegacyPassPassFlag; void llvm::initializeMemorySanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeMemorySanitizerLegacyPassPassFlag , initializeMemorySanitizerLegacyPassPassOnce, std::ref(Registry )); } | |||
| 692 | false)PassInfo *PI = new PassInfo( "MemorySanitizer: detects uninitialized reads." , "msan", &MemorySanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<MemorySanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeMemorySanitizerLegacyPassPassFlag; void llvm::initializeMemorySanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeMemorySanitizerLegacyPassPassFlag , initializeMemorySanitizerLegacyPassPassOnce, std::ref(Registry )); } | |||
| 693 | ||||
| 694 | FunctionPass * | |||
| 695 | llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { | |||
| 696 | return new MemorySanitizerLegacyPass(Options); | |||
| 697 | } | |||
| 698 | ||||
| 699 | /// Create a non-const global initialized with the given string. | |||
| 700 | /// | |||
| 701 | /// Creates a writable global for Str so that we can pass it to the | |||
| 702 | /// run-time lib. Runtime uses first 4 bytes of the string to store the | |||
| 703 | /// frame ID, so the string needs to be mutable. | |||
| 704 | static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, | |||
| 705 | StringRef Str) { | |||
| 706 | Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); | |||
| 707 | return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, | |||
| 708 | GlobalValue::PrivateLinkage, StrConst, ""); | |||
| 709 | } | |||
| 710 | ||||
| 711 | /// Create KMSAN API callbacks. | |||
| 712 | void MemorySanitizer::createKernelApi(Module &M) { | |||
| 713 | IRBuilder<> IRB(*C); | |||
| 714 | ||||
| 715 | // These will be initialized in insertKmsanPrologue(). | |||
| 716 | RetvalTLS = nullptr; | |||
| 717 | RetvalOriginTLS = nullptr; | |||
| 718 | ParamTLS = nullptr; | |||
| 719 | ParamOriginTLS = nullptr; | |||
| 720 | VAArgTLS = nullptr; | |||
| 721 | VAArgOriginTLS = nullptr; | |||
| 722 | VAArgOverflowSizeTLS = nullptr; | |||
| 723 | ||||
| 724 | WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), | |||
| 725 | IRB.getInt32Ty()); | |||
| 726 | // Requests the per-task context state (kmsan_context_state*) from the | |||
| 727 | // runtime library. | |||
| 728 | MsanContextStateTy = StructType::get( | |||
| 729 | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), | |||
| 730 | ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), | |||
| 731 | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), | |||
| 732 | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ | |||
| 733 | IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, | |||
| 734 | OriginTy); | |||
| 735 | MsanGetContextStateFn = M.getOrInsertFunction( | |||
| 736 | "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); | |||
| 737 | ||||
| 738 | Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), | |||
| 739 | PointerType::get(IRB.getInt32Ty(), 0)); | |||
| 740 | ||||
| 741 | for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { | |||
| 742 | std::string name_load = | |||
| 743 | "__msan_metadata_ptr_for_load_" + std::to_string(size); | |||
| 744 | std::string name_store = | |||
| 745 | "__msan_metadata_ptr_for_store_" + std::to_string(size); | |||
| 746 | MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( | |||
| 747 | name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); | |||
| 748 | MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( | |||
| 749 | name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); | |||
| 750 | } | |||
| 751 | ||||
| 752 | MsanMetadataPtrForLoadN = M.getOrInsertFunction( | |||
| 753 | "__msan_metadata_ptr_for_load_n", RetTy, | |||
| 754 | PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); | |||
| 755 | MsanMetadataPtrForStoreN = M.getOrInsertFunction( | |||
| 756 | "__msan_metadata_ptr_for_store_n", RetTy, | |||
| 757 | PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); | |||
| 758 | ||||
| 759 | // Functions for poisoning and unpoisoning memory. | |||
| 760 | MsanPoisonAllocaFn = | |||
| 761 | M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), | |||
| 762 | IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); | |||
| 763 | MsanUnpoisonAllocaFn = M.getOrInsertFunction( | |||
| 764 | "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); | |||
| 765 | } | |||
| 766 | ||||
| 767 | static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { | |||
| 768 | return M.getOrInsertGlobal(Name, Ty, [&] { | |||
| 769 | return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, | |||
| 770 | nullptr, Name, nullptr, | |||
| 771 | GlobalVariable::InitialExecTLSModel); | |||
| 772 | }); | |||
| 773 | } | |||
| 774 | ||||
| 775 | /// Insert declarations for userspace-specific functions and globals. | |||
| 776 | void MemorySanitizer::createUserspaceApi(Module &M) { | |||
| 777 | IRBuilder<> IRB(*C); | |||
| 778 | ||||
| 779 | // Create the callback. | |||
| 780 | // FIXME: this function should have "Cold" calling conv, | |||
| 781 | // which is not yet implemented. | |||
| 782 | StringRef WarningFnName = Recover ? "__msan_warning_with_origin" | |||
| 783 | : "__msan_warning_with_origin_noreturn"; | |||
| 784 | WarningFn = | |||
| 785 | M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); | |||
| 786 | ||||
| 787 | // Create the global TLS variables. | |||
| 788 | RetvalTLS = | |||
| 789 | getOrInsertGlobal(M, "__msan_retval_tls", | |||
| 790 | ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); | |||
| 791 | ||||
| 792 | RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); | |||
| 793 | ||||
| 794 | ParamTLS = | |||
| 795 | getOrInsertGlobal(M, "__msan_param_tls", | |||
| 796 | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); | |||
| 797 | ||||
| 798 | ParamOriginTLS = | |||
| 799 | getOrInsertGlobal(M, "__msan_param_origin_tls", | |||
| 800 | ArrayType::get(OriginTy, kParamTLSSize / 4)); | |||
| 801 | ||||
| 802 | VAArgTLS = | |||
| 803 | getOrInsertGlobal(M, "__msan_va_arg_tls", | |||
| 804 | ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); | |||
| 805 | ||||
| 806 | VAArgOriginTLS = | |||
| 807 | getOrInsertGlobal(M, "__msan_va_arg_origin_tls", | |||
| 808 | ArrayType::get(OriginTy, kParamTLSSize / 4)); | |||
| 809 | ||||
| 810 | VAArgOverflowSizeTLS = | |||
| 811 | getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); | |||
| 812 | ||||
| 813 | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; | |||
| 814 | AccessSizeIndex++) { | |||
| 815 | unsigned AccessSize = 1 << AccessSizeIndex; | |||
| 816 | std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); | |||
| 817 | SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; | |||
| 818 | MaybeWarningFnAttrs.push_back(std::make_pair( | |||
| 819 | AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); | |||
| 820 | MaybeWarningFnAttrs.push_back(std::make_pair( | |||
| 821 | AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); | |||
| 822 | MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( | |||
| 823 | FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), | |||
| 824 | IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); | |||
| 825 | ||||
| 826 | FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); | |||
| 827 | SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; | |||
| 828 | MaybeStoreOriginFnAttrs.push_back(std::make_pair( | |||
| 829 | AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); | |||
| 830 | MaybeStoreOriginFnAttrs.push_back(std::make_pair( | |||
| 831 | AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); | |||
| 832 | MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( | |||
| 833 | FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), | |||
| 834 | IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), | |||
| 835 | IRB.getInt32Ty()); | |||
| 836 | } | |||
| 837 | ||||
| 838 | MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( | |||
| 839 | "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, | |||
| 840 | IRB.getInt8PtrTy(), IntptrTy); | |||
| 841 | MsanPoisonStackFn = | |||
| 842 | M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), | |||
| 843 | IRB.getInt8PtrTy(), IntptrTy); | |||
| 844 | } | |||
| 845 | ||||
| 846 | /// Insert extern declaration of runtime-provided functions and globals. | |||
| 847 | void MemorySanitizer::initializeCallbacks(Module &M) { | |||
| 848 | // Only do this once. | |||
| 849 | if (CallbacksInitialized) | |||
| 850 | return; | |||
| 851 | ||||
| 852 | IRBuilder<> IRB(*C); | |||
| 853 | // Initialize callbacks that are common for kernel and userspace | |||
| 854 | // instrumentation. | |||
| 855 | MsanChainOriginFn = M.getOrInsertFunction( | |||
| 856 | "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); | |||
| 857 | MsanSetOriginFn = | |||
| 858 | M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), | |||
| 859 | IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); | |||
| 860 | MemmoveFn = M.getOrInsertFunction( | |||
| 861 | "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | |||
| 862 | IRB.getInt8PtrTy(), IntptrTy); | |||
| 863 | MemcpyFn = M.getOrInsertFunction( | |||
| 864 | "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | |||
| 865 | IntptrTy); | |||
| 866 | MemsetFn = M.getOrInsertFunction( | |||
| 867 | "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), | |||
| 868 | IntptrTy); | |||
| 869 | ||||
| 870 | MsanInstrumentAsmStoreFn = | |||
| 871 | M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), | |||
| 872 | PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); | |||
| 873 | ||||
| 874 | if (CompileKernel) { | |||
| 875 | createKernelApi(M); | |||
| 876 | } else { | |||
| 877 | createUserspaceApi(M); | |||
| 878 | } | |||
| 879 | CallbacksInitialized = true; | |||
| 880 | } | |||
| 881 | ||||
| 882 | FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, | |||
| 883 | int size) { | |||
| 884 | FunctionCallee *Fns = | |||
| 885 | isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; | |||
| 886 | switch (size) { | |||
| 887 | case 1: | |||
| 888 | return Fns[0]; | |||
| 889 | case 2: | |||
| 890 | return Fns[1]; | |||
| 891 | case 4: | |||
| 892 | return Fns[2]; | |||
| 893 | case 8: | |||
| 894 | return Fns[3]; | |||
| 895 | default: | |||
| 896 | return nullptr; | |||
| 897 | } | |||
| 898 | } | |||
| 899 | ||||
| 900 | /// Module-level initialization. | |||
| 901 | /// | |||
| 902 | /// inserts a call to __msan_init to the module's constructor list. | |||
| 903 | void MemorySanitizer::initializeModule(Module &M) { | |||
| 904 | auto &DL = M.getDataLayout(); | |||
| 905 | ||||
| 906 | bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; | |||
| 907 | bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; | |||
| 908 | // Check the overrides first | |||
| 909 | if (ShadowPassed || OriginPassed) { | |||
| 910 | CustomMapParams.AndMask = ClAndMask; | |||
| 911 | CustomMapParams.XorMask = ClXorMask; | |||
| 912 | CustomMapParams.ShadowBase = ClShadowBase; | |||
| 913 | CustomMapParams.OriginBase = ClOriginBase; | |||
| 914 | MapParams = &CustomMapParams; | |||
| 915 | } else { | |||
| 916 | Triple TargetTriple(M.getTargetTriple()); | |||
| 917 | switch (TargetTriple.getOS()) { | |||
| 918 | case Triple::FreeBSD: | |||
| 919 | switch (TargetTriple.getArch()) { | |||
| 920 | case Triple::x86_64: | |||
| 921 | MapParams = FreeBSD_X86_MemoryMapParams.bits64; | |||
| 922 | break; | |||
| 923 | case Triple::x86: | |||
| 924 | MapParams = FreeBSD_X86_MemoryMapParams.bits32; | |||
| 925 | break; | |||
| 926 | default: | |||
| 927 | report_fatal_error("unsupported architecture"); | |||
| 928 | } | |||
| 929 | break; | |||
| 930 | case Triple::NetBSD: | |||
| 931 | switch (TargetTriple.getArch()) { | |||
| 932 | case Triple::x86_64: | |||
| 933 | MapParams = NetBSD_X86_MemoryMapParams.bits64; | |||
| 934 | break; | |||
| 935 | default: | |||
| 936 | report_fatal_error("unsupported architecture"); | |||
| 937 | } | |||
| 938 | break; | |||
| 939 | case Triple::Linux: | |||
| 940 | switch (TargetTriple.getArch()) { | |||
| 941 | case Triple::x86_64: | |||
| 942 | MapParams = Linux_X86_MemoryMapParams.bits64; | |||
| 943 | break; | |||
| 944 | case Triple::x86: | |||
| 945 | MapParams = Linux_X86_MemoryMapParams.bits32; | |||
| 946 | break; | |||
| 947 | case Triple::mips64: | |||
| 948 | case Triple::mips64el: | |||
| 949 | MapParams = Linux_MIPS_MemoryMapParams.bits64; | |||
| 950 | break; | |||
| 951 | case Triple::ppc64: | |||
| 952 | case Triple::ppc64le: | |||
| 953 | MapParams = Linux_PowerPC_MemoryMapParams.bits64; | |||
| 954 | break; | |||
| 955 | case Triple::systemz: | |||
| 956 | MapParams = Linux_S390_MemoryMapParams.bits64; | |||
| 957 | break; | |||
| 958 | case Triple::aarch64: | |||
| 959 | case Triple::aarch64_be: | |||
| 960 | MapParams = Linux_ARM_MemoryMapParams.bits64; | |||
| 961 | break; | |||
| 962 | default: | |||
| 963 | report_fatal_error("unsupported architecture"); | |||
| 964 | } | |||
| 965 | break; | |||
| 966 | default: | |||
| 967 | report_fatal_error("unsupported operating system"); | |||
| 968 | } | |||
| 969 | } | |||
| 970 | ||||
| 971 | C = &(M.getContext()); | |||
| 972 | IRBuilder<> IRB(*C); | |||
| 973 | IntptrTy = IRB.getIntPtrTy(DL); | |||
| 974 | OriginTy = IRB.getInt32Ty(); | |||
| 975 | ||||
| 976 | ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); | |||
| 977 | OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); | |||
| 978 | ||||
| 979 | if (!CompileKernel) { | |||
| 980 | if (TrackOrigins) | |||
| 981 | M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { | |||
| 982 | return new GlobalVariable( | |||
| 983 | M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, | |||
| 984 | IRB.getInt32(TrackOrigins), "__msan_track_origins"); | |||
| 985 | }); | |||
| 986 | ||||
| 987 | if (Recover) | |||
| 988 | M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { | |||
| 989 | return new GlobalVariable(M, IRB.getInt32Ty(), true, | |||
| 990 | GlobalValue::WeakODRLinkage, | |||
| 991 | IRB.getInt32(Recover), "__msan_keep_going"); | |||
| 992 | }); | |||
| 993 | } | |||
| 994 | } | |||
| 995 | ||||
| 996 | bool MemorySanitizerLegacyPass::doInitialization(Module &M) { | |||
| 997 | if (!Options.Kernel) | |||
| 998 | insertModuleCtor(M); | |||
| 999 | MSan.emplace(M, Options); | |||
| 1000 | return true; | |||
| 1001 | } | |||
| 1002 | ||||
| 1003 | namespace { | |||
| 1004 | ||||
| 1005 | /// A helper class that handles instrumentation of VarArg | |||
| 1006 | /// functions on a particular platform. | |||
| 1007 | /// | |||
| 1008 | /// Implementations are expected to insert the instrumentation | |||
| 1009 | /// necessary to propagate argument shadow through VarArg function | |||
| 1010 | /// calls. Visit* methods are called during an InstVisitor pass over | |||
| 1011 | /// the function, and should avoid creating new basic blocks. A new | |||
| 1012 | /// instance of this class is created for each instrumented function. | |||
| 1013 | struct VarArgHelper { | |||
| 1014 | virtual ~VarArgHelper() = default; | |||
| 1015 | ||||
| 1016 | /// Visit a CallBase. | |||
| 1017 | virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; | |||
| 1018 | ||||
| 1019 | /// Visit a va_start call. | |||
| 1020 | virtual void visitVAStartInst(VAStartInst &I) = 0; | |||
| 1021 | ||||
| 1022 | /// Visit a va_copy call. | |||
| 1023 | virtual void visitVACopyInst(VACopyInst &I) = 0; | |||
| 1024 | ||||
| 1025 | /// Finalize function instrumentation. | |||
| 1026 | /// | |||
| 1027 | /// This method is called after visiting all interesting (see above) | |||
| 1028 | /// instructions in a function. | |||
| 1029 | virtual void finalizeInstrumentation() = 0; | |||
| 1030 | }; | |||
| 1031 | ||||
| 1032 | struct MemorySanitizerVisitor; | |||
| 1033 | ||||
| 1034 | } // end anonymous namespace | |||
| 1035 | ||||
| 1036 | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, | |||
| 1037 | MemorySanitizerVisitor &Visitor); | |||
| 1038 | ||||
| 1039 | static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { | |||
| 1040 | if (TypeSize <= 8) return 0; | |||
| 1041 | return Log2_32_Ceil((TypeSize + 7) / 8); | |||
| 1042 | } | |||
| 1043 | ||||
| 1044 | namespace { | |||
| 1045 | ||||
| 1046 | /// This class does all the work for a given function. Store and Load | |||
| 1047 | /// instructions store and load corresponding shadow and origin | |||
| 1048 | /// values. Most instructions propagate shadow from arguments to their | |||
| 1049 | /// return values. Certain instructions (most importantly, BranchInst) | |||
| 1050 | /// test their argument shadow and print reports (with a runtime call) if it's | |||
| 1051 | /// non-zero. | |||
| 1052 | struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { | |||
| 1053 | Function &F; | |||
| 1054 | MemorySanitizer &MS; | |||
| 1055 | SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; | |||
| 1056 | ValueMap<Value*, Value*> ShadowMap, OriginMap; | |||
| 1057 | std::unique_ptr<VarArgHelper> VAHelper; | |||
| 1058 | const TargetLibraryInfo *TLI; | |||
| 1059 | Instruction *FnPrologueEnd; | |||
| 1060 | ||||
| 1061 | // The following flags disable parts of MSan instrumentation based on | |||
| 1062 | // exclusion list contents and command-line options. | |||
| 1063 | bool InsertChecks; | |||
| 1064 | bool PropagateShadow; | |||
| 1065 | bool PoisonStack; | |||
| 1066 | bool PoisonUndef; | |||
| 1067 | ||||
| 1068 | struct ShadowOriginAndInsertPoint { | |||
| 1069 | Value *Shadow; | |||
| 1070 | Value *Origin; | |||
| 1071 | Instruction *OrigIns; | |||
| 1072 | ||||
| 1073 | ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) | |||
| 1074 | : Shadow(S), Origin(O), OrigIns(I) {} | |||
| 1075 | }; | |||
| 1076 | SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; | |||
| 1077 | bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; | |||
| 1078 | SmallSet<AllocaInst *, 16> AllocaSet; | |||
| 1079 | SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; | |||
| 1080 | SmallVector<StoreInst *, 16> StoreList; | |||
| 1081 | ||||
| 1082 | MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, | |||
| 1083 | const TargetLibraryInfo &TLI) | |||
| 1084 | : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { | |||
| 1085 | bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); | |||
| 1086 | InsertChecks = SanitizeFunction; | |||
| 1087 | PropagateShadow = SanitizeFunction; | |||
| 1088 | PoisonStack = SanitizeFunction && ClPoisonStack; | |||
| 1089 | PoisonUndef = SanitizeFunction && ClPoisonUndef; | |||
| 1090 | ||||
| 1091 | // In the presence of unreachable blocks, we may see Phi nodes with | |||
| 1092 | // incoming nodes from such blocks. Since InstVisitor skips unreachable | |||
| 1093 | // blocks, such nodes will not have any shadow value associated with them. | |||
| 1094 | // It's easier to remove unreachable blocks than deal with missing shadow. | |||
| 1095 | removeUnreachableBlocks(F); | |||
| 1096 | ||||
| 1097 | MS.initializeCallbacks(*F.getParent()); | |||
| 1098 | FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) | |||
| 1099 | .CreateIntrinsic(Intrinsic::donothing, {}, {}); | |||
| 1100 | ||||
| 1101 | if (MS.CompileKernel) { | |||
| 1102 | IRBuilder<> IRB(FnPrologueEnd); | |||
| 1103 | insertKmsanPrologue(IRB); | |||
| 1104 | } | |||
| 1105 | ||||
| 1106 | LLVM_DEBUG(if (!InsertChecks) dbgs()do { } while (false) | |||
| 1107 | << "MemorySanitizer is not inserting checks into '"do { } while (false) | |||
| 1108 | << F.getName() << "'\n")do { } while (false); | |||
| 1109 | } | |||
| 1110 | ||||
| 1111 | bool isInPrologue(Instruction &I) { | |||
| 1112 | return I.getParent() == FnPrologueEnd->getParent() && | |||
| 1113 | (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); | |||
| 1114 | } | |||
| 1115 | ||||
| 1116 | Value *updateOrigin(Value *V, IRBuilder<> &IRB) { | |||
| 1117 | if (MS.TrackOrigins <= 1) return V; | |||
| 1118 | return IRB.CreateCall(MS.MsanChainOriginFn, V); | |||
| 1119 | } | |||
| 1120 | ||||
| 1121 | Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { | |||
| 1122 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 1123 | unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); | |||
| 1124 | if (IntptrSize == kOriginSize) return Origin; | |||
| 1125 | assert(IntptrSize == kOriginSize * 2)((void)0); | |||
| 1126 | Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); | |||
| 1127 | return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); | |||
| 1128 | } | |||
| 1129 | ||||
| 1130 | /// Fill memory range with the given origin value. | |||
| 1131 | void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, | |||
| 1132 | unsigned Size, Align Alignment) { | |||
| 1133 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 1134 | const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); | |||
| 1135 | unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); | |||
| 1136 | assert(IntptrAlignment >= kMinOriginAlignment)((void)0); | |||
| 1137 | assert(IntptrSize >= kOriginSize)((void)0); | |||
| 1138 | ||||
| 1139 | unsigned Ofs = 0; | |||
| 1140 | Align CurrentAlignment = Alignment; | |||
| 1141 | if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { | |||
| 1142 | Value *IntptrOrigin = originToIntptr(IRB, Origin); | |||
| 1143 | Value *IntptrOriginPtr = | |||
| 1144 | IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); | |||
| 1145 | for (unsigned i = 0; i < Size / IntptrSize; ++i) { | |||
| 1146 | Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) | |||
| 1147 | : IntptrOriginPtr; | |||
| 1148 | IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); | |||
| 1149 | Ofs += IntptrSize / kOriginSize; | |||
| 1150 | CurrentAlignment = IntptrAlignment; | |||
| 1151 | } | |||
| 1152 | } | |||
| 1153 | ||||
| 1154 | for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { | |||
| 1155 | Value *GEP = | |||
| 1156 | i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; | |||
| 1157 | IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); | |||
| 1158 | CurrentAlignment = kMinOriginAlignment; | |||
| 1159 | } | |||
| 1160 | } | |||
| 1161 | ||||
| 1162 | void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, | |||
| 1163 | Value *OriginPtr, Align Alignment, bool AsCall) { | |||
| 1164 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 1165 | const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); | |||
| 1166 | unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); | |||
| 1167 | Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); | |||
| 1168 | if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { | |||
| 1169 | if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) | |||
| 1170 | paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, | |||
| 1171 | OriginAlignment); | |||
| 1172 | return; | |||
| 1173 | } | |||
| 1174 | ||||
| 1175 | unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); | |||
| 1176 | unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); | |||
| 1177 | if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { | |||
| 1178 | FunctionCallee Fn = MS.MaybeStoreOriginFn[SizeIndex]; | |||
| 1179 | Value *ConvertedShadow2 = | |||
| 1180 | IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); | |||
| 1181 | CallBase *CB = IRB.CreateCall( | |||
| 1182 | Fn, {ConvertedShadow2, | |||
| 1183 | IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), Origin}); | |||
| 1184 | CB->addParamAttr(0, Attribute::ZExt); | |||
| 1185 | CB->addParamAttr(2, Attribute::ZExt); | |||
| 1186 | } else { | |||
| 1187 | Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); | |||
| 1188 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( | |||
| 1189 | Cmp, &*IRB.GetInsertPoint(), false, MS.OriginStoreWeights); | |||
| 1190 | IRBuilder<> IRBNew(CheckTerm); | |||
| 1191 | paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, | |||
| 1192 | OriginAlignment); | |||
| 1193 | } | |||
| 1194 | } | |||
| 1195 | ||||
| 1196 | void materializeStores(bool InstrumentWithCalls) { | |||
| 1197 | for (StoreInst *SI : StoreList) { | |||
| 1198 | IRBuilder<> IRB(SI); | |||
| 1199 | Value *Val = SI->getValueOperand(); | |||
| 1200 | Value *Addr = SI->getPointerOperand(); | |||
| 1201 | Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); | |||
| 1202 | Value *ShadowPtr, *OriginPtr; | |||
| 1203 | Type *ShadowTy = Shadow->getType(); | |||
| 1204 | const Align Alignment = assumeAligned(SI->getAlignment()); | |||
| 1205 | const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); | |||
| 1206 | std::tie(ShadowPtr, OriginPtr) = | |||
| 1207 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); | |||
| 1208 | ||||
| 1209 | StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); | |||
| 1210 | LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n")do { } while (false); | |||
| 1211 | (void)NewSI; | |||
| 1212 | ||||
| 1213 | if (SI->isAtomic()) | |||
| 1214 | SI->setOrdering(addReleaseOrdering(SI->getOrdering())); | |||
| 1215 | ||||
| 1216 | if (MS.TrackOrigins && !SI->isAtomic()) | |||
| 1217 | storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, | |||
| 1218 | OriginAlignment, InstrumentWithCalls); | |||
| 1219 | } | |||
| 1220 | } | |||
| 1221 | ||||
| 1222 | /// Helper function to insert a warning at IRB's current insert point. | |||
| 1223 | void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { | |||
| 1224 | if (!Origin) | |||
| 1225 | Origin = (Value *)IRB.getInt32(0); | |||
| 1226 | assert(Origin->getType()->isIntegerTy())((void)0); | |||
| 1227 | IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); | |||
| 1228 | // FIXME: Insert UnreachableInst if !MS.Recover? | |||
| 1229 | // This may invalidate some of the following checks and needs to be done | |||
| 1230 | // at the very end. | |||
| 1231 | } | |||
| 1232 | ||||
| 1233 | void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, | |||
| 1234 | bool AsCall) { | |||
| 1235 | IRBuilder<> IRB(OrigIns); | |||
| 1236 | LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n")do { } while (false); | |||
| 1237 | Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); | |||
| 1238 | LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n")do { } while (false); | |||
| 1239 | ||||
| 1240 | if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { | |||
| 1241 | if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { | |||
| 1242 | insertWarningFn(IRB, Origin); | |||
| 1243 | } | |||
| 1244 | return; | |||
| 1245 | } | |||
| 1246 | ||||
| 1247 | const DataLayout &DL = OrigIns->getModule()->getDataLayout(); | |||
| 1248 | ||||
| 1249 | unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); | |||
| 1250 | unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); | |||
| 1251 | if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { | |||
| 1252 | FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; | |||
| 1253 | Value *ConvertedShadow2 = | |||
| 1254 | IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); | |||
| 1255 | CallBase *CB = IRB.CreateCall( | |||
| 1256 | Fn, {ConvertedShadow2, | |||
| 1257 | MS.TrackOrigins && Origin ? Origin : (Value *)IRB.getInt32(0)}); | |||
| 1258 | CB->addParamAttr(0, Attribute::ZExt); | |||
| 1259 | CB->addParamAttr(1, Attribute::ZExt); | |||
| 1260 | } else { | |||
| 1261 | Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); | |||
| 1262 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( | |||
| 1263 | Cmp, OrigIns, | |||
| 1264 | /* Unreachable */ !MS.Recover, MS.ColdCallWeights); | |||
| 1265 | ||||
| 1266 | IRB.SetInsertPoint(CheckTerm); | |||
| 1267 | insertWarningFn(IRB, Origin); | |||
| 1268 | LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n")do { } while (false); | |||
| 1269 | } | |||
| 1270 | } | |||
| 1271 | ||||
| 1272 | void materializeChecks(bool InstrumentWithCalls) { | |||
| 1273 | for (const auto &ShadowData : InstrumentationList) { | |||
| 1274 | Instruction *OrigIns = ShadowData.OrigIns; | |||
| 1275 | Value *Shadow = ShadowData.Shadow; | |||
| 1276 | Value *Origin = ShadowData.Origin; | |||
| 1277 | materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); | |||
| 1278 | } | |||
| 1279 | LLVM_DEBUG(dbgs() << "DONE:\n" << F)do { } while (false); | |||
| 1280 | } | |||
| 1281 | ||||
| 1282 | // Returns the last instruction in the new prologue | |||
| 1283 | void insertKmsanPrologue(IRBuilder<> &IRB) { | |||
| 1284 | Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); | |||
| 1285 | Constant *Zero = IRB.getInt32(0); | |||
| 1286 | MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | |||
| 1287 | {Zero, IRB.getInt32(0)}, "param_shadow"); | |||
| 1288 | MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | |||
| 1289 | {Zero, IRB.getInt32(1)}, "retval_shadow"); | |||
| 1290 | MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | |||
| 1291 | {Zero, IRB.getInt32(2)}, "va_arg_shadow"); | |||
| 1292 | MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | |||
| 1293 | {Zero, IRB.getInt32(3)}, "va_arg_origin"); | |||
| 1294 | MS.VAArgOverflowSizeTLS = | |||
| 1295 | IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | |||
| 1296 | {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); | |||
| 1297 | MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | |||
| 1298 | {Zero, IRB.getInt32(5)}, "param_origin"); | |||
| 1299 | MS.RetvalOriginTLS = | |||
| 1300 | IRB.CreateGEP(MS.MsanContextStateTy, ContextState, | |||
| 1301 | {Zero, IRB.getInt32(6)}, "retval_origin"); | |||
| 1302 | } | |||
| 1303 | ||||
| 1304 | /// Add MemorySanitizer instrumentation to a function. | |||
| 1305 | bool runOnFunction() { | |||
| 1306 | // Iterate all BBs in depth-first order and create shadow instructions | |||
| 1307 | // for all instructions (where applicable). | |||
| 1308 | // For PHI nodes we create dummy shadow PHIs which will be finalized later. | |||
| 1309 | for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) | |||
| 1310 | visit(*BB); | |||
| 1311 | ||||
| 1312 | // Finalize PHI nodes. | |||
| 1313 | for (PHINode *PN : ShadowPHINodes) { | |||
| 1314 | PHINode *PNS = cast<PHINode>(getShadow(PN)); | |||
| 1315 | PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; | |||
| 1316 | size_t NumValues = PN->getNumIncomingValues(); | |||
| 1317 | for (size_t v = 0; v < NumValues; v++) { | |||
| 1318 | PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); | |||
| 1319 | if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); | |||
| 1320 | } | |||
| 1321 | } | |||
| 1322 | ||||
| 1323 | VAHelper->finalizeInstrumentation(); | |||
| 1324 | ||||
| 1325 | // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to | |||
| 1326 | // instrumenting only allocas. | |||
| 1327 | if (InstrumentLifetimeStart) { | |||
| 1328 | for (auto Item : LifetimeStartList) { | |||
| 1329 | instrumentAlloca(*Item.second, Item.first); | |||
| 1330 | AllocaSet.erase(Item.second); | |||
| 1331 | } | |||
| 1332 | } | |||
| 1333 | // Poison the allocas for which we didn't instrument the corresponding | |||
| 1334 | // lifetime intrinsics. | |||
| 1335 | for (AllocaInst *AI : AllocaSet) | |||
| 1336 | instrumentAlloca(*AI); | |||
| 1337 | ||||
| 1338 | bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && | |||
| 1339 | InstrumentationList.size() + StoreList.size() > | |||
| 1340 | (unsigned)ClInstrumentationWithCallThreshold; | |||
| 1341 | ||||
| 1342 | // Insert shadow value checks. | |||
| 1343 | materializeChecks(InstrumentWithCalls); | |||
| 1344 | ||||
| 1345 | // Delayed instrumentation of StoreInst. | |||
| 1346 | // This may not add new address checks. | |||
| 1347 | materializeStores(InstrumentWithCalls); | |||
| 1348 | ||||
| 1349 | return true; | |||
| 1350 | } | |||
| 1351 | ||||
| 1352 | /// Compute the shadow type that corresponds to a given Value. | |||
| 1353 | Type *getShadowTy(Value *V) { | |||
| 1354 | return getShadowTy(V->getType()); | |||
| 1355 | } | |||
| 1356 | ||||
| 1357 | /// Compute the shadow type that corresponds to a given Type. | |||
| 1358 | Type *getShadowTy(Type *OrigTy) { | |||
| 1359 | if (!OrigTy->isSized()) { | |||
| 1360 | return nullptr; | |||
| 1361 | } | |||
| 1362 | // For integer type, shadow is the same as the original type. | |||
| 1363 | // This may return weird-sized types like i1. | |||
| 1364 | if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) | |||
| 1365 | return IT; | |||
| 1366 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 1367 | if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { | |||
| 1368 | uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); | |||
| 1369 | return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), | |||
| 1370 | cast<FixedVectorType>(VT)->getNumElements()); | |||
| 1371 | } | |||
| 1372 | if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { | |||
| 1373 | return ArrayType::get(getShadowTy(AT->getElementType()), | |||
| 1374 | AT->getNumElements()); | |||
| 1375 | } | |||
| 1376 | if (StructType *ST = dyn_cast<StructType>(OrigTy)) { | |||
| 1377 | SmallVector<Type*, 4> Elements; | |||
| 1378 | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) | |||
| 1379 | Elements.push_back(getShadowTy(ST->getElementType(i))); | |||
| 1380 | StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); | |||
| 1381 | LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n")do { } while (false); | |||
| 1382 | return Res; | |||
| 1383 | } | |||
| 1384 | uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); | |||
| 1385 | return IntegerType::get(*MS.C, TypeSize); | |||
| 1386 | } | |||
| 1387 | ||||
| 1388 | /// Flatten a vector type. | |||
| 1389 | Type *getShadowTyNoVec(Type *ty) { | |||
| 1390 | if (VectorType *vt = dyn_cast<VectorType>(ty)) | |||
| 1391 | return IntegerType::get(*MS.C, | |||
| 1392 | vt->getPrimitiveSizeInBits().getFixedSize()); | |||
| 1393 | return ty; | |||
| 1394 | } | |||
| 1395 | ||||
| 1396 | /// Extract combined shadow of struct elements as a bool | |||
| 1397 | Value *collapseStructShadow(StructType *Struct, Value *Shadow, | |||
| 1398 | IRBuilder<> &IRB) { | |||
| 1399 | Value *FalseVal = IRB.getIntN(/* width */ 1, /* value */ 0); | |||
| 1400 | Value *Aggregator = FalseVal; | |||
| 1401 | ||||
| 1402 | for (unsigned Idx = 0; Idx < Struct->getNumElements(); Idx++) { | |||
| 1403 | // Combine by ORing together each element's bool shadow | |||
| 1404 | Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); | |||
| 1405 | Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); | |||
| 1406 | Value *ShadowBool = convertToBool(ShadowInner, IRB); | |||
| 1407 | ||||
| 1408 | if (Aggregator != FalseVal) | |||
| 1409 | Aggregator = IRB.CreateOr(Aggregator, ShadowBool); | |||
| 1410 | else | |||
| 1411 | Aggregator = ShadowBool; | |||
| 1412 | } | |||
| 1413 | ||||
| 1414 | return Aggregator; | |||
| 1415 | } | |||
| 1416 | ||||
| 1417 | // Extract combined shadow of array elements | |||
| 1418 | Value *collapseArrayShadow(ArrayType *Array, Value *Shadow, | |||
| 1419 | IRBuilder<> &IRB) { | |||
| 1420 | if (!Array->getNumElements()) | |||
| 1421 | return IRB.getIntN(/* width */ 1, /* value */ 0); | |||
| 1422 | ||||
| 1423 | Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); | |||
| 1424 | Value *Aggregator = convertShadowToScalar(FirstItem, IRB); | |||
| 1425 | ||||
| 1426 | for (unsigned Idx = 1; Idx < Array->getNumElements(); Idx++) { | |||
| 1427 | Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); | |||
| 1428 | Value *ShadowInner = convertShadowToScalar(ShadowItem, IRB); | |||
| 1429 | Aggregator = IRB.CreateOr(Aggregator, ShadowInner); | |||
| 1430 | } | |||
| 1431 | return Aggregator; | |||
| 1432 | } | |||
| 1433 | ||||
| 1434 | /// Convert a shadow value to it's flattened variant. The resulting | |||
| 1435 | /// shadow may not necessarily have the same bit width as the input | |||
| 1436 | /// value, but it will always be comparable to zero. | |||
| 1437 | Value *convertShadowToScalar(Value *V, IRBuilder<> &IRB) { | |||
| 1438 | if (StructType *Struct = dyn_cast<StructType>(V->getType())) | |||
| 1439 | return collapseStructShadow(Struct, V, IRB); | |||
| 1440 | if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) | |||
| 1441 | return collapseArrayShadow(Array, V, IRB); | |||
| 1442 | Type *Ty = V->getType(); | |||
| 1443 | Type *NoVecTy = getShadowTyNoVec(Ty); | |||
| 1444 | if (Ty == NoVecTy) return V; | |||
| 1445 | return IRB.CreateBitCast(V, NoVecTy); | |||
| 1446 | } | |||
| 1447 | ||||
| 1448 | // Convert a scalar value to an i1 by comparing with 0 | |||
| 1449 | Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { | |||
| 1450 | Type *VTy = V->getType(); | |||
| 1451 | assert(VTy->isIntegerTy())((void)0); | |||
| 1452 | if (VTy->getIntegerBitWidth() == 1) | |||
| 1453 | // Just converting a bool to a bool, so do nothing. | |||
| 1454 | return V; | |||
| 1455 | return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); | |||
| 1456 | } | |||
| 1457 | ||||
| 1458 | /// Compute the integer shadow offset that corresponds to a given | |||
| 1459 | /// application address. | |||
| 1460 | /// | |||
| 1461 | /// Offset = (Addr & ~AndMask) ^ XorMask | |||
| 1462 | Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { | |||
| 1463 | Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); | |||
| 1464 | ||||
| 1465 | uint64_t AndMask = MS.MapParams->AndMask; | |||
| 1466 | if (AndMask) | |||
| 1467 | OffsetLong = | |||
| 1468 | IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); | |||
| 1469 | ||||
| 1470 | uint64_t XorMask = MS.MapParams->XorMask; | |||
| 1471 | if (XorMask) | |||
| 1472 | OffsetLong = | |||
| 1473 | IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); | |||
| 1474 | return OffsetLong; | |||
| 1475 | } | |||
| 1476 | ||||
| 1477 | /// Compute the shadow and origin addresses corresponding to a given | |||
| 1478 | /// application address. | |||
| 1479 | /// | |||
| 1480 | /// Shadow = ShadowBase + Offset | |||
| 1481 | /// Origin = (OriginBase + Offset) & ~3ULL | |||
| 1482 | std::pair<Value *, Value *> | |||
| 1483 | getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, | |||
| 1484 | MaybeAlign Alignment) { | |||
| 1485 | Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); | |||
| 1486 | Value *ShadowLong = ShadowOffset; | |||
| 1487 | uint64_t ShadowBase = MS.MapParams->ShadowBase; | |||
| 1488 | if (ShadowBase != 0) { | |||
| 1489 | ShadowLong = | |||
| 1490 | IRB.CreateAdd(ShadowLong, | |||
| 1491 | ConstantInt::get(MS.IntptrTy, ShadowBase)); | |||
| 1492 | } | |||
| 1493 | Value *ShadowPtr = | |||
| 1494 | IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); | |||
| 1495 | Value *OriginPtr = nullptr; | |||
| 1496 | if (MS.TrackOrigins) { | |||
| 1497 | Value *OriginLong = ShadowOffset; | |||
| 1498 | uint64_t OriginBase = MS.MapParams->OriginBase; | |||
| 1499 | if (OriginBase != 0) | |||
| 1500 | OriginLong = IRB.CreateAdd(OriginLong, | |||
| 1501 | ConstantInt::get(MS.IntptrTy, OriginBase)); | |||
| 1502 | if (!Alignment || *Alignment < kMinOriginAlignment) { | |||
| 1503 | uint64_t Mask = kMinOriginAlignment.value() - 1; | |||
| 1504 | OriginLong = | |||
| 1505 | IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); | |||
| 1506 | } | |||
| 1507 | OriginPtr = | |||
| 1508 | IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); | |||
| 1509 | } | |||
| 1510 | return std::make_pair(ShadowPtr, OriginPtr); | |||
| 1511 | } | |||
| 1512 | ||||
| 1513 | std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, | |||
| 1514 | IRBuilder<> &IRB, | |||
| 1515 | Type *ShadowTy, | |||
| 1516 | bool isStore) { | |||
| 1517 | Value *ShadowOriginPtrs; | |||
| 1518 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 1519 | int Size = DL.getTypeStoreSize(ShadowTy); | |||
| 1520 | ||||
| 1521 | FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); | |||
| 1522 | Value *AddrCast = | |||
| 1523 | IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); | |||
| 1524 | if (Getter) { | |||
| 1525 | ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); | |||
| 1526 | } else { | |||
| 1527 | Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); | |||
| 1528 | ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN | |||
| 1529 | : MS.MsanMetadataPtrForLoadN, | |||
| 1530 | {AddrCast, SizeVal}); | |||
| 1531 | } | |||
| 1532 | Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); | |||
| 1533 | ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); | |||
| 1534 | Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); | |||
| 1535 | ||||
| 1536 | return std::make_pair(ShadowPtr, OriginPtr); | |||
| 1537 | } | |||
| 1538 | ||||
| 1539 | std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, | |||
| 1540 | Type *ShadowTy, | |||
| 1541 | MaybeAlign Alignment, | |||
| 1542 | bool isStore) { | |||
| 1543 | if (MS.CompileKernel) | |||
| 1544 | return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); | |||
| 1545 | return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); | |||
| 1546 | } | |||
| 1547 | ||||
| 1548 | /// Compute the shadow address for a given function argument. | |||
| 1549 | /// | |||
| 1550 | /// Shadow = ParamTLS+ArgOffset. | |||
| 1551 | Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, | |||
| 1552 | int ArgOffset) { | |||
| 1553 | Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); | |||
| 1554 | if (ArgOffset) | |||
| 1555 | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 1556 | return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), | |||
| 1557 | "_msarg"); | |||
| 1558 | } | |||
| 1559 | ||||
| 1560 | /// Compute the origin address for a given function argument. | |||
| 1561 | Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, | |||
| 1562 | int ArgOffset) { | |||
| 1563 | if (!MS.TrackOrigins) | |||
| 1564 | return nullptr; | |||
| 1565 | Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); | |||
| 1566 | if (ArgOffset) | |||
| 1567 | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 1568 | return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), | |||
| 1569 | "_msarg_o"); | |||
| 1570 | } | |||
| 1571 | ||||
| 1572 | /// Compute the shadow address for a retval. | |||
| 1573 | Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { | |||
| 1574 | return IRB.CreatePointerCast(MS.RetvalTLS, | |||
| 1575 | PointerType::get(getShadowTy(A), 0), | |||
| 1576 | "_msret"); | |||
| 1577 | } | |||
| 1578 | ||||
| 1579 | /// Compute the origin address for a retval. | |||
| 1580 | Value *getOriginPtrForRetval(IRBuilder<> &IRB) { | |||
| 1581 | // We keep a single origin for the entire retval. Might be too optimistic. | |||
| 1582 | return MS.RetvalOriginTLS; | |||
| 1583 | } | |||
| 1584 | ||||
| 1585 | /// Set SV to be the shadow value for V. | |||
| 1586 | void setShadow(Value *V, Value *SV) { | |||
| 1587 | assert(!ShadowMap.count(V) && "Values may only have one shadow")((void)0); | |||
| 1588 | ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); | |||
| 1589 | } | |||
| 1590 | ||||
| 1591 | /// Set Origin to be the origin value for V. | |||
| 1592 | void setOrigin(Value *V, Value *Origin) { | |||
| 1593 | if (!MS.TrackOrigins) return; | |||
| 1594 | assert(!OriginMap.count(V) && "Values may only have one origin")((void)0); | |||
| 1595 | LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n")do { } while (false); | |||
| 1596 | OriginMap[V] = Origin; | |||
| 1597 | } | |||
| 1598 | ||||
| 1599 | Constant *getCleanShadow(Type *OrigTy) { | |||
| 1600 | Type *ShadowTy = getShadowTy(OrigTy); | |||
| 1601 | if (!ShadowTy) | |||
| 1602 | return nullptr; | |||
| 1603 | return Constant::getNullValue(ShadowTy); | |||
| 1604 | } | |||
| 1605 | ||||
| 1606 | /// Create a clean shadow value for a given value. | |||
| 1607 | /// | |||
| 1608 | /// Clean shadow (all zeroes) means all bits of the value are defined | |||
| 1609 | /// (initialized). | |||
| 1610 | Constant *getCleanShadow(Value *V) { | |||
| 1611 | return getCleanShadow(V->getType()); | |||
| 1612 | } | |||
| 1613 | ||||
| 1614 | /// Create a dirty shadow of a given shadow type. | |||
| 1615 | Constant *getPoisonedShadow(Type *ShadowTy) { | |||
| 1616 | assert(ShadowTy)((void)0); | |||
| 1617 | if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) | |||
| 1618 | return Constant::getAllOnesValue(ShadowTy); | |||
| 1619 | if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { | |||
| 1620 | SmallVector<Constant *, 4> Vals(AT->getNumElements(), | |||
| 1621 | getPoisonedShadow(AT->getElementType())); | |||
| 1622 | return ConstantArray::get(AT, Vals); | |||
| 1623 | } | |||
| 1624 | if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { | |||
| 1625 | SmallVector<Constant *, 4> Vals; | |||
| 1626 | for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) | |||
| 1627 | Vals.push_back(getPoisonedShadow(ST->getElementType(i))); | |||
| 1628 | return ConstantStruct::get(ST, Vals); | |||
| 1629 | } | |||
| 1630 | llvm_unreachable("Unexpected shadow type")__builtin_unreachable(); | |||
| 1631 | } | |||
| 1632 | ||||
| 1633 | /// Create a dirty shadow for a given value. | |||
| 1634 | Constant *getPoisonedShadow(Value *V) { | |||
| 1635 | Type *ShadowTy = getShadowTy(V); | |||
| 1636 | if (!ShadowTy) | |||
| 1637 | return nullptr; | |||
| 1638 | return getPoisonedShadow(ShadowTy); | |||
| 1639 | } | |||
| 1640 | ||||
| 1641 | /// Create a clean (zero) origin. | |||
| 1642 | Value *getCleanOrigin() { | |||
| 1643 | return Constant::getNullValue(MS.OriginTy); | |||
| 1644 | } | |||
| 1645 | ||||
| 1646 | /// Get the shadow value for a given Value. | |||
| 1647 | /// | |||
| 1648 | /// This function either returns the value set earlier with setShadow, | |||
| 1649 | /// or extracts if from ParamTLS (for function arguments). | |||
| 1650 | Value *getShadow(Value *V) { | |||
| 1651 | if (!PropagateShadow) return getCleanShadow(V); | |||
| 1652 | if (Instruction *I = dyn_cast<Instruction>(V)) { | |||
| 1653 | if (I->getMetadata("nosanitize")) | |||
| 1654 | return getCleanShadow(V); | |||
| 1655 | // For instructions the shadow is already stored in the map. | |||
| 1656 | Value *Shadow = ShadowMap[V]; | |||
| 1657 | if (!Shadow) { | |||
| 1658 | LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent()))do { } while (false); | |||
| 1659 | (void)I; | |||
| 1660 | assert(Shadow && "No shadow for a value")((void)0); | |||
| 1661 | } | |||
| 1662 | return Shadow; | |||
| 1663 | } | |||
| 1664 | if (UndefValue *U = dyn_cast<UndefValue>(V)) { | |||
| 1665 | Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); | |||
| 1666 | LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n")do { } while (false); | |||
| 1667 | (void)U; | |||
| 1668 | return AllOnes; | |||
| 1669 | } | |||
| 1670 | if (Argument *A = dyn_cast<Argument>(V)) { | |||
| 1671 | // For arguments we compute the shadow on demand and store it in the map. | |||
| 1672 | Value **ShadowPtr = &ShadowMap[V]; | |||
| 1673 | if (*ShadowPtr) | |||
| 1674 | return *ShadowPtr; | |||
| 1675 | Function *F = A->getParent(); | |||
| 1676 | IRBuilder<> EntryIRB(FnPrologueEnd); | |||
| 1677 | unsigned ArgOffset = 0; | |||
| 1678 | const DataLayout &DL = F->getParent()->getDataLayout(); | |||
| 1679 | for (auto &FArg : F->args()) { | |||
| 1680 | if (!FArg.getType()->isSized()) { | |||
| 1681 | LLVM_DEBUG(dbgs() << "Arg is not sized\n")do { } while (false); | |||
| 1682 | continue; | |||
| 1683 | } | |||
| 1684 | ||||
| 1685 | bool FArgByVal = FArg.hasByValAttr(); | |||
| 1686 | bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); | |||
| 1687 | bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; | |||
| 1688 | unsigned Size = | |||
| 1689 | FArg.hasByValAttr() | |||
| 1690 | ? DL.getTypeAllocSize(FArg.getParamByValType()) | |||
| 1691 | : DL.getTypeAllocSize(FArg.getType()); | |||
| 1692 | ||||
| 1693 | if (A == &FArg) { | |||
| 1694 | bool Overflow = ArgOffset + Size > kParamTLSSize; | |||
| 1695 | if (FArgEagerCheck) { | |||
| 1696 | *ShadowPtr = getCleanShadow(V); | |||
| 1697 | setOrigin(A, getCleanOrigin()); | |||
| 1698 | continue; | |||
| 1699 | } else if (FArgByVal) { | |||
| 1700 | Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); | |||
| 1701 | // ByVal pointer itself has clean shadow. We copy the actual | |||
| 1702 | // argument shadow to the underlying memory. | |||
| 1703 | // Figure out maximal valid memcpy alignment. | |||
| 1704 | const Align ArgAlign = DL.getValueOrABITypeAlignment( | |||
| 1705 | MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); | |||
| 1706 | Value *CpShadowPtr = | |||
| 1707 | getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, | |||
| 1708 | /*isStore*/ true) | |||
| 1709 | .first; | |||
| 1710 | // TODO(glider): need to copy origins. | |||
| 1711 | if (Overflow) { | |||
| 1712 | // ParamTLS overflow. | |||
| 1713 | EntryIRB.CreateMemSet( | |||
| 1714 | CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), | |||
| 1715 | Size, ArgAlign); | |||
| 1716 | } else { | |||
| 1717 | const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); | |||
| 1718 | Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, | |||
| 1719 | CopyAlign, Size); | |||
| 1720 | LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n")do { } while (false); | |||
| 1721 | (void)Cpy; | |||
| 1722 | } | |||
| 1723 | *ShadowPtr = getCleanShadow(V); | |||
| 1724 | } else { | |||
| 1725 | // Shadow over TLS | |||
| 1726 | Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); | |||
| 1727 | if (Overflow) { | |||
| 1728 | // ParamTLS overflow. | |||
| 1729 | *ShadowPtr = getCleanShadow(V); | |||
| 1730 | } else { | |||
| 1731 | *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, | |||
| 1732 | kShadowTLSAlignment); | |||
| 1733 | } | |||
| 1734 | } | |||
| 1735 | LLVM_DEBUG(dbgs()do { } while (false) | |||
| 1736 | << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n")do { } while (false); | |||
| 1737 | if (MS.TrackOrigins && !Overflow) { | |||
| 1738 | Value *OriginPtr = | |||
| 1739 | getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); | |||
| 1740 | setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); | |||
| 1741 | } else { | |||
| 1742 | setOrigin(A, getCleanOrigin()); | |||
| 1743 | } | |||
| 1744 | ||||
| 1745 | break; | |||
| 1746 | } | |||
| 1747 | ||||
| 1748 | if (!FArgEagerCheck) | |||
| 1749 | ArgOffset += alignTo(Size, kShadowTLSAlignment); | |||
| 1750 | } | |||
| 1751 | assert(*ShadowPtr && "Could not find shadow for an argument")((void)0); | |||
| 1752 | return *ShadowPtr; | |||
| 1753 | } | |||
| 1754 | // For everything else the shadow is zero. | |||
| 1755 | return getCleanShadow(V); | |||
| 1756 | } | |||
| 1757 | ||||
| 1758 | /// Get the shadow for i-th argument of the instruction I. | |||
| 1759 | Value *getShadow(Instruction *I, int i) { | |||
| 1760 | return getShadow(I->getOperand(i)); | |||
| 1761 | } | |||
| 1762 | ||||
| 1763 | /// Get the origin for a value. | |||
| 1764 | Value *getOrigin(Value *V) { | |||
| 1765 | if (!MS.TrackOrigins) return nullptr; | |||
| 1766 | if (!PropagateShadow) return getCleanOrigin(); | |||
| 1767 | if (isa<Constant>(V)) return getCleanOrigin(); | |||
| 1768 | assert((isa<Instruction>(V) || isa<Argument>(V)) &&((void)0) | |||
| 1769 | "Unexpected value type in getOrigin()")((void)0); | |||
| 1770 | if (Instruction *I = dyn_cast<Instruction>(V)) { | |||
| 1771 | if (I->getMetadata("nosanitize")) | |||
| 1772 | return getCleanOrigin(); | |||
| 1773 | } | |||
| 1774 | Value *Origin = OriginMap[V]; | |||
| 1775 | assert(Origin && "Missing origin")((void)0); | |||
| 1776 | return Origin; | |||
| 1777 | } | |||
| 1778 | ||||
| 1779 | /// Get the origin for i-th argument of the instruction I. | |||
| 1780 | Value *getOrigin(Instruction *I, int i) { | |||
| 1781 | return getOrigin(I->getOperand(i)); | |||
| 1782 | } | |||
| 1783 | ||||
| 1784 | /// Remember the place where a shadow check should be inserted. | |||
| 1785 | /// | |||
| 1786 | /// This location will be later instrumented with a check that will print a | |||
| 1787 | /// UMR warning in runtime if the shadow value is not 0. | |||
| 1788 | void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { | |||
| 1789 | assert(Shadow)((void)0); | |||
| 1790 | if (!InsertChecks) return; | |||
| 1791 | #ifndef NDEBUG1 | |||
| 1792 | Type *ShadowTy = Shadow->getType(); | |||
| 1793 | assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) ||((void)0) | |||
| 1794 | isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) &&((void)0) | |||
| 1795 | "Can only insert checks for integer, vector, and aggregate shadow "((void)0) | |||
| 1796 | "types")((void)0); | |||
| 1797 | #endif | |||
| 1798 | InstrumentationList.push_back( | |||
| 1799 | ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); | |||
| 1800 | } | |||
| 1801 | ||||
| 1802 | /// Remember the place where a shadow check should be inserted. | |||
| 1803 | /// | |||
| 1804 | /// This location will be later instrumented with a check that will print a | |||
| 1805 | /// UMR warning in runtime if the value is not fully defined. | |||
| 1806 | void insertShadowCheck(Value *Val, Instruction *OrigIns) { | |||
| 1807 | assert(Val)((void)0); | |||
| 1808 | Value *Shadow, *Origin; | |||
| 1809 | if (ClCheckConstantShadow) { | |||
| 1810 | Shadow = getShadow(Val); | |||
| 1811 | if (!Shadow) return; | |||
| 1812 | Origin = getOrigin(Val); | |||
| 1813 | } else { | |||
| 1814 | Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); | |||
| 1815 | if (!Shadow) return; | |||
| 1816 | Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); | |||
| 1817 | } | |||
| 1818 | insertShadowCheck(Shadow, Origin, OrigIns); | |||
| 1819 | } | |||
| 1820 | ||||
| 1821 | AtomicOrdering addReleaseOrdering(AtomicOrdering a) { | |||
| 1822 | switch (a) { | |||
| 1823 | case AtomicOrdering::NotAtomic: | |||
| 1824 | return AtomicOrdering::NotAtomic; | |||
| 1825 | case AtomicOrdering::Unordered: | |||
| 1826 | case AtomicOrdering::Monotonic: | |||
| 1827 | case AtomicOrdering::Release: | |||
| 1828 | return AtomicOrdering::Release; | |||
| 1829 | case AtomicOrdering::Acquire: | |||
| 1830 | case AtomicOrdering::AcquireRelease: | |||
| 1831 | return AtomicOrdering::AcquireRelease; | |||
| 1832 | case AtomicOrdering::SequentiallyConsistent: | |||
| 1833 | return AtomicOrdering::SequentiallyConsistent; | |||
| 1834 | } | |||
| 1835 | llvm_unreachable("Unknown ordering")__builtin_unreachable(); | |||
| 1836 | } | |||
| 1837 | ||||
| 1838 | Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { | |||
| 1839 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; | |||
| 1840 | uint32_t OrderingTable[NumOrderings] = {}; | |||
| 1841 | ||||
| 1842 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = | |||
| 1843 | OrderingTable[(int)AtomicOrderingCABI::release] = | |||
| 1844 | (int)AtomicOrderingCABI::release; | |||
| 1845 | OrderingTable[(int)AtomicOrderingCABI::consume] = | |||
| 1846 | OrderingTable[(int)AtomicOrderingCABI::acquire] = | |||
| 1847 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = | |||
| 1848 | (int)AtomicOrderingCABI::acq_rel; | |||
| 1849 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = | |||
| 1850 | (int)AtomicOrderingCABI::seq_cst; | |||
| 1851 | ||||
| 1852 | return ConstantDataVector::get(IRB.getContext(), | |||
| 1853 | makeArrayRef(OrderingTable, NumOrderings)); | |||
| 1854 | } | |||
| 1855 | ||||
| 1856 | AtomicOrdering addAcquireOrdering(AtomicOrdering a) { | |||
| 1857 | switch (a) { | |||
| 1858 | case AtomicOrdering::NotAtomic: | |||
| 1859 | return AtomicOrdering::NotAtomic; | |||
| 1860 | case AtomicOrdering::Unordered: | |||
| 1861 | case AtomicOrdering::Monotonic: | |||
| 1862 | case AtomicOrdering::Acquire: | |||
| 1863 | return AtomicOrdering::Acquire; | |||
| 1864 | case AtomicOrdering::Release: | |||
| 1865 | case AtomicOrdering::AcquireRelease: | |||
| 1866 | return AtomicOrdering::AcquireRelease; | |||
| 1867 | case AtomicOrdering::SequentiallyConsistent: | |||
| 1868 | return AtomicOrdering::SequentiallyConsistent; | |||
| 1869 | } | |||
| 1870 | llvm_unreachable("Unknown ordering")__builtin_unreachable(); | |||
| 1871 | } | |||
| 1872 | ||||
| 1873 | Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { | |||
| 1874 | constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; | |||
| 1875 | uint32_t OrderingTable[NumOrderings] = {}; | |||
| 1876 | ||||
| 1877 | OrderingTable[(int)AtomicOrderingCABI::relaxed] = | |||
| 1878 | OrderingTable[(int)AtomicOrderingCABI::acquire] = | |||
| 1879 | OrderingTable[(int)AtomicOrderingCABI::consume] = | |||
| 1880 | (int)AtomicOrderingCABI::acquire; | |||
| 1881 | OrderingTable[(int)AtomicOrderingCABI::release] = | |||
| 1882 | OrderingTable[(int)AtomicOrderingCABI::acq_rel] = | |||
| 1883 | (int)AtomicOrderingCABI::acq_rel; | |||
| 1884 | OrderingTable[(int)AtomicOrderingCABI::seq_cst] = | |||
| 1885 | (int)AtomicOrderingCABI::seq_cst; | |||
| 1886 | ||||
| 1887 | return ConstantDataVector::get(IRB.getContext(), | |||
| 1888 | makeArrayRef(OrderingTable, NumOrderings)); | |||
| 1889 | } | |||
| 1890 | ||||
| 1891 | // ------------------- Visitors. | |||
| 1892 | using InstVisitor<MemorySanitizerVisitor>::visit; | |||
| 1893 | void visit(Instruction &I) { | |||
| 1894 | if (I.getMetadata("nosanitize")) | |||
| 1895 | return; | |||
| 1896 | // Don't want to visit if we're in the prologue | |||
| 1897 | if (isInPrologue(I)) | |||
| 1898 | return; | |||
| 1899 | InstVisitor<MemorySanitizerVisitor>::visit(I); | |||
| 1900 | } | |||
| 1901 | ||||
| 1902 | /// Instrument LoadInst | |||
| 1903 | /// | |||
| 1904 | /// Loads the corresponding shadow and (optionally) origin. | |||
| 1905 | /// Optionally, checks that the load address is fully defined. | |||
| 1906 | void visitLoadInst(LoadInst &I) { | |||
| 1907 | assert(I.getType()->isSized() && "Load type must have size")((void)0); | |||
| 1908 | assert(!I.getMetadata("nosanitize"))((void)0); | |||
| 1909 | IRBuilder<> IRB(I.getNextNode()); | |||
| 1910 | Type *ShadowTy = getShadowTy(&I); | |||
| 1911 | Value *Addr = I.getPointerOperand(); | |||
| 1912 | Value *ShadowPtr = nullptr, *OriginPtr = nullptr; | |||
| 1913 | const Align Alignment = assumeAligned(I.getAlignment()); | |||
| ||||
| 1914 | if (PropagateShadow) { | |||
| 1915 | std::tie(ShadowPtr, OriginPtr) = | |||
| 1916 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); | |||
| 1917 | setShadow(&I, | |||
| 1918 | IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); | |||
| 1919 | } else { | |||
| 1920 | setShadow(&I, getCleanShadow(&I)); | |||
| 1921 | } | |||
| 1922 | ||||
| 1923 | if (ClCheckAccessAddress) | |||
| 1924 | insertShadowCheck(I.getPointerOperand(), &I); | |||
| 1925 | ||||
| 1926 | if (I.isAtomic()) | |||
| 1927 | I.setOrdering(addAcquireOrdering(I.getOrdering())); | |||
| 1928 | ||||
| 1929 | if (MS.TrackOrigins) { | |||
| 1930 | if (PropagateShadow) { | |||
| 1931 | const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); | |||
| 1932 | setOrigin( | |||
| 1933 | &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); | |||
| 1934 | } else { | |||
| 1935 | setOrigin(&I, getCleanOrigin()); | |||
| 1936 | } | |||
| 1937 | } | |||
| 1938 | } | |||
| 1939 | ||||
| 1940 | /// Instrument StoreInst | |||
| 1941 | /// | |||
| 1942 | /// Stores the corresponding shadow and (optionally) origin. | |||
| 1943 | /// Optionally, checks that the store address is fully defined. | |||
| 1944 | void visitStoreInst(StoreInst &I) { | |||
| 1945 | StoreList.push_back(&I); | |||
| 1946 | if (ClCheckAccessAddress) | |||
| 1947 | insertShadowCheck(I.getPointerOperand(), &I); | |||
| 1948 | } | |||
| 1949 | ||||
| 1950 | void handleCASOrRMW(Instruction &I) { | |||
| 1951 | assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I))((void)0); | |||
| 1952 | ||||
| 1953 | IRBuilder<> IRB(&I); | |||
| 1954 | Value *Addr = I.getOperand(0); | |||
| 1955 | Value *Val = I.getOperand(1); | |||
| 1956 | Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, Val->getType(), Align(1), | |||
| 1957 | /*isStore*/ true) | |||
| 1958 | .first; | |||
| 1959 | ||||
| 1960 | if (ClCheckAccessAddress) | |||
| 1961 | insertShadowCheck(Addr, &I); | |||
| 1962 | ||||
| 1963 | // Only test the conditional argument of cmpxchg instruction. | |||
| 1964 | // The other argument can potentially be uninitialized, but we can not | |||
| 1965 | // detect this situation reliably without possible false positives. | |||
| 1966 | if (isa<AtomicCmpXchgInst>(I)) | |||
| 1967 | insertShadowCheck(Val, &I); | |||
| 1968 | ||||
| 1969 | IRB.CreateStore(getCleanShadow(Val), ShadowPtr); | |||
| 1970 | ||||
| 1971 | setShadow(&I, getCleanShadow(&I)); | |||
| 1972 | setOrigin(&I, getCleanOrigin()); | |||
| 1973 | } | |||
| 1974 | ||||
| 1975 | void visitAtomicRMWInst(AtomicRMWInst &I) { | |||
| 1976 | handleCASOrRMW(I); | |||
| 1977 | I.setOrdering(addReleaseOrdering(I.getOrdering())); | |||
| 1978 | } | |||
| 1979 | ||||
| 1980 | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { | |||
| 1981 | handleCASOrRMW(I); | |||
| 1982 | I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); | |||
| 1983 | } | |||
| 1984 | ||||
| 1985 | // Vector manipulation. | |||
| 1986 | void visitExtractElementInst(ExtractElementInst &I) { | |||
| 1987 | insertShadowCheck(I.getOperand(1), &I); | |||
| 1988 | IRBuilder<> IRB(&I); | |||
| 1989 | setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), | |||
| 1990 | "_msprop")); | |||
| 1991 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 1992 | } | |||
| 1993 | ||||
| 1994 | void visitInsertElementInst(InsertElementInst &I) { | |||
| 1995 | insertShadowCheck(I.getOperand(2), &I); | |||
| 1996 | IRBuilder<> IRB(&I); | |||
| 1997 | setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), | |||
| 1998 | I.getOperand(2), "_msprop")); | |||
| 1999 | setOriginForNaryOp(I); | |||
| 2000 | } | |||
| 2001 | ||||
| 2002 | void visitShuffleVectorInst(ShuffleVectorInst &I) { | |||
| 2003 | IRBuilder<> IRB(&I); | |||
| 2004 | setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), | |||
| 2005 | I.getShuffleMask(), "_msprop")); | |||
| 2006 | setOriginForNaryOp(I); | |||
| 2007 | } | |||
| 2008 | ||||
| 2009 | // Casts. | |||
| 2010 | void visitSExtInst(SExtInst &I) { | |||
| 2011 | IRBuilder<> IRB(&I); | |||
| 2012 | setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); | |||
| 2013 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 2014 | } | |||
| 2015 | ||||
| 2016 | void visitZExtInst(ZExtInst &I) { | |||
| 2017 | IRBuilder<> IRB(&I); | |||
| 2018 | setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); | |||
| 2019 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 2020 | } | |||
| 2021 | ||||
| 2022 | void visitTruncInst(TruncInst &I) { | |||
| 2023 | IRBuilder<> IRB(&I); | |||
| 2024 | setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); | |||
| 2025 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 2026 | } | |||
| 2027 | ||||
| 2028 | void visitBitCastInst(BitCastInst &I) { | |||
| 2029 | // Special case: if this is the bitcast (there is exactly 1 allowed) between | |||
| 2030 | // a musttail call and a ret, don't instrument. New instructions are not | |||
| 2031 | // allowed after a musttail call. | |||
| 2032 | if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) | |||
| 2033 | if (CI->isMustTailCall()) | |||
| 2034 | return; | |||
| 2035 | IRBuilder<> IRB(&I); | |||
| 2036 | setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); | |||
| 2037 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 2038 | } | |||
| 2039 | ||||
| 2040 | void visitPtrToIntInst(PtrToIntInst &I) { | |||
| 2041 | IRBuilder<> IRB(&I); | |||
| 2042 | setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, | |||
| 2043 | "_msprop_ptrtoint")); | |||
| 2044 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 2045 | } | |||
| 2046 | ||||
| 2047 | void visitIntToPtrInst(IntToPtrInst &I) { | |||
| 2048 | IRBuilder<> IRB(&I); | |||
| 2049 | setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, | |||
| 2050 | "_msprop_inttoptr")); | |||
| 2051 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 2052 | } | |||
| 2053 | ||||
| 2054 | void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } | |||
| 2055 | void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } | |||
| 2056 | void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } | |||
| 2057 | void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } | |||
| 2058 | void visitFPExtInst(CastInst& I) { handleShadowOr(I); } | |||
| 2059 | void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } | |||
| 2060 | ||||
| 2061 | /// Propagate shadow for bitwise AND. | |||
| 2062 | /// | |||
| 2063 | /// This code is exact, i.e. if, for example, a bit in the left argument | |||
| 2064 | /// is defined and 0, then neither the value not definedness of the | |||
| 2065 | /// corresponding bit in B don't affect the resulting shadow. | |||
| 2066 | void visitAnd(BinaryOperator &I) { | |||
| 2067 | IRBuilder<> IRB(&I); | |||
| 2068 | // "And" of 0 and a poisoned value results in unpoisoned value. | |||
| 2069 | // 1&1 => 1; 0&1 => 0; p&1 => p; | |||
| 2070 | // 1&0 => 0; 0&0 => 0; p&0 => 0; | |||
| 2071 | // 1&p => p; 0&p => 0; p&p => p; | |||
| 2072 | // S = (S1 & S2) | (V1 & S2) | (S1 & V2) | |||
| 2073 | Value *S1 = getShadow(&I, 0); | |||
| 2074 | Value *S2 = getShadow(&I, 1); | |||
| 2075 | Value *V1 = I.getOperand(0); | |||
| 2076 | Value *V2 = I.getOperand(1); | |||
| 2077 | if (V1->getType() != S1->getType()) { | |||
| 2078 | V1 = IRB.CreateIntCast(V1, S1->getType(), false); | |||
| 2079 | V2 = IRB.CreateIntCast(V2, S2->getType(), false); | |||
| 2080 | } | |||
| 2081 | Value *S1S2 = IRB.CreateAnd(S1, S2); | |||
| 2082 | Value *V1S2 = IRB.CreateAnd(V1, S2); | |||
| 2083 | Value *S1V2 = IRB.CreateAnd(S1, V2); | |||
| 2084 | setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); | |||
| 2085 | setOriginForNaryOp(I); | |||
| 2086 | } | |||
| 2087 | ||||
| 2088 | void visitOr(BinaryOperator &I) { | |||
| 2089 | IRBuilder<> IRB(&I); | |||
| 2090 | // "Or" of 1 and a poisoned value results in unpoisoned value. | |||
| 2091 | // 1|1 => 1; 0|1 => 1; p|1 => 1; | |||
| 2092 | // 1|0 => 1; 0|0 => 0; p|0 => p; | |||
| 2093 | // 1|p => 1; 0|p => p; p|p => p; | |||
| 2094 | // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) | |||
| 2095 | Value *S1 = getShadow(&I, 0); | |||
| 2096 | Value *S2 = getShadow(&I, 1); | |||
| 2097 | Value *V1 = IRB.CreateNot(I.getOperand(0)); | |||
| 2098 | Value *V2 = IRB.CreateNot(I.getOperand(1)); | |||
| 2099 | if (V1->getType() != S1->getType()) { | |||
| 2100 | V1 = IRB.CreateIntCast(V1, S1->getType(), false); | |||
| 2101 | V2 = IRB.CreateIntCast(V2, S2->getType(), false); | |||
| 2102 | } | |||
| 2103 | Value *S1S2 = IRB.CreateAnd(S1, S2); | |||
| 2104 | Value *V1S2 = IRB.CreateAnd(V1, S2); | |||
| 2105 | Value *S1V2 = IRB.CreateAnd(S1, V2); | |||
| 2106 | setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); | |||
| 2107 | setOriginForNaryOp(I); | |||
| 2108 | } | |||
| 2109 | ||||
| 2110 | /// Default propagation of shadow and/or origin. | |||
| 2111 | /// | |||
| 2112 | /// This class implements the general case of shadow propagation, used in all | |||
| 2113 | /// cases where we don't know and/or don't care about what the operation | |||
| 2114 | /// actually does. It converts all input shadow values to a common type | |||
| 2115 | /// (extending or truncating as necessary), and bitwise OR's them. | |||
| 2116 | /// | |||
| 2117 | /// This is much cheaper than inserting checks (i.e. requiring inputs to be | |||
| 2118 | /// fully initialized), and less prone to false positives. | |||
| 2119 | /// | |||
| 2120 | /// This class also implements the general case of origin propagation. For a | |||
| 2121 | /// Nary operation, result origin is set to the origin of an argument that is | |||
| 2122 | /// not entirely initialized. If there is more than one such arguments, the | |||
| 2123 | /// rightmost of them is picked. It does not matter which one is picked if all | |||
| 2124 | /// arguments are initialized. | |||
| 2125 | template <bool CombineShadow> | |||
| 2126 | class Combiner { | |||
| 2127 | Value *Shadow = nullptr; | |||
| 2128 | Value *Origin = nullptr; | |||
| 2129 | IRBuilder<> &IRB; | |||
| 2130 | MemorySanitizerVisitor *MSV; | |||
| 2131 | ||||
| 2132 | public: | |||
| 2133 | Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) | |||
| 2134 | : IRB(IRB), MSV(MSV) {} | |||
| 2135 | ||||
| 2136 | /// Add a pair of shadow and origin values to the mix. | |||
| 2137 | Combiner &Add(Value *OpShadow, Value *OpOrigin) { | |||
| 2138 | if (CombineShadow) { | |||
| 2139 | assert(OpShadow)((void)0); | |||
| 2140 | if (!Shadow) | |||
| 2141 | Shadow = OpShadow; | |||
| 2142 | else { | |||
| 2143 | OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); | |||
| 2144 | Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); | |||
| 2145 | } | |||
| 2146 | } | |||
| 2147 | ||||
| 2148 | if (MSV->MS.TrackOrigins) { | |||
| 2149 | assert(OpOrigin)((void)0); | |||
| 2150 | if (!Origin) { | |||
| 2151 | Origin = OpOrigin; | |||
| 2152 | } else { | |||
| 2153 | Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); | |||
| 2154 | // No point in adding something that might result in 0 origin value. | |||
| 2155 | if (!ConstOrigin || !ConstOrigin->isNullValue()) { | |||
| 2156 | Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); | |||
| 2157 | Value *Cond = | |||
| 2158 | IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); | |||
| 2159 | Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); | |||
| 2160 | } | |||
| 2161 | } | |||
| 2162 | } | |||
| 2163 | return *this; | |||
| 2164 | } | |||
| 2165 | ||||
| 2166 | /// Add an application value to the mix. | |||
| 2167 | Combiner &Add(Value *V) { | |||
| 2168 | Value *OpShadow = MSV->getShadow(V); | |||
| 2169 | Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; | |||
| 2170 | return Add(OpShadow, OpOrigin); | |||
| 2171 | } | |||
| 2172 | ||||
| 2173 | /// Set the current combined values as the given instruction's shadow | |||
| 2174 | /// and origin. | |||
| 2175 | void Done(Instruction *I) { | |||
| 2176 | if (CombineShadow) { | |||
| 2177 | assert(Shadow)((void)0); | |||
| 2178 | Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); | |||
| 2179 | MSV->setShadow(I, Shadow); | |||
| 2180 | } | |||
| 2181 | if (MSV->MS.TrackOrigins) { | |||
| 2182 | assert(Origin)((void)0); | |||
| 2183 | MSV->setOrigin(I, Origin); | |||
| 2184 | } | |||
| 2185 | } | |||
| 2186 | }; | |||
| 2187 | ||||
| 2188 | using ShadowAndOriginCombiner = Combiner<true>; | |||
| 2189 | using OriginCombiner = Combiner<false>; | |||
| 2190 | ||||
| 2191 | /// Propagate origin for arbitrary operation. | |||
| 2192 | void setOriginForNaryOp(Instruction &I) { | |||
| 2193 | if (!MS.TrackOrigins) return; | |||
| 2194 | IRBuilder<> IRB(&I); | |||
| 2195 | OriginCombiner OC(this, IRB); | |||
| 2196 | for (Use &Op : I.operands()) | |||
| 2197 | OC.Add(Op.get()); | |||
| 2198 | OC.Done(&I); | |||
| 2199 | } | |||
| 2200 | ||||
| 2201 | size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { | |||
| 2202 | assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) &&((void)0) | |||
| 2203 | "Vector of pointers is not a valid shadow type")((void)0); | |||
| 2204 | return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * | |||
| 2205 | Ty->getScalarSizeInBits() | |||
| 2206 | : Ty->getPrimitiveSizeInBits(); | |||
| 2207 | } | |||
| 2208 | ||||
| 2209 | /// Cast between two shadow types, extending or truncating as | |||
| 2210 | /// necessary. | |||
| 2211 | Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, | |||
| 2212 | bool Signed = false) { | |||
| 2213 | Type *srcTy = V->getType(); | |||
| 2214 | size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); | |||
| 2215 | size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); | |||
| 2216 | if (srcSizeInBits > 1 && dstSizeInBits == 1) | |||
| 2217 | return IRB.CreateICmpNE(V, getCleanShadow(V)); | |||
| 2218 | ||||
| 2219 | if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) | |||
| 2220 | return IRB.CreateIntCast(V, dstTy, Signed); | |||
| 2221 | if (dstTy->isVectorTy() && srcTy->isVectorTy() && | |||
| 2222 | cast<FixedVectorType>(dstTy)->getNumElements() == | |||
| 2223 | cast<FixedVectorType>(srcTy)->getNumElements()) | |||
| 2224 | return IRB.CreateIntCast(V, dstTy, Signed); | |||
| 2225 | Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); | |||
| 2226 | Value *V2 = | |||
| 2227 | IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); | |||
| 2228 | return IRB.CreateBitCast(V2, dstTy); | |||
| 2229 | // TODO: handle struct types. | |||
| 2230 | } | |||
| 2231 | ||||
| 2232 | /// Cast an application value to the type of its own shadow. | |||
| 2233 | Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { | |||
| 2234 | Type *ShadowTy = getShadowTy(V); | |||
| 2235 | if (V->getType() == ShadowTy) | |||
| 2236 | return V; | |||
| 2237 | if (V->getType()->isPtrOrPtrVectorTy()) | |||
| 2238 | return IRB.CreatePtrToInt(V, ShadowTy); | |||
| 2239 | else | |||
| 2240 | return IRB.CreateBitCast(V, ShadowTy); | |||
| 2241 | } | |||
| 2242 | ||||
| 2243 | /// Propagate shadow for arbitrary operation. | |||
| 2244 | void handleShadowOr(Instruction &I) { | |||
| 2245 | IRBuilder<> IRB(&I); | |||
| 2246 | ShadowAndOriginCombiner SC(this, IRB); | |||
| 2247 | for (Use &Op : I.operands()) | |||
| 2248 | SC.Add(Op.get()); | |||
| 2249 | SC.Done(&I); | |||
| 2250 | } | |||
| 2251 | ||||
| 2252 | void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } | |||
| 2253 | ||||
| 2254 | // Handle multiplication by constant. | |||
| 2255 | // | |||
| 2256 | // Handle a special case of multiplication by constant that may have one or | |||
| 2257 | // more zeros in the lower bits. This makes corresponding number of lower bits | |||
| 2258 | // of the result zero as well. We model it by shifting the other operand | |||
| 2259 | // shadow left by the required number of bits. Effectively, we transform | |||
| 2260 | // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). | |||
| 2261 | // We use multiplication by 2**N instead of shift to cover the case of | |||
| 2262 | // multiplication by 0, which may occur in some elements of a vector operand. | |||
| 2263 | void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, | |||
| 2264 | Value *OtherArg) { | |||
| 2265 | Constant *ShadowMul; | |||
| 2266 | Type *Ty = ConstArg->getType(); | |||
| 2267 | if (auto *VTy = dyn_cast<VectorType>(Ty)) { | |||
| 2268 | unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); | |||
| 2269 | Type *EltTy = VTy->getElementType(); | |||
| 2270 | SmallVector<Constant *, 16> Elements; | |||
| 2271 | for (unsigned Idx = 0; Idx < NumElements; ++Idx) { | |||
| 2272 | if (ConstantInt *Elt = | |||
| 2273 | dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { | |||
| 2274 | const APInt &V = Elt->getValue(); | |||
| 2275 | APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); | |||
| 2276 | Elements.push_back(ConstantInt::get(EltTy, V2)); | |||
| 2277 | } else { | |||
| 2278 | Elements.push_back(ConstantInt::get(EltTy, 1)); | |||
| 2279 | } | |||
| 2280 | } | |||
| 2281 | ShadowMul = ConstantVector::get(Elements); | |||
| 2282 | } else { | |||
| 2283 | if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { | |||
| 2284 | const APInt &V = Elt->getValue(); | |||
| 2285 | APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); | |||
| 2286 | ShadowMul = ConstantInt::get(Ty, V2); | |||
| 2287 | } else { | |||
| 2288 | ShadowMul = ConstantInt::get(Ty, 1); | |||
| 2289 | } | |||
| 2290 | } | |||
| 2291 | ||||
| 2292 | IRBuilder<> IRB(&I); | |||
| 2293 | setShadow(&I, | |||
| 2294 | IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); | |||
| 2295 | setOrigin(&I, getOrigin(OtherArg)); | |||
| 2296 | } | |||
| 2297 | ||||
| 2298 | void visitMul(BinaryOperator &I) { | |||
| 2299 | Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); | |||
| 2300 | Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); | |||
| 2301 | if (constOp0 && !constOp1) | |||
| 2302 | handleMulByConstant(I, constOp0, I.getOperand(1)); | |||
| 2303 | else if (constOp1 && !constOp0) | |||
| 2304 | handleMulByConstant(I, constOp1, I.getOperand(0)); | |||
| 2305 | else | |||
| 2306 | handleShadowOr(I); | |||
| 2307 | } | |||
| 2308 | ||||
| 2309 | void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } | |||
| 2310 | void visitFSub(BinaryOperator &I) { handleShadowOr(I); } | |||
| 2311 | void visitFMul(BinaryOperator &I) { handleShadowOr(I); } | |||
| 2312 | void visitAdd(BinaryOperator &I) { handleShadowOr(I); } | |||
| 2313 | void visitSub(BinaryOperator &I) { handleShadowOr(I); } | |||
| 2314 | void visitXor(BinaryOperator &I) { handleShadowOr(I); } | |||
| 2315 | ||||
| 2316 | void handleIntegerDiv(Instruction &I) { | |||
| 2317 | IRBuilder<> IRB(&I); | |||
| 2318 | // Strict on the second argument. | |||
| 2319 | insertShadowCheck(I.getOperand(1), &I); | |||
| 2320 | setShadow(&I, getShadow(&I, 0)); | |||
| 2321 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 2322 | } | |||
| 2323 | ||||
| 2324 | void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } | |||
| 2325 | void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } | |||
| 2326 | void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } | |||
| 2327 | void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } | |||
| 2328 | ||||
| 2329 | // Floating point division is side-effect free. We can not require that the | |||
| 2330 | // divisor is fully initialized and must propagate shadow. See PR37523. | |||
| 2331 | void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } | |||
| 2332 | void visitFRem(BinaryOperator &I) { handleShadowOr(I); } | |||
| 2333 | ||||
| 2334 | /// Instrument == and != comparisons. | |||
| 2335 | /// | |||
| 2336 | /// Sometimes the comparison result is known even if some of the bits of the | |||
| 2337 | /// arguments are not. | |||
| 2338 | void handleEqualityComparison(ICmpInst &I) { | |||
| 2339 | IRBuilder<> IRB(&I); | |||
| 2340 | Value *A = I.getOperand(0); | |||
| 2341 | Value *B = I.getOperand(1); | |||
| 2342 | Value *Sa = getShadow(A); | |||
| 2343 | Value *Sb = getShadow(B); | |||
| 2344 | ||||
| 2345 | // Get rid of pointers and vectors of pointers. | |||
| 2346 | // For ints (and vectors of ints), types of A and Sa match, | |||
| 2347 | // and this is a no-op. | |||
| 2348 | A = IRB.CreatePointerCast(A, Sa->getType()); | |||
| 2349 | B = IRB.CreatePointerCast(B, Sb->getType()); | |||
| 2350 | ||||
| 2351 | // A == B <==> (C = A^B) == 0 | |||
| 2352 | // A != B <==> (C = A^B) != 0 | |||
| 2353 | // Sc = Sa | Sb | |||
| 2354 | Value *C = IRB.CreateXor(A, B); | |||
| 2355 | Value *Sc = IRB.CreateOr(Sa, Sb); | |||
| 2356 | // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) | |||
| 2357 | // Result is defined if one of the following is true | |||
| 2358 | // * there is a defined 1 bit in C | |||
| 2359 | // * C is fully defined | |||
| 2360 | // Si = !(C & ~Sc) && Sc | |||
| 2361 | Value *Zero = Constant::getNullValue(Sc->getType()); | |||
| 2362 | Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); | |||
| 2363 | Value *Si = | |||
| 2364 | IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), | |||
| 2365 | IRB.CreateICmpEQ( | |||
| 2366 | IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); | |||
| 2367 | Si->setName("_msprop_icmp"); | |||
| 2368 | setShadow(&I, Si); | |||
| 2369 | setOriginForNaryOp(I); | |||
| 2370 | } | |||
| 2371 | ||||
| 2372 | /// Build the lowest possible value of V, taking into account V's | |||
| 2373 | /// uninitialized bits. | |||
| 2374 | Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, | |||
| 2375 | bool isSigned) { | |||
| 2376 | if (isSigned) { | |||
| 2377 | // Split shadow into sign bit and other bits. | |||
| 2378 | Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); | |||
| 2379 | Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); | |||
| 2380 | // Maximise the undefined shadow bit, minimize other undefined bits. | |||
| 2381 | return | |||
| 2382 | IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); | |||
| 2383 | } else { | |||
| 2384 | // Minimize undefined bits. | |||
| 2385 | return IRB.CreateAnd(A, IRB.CreateNot(Sa)); | |||
| 2386 | } | |||
| 2387 | } | |||
| 2388 | ||||
| 2389 | /// Build the highest possible value of V, taking into account V's | |||
| 2390 | /// uninitialized bits. | |||
| 2391 | Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, | |||
| 2392 | bool isSigned) { | |||
| 2393 | if (isSigned) { | |||
| 2394 | // Split shadow into sign bit and other bits. | |||
| 2395 | Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); | |||
| 2396 | Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); | |||
| 2397 | // Minimise the undefined shadow bit, maximise other undefined bits. | |||
| 2398 | return | |||
| 2399 | IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); | |||
| 2400 | } else { | |||
| 2401 | // Maximize undefined bits. | |||
| 2402 | return IRB.CreateOr(A, Sa); | |||
| 2403 | } | |||
| 2404 | } | |||
| 2405 | ||||
| 2406 | /// Instrument relational comparisons. | |||
| 2407 | /// | |||
| 2408 | /// This function does exact shadow propagation for all relational | |||
| 2409 | /// comparisons of integers, pointers and vectors of those. | |||
| 2410 | /// FIXME: output seems suboptimal when one of the operands is a constant | |||
| 2411 | void handleRelationalComparisonExact(ICmpInst &I) { | |||
| 2412 | IRBuilder<> IRB(&I); | |||
| 2413 | Value *A = I.getOperand(0); | |||
| 2414 | Value *B = I.getOperand(1); | |||
| 2415 | Value *Sa = getShadow(A); | |||
| 2416 | Value *Sb = getShadow(B); | |||
| 2417 | ||||
| 2418 | // Get rid of pointers and vectors of pointers. | |||
| 2419 | // For ints (and vectors of ints), types of A and Sa match, | |||
| 2420 | // and this is a no-op. | |||
| 2421 | A = IRB.CreatePointerCast(A, Sa->getType()); | |||
| 2422 | B = IRB.CreatePointerCast(B, Sb->getType()); | |||
| 2423 | ||||
| 2424 | // Let [a0, a1] be the interval of possible values of A, taking into account | |||
| 2425 | // its undefined bits. Let [b0, b1] be the interval of possible values of B. | |||
| 2426 | // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). | |||
| 2427 | bool IsSigned = I.isSigned(); | |||
| 2428 | Value *S1 = IRB.CreateICmp(I.getPredicate(), | |||
| 2429 | getLowestPossibleValue(IRB, A, Sa, IsSigned), | |||
| 2430 | getHighestPossibleValue(IRB, B, Sb, IsSigned)); | |||
| 2431 | Value *S2 = IRB.CreateICmp(I.getPredicate(), | |||
| 2432 | getHighestPossibleValue(IRB, A, Sa, IsSigned), | |||
| 2433 | getLowestPossibleValue(IRB, B, Sb, IsSigned)); | |||
| 2434 | Value *Si = IRB.CreateXor(S1, S2); | |||
| 2435 | setShadow(&I, Si); | |||
| 2436 | setOriginForNaryOp(I); | |||
| 2437 | } | |||
| 2438 | ||||
| 2439 | /// Instrument signed relational comparisons. | |||
| 2440 | /// | |||
| 2441 | /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest | |||
| 2442 | /// bit of the shadow. Everything else is delegated to handleShadowOr(). | |||
| 2443 | void handleSignedRelationalComparison(ICmpInst &I) { | |||
| 2444 | Constant *constOp; | |||
| 2445 | Value *op = nullptr; | |||
| 2446 | CmpInst::Predicate pre; | |||
| 2447 | if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { | |||
| 2448 | op = I.getOperand(0); | |||
| 2449 | pre = I.getPredicate(); | |||
| 2450 | } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { | |||
| 2451 | op = I.getOperand(1); | |||
| 2452 | pre = I.getSwappedPredicate(); | |||
| 2453 | } else { | |||
| 2454 | handleShadowOr(I); | |||
| 2455 | return; | |||
| 2456 | } | |||
| 2457 | ||||
| 2458 | if ((constOp->isNullValue() && | |||
| 2459 | (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || | |||
| 2460 | (constOp->isAllOnesValue() && | |||
| 2461 | (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { | |||
| 2462 | IRBuilder<> IRB(&I); | |||
| 2463 | Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), | |||
| 2464 | "_msprop_icmp_s"); | |||
| 2465 | setShadow(&I, Shadow); | |||
| 2466 | setOrigin(&I, getOrigin(op)); | |||
| 2467 | } else { | |||
| 2468 | handleShadowOr(I); | |||
| 2469 | } | |||
| 2470 | } | |||
| 2471 | ||||
| 2472 | void visitICmpInst(ICmpInst &I) { | |||
| 2473 | if (!ClHandleICmp) { | |||
| 2474 | handleShadowOr(I); | |||
| 2475 | return; | |||
| 2476 | } | |||
| 2477 | if (I.isEquality()) { | |||
| 2478 | handleEqualityComparison(I); | |||
| 2479 | return; | |||
| 2480 | } | |||
| 2481 | ||||
| 2482 | assert(I.isRelational())((void)0); | |||
| 2483 | if (ClHandleICmpExact) { | |||
| 2484 | handleRelationalComparisonExact(I); | |||
| 2485 | return; | |||
| 2486 | } | |||
| 2487 | if (I.isSigned()) { | |||
| 2488 | handleSignedRelationalComparison(I); | |||
| 2489 | return; | |||
| 2490 | } | |||
| 2491 | ||||
| 2492 | assert(I.isUnsigned())((void)0); | |||
| 2493 | if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { | |||
| 2494 | handleRelationalComparisonExact(I); | |||
| 2495 | return; | |||
| 2496 | } | |||
| 2497 | ||||
| 2498 | handleShadowOr(I); | |||
| 2499 | } | |||
| 2500 | ||||
| 2501 | void visitFCmpInst(FCmpInst &I) { | |||
| 2502 | handleShadowOr(I); | |||
| 2503 | } | |||
| 2504 | ||||
| 2505 | void handleShift(BinaryOperator &I) { | |||
| 2506 | IRBuilder<> IRB(&I); | |||
| 2507 | // If any of the S2 bits are poisoned, the whole thing is poisoned. | |||
| 2508 | // Otherwise perform the same shift on S1. | |||
| 2509 | Value *S1 = getShadow(&I, 0); | |||
| 2510 | Value *S2 = getShadow(&I, 1); | |||
| 2511 | Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), | |||
| 2512 | S2->getType()); | |||
| 2513 | Value *V2 = I.getOperand(1); | |||
| 2514 | Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); | |||
| 2515 | setShadow(&I, IRB.CreateOr(Shift, S2Conv)); | |||
| 2516 | setOriginForNaryOp(I); | |||
| 2517 | } | |||
| 2518 | ||||
| 2519 | void visitShl(BinaryOperator &I) { handleShift(I); } | |||
| 2520 | void visitAShr(BinaryOperator &I) { handleShift(I); } | |||
| 2521 | void visitLShr(BinaryOperator &I) { handleShift(I); } | |||
| 2522 | ||||
| 2523 | void handleFunnelShift(IntrinsicInst &I) { | |||
| 2524 | IRBuilder<> IRB(&I); | |||
| 2525 | // If any of the S2 bits are poisoned, the whole thing is poisoned. | |||
| 2526 | // Otherwise perform the same shift on S0 and S1. | |||
| 2527 | Value *S0 = getShadow(&I, 0); | |||
| 2528 | Value *S1 = getShadow(&I, 1); | |||
| 2529 | Value *S2 = getShadow(&I, 2); | |||
| 2530 | Value *S2Conv = | |||
| 2531 | IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), S2->getType()); | |||
| 2532 | Value *V2 = I.getOperand(2); | |||
| 2533 | Function *Intrin = Intrinsic::getDeclaration( | |||
| 2534 | I.getModule(), I.getIntrinsicID(), S2Conv->getType()); | |||
| 2535 | Value *Shift = IRB.CreateCall(Intrin, {S0, S1, V2}); | |||
| 2536 | setShadow(&I, IRB.CreateOr(Shift, S2Conv)); | |||
| 2537 | setOriginForNaryOp(I); | |||
| 2538 | } | |||
| 2539 | ||||
| 2540 | /// Instrument llvm.memmove | |||
| 2541 | /// | |||
| 2542 | /// At this point we don't know if llvm.memmove will be inlined or not. | |||
| 2543 | /// If we don't instrument it and it gets inlined, | |||
| 2544 | /// our interceptor will not kick in and we will lose the memmove. | |||
| 2545 | /// If we instrument the call here, but it does not get inlined, | |||
| 2546 | /// we will memove the shadow twice: which is bad in case | |||
| 2547 | /// of overlapping regions. So, we simply lower the intrinsic to a call. | |||
| 2548 | /// | |||
| 2549 | /// Similar situation exists for memcpy and memset. | |||
| 2550 | void visitMemMoveInst(MemMoveInst &I) { | |||
| 2551 | IRBuilder<> IRB(&I); | |||
| 2552 | IRB.CreateCall( | |||
| 2553 | MS.MemmoveFn, | |||
| 2554 | {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), | |||
| 2555 | IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), | |||
| 2556 | IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); | |||
| 2557 | I.eraseFromParent(); | |||
| 2558 | } | |||
| 2559 | ||||
| 2560 | // Similar to memmove: avoid copying shadow twice. | |||
| 2561 | // This is somewhat unfortunate as it may slowdown small constant memcpys. | |||
| 2562 | // FIXME: consider doing manual inline for small constant sizes and proper | |||
| 2563 | // alignment. | |||
| 2564 | void visitMemCpyInst(MemCpyInst &I) { | |||
| 2565 | IRBuilder<> IRB(&I); | |||
| 2566 | IRB.CreateCall( | |||
| 2567 | MS.MemcpyFn, | |||
| 2568 | {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), | |||
| 2569 | IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), | |||
| 2570 | IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); | |||
| 2571 | I.eraseFromParent(); | |||
| 2572 | } | |||
| 2573 | ||||
| 2574 | // Same as memcpy. | |||
| 2575 | void visitMemSetInst(MemSetInst &I) { | |||
| 2576 | IRBuilder<> IRB(&I); | |||
| 2577 | IRB.CreateCall( | |||
| 2578 | MS.MemsetFn, | |||
| 2579 | {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), | |||
| 2580 | IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), | |||
| 2581 | IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); | |||
| 2582 | I.eraseFromParent(); | |||
| 2583 | } | |||
| 2584 | ||||
| 2585 | void visitVAStartInst(VAStartInst &I) { | |||
| 2586 | VAHelper->visitVAStartInst(I); | |||
| 2587 | } | |||
| 2588 | ||||
| 2589 | void visitVACopyInst(VACopyInst &I) { | |||
| 2590 | VAHelper->visitVACopyInst(I); | |||
| 2591 | } | |||
| 2592 | ||||
| 2593 | /// Handle vector store-like intrinsics. | |||
| 2594 | /// | |||
| 2595 | /// Instrument intrinsics that look like a simple SIMD store: writes memory, | |||
| 2596 | /// has 1 pointer argument and 1 vector argument, returns void. | |||
| 2597 | bool handleVectorStoreIntrinsic(IntrinsicInst &I) { | |||
| 2598 | IRBuilder<> IRB(&I); | |||
| 2599 | Value* Addr = I.getArgOperand(0); | |||
| 2600 | Value *Shadow = getShadow(&I, 1); | |||
| 2601 | Value *ShadowPtr, *OriginPtr; | |||
| 2602 | ||||
| 2603 | // We don't know the pointer alignment (could be unaligned SSE store!). | |||
| 2604 | // Have to assume to worst case. | |||
| 2605 | std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( | |||
| 2606 | Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); | |||
| 2607 | IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); | |||
| 2608 | ||||
| 2609 | if (ClCheckAccessAddress) | |||
| 2610 | insertShadowCheck(Addr, &I); | |||
| 2611 | ||||
| 2612 | // FIXME: factor out common code from materializeStores | |||
| 2613 | if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); | |||
| 2614 | return true; | |||
| 2615 | } | |||
| 2616 | ||||
| 2617 | /// Handle vector load-like intrinsics. | |||
| 2618 | /// | |||
| 2619 | /// Instrument intrinsics that look like a simple SIMD load: reads memory, | |||
| 2620 | /// has 1 pointer argument, returns a vector. | |||
| 2621 | bool handleVectorLoadIntrinsic(IntrinsicInst &I) { | |||
| 2622 | IRBuilder<> IRB(&I); | |||
| 2623 | Value *Addr = I.getArgOperand(0); | |||
| 2624 | ||||
| 2625 | Type *ShadowTy = getShadowTy(&I); | |||
| 2626 | Value *ShadowPtr = nullptr, *OriginPtr = nullptr; | |||
| 2627 | if (PropagateShadow) { | |||
| 2628 | // We don't know the pointer alignment (could be unaligned SSE load!). | |||
| 2629 | // Have to assume to worst case. | |||
| 2630 | const Align Alignment = Align(1); | |||
| 2631 | std::tie(ShadowPtr, OriginPtr) = | |||
| 2632 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); | |||
| 2633 | setShadow(&I, | |||
| 2634 | IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); | |||
| 2635 | } else { | |||
| 2636 | setShadow(&I, getCleanShadow(&I)); | |||
| 2637 | } | |||
| 2638 | ||||
| 2639 | if (ClCheckAccessAddress) | |||
| 2640 | insertShadowCheck(Addr, &I); | |||
| 2641 | ||||
| 2642 | if (MS.TrackOrigins) { | |||
| 2643 | if (PropagateShadow) | |||
| 2644 | setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); | |||
| 2645 | else | |||
| 2646 | setOrigin(&I, getCleanOrigin()); | |||
| 2647 | } | |||
| 2648 | return true; | |||
| 2649 | } | |||
| 2650 | ||||
| 2651 | /// Handle (SIMD arithmetic)-like intrinsics. | |||
| 2652 | /// | |||
| 2653 | /// Instrument intrinsics with any number of arguments of the same type, | |||
| 2654 | /// equal to the return type. The type should be simple (no aggregates or | |||
| 2655 | /// pointers; vectors are fine). | |||
| 2656 | /// Caller guarantees that this intrinsic does not access memory. | |||
| 2657 | bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { | |||
| 2658 | Type *RetTy = I.getType(); | |||
| 2659 | if (!(RetTy->isIntOrIntVectorTy() || | |||
| 2660 | RetTy->isFPOrFPVectorTy() || | |||
| 2661 | RetTy->isX86_MMXTy())) | |||
| 2662 | return false; | |||
| 2663 | ||||
| 2664 | unsigned NumArgOperands = I.getNumArgOperands(); | |||
| 2665 | for (unsigned i = 0; i < NumArgOperands; ++i) { | |||
| 2666 | Type *Ty = I.getArgOperand(i)->getType(); | |||
| 2667 | if (Ty != RetTy) | |||
| 2668 | return false; | |||
| 2669 | } | |||
| 2670 | ||||
| 2671 | IRBuilder<> IRB(&I); | |||
| 2672 | ShadowAndOriginCombiner SC(this, IRB); | |||
| 2673 | for (unsigned i = 0; i < NumArgOperands; ++i) | |||
| 2674 | SC.Add(I.getArgOperand(i)); | |||
| 2675 | SC.Done(&I); | |||
| 2676 | ||||
| 2677 | return true; | |||
| 2678 | } | |||
| 2679 | ||||
| 2680 | /// Heuristically instrument unknown intrinsics. | |||
| 2681 | /// | |||
| 2682 | /// The main purpose of this code is to do something reasonable with all | |||
| 2683 | /// random intrinsics we might encounter, most importantly - SIMD intrinsics. | |||
| 2684 | /// We recognize several classes of intrinsics by their argument types and | |||
| 2685 | /// ModRefBehaviour and apply special instrumentation when we are reasonably | |||
| 2686 | /// sure that we know what the intrinsic does. | |||
| 2687 | /// | |||
| 2688 | /// We special-case intrinsics where this approach fails. See llvm.bswap | |||
| 2689 | /// handling as an example of that. | |||
| 2690 | bool handleUnknownIntrinsic(IntrinsicInst &I) { | |||
| 2691 | unsigned NumArgOperands = I.getNumArgOperands(); | |||
| 2692 | if (NumArgOperands == 0) | |||
| 2693 | return false; | |||
| 2694 | ||||
| 2695 | if (NumArgOperands == 2 && | |||
| 2696 | I.getArgOperand(0)->getType()->isPointerTy() && | |||
| 2697 | I.getArgOperand(1)->getType()->isVectorTy() && | |||
| 2698 | I.getType()->isVoidTy() && | |||
| 2699 | !I.onlyReadsMemory()) { | |||
| 2700 | // This looks like a vector store. | |||
| 2701 | return handleVectorStoreIntrinsic(I); | |||
| 2702 | } | |||
| 2703 | ||||
| 2704 | if (NumArgOperands == 1 && | |||
| 2705 | I.getArgOperand(0)->getType()->isPointerTy() && | |||
| 2706 | I.getType()->isVectorTy() && | |||
| 2707 | I.onlyReadsMemory()) { | |||
| 2708 | // This looks like a vector load. | |||
| 2709 | return handleVectorLoadIntrinsic(I); | |||
| 2710 | } | |||
| 2711 | ||||
| 2712 | if (I.doesNotAccessMemory()) | |||
| 2713 | if (maybeHandleSimpleNomemIntrinsic(I)) | |||
| 2714 | return true; | |||
| 2715 | ||||
| 2716 | // FIXME: detect and handle SSE maskstore/maskload | |||
| 2717 | return false; | |||
| 2718 | } | |||
| 2719 | ||||
| 2720 | void handleInvariantGroup(IntrinsicInst &I) { | |||
| 2721 | setShadow(&I, getShadow(&I, 0)); | |||
| 2722 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 2723 | } | |||
| 2724 | ||||
| 2725 | void handleLifetimeStart(IntrinsicInst &I) { | |||
| 2726 | if (!PoisonStack) | |||
| 2727 | return; | |||
| 2728 | AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); | |||
| 2729 | if (!AI) | |||
| 2730 | InstrumentLifetimeStart = false; | |||
| 2731 | LifetimeStartList.push_back(std::make_pair(&I, AI)); | |||
| 2732 | } | |||
| 2733 | ||||
| 2734 | void handleBswap(IntrinsicInst &I) { | |||
| 2735 | IRBuilder<> IRB(&I); | |||
| 2736 | Value *Op = I.getArgOperand(0); | |||
| 2737 | Type *OpType = Op->getType(); | |||
| 2738 | Function *BswapFunc = Intrinsic::getDeclaration( | |||
| 2739 | F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); | |||
| 2740 | setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); | |||
| 2741 | setOrigin(&I, getOrigin(Op)); | |||
| 2742 | } | |||
| 2743 | ||||
| 2744 | // Instrument vector convert intrinsic. | |||
| 2745 | // | |||
| 2746 | // This function instruments intrinsics like cvtsi2ss: | |||
| 2747 | // %Out = int_xxx_cvtyyy(%ConvertOp) | |||
| 2748 | // or | |||
| 2749 | // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) | |||
| 2750 | // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same | |||
| 2751 | // number \p Out elements, and (if has 2 arguments) copies the rest of the | |||
| 2752 | // elements from \p CopyOp. | |||
| 2753 | // In most cases conversion involves floating-point value which may trigger a | |||
| 2754 | // hardware exception when not fully initialized. For this reason we require | |||
| 2755 | // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. | |||
| 2756 | // We copy the shadow of \p CopyOp[NumUsedElements:] to \p | |||
| 2757 | // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always | |||
| 2758 | // return a fully initialized value. | |||
| 2759 | void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, | |||
| 2760 | bool HasRoundingMode = false) { | |||
| 2761 | IRBuilder<> IRB(&I); | |||
| 2762 | Value *CopyOp, *ConvertOp; | |||
| 2763 | ||||
| 2764 | assert((!HasRoundingMode ||((void)0) | |||
| 2765 | isa<ConstantInt>(I.getArgOperand(I.getNumArgOperands() - 1))) &&((void)0) | |||
| 2766 | "Invalid rounding mode")((void)0); | |||
| 2767 | ||||
| 2768 | switch (I.getNumArgOperands() - HasRoundingMode) { | |||
| 2769 | case 2: | |||
| 2770 | CopyOp = I.getArgOperand(0); | |||
| 2771 | ConvertOp = I.getArgOperand(1); | |||
| 2772 | break; | |||
| 2773 | case 1: | |||
| 2774 | ConvertOp = I.getArgOperand(0); | |||
| 2775 | CopyOp = nullptr; | |||
| 2776 | break; | |||
| 2777 | default: | |||
| 2778 | llvm_unreachable("Cvt intrinsic with unsupported number of arguments.")__builtin_unreachable(); | |||
| 2779 | } | |||
| 2780 | ||||
| 2781 | // The first *NumUsedElements* elements of ConvertOp are converted to the | |||
| 2782 | // same number of output elements. The rest of the output is copied from | |||
| 2783 | // CopyOp, or (if not available) filled with zeroes. | |||
| 2784 | // Combine shadow for elements of ConvertOp that are used in this operation, | |||
| 2785 | // and insert a check. | |||
| 2786 | // FIXME: consider propagating shadow of ConvertOp, at least in the case of | |||
| 2787 | // int->any conversion. | |||
| 2788 | Value *ConvertShadow = getShadow(ConvertOp); | |||
| 2789 | Value *AggShadow = nullptr; | |||
| 2790 | if (ConvertOp->getType()->isVectorTy()) { | |||
| 2791 | AggShadow = IRB.CreateExtractElement( | |||
| 2792 | ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); | |||
| 2793 | for (int i = 1; i < NumUsedElements; ++i) { | |||
| 2794 | Value *MoreShadow = IRB.CreateExtractElement( | |||
| 2795 | ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); | |||
| 2796 | AggShadow = IRB.CreateOr(AggShadow, MoreShadow); | |||
| 2797 | } | |||
| 2798 | } else { | |||
| 2799 | AggShadow = ConvertShadow; | |||
| 2800 | } | |||
| 2801 | assert(AggShadow->getType()->isIntegerTy())((void)0); | |||
| 2802 | insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); | |||
| 2803 | ||||
| 2804 | // Build result shadow by zero-filling parts of CopyOp shadow that come from | |||
| 2805 | // ConvertOp. | |||
| 2806 | if (CopyOp) { | |||
| 2807 | assert(CopyOp->getType() == I.getType())((void)0); | |||
| 2808 | assert(CopyOp->getType()->isVectorTy())((void)0); | |||
| 2809 | Value *ResultShadow = getShadow(CopyOp); | |||
| 2810 | Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); | |||
| 2811 | for (int i = 0; i < NumUsedElements; ++i) { | |||
| 2812 | ResultShadow = IRB.CreateInsertElement( | |||
| 2813 | ResultShadow, ConstantInt::getNullValue(EltTy), | |||
| 2814 | ConstantInt::get(IRB.getInt32Ty(), i)); | |||
| 2815 | } | |||
| 2816 | setShadow(&I, ResultShadow); | |||
| 2817 | setOrigin(&I, getOrigin(CopyOp)); | |||
| 2818 | } else { | |||
| 2819 | setShadow(&I, getCleanShadow(&I)); | |||
| 2820 | setOrigin(&I, getCleanOrigin()); | |||
| 2821 | } | |||
| 2822 | } | |||
| 2823 | ||||
| 2824 | // Given a scalar or vector, extract lower 64 bits (or less), and return all | |||
| 2825 | // zeroes if it is zero, and all ones otherwise. | |||
| 2826 | Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { | |||
| 2827 | if (S->getType()->isVectorTy()) | |||
| 2828 | S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); | |||
| 2829 | assert(S->getType()->getPrimitiveSizeInBits() <= 64)((void)0); | |||
| 2830 | Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); | |||
| 2831 | return CreateShadowCast(IRB, S2, T, /* Signed */ true); | |||
| 2832 | } | |||
| 2833 | ||||
| 2834 | // Given a vector, extract its first element, and return all | |||
| 2835 | // zeroes if it is zero, and all ones otherwise. | |||
| 2836 | Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { | |||
| 2837 | Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); | |||
| 2838 | Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); | |||
| 2839 | return CreateShadowCast(IRB, S2, T, /* Signed */ true); | |||
| 2840 | } | |||
| 2841 | ||||
| 2842 | Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { | |||
| 2843 | Type *T = S->getType(); | |||
| 2844 | assert(T->isVectorTy())((void)0); | |||
| 2845 | Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); | |||
| 2846 | return IRB.CreateSExt(S2, T); | |||
| 2847 | } | |||
| 2848 | ||||
| 2849 | // Instrument vector shift intrinsic. | |||
| 2850 | // | |||
| 2851 | // This function instruments intrinsics like int_x86_avx2_psll_w. | |||
| 2852 | // Intrinsic shifts %In by %ShiftSize bits. | |||
| 2853 | // %ShiftSize may be a vector. In that case the lower 64 bits determine shift | |||
| 2854 | // size, and the rest is ignored. Behavior is defined even if shift size is | |||
| 2855 | // greater than register (or field) width. | |||
| 2856 | void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { | |||
| 2857 | assert(I.getNumArgOperands() == 2)((void)0); | |||
| 2858 | IRBuilder<> IRB(&I); | |||
| 2859 | // If any of the S2 bits are poisoned, the whole thing is poisoned. | |||
| 2860 | // Otherwise perform the same shift on S1. | |||
| 2861 | Value *S1 = getShadow(&I, 0); | |||
| 2862 | Value *S2 = getShadow(&I, 1); | |||
| 2863 | Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) | |||
| 2864 | : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); | |||
| 2865 | Value *V1 = I.getOperand(0); | |||
| 2866 | Value *V2 = I.getOperand(1); | |||
| 2867 | Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), | |||
| 2868 | {IRB.CreateBitCast(S1, V1->getType()), V2}); | |||
| 2869 | Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); | |||
| 2870 | setShadow(&I, IRB.CreateOr(Shift, S2Conv)); | |||
| 2871 | setOriginForNaryOp(I); | |||
| 2872 | } | |||
| 2873 | ||||
| 2874 | // Get an X86_MMX-sized vector type. | |||
| 2875 | Type *getMMXVectorTy(unsigned EltSizeInBits) { | |||
| 2876 | const unsigned X86_MMXSizeInBits = 64; | |||
| 2877 | assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 &&((void)0) | |||
| 2878 | "Illegal MMX vector element size")((void)0); | |||
| 2879 | return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), | |||
| 2880 | X86_MMXSizeInBits / EltSizeInBits); | |||
| 2881 | } | |||
| 2882 | ||||
| 2883 | // Returns a signed counterpart for an (un)signed-saturate-and-pack | |||
| 2884 | // intrinsic. | |||
| 2885 | Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { | |||
| 2886 | switch (id) { | |||
| 2887 | case Intrinsic::x86_sse2_packsswb_128: | |||
| 2888 | case Intrinsic::x86_sse2_packuswb_128: | |||
| 2889 | return Intrinsic::x86_sse2_packsswb_128; | |||
| 2890 | ||||
| 2891 | case Intrinsic::x86_sse2_packssdw_128: | |||
| 2892 | case Intrinsic::x86_sse41_packusdw: | |||
| 2893 | return Intrinsic::x86_sse2_packssdw_128; | |||
| 2894 | ||||
| 2895 | case Intrinsic::x86_avx2_packsswb: | |||
| 2896 | case Intrinsic::x86_avx2_packuswb: | |||
| 2897 | return Intrinsic::x86_avx2_packsswb; | |||
| 2898 | ||||
| 2899 | case Intrinsic::x86_avx2_packssdw: | |||
| 2900 | case Intrinsic::x86_avx2_packusdw: | |||
| 2901 | return Intrinsic::x86_avx2_packssdw; | |||
| 2902 | ||||
| 2903 | case Intrinsic::x86_mmx_packsswb: | |||
| 2904 | case Intrinsic::x86_mmx_packuswb: | |||
| 2905 | return Intrinsic::x86_mmx_packsswb; | |||
| 2906 | ||||
| 2907 | case Intrinsic::x86_mmx_packssdw: | |||
| 2908 | return Intrinsic::x86_mmx_packssdw; | |||
| 2909 | default: | |||
| 2910 | llvm_unreachable("unexpected intrinsic id")__builtin_unreachable(); | |||
| 2911 | } | |||
| 2912 | } | |||
| 2913 | ||||
| 2914 | // Instrument vector pack intrinsic. | |||
| 2915 | // | |||
| 2916 | // This function instruments intrinsics like x86_mmx_packsswb, that | |||
| 2917 | // packs elements of 2 input vectors into half as many bits with saturation. | |||
| 2918 | // Shadow is propagated with the signed variant of the same intrinsic applied | |||
| 2919 | // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). | |||
| 2920 | // EltSizeInBits is used only for x86mmx arguments. | |||
| 2921 | void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { | |||
| 2922 | assert(I.getNumArgOperands() == 2)((void)0); | |||
| 2923 | bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); | |||
| 2924 | IRBuilder<> IRB(&I); | |||
| 2925 | Value *S1 = getShadow(&I, 0); | |||
| 2926 | Value *S2 = getShadow(&I, 1); | |||
| 2927 | assert(isX86_MMX || S1->getType()->isVectorTy())((void)0); | |||
| 2928 | ||||
| 2929 | // SExt and ICmpNE below must apply to individual elements of input vectors. | |||
| 2930 | // In case of x86mmx arguments, cast them to appropriate vector types and | |||
| 2931 | // back. | |||
| 2932 | Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); | |||
| 2933 | if (isX86_MMX) { | |||
| 2934 | S1 = IRB.CreateBitCast(S1, T); | |||
| 2935 | S2 = IRB.CreateBitCast(S2, T); | |||
| 2936 | } | |||
| 2937 | Value *S1_ext = IRB.CreateSExt( | |||
| 2938 | IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); | |||
| 2939 | Value *S2_ext = IRB.CreateSExt( | |||
| 2940 | IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); | |||
| 2941 | if (isX86_MMX) { | |||
| 2942 | Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); | |||
| 2943 | S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); | |||
| 2944 | S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); | |||
| 2945 | } | |||
| 2946 | ||||
| 2947 | Function *ShadowFn = Intrinsic::getDeclaration( | |||
| 2948 | F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); | |||
| 2949 | ||||
| 2950 | Value *S = | |||
| 2951 | IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); | |||
| 2952 | if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); | |||
| 2953 | setShadow(&I, S); | |||
| 2954 | setOriginForNaryOp(I); | |||
| 2955 | } | |||
| 2956 | ||||
| 2957 | // Instrument sum-of-absolute-differences intrinsic. | |||
| 2958 | void handleVectorSadIntrinsic(IntrinsicInst &I) { | |||
| 2959 | const unsigned SignificantBitsPerResultElement = 16; | |||
| 2960 | bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); | |||
| 2961 | Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); | |||
| 2962 | unsigned ZeroBitsPerResultElement = | |||
| 2963 | ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; | |||
| 2964 | ||||
| 2965 | IRBuilder<> IRB(&I); | |||
| 2966 | Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); | |||
| 2967 | S = IRB.CreateBitCast(S, ResTy); | |||
| 2968 | S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), | |||
| 2969 | ResTy); | |||
| 2970 | S = IRB.CreateLShr(S, ZeroBitsPerResultElement); | |||
| 2971 | S = IRB.CreateBitCast(S, getShadowTy(&I)); | |||
| 2972 | setShadow(&I, S); | |||
| 2973 | setOriginForNaryOp(I); | |||
| 2974 | } | |||
| 2975 | ||||
| 2976 | // Instrument multiply-add intrinsic. | |||
| 2977 | void handleVectorPmaddIntrinsic(IntrinsicInst &I, | |||
| 2978 | unsigned EltSizeInBits = 0) { | |||
| 2979 | bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); | |||
| 2980 | Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); | |||
| 2981 | IRBuilder<> IRB(&I); | |||
| 2982 | Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); | |||
| 2983 | S = IRB.CreateBitCast(S, ResTy); | |||
| 2984 | S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), | |||
| 2985 | ResTy); | |||
| 2986 | S = IRB.CreateBitCast(S, getShadowTy(&I)); | |||
| 2987 | setShadow(&I, S); | |||
| 2988 | setOriginForNaryOp(I); | |||
| 2989 | } | |||
| 2990 | ||||
| 2991 | // Instrument compare-packed intrinsic. | |||
| 2992 | // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or | |||
| 2993 | // all-ones shadow. | |||
| 2994 | void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { | |||
| 2995 | IRBuilder<> IRB(&I); | |||
| 2996 | Type *ResTy = getShadowTy(&I); | |||
| 2997 | Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); | |||
| 2998 | Value *S = IRB.CreateSExt( | |||
| 2999 | IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); | |||
| 3000 | setShadow(&I, S); | |||
| 3001 | setOriginForNaryOp(I); | |||
| 3002 | } | |||
| 3003 | ||||
| 3004 | // Instrument compare-scalar intrinsic. | |||
| 3005 | // This handles both cmp* intrinsics which return the result in the first | |||
| 3006 | // element of a vector, and comi* which return the result as i32. | |||
| 3007 | void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { | |||
| 3008 | IRBuilder<> IRB(&I); | |||
| 3009 | Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); | |||
| 3010 | Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); | |||
| 3011 | setShadow(&I, S); | |||
| 3012 | setOriginForNaryOp(I); | |||
| 3013 | } | |||
| 3014 | ||||
| 3015 | // Instrument generic vector reduction intrinsics | |||
| 3016 | // by ORing together all their fields. | |||
| 3017 | void handleVectorReduceIntrinsic(IntrinsicInst &I) { | |||
| 3018 | IRBuilder<> IRB(&I); | |||
| 3019 | Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); | |||
| 3020 | setShadow(&I, S); | |||
| 3021 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 3022 | } | |||
| 3023 | ||||
| 3024 | // Instrument vector.reduce.or intrinsic. | |||
| 3025 | // Valid (non-poisoned) set bits in the operand pull low the | |||
| 3026 | // corresponding shadow bits. | |||
| 3027 | void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { | |||
| 3028 | IRBuilder<> IRB(&I); | |||
| 3029 | Value *OperandShadow = getShadow(&I, 0); | |||
| 3030 | Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); | |||
| 3031 | Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); | |||
| 3032 | // Bit N is clean if any field's bit N is 1 and unpoison | |||
| 3033 | Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); | |||
| 3034 | // Otherwise, it is clean if every field's bit N is unpoison | |||
| 3035 | Value *OrShadow = IRB.CreateOrReduce(OperandShadow); | |||
| 3036 | Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); | |||
| 3037 | ||||
| 3038 | setShadow(&I, S); | |||
| 3039 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 3040 | } | |||
| 3041 | ||||
| 3042 | // Instrument vector.reduce.and intrinsic. | |||
| 3043 | // Valid (non-poisoned) unset bits in the operand pull down the | |||
| 3044 | // corresponding shadow bits. | |||
| 3045 | void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { | |||
| 3046 | IRBuilder<> IRB(&I); | |||
| 3047 | Value *OperandShadow = getShadow(&I, 0); | |||
| 3048 | Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); | |||
| 3049 | // Bit N is clean if any field's bit N is 0 and unpoison | |||
| 3050 | Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); | |||
| 3051 | // Otherwise, it is clean if every field's bit N is unpoison | |||
| 3052 | Value *OrShadow = IRB.CreateOrReduce(OperandShadow); | |||
| 3053 | Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); | |||
| 3054 | ||||
| 3055 | setShadow(&I, S); | |||
| 3056 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 3057 | } | |||
| 3058 | ||||
| 3059 | void handleStmxcsr(IntrinsicInst &I) { | |||
| 3060 | IRBuilder<> IRB(&I); | |||
| 3061 | Value* Addr = I.getArgOperand(0); | |||
| 3062 | Type *Ty = IRB.getInt32Ty(); | |||
| 3063 | Value *ShadowPtr = | |||
| 3064 | getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; | |||
| 3065 | ||||
| 3066 | IRB.CreateStore(getCleanShadow(Ty), | |||
| 3067 | IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); | |||
| 3068 | ||||
| 3069 | if (ClCheckAccessAddress) | |||
| 3070 | insertShadowCheck(Addr, &I); | |||
| 3071 | } | |||
| 3072 | ||||
| 3073 | void handleLdmxcsr(IntrinsicInst &I) { | |||
| 3074 | if (!InsertChecks) return; | |||
| 3075 | ||||
| 3076 | IRBuilder<> IRB(&I); | |||
| 3077 | Value *Addr = I.getArgOperand(0); | |||
| 3078 | Type *Ty = IRB.getInt32Ty(); | |||
| 3079 | const Align Alignment = Align(1); | |||
| 3080 | Value *ShadowPtr, *OriginPtr; | |||
| 3081 | std::tie(ShadowPtr, OriginPtr) = | |||
| 3082 | getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); | |||
| 3083 | ||||
| 3084 | if (ClCheckAccessAddress) | |||
| 3085 | insertShadowCheck(Addr, &I); | |||
| 3086 | ||||
| 3087 | Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); | |||
| 3088 | Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) | |||
| 3089 | : getCleanOrigin(); | |||
| 3090 | insertShadowCheck(Shadow, Origin, &I); | |||
| 3091 | } | |||
| 3092 | ||||
| 3093 | void handleMaskedStore(IntrinsicInst &I) { | |||
| 3094 | IRBuilder<> IRB(&I); | |||
| 3095 | Value *V = I.getArgOperand(0); | |||
| 3096 | Value *Addr = I.getArgOperand(1); | |||
| 3097 | const Align Alignment( | |||
| 3098 | cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); | |||
| 3099 | Value *Mask = I.getArgOperand(3); | |||
| 3100 | Value *Shadow = getShadow(V); | |||
| 3101 | ||||
| 3102 | Value *ShadowPtr; | |||
| 3103 | Value *OriginPtr; | |||
| 3104 | std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( | |||
| 3105 | Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); | |||
| 3106 | ||||
| 3107 | if (ClCheckAccessAddress) { | |||
| 3108 | insertShadowCheck(Addr, &I); | |||
| 3109 | // Uninitialized mask is kind of like uninitialized address, but not as | |||
| 3110 | // scary. | |||
| 3111 | insertShadowCheck(Mask, &I); | |||
| 3112 | } | |||
| 3113 | ||||
| 3114 | IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); | |||
| 3115 | ||||
| 3116 | if (MS.TrackOrigins) { | |||
| 3117 | auto &DL = F.getParent()->getDataLayout(); | |||
| 3118 | paintOrigin(IRB, getOrigin(V), OriginPtr, | |||
| 3119 | DL.getTypeStoreSize(Shadow->getType()), | |||
| 3120 | std::max(Alignment, kMinOriginAlignment)); | |||
| 3121 | } | |||
| 3122 | } | |||
| 3123 | ||||
| 3124 | bool handleMaskedLoad(IntrinsicInst &I) { | |||
| 3125 | IRBuilder<> IRB(&I); | |||
| 3126 | Value *Addr = I.getArgOperand(0); | |||
| 3127 | const Align Alignment( | |||
| 3128 | cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); | |||
| 3129 | Value *Mask = I.getArgOperand(2); | |||
| 3130 | Value *PassThru = I.getArgOperand(3); | |||
| 3131 | ||||
| 3132 | Type *ShadowTy = getShadowTy(&I); | |||
| 3133 | Value *ShadowPtr, *OriginPtr; | |||
| 3134 | if (PropagateShadow) { | |||
| 3135 | std::tie(ShadowPtr, OriginPtr) = | |||
| 3136 | getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); | |||
| 3137 | setShadow(&I, IRB.CreateMaskedLoad(ShadowTy, ShadowPtr, Alignment, Mask, | |||
| 3138 | getShadow(PassThru), "_msmaskedld")); | |||
| 3139 | } else { | |||
| 3140 | setShadow(&I, getCleanShadow(&I)); | |||
| 3141 | } | |||
| 3142 | ||||
| 3143 | if (ClCheckAccessAddress) { | |||
| 3144 | insertShadowCheck(Addr, &I); | |||
| 3145 | insertShadowCheck(Mask, &I); | |||
| 3146 | } | |||
| 3147 | ||||
| 3148 | if (MS.TrackOrigins) { | |||
| 3149 | if (PropagateShadow) { | |||
| 3150 | // Choose between PassThru's and the loaded value's origins. | |||
| 3151 | Value *MaskedPassThruShadow = IRB.CreateAnd( | |||
| 3152 | getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); | |||
| 3153 | ||||
| 3154 | Value *Acc = IRB.CreateExtractElement( | |||
| 3155 | MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); | |||
| 3156 | for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) | |||
| 3157 | ->getNumElements(); | |||
| 3158 | i < N; ++i) { | |||
| 3159 | Value *More = IRB.CreateExtractElement( | |||
| 3160 | MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); | |||
| 3161 | Acc = IRB.CreateOr(Acc, More); | |||
| 3162 | } | |||
| 3163 | ||||
| 3164 | Value *Origin = IRB.CreateSelect( | |||
| 3165 | IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), | |||
| 3166 | getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); | |||
| 3167 | ||||
| 3168 | setOrigin(&I, Origin); | |||
| 3169 | } else { | |||
| 3170 | setOrigin(&I, getCleanOrigin()); | |||
| 3171 | } | |||
| 3172 | } | |||
| 3173 | return true; | |||
| 3174 | } | |||
| 3175 | ||||
| 3176 | // Instrument BMI / BMI2 intrinsics. | |||
| 3177 | // All of these intrinsics are Z = I(X, Y) | |||
| 3178 | // where the types of all operands and the result match, and are either i32 or i64. | |||
| 3179 | // The following instrumentation happens to work for all of them: | |||
| 3180 | // Sz = I(Sx, Y) | (sext (Sy != 0)) | |||
| 3181 | void handleBmiIntrinsic(IntrinsicInst &I) { | |||
| 3182 | IRBuilder<> IRB(&I); | |||
| 3183 | Type *ShadowTy = getShadowTy(&I); | |||
| 3184 | ||||
| 3185 | // If any bit of the mask operand is poisoned, then the whole thing is. | |||
| 3186 | Value *SMask = getShadow(&I, 1); | |||
| 3187 | SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), | |||
| 3188 | ShadowTy); | |||
| 3189 | // Apply the same intrinsic to the shadow of the first operand. | |||
| 3190 | Value *S = IRB.CreateCall(I.getCalledFunction(), | |||
| 3191 | {getShadow(&I, 0), I.getOperand(1)}); | |||
| 3192 | S = IRB.CreateOr(SMask, S); | |||
| 3193 | setShadow(&I, S); | |||
| 3194 | setOriginForNaryOp(I); | |||
| 3195 | } | |||
| 3196 | ||||
| 3197 | SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { | |||
| 3198 | SmallVector<int, 8> Mask; | |||
| 3199 | for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { | |||
| 3200 | Mask.append(2, X); | |||
| 3201 | } | |||
| 3202 | return Mask; | |||
| 3203 | } | |||
| 3204 | ||||
| 3205 | // Instrument pclmul intrinsics. | |||
| 3206 | // These intrinsics operate either on odd or on even elements of the input | |||
| 3207 | // vectors, depending on the constant in the 3rd argument, ignoring the rest. | |||
| 3208 | // Replace the unused elements with copies of the used ones, ex: | |||
| 3209 | // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) | |||
| 3210 | // or | |||
| 3211 | // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) | |||
| 3212 | // and then apply the usual shadow combining logic. | |||
| 3213 | void handlePclmulIntrinsic(IntrinsicInst &I) { | |||
| 3214 | IRBuilder<> IRB(&I); | |||
| 3215 | unsigned Width = | |||
| 3216 | cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); | |||
| 3217 | assert(isa<ConstantInt>(I.getArgOperand(2)) &&((void)0) | |||
| 3218 | "pclmul 3rd operand must be a constant")((void)0); | |||
| 3219 | unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); | |||
| 3220 | Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), | |||
| 3221 | getPclmulMask(Width, Imm & 0x01)); | |||
| 3222 | Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), | |||
| 3223 | getPclmulMask(Width, Imm & 0x10)); | |||
| 3224 | ShadowAndOriginCombiner SOC(this, IRB); | |||
| 3225 | SOC.Add(Shuf0, getOrigin(&I, 0)); | |||
| 3226 | SOC.Add(Shuf1, getOrigin(&I, 1)); | |||
| 3227 | SOC.Done(&I); | |||
| 3228 | } | |||
| 3229 | ||||
| 3230 | // Instrument _mm_*_sd intrinsics | |||
| 3231 | void handleUnarySdIntrinsic(IntrinsicInst &I) { | |||
| 3232 | IRBuilder<> IRB(&I); | |||
| 3233 | Value *First = getShadow(&I, 0); | |||
| 3234 | Value *Second = getShadow(&I, 1); | |||
| 3235 | // High word of first operand, low word of second | |||
| 3236 | Value *Shadow = | |||
| 3237 | IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); | |||
| 3238 | ||||
| 3239 | setShadow(&I, Shadow); | |||
| 3240 | setOriginForNaryOp(I); | |||
| 3241 | } | |||
| 3242 | ||||
| 3243 | void handleBinarySdIntrinsic(IntrinsicInst &I) { | |||
| 3244 | IRBuilder<> IRB(&I); | |||
| 3245 | Value *First = getShadow(&I, 0); | |||
| 3246 | Value *Second = getShadow(&I, 1); | |||
| 3247 | Value *OrShadow = IRB.CreateOr(First, Second); | |||
| 3248 | // High word of first operand, low word of both OR'd together | |||
| 3249 | Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, | |||
| 3250 | llvm::makeArrayRef<int>({2, 1})); | |||
| 3251 | ||||
| 3252 | setShadow(&I, Shadow); | |||
| 3253 | setOriginForNaryOp(I); | |||
| 3254 | } | |||
| 3255 | ||||
| 3256 | // Instrument abs intrinsic. | |||
| 3257 | // handleUnknownIntrinsic can't handle it because of the last | |||
| 3258 | // is_int_min_poison argument which does not match the result type. | |||
| 3259 | void handleAbsIntrinsic(IntrinsicInst &I) { | |||
| 3260 | assert(I.getType()->isIntOrIntVectorTy())((void)0); | |||
| 3261 | assert(I.getArgOperand(0)->getType() == I.getType())((void)0); | |||
| 3262 | ||||
| 3263 | // FIXME: Handle is_int_min_poison. | |||
| 3264 | IRBuilder<> IRB(&I); | |||
| 3265 | setShadow(&I, getShadow(&I, 0)); | |||
| 3266 | setOrigin(&I, getOrigin(&I, 0)); | |||
| 3267 | } | |||
| 3268 | ||||
| 3269 | void visitIntrinsicInst(IntrinsicInst &I) { | |||
| 3270 | switch (I.getIntrinsicID()) { | |||
| 3271 | case Intrinsic::abs: | |||
| 3272 | handleAbsIntrinsic(I); | |||
| 3273 | break; | |||
| 3274 | case Intrinsic::lifetime_start: | |||
| 3275 | handleLifetimeStart(I); | |||
| 3276 | break; | |||
| 3277 | case Intrinsic::launder_invariant_group: | |||
| 3278 | case Intrinsic::strip_invariant_group: | |||
| 3279 | handleInvariantGroup(I); | |||
| 3280 | break; | |||
| 3281 | case Intrinsic::bswap: | |||
| 3282 | handleBswap(I); | |||
| 3283 | break; | |||
| 3284 | case Intrinsic::masked_store: | |||
| 3285 | handleMaskedStore(I); | |||
| 3286 | break; | |||
| 3287 | case Intrinsic::masked_load: | |||
| 3288 | handleMaskedLoad(I); | |||
| 3289 | break; | |||
| 3290 | case Intrinsic::vector_reduce_and: | |||
| 3291 | handleVectorReduceAndIntrinsic(I); | |||
| 3292 | break; | |||
| 3293 | case Intrinsic::vector_reduce_or: | |||
| 3294 | handleVectorReduceOrIntrinsic(I); | |||
| 3295 | break; | |||
| 3296 | case Intrinsic::vector_reduce_add: | |||
| 3297 | case Intrinsic::vector_reduce_xor: | |||
| 3298 | case Intrinsic::vector_reduce_mul: | |||
| 3299 | handleVectorReduceIntrinsic(I); | |||
| 3300 | break; | |||
| 3301 | case Intrinsic::x86_sse_stmxcsr: | |||
| 3302 | handleStmxcsr(I); | |||
| 3303 | break; | |||
| 3304 | case Intrinsic::x86_sse_ldmxcsr: | |||
| 3305 | handleLdmxcsr(I); | |||
| 3306 | break; | |||
| 3307 | case Intrinsic::x86_avx512_vcvtsd2usi64: | |||
| 3308 | case Intrinsic::x86_avx512_vcvtsd2usi32: | |||
| 3309 | case Intrinsic::x86_avx512_vcvtss2usi64: | |||
| 3310 | case Intrinsic::x86_avx512_vcvtss2usi32: | |||
| 3311 | case Intrinsic::x86_avx512_cvttss2usi64: | |||
| 3312 | case Intrinsic::x86_avx512_cvttss2usi: | |||
| 3313 | case Intrinsic::x86_avx512_cvttsd2usi64: | |||
| 3314 | case Intrinsic::x86_avx512_cvttsd2usi: | |||
| 3315 | case Intrinsic::x86_avx512_cvtusi2ss: | |||
| 3316 | case Intrinsic::x86_avx512_cvtusi642sd: | |||
| 3317 | case Intrinsic::x86_avx512_cvtusi642ss: | |||
| 3318 | handleVectorConvertIntrinsic(I, 1, true); | |||
| 3319 | break; | |||
| 3320 | case Intrinsic::x86_sse2_cvtsd2si64: | |||
| 3321 | case Intrinsic::x86_sse2_cvtsd2si: | |||
| 3322 | case Intrinsic::x86_sse2_cvtsd2ss: | |||
| 3323 | case Intrinsic::x86_sse2_cvttsd2si64: | |||
| 3324 | case Intrinsic::x86_sse2_cvttsd2si: | |||
| 3325 | case Intrinsic::x86_sse_cvtss2si64: | |||
| 3326 | case Intrinsic::x86_sse_cvtss2si: | |||
| 3327 | case Intrinsic::x86_sse_cvttss2si64: | |||
| 3328 | case Intrinsic::x86_sse_cvttss2si: | |||
| 3329 | handleVectorConvertIntrinsic(I, 1); | |||
| 3330 | break; | |||
| 3331 | case Intrinsic::x86_sse_cvtps2pi: | |||
| 3332 | case Intrinsic::x86_sse_cvttps2pi: | |||
| 3333 | handleVectorConvertIntrinsic(I, 2); | |||
| 3334 | break; | |||
| 3335 | ||||
| 3336 | case Intrinsic::x86_avx512_psll_w_512: | |||
| 3337 | case Intrinsic::x86_avx512_psll_d_512: | |||
| 3338 | case Intrinsic::x86_avx512_psll_q_512: | |||
| 3339 | case Intrinsic::x86_avx512_pslli_w_512: | |||
| 3340 | case Intrinsic::x86_avx512_pslli_d_512: | |||
| 3341 | case Intrinsic::x86_avx512_pslli_q_512: | |||
| 3342 | case Intrinsic::x86_avx512_psrl_w_512: | |||
| 3343 | case Intrinsic::x86_avx512_psrl_d_512: | |||
| 3344 | case Intrinsic::x86_avx512_psrl_q_512: | |||
| 3345 | case Intrinsic::x86_avx512_psra_w_512: | |||
| 3346 | case Intrinsic::x86_avx512_psra_d_512: | |||
| 3347 | case Intrinsic::x86_avx512_psra_q_512: | |||
| 3348 | case Intrinsic::x86_avx512_psrli_w_512: | |||
| 3349 | case Intrinsic::x86_avx512_psrli_d_512: | |||
| 3350 | case Intrinsic::x86_avx512_psrli_q_512: | |||
| 3351 | case Intrinsic::x86_avx512_psrai_w_512: | |||
| 3352 | case Intrinsic::x86_avx512_psrai_d_512: | |||
| 3353 | case Intrinsic::x86_avx512_psrai_q_512: | |||
| 3354 | case Intrinsic::x86_avx512_psra_q_256: | |||
| 3355 | case Intrinsic::x86_avx512_psra_q_128: | |||
| 3356 | case Intrinsic::x86_avx512_psrai_q_256: | |||
| 3357 | case Intrinsic::x86_avx512_psrai_q_128: | |||
| 3358 | case Intrinsic::x86_avx2_psll_w: | |||
| 3359 | case Intrinsic::x86_avx2_psll_d: | |||
| 3360 | case Intrinsic::x86_avx2_psll_q: | |||
| 3361 | case Intrinsic::x86_avx2_pslli_w: | |||
| 3362 | case Intrinsic::x86_avx2_pslli_d: | |||
| 3363 | case Intrinsic::x86_avx2_pslli_q: | |||
| 3364 | case Intrinsic::x86_avx2_psrl_w: | |||
| 3365 | case Intrinsic::x86_avx2_psrl_d: | |||
| 3366 | case Intrinsic::x86_avx2_psrl_q: | |||
| 3367 | case Intrinsic::x86_avx2_psra_w: | |||
| 3368 | case Intrinsic::x86_avx2_psra_d: | |||
| 3369 | case Intrinsic::x86_avx2_psrli_w: | |||
| 3370 | case Intrinsic::x86_avx2_psrli_d: | |||
| 3371 | case Intrinsic::x86_avx2_psrli_q: | |||
| 3372 | case Intrinsic::x86_avx2_psrai_w: | |||
| 3373 | case Intrinsic::x86_avx2_psrai_d: | |||
| 3374 | case Intrinsic::x86_sse2_psll_w: | |||
| 3375 | case Intrinsic::x86_sse2_psll_d: | |||
| 3376 | case Intrinsic::x86_sse2_psll_q: | |||
| 3377 | case Intrinsic::x86_sse2_pslli_w: | |||
| 3378 | case Intrinsic::x86_sse2_pslli_d: | |||
| 3379 | case Intrinsic::x86_sse2_pslli_q: | |||
| 3380 | case Intrinsic::x86_sse2_psrl_w: | |||
| 3381 | case Intrinsic::x86_sse2_psrl_d: | |||
| 3382 | case Intrinsic::x86_sse2_psrl_q: | |||
| 3383 | case Intrinsic::x86_sse2_psra_w: | |||
| 3384 | case Intrinsic::x86_sse2_psra_d: | |||
| 3385 | case Intrinsic::x86_sse2_psrli_w: | |||
| 3386 | case Intrinsic::x86_sse2_psrli_d: | |||
| 3387 | case Intrinsic::x86_sse2_psrli_q: | |||
| 3388 | case Intrinsic::x86_sse2_psrai_w: | |||
| 3389 | case Intrinsic::x86_sse2_psrai_d: | |||
| 3390 | case Intrinsic::x86_mmx_psll_w: | |||
| 3391 | case Intrinsic::x86_mmx_psll_d: | |||
| 3392 | case Intrinsic::x86_mmx_psll_q: | |||
| 3393 | case Intrinsic::x86_mmx_pslli_w: | |||
| 3394 | case Intrinsic::x86_mmx_pslli_d: | |||
| 3395 | case Intrinsic::x86_mmx_pslli_q: | |||
| 3396 | case Intrinsic::x86_mmx_psrl_w: | |||
| 3397 | case Intrinsic::x86_mmx_psrl_d: | |||
| 3398 | case Intrinsic::x86_mmx_psrl_q: | |||
| 3399 | case Intrinsic::x86_mmx_psra_w: | |||
| 3400 | case Intrinsic::x86_mmx_psra_d: | |||
| 3401 | case Intrinsic::x86_mmx_psrli_w: | |||
| 3402 | case Intrinsic::x86_mmx_psrli_d: | |||
| 3403 | case Intrinsic::x86_mmx_psrli_q: | |||
| 3404 | case Intrinsic::x86_mmx_psrai_w: | |||
| 3405 | case Intrinsic::x86_mmx_psrai_d: | |||
| 3406 | handleVectorShiftIntrinsic(I, /* Variable */ false); | |||
| 3407 | break; | |||
| 3408 | case Intrinsic::x86_avx2_psllv_d: | |||
| 3409 | case Intrinsic::x86_avx2_psllv_d_256: | |||
| 3410 | case Intrinsic::x86_avx512_psllv_d_512: | |||
| 3411 | case Intrinsic::x86_avx2_psllv_q: | |||
| 3412 | case Intrinsic::x86_avx2_psllv_q_256: | |||
| 3413 | case Intrinsic::x86_avx512_psllv_q_512: | |||
| 3414 | case Intrinsic::x86_avx2_psrlv_d: | |||
| 3415 | case Intrinsic::x86_avx2_psrlv_d_256: | |||
| 3416 | case Intrinsic::x86_avx512_psrlv_d_512: | |||
| 3417 | case Intrinsic::x86_avx2_psrlv_q: | |||
| 3418 | case Intrinsic::x86_avx2_psrlv_q_256: | |||
| 3419 | case Intrinsic::x86_avx512_psrlv_q_512: | |||
| 3420 | case Intrinsic::x86_avx2_psrav_d: | |||
| 3421 | case Intrinsic::x86_avx2_psrav_d_256: | |||
| 3422 | case Intrinsic::x86_avx512_psrav_d_512: | |||
| 3423 | case Intrinsic::x86_avx512_psrav_q_128: | |||
| 3424 | case Intrinsic::x86_avx512_psrav_q_256: | |||
| 3425 | case Intrinsic::x86_avx512_psrav_q_512: | |||
| 3426 | handleVectorShiftIntrinsic(I, /* Variable */ true); | |||
| 3427 | break; | |||
| 3428 | ||||
| 3429 | case Intrinsic::x86_sse2_packsswb_128: | |||
| 3430 | case Intrinsic::x86_sse2_packssdw_128: | |||
| 3431 | case Intrinsic::x86_sse2_packuswb_128: | |||
| 3432 | case Intrinsic::x86_sse41_packusdw: | |||
| 3433 | case Intrinsic::x86_avx2_packsswb: | |||
| 3434 | case Intrinsic::x86_avx2_packssdw: | |||
| 3435 | case Intrinsic::x86_avx2_packuswb: | |||
| 3436 | case Intrinsic::x86_avx2_packusdw: | |||
| 3437 | handleVectorPackIntrinsic(I); | |||
| 3438 | break; | |||
| 3439 | ||||
| 3440 | case Intrinsic::x86_mmx_packsswb: | |||
| 3441 | case Intrinsic::x86_mmx_packuswb: | |||
| 3442 | handleVectorPackIntrinsic(I, 16); | |||
| 3443 | break; | |||
| 3444 | ||||
| 3445 | case Intrinsic::x86_mmx_packssdw: | |||
| 3446 | handleVectorPackIntrinsic(I, 32); | |||
| 3447 | break; | |||
| 3448 | ||||
| 3449 | case Intrinsic::x86_mmx_psad_bw: | |||
| 3450 | case Intrinsic::x86_sse2_psad_bw: | |||
| 3451 | case Intrinsic::x86_avx2_psad_bw: | |||
| 3452 | handleVectorSadIntrinsic(I); | |||
| 3453 | break; | |||
| 3454 | ||||
| 3455 | case Intrinsic::x86_sse2_pmadd_wd: | |||
| 3456 | case Intrinsic::x86_avx2_pmadd_wd: | |||
| 3457 | case Intrinsic::x86_ssse3_pmadd_ub_sw_128: | |||
| 3458 | case Intrinsic::x86_avx2_pmadd_ub_sw: | |||
| 3459 | handleVectorPmaddIntrinsic(I); | |||
| 3460 | break; | |||
| 3461 | ||||
| 3462 | case Intrinsic::x86_ssse3_pmadd_ub_sw: | |||
| 3463 | handleVectorPmaddIntrinsic(I, 8); | |||
| 3464 | break; | |||
| 3465 | ||||
| 3466 | case Intrinsic::x86_mmx_pmadd_wd: | |||
| 3467 | handleVectorPmaddIntrinsic(I, 16); | |||
| 3468 | break; | |||
| 3469 | ||||
| 3470 | case Intrinsic::x86_sse_cmp_ss: | |||
| 3471 | case Intrinsic::x86_sse2_cmp_sd: | |||
| 3472 | case Intrinsic::x86_sse_comieq_ss: | |||
| 3473 | case Intrinsic::x86_sse_comilt_ss: | |||
| 3474 | case Intrinsic::x86_sse_comile_ss: | |||
| 3475 | case Intrinsic::x86_sse_comigt_ss: | |||
| 3476 | case Intrinsic::x86_sse_comige_ss: | |||
| 3477 | case Intrinsic::x86_sse_comineq_ss: | |||
| 3478 | case Intrinsic::x86_sse_ucomieq_ss: | |||
| 3479 | case Intrinsic::x86_sse_ucomilt_ss: | |||
| 3480 | case Intrinsic::x86_sse_ucomile_ss: | |||
| 3481 | case Intrinsic::x86_sse_ucomigt_ss: | |||
| 3482 | case Intrinsic::x86_sse_ucomige_ss: | |||
| 3483 | case Intrinsic::x86_sse_ucomineq_ss: | |||
| 3484 | case Intrinsic::x86_sse2_comieq_sd: | |||
| 3485 | case Intrinsic::x86_sse2_comilt_sd: | |||
| 3486 | case Intrinsic::x86_sse2_comile_sd: | |||
| 3487 | case Intrinsic::x86_sse2_comigt_sd: | |||
| 3488 | case Intrinsic::x86_sse2_comige_sd: | |||
| 3489 | case Intrinsic::x86_sse2_comineq_sd: | |||
| 3490 | case Intrinsic::x86_sse2_ucomieq_sd: | |||
| 3491 | case Intrinsic::x86_sse2_ucomilt_sd: | |||
| 3492 | case Intrinsic::x86_sse2_ucomile_sd: | |||
| 3493 | case Intrinsic::x86_sse2_ucomigt_sd: | |||
| 3494 | case Intrinsic::x86_sse2_ucomige_sd: | |||
| 3495 | case Intrinsic::x86_sse2_ucomineq_sd: | |||
| 3496 | handleVectorCompareScalarIntrinsic(I); | |||
| 3497 | break; | |||
| 3498 | ||||
| 3499 | case Intrinsic::x86_sse_cmp_ps: | |||
| 3500 | case Intrinsic::x86_sse2_cmp_pd: | |||
| 3501 | // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function | |||
| 3502 | // generates reasonably looking IR that fails in the backend with "Do not | |||
| 3503 | // know how to split the result of this operator!". | |||
| 3504 | handleVectorComparePackedIntrinsic(I); | |||
| 3505 | break; | |||
| 3506 | ||||
| 3507 | case Intrinsic::x86_bmi_bextr_32: | |||
| 3508 | case Intrinsic::x86_bmi_bextr_64: | |||
| 3509 | case Intrinsic::x86_bmi_bzhi_32: | |||
| 3510 | case Intrinsic::x86_bmi_bzhi_64: | |||
| 3511 | case Intrinsic::x86_bmi_pdep_32: | |||
| 3512 | case Intrinsic::x86_bmi_pdep_64: | |||
| 3513 | case Intrinsic::x86_bmi_pext_32: | |||
| 3514 | case Intrinsic::x86_bmi_pext_64: | |||
| 3515 | handleBmiIntrinsic(I); | |||
| 3516 | break; | |||
| 3517 | ||||
| 3518 | case Intrinsic::x86_pclmulqdq: | |||
| 3519 | case Intrinsic::x86_pclmulqdq_256: | |||
| 3520 | case Intrinsic::x86_pclmulqdq_512: | |||
| 3521 | handlePclmulIntrinsic(I); | |||
| 3522 | break; | |||
| 3523 | ||||
| 3524 | case Intrinsic::x86_sse41_round_sd: | |||
| 3525 | handleUnarySdIntrinsic(I); | |||
| 3526 | break; | |||
| 3527 | case Intrinsic::x86_sse2_max_sd: | |||
| 3528 | case Intrinsic::x86_sse2_min_sd: | |||
| 3529 | handleBinarySdIntrinsic(I); | |||
| 3530 | break; | |||
| 3531 | ||||
| 3532 | case Intrinsic::fshl: | |||
| 3533 | case Intrinsic::fshr: | |||
| 3534 | handleFunnelShift(I); | |||
| 3535 | break; | |||
| 3536 | ||||
| 3537 | case Intrinsic::is_constant: | |||
| 3538 | // The result of llvm.is.constant() is always defined. | |||
| 3539 | setShadow(&I, getCleanShadow(&I)); | |||
| 3540 | setOrigin(&I, getCleanOrigin()); | |||
| 3541 | break; | |||
| 3542 | ||||
| 3543 | default: | |||
| 3544 | if (!handleUnknownIntrinsic(I)) | |||
| 3545 | visitInstruction(I); | |||
| 3546 | break; | |||
| 3547 | } | |||
| 3548 | } | |||
| 3549 | ||||
| 3550 | void visitLibAtomicLoad(CallBase &CB) { | |||
| 3551 | // Since we use getNextNode here, we can't have CB terminate the BB. | |||
| 3552 | assert(isa<CallInst>(CB))((void)0); | |||
| 3553 | ||||
| 3554 | IRBuilder<> IRB(&CB); | |||
| 3555 | Value *Size = CB.getArgOperand(0); | |||
| 3556 | Value *SrcPtr = CB.getArgOperand(1); | |||
| 3557 | Value *DstPtr = CB.getArgOperand(2); | |||
| 3558 | Value *Ordering = CB.getArgOperand(3); | |||
| 3559 | // Convert the call to have at least Acquire ordering to make sure | |||
| 3560 | // the shadow operations aren't reordered before it. | |||
| 3561 | Value *NewOrdering = | |||
| 3562 | IRB.CreateExtractElement(makeAddAcquireOrderingTable(IRB), Ordering); | |||
| 3563 | CB.setArgOperand(3, NewOrdering); | |||
| 3564 | ||||
| 3565 | IRBuilder<> NextIRB(CB.getNextNode()); | |||
| 3566 | NextIRB.SetCurrentDebugLocation(CB.getDebugLoc()); | |||
| 3567 | ||||
| 3568 | Value *SrcShadowPtr, *SrcOriginPtr; | |||
| 3569 | std::tie(SrcShadowPtr, SrcOriginPtr) = | |||
| 3570 | getShadowOriginPtr(SrcPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), | |||
| 3571 | /*isStore*/ false); | |||
| 3572 | Value *DstShadowPtr = | |||
| 3573 | getShadowOriginPtr(DstPtr, NextIRB, NextIRB.getInt8Ty(), Align(1), | |||
| 3574 | /*isStore*/ true) | |||
| 3575 | .first; | |||
| 3576 | ||||
| 3577 | NextIRB.CreateMemCpy(DstShadowPtr, Align(1), SrcShadowPtr, Align(1), Size); | |||
| 3578 | if (MS.TrackOrigins) { | |||
| 3579 | Value *SrcOrigin = NextIRB.CreateAlignedLoad(MS.OriginTy, SrcOriginPtr, | |||
| 3580 | kMinOriginAlignment); | |||
| 3581 | Value *NewOrigin = updateOrigin(SrcOrigin, NextIRB); | |||
| 3582 | NextIRB.CreateCall(MS.MsanSetOriginFn, {DstPtr, Size, NewOrigin}); | |||
| 3583 | } | |||
| 3584 | } | |||
| 3585 | ||||
| 3586 | void visitLibAtomicStore(CallBase &CB) { | |||
| 3587 | IRBuilder<> IRB(&CB); | |||
| 3588 | Value *Size = CB.getArgOperand(0); | |||
| 3589 | Value *DstPtr = CB.getArgOperand(2); | |||
| 3590 | Value *Ordering = CB.getArgOperand(3); | |||
| 3591 | // Convert the call to have at least Release ordering to make sure | |||
| 3592 | // the shadow operations aren't reordered after it. | |||
| 3593 | Value *NewOrdering = | |||
| 3594 | IRB.CreateExtractElement(makeAddReleaseOrderingTable(IRB), Ordering); | |||
| 3595 | CB.setArgOperand(3, NewOrdering); | |||
| 3596 | ||||
| 3597 | Value *DstShadowPtr = | |||
| 3598 | getShadowOriginPtr(DstPtr, IRB, IRB.getInt8Ty(), Align(1), | |||
| 3599 | /*isStore*/ true) | |||
| 3600 | .first; | |||
| 3601 | ||||
| 3602 | // Atomic store always paints clean shadow/origin. See file header. | |||
| 3603 | IRB.CreateMemSet(DstShadowPtr, getCleanShadow(IRB.getInt8Ty()), Size, | |||
| 3604 | Align(1)); | |||
| 3605 | } | |||
| 3606 | ||||
| 3607 | void visitCallBase(CallBase &CB) { | |||
| 3608 | assert(!CB.getMetadata("nosanitize"))((void)0); | |||
| 3609 | if (CB.isInlineAsm()) { | |||
| 3610 | // For inline asm (either a call to asm function, or callbr instruction), | |||
| 3611 | // do the usual thing: check argument shadow and mark all outputs as | |||
| 3612 | // clean. Note that any side effects of the inline asm that are not | |||
| 3613 | // immediately visible in its constraints are not handled. | |||
| 3614 | if (ClHandleAsmConservative && MS.CompileKernel) | |||
| 3615 | visitAsmInstruction(CB); | |||
| 3616 | else | |||
| 3617 | visitInstruction(CB); | |||
| 3618 | return; | |||
| 3619 | } | |||
| 3620 | LibFunc LF; | |||
| 3621 | if (TLI->getLibFunc(CB, LF)) { | |||
| 3622 | // libatomic.a functions need to have special handling because there isn't | |||
| 3623 | // a good way to intercept them or compile the library with | |||
| 3624 | // instrumentation. | |||
| 3625 | switch (LF) { | |||
| 3626 | case LibFunc_atomic_load: | |||
| 3627 | if (!isa<CallInst>(CB)) { | |||
| 3628 | llvm::errs() << "MSAN -- cannot instrument invoke of libatomic load." | |||
| 3629 | "Ignoring!\n"; | |||
| 3630 | break; | |||
| 3631 | } | |||
| 3632 | visitLibAtomicLoad(CB); | |||
| 3633 | return; | |||
| 3634 | case LibFunc_atomic_store: | |||
| 3635 | visitLibAtomicStore(CB); | |||
| 3636 | return; | |||
| 3637 | default: | |||
| 3638 | break; | |||
| 3639 | } | |||
| 3640 | } | |||
| 3641 | ||||
| 3642 | if (auto *Call = dyn_cast<CallInst>(&CB)) { | |||
| 3643 | assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere")((void)0); | |||
| 3644 | ||||
| 3645 | // We are going to insert code that relies on the fact that the callee | |||
| 3646 | // will become a non-readonly function after it is instrumented by us. To | |||
| 3647 | // prevent this code from being optimized out, mark that function | |||
| 3648 | // non-readonly in advance. | |||
| 3649 | AttrBuilder B; | |||
| 3650 | B.addAttribute(Attribute::ReadOnly) | |||
| 3651 | .addAttribute(Attribute::ReadNone) | |||
| 3652 | .addAttribute(Attribute::WriteOnly) | |||
| 3653 | .addAttribute(Attribute::ArgMemOnly) | |||
| 3654 | .addAttribute(Attribute::Speculatable); | |||
| 3655 | ||||
| 3656 | Call->removeAttributes(AttributeList::FunctionIndex, B); | |||
| 3657 | if (Function *Func = Call->getCalledFunction()) { | |||
| 3658 | Func->removeAttributes(AttributeList::FunctionIndex, B); | |||
| 3659 | } | |||
| 3660 | ||||
| 3661 | maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); | |||
| 3662 | } | |||
| 3663 | IRBuilder<> IRB(&CB); | |||
| 3664 | bool MayCheckCall = ClEagerChecks; | |||
| 3665 | if (Function *Func = CB.getCalledFunction()) { | |||
| 3666 | // __sanitizer_unaligned_{load,store} functions may be called by users | |||
| 3667 | // and always expects shadows in the TLS. So don't check them. | |||
| 3668 | MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); | |||
| 3669 | } | |||
| 3670 | ||||
| 3671 | unsigned ArgOffset = 0; | |||
| 3672 | LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n")do { } while (false); | |||
| 3673 | for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; | |||
| 3674 | ++ArgIt) { | |||
| 3675 | Value *A = *ArgIt; | |||
| 3676 | unsigned i = ArgIt - CB.arg_begin(); | |||
| 3677 | if (!A->getType()->isSized()) { | |||
| 3678 | LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n")do { } while (false); | |||
| 3679 | continue; | |||
| 3680 | } | |||
| 3681 | unsigned Size = 0; | |||
| 3682 | Value *Store = nullptr; | |||
| 3683 | // Compute the Shadow for arg even if it is ByVal, because | |||
| 3684 | // in that case getShadow() will copy the actual arg shadow to | |||
| 3685 | // __msan_param_tls. | |||
| 3686 | Value *ArgShadow = getShadow(A); | |||
| 3687 | Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); | |||
| 3688 | LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *Ado { } while (false) | |||
| 3689 | << " Shadow: " << *ArgShadow << "\n")do { } while (false); | |||
| 3690 | bool ArgIsInitialized = false; | |||
| 3691 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 3692 | ||||
| 3693 | bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); | |||
| 3694 | bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); | |||
| 3695 | bool EagerCheck = MayCheckCall && !ByVal && NoUndef; | |||
| 3696 | ||||
| 3697 | if (EagerCheck) { | |||
| 3698 | insertShadowCheck(A, &CB); | |||
| 3699 | continue; | |||
| 3700 | } | |||
| 3701 | if (ByVal) { | |||
| 3702 | // ByVal requires some special handling as it's too big for a single | |||
| 3703 | // load | |||
| 3704 | assert(A->getType()->isPointerTy() &&((void)0) | |||
| 3705 | "ByVal argument is not a pointer!")((void)0); | |||
| 3706 | Size = DL.getTypeAllocSize(CB.getParamByValType(i)); | |||
| 3707 | if (ArgOffset + Size > kParamTLSSize) break; | |||
| 3708 | const MaybeAlign ParamAlignment(CB.getParamAlign(i)); | |||
| 3709 | MaybeAlign Alignment = llvm::None; | |||
| 3710 | if (ParamAlignment) | |||
| 3711 | Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); | |||
| 3712 | Value *AShadowPtr = | |||
| 3713 | getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, | |||
| 3714 | /*isStore*/ false) | |||
| 3715 | .first; | |||
| 3716 | ||||
| 3717 | Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, | |||
| 3718 | Alignment, Size); | |||
| 3719 | // TODO(glider): need to copy origins. | |||
| 3720 | } else { | |||
| 3721 | // Any other parameters mean we need bit-grained tracking of uninit data | |||
| 3722 | Size = DL.getTypeAllocSize(A->getType()); | |||
| 3723 | if (ArgOffset + Size > kParamTLSSize) break; | |||
| 3724 | Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, | |||
| 3725 | kShadowTLSAlignment); | |||
| 3726 | Constant *Cst = dyn_cast<Constant>(ArgShadow); | |||
| 3727 | if (Cst && Cst->isNullValue()) ArgIsInitialized = true; | |||
| 3728 | } | |||
| 3729 | if (MS.TrackOrigins && !ArgIsInitialized) | |||
| 3730 | IRB.CreateStore(getOrigin(A), | |||
| 3731 | getOriginPtrForArgument(A, IRB, ArgOffset)); | |||
| 3732 | (void)Store; | |||
| 3733 | assert(Size != 0 && Store != nullptr)((void)0); | |||
| 3734 | LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n")do { } while (false); | |||
| 3735 | ArgOffset += alignTo(Size, kShadowTLSAlignment); | |||
| 3736 | } | |||
| 3737 | LLVM_DEBUG(dbgs() << " done with call args\n")do { } while (false); | |||
| 3738 | ||||
| 3739 | FunctionType *FT = CB.getFunctionType(); | |||
| 3740 | if (FT->isVarArg()) { | |||
| 3741 | VAHelper->visitCallBase(CB, IRB); | |||
| 3742 | } | |||
| 3743 | ||||
| 3744 | // Now, get the shadow for the RetVal. | |||
| 3745 | if (!CB.getType()->isSized()) | |||
| 3746 | return; | |||
| 3747 | // Don't emit the epilogue for musttail call returns. | |||
| 3748 | if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) | |||
| 3749 | return; | |||
| 3750 | ||||
| 3751 | if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { | |||
| 3752 | setShadow(&CB, getCleanShadow(&CB)); | |||
| 3753 | setOrigin(&CB, getCleanOrigin()); | |||
| 3754 | return; | |||
| 3755 | } | |||
| 3756 | ||||
| 3757 | IRBuilder<> IRBBefore(&CB); | |||
| 3758 | // Until we have full dynamic coverage, make sure the retval shadow is 0. | |||
| 3759 | Value *Base = getShadowPtrForRetval(&CB, IRBBefore); | |||
| 3760 | IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, | |||
| 3761 | kShadowTLSAlignment); | |||
| 3762 | BasicBlock::iterator NextInsn; | |||
| 3763 | if (isa<CallInst>(CB)) { | |||
| 3764 | NextInsn = ++CB.getIterator(); | |||
| 3765 | assert(NextInsn != CB.getParent()->end())((void)0); | |||
| 3766 | } else { | |||
| 3767 | BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); | |||
| 3768 | if (!NormalDest->getSinglePredecessor()) { | |||
| 3769 | // FIXME: this case is tricky, so we are just conservative here. | |||
| 3770 | // Perhaps we need to split the edge between this BB and NormalDest, | |||
| 3771 | // but a naive attempt to use SplitEdge leads to a crash. | |||
| 3772 | setShadow(&CB, getCleanShadow(&CB)); | |||
| 3773 | setOrigin(&CB, getCleanOrigin()); | |||
| 3774 | return; | |||
| 3775 | } | |||
| 3776 | // FIXME: NextInsn is likely in a basic block that has not been visited yet. | |||
| 3777 | // Anything inserted there will be instrumented by MSan later! | |||
| 3778 | NextInsn = NormalDest->getFirstInsertionPt(); | |||
| 3779 | assert(NextInsn != NormalDest->end() &&((void)0) | |||
| 3780 | "Could not find insertion point for retval shadow load")((void)0); | |||
| 3781 | } | |||
| 3782 | IRBuilder<> IRBAfter(&*NextInsn); | |||
| 3783 | Value *RetvalShadow = IRBAfter.CreateAlignedLoad( | |||
| 3784 | getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), | |||
| 3785 | kShadowTLSAlignment, "_msret"); | |||
| 3786 | setShadow(&CB, RetvalShadow); | |||
| 3787 | if (MS.TrackOrigins) | |||
| 3788 | setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, | |||
| 3789 | getOriginPtrForRetval(IRBAfter))); | |||
| 3790 | } | |||
| 3791 | ||||
| 3792 | bool isAMustTailRetVal(Value *RetVal) { | |||
| 3793 | if (auto *I = dyn_cast<BitCastInst>(RetVal)) { | |||
| 3794 | RetVal = I->getOperand(0); | |||
| 3795 | } | |||
| 3796 | if (auto *I = dyn_cast<CallInst>(RetVal)) { | |||
| 3797 | return I->isMustTailCall(); | |||
| 3798 | } | |||
| 3799 | return false; | |||
| 3800 | } | |||
| 3801 | ||||
| 3802 | void visitReturnInst(ReturnInst &I) { | |||
| 3803 | IRBuilder<> IRB(&I); | |||
| 3804 | Value *RetVal = I.getReturnValue(); | |||
| 3805 | if (!RetVal) return; | |||
| 3806 | // Don't emit the epilogue for musttail call returns. | |||
| 3807 | if (isAMustTailRetVal(RetVal)) return; | |||
| 3808 | Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); | |||
| 3809 | bool HasNoUndef = | |||
| 3810 | F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); | |||
| 3811 | bool StoreShadow = !(ClEagerChecks && HasNoUndef); | |||
| 3812 | // FIXME: Consider using SpecialCaseList to specify a list of functions that | |||
| 3813 | // must always return fully initialized values. For now, we hardcode "main". | |||
| 3814 | bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); | |||
| 3815 | ||||
| 3816 | Value *Shadow = getShadow(RetVal); | |||
| 3817 | bool StoreOrigin = true; | |||
| 3818 | if (EagerCheck) { | |||
| 3819 | insertShadowCheck(RetVal, &I); | |||
| 3820 | Shadow = getCleanShadow(RetVal); | |||
| 3821 | StoreOrigin = false; | |||
| 3822 | } | |||
| 3823 | ||||
| 3824 | // The caller may still expect information passed over TLS if we pass our | |||
| 3825 | // check | |||
| 3826 | if (StoreShadow) { | |||
| 3827 | IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); | |||
| 3828 | if (MS.TrackOrigins && StoreOrigin) | |||
| 3829 | IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); | |||
| 3830 | } | |||
| 3831 | } | |||
| 3832 | ||||
| 3833 | void visitPHINode(PHINode &I) { | |||
| 3834 | IRBuilder<> IRB(&I); | |||
| 3835 | if (!PropagateShadow) { | |||
| 3836 | setShadow(&I, getCleanShadow(&I)); | |||
| 3837 | setOrigin(&I, getCleanOrigin()); | |||
| 3838 | return; | |||
| 3839 | } | |||
| 3840 | ||||
| 3841 | ShadowPHINodes.push_back(&I); | |||
| 3842 | setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), | |||
| 3843 | "_msphi_s")); | |||
| 3844 | if (MS.TrackOrigins) | |||
| 3845 | setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), | |||
| 3846 | "_msphi_o")); | |||
| 3847 | } | |||
| 3848 | ||||
| 3849 | Value *getLocalVarDescription(AllocaInst &I) { | |||
| 3850 | SmallString<2048> StackDescriptionStorage; | |||
| 3851 | raw_svector_ostream StackDescription(StackDescriptionStorage); | |||
| 3852 | // We create a string with a description of the stack allocation and | |||
| 3853 | // pass it into __msan_set_alloca_origin. | |||
| 3854 | // It will be printed by the run-time if stack-originated UMR is found. | |||
| 3855 | // The first 4 bytes of the string are set to '----' and will be replaced | |||
| 3856 | // by __msan_va_arg_overflow_size_tls at the first call. | |||
| 3857 | StackDescription << "----" << I.getName() << "@" << F.getName(); | |||
| 3858 | return createPrivateNonConstGlobalForString(*F.getParent(), | |||
| 3859 | StackDescription.str()); | |||
| 3860 | } | |||
| 3861 | ||||
| 3862 | void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { | |||
| 3863 | if (PoisonStack && ClPoisonStackWithCall) { | |||
| 3864 | IRB.CreateCall(MS.MsanPoisonStackFn, | |||
| 3865 | {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); | |||
| 3866 | } else { | |||
| 3867 | Value *ShadowBase, *OriginBase; | |||
| 3868 | std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( | |||
| 3869 | &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); | |||
| 3870 | ||||
| 3871 | Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); | |||
| 3872 | IRB.CreateMemSet(ShadowBase, PoisonValue, Len, | |||
| 3873 | MaybeAlign(I.getAlignment())); | |||
| 3874 | } | |||
| 3875 | ||||
| 3876 | if (PoisonStack && MS.TrackOrigins) { | |||
| 3877 | Value *Descr = getLocalVarDescription(I); | |||
| 3878 | IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, | |||
| 3879 | {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, | |||
| 3880 | IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), | |||
| 3881 | IRB.CreatePointerCast(&F, MS.IntptrTy)}); | |||
| 3882 | } | |||
| 3883 | } | |||
| 3884 | ||||
| 3885 | void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { | |||
| 3886 | Value *Descr = getLocalVarDescription(I); | |||
| 3887 | if (PoisonStack) { | |||
| 3888 | IRB.CreateCall(MS.MsanPoisonAllocaFn, | |||
| 3889 | {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, | |||
| 3890 | IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); | |||
| 3891 | } else { | |||
| 3892 | IRB.CreateCall(MS.MsanUnpoisonAllocaFn, | |||
| 3893 | {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); | |||
| 3894 | } | |||
| 3895 | } | |||
| 3896 | ||||
| 3897 | void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { | |||
| 3898 | if (!InsPoint) | |||
| 3899 | InsPoint = &I; | |||
| 3900 | IRBuilder<> IRB(InsPoint->getNextNode()); | |||
| 3901 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 3902 | uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); | |||
| 3903 | Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); | |||
| 3904 | if (I.isArrayAllocation()) | |||
| 3905 | Len = IRB.CreateMul(Len, I.getArraySize()); | |||
| 3906 | ||||
| 3907 | if (MS.CompileKernel) | |||
| 3908 | poisonAllocaKmsan(I, IRB, Len); | |||
| 3909 | else | |||
| 3910 | poisonAllocaUserspace(I, IRB, Len); | |||
| 3911 | } | |||
| 3912 | ||||
| 3913 | void visitAllocaInst(AllocaInst &I) { | |||
| 3914 | setShadow(&I, getCleanShadow(&I)); | |||
| 3915 | setOrigin(&I, getCleanOrigin()); | |||
| 3916 | // We'll get to this alloca later unless it's poisoned at the corresponding | |||
| 3917 | // llvm.lifetime.start. | |||
| 3918 | AllocaSet.insert(&I); | |||
| 3919 | } | |||
| 3920 | ||||
| 3921 | void visitSelectInst(SelectInst& I) { | |||
| 3922 | IRBuilder<> IRB(&I); | |||
| 3923 | // a = select b, c, d | |||
| 3924 | Value *B = I.getCondition(); | |||
| 3925 | Value *C = I.getTrueValue(); | |||
| 3926 | Value *D = I.getFalseValue(); | |||
| 3927 | Value *Sb = getShadow(B); | |||
| 3928 | Value *Sc = getShadow(C); | |||
| 3929 | Value *Sd = getShadow(D); | |||
| 3930 | ||||
| 3931 | // Result shadow if condition shadow is 0. | |||
| 3932 | Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); | |||
| 3933 | Value *Sa1; | |||
| 3934 | if (I.getType()->isAggregateType()) { | |||
| 3935 | // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do | |||
| 3936 | // an extra "select". This results in much more compact IR. | |||
| 3937 | // Sa = select Sb, poisoned, (select b, Sc, Sd) | |||
| 3938 | Sa1 = getPoisonedShadow(getShadowTy(I.getType())); | |||
| 3939 | } else { | |||
| 3940 | // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] | |||
| 3941 | // If Sb (condition is poisoned), look for bits in c and d that are equal | |||
| 3942 | // and both unpoisoned. | |||
| 3943 | // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. | |||
| 3944 | ||||
| 3945 | // Cast arguments to shadow-compatible type. | |||
| 3946 | C = CreateAppToShadowCast(IRB, C); | |||
| 3947 | D = CreateAppToShadowCast(IRB, D); | |||
| 3948 | ||||
| 3949 | // Result shadow if condition shadow is 1. | |||
| 3950 | Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); | |||
| 3951 | } | |||
| 3952 | Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); | |||
| 3953 | setShadow(&I, Sa); | |||
| 3954 | if (MS.TrackOrigins) { | |||
| 3955 | // Origins are always i32, so any vector conditions must be flattened. | |||
| 3956 | // FIXME: consider tracking vector origins for app vectors? | |||
| 3957 | if (B->getType()->isVectorTy()) { | |||
| 3958 | Type *FlatTy = getShadowTyNoVec(B->getType()); | |||
| 3959 | B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), | |||
| 3960 | ConstantInt::getNullValue(FlatTy)); | |||
| 3961 | Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), | |||
| 3962 | ConstantInt::getNullValue(FlatTy)); | |||
| 3963 | } | |||
| 3964 | // a = select b, c, d | |||
| 3965 | // Oa = Sb ? Ob : (b ? Oc : Od) | |||
| 3966 | setOrigin( | |||
| 3967 | &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), | |||
| 3968 | IRB.CreateSelect(B, getOrigin(I.getTrueValue()), | |||
| 3969 | getOrigin(I.getFalseValue())))); | |||
| 3970 | } | |||
| 3971 | } | |||
| 3972 | ||||
| 3973 | void visitLandingPadInst(LandingPadInst &I) { | |||
| 3974 | // Do nothing. | |||
| 3975 | // See https://github.com/google/sanitizers/issues/504 | |||
| 3976 | setShadow(&I, getCleanShadow(&I)); | |||
| 3977 | setOrigin(&I, getCleanOrigin()); | |||
| 3978 | } | |||
| 3979 | ||||
| 3980 | void visitCatchSwitchInst(CatchSwitchInst &I) { | |||
| 3981 | setShadow(&I, getCleanShadow(&I)); | |||
| 3982 | setOrigin(&I, getCleanOrigin()); | |||
| 3983 | } | |||
| 3984 | ||||
| 3985 | void visitFuncletPadInst(FuncletPadInst &I) { | |||
| 3986 | setShadow(&I, getCleanShadow(&I)); | |||
| 3987 | setOrigin(&I, getCleanOrigin()); | |||
| 3988 | } | |||
| 3989 | ||||
| 3990 | void visitGetElementPtrInst(GetElementPtrInst &I) { | |||
| 3991 | handleShadowOr(I); | |||
| 3992 | } | |||
| 3993 | ||||
| 3994 | void visitExtractValueInst(ExtractValueInst &I) { | |||
| 3995 | IRBuilder<> IRB(&I); | |||
| 3996 | Value *Agg = I.getAggregateOperand(); | |||
| 3997 | LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n")do { } while (false); | |||
| 3998 | Value *AggShadow = getShadow(Agg); | |||
| 3999 | LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n")do { } while (false); | |||
| 4000 | Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); | |||
| 4001 | LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n")do { } while (false); | |||
| 4002 | setShadow(&I, ResShadow); | |||
| 4003 | setOriginForNaryOp(I); | |||
| 4004 | } | |||
| 4005 | ||||
| 4006 | void visitInsertValueInst(InsertValueInst &I) { | |||
| 4007 | IRBuilder<> IRB(&I); | |||
| 4008 | LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n")do { } while (false); | |||
| 4009 | Value *AggShadow = getShadow(I.getAggregateOperand()); | |||
| 4010 | Value *InsShadow = getShadow(I.getInsertedValueOperand()); | |||
| 4011 | LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n")do { } while (false); | |||
| 4012 | LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n")do { } while (false); | |||
| 4013 | Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); | |||
| 4014 | LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n")do { } while (false); | |||
| 4015 | setShadow(&I, Res); | |||
| 4016 | setOriginForNaryOp(I); | |||
| 4017 | } | |||
| 4018 | ||||
| 4019 | void dumpInst(Instruction &I) { | |||
| 4020 | if (CallInst *CI = dyn_cast<CallInst>(&I)) { | |||
| 4021 | errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; | |||
| 4022 | } else { | |||
| 4023 | errs() << "ZZZ " << I.getOpcodeName() << "\n"; | |||
| 4024 | } | |||
| 4025 | errs() << "QQQ " << I << "\n"; | |||
| 4026 | } | |||
| 4027 | ||||
| 4028 | void visitResumeInst(ResumeInst &I) { | |||
| 4029 | LLVM_DEBUG(dbgs() << "Resume: " << I << "\n")do { } while (false); | |||
| 4030 | // Nothing to do here. | |||
| 4031 | } | |||
| 4032 | ||||
| 4033 | void visitCleanupReturnInst(CleanupReturnInst &CRI) { | |||
| 4034 | LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n")do { } while (false); | |||
| 4035 | // Nothing to do here. | |||
| 4036 | } | |||
| 4037 | ||||
| 4038 | void visitCatchReturnInst(CatchReturnInst &CRI) { | |||
| 4039 | LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n")do { } while (false); | |||
| 4040 | // Nothing to do here. | |||
| 4041 | } | |||
| 4042 | ||||
| 4043 | void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, | |||
| 4044 | const DataLayout &DL, bool isOutput) { | |||
| 4045 | // For each assembly argument, we check its value for being initialized. | |||
| 4046 | // If the argument is a pointer, we assume it points to a single element | |||
| 4047 | // of the corresponding type (or to a 8-byte word, if the type is unsized). | |||
| 4048 | // Each such pointer is instrumented with a call to the runtime library. | |||
| 4049 | Type *OpType = Operand->getType(); | |||
| 4050 | // Check the operand value itself. | |||
| 4051 | insertShadowCheck(Operand, &I); | |||
| 4052 | if (!OpType->isPointerTy() || !isOutput) { | |||
| 4053 | assert(!isOutput)((void)0); | |||
| 4054 | return; | |||
| 4055 | } | |||
| 4056 | Type *ElType = OpType->getPointerElementType(); | |||
| 4057 | if (!ElType->isSized()) | |||
| 4058 | return; | |||
| 4059 | int Size = DL.getTypeStoreSize(ElType); | |||
| 4060 | Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); | |||
| 4061 | Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); | |||
| 4062 | IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); | |||
| 4063 | } | |||
| 4064 | ||||
| 4065 | /// Get the number of output arguments returned by pointers. | |||
| 4066 | int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { | |||
| 4067 | int NumRetOutputs = 0; | |||
| 4068 | int NumOutputs = 0; | |||
| 4069 | Type *RetTy = cast<Value>(CB)->getType(); | |||
| 4070 | if (!RetTy->isVoidTy()) { | |||
| 4071 | // Register outputs are returned via the CallInst return value. | |||
| 4072 | auto *ST = dyn_cast<StructType>(RetTy); | |||
| 4073 | if (ST) | |||
| 4074 | NumRetOutputs = ST->getNumElements(); | |||
| 4075 | else | |||
| 4076 | NumRetOutputs = 1; | |||
| 4077 | } | |||
| 4078 | InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); | |||
| 4079 | for (const InlineAsm::ConstraintInfo &Info : Constraints) { | |||
| 4080 | switch (Info.Type) { | |||
| 4081 | case InlineAsm::isOutput: | |||
| 4082 | NumOutputs++; | |||
| 4083 | break; | |||
| 4084 | default: | |||
| 4085 | break; | |||
| 4086 | } | |||
| 4087 | } | |||
| 4088 | return NumOutputs - NumRetOutputs; | |||
| 4089 | } | |||
| 4090 | ||||
| 4091 | void visitAsmInstruction(Instruction &I) { | |||
| 4092 | // Conservative inline assembly handling: check for poisoned shadow of | |||
| 4093 | // asm() arguments, then unpoison the result and all the memory locations | |||
| 4094 | // pointed to by those arguments. | |||
| 4095 | // An inline asm() statement in C++ contains lists of input and output | |||
| 4096 | // arguments used by the assembly code. These are mapped to operands of the | |||
| 4097 | // CallInst as follows: | |||
| 4098 | // - nR register outputs ("=r) are returned by value in a single structure | |||
| 4099 | // (SSA value of the CallInst); | |||
| 4100 | // - nO other outputs ("=m" and others) are returned by pointer as first | |||
| 4101 | // nO operands of the CallInst; | |||
| 4102 | // - nI inputs ("r", "m" and others) are passed to CallInst as the | |||
| 4103 | // remaining nI operands. | |||
| 4104 | // The total number of asm() arguments in the source is nR+nO+nI, and the | |||
| 4105 | // corresponding CallInst has nO+nI+1 operands (the last operand is the | |||
| 4106 | // function to be called). | |||
| 4107 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 4108 | CallBase *CB = cast<CallBase>(&I); | |||
| 4109 | IRBuilder<> IRB(&I); | |||
| 4110 | InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); | |||
| 4111 | int OutputArgs = getNumOutputArgs(IA, CB); | |||
| 4112 | // The last operand of a CallInst is the function itself. | |||
| 4113 | int NumOperands = CB->getNumOperands() - 1; | |||
| 4114 | ||||
| 4115 | // Check input arguments. Doing so before unpoisoning output arguments, so | |||
| 4116 | // that we won't overwrite uninit values before checking them. | |||
| 4117 | for (int i = OutputArgs; i < NumOperands; i++) { | |||
| 4118 | Value *Operand = CB->getOperand(i); | |||
| 4119 | instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); | |||
| 4120 | } | |||
| 4121 | // Unpoison output arguments. This must happen before the actual InlineAsm | |||
| 4122 | // call, so that the shadow for memory published in the asm() statement | |||
| 4123 | // remains valid. | |||
| 4124 | for (int i = 0; i < OutputArgs; i++) { | |||
| 4125 | Value *Operand = CB->getOperand(i); | |||
| 4126 | instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); | |||
| 4127 | } | |||
| 4128 | ||||
| 4129 | setShadow(&I, getCleanShadow(&I)); | |||
| 4130 | setOrigin(&I, getCleanOrigin()); | |||
| 4131 | } | |||
| 4132 | ||||
| 4133 | void visitFreezeInst(FreezeInst &I) { | |||
| 4134 | // Freeze always returns a fully defined value. | |||
| 4135 | setShadow(&I, getCleanShadow(&I)); | |||
| 4136 | setOrigin(&I, getCleanOrigin()); | |||
| 4137 | } | |||
| 4138 | ||||
| 4139 | void visitInstruction(Instruction &I) { | |||
| 4140 | // Everything else: stop propagating and check for poisoned shadow. | |||
| 4141 | if (ClDumpStrictInstructions) | |||
| 4142 | dumpInst(I); | |||
| 4143 | LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n")do { } while (false); | |||
| 4144 | for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { | |||
| 4145 | Value *Operand = I.getOperand(i); | |||
| 4146 | if (Operand->getType()->isSized()) | |||
| 4147 | insertShadowCheck(Operand, &I); | |||
| 4148 | } | |||
| 4149 | setShadow(&I, getCleanShadow(&I)); | |||
| 4150 | setOrigin(&I, getCleanOrigin()); | |||
| 4151 | } | |||
| 4152 | }; | |||
| 4153 | ||||
| 4154 | /// AMD64-specific implementation of VarArgHelper. | |||
| 4155 | struct VarArgAMD64Helper : public VarArgHelper { | |||
| 4156 | // An unfortunate workaround for asymmetric lowering of va_arg stuff. | |||
| 4157 | // See a comment in visitCallBase for more details. | |||
| 4158 | static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 | |||
| 4159 | static const unsigned AMD64FpEndOffsetSSE = 176; | |||
| 4160 | // If SSE is disabled, fp_offset in va_list is zero. | |||
| 4161 | static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; | |||
| 4162 | ||||
| 4163 | unsigned AMD64FpEndOffset; | |||
| 4164 | Function &F; | |||
| 4165 | MemorySanitizer &MS; | |||
| 4166 | MemorySanitizerVisitor &MSV; | |||
| 4167 | Value *VAArgTLSCopy = nullptr; | |||
| 4168 | Value *VAArgTLSOriginCopy = nullptr; | |||
| 4169 | Value *VAArgOverflowSize = nullptr; | |||
| 4170 | ||||
| 4171 | SmallVector<CallInst*, 16> VAStartInstrumentationList; | |||
| 4172 | ||||
| 4173 | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; | |||
| 4174 | ||||
| 4175 | VarArgAMD64Helper(Function &F, MemorySanitizer &MS, | |||
| 4176 | MemorySanitizerVisitor &MSV) | |||
| 4177 | : F(F), MS(MS), MSV(MSV) { | |||
| 4178 | AMD64FpEndOffset = AMD64FpEndOffsetSSE; | |||
| 4179 | for (const auto &Attr : F.getAttributes().getFnAttributes()) { | |||
| 4180 | if (Attr.isStringAttribute() && | |||
| 4181 | (Attr.getKindAsString() == "target-features")) { | |||
| 4182 | if (Attr.getValueAsString().contains("-sse")) | |||
| 4183 | AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; | |||
| 4184 | break; | |||
| 4185 | } | |||
| 4186 | } | |||
| 4187 | } | |||
| 4188 | ||||
| 4189 | ArgKind classifyArgument(Value* arg) { | |||
| 4190 | // A very rough approximation of X86_64 argument classification rules. | |||
| 4191 | Type *T = arg->getType(); | |||
| 4192 | if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) | |||
| 4193 | return AK_FloatingPoint; | |||
| 4194 | if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) | |||
| 4195 | return AK_GeneralPurpose; | |||
| 4196 | if (T->isPointerTy()) | |||
| 4197 | return AK_GeneralPurpose; | |||
| 4198 | return AK_Memory; | |||
| 4199 | } | |||
| 4200 | ||||
| 4201 | // For VarArg functions, store the argument shadow in an ABI-specific format | |||
| 4202 | // that corresponds to va_list layout. | |||
| 4203 | // We do this because Clang lowers va_arg in the frontend, and this pass | |||
| 4204 | // only sees the low level code that deals with va_list internals. | |||
| 4205 | // A much easier alternative (provided that Clang emits va_arg instructions) | |||
| 4206 | // would have been to associate each live instance of va_list with a copy of | |||
| 4207 | // MSanParamTLS, and extract shadow on va_arg() call in the argument list | |||
| 4208 | // order. | |||
| 4209 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { | |||
| 4210 | unsigned GpOffset = 0; | |||
| 4211 | unsigned FpOffset = AMD64GpEndOffset; | |||
| 4212 | unsigned OverflowOffset = AMD64FpEndOffset; | |||
| 4213 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 4214 | for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; | |||
| 4215 | ++ArgIt) { | |||
| 4216 | Value *A = *ArgIt; | |||
| 4217 | unsigned ArgNo = CB.getArgOperandNo(ArgIt); | |||
| 4218 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); | |||
| 4219 | bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); | |||
| 4220 | if (IsByVal) { | |||
| 4221 | // ByVal arguments always go to the overflow area. | |||
| 4222 | // Fixed arguments passed through the overflow area will be stepped | |||
| 4223 | // over by va_start, so don't count them towards the offset. | |||
| 4224 | if (IsFixed) | |||
| 4225 | continue; | |||
| 4226 | assert(A->getType()->isPointerTy())((void)0); | |||
| 4227 | Type *RealTy = CB.getParamByValType(ArgNo); | |||
| 4228 | uint64_t ArgSize = DL.getTypeAllocSize(RealTy); | |||
| 4229 | Value *ShadowBase = getShadowPtrForVAArgument( | |||
| 4230 | RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); | |||
| 4231 | Value *OriginBase = nullptr; | |||
| 4232 | if (MS.TrackOrigins) | |||
| 4233 | OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); | |||
| 4234 | OverflowOffset += alignTo(ArgSize, 8); | |||
| 4235 | if (!ShadowBase) | |||
| 4236 | continue; | |||
| 4237 | Value *ShadowPtr, *OriginPtr; | |||
| 4238 | std::tie(ShadowPtr, OriginPtr) = | |||
| 4239 | MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, | |||
| 4240 | /*isStore*/ false); | |||
| 4241 | ||||
| 4242 | IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, | |||
| 4243 | kShadowTLSAlignment, ArgSize); | |||
| 4244 | if (MS.TrackOrigins) | |||
| 4245 | IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, | |||
| 4246 | kShadowTLSAlignment, ArgSize); | |||
| 4247 | } else { | |||
| 4248 | ArgKind AK = classifyArgument(A); | |||
| 4249 | if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) | |||
| 4250 | AK = AK_Memory; | |||
| 4251 | if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) | |||
| 4252 | AK = AK_Memory; | |||
| 4253 | Value *ShadowBase, *OriginBase = nullptr; | |||
| 4254 | switch (AK) { | |||
| 4255 | case AK_GeneralPurpose: | |||
| 4256 | ShadowBase = | |||
| 4257 | getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); | |||
| 4258 | if (MS.TrackOrigins) | |||
| 4259 | OriginBase = | |||
| 4260 | getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); | |||
| 4261 | GpOffset += 8; | |||
| 4262 | break; | |||
| 4263 | case AK_FloatingPoint: | |||
| 4264 | ShadowBase = | |||
| 4265 | getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); | |||
| 4266 | if (MS.TrackOrigins) | |||
| 4267 | OriginBase = | |||
| 4268 | getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); | |||
| 4269 | FpOffset += 16; | |||
| 4270 | break; | |||
| 4271 | case AK_Memory: | |||
| 4272 | if (IsFixed) | |||
| 4273 | continue; | |||
| 4274 | uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); | |||
| 4275 | ShadowBase = | |||
| 4276 | getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); | |||
| 4277 | if (MS.TrackOrigins) | |||
| 4278 | OriginBase = | |||
| 4279 | getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); | |||
| 4280 | OverflowOffset += alignTo(ArgSize, 8); | |||
| 4281 | } | |||
| 4282 | // Take fixed arguments into account for GpOffset and FpOffset, | |||
| 4283 | // but don't actually store shadows for them. | |||
| 4284 | // TODO(glider): don't call get*PtrForVAArgument() for them. | |||
| 4285 | if (IsFixed) | |||
| 4286 | continue; | |||
| 4287 | if (!ShadowBase) | |||
| 4288 | continue; | |||
| 4289 | Value *Shadow = MSV.getShadow(A); | |||
| 4290 | IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); | |||
| 4291 | if (MS.TrackOrigins) { | |||
| 4292 | Value *Origin = MSV.getOrigin(A); | |||
| 4293 | unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); | |||
| 4294 | MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, | |||
| 4295 | std::max(kShadowTLSAlignment, kMinOriginAlignment)); | |||
| 4296 | } | |||
| 4297 | } | |||
| 4298 | } | |||
| 4299 | Constant *OverflowSize = | |||
| 4300 | ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); | |||
| 4301 | IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); | |||
| 4302 | } | |||
| 4303 | ||||
| 4304 | /// Compute the shadow address for a given va_arg. | |||
| 4305 | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, | |||
| 4306 | unsigned ArgOffset, unsigned ArgSize) { | |||
| 4307 | // Make sure we don't overflow __msan_va_arg_tls. | |||
| 4308 | if (ArgOffset + ArgSize > kParamTLSSize) | |||
| 4309 | return nullptr; | |||
| 4310 | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | |||
| 4311 | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 4312 | return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), | |||
| 4313 | "_msarg_va_s"); | |||
| 4314 | } | |||
| 4315 | ||||
| 4316 | /// Compute the origin address for a given va_arg. | |||
| 4317 | Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { | |||
| 4318 | Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); | |||
| 4319 | // getOriginPtrForVAArgument() is always called after | |||
| 4320 | // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never | |||
| 4321 | // overflow. | |||
| 4322 | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 4323 | return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), | |||
| 4324 | "_msarg_va_o"); | |||
| 4325 | } | |||
| 4326 | ||||
| 4327 | void unpoisonVAListTagForInst(IntrinsicInst &I) { | |||
| 4328 | IRBuilder<> IRB(&I); | |||
| 4329 | Value *VAListTag = I.getArgOperand(0); | |||
| 4330 | Value *ShadowPtr, *OriginPtr; | |||
| 4331 | const Align Alignment = Align(8); | |||
| 4332 | std::tie(ShadowPtr, OriginPtr) = | |||
| 4333 | MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, | |||
| 4334 | /*isStore*/ true); | |||
| 4335 | ||||
| 4336 | // Unpoison the whole __va_list_tag. | |||
| 4337 | // FIXME: magic ABI constants. | |||
| 4338 | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | |||
| 4339 | /* size */ 24, Alignment, false); | |||
| 4340 | // We shouldn't need to zero out the origins, as they're only checked for | |||
| 4341 | // nonzero shadow. | |||
| 4342 | } | |||
| 4343 | ||||
| 4344 | void visitVAStartInst(VAStartInst &I) override { | |||
| 4345 | if (F.getCallingConv() == CallingConv::Win64) | |||
| 4346 | return; | |||
| 4347 | VAStartInstrumentationList.push_back(&I); | |||
| 4348 | unpoisonVAListTagForInst(I); | |||
| 4349 | } | |||
| 4350 | ||||
| 4351 | void visitVACopyInst(VACopyInst &I) override { | |||
| 4352 | if (F.getCallingConv() == CallingConv::Win64) return; | |||
| 4353 | unpoisonVAListTagForInst(I); | |||
| 4354 | } | |||
| 4355 | ||||
| 4356 | void finalizeInstrumentation() override { | |||
| 4357 | assert(!VAArgOverflowSize && !VAArgTLSCopy &&((void)0) | |||
| 4358 | "finalizeInstrumentation called twice")((void)0); | |||
| 4359 | if (!VAStartInstrumentationList.empty()) { | |||
| 4360 | // If there is a va_start in this function, make a backup copy of | |||
| 4361 | // va_arg_tls somewhere in the function entry block. | |||
| 4362 | IRBuilder<> IRB(MSV.FnPrologueEnd); | |||
| 4363 | VAArgOverflowSize = | |||
| 4364 | IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | |||
| 4365 | Value *CopySize = | |||
| 4366 | IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), | |||
| 4367 | VAArgOverflowSize); | |||
| 4368 | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | |||
| 4369 | IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); | |||
| 4370 | if (MS.TrackOrigins) { | |||
| 4371 | VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | |||
| 4372 | IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, | |||
| 4373 | Align(8), CopySize); | |||
| 4374 | } | |||
| 4375 | } | |||
| 4376 | ||||
| 4377 | // Instrument va_start. | |||
| 4378 | // Copy va_list shadow from the backup copy of the TLS contents. | |||
| 4379 | for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { | |||
| 4380 | CallInst *OrigInst = VAStartInstrumentationList[i]; | |||
| 4381 | IRBuilder<> IRB(OrigInst->getNextNode()); | |||
| 4382 | Value *VAListTag = OrigInst->getArgOperand(0); | |||
| 4383 | ||||
| 4384 | Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); | |||
| 4385 | Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( | |||
| 4386 | IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | |||
| 4387 | ConstantInt::get(MS.IntptrTy, 16)), | |||
| 4388 | PointerType::get(RegSaveAreaPtrTy, 0)); | |||
| 4389 | Value *RegSaveAreaPtr = | |||
| 4390 | IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); | |||
| 4391 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; | |||
| 4392 | const Align Alignment = Align(16); | |||
| 4393 | std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = | |||
| 4394 | MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), | |||
| 4395 | Alignment, /*isStore*/ true); | |||
| 4396 | IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, | |||
| 4397 | AMD64FpEndOffset); | |||
| 4398 | if (MS.TrackOrigins) | |||
| 4399 | IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, | |||
| 4400 | Alignment, AMD64FpEndOffset); | |||
| 4401 | Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); | |||
| 4402 | Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( | |||
| 4403 | IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | |||
| 4404 | ConstantInt::get(MS.IntptrTy, 8)), | |||
| 4405 | PointerType::get(OverflowArgAreaPtrTy, 0)); | |||
| 4406 | Value *OverflowArgAreaPtr = | |||
| 4407 | IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); | |||
| 4408 | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; | |||
| 4409 | std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = | |||
| 4410 | MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), | |||
| 4411 | Alignment, /*isStore*/ true); | |||
| 4412 | Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, | |||
| 4413 | AMD64FpEndOffset); | |||
| 4414 | IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, | |||
| 4415 | VAArgOverflowSize); | |||
| 4416 | if (MS.TrackOrigins) { | |||
| 4417 | SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, | |||
| 4418 | AMD64FpEndOffset); | |||
| 4419 | IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, | |||
| 4420 | VAArgOverflowSize); | |||
| 4421 | } | |||
| 4422 | } | |||
| 4423 | } | |||
| 4424 | }; | |||
| 4425 | ||||
| 4426 | /// MIPS64-specific implementation of VarArgHelper. | |||
| 4427 | struct VarArgMIPS64Helper : public VarArgHelper { | |||
| 4428 | Function &F; | |||
| 4429 | MemorySanitizer &MS; | |||
| 4430 | MemorySanitizerVisitor &MSV; | |||
| 4431 | Value *VAArgTLSCopy = nullptr; | |||
| 4432 | Value *VAArgSize = nullptr; | |||
| 4433 | ||||
| 4434 | SmallVector<CallInst*, 16> VAStartInstrumentationList; | |||
| 4435 | ||||
| 4436 | VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, | |||
| 4437 | MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} | |||
| 4438 | ||||
| 4439 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { | |||
| 4440 | unsigned VAArgOffset = 0; | |||
| 4441 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 4442 | for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), | |||
| 4443 | End = CB.arg_end(); | |||
| 4444 | ArgIt != End; ++ArgIt) { | |||
| 4445 | Triple TargetTriple(F.getParent()->getTargetTriple()); | |||
| 4446 | Value *A = *ArgIt; | |||
| 4447 | Value *Base; | |||
| 4448 | uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); | |||
| 4449 | if (TargetTriple.getArch() == Triple::mips64) { | |||
| 4450 | // Adjusting the shadow for argument with size < 8 to match the placement | |||
| 4451 | // of bits in big endian system | |||
| 4452 | if (ArgSize < 8) | |||
| 4453 | VAArgOffset += (8 - ArgSize); | |||
| 4454 | } | |||
| 4455 | Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); | |||
| 4456 | VAArgOffset += ArgSize; | |||
| 4457 | VAArgOffset = alignTo(VAArgOffset, 8); | |||
| 4458 | if (!Base) | |||
| 4459 | continue; | |||
| 4460 | IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); | |||
| 4461 | } | |||
| 4462 | ||||
| 4463 | Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); | |||
| 4464 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of | |||
| 4465 | // a new class member i.e. it is the total size of all VarArgs. | |||
| 4466 | IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); | |||
| 4467 | } | |||
| 4468 | ||||
| 4469 | /// Compute the shadow address for a given va_arg. | |||
| 4470 | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, | |||
| 4471 | unsigned ArgOffset, unsigned ArgSize) { | |||
| 4472 | // Make sure we don't overflow __msan_va_arg_tls. | |||
| 4473 | if (ArgOffset + ArgSize > kParamTLSSize) | |||
| 4474 | return nullptr; | |||
| 4475 | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | |||
| 4476 | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 4477 | return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), | |||
| 4478 | "_msarg"); | |||
| 4479 | } | |||
| 4480 | ||||
| 4481 | void visitVAStartInst(VAStartInst &I) override { | |||
| 4482 | IRBuilder<> IRB(&I); | |||
| 4483 | VAStartInstrumentationList.push_back(&I); | |||
| 4484 | Value *VAListTag = I.getArgOperand(0); | |||
| 4485 | Value *ShadowPtr, *OriginPtr; | |||
| 4486 | const Align Alignment = Align(8); | |||
| 4487 | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | |||
| 4488 | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | |||
| 4489 | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | |||
| 4490 | /* size */ 8, Alignment, false); | |||
| 4491 | } | |||
| 4492 | ||||
| 4493 | void visitVACopyInst(VACopyInst &I) override { | |||
| 4494 | IRBuilder<> IRB(&I); | |||
| 4495 | VAStartInstrumentationList.push_back(&I); | |||
| 4496 | Value *VAListTag = I.getArgOperand(0); | |||
| 4497 | Value *ShadowPtr, *OriginPtr; | |||
| 4498 | const Align Alignment = Align(8); | |||
| 4499 | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | |||
| 4500 | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | |||
| 4501 | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | |||
| 4502 | /* size */ 8, Alignment, false); | |||
| 4503 | } | |||
| 4504 | ||||
| 4505 | void finalizeInstrumentation() override { | |||
| 4506 | assert(!VAArgSize && !VAArgTLSCopy &&((void)0) | |||
| 4507 | "finalizeInstrumentation called twice")((void)0); | |||
| 4508 | IRBuilder<> IRB(MSV.FnPrologueEnd); | |||
| 4509 | VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | |||
| 4510 | Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), | |||
| 4511 | VAArgSize); | |||
| 4512 | ||||
| 4513 | if (!VAStartInstrumentationList.empty()) { | |||
| 4514 | // If there is a va_start in this function, make a backup copy of | |||
| 4515 | // va_arg_tls somewhere in the function entry block. | |||
| 4516 | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | |||
| 4517 | IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); | |||
| 4518 | } | |||
| 4519 | ||||
| 4520 | // Instrument va_start. | |||
| 4521 | // Copy va_list shadow from the backup copy of the TLS contents. | |||
| 4522 | for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { | |||
| 4523 | CallInst *OrigInst = VAStartInstrumentationList[i]; | |||
| 4524 | IRBuilder<> IRB(OrigInst->getNextNode()); | |||
| 4525 | Value *VAListTag = OrigInst->getArgOperand(0); | |||
| 4526 | Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); | |||
| 4527 | Value *RegSaveAreaPtrPtr = | |||
| 4528 | IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | |||
| 4529 | PointerType::get(RegSaveAreaPtrTy, 0)); | |||
| 4530 | Value *RegSaveAreaPtr = | |||
| 4531 | IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); | |||
| 4532 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; | |||
| 4533 | const Align Alignment = Align(8); | |||
| 4534 | std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = | |||
| 4535 | MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), | |||
| 4536 | Alignment, /*isStore*/ true); | |||
| 4537 | IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, | |||
| 4538 | CopySize); | |||
| 4539 | } | |||
| 4540 | } | |||
| 4541 | }; | |||
| 4542 | ||||
| 4543 | /// AArch64-specific implementation of VarArgHelper. | |||
| 4544 | struct VarArgAArch64Helper : public VarArgHelper { | |||
| 4545 | static const unsigned kAArch64GrArgSize = 64; | |||
| 4546 | static const unsigned kAArch64VrArgSize = 128; | |||
| 4547 | ||||
| 4548 | static const unsigned AArch64GrBegOffset = 0; | |||
| 4549 | static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; | |||
| 4550 | // Make VR space aligned to 16 bytes. | |||
| 4551 | static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; | |||
| 4552 | static const unsigned AArch64VrEndOffset = AArch64VrBegOffset | |||
| 4553 | + kAArch64VrArgSize; | |||
| 4554 | static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; | |||
| 4555 | ||||
| 4556 | Function &F; | |||
| 4557 | MemorySanitizer &MS; | |||
| 4558 | MemorySanitizerVisitor &MSV; | |||
| 4559 | Value *VAArgTLSCopy = nullptr; | |||
| 4560 | Value *VAArgOverflowSize = nullptr; | |||
| 4561 | ||||
| 4562 | SmallVector<CallInst*, 16> VAStartInstrumentationList; | |||
| 4563 | ||||
| 4564 | enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; | |||
| 4565 | ||||
| 4566 | VarArgAArch64Helper(Function &F, MemorySanitizer &MS, | |||
| 4567 | MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} | |||
| 4568 | ||||
| 4569 | ArgKind classifyArgument(Value* arg) { | |||
| 4570 | Type *T = arg->getType(); | |||
| 4571 | if (T->isFPOrFPVectorTy()) | |||
| 4572 | return AK_FloatingPoint; | |||
| 4573 | if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) | |||
| 4574 | || (T->isPointerTy())) | |||
| 4575 | return AK_GeneralPurpose; | |||
| 4576 | return AK_Memory; | |||
| 4577 | } | |||
| 4578 | ||||
| 4579 | // The instrumentation stores the argument shadow in a non ABI-specific | |||
| 4580 | // format because it does not know which argument is named (since Clang, | |||
| 4581 | // like x86_64 case, lowers the va_args in the frontend and this pass only | |||
| 4582 | // sees the low level code that deals with va_list internals). | |||
| 4583 | // The first seven GR registers are saved in the first 56 bytes of the | |||
| 4584 | // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then | |||
| 4585 | // the remaining arguments. | |||
| 4586 | // Using constant offset within the va_arg TLS array allows fast copy | |||
| 4587 | // in the finalize instrumentation. | |||
| 4588 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { | |||
| 4589 | unsigned GrOffset = AArch64GrBegOffset; | |||
| 4590 | unsigned VrOffset = AArch64VrBegOffset; | |||
| 4591 | unsigned OverflowOffset = AArch64VAEndOffset; | |||
| 4592 | ||||
| 4593 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 4594 | for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; | |||
| 4595 | ++ArgIt) { | |||
| 4596 | Value *A = *ArgIt; | |||
| 4597 | unsigned ArgNo = CB.getArgOperandNo(ArgIt); | |||
| 4598 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); | |||
| 4599 | ArgKind AK = classifyArgument(A); | |||
| 4600 | if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) | |||
| 4601 | AK = AK_Memory; | |||
| 4602 | if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) | |||
| 4603 | AK = AK_Memory; | |||
| 4604 | Value *Base; | |||
| 4605 | switch (AK) { | |||
| 4606 | case AK_GeneralPurpose: | |||
| 4607 | Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); | |||
| 4608 | GrOffset += 8; | |||
| 4609 | break; | |||
| 4610 | case AK_FloatingPoint: | |||
| 4611 | Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); | |||
| 4612 | VrOffset += 16; | |||
| 4613 | break; | |||
| 4614 | case AK_Memory: | |||
| 4615 | // Don't count fixed arguments in the overflow area - va_start will | |||
| 4616 | // skip right over them. | |||
| 4617 | if (IsFixed) | |||
| 4618 | continue; | |||
| 4619 | uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); | |||
| 4620 | Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, | |||
| 4621 | alignTo(ArgSize, 8)); | |||
| 4622 | OverflowOffset += alignTo(ArgSize, 8); | |||
| 4623 | break; | |||
| 4624 | } | |||
| 4625 | // Count Gp/Vr fixed arguments to their respective offsets, but don't | |||
| 4626 | // bother to actually store a shadow. | |||
| 4627 | if (IsFixed) | |||
| 4628 | continue; | |||
| 4629 | if (!Base) | |||
| 4630 | continue; | |||
| 4631 | IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); | |||
| 4632 | } | |||
| 4633 | Constant *OverflowSize = | |||
| 4634 | ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); | |||
| 4635 | IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); | |||
| 4636 | } | |||
| 4637 | ||||
| 4638 | /// Compute the shadow address for a given va_arg. | |||
| 4639 | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, | |||
| 4640 | unsigned ArgOffset, unsigned ArgSize) { | |||
| 4641 | // Make sure we don't overflow __msan_va_arg_tls. | |||
| 4642 | if (ArgOffset + ArgSize > kParamTLSSize) | |||
| 4643 | return nullptr; | |||
| 4644 | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | |||
| 4645 | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 4646 | return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), | |||
| 4647 | "_msarg"); | |||
| 4648 | } | |||
| 4649 | ||||
| 4650 | void visitVAStartInst(VAStartInst &I) override { | |||
| 4651 | IRBuilder<> IRB(&I); | |||
| 4652 | VAStartInstrumentationList.push_back(&I); | |||
| 4653 | Value *VAListTag = I.getArgOperand(0); | |||
| 4654 | Value *ShadowPtr, *OriginPtr; | |||
| 4655 | const Align Alignment = Align(8); | |||
| 4656 | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | |||
| 4657 | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | |||
| 4658 | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | |||
| 4659 | /* size */ 32, Alignment, false); | |||
| 4660 | } | |||
| 4661 | ||||
| 4662 | void visitVACopyInst(VACopyInst &I) override { | |||
| 4663 | IRBuilder<> IRB(&I); | |||
| 4664 | VAStartInstrumentationList.push_back(&I); | |||
| 4665 | Value *VAListTag = I.getArgOperand(0); | |||
| 4666 | Value *ShadowPtr, *OriginPtr; | |||
| 4667 | const Align Alignment = Align(8); | |||
| 4668 | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | |||
| 4669 | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | |||
| 4670 | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | |||
| 4671 | /* size */ 32, Alignment, false); | |||
| 4672 | } | |||
| 4673 | ||||
| 4674 | // Retrieve a va_list field of 'void*' size. | |||
| 4675 | Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { | |||
| 4676 | Value *SaveAreaPtrPtr = | |||
| 4677 | IRB.CreateIntToPtr( | |||
| 4678 | IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | |||
| 4679 | ConstantInt::get(MS.IntptrTy, offset)), | |||
| 4680 | Type::getInt64PtrTy(*MS.C)); | |||
| 4681 | return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); | |||
| 4682 | } | |||
| 4683 | ||||
| 4684 | // Retrieve a va_list field of 'int' size. | |||
| 4685 | Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { | |||
| 4686 | Value *SaveAreaPtr = | |||
| 4687 | IRB.CreateIntToPtr( | |||
| 4688 | IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | |||
| 4689 | ConstantInt::get(MS.IntptrTy, offset)), | |||
| 4690 | Type::getInt32PtrTy(*MS.C)); | |||
| 4691 | Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); | |||
| 4692 | return IRB.CreateSExt(SaveArea32, MS.IntptrTy); | |||
| 4693 | } | |||
| 4694 | ||||
| 4695 | void finalizeInstrumentation() override { | |||
| 4696 | assert(!VAArgOverflowSize && !VAArgTLSCopy &&((void)0) | |||
| 4697 | "finalizeInstrumentation called twice")((void)0); | |||
| 4698 | if (!VAStartInstrumentationList.empty()) { | |||
| 4699 | // If there is a va_start in this function, make a backup copy of | |||
| 4700 | // va_arg_tls somewhere in the function entry block. | |||
| 4701 | IRBuilder<> IRB(MSV.FnPrologueEnd); | |||
| 4702 | VAArgOverflowSize = | |||
| 4703 | IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | |||
| 4704 | Value *CopySize = | |||
| 4705 | IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), | |||
| 4706 | VAArgOverflowSize); | |||
| 4707 | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | |||
| 4708 | IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); | |||
| 4709 | } | |||
| 4710 | ||||
| 4711 | Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); | |||
| 4712 | Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); | |||
| 4713 | ||||
| 4714 | // Instrument va_start, copy va_list shadow from the backup copy of | |||
| 4715 | // the TLS contents. | |||
| 4716 | for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { | |||
| 4717 | CallInst *OrigInst = VAStartInstrumentationList[i]; | |||
| 4718 | IRBuilder<> IRB(OrigInst->getNextNode()); | |||
| 4719 | ||||
| 4720 | Value *VAListTag = OrigInst->getArgOperand(0); | |||
| 4721 | ||||
| 4722 | // The variadic ABI for AArch64 creates two areas to save the incoming | |||
| 4723 | // argument registers (one for 64-bit general register xn-x7 and another | |||
| 4724 | // for 128-bit FP/SIMD vn-v7). | |||
| 4725 | // We need then to propagate the shadow arguments on both regions | |||
| 4726 | // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. | |||
| 4727 | // The remaining arguments are saved on shadow for 'va::stack'. | |||
| 4728 | // One caveat is it requires only to propagate the non-named arguments, | |||
| 4729 | // however on the call site instrumentation 'all' the arguments are | |||
| 4730 | // saved. So to copy the shadow values from the va_arg TLS array | |||
| 4731 | // we need to adjust the offset for both GR and VR fields based on | |||
| 4732 | // the __{gr,vr}_offs value (since they are stores based on incoming | |||
| 4733 | // named arguments). | |||
| 4734 | ||||
| 4735 | // Read the stack pointer from the va_list. | |||
| 4736 | Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); | |||
| 4737 | ||||
| 4738 | // Read both the __gr_top and __gr_off and add them up. | |||
| 4739 | Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); | |||
| 4740 | Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); | |||
| 4741 | ||||
| 4742 | Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); | |||
| 4743 | ||||
| 4744 | // Read both the __vr_top and __vr_off and add them up. | |||
| 4745 | Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); | |||
| 4746 | Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); | |||
| 4747 | ||||
| 4748 | Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); | |||
| 4749 | ||||
| 4750 | // It does not know how many named arguments is being used and, on the | |||
| 4751 | // callsite all the arguments were saved. Since __gr_off is defined as | |||
| 4752 | // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic | |||
| 4753 | // argument by ignoring the bytes of shadow from named arguments. | |||
| 4754 | Value *GrRegSaveAreaShadowPtrOff = | |||
| 4755 | IRB.CreateAdd(GrArgSize, GrOffSaveArea); | |||
| 4756 | ||||
| 4757 | Value *GrRegSaveAreaShadowPtr = | |||
| 4758 | MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), | |||
| 4759 | Align(8), /*isStore*/ true) | |||
| 4760 | .first; | |||
| 4761 | ||||
| 4762 | Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, | |||
| 4763 | GrRegSaveAreaShadowPtrOff); | |||
| 4764 | Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); | |||
| 4765 | ||||
| 4766 | IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), | |||
| 4767 | GrCopySize); | |||
| 4768 | ||||
| 4769 | // Again, but for FP/SIMD values. | |||
| 4770 | Value *VrRegSaveAreaShadowPtrOff = | |||
| 4771 | IRB.CreateAdd(VrArgSize, VrOffSaveArea); | |||
| 4772 | ||||
| 4773 | Value *VrRegSaveAreaShadowPtr = | |||
| 4774 | MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), | |||
| 4775 | Align(8), /*isStore*/ true) | |||
| 4776 | .first; | |||
| 4777 | ||||
| 4778 | Value *VrSrcPtr = IRB.CreateInBoundsGEP( | |||
| 4779 | IRB.getInt8Ty(), | |||
| 4780 | IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, | |||
| 4781 | IRB.getInt32(AArch64VrBegOffset)), | |||
| 4782 | VrRegSaveAreaShadowPtrOff); | |||
| 4783 | Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); | |||
| 4784 | ||||
| 4785 | IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), | |||
| 4786 | VrCopySize); | |||
| 4787 | ||||
| 4788 | // And finally for remaining arguments. | |||
| 4789 | Value *StackSaveAreaShadowPtr = | |||
| 4790 | MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), | |||
| 4791 | Align(16), /*isStore*/ true) | |||
| 4792 | .first; | |||
| 4793 | ||||
| 4794 | Value *StackSrcPtr = | |||
| 4795 | IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, | |||
| 4796 | IRB.getInt32(AArch64VAEndOffset)); | |||
| 4797 | ||||
| 4798 | IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, | |||
| 4799 | Align(16), VAArgOverflowSize); | |||
| 4800 | } | |||
| 4801 | } | |||
| 4802 | }; | |||
| 4803 | ||||
| 4804 | /// PowerPC64-specific implementation of VarArgHelper. | |||
| 4805 | struct VarArgPowerPC64Helper : public VarArgHelper { | |||
| 4806 | Function &F; | |||
| 4807 | MemorySanitizer &MS; | |||
| 4808 | MemorySanitizerVisitor &MSV; | |||
| 4809 | Value *VAArgTLSCopy = nullptr; | |||
| 4810 | Value *VAArgSize = nullptr; | |||
| 4811 | ||||
| 4812 | SmallVector<CallInst*, 16> VAStartInstrumentationList; | |||
| 4813 | ||||
| 4814 | VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, | |||
| 4815 | MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} | |||
| 4816 | ||||
| 4817 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { | |||
| 4818 | // For PowerPC, we need to deal with alignment of stack arguments - | |||
| 4819 | // they are mostly aligned to 8 bytes, but vectors and i128 arrays | |||
| 4820 | // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, | |||
| 4821 | // For that reason, we compute current offset from stack pointer (which is | |||
| 4822 | // always properly aligned), and offset for the first vararg, then subtract | |||
| 4823 | // them. | |||
| 4824 | unsigned VAArgBase; | |||
| 4825 | Triple TargetTriple(F.getParent()->getTargetTriple()); | |||
| 4826 | // Parameter save area starts at 48 bytes from frame pointer for ABIv1, | |||
| 4827 | // and 32 bytes for ABIv2. This is usually determined by target | |||
| 4828 | // endianness, but in theory could be overridden by function attribute. | |||
| 4829 | if (TargetTriple.getArch() == Triple::ppc64) | |||
| 4830 | VAArgBase = 48; | |||
| 4831 | else | |||
| 4832 | VAArgBase = 32; | |||
| 4833 | unsigned VAArgOffset = VAArgBase; | |||
| 4834 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 4835 | for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; | |||
| 4836 | ++ArgIt) { | |||
| 4837 | Value *A = *ArgIt; | |||
| 4838 | unsigned ArgNo = CB.getArgOperandNo(ArgIt); | |||
| 4839 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); | |||
| 4840 | bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); | |||
| 4841 | if (IsByVal) { | |||
| 4842 | assert(A->getType()->isPointerTy())((void)0); | |||
| 4843 | Type *RealTy = CB.getParamByValType(ArgNo); | |||
| 4844 | uint64_t ArgSize = DL.getTypeAllocSize(RealTy); | |||
| 4845 | MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); | |||
| 4846 | if (!ArgAlign || *ArgAlign < Align(8)) | |||
| 4847 | ArgAlign = Align(8); | |||
| 4848 | VAArgOffset = alignTo(VAArgOffset, ArgAlign); | |||
| 4849 | if (!IsFixed) { | |||
| 4850 | Value *Base = getShadowPtrForVAArgument( | |||
| 4851 | RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); | |||
| 4852 | if (Base) { | |||
| 4853 | Value *AShadowPtr, *AOriginPtr; | |||
| 4854 | std::tie(AShadowPtr, AOriginPtr) = | |||
| 4855 | MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), | |||
| 4856 | kShadowTLSAlignment, /*isStore*/ false); | |||
| 4857 | ||||
| 4858 | IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, | |||
| 4859 | kShadowTLSAlignment, ArgSize); | |||
| 4860 | } | |||
| 4861 | } | |||
| 4862 | VAArgOffset += alignTo(ArgSize, 8); | |||
| 4863 | } else { | |||
| 4864 | Value *Base; | |||
| 4865 | uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); | |||
| 4866 | uint64_t ArgAlign = 8; | |||
| 4867 | if (A->getType()->isArrayTy()) { | |||
| 4868 | // Arrays are aligned to element size, except for long double | |||
| 4869 | // arrays, which are aligned to 8 bytes. | |||
| 4870 | Type *ElementTy = A->getType()->getArrayElementType(); | |||
| 4871 | if (!ElementTy->isPPC_FP128Ty()) | |||
| 4872 | ArgAlign = DL.getTypeAllocSize(ElementTy); | |||
| 4873 | } else if (A->getType()->isVectorTy()) { | |||
| 4874 | // Vectors are naturally aligned. | |||
| 4875 | ArgAlign = DL.getTypeAllocSize(A->getType()); | |||
| 4876 | } | |||
| 4877 | if (ArgAlign < 8) | |||
| 4878 | ArgAlign = 8; | |||
| 4879 | VAArgOffset = alignTo(VAArgOffset, ArgAlign); | |||
| 4880 | if (DL.isBigEndian()) { | |||
| 4881 | // Adjusting the shadow for argument with size < 8 to match the placement | |||
| 4882 | // of bits in big endian system | |||
| 4883 | if (ArgSize < 8) | |||
| 4884 | VAArgOffset += (8 - ArgSize); | |||
| 4885 | } | |||
| 4886 | if (!IsFixed) { | |||
| 4887 | Base = getShadowPtrForVAArgument(A->getType(), IRB, | |||
| 4888 | VAArgOffset - VAArgBase, ArgSize); | |||
| 4889 | if (Base) | |||
| 4890 | IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); | |||
| 4891 | } | |||
| 4892 | VAArgOffset += ArgSize; | |||
| 4893 | VAArgOffset = alignTo(VAArgOffset, 8); | |||
| 4894 | } | |||
| 4895 | if (IsFixed) | |||
| 4896 | VAArgBase = VAArgOffset; | |||
| 4897 | } | |||
| 4898 | ||||
| 4899 | Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), | |||
| 4900 | VAArgOffset - VAArgBase); | |||
| 4901 | // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of | |||
| 4902 | // a new class member i.e. it is the total size of all VarArgs. | |||
| 4903 | IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); | |||
| 4904 | } | |||
| 4905 | ||||
| 4906 | /// Compute the shadow address for a given va_arg. | |||
| 4907 | Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, | |||
| 4908 | unsigned ArgOffset, unsigned ArgSize) { | |||
| 4909 | // Make sure we don't overflow __msan_va_arg_tls. | |||
| 4910 | if (ArgOffset + ArgSize > kParamTLSSize) | |||
| 4911 | return nullptr; | |||
| 4912 | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | |||
| 4913 | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 4914 | return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), | |||
| 4915 | "_msarg"); | |||
| 4916 | } | |||
| 4917 | ||||
| 4918 | void visitVAStartInst(VAStartInst &I) override { | |||
| 4919 | IRBuilder<> IRB(&I); | |||
| 4920 | VAStartInstrumentationList.push_back(&I); | |||
| 4921 | Value *VAListTag = I.getArgOperand(0); | |||
| 4922 | Value *ShadowPtr, *OriginPtr; | |||
| 4923 | const Align Alignment = Align(8); | |||
| 4924 | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | |||
| 4925 | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | |||
| 4926 | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | |||
| 4927 | /* size */ 8, Alignment, false); | |||
| 4928 | } | |||
| 4929 | ||||
| 4930 | void visitVACopyInst(VACopyInst &I) override { | |||
| 4931 | IRBuilder<> IRB(&I); | |||
| 4932 | Value *VAListTag = I.getArgOperand(0); | |||
| 4933 | Value *ShadowPtr, *OriginPtr; | |||
| 4934 | const Align Alignment = Align(8); | |||
| 4935 | std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( | |||
| 4936 | VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); | |||
| 4937 | // Unpoison the whole __va_list_tag. | |||
| 4938 | // FIXME: magic ABI constants. | |||
| 4939 | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | |||
| 4940 | /* size */ 8, Alignment, false); | |||
| 4941 | } | |||
| 4942 | ||||
| 4943 | void finalizeInstrumentation() override { | |||
| 4944 | assert(!VAArgSize && !VAArgTLSCopy &&((void)0) | |||
| 4945 | "finalizeInstrumentation called twice")((void)0); | |||
| 4946 | IRBuilder<> IRB(MSV.FnPrologueEnd); | |||
| 4947 | VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | |||
| 4948 | Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), | |||
| 4949 | VAArgSize); | |||
| 4950 | ||||
| 4951 | if (!VAStartInstrumentationList.empty()) { | |||
| 4952 | // If there is a va_start in this function, make a backup copy of | |||
| 4953 | // va_arg_tls somewhere in the function entry block. | |||
| 4954 | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | |||
| 4955 | IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); | |||
| 4956 | } | |||
| 4957 | ||||
| 4958 | // Instrument va_start. | |||
| 4959 | // Copy va_list shadow from the backup copy of the TLS contents. | |||
| 4960 | for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { | |||
| 4961 | CallInst *OrigInst = VAStartInstrumentationList[i]; | |||
| 4962 | IRBuilder<> IRB(OrigInst->getNextNode()); | |||
| 4963 | Value *VAListTag = OrigInst->getArgOperand(0); | |||
| 4964 | Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); | |||
| 4965 | Value *RegSaveAreaPtrPtr = | |||
| 4966 | IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | |||
| 4967 | PointerType::get(RegSaveAreaPtrTy, 0)); | |||
| 4968 | Value *RegSaveAreaPtr = | |||
| 4969 | IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); | |||
| 4970 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; | |||
| 4971 | const Align Alignment = Align(8); | |||
| 4972 | std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = | |||
| 4973 | MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), | |||
| 4974 | Alignment, /*isStore*/ true); | |||
| 4975 | IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, | |||
| 4976 | CopySize); | |||
| 4977 | } | |||
| 4978 | } | |||
| 4979 | }; | |||
| 4980 | ||||
| 4981 | /// SystemZ-specific implementation of VarArgHelper. | |||
| 4982 | struct VarArgSystemZHelper : public VarArgHelper { | |||
| 4983 | static const unsigned SystemZGpOffset = 16; | |||
| 4984 | static const unsigned SystemZGpEndOffset = 56; | |||
| 4985 | static const unsigned SystemZFpOffset = 128; | |||
| 4986 | static const unsigned SystemZFpEndOffset = 160; | |||
| 4987 | static const unsigned SystemZMaxVrArgs = 8; | |||
| 4988 | static const unsigned SystemZRegSaveAreaSize = 160; | |||
| 4989 | static const unsigned SystemZOverflowOffset = 160; | |||
| 4990 | static const unsigned SystemZVAListTagSize = 32; | |||
| 4991 | static const unsigned SystemZOverflowArgAreaPtrOffset = 16; | |||
| 4992 | static const unsigned SystemZRegSaveAreaPtrOffset = 24; | |||
| 4993 | ||||
| 4994 | Function &F; | |||
| 4995 | MemorySanitizer &MS; | |||
| 4996 | MemorySanitizerVisitor &MSV; | |||
| 4997 | Value *VAArgTLSCopy = nullptr; | |||
| 4998 | Value *VAArgTLSOriginCopy = nullptr; | |||
| 4999 | Value *VAArgOverflowSize = nullptr; | |||
| 5000 | ||||
| 5001 | SmallVector<CallInst *, 16> VAStartInstrumentationList; | |||
| 5002 | ||||
| 5003 | enum class ArgKind { | |||
| 5004 | GeneralPurpose, | |||
| 5005 | FloatingPoint, | |||
| 5006 | Vector, | |||
| 5007 | Memory, | |||
| 5008 | Indirect, | |||
| 5009 | }; | |||
| 5010 | ||||
| 5011 | enum class ShadowExtension { None, Zero, Sign }; | |||
| 5012 | ||||
| 5013 | VarArgSystemZHelper(Function &F, MemorySanitizer &MS, | |||
| 5014 | MemorySanitizerVisitor &MSV) | |||
| 5015 | : F(F), MS(MS), MSV(MSV) {} | |||
| 5016 | ||||
| 5017 | ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { | |||
| 5018 | // T is a SystemZABIInfo::classifyArgumentType() output, and there are | |||
| 5019 | // only a few possibilities of what it can be. In particular, enums, single | |||
| 5020 | // element structs and large types have already been taken care of. | |||
| 5021 | ||||
| 5022 | // Some i128 and fp128 arguments are converted to pointers only in the | |||
| 5023 | // back end. | |||
| 5024 | if (T->isIntegerTy(128) || T->isFP128Ty()) | |||
| 5025 | return ArgKind::Indirect; | |||
| 5026 | if (T->isFloatingPointTy()) | |||
| 5027 | return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; | |||
| 5028 | if (T->isIntegerTy() || T->isPointerTy()) | |||
| 5029 | return ArgKind::GeneralPurpose; | |||
| 5030 | if (T->isVectorTy()) | |||
| 5031 | return ArgKind::Vector; | |||
| 5032 | return ArgKind::Memory; | |||
| 5033 | } | |||
| 5034 | ||||
| 5035 | ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { | |||
| 5036 | // ABI says: "One of the simple integer types no more than 64 bits wide. | |||
| 5037 | // ... If such an argument is shorter than 64 bits, replace it by a full | |||
| 5038 | // 64-bit integer representing the same number, using sign or zero | |||
| 5039 | // extension". Shadow for an integer argument has the same type as the | |||
| 5040 | // argument itself, so it can be sign or zero extended as well. | |||
| 5041 | bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); | |||
| 5042 | bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); | |||
| 5043 | if (ZExt) { | |||
| 5044 | assert(!SExt)((void)0); | |||
| 5045 | return ShadowExtension::Zero; | |||
| 5046 | } | |||
| 5047 | if (SExt) { | |||
| 5048 | assert(!ZExt)((void)0); | |||
| 5049 | return ShadowExtension::Sign; | |||
| 5050 | } | |||
| 5051 | return ShadowExtension::None; | |||
| 5052 | } | |||
| 5053 | ||||
| 5054 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { | |||
| 5055 | bool IsSoftFloatABI = CB.getCalledFunction() | |||
| 5056 | ->getFnAttribute("use-soft-float") | |||
| 5057 | .getValueAsBool(); | |||
| 5058 | unsigned GpOffset = SystemZGpOffset; | |||
| 5059 | unsigned FpOffset = SystemZFpOffset; | |||
| 5060 | unsigned VrIndex = 0; | |||
| 5061 | unsigned OverflowOffset = SystemZOverflowOffset; | |||
| 5062 | const DataLayout &DL = F.getParent()->getDataLayout(); | |||
| 5063 | for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; | |||
| 5064 | ++ArgIt) { | |||
| 5065 | Value *A = *ArgIt; | |||
| 5066 | unsigned ArgNo = CB.getArgOperandNo(ArgIt); | |||
| 5067 | bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); | |||
| 5068 | // SystemZABIInfo does not produce ByVal parameters. | |||
| 5069 | assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal))((void)0); | |||
| 5070 | Type *T = A->getType(); | |||
| 5071 | ArgKind AK = classifyArgument(T, IsSoftFloatABI); | |||
| 5072 | if (AK == ArgKind::Indirect) { | |||
| 5073 | T = PointerType::get(T, 0); | |||
| 5074 | AK = ArgKind::GeneralPurpose; | |||
| 5075 | } | |||
| 5076 | if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) | |||
| 5077 | AK = ArgKind::Memory; | |||
| 5078 | if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) | |||
| 5079 | AK = ArgKind::Memory; | |||
| 5080 | if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) | |||
| 5081 | AK = ArgKind::Memory; | |||
| 5082 | Value *ShadowBase = nullptr; | |||
| 5083 | Value *OriginBase = nullptr; | |||
| 5084 | ShadowExtension SE = ShadowExtension::None; | |||
| 5085 | switch (AK) { | |||
| 5086 | case ArgKind::GeneralPurpose: { | |||
| 5087 | // Always keep track of GpOffset, but store shadow only for varargs. | |||
| 5088 | uint64_t ArgSize = 8; | |||
| 5089 | if (GpOffset + ArgSize <= kParamTLSSize) { | |||
| 5090 | if (!IsFixed) { | |||
| 5091 | SE = getShadowExtension(CB, ArgNo); | |||
| 5092 | uint64_t GapSize = 0; | |||
| 5093 | if (SE == ShadowExtension::None) { | |||
| 5094 | uint64_t ArgAllocSize = DL.getTypeAllocSize(T); | |||
| 5095 | assert(ArgAllocSize <= ArgSize)((void)0); | |||
| 5096 | GapSize = ArgSize - ArgAllocSize; | |||
| 5097 | } | |||
| 5098 | ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); | |||
| 5099 | if (MS.TrackOrigins) | |||
| 5100 | OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); | |||
| 5101 | } | |||
| 5102 | GpOffset += ArgSize; | |||
| 5103 | } else { | |||
| 5104 | GpOffset = kParamTLSSize; | |||
| 5105 | } | |||
| 5106 | break; | |||
| 5107 | } | |||
| 5108 | case ArgKind::FloatingPoint: { | |||
| 5109 | // Always keep track of FpOffset, but store shadow only for varargs. | |||
| 5110 | uint64_t ArgSize = 8; | |||
| 5111 | if (FpOffset + ArgSize <= kParamTLSSize) { | |||
| 5112 | if (!IsFixed) { | |||
| 5113 | // PoP says: "A short floating-point datum requires only the | |||
| 5114 | // left-most 32 bit positions of a floating-point register". | |||
| 5115 | // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, | |||
| 5116 | // don't extend shadow and don't mind the gap. | |||
| 5117 | ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); | |||
| 5118 | if (MS.TrackOrigins) | |||
| 5119 | OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); | |||
| 5120 | } | |||
| 5121 | FpOffset += ArgSize; | |||
| 5122 | } else { | |||
| 5123 | FpOffset = kParamTLSSize; | |||
| 5124 | } | |||
| 5125 | break; | |||
| 5126 | } | |||
| 5127 | case ArgKind::Vector: { | |||
| 5128 | // Keep track of VrIndex. No need to store shadow, since vector varargs | |||
| 5129 | // go through AK_Memory. | |||
| 5130 | assert(IsFixed)((void)0); | |||
| 5131 | VrIndex++; | |||
| 5132 | break; | |||
| 5133 | } | |||
| 5134 | case ArgKind::Memory: { | |||
| 5135 | // Keep track of OverflowOffset and store shadow only for varargs. | |||
| 5136 | // Ignore fixed args, since we need to copy only the vararg portion of | |||
| 5137 | // the overflow area shadow. | |||
| 5138 | if (!IsFixed) { | |||
| 5139 | uint64_t ArgAllocSize = DL.getTypeAllocSize(T); | |||
| 5140 | uint64_t ArgSize = alignTo(ArgAllocSize, 8); | |||
| 5141 | if (OverflowOffset + ArgSize <= kParamTLSSize) { | |||
| 5142 | SE = getShadowExtension(CB, ArgNo); | |||
| 5143 | uint64_t GapSize = | |||
| 5144 | SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; | |||
| 5145 | ShadowBase = | |||
| 5146 | getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); | |||
| 5147 | if (MS.TrackOrigins) | |||
| 5148 | OriginBase = | |||
| 5149 | getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); | |||
| 5150 | OverflowOffset += ArgSize; | |||
| 5151 | } else { | |||
| 5152 | OverflowOffset = kParamTLSSize; | |||
| 5153 | } | |||
| 5154 | } | |||
| 5155 | break; | |||
| 5156 | } | |||
| 5157 | case ArgKind::Indirect: | |||
| 5158 | llvm_unreachable("Indirect must be converted to GeneralPurpose")__builtin_unreachable(); | |||
| 5159 | } | |||
| 5160 | if (ShadowBase == nullptr) | |||
| 5161 | continue; | |||
| 5162 | Value *Shadow = MSV.getShadow(A); | |||
| 5163 | if (SE != ShadowExtension::None) | |||
| 5164 | Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), | |||
| 5165 | /*Signed*/ SE == ShadowExtension::Sign); | |||
| 5166 | ShadowBase = IRB.CreateIntToPtr( | |||
| 5167 | ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); | |||
| 5168 | IRB.CreateStore(Shadow, ShadowBase); | |||
| 5169 | if (MS.TrackOrigins) { | |||
| 5170 | Value *Origin = MSV.getOrigin(A); | |||
| 5171 | unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); | |||
| 5172 | MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, | |||
| 5173 | kMinOriginAlignment); | |||
| 5174 | } | |||
| 5175 | } | |||
| 5176 | Constant *OverflowSize = ConstantInt::get( | |||
| 5177 | IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); | |||
| 5178 | IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); | |||
| 5179 | } | |||
| 5180 | ||||
| 5181 | Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { | |||
| 5182 | Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); | |||
| 5183 | return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 5184 | } | |||
| 5185 | ||||
| 5186 | Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { | |||
| 5187 | Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); | |||
| 5188 | Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); | |||
| 5189 | return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), | |||
| 5190 | "_msarg_va_o"); | |||
| 5191 | } | |||
| 5192 | ||||
| 5193 | void unpoisonVAListTagForInst(IntrinsicInst &I) { | |||
| 5194 | IRBuilder<> IRB(&I); | |||
| 5195 | Value *VAListTag = I.getArgOperand(0); | |||
| 5196 | Value *ShadowPtr, *OriginPtr; | |||
| 5197 | const Align Alignment = Align(8); | |||
| 5198 | std::tie(ShadowPtr, OriginPtr) = | |||
| 5199 | MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, | |||
| 5200 | /*isStore*/ true); | |||
| 5201 | IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), | |||
| 5202 | SystemZVAListTagSize, Alignment, false); | |||
| 5203 | } | |||
| 5204 | ||||
| 5205 | void visitVAStartInst(VAStartInst &I) override { | |||
| 5206 | VAStartInstrumentationList.push_back(&I); | |||
| 5207 | unpoisonVAListTagForInst(I); | |||
| 5208 | } | |||
| 5209 | ||||
| 5210 | void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } | |||
| 5211 | ||||
| 5212 | void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { | |||
| 5213 | Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); | |||
| 5214 | Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( | |||
| 5215 | IRB.CreateAdd( | |||
| 5216 | IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | |||
| 5217 | ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), | |||
| 5218 | PointerType::get(RegSaveAreaPtrTy, 0)); | |||
| 5219 | Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); | |||
| 5220 | Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; | |||
| 5221 | const Align Alignment = Align(8); | |||
| 5222 | std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = | |||
| 5223 | MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, | |||
| 5224 | /*isStore*/ true); | |||
| 5225 | // TODO(iii): copy only fragments filled by visitCallBase() | |||
| 5226 | IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, | |||
| 5227 | SystemZRegSaveAreaSize); | |||
| 5228 | if (MS.TrackOrigins) | |||
| 5229 | IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, | |||
| 5230 | Alignment, SystemZRegSaveAreaSize); | |||
| 5231 | } | |||
| 5232 | ||||
| 5233 | void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { | |||
| 5234 | Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); | |||
| 5235 | Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( | |||
| 5236 | IRB.CreateAdd( | |||
| 5237 | IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), | |||
| 5238 | ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), | |||
| 5239 | PointerType::get(OverflowArgAreaPtrTy, 0)); | |||
| 5240 | Value *OverflowArgAreaPtr = | |||
| 5241 | IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); | |||
| 5242 | Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; | |||
| 5243 | const Align Alignment = Align(8); | |||
| 5244 | std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = | |||
| 5245 | MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), | |||
| 5246 | Alignment, /*isStore*/ true); | |||
| 5247 | Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, | |||
| 5248 | SystemZOverflowOffset); | |||
| 5249 | IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, | |||
| 5250 | VAArgOverflowSize); | |||
| 5251 | if (MS.TrackOrigins) { | |||
| 5252 | SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, | |||
| 5253 | SystemZOverflowOffset); | |||
| 5254 | IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, | |||
| 5255 | VAArgOverflowSize); | |||
| 5256 | } | |||
| 5257 | } | |||
| 5258 | ||||
| 5259 | void finalizeInstrumentation() override { | |||
| 5260 | assert(!VAArgOverflowSize && !VAArgTLSCopy &&((void)0) | |||
| 5261 | "finalizeInstrumentation called twice")((void)0); | |||
| 5262 | if (!VAStartInstrumentationList.empty()) { | |||
| 5263 | // If there is a va_start in this function, make a backup copy of | |||
| 5264 | // va_arg_tls somewhere in the function entry block. | |||
| 5265 | IRBuilder<> IRB(MSV.FnPrologueEnd); | |||
| 5266 | VAArgOverflowSize = | |||
| 5267 | IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); | |||
| 5268 | Value *CopySize = | |||
| 5269 | IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), | |||
| 5270 | VAArgOverflowSize); | |||
| 5271 | VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | |||
| 5272 | IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); | |||
| 5273 | if (MS.TrackOrigins) { | |||
| 5274 | VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); | |||
| 5275 | IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, | |||
| 5276 | Align(8), CopySize); | |||
| 5277 | } | |||
| 5278 | } | |||
| 5279 | ||||
| 5280 | // Instrument va_start. | |||
| 5281 | // Copy va_list shadow from the backup copy of the TLS contents. | |||
| 5282 | for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); | |||
| 5283 | VaStartNo < VaStartNum; VaStartNo++) { | |||
| 5284 | CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; | |||
| 5285 | IRBuilder<> IRB(OrigInst->getNextNode()); | |||
| 5286 | Value *VAListTag = OrigInst->getArgOperand(0); | |||
| 5287 | copyRegSaveArea(IRB, VAListTag); | |||
| 5288 | copyOverflowArea(IRB, VAListTag); | |||
| 5289 | } | |||
| 5290 | } | |||
| 5291 | }; | |||
| 5292 | ||||
| 5293 | /// A no-op implementation of VarArgHelper. | |||
| 5294 | struct VarArgNoOpHelper : public VarArgHelper { | |||
| 5295 | VarArgNoOpHelper(Function &F, MemorySanitizer &MS, | |||
| 5296 | MemorySanitizerVisitor &MSV) {} | |||
| 5297 | ||||
| 5298 | void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} | |||
| 5299 | ||||
| 5300 | void visitVAStartInst(VAStartInst &I) override {} | |||
| 5301 | ||||
| 5302 | void visitVACopyInst(VACopyInst &I) override {} | |||
| 5303 | ||||
| 5304 | void finalizeInstrumentation() override {} | |||
| 5305 | }; | |||
| 5306 | ||||
| 5307 | } // end anonymous namespace | |||
| 5308 | ||||
| 5309 | static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, | |||
| 5310 | MemorySanitizerVisitor &Visitor) { | |||
| 5311 | // VarArg handling is only implemented on AMD64. False positives are possible | |||
| 5312 | // on other platforms. | |||
| 5313 | Triple TargetTriple(Func.getParent()->getTargetTriple()); | |||
| 5314 | if (TargetTriple.getArch() == Triple::x86_64) | |||
| 5315 | return new VarArgAMD64Helper(Func, Msan, Visitor); | |||
| 5316 | else if (TargetTriple.isMIPS64()) | |||
| 5317 | return new VarArgMIPS64Helper(Func, Msan, Visitor); | |||
| 5318 | else if (TargetTriple.getArch() == Triple::aarch64) | |||
| 5319 | return new VarArgAArch64Helper(Func, Msan, Visitor); | |||
| 5320 | else if (TargetTriple.getArch() == Triple::ppc64 || | |||
| 5321 | TargetTriple.getArch() == Triple::ppc64le) | |||
| 5322 | return new VarArgPowerPC64Helper(Func, Msan, Visitor); | |||
| 5323 | else if (TargetTriple.getArch() == Triple::systemz) | |||
| 5324 | return new VarArgSystemZHelper(Func, Msan, Visitor); | |||
| 5325 | else | |||
| 5326 | return new VarArgNoOpHelper(Func, Msan, Visitor); | |||
| 5327 | } | |||
| 5328 | ||||
| 5329 | bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { | |||
| 5330 | if (!CompileKernel && F.getName() == kMsanModuleCtorName) | |||
| 5331 | return false; | |||
| 5332 | ||||
| 5333 | MemorySanitizerVisitor Visitor(F, *this, TLI); | |||
| 5334 | ||||
| 5335 | // Clear out readonly/readnone attributes. | |||
| 5336 | AttrBuilder B; | |||
| 5337 | B.addAttribute(Attribute::ReadOnly) | |||
| 5338 | .addAttribute(Attribute::ReadNone) | |||
| 5339 | .addAttribute(Attribute::WriteOnly) | |||
| 5340 | .addAttribute(Attribute::ArgMemOnly) | |||
| 5341 | .addAttribute(Attribute::Speculatable); | |||
| 5342 | F.removeAttributes(AttributeList::FunctionIndex, B); | |||
| 5343 | ||||
| 5344 | return Visitor.runOnFunction(); | |||
| 5345 | } |
| 1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file exposes the class definitions of all of the subclasses of the |
| 10 | // Instruction class. This is meant to be an easy way to get access to all |
| 11 | // instruction subclasses. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
| 16 | #define LLVM_IR_INSTRUCTIONS_H |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/Bitfields.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/None.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/StringRef.h" |
| 25 | #include "llvm/ADT/Twine.h" |
| 26 | #include "llvm/ADT/iterator.h" |
| 27 | #include "llvm/ADT/iterator_range.h" |
| 28 | #include "llvm/IR/Attributes.h" |
| 29 | #include "llvm/IR/BasicBlock.h" |
| 30 | #include "llvm/IR/CallingConv.h" |
| 31 | #include "llvm/IR/CFG.h" |
| 32 | #include "llvm/IR/Constant.h" |
| 33 | #include "llvm/IR/DerivedTypes.h" |
| 34 | #include "llvm/IR/Function.h" |
| 35 | #include "llvm/IR/InstrTypes.h" |
| 36 | #include "llvm/IR/Instruction.h" |
| 37 | #include "llvm/IR/OperandTraits.h" |
| 38 | #include "llvm/IR/Type.h" |
| 39 | #include "llvm/IR/Use.h" |
| 40 | #include "llvm/IR/User.h" |
| 41 | #include "llvm/IR/Value.h" |
| 42 | #include "llvm/Support/AtomicOrdering.h" |
| 43 | #include "llvm/Support/Casting.h" |
| 44 | #include "llvm/Support/ErrorHandling.h" |
| 45 | #include <cassert> |
| 46 | #include <cstddef> |
| 47 | #include <cstdint> |
| 48 | #include <iterator> |
| 49 | |
| 50 | namespace llvm { |
| 51 | |
| 52 | class APInt; |
| 53 | class ConstantInt; |
| 54 | class DataLayout; |
| 55 | class LLVMContext; |
| 56 | |
| 57 | //===----------------------------------------------------------------------===// |
| 58 | // AllocaInst Class |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | /// an instruction to allocate memory on the stack |
| 62 | class AllocaInst : public UnaryInstruction { |
| 63 | Type *AllocatedType; |
| 64 | |
| 65 | using AlignmentField = AlignmentBitfieldElementT<0>; |
| 66 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
| 67 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
| 68 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
| 69 | SwiftErrorField>(), |
| 70 | "Bitfields must be contiguous"); |
| 71 | |
| 72 | protected: |
| 73 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 74 | friend class Instruction; |
| 75 | |
| 76 | AllocaInst *cloneImpl() const; |
| 77 | |
| 78 | public: |
| 79 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 80 | const Twine &Name, Instruction *InsertBefore); |
| 81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 82 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 83 | |
| 84 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
| 85 | Instruction *InsertBefore); |
| 86 | AllocaInst(Type *Ty, unsigned AddrSpace, |
| 87 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 88 | |
| 89 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 90 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
| 91 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 92 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 93 | |
| 94 | /// Return true if there is an allocation size parameter to the allocation |
| 95 | /// instruction that is not 1. |
| 96 | bool isArrayAllocation() const; |
| 97 | |
| 98 | /// Get the number of elements allocated. For a simple allocation of a single |
| 99 | /// element, this will return a constant 1 value. |
| 100 | const Value *getArraySize() const { return getOperand(0); } |
| 101 | Value *getArraySize() { return getOperand(0); } |
| 102 | |
| 103 | /// Overload to return most specific pointer type. |
| 104 | PointerType *getType() const { |
| 105 | return cast<PointerType>(Instruction::getType()); |
| 106 | } |
| 107 | |
| 108 | /// Get allocation size in bits. Returns None if size can't be determined, |
| 109 | /// e.g. in case of a VLA. |
| 110 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
| 111 | |
| 112 | /// Return the type that is being allocated by the instruction. |
| 113 | Type *getAllocatedType() const { return AllocatedType; } |
| 114 | /// for use only in special circumstances that need to generically |
| 115 | /// transform a whole instruction (eg: IR linking and vectorization). |
| 116 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
| 117 | |
| 118 | /// Return the alignment of the memory that is being allocated by the |
| 119 | /// instruction. |
| 120 | Align getAlign() const { |
| 121 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 122 | } |
| 123 | |
| 124 | void setAlignment(Align Align) { |
| 125 | setSubclassData<AlignmentField>(Log2(Align)); |
| 126 | } |
| 127 | |
| 128 | // FIXME: Remove this one transition to Align is over. |
| 129 | unsigned getAlignment() const { return getAlign().value(); } |
| 130 | |
| 131 | /// Return true if this alloca is in the entry block of the function and is a |
| 132 | /// constant size. If so, the code generator will fold it into the |
| 133 | /// prolog/epilog code, so it is basically free. |
| 134 | bool isStaticAlloca() const; |
| 135 | |
| 136 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
| 137 | /// allocas are never considered static even if they are in the entry block. |
| 138 | bool isUsedWithInAlloca() const { |
| 139 | return getSubclassData<UsedWithInAllocaField>(); |
| 140 | } |
| 141 | |
| 142 | /// Specify whether this alloca is used to represent the arguments to a call. |
| 143 | void setUsedWithInAlloca(bool V) { |
| 144 | setSubclassData<UsedWithInAllocaField>(V); |
| 145 | } |
| 146 | |
| 147 | /// Return true if this alloca is used as a swifterror argument to a call. |
| 148 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
| 149 | /// Specify whether this alloca is used to represent a swifterror. |
| 150 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
| 151 | |
| 152 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 153 | static bool classof(const Instruction *I) { |
| 154 | return (I->getOpcode() == Instruction::Alloca); |
| 155 | } |
| 156 | static bool classof(const Value *V) { |
| 157 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 158 | } |
| 159 | |
| 160 | private: |
| 161 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 162 | // method so that subclasses cannot accidentally use it. |
| 163 | template <typename Bitfield> |
| 164 | void setSubclassData(typename Bitfield::Type Value) { |
| 165 | Instruction::setSubclassData<Bitfield>(Value); |
| 166 | } |
| 167 | }; |
| 168 | |
| 169 | //===----------------------------------------------------------------------===// |
| 170 | // LoadInst Class |
| 171 | //===----------------------------------------------------------------------===// |
| 172 | |
| 173 | /// An instruction for reading from memory. This uses the SubclassData field in |
| 174 | /// Value to store whether or not the load is volatile. |
| 175 | class LoadInst : public UnaryInstruction { |
| 176 | using VolatileField = BoolBitfieldElementT<0>; |
| 177 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 178 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 179 | static_assert( |
| 180 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 181 | "Bitfields must be contiguous"); |
| 182 | |
| 183 | void AssertOK(); |
| 184 | |
| 185 | protected: |
| 186 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 187 | friend class Instruction; |
| 188 | |
| 189 | LoadInst *cloneImpl() const; |
| 190 | |
| 191 | public: |
| 192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
| 193 | Instruction *InsertBefore); |
| 194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 196 | Instruction *InsertBefore); |
| 197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 198 | BasicBlock *InsertAtEnd); |
| 199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 200 | Align Align, Instruction *InsertBefore = nullptr); |
| 201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 202 | Align Align, BasicBlock *InsertAtEnd); |
| 203 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 204 | Align Align, AtomicOrdering Order, |
| 205 | SyncScope::ID SSID = SyncScope::System, |
| 206 | Instruction *InsertBefore = nullptr); |
| 207 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 208 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
| 209 | BasicBlock *InsertAtEnd); |
| 210 | |
| 211 | /// Return true if this is a load from a volatile memory location. |
| 212 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 213 | |
| 214 | /// Specify whether this is a volatile load or not. |
| 215 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 216 | |
| 217 | /// Return the alignment of the access that is being performed. |
| 218 | /// FIXME: Remove this function once transition to Align is over. |
| 219 | /// Use getAlign() instead. |
| 220 | unsigned getAlignment() const { return getAlign().value(); } |
| 221 | |
| 222 | /// Return the alignment of the access that is being performed. |
| 223 | Align getAlign() const { |
| 224 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 225 | } |
| 226 | |
| 227 | void setAlignment(Align Align) { |
| 228 | setSubclassData<AlignmentField>(Log2(Align)); |
| 229 | } |
| 230 | |
| 231 | /// Returns the ordering constraint of this load instruction. |
| 232 | AtomicOrdering getOrdering() const { |
| 233 | return getSubclassData<OrderingField>(); |
| 234 | } |
| 235 | /// Sets the ordering constraint of this load instruction. May not be Release |
| 236 | /// or AcquireRelease. |
| 237 | void setOrdering(AtomicOrdering Ordering) { |
| 238 | setSubclassData<OrderingField>(Ordering); |
| 239 | } |
| 240 | |
| 241 | /// Returns the synchronization scope ID of this load instruction. |
| 242 | SyncScope::ID getSyncScopeID() const { |
| 243 | return SSID; |
| 244 | } |
| 245 | |
| 246 | /// Sets the synchronization scope ID of this load instruction. |
| 247 | void setSyncScopeID(SyncScope::ID SSID) { |
| 248 | this->SSID = SSID; |
| 249 | } |
| 250 | |
| 251 | /// Sets the ordering constraint and the synchronization scope ID of this load |
| 252 | /// instruction. |
| 253 | void setAtomic(AtomicOrdering Ordering, |
| 254 | SyncScope::ID SSID = SyncScope::System) { |
| 255 | setOrdering(Ordering); |
| 256 | setSyncScopeID(SSID); |
| 257 | } |
| 258 | |
| 259 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 260 | |
| 261 | bool isUnordered() const { |
| 262 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 263 | getOrdering() == AtomicOrdering::Unordered) && |
| 264 | !isVolatile(); |
| 265 | } |
| 266 | |
| 267 | Value *getPointerOperand() { return getOperand(0); } |
| 268 | const Value *getPointerOperand() const { return getOperand(0); } |
| 269 | static unsigned getPointerOperandIndex() { return 0U; } |
| 270 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 271 | |
| 272 | /// Returns the address space of the pointer operand. |
| 273 | unsigned getPointerAddressSpace() const { |
| 274 | return getPointerOperandType()->getPointerAddressSpace(); |
| 275 | } |
| 276 | |
| 277 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 278 | static bool classof(const Instruction *I) { |
| 279 | return I->getOpcode() == Instruction::Load; |
| 280 | } |
| 281 | static bool classof(const Value *V) { |
| 282 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 283 | } |
| 284 | |
| 285 | private: |
| 286 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 287 | // method so that subclasses cannot accidentally use it. |
| 288 | template <typename Bitfield> |
| 289 | void setSubclassData(typename Bitfield::Type Value) { |
| 290 | Instruction::setSubclassData<Bitfield>(Value); |
| 291 | } |
| 292 | |
| 293 | /// The synchronization scope ID of this load instruction. Not quite enough |
| 294 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 295 | /// own field. |
| 296 | SyncScope::ID SSID; |
| 297 | }; |
| 298 | |
| 299 | //===----------------------------------------------------------------------===// |
| 300 | // StoreInst Class |
| 301 | //===----------------------------------------------------------------------===// |
| 302 | |
| 303 | /// An instruction for storing to memory. |
| 304 | class StoreInst : public Instruction { |
| 305 | using VolatileField = BoolBitfieldElementT<0>; |
| 306 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 307 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 308 | static_assert( |
| 309 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 310 | "Bitfields must be contiguous"); |
| 311 | |
| 312 | void AssertOK(); |
| 313 | |
| 314 | protected: |
| 315 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 316 | friend class Instruction; |
| 317 | |
| 318 | StoreInst *cloneImpl() const; |
| 319 | |
| 320 | public: |
| 321 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
| 322 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
| 323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
| 324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
| 325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 326 | Instruction *InsertBefore = nullptr); |
| 327 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 328 | BasicBlock *InsertAtEnd); |
| 329 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 330 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
| 331 | Instruction *InsertBefore = nullptr); |
| 332 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 333 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
| 334 | |
| 335 | // allocate space for exactly two operands |
| 336 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 337 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 338 | |
| 339 | /// Return true if this is a store to a volatile memory location. |
| 340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 341 | |
| 342 | /// Specify whether this is a volatile store or not. |
| 343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 344 | |
| 345 | /// Transparently provide more efficient getOperand methods. |
| 346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 347 | |
| 348 | /// Return the alignment of the access that is being performed |
| 349 | /// FIXME: Remove this function once transition to Align is over. |
| 350 | /// Use getAlign() instead. |
| 351 | unsigned getAlignment() const { return getAlign().value(); } |
| 352 | |
| 353 | Align getAlign() const { |
| 354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 355 | } |
| 356 | |
| 357 | void setAlignment(Align Align) { |
| 358 | setSubclassData<AlignmentField>(Log2(Align)); |
| 359 | } |
| 360 | |
| 361 | /// Returns the ordering constraint of this store instruction. |
| 362 | AtomicOrdering getOrdering() const { |
| 363 | return getSubclassData<OrderingField>(); |
| 364 | } |
| 365 | |
| 366 | /// Sets the ordering constraint of this store instruction. May not be |
| 367 | /// Acquire or AcquireRelease. |
| 368 | void setOrdering(AtomicOrdering Ordering) { |
| 369 | setSubclassData<OrderingField>(Ordering); |
| 370 | } |
| 371 | |
| 372 | /// Returns the synchronization scope ID of this store instruction. |
| 373 | SyncScope::ID getSyncScopeID() const { |
| 374 | return SSID; |
| 375 | } |
| 376 | |
| 377 | /// Sets the synchronization scope ID of this store instruction. |
| 378 | void setSyncScopeID(SyncScope::ID SSID) { |
| 379 | this->SSID = SSID; |
| 380 | } |
| 381 | |
| 382 | /// Sets the ordering constraint and the synchronization scope ID of this |
| 383 | /// store instruction. |
| 384 | void setAtomic(AtomicOrdering Ordering, |
| 385 | SyncScope::ID SSID = SyncScope::System) { |
| 386 | setOrdering(Ordering); |
| 387 | setSyncScopeID(SSID); |
| 388 | } |
| 389 | |
| 390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 391 | |
| 392 | bool isUnordered() const { |
| 393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 394 | getOrdering() == AtomicOrdering::Unordered) && |
| 395 | !isVolatile(); |
| 396 | } |
| 397 | |
| 398 | Value *getValueOperand() { return getOperand(0); } |
| 399 | const Value *getValueOperand() const { return getOperand(0); } |
| 400 | |
| 401 | Value *getPointerOperand() { return getOperand(1); } |
| 402 | const Value *getPointerOperand() const { return getOperand(1); } |
| 403 | static unsigned getPointerOperandIndex() { return 1U; } |
| 404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 405 | |
| 406 | /// Returns the address space of the pointer operand. |
| 407 | unsigned getPointerAddressSpace() const { |
| 408 | return getPointerOperandType()->getPointerAddressSpace(); |
| 409 | } |
| 410 | |
| 411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 412 | static bool classof(const Instruction *I) { |
| 413 | return I->getOpcode() == Instruction::Store; |
| 414 | } |
| 415 | static bool classof(const Value *V) { |
| 416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 417 | } |
| 418 | |
| 419 | private: |
| 420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 421 | // method so that subclasses cannot accidentally use it. |
| 422 | template <typename Bitfield> |
| 423 | void setSubclassData(typename Bitfield::Type Value) { |
| 424 | Instruction::setSubclassData<Bitfield>(Value); |
| 425 | } |
| 426 | |
| 427 | /// The synchronization scope ID of this store instruction. Not quite enough |
| 428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 429 | /// own field. |
| 430 | SyncScope::ID SSID; |
| 431 | }; |
| 432 | |
| 433 | template <> |
| 434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
| 435 | }; |
| 436 | |
| 437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<StoreInst>::op_begin(const_cast <StoreInst*>(this))[i_nocapture].get()); } void StoreInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
| 438 | |
| 439 | //===----------------------------------------------------------------------===// |
| 440 | // FenceInst Class |
| 441 | //===----------------------------------------------------------------------===// |
| 442 | |
| 443 | /// An instruction for ordering other memory operations. |
| 444 | class FenceInst : public Instruction { |
| 445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
| 446 | |
| 447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
| 448 | |
| 449 | protected: |
| 450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 451 | friend class Instruction; |
| 452 | |
| 453 | FenceInst *cloneImpl() const; |
| 454 | |
| 455 | public: |
| 456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
| 457 | // SequentiallyConsistent. |
| 458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| 459 | SyncScope::ID SSID = SyncScope::System, |
| 460 | Instruction *InsertBefore = nullptr); |
| 461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
| 462 | BasicBlock *InsertAtEnd); |
| 463 | |
| 464 | // allocate space for exactly zero operands |
| 465 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 466 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 467 | |
| 468 | /// Returns the ordering constraint of this fence instruction. |
| 469 | AtomicOrdering getOrdering() const { |
| 470 | return getSubclassData<OrderingField>(); |
| 471 | } |
| 472 | |
| 473 | /// Sets the ordering constraint of this fence instruction. May only be |
| 474 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
| 475 | void setOrdering(AtomicOrdering Ordering) { |
| 476 | setSubclassData<OrderingField>(Ordering); |
| 477 | } |
| 478 | |
| 479 | /// Returns the synchronization scope ID of this fence instruction. |
| 480 | SyncScope::ID getSyncScopeID() const { |
| 481 | return SSID; |
| 482 | } |
| 483 | |
| 484 | /// Sets the synchronization scope ID of this fence instruction. |
| 485 | void setSyncScopeID(SyncScope::ID SSID) { |
| 486 | this->SSID = SSID; |
| 487 | } |
| 488 | |
| 489 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 490 | static bool classof(const Instruction *I) { |
| 491 | return I->getOpcode() == Instruction::Fence; |
| 492 | } |
| 493 | static bool classof(const Value *V) { |
| 494 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 495 | } |
| 496 | |
| 497 | private: |
| 498 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 499 | // method so that subclasses cannot accidentally use it. |
| 500 | template <typename Bitfield> |
| 501 | void setSubclassData(typename Bitfield::Type Value) { |
| 502 | Instruction::setSubclassData<Bitfield>(Value); |
| 503 | } |
| 504 | |
| 505 | /// The synchronization scope ID of this fence instruction. Not quite enough |
| 506 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 507 | /// own field. |
| 508 | SyncScope::ID SSID; |
| 509 | }; |
| 510 | |
| 511 | //===----------------------------------------------------------------------===// |
| 512 | // AtomicCmpXchgInst Class |
| 513 | //===----------------------------------------------------------------------===// |
| 514 | |
| 515 | /// An instruction that atomically checks whether a |
| 516 | /// specified value is in a memory location, and, if it is, stores a new value |
| 517 | /// there. The value returned by this instruction is a pair containing the |
| 518 | /// original value as first element, and an i1 indicating success (true) or |
| 519 | /// failure (false) as second element. |
| 520 | /// |
| 521 | class AtomicCmpXchgInst : public Instruction { |
| 522 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
| 523 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
| 524 | SyncScope::ID SSID); |
| 525 | |
| 526 | template <unsigned Offset> |
| 527 | using AtomicOrderingBitfieldElement = |
| 528 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 529 | AtomicOrdering::LAST>; |
| 530 | |
| 531 | protected: |
| 532 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 533 | friend class Instruction; |
| 534 | |
| 535 | AtomicCmpXchgInst *cloneImpl() const; |
| 536 | |
| 537 | public: |
| 538 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 539 | AtomicOrdering SuccessOrdering, |
| 540 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 541 | Instruction *InsertBefore = nullptr); |
| 542 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 543 | AtomicOrdering SuccessOrdering, |
| 544 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 545 | BasicBlock *InsertAtEnd); |
| 546 | |
| 547 | // allocate space for exactly three operands |
| 548 | void *operator new(size_t S) { return User::operator new(S, 3); } |
| 549 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 550 | |
| 551 | using VolatileField = BoolBitfieldElementT<0>; |
| 552 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
| 553 | using SuccessOrderingField = |
| 554 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
| 555 | using FailureOrderingField = |
| 556 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
| 557 | using AlignmentField = |
| 558 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
| 559 | static_assert( |
| 560 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
| 561 | FailureOrderingField, AlignmentField>(), |
| 562 | "Bitfields must be contiguous"); |
| 563 | |
| 564 | /// Return the alignment of the memory that is being allocated by the |
| 565 | /// instruction. |
| 566 | Align getAlign() const { |
| 567 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 568 | } |
| 569 | |
| 570 | void setAlignment(Align Align) { |
| 571 | setSubclassData<AlignmentField>(Log2(Align)); |
| 572 | } |
| 573 | |
| 574 | /// Return true if this is a cmpxchg from a volatile memory |
| 575 | /// location. |
| 576 | /// |
| 577 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 578 | |
| 579 | /// Specify whether this is a volatile cmpxchg. |
| 580 | /// |
| 581 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 582 | |
| 583 | /// Return true if this cmpxchg may spuriously fail. |
| 584 | bool isWeak() const { return getSubclassData<WeakField>(); } |
| 585 | |
| 586 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
| 587 | |
| 588 | /// Transparently provide more efficient getOperand methods. |
| 589 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 590 | |
| 591 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
| 592 | return Ordering != AtomicOrdering::NotAtomic && |
| 593 | Ordering != AtomicOrdering::Unordered; |
| 594 | } |
| 595 | |
| 596 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
| 597 | return Ordering != AtomicOrdering::NotAtomic && |
| 598 | Ordering != AtomicOrdering::Unordered && |
| 599 | Ordering != AtomicOrdering::AcquireRelease && |
| 600 | Ordering != AtomicOrdering::Release; |
| 601 | } |
| 602 | |
| 603 | /// Returns the success ordering constraint of this cmpxchg instruction. |
| 604 | AtomicOrdering getSuccessOrdering() const { |
| 605 | return getSubclassData<SuccessOrderingField>(); |
| 606 | } |
| 607 | |
| 608 | /// Sets the success ordering constraint of this cmpxchg instruction. |
| 609 | void setSuccessOrdering(AtomicOrdering Ordering) { |
| 610 | assert(isValidSuccessOrdering(Ordering) &&((void)0) |
| 611 | "invalid CmpXchg success ordering")((void)0); |
| 612 | setSubclassData<SuccessOrderingField>(Ordering); |
| 613 | } |
| 614 | |
| 615 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
| 616 | AtomicOrdering getFailureOrdering() const { |
| 617 | return getSubclassData<FailureOrderingField>(); |
| 618 | } |
| 619 | |
| 620 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
| 621 | void setFailureOrdering(AtomicOrdering Ordering) { |
| 622 | assert(isValidFailureOrdering(Ordering) &&((void)0) |
| 623 | "invalid CmpXchg failure ordering")((void)0); |
| 624 | setSubclassData<FailureOrderingField>(Ordering); |
| 625 | } |
| 626 | |
| 627 | /// Returns a single ordering which is at least as strong as both the |
| 628 | /// success and failure orderings for this cmpxchg. |
| 629 | AtomicOrdering getMergedOrdering() const { |
| 630 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 631 | return AtomicOrdering::SequentiallyConsistent; |
| 632 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
| 633 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
| 634 | return AtomicOrdering::Acquire; |
| 635 | if (getSuccessOrdering() == AtomicOrdering::Release) |
| 636 | return AtomicOrdering::AcquireRelease; |
| 637 | } |
| 638 | return getSuccessOrdering(); |
| 639 | } |
| 640 | |
| 641 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
| 642 | SyncScope::ID getSyncScopeID() const { |
| 643 | return SSID; |
| 644 | } |
| 645 | |
| 646 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
| 647 | void setSyncScopeID(SyncScope::ID SSID) { |
| 648 | this->SSID = SSID; |
| 649 | } |
| 650 | |
| 651 | Value *getPointerOperand() { return getOperand(0); } |
| 652 | const Value *getPointerOperand() const { return getOperand(0); } |
| 653 | static unsigned getPointerOperandIndex() { return 0U; } |
| 654 | |
| 655 | Value *getCompareOperand() { return getOperand(1); } |
| 656 | const Value *getCompareOperand() const { return getOperand(1); } |
| 657 | |
| 658 | Value *getNewValOperand() { return getOperand(2); } |
| 659 | const Value *getNewValOperand() const { return getOperand(2); } |
| 660 | |
| 661 | /// Returns the address space of the pointer operand. |
| 662 | unsigned getPointerAddressSpace() const { |
| 663 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 664 | } |
| 665 | |
| 666 | /// Returns the strongest permitted ordering on failure, given the |
| 667 | /// desired ordering on success. |
| 668 | /// |
| 669 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
| 670 | /// so release semantics cannot be provided. So this function drops explicit |
| 671 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
| 672 | /// operation would remain SequentiallyConsistent. |
| 673 | static AtomicOrdering |
| 674 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
| 675 | switch (SuccessOrdering) { |
| 676 | default: |
| 677 | llvm_unreachable("invalid cmpxchg success ordering")__builtin_unreachable(); |
| 678 | case AtomicOrdering::Release: |
| 679 | case AtomicOrdering::Monotonic: |
| 680 | return AtomicOrdering::Monotonic; |
| 681 | case AtomicOrdering::AcquireRelease: |
| 682 | case AtomicOrdering::Acquire: |
| 683 | return AtomicOrdering::Acquire; |
| 684 | case AtomicOrdering::SequentiallyConsistent: |
| 685 | return AtomicOrdering::SequentiallyConsistent; |
| 686 | } |
| 687 | } |
| 688 | |
| 689 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 690 | static bool classof(const Instruction *I) { |
| 691 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
| 692 | } |
| 693 | static bool classof(const Value *V) { |
| 694 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 695 | } |
| 696 | |
| 697 | private: |
| 698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 699 | // method so that subclasses cannot accidentally use it. |
| 700 | template <typename Bitfield> |
| 701 | void setSubclassData(typename Bitfield::Type Value) { |
| 702 | Instruction::setSubclassData<Bitfield>(Value); |
| 703 | } |
| 704 | |
| 705 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
| 706 | /// enough room in SubClassData for everything, so synchronization scope ID |
| 707 | /// gets its own field. |
| 708 | SyncScope::ID SSID; |
| 709 | }; |
| 710 | |
| 711 | template <> |
| 712 | struct OperandTraits<AtomicCmpXchgInst> : |
| 713 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
| 714 | }; |
| 715 | |
| 716 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<AtomicCmpXchgInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst ::getNumOperands() const { return OperandTraits<AtomicCmpXchgInst >::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicCmpXchgInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 717 | |
| 718 | //===----------------------------------------------------------------------===// |
| 719 | // AtomicRMWInst Class |
| 720 | //===----------------------------------------------------------------------===// |
| 721 | |
| 722 | /// an instruction that atomically reads a memory location, |
| 723 | /// combines it with another value, and then stores the result back. Returns |
| 724 | /// the old value. |
| 725 | /// |
| 726 | class AtomicRMWInst : public Instruction { |
| 727 | protected: |
| 728 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 729 | friend class Instruction; |
| 730 | |
| 731 | AtomicRMWInst *cloneImpl() const; |
| 732 | |
| 733 | public: |
| 734 | /// This enumeration lists the possible modifications atomicrmw can make. In |
| 735 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
| 736 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
| 737 | /// instruction. These instructions always return 'old'. |
| 738 | enum BinOp : unsigned { |
| 739 | /// *p = v |
| 740 | Xchg, |
| 741 | /// *p = old + v |
| 742 | Add, |
| 743 | /// *p = old - v |
| 744 | Sub, |
| 745 | /// *p = old & v |
| 746 | And, |
| 747 | /// *p = ~(old & v) |
| 748 | Nand, |
| 749 | /// *p = old | v |
| 750 | Or, |
| 751 | /// *p = old ^ v |
| 752 | Xor, |
| 753 | /// *p = old >signed v ? old : v |
| 754 | Max, |
| 755 | /// *p = old <signed v ? old : v |
| 756 | Min, |
| 757 | /// *p = old >unsigned v ? old : v |
| 758 | UMax, |
| 759 | /// *p = old <unsigned v ? old : v |
| 760 | UMin, |
| 761 | |
| 762 | /// *p = old + v |
| 763 | FAdd, |
| 764 | |
| 765 | /// *p = old - v |
| 766 | FSub, |
| 767 | |
| 768 | FIRST_BINOP = Xchg, |
| 769 | LAST_BINOP = FSub, |
| 770 | BAD_BINOP |
| 771 | }; |
| 772 | |
| 773 | private: |
| 774 | template <unsigned Offset> |
| 775 | using AtomicOrderingBitfieldElement = |
| 776 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 777 | AtomicOrdering::LAST>; |
| 778 | |
| 779 | template <unsigned Offset> |
| 780 | using BinOpBitfieldElement = |
| 781 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
| 782 | |
| 783 | public: |
| 784 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 785 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 786 | Instruction *InsertBefore = nullptr); |
| 787 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 788 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 789 | BasicBlock *InsertAtEnd); |
| 790 | |
| 791 | // allocate space for exactly two operands |
| 792 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 793 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 794 | |
| 795 | using VolatileField = BoolBitfieldElementT<0>; |
| 796 | using AtomicOrderingField = |
| 797 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
| 798 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
| 799 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
| 800 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
| 801 | OperationField, AlignmentField>(), |
| 802 | "Bitfields must be contiguous"); |
| 803 | |
| 804 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
| 805 | |
| 806 | static StringRef getOperationName(BinOp Op); |
| 807 | |
| 808 | static bool isFPOperation(BinOp Op) { |
| 809 | switch (Op) { |
| 810 | case AtomicRMWInst::FAdd: |
| 811 | case AtomicRMWInst::FSub: |
| 812 | return true; |
| 813 | default: |
| 814 | return false; |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | void setOperation(BinOp Operation) { |
| 819 | setSubclassData<OperationField>(Operation); |
| 820 | } |
| 821 | |
| 822 | /// Return the alignment of the memory that is being allocated by the |
| 823 | /// instruction. |
| 824 | Align getAlign() const { |
| 825 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 826 | } |
| 827 | |
| 828 | void setAlignment(Align Align) { |
| 829 | setSubclassData<AlignmentField>(Log2(Align)); |
| 830 | } |
| 831 | |
| 832 | /// Return true if this is a RMW on a volatile memory location. |
| 833 | /// |
| 834 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 835 | |
| 836 | /// Specify whether this is a volatile RMW or not. |
| 837 | /// |
| 838 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 839 | |
| 840 | /// Transparently provide more efficient getOperand methods. |
| 841 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 842 | |
| 843 | /// Returns the ordering constraint of this rmw instruction. |
| 844 | AtomicOrdering getOrdering() const { |
| 845 | return getSubclassData<AtomicOrderingField>(); |
| 846 | } |
| 847 | |
| 848 | /// Sets the ordering constraint of this rmw instruction. |
| 849 | void setOrdering(AtomicOrdering Ordering) { |
| 850 | assert(Ordering != AtomicOrdering::NotAtomic &&((void)0) |
| 851 | "atomicrmw instructions can only be atomic.")((void)0); |
| 852 | setSubclassData<AtomicOrderingField>(Ordering); |
| 853 | } |
| 854 | |
| 855 | /// Returns the synchronization scope ID of this rmw instruction. |
| 856 | SyncScope::ID getSyncScopeID() const { |
| 857 | return SSID; |
| 858 | } |
| 859 | |
| 860 | /// Sets the synchronization scope ID of this rmw instruction. |
| 861 | void setSyncScopeID(SyncScope::ID SSID) { |
| 862 | this->SSID = SSID; |
| 863 | } |
| 864 | |
| 865 | Value *getPointerOperand() { return getOperand(0); } |
| 866 | const Value *getPointerOperand() const { return getOperand(0); } |
| 867 | static unsigned getPointerOperandIndex() { return 0U; } |
| 868 | |
| 869 | Value *getValOperand() { return getOperand(1); } |
| 870 | const Value *getValOperand() const { return getOperand(1); } |
| 871 | |
| 872 | /// Returns the address space of the pointer operand. |
| 873 | unsigned getPointerAddressSpace() const { |
| 874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 875 | } |
| 876 | |
| 877 | bool isFloatingPointOperation() const { |
| 878 | return isFPOperation(getOperation()); |
| 879 | } |
| 880 | |
| 881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 882 | static bool classof(const Instruction *I) { |
| 883 | return I->getOpcode() == Instruction::AtomicRMW; |
| 884 | } |
| 885 | static bool classof(const Value *V) { |
| 886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 887 | } |
| 888 | |
| 889 | private: |
| 890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
| 891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
| 892 | |
| 893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 894 | // method so that subclasses cannot accidentally use it. |
| 895 | template <typename Bitfield> |
| 896 | void setSubclassData(typename Bitfield::Type Value) { |
| 897 | Instruction::setSubclassData<Bitfield>(Value); |
| 898 | } |
| 899 | |
| 900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
| 901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 902 | /// own field. |
| 903 | SyncScope::ID SSID; |
| 904 | }; |
| 905 | |
| 906 | template <> |
| 907 | struct OperandTraits<AtomicRMWInst> |
| 908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
| 909 | }; |
| 910 | |
| 911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast <AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 912 | |
| 913 | //===----------------------------------------------------------------------===// |
| 914 | // GetElementPtrInst Class |
| 915 | //===----------------------------------------------------------------------===// |
| 916 | |
| 917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
| 918 | // message on bad indexes for a gep instruction. |
| 919 | // |
| 920 | inline Type *checkGEPType(Type *Ty) { |
| 921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((void)0); |
| 922 | return Ty; |
| 923 | } |
| 924 | |
| 925 | /// an instruction for type-safe pointer arithmetic to |
| 926 | /// access elements of arrays and structs |
| 927 | /// |
| 928 | class GetElementPtrInst : public Instruction { |
| 929 | Type *SourceElementType; |
| 930 | Type *ResultElementType; |
| 931 | |
| 932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
| 933 | |
| 934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
| 935 | /// list of indices. The first ctor can optionally insert before an existing |
| 936 | /// instruction, the second appends the new instruction to the specified |
| 937 | /// BasicBlock. |
| 938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 939 | ArrayRef<Value *> IdxList, unsigned Values, |
| 940 | const Twine &NameStr, Instruction *InsertBefore); |
| 941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 942 | ArrayRef<Value *> IdxList, unsigned Values, |
| 943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 944 | |
| 945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
| 946 | |
| 947 | protected: |
| 948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 949 | friend class Instruction; |
| 950 | |
| 951 | GetElementPtrInst *cloneImpl() const; |
| 952 | |
| 953 | public: |
| 954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 955 | ArrayRef<Value *> IdxList, |
| 956 | const Twine &NameStr = "", |
| 957 | Instruction *InsertBefore = nullptr) { |
| 958 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 959 | assert(PointeeType && "Must specify element type")((void)0); |
| 960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 963 | NameStr, InsertBefore); |
| 964 | } |
| 965 | |
| 966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 967 | ArrayRef<Value *> IdxList, |
| 968 | const Twine &NameStr, |
| 969 | BasicBlock *InsertAtEnd) { |
| 970 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 971 | assert(PointeeType && "Must specify element type")((void)0); |
| 972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())((void)0) |
| 973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))((void)0); |
| 974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 975 | NameStr, InsertAtEnd); |
| 976 | } |
| 977 | |
| 978 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 979 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 980 | Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) |
| 981 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
| 982 | return CreateInBounds( |
| 983 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 984 | NameStr, InsertBefore); |
| 985 | } |
| 986 | |
| 987 | /// Create an "inbounds" getelementptr. See the documentation for the |
| 988 | /// "inbounds" flag in LangRef.html for details. |
| 989 | static GetElementPtrInst * |
| 990 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
| 991 | const Twine &NameStr = "", |
| 992 | Instruction *InsertBefore = nullptr) { |
| 993 | GetElementPtrInst *GEP = |
| 994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
| 995 | GEP->setIsInBounds(true); |
| 996 | return GEP; |
| 997 | } |
| 998 | |
| 999 | LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1000 | Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1001 | BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 1002 | "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead" )]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef <Value *> IdxList, const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1003 | return CreateInBounds( |
| 1004 | Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList, |
| 1005 | NameStr, InsertAtEnd); |
| 1006 | } |
| 1007 | |
| 1008 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
| 1009 | ArrayRef<Value *> IdxList, |
| 1010 | const Twine &NameStr, |
| 1011 | BasicBlock *InsertAtEnd) { |
| 1012 | GetElementPtrInst *GEP = |
| 1013 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
| 1014 | GEP->setIsInBounds(true); |
| 1015 | return GEP; |
| 1016 | } |
| 1017 | |
| 1018 | /// Transparently provide more efficient getOperand methods. |
| 1019 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1020 | |
| 1021 | Type *getSourceElementType() const { return SourceElementType; } |
| 1022 | |
| 1023 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
| 1024 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
| 1025 | |
| 1026 | Type *getResultElementType() const { |
| 1027 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1028 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1029 | return ResultElementType; |
| 1030 | } |
| 1031 | |
| 1032 | /// Returns the address space of this instruction's pointer type. |
| 1033 | unsigned getAddressSpace() const { |
| 1034 | // Note that this is always the same as the pointer operand's address space |
| 1035 | // and that is cheaper to compute, so cheat here. |
| 1036 | return getPointerAddressSpace(); |
| 1037 | } |
| 1038 | |
| 1039 | /// Returns the result type of a getelementptr with the given source |
| 1040 | /// element type and indexes. |
| 1041 | /// |
| 1042 | /// Null is returned if the indices are invalid for the specified |
| 1043 | /// source element type. |
| 1044 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
| 1045 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
| 1046 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
| 1047 | |
| 1048 | /// Return the type of the element at the given index of an indexable |
| 1049 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
| 1050 | /// |
| 1051 | /// Returns null if the type can't be indexed, or the given index is not |
| 1052 | /// legal for the given type. |
| 1053 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
| 1054 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
| 1055 | |
| 1056 | inline op_iterator idx_begin() { return op_begin()+1; } |
| 1057 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
| 1058 | inline op_iterator idx_end() { return op_end(); } |
| 1059 | inline const_op_iterator idx_end() const { return op_end(); } |
| 1060 | |
| 1061 | inline iterator_range<op_iterator> indices() { |
| 1062 | return make_range(idx_begin(), idx_end()); |
| 1063 | } |
| 1064 | |
| 1065 | inline iterator_range<const_op_iterator> indices() const { |
| 1066 | return make_range(idx_begin(), idx_end()); |
| 1067 | } |
| 1068 | |
| 1069 | Value *getPointerOperand() { |
| 1070 | return getOperand(0); |
| 1071 | } |
| 1072 | const Value *getPointerOperand() const { |
| 1073 | return getOperand(0); |
| 1074 | } |
| 1075 | static unsigned getPointerOperandIndex() { |
| 1076 | return 0U; // get index for modifying correct operand. |
| 1077 | } |
| 1078 | |
| 1079 | /// Method to return the pointer operand as a |
| 1080 | /// PointerType. |
| 1081 | Type *getPointerOperandType() const { |
| 1082 | return getPointerOperand()->getType(); |
| 1083 | } |
| 1084 | |
| 1085 | /// Returns the address space of the pointer operand. |
| 1086 | unsigned getPointerAddressSpace() const { |
| 1087 | return getPointerOperandType()->getPointerAddressSpace(); |
| 1088 | } |
| 1089 | |
| 1090 | /// Returns the pointer type returned by the GEP |
| 1091 | /// instruction, which may be a vector of pointers. |
| 1092 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
| 1093 | ArrayRef<Value *> IdxList) { |
| 1094 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
| 1095 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
| 1096 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
| 1097 | Type *PtrTy = OrigPtrTy->isOpaque() |
| 1098 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
| 1099 | : PointerType::get(ResultElemTy, AddrSpace); |
| 1100 | // Vector GEP |
| 1101 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
| 1102 | ElementCount EltCount = PtrVTy->getElementCount(); |
| 1103 | return VectorType::get(PtrTy, EltCount); |
| 1104 | } |
| 1105 | for (Value *Index : IdxList) |
| 1106 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
| 1107 | ElementCount EltCount = IndexVTy->getElementCount(); |
| 1108 | return VectorType::get(PtrTy, EltCount); |
| 1109 | } |
| 1110 | // Scalar GEP |
| 1111 | return PtrTy; |
| 1112 | } |
| 1113 | |
| 1114 | unsigned getNumIndices() const { // Note: always non-negative |
| 1115 | return getNumOperands() - 1; |
| 1116 | } |
| 1117 | |
| 1118 | bool hasIndices() const { |
| 1119 | return getNumOperands() > 1; |
| 1120 | } |
| 1121 | |
| 1122 | /// Return true if all of the indices of this GEP are |
| 1123 | /// zeros. If so, the result pointer and the first operand have the same |
| 1124 | /// value, just potentially different types. |
| 1125 | bool hasAllZeroIndices() const; |
| 1126 | |
| 1127 | /// Return true if all of the indices of this GEP are |
| 1128 | /// constant integers. If so, the result pointer and the first operand have |
| 1129 | /// a constant offset between them. |
| 1130 | bool hasAllConstantIndices() const; |
| 1131 | |
| 1132 | /// Set or clear the inbounds flag on this GEP instruction. |
| 1133 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
| 1134 | void setIsInBounds(bool b = true); |
| 1135 | |
| 1136 | /// Determine whether the GEP has the inbounds flag. |
| 1137 | bool isInBounds() const; |
| 1138 | |
| 1139 | /// Accumulate the constant address offset of this GEP if possible. |
| 1140 | /// |
| 1141 | /// This routine accepts an APInt into which it will accumulate the constant |
| 1142 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
| 1143 | /// all-constant, it returns false and the value of the offset APInt is |
| 1144 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
| 1145 | /// must be at least as wide as the IntPtr type for the address space of |
| 1146 | /// the base GEP pointer. |
| 1147 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
| 1148 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
| 1149 | MapVector<Value *, APInt> &VariableOffsets, |
| 1150 | APInt &ConstantOffset) const; |
| 1151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1152 | static bool classof(const Instruction *I) { |
| 1153 | return (I->getOpcode() == Instruction::GetElementPtr); |
| 1154 | } |
| 1155 | static bool classof(const Value *V) { |
| 1156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1157 | } |
| 1158 | }; |
| 1159 | |
| 1160 | template <> |
| 1161 | struct OperandTraits<GetElementPtrInst> : |
| 1162 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
| 1163 | }; |
| 1164 | |
| 1165 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1166 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1167 | const Twine &NameStr, |
| 1168 | Instruction *InsertBefore) |
| 1169 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1170 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1171 | Values, InsertBefore), |
| 1172 | SourceElementType(PointeeType), |
| 1173 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1174 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1175 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1176 | init(Ptr, IdxList, NameStr); |
| 1177 | } |
| 1178 | |
| 1179 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1180 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1181 | const Twine &NameStr, |
| 1182 | BasicBlock *InsertAtEnd) |
| 1183 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1184 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1185 | Values, InsertAtEnd), |
| 1186 | SourceElementType(PointeeType), |
| 1187 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1188 | assert(cast<PointerType>(getType()->getScalarType())((void)0) |
| 1189 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))((void)0); |
| 1190 | init(Ptr, IdxList, NameStr); |
| 1191 | } |
| 1192 | |
| 1193 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<GetElementPtrInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst ::getNumOperands() const { return OperandTraits<GetElementPtrInst >::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & GetElementPtrInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1194 | |
| 1195 | //===----------------------------------------------------------------------===// |
| 1196 | // ICmpInst Class |
| 1197 | //===----------------------------------------------------------------------===// |
| 1198 | |
| 1199 | /// This instruction compares its operands according to the predicate given |
| 1200 | /// to the constructor. It only operates on integers or pointers. The operands |
| 1201 | /// must be identical types. |
| 1202 | /// Represent an integer comparison operator. |
| 1203 | class ICmpInst: public CmpInst { |
| 1204 | void AssertOK() { |
| 1205 | assert(isIntPredicate() &&((void)0) |
| 1206 | "Invalid ICmp predicate value")((void)0); |
| 1207 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1208 | "Both operands to ICmp instruction are not of the same type!")((void)0); |
| 1209 | // Check that the operands are the right type |
| 1210 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||((void)0) |
| 1211 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&((void)0) |
| 1212 | "Invalid operand types for ICmp instruction")((void)0); |
| 1213 | } |
| 1214 | |
| 1215 | protected: |
| 1216 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1217 | friend class Instruction; |
| 1218 | |
| 1219 | /// Clone an identical ICmpInst |
| 1220 | ICmpInst *cloneImpl() const; |
| 1221 | |
| 1222 | public: |
| 1223 | /// Constructor with insert-before-instruction semantics. |
| 1224 | ICmpInst( |
| 1225 | Instruction *InsertBefore, ///< Where to insert |
| 1226 | Predicate pred, ///< The predicate to use for the comparison |
| 1227 | Value *LHS, ///< The left-hand-side of the expression |
| 1228 | Value *RHS, ///< The right-hand-side of the expression |
| 1229 | const Twine &NameStr = "" ///< Name of the instruction |
| 1230 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1231 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1232 | InsertBefore) { |
| 1233 | #ifndef NDEBUG1 |
| 1234 | AssertOK(); |
| 1235 | #endif |
| 1236 | } |
| 1237 | |
| 1238 | /// Constructor with insert-at-end semantics. |
| 1239 | ICmpInst( |
| 1240 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1241 | Predicate pred, ///< The predicate to use for the comparison |
| 1242 | Value *LHS, ///< The left-hand-side of the expression |
| 1243 | Value *RHS, ///< The right-hand-side of the expression |
| 1244 | const Twine &NameStr = "" ///< Name of the instruction |
| 1245 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1246 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1247 | &InsertAtEnd) { |
| 1248 | #ifndef NDEBUG1 |
| 1249 | AssertOK(); |
| 1250 | #endif |
| 1251 | } |
| 1252 | |
| 1253 | /// Constructor with no-insertion semantics |
| 1254 | ICmpInst( |
| 1255 | Predicate pred, ///< The predicate to use for the comparison |
| 1256 | Value *LHS, ///< The left-hand-side of the expression |
| 1257 | Value *RHS, ///< The right-hand-side of the expression |
| 1258 | const Twine &NameStr = "" ///< Name of the instruction |
| 1259 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1260 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
| 1261 | #ifndef NDEBUG1 |
| 1262 | AssertOK(); |
| 1263 | #endif |
| 1264 | } |
| 1265 | |
| 1266 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
| 1267 | /// @returns the predicate that would be the result if the operand were |
| 1268 | /// regarded as signed. |
| 1269 | /// Return the signed version of the predicate |
| 1270 | Predicate getSignedPredicate() const { |
| 1271 | return getSignedPredicate(getPredicate()); |
| 1272 | } |
| 1273 | |
| 1274 | /// This is a static version that you can use without an instruction. |
| 1275 | /// Return the signed version of the predicate. |
| 1276 | static Predicate getSignedPredicate(Predicate pred); |
| 1277 | |
| 1278 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
| 1279 | /// @returns the predicate that would be the result if the operand were |
| 1280 | /// regarded as unsigned. |
| 1281 | /// Return the unsigned version of the predicate |
| 1282 | Predicate getUnsignedPredicate() const { |
| 1283 | return getUnsignedPredicate(getPredicate()); |
| 1284 | } |
| 1285 | |
| 1286 | /// This is a static version that you can use without an instruction. |
| 1287 | /// Return the unsigned version of the predicate. |
| 1288 | static Predicate getUnsignedPredicate(Predicate pred); |
| 1289 | |
| 1290 | /// Return true if this predicate is either EQ or NE. This also |
| 1291 | /// tests for commutativity. |
| 1292 | static bool isEquality(Predicate P) { |
| 1293 | return P == ICMP_EQ || P == ICMP_NE; |
| 1294 | } |
| 1295 | |
| 1296 | /// Return true if this predicate is either EQ or NE. This also |
| 1297 | /// tests for commutativity. |
| 1298 | bool isEquality() const { |
| 1299 | return isEquality(getPredicate()); |
| 1300 | } |
| 1301 | |
| 1302 | /// @returns true if the predicate of this ICmpInst is commutative |
| 1303 | /// Determine if this relation is commutative. |
| 1304 | bool isCommutative() const { return isEquality(); } |
| 1305 | |
| 1306 | /// Return true if the predicate is relational (not EQ or NE). |
| 1307 | /// |
| 1308 | bool isRelational() const { |
| 1309 | return !isEquality(); |
| 1310 | } |
| 1311 | |
| 1312 | /// Return true if the predicate is relational (not EQ or NE). |
| 1313 | /// |
| 1314 | static bool isRelational(Predicate P) { |
| 1315 | return !isEquality(P); |
| 1316 | } |
| 1317 | |
| 1318 | /// Return true if the predicate is SGT or UGT. |
| 1319 | /// |
| 1320 | static bool isGT(Predicate P) { |
| 1321 | return P == ICMP_SGT || P == ICMP_UGT; |
| 1322 | } |
| 1323 | |
| 1324 | /// Return true if the predicate is SLT or ULT. |
| 1325 | /// |
| 1326 | static bool isLT(Predicate P) { |
| 1327 | return P == ICMP_SLT || P == ICMP_ULT; |
| 1328 | } |
| 1329 | |
| 1330 | /// Return true if the predicate is SGE or UGE. |
| 1331 | /// |
| 1332 | static bool isGE(Predicate P) { |
| 1333 | return P == ICMP_SGE || P == ICMP_UGE; |
| 1334 | } |
| 1335 | |
| 1336 | /// Return true if the predicate is SLE or ULE. |
| 1337 | /// |
| 1338 | static bool isLE(Predicate P) { |
| 1339 | return P == ICMP_SLE || P == ICMP_ULE; |
| 1340 | } |
| 1341 | |
| 1342 | /// Exchange the two operands to this instruction in such a way that it does |
| 1343 | /// not modify the semantics of the instruction. The predicate value may be |
| 1344 | /// changed to retain the same result if the predicate is order dependent |
| 1345 | /// (e.g. ult). |
| 1346 | /// Swap operands and adjust predicate. |
| 1347 | void swapOperands() { |
| 1348 | setPredicate(getSwappedPredicate()); |
| 1349 | Op<0>().swap(Op<1>()); |
| 1350 | } |
| 1351 | |
| 1352 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1353 | static bool classof(const Instruction *I) { |
| 1354 | return I->getOpcode() == Instruction::ICmp; |
| 1355 | } |
| 1356 | static bool classof(const Value *V) { |
| 1357 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1358 | } |
| 1359 | }; |
| 1360 | |
| 1361 | //===----------------------------------------------------------------------===// |
| 1362 | // FCmpInst Class |
| 1363 | //===----------------------------------------------------------------------===// |
| 1364 | |
| 1365 | /// This instruction compares its operands according to the predicate given |
| 1366 | /// to the constructor. It only operates on floating point values or packed |
| 1367 | /// vectors of floating point values. The operands must be identical types. |
| 1368 | /// Represents a floating point comparison operator. |
| 1369 | class FCmpInst: public CmpInst { |
| 1370 | void AssertOK() { |
| 1371 | assert(isFPPredicate() && "Invalid FCmp predicate value")((void)0); |
| 1372 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((void)0) |
| 1373 | "Both operands to FCmp instruction are not of the same type!")((void)0); |
| 1374 | // Check that the operands are the right type |
| 1375 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((void)0) |
| 1376 | "Invalid operand types for FCmp instruction")((void)0); |
| 1377 | } |
| 1378 | |
| 1379 | protected: |
| 1380 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1381 | friend class Instruction; |
| 1382 | |
| 1383 | /// Clone an identical FCmpInst |
| 1384 | FCmpInst *cloneImpl() const; |
| 1385 | |
| 1386 | public: |
| 1387 | /// Constructor with insert-before-instruction semantics. |
| 1388 | FCmpInst( |
| 1389 | Instruction *InsertBefore, ///< Where to insert |
| 1390 | Predicate pred, ///< The predicate to use for the comparison |
| 1391 | Value *LHS, ///< The left-hand-side of the expression |
| 1392 | Value *RHS, ///< The right-hand-side of the expression |
| 1393 | const Twine &NameStr = "" ///< Name of the instruction |
| 1394 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1395 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1396 | InsertBefore) { |
| 1397 | AssertOK(); |
| 1398 | } |
| 1399 | |
| 1400 | /// Constructor with insert-at-end semantics. |
| 1401 | FCmpInst( |
| 1402 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1403 | Predicate pred, ///< The predicate to use for the comparison |
| 1404 | Value *LHS, ///< The left-hand-side of the expression |
| 1405 | Value *RHS, ///< The right-hand-side of the expression |
| 1406 | const Twine &NameStr = "" ///< Name of the instruction |
| 1407 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1408 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1409 | &InsertAtEnd) { |
| 1410 | AssertOK(); |
| 1411 | } |
| 1412 | |
| 1413 | /// Constructor with no-insertion semantics |
| 1414 | FCmpInst( |
| 1415 | Predicate Pred, ///< The predicate to use for the comparison |
| 1416 | Value *LHS, ///< The left-hand-side of the expression |
| 1417 | Value *RHS, ///< The right-hand-side of the expression |
| 1418 | const Twine &NameStr = "", ///< Name of the instruction |
| 1419 | Instruction *FlagsSource = nullptr |
| 1420 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
| 1421 | RHS, NameStr, nullptr, FlagsSource) { |
| 1422 | AssertOK(); |
| 1423 | } |
| 1424 | |
| 1425 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1426 | /// Determine if this is an equality predicate. |
| 1427 | static bool isEquality(Predicate Pred) { |
| 1428 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
| 1429 | Pred == FCMP_UNE; |
| 1430 | } |
| 1431 | |
| 1432 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1433 | /// Determine if this is an equality predicate. |
| 1434 | bool isEquality() const { return isEquality(getPredicate()); } |
| 1435 | |
| 1436 | /// @returns true if the predicate of this instruction is commutative. |
| 1437 | /// Determine if this is a commutative predicate. |
| 1438 | bool isCommutative() const { |
| 1439 | return isEquality() || |
| 1440 | getPredicate() == FCMP_FALSE || |
| 1441 | getPredicate() == FCMP_TRUE || |
| 1442 | getPredicate() == FCMP_ORD || |
| 1443 | getPredicate() == FCMP_UNO; |
| 1444 | } |
| 1445 | |
| 1446 | /// @returns true if the predicate is relational (not EQ or NE). |
| 1447 | /// Determine if this a relational predicate. |
| 1448 | bool isRelational() const { return !isEquality(); } |
| 1449 | |
| 1450 | /// Exchange the two operands to this instruction in such a way that it does |
| 1451 | /// not modify the semantics of the instruction. The predicate value may be |
| 1452 | /// changed to retain the same result if the predicate is order dependent |
| 1453 | /// (e.g. ult). |
| 1454 | /// Swap operands and adjust predicate. |
| 1455 | void swapOperands() { |
| 1456 | setPredicate(getSwappedPredicate()); |
| 1457 | Op<0>().swap(Op<1>()); |
| 1458 | } |
| 1459 | |
| 1460 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1461 | static bool classof(const Instruction *I) { |
| 1462 | return I->getOpcode() == Instruction::FCmp; |
| 1463 | } |
| 1464 | static bool classof(const Value *V) { |
| 1465 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1466 | } |
| 1467 | }; |
| 1468 | |
| 1469 | //===----------------------------------------------------------------------===// |
| 1470 | /// This class represents a function call, abstracting a target |
| 1471 | /// machine's calling convention. This class uses low bit of the SubClassData |
| 1472 | /// field to indicate whether or not this is a tail call. The rest of the bits |
| 1473 | /// hold the calling convention of the call. |
| 1474 | /// |
| 1475 | class CallInst : public CallBase { |
| 1476 | CallInst(const CallInst &CI); |
| 1477 | |
| 1478 | /// Construct a CallInst given a range of arguments. |
| 1479 | /// Construct a CallInst from a range of arguments |
| 1480 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1481 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1482 | Instruction *InsertBefore); |
| 1483 | |
| 1484 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1485 | const Twine &NameStr, Instruction *InsertBefore) |
| 1486 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
| 1487 | |
| 1488 | /// Construct a CallInst given a range of arguments. |
| 1489 | /// Construct a CallInst from a range of arguments |
| 1490 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1491 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1492 | BasicBlock *InsertAtEnd); |
| 1493 | |
| 1494 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1495 | Instruction *InsertBefore); |
| 1496 | |
| 1497 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
| 1498 | BasicBlock *InsertAtEnd); |
| 1499 | |
| 1500 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
| 1501 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 1502 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
| 1503 | |
| 1504 | /// Compute the number of operands to allocate. |
| 1505 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 1506 | // We need one operand for the called function, plus the input operand |
| 1507 | // counts provided. |
| 1508 | return 1 + NumArgs + NumBundleInputs; |
| 1509 | } |
| 1510 | |
| 1511 | protected: |
| 1512 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1513 | friend class Instruction; |
| 1514 | |
| 1515 | CallInst *cloneImpl() const; |
| 1516 | |
| 1517 | public: |
| 1518 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
| 1519 | Instruction *InsertBefore = nullptr) { |
| 1520 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
| 1521 | } |
| 1522 | |
| 1523 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1524 | const Twine &NameStr, |
| 1525 | Instruction *InsertBefore = nullptr) { |
| 1526 | return new (ComputeNumOperands(Args.size())) |
| 1527 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
| 1528 | } |
| 1529 | |
| 1530 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1531 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1532 | const Twine &NameStr = "", |
| 1533 | Instruction *InsertBefore = nullptr) { |
| 1534 | const int NumOperands = |
| 1535 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1536 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1537 | |
| 1538 | return new (NumOperands, DescriptorBytes) |
| 1539 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
| 1540 | } |
| 1541 | |
| 1542 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1543 | BasicBlock *InsertAtEnd) { |
| 1544 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
| 1545 | } |
| 1546 | |
| 1547 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1548 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1549 | return new (ComputeNumOperands(Args.size())) |
| 1550 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
| 1551 | } |
| 1552 | |
| 1553 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1554 | ArrayRef<OperandBundleDef> Bundles, |
| 1555 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1556 | const int NumOperands = |
| 1557 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1558 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1559 | |
| 1560 | return new (NumOperands, DescriptorBytes) |
| 1561 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
| 1562 | } |
| 1563 | |
| 1564 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
| 1565 | Instruction *InsertBefore = nullptr) { |
| 1566 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1567 | InsertBefore); |
| 1568 | } |
| 1569 | |
| 1570 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1571 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1572 | const Twine &NameStr = "", |
| 1573 | Instruction *InsertBefore = nullptr) { |
| 1574 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1575 | NameStr, InsertBefore); |
| 1576 | } |
| 1577 | |
| 1578 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1579 | const Twine &NameStr, |
| 1580 | Instruction *InsertBefore = nullptr) { |
| 1581 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1582 | InsertBefore); |
| 1583 | } |
| 1584 | |
| 1585 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
| 1586 | BasicBlock *InsertAtEnd) { |
| 1587 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1588 | InsertAtEnd); |
| 1589 | } |
| 1590 | |
| 1591 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1592 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1593 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1594 | InsertAtEnd); |
| 1595 | } |
| 1596 | |
| 1597 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1598 | ArrayRef<OperandBundleDef> Bundles, |
| 1599 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1600 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1601 | NameStr, InsertAtEnd); |
| 1602 | } |
| 1603 | |
| 1604 | /// Create a clone of \p CI with a different set of operand bundles and |
| 1605 | /// insert it before \p InsertPt. |
| 1606 | /// |
| 1607 | /// The returned call instruction is identical \p CI in every way except that |
| 1608 | /// the operand bundles for the new instruction are set to the operand bundles |
| 1609 | /// in \p Bundles. |
| 1610 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
| 1611 | Instruction *InsertPt = nullptr); |
| 1612 | |
| 1613 | /// Generate the IR for a call to malloc: |
| 1614 | /// 1. Compute the malloc call's argument as the specified type's size, |
| 1615 | /// possibly multiplied by the array size if the array size is not |
| 1616 | /// constant 1. |
| 1617 | /// 2. Call malloc with that argument. |
| 1618 | /// 3. Bitcast the result of the malloc call to the specified type. |
| 1619 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1620 | Type *AllocTy, Value *AllocSize, |
| 1621 | Value *ArraySize = nullptr, |
| 1622 | Function *MallocF = nullptr, |
| 1623 | const Twine &Name = ""); |
| 1624 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1625 | Type *AllocTy, Value *AllocSize, |
| 1626 | Value *ArraySize = nullptr, |
| 1627 | Function *MallocF = nullptr, |
| 1628 | const Twine &Name = ""); |
| 1629 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1630 | Type *AllocTy, Value *AllocSize, |
| 1631 | Value *ArraySize = nullptr, |
| 1632 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1633 | Function *MallocF = nullptr, |
| 1634 | const Twine &Name = ""); |
| 1635 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1636 | Type *AllocTy, Value *AllocSize, |
| 1637 | Value *ArraySize = nullptr, |
| 1638 | ArrayRef<OperandBundleDef> Bundles = None, |
| 1639 | Function *MallocF = nullptr, |
| 1640 | const Twine &Name = ""); |
| 1641 | /// Generate the IR for a call to the builtin free function. |
| 1642 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
| 1643 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
| 1644 | static Instruction *CreateFree(Value *Source, |
| 1645 | ArrayRef<OperandBundleDef> Bundles, |
| 1646 | Instruction *InsertBefore); |
| 1647 | static Instruction *CreateFree(Value *Source, |
| 1648 | ArrayRef<OperandBundleDef> Bundles, |
| 1649 | BasicBlock *InsertAtEnd); |
| 1650 | |
| 1651 | // Note that 'musttail' implies 'tail'. |
| 1652 | enum TailCallKind : unsigned { |
| 1653 | TCK_None = 0, |
| 1654 | TCK_Tail = 1, |
| 1655 | TCK_MustTail = 2, |
| 1656 | TCK_NoTail = 3, |
| 1657 | TCK_LAST = TCK_NoTail |
| 1658 | }; |
| 1659 | |
| 1660 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
| 1661 | static_assert( |
| 1662 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
| 1663 | "Bitfields must be contiguous"); |
| 1664 | |
| 1665 | TailCallKind getTailCallKind() const { |
| 1666 | return getSubclassData<TailCallKindField>(); |
| 1667 | } |
| 1668 | |
| 1669 | bool isTailCall() const { |
| 1670 | TailCallKind Kind = getTailCallKind(); |
| 1671 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
| 1672 | } |
| 1673 | |
| 1674 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
| 1675 | |
| 1676 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
| 1677 | |
| 1678 | void setTailCallKind(TailCallKind TCK) { |
| 1679 | setSubclassData<TailCallKindField>(TCK); |
| 1680 | } |
| 1681 | |
| 1682 | void setTailCall(bool IsTc = true) { |
| 1683 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
| 1684 | } |
| 1685 | |
| 1686 | /// Return true if the call can return twice |
| 1687 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
| 1688 | void setCanReturnTwice() { |
| 1689 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
| 1690 | } |
| 1691 | |
| 1692 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1693 | static bool classof(const Instruction *I) { |
| 1694 | return I->getOpcode() == Instruction::Call; |
| 1695 | } |
| 1696 | static bool classof(const Value *V) { |
| 1697 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1698 | } |
| 1699 | |
| 1700 | /// Updates profile metadata by scaling it by \p S / \p T. |
| 1701 | void updateProfWeight(uint64_t S, uint64_t T); |
| 1702 | |
| 1703 | private: |
| 1704 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 1705 | // method so that subclasses cannot accidentally use it. |
| 1706 | template <typename Bitfield> |
| 1707 | void setSubclassData(typename Bitfield::Type Value) { |
| 1708 | Instruction::setSubclassData<Bitfield>(Value); |
| 1709 | } |
| 1710 | }; |
| 1711 | |
| 1712 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1713 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1714 | BasicBlock *InsertAtEnd) |
| 1715 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1716 | OperandTraits<CallBase>::op_end(this) - |
| 1717 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1718 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1719 | InsertAtEnd) { |
| 1720 | init(Ty, Func, Args, Bundles, NameStr); |
| 1721 | } |
| 1722 | |
| 1723 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1724 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1725 | Instruction *InsertBefore) |
| 1726 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1727 | OperandTraits<CallBase>::op_end(this) - |
| 1728 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1729 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1730 | InsertBefore) { |
| 1731 | init(Ty, Func, Args, Bundles, NameStr); |
| 1732 | } |
| 1733 | |
| 1734 | //===----------------------------------------------------------------------===// |
| 1735 | // SelectInst Class |
| 1736 | //===----------------------------------------------------------------------===// |
| 1737 | |
| 1738 | /// This class represents the LLVM 'select' instruction. |
| 1739 | /// |
| 1740 | class SelectInst : public Instruction { |
| 1741 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1742 | Instruction *InsertBefore) |
| 1743 | : Instruction(S1->getType(), Instruction::Select, |
| 1744 | &Op<0>(), 3, InsertBefore) { |
| 1745 | init(C, S1, S2); |
| 1746 | setName(NameStr); |
| 1747 | } |
| 1748 | |
| 1749 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1750 | BasicBlock *InsertAtEnd) |
| 1751 | : Instruction(S1->getType(), Instruction::Select, |
| 1752 | &Op<0>(), 3, InsertAtEnd) { |
| 1753 | init(C, S1, S2); |
| 1754 | setName(NameStr); |
| 1755 | } |
| 1756 | |
| 1757 | void init(Value *C, Value *S1, Value *S2) { |
| 1758 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((void)0); |
| 1759 | Op<0>() = C; |
| 1760 | Op<1>() = S1; |
| 1761 | Op<2>() = S2; |
| 1762 | } |
| 1763 | |
| 1764 | protected: |
| 1765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1766 | friend class Instruction; |
| 1767 | |
| 1768 | SelectInst *cloneImpl() const; |
| 1769 | |
| 1770 | public: |
| 1771 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1772 | const Twine &NameStr = "", |
| 1773 | Instruction *InsertBefore = nullptr, |
| 1774 | Instruction *MDFrom = nullptr) { |
| 1775 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
| 1776 | if (MDFrom) |
| 1777 | Sel->copyMetadata(*MDFrom); |
| 1778 | return Sel; |
| 1779 | } |
| 1780 | |
| 1781 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1782 | const Twine &NameStr, |
| 1783 | BasicBlock *InsertAtEnd) { |
| 1784 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
| 1785 | } |
| 1786 | |
| 1787 | const Value *getCondition() const { return Op<0>(); } |
| 1788 | const Value *getTrueValue() const { return Op<1>(); } |
| 1789 | const Value *getFalseValue() const { return Op<2>(); } |
| 1790 | Value *getCondition() { return Op<0>(); } |
| 1791 | Value *getTrueValue() { return Op<1>(); } |
| 1792 | Value *getFalseValue() { return Op<2>(); } |
| 1793 | |
| 1794 | void setCondition(Value *V) { Op<0>() = V; } |
| 1795 | void setTrueValue(Value *V) { Op<1>() = V; } |
| 1796 | void setFalseValue(Value *V) { Op<2>() = V; } |
| 1797 | |
| 1798 | /// Swap the true and false values of the select instruction. |
| 1799 | /// This doesn't swap prof metadata. |
| 1800 | void swapValues() { Op<1>().swap(Op<2>()); } |
| 1801 | |
| 1802 | /// Return a string if the specified operands are invalid |
| 1803 | /// for a select operation, otherwise return null. |
| 1804 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
| 1805 | |
| 1806 | /// Transparently provide more efficient getOperand methods. |
| 1807 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1808 | |
| 1809 | OtherOps getOpcode() const { |
| 1810 | return static_cast<OtherOps>(Instruction::getOpcode()); |
| 1811 | } |
| 1812 | |
| 1813 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1814 | static bool classof(const Instruction *I) { |
| 1815 | return I->getOpcode() == Instruction::Select; |
| 1816 | } |
| 1817 | static bool classof(const Value *V) { |
| 1818 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1819 | } |
| 1820 | }; |
| 1821 | |
| 1822 | template <> |
| 1823 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
| 1824 | }; |
| 1825 | |
| 1826 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SelectInst>::op_begin(const_cast <SelectInst*>(this))[i_nocapture].get()); } void SelectInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 1827 | |
| 1828 | //===----------------------------------------------------------------------===// |
| 1829 | // VAArgInst Class |
| 1830 | //===----------------------------------------------------------------------===// |
| 1831 | |
| 1832 | /// This class represents the va_arg llvm instruction, which returns |
| 1833 | /// an argument of the specified type given a va_list and increments that list |
| 1834 | /// |
| 1835 | class VAArgInst : public UnaryInstruction { |
| 1836 | protected: |
| 1837 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1838 | friend class Instruction; |
| 1839 | |
| 1840 | VAArgInst *cloneImpl() const; |
| 1841 | |
| 1842 | public: |
| 1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
| 1844 | Instruction *InsertBefore = nullptr) |
| 1845 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
| 1846 | setName(NameStr); |
| 1847 | } |
| 1848 | |
| 1849 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
| 1850 | BasicBlock *InsertAtEnd) |
| 1851 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
| 1852 | setName(NameStr); |
| 1853 | } |
| 1854 | |
| 1855 | Value *getPointerOperand() { return getOperand(0); } |
| 1856 | const Value *getPointerOperand() const { return getOperand(0); } |
| 1857 | static unsigned getPointerOperandIndex() { return 0U; } |
| 1858 | |
| 1859 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1860 | static bool classof(const Instruction *I) { |
| 1861 | return I->getOpcode() == VAArg; |
| 1862 | } |
| 1863 | static bool classof(const Value *V) { |
| 1864 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1865 | } |
| 1866 | }; |
| 1867 | |
| 1868 | //===----------------------------------------------------------------------===// |
| 1869 | // ExtractElementInst Class |
| 1870 | //===----------------------------------------------------------------------===// |
| 1871 | |
| 1872 | /// This instruction extracts a single (scalar) |
| 1873 | /// element from a VectorType value |
| 1874 | /// |
| 1875 | class ExtractElementInst : public Instruction { |
| 1876 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
| 1877 | Instruction *InsertBefore = nullptr); |
| 1878 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
| 1879 | BasicBlock *InsertAtEnd); |
| 1880 | |
| 1881 | protected: |
| 1882 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1883 | friend class Instruction; |
| 1884 | |
| 1885 | ExtractElementInst *cloneImpl() const; |
| 1886 | |
| 1887 | public: |
| 1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1889 | const Twine &NameStr = "", |
| 1890 | Instruction *InsertBefore = nullptr) { |
| 1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
| 1892 | } |
| 1893 | |
| 1894 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1895 | const Twine &NameStr, |
| 1896 | BasicBlock *InsertAtEnd) { |
| 1897 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
| 1898 | } |
| 1899 | |
| 1900 | /// Return true if an extractelement instruction can be |
| 1901 | /// formed with the specified operands. |
| 1902 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
| 1903 | |
| 1904 | Value *getVectorOperand() { return Op<0>(); } |
| 1905 | Value *getIndexOperand() { return Op<1>(); } |
| 1906 | const Value *getVectorOperand() const { return Op<0>(); } |
| 1907 | const Value *getIndexOperand() const { return Op<1>(); } |
| 1908 | |
| 1909 | VectorType *getVectorOperandType() const { |
| 1910 | return cast<VectorType>(getVectorOperand()->getType()); |
| 1911 | } |
| 1912 | |
| 1913 | /// Transparently provide more efficient getOperand methods. |
| 1914 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1915 | |
| 1916 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1917 | static bool classof(const Instruction *I) { |
| 1918 | return I->getOpcode() == Instruction::ExtractElement; |
| 1919 | } |
| 1920 | static bool classof(const Value *V) { |
| 1921 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1922 | } |
| 1923 | }; |
| 1924 | |
| 1925 | template <> |
| 1926 | struct OperandTraits<ExtractElementInst> : |
| 1927 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
| 1928 | }; |
| 1929 | |
| 1930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value>( OperandTraits< ExtractElementInst>::op_begin(const_cast<ExtractElementInst *>(this))[i_nocapture].get()); } void ExtractElementInst:: setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void )0); OperandTraits<ExtractElementInst>::op_begin(this)[ i_nocapture] = Val_nocapture; } unsigned ExtractElementInst:: getNumOperands() const { return OperandTraits<ExtractElementInst >::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1931 | |
| 1932 | //===----------------------------------------------------------------------===// |
| 1933 | // InsertElementInst Class |
| 1934 | //===----------------------------------------------------------------------===// |
| 1935 | |
| 1936 | /// This instruction inserts a single (scalar) |
| 1937 | /// element into a VectorType value |
| 1938 | /// |
| 1939 | class InsertElementInst : public Instruction { |
| 1940 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
| 1941 | const Twine &NameStr = "", |
| 1942 | Instruction *InsertBefore = nullptr); |
| 1943 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
| 1944 | BasicBlock *InsertAtEnd); |
| 1945 | |
| 1946 | protected: |
| 1947 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1948 | friend class Instruction; |
| 1949 | |
| 1950 | InsertElementInst *cloneImpl() const; |
| 1951 | |
| 1952 | public: |
| 1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1954 | const Twine &NameStr = "", |
| 1955 | Instruction *InsertBefore = nullptr) { |
| 1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
| 1957 | } |
| 1958 | |
| 1959 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1960 | const Twine &NameStr, |
| 1961 | BasicBlock *InsertAtEnd) { |
| 1962 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
| 1963 | } |
| 1964 | |
| 1965 | /// Return true if an insertelement instruction can be |
| 1966 | /// formed with the specified operands. |
| 1967 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
| 1968 | const Value *Idx); |
| 1969 | |
| 1970 | /// Overload to return most specific vector type. |
| 1971 | /// |
| 1972 | VectorType *getType() const { |
| 1973 | return cast<VectorType>(Instruction::getType()); |
| 1974 | } |
| 1975 | |
| 1976 | /// Transparently provide more efficient getOperand methods. |
| 1977 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1978 | |
| 1979 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1980 | static bool classof(const Instruction *I) { |
| 1981 | return I->getOpcode() == Instruction::InsertElement; |
| 1982 | } |
| 1983 | static bool classof(const Value *V) { |
| 1984 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1985 | } |
| 1986 | }; |
| 1987 | |
| 1988 | template <> |
| 1989 | struct OperandTraits<InsertElementInst> : |
| 1990 | public FixedNumOperandTraits<InsertElementInst, 3> { |
| 1991 | }; |
| 1992 | |
| 1993 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<InsertElementInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst ::getNumOperands() const { return OperandTraits<InsertElementInst >::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & InsertElementInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 1994 | |
| 1995 | //===----------------------------------------------------------------------===// |
| 1996 | // ShuffleVectorInst Class |
| 1997 | //===----------------------------------------------------------------------===// |
| 1998 | |
| 1999 | constexpr int UndefMaskElem = -1; |
| 2000 | |
| 2001 | /// This instruction constructs a fixed permutation of two |
| 2002 | /// input vectors. |
| 2003 | /// |
| 2004 | /// For each element of the result vector, the shuffle mask selects an element |
| 2005 | /// from one of the input vectors to copy to the result. Non-negative elements |
| 2006 | /// in the mask represent an index into the concatenated pair of input vectors. |
| 2007 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
| 2008 | /// |
| 2009 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
| 2010 | /// requirement may be relaxed in the future. |
| 2011 | class ShuffleVectorInst : public Instruction { |
| 2012 | SmallVector<int, 4> ShuffleMask; |
| 2013 | Constant *ShuffleMaskForBitcode; |
| 2014 | |
| 2015 | protected: |
| 2016 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2017 | friend class Instruction; |
| 2018 | |
| 2019 | ShuffleVectorInst *cloneImpl() const; |
| 2020 | |
| 2021 | public: |
| 2022 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2023 | const Twine &NameStr = "", |
| 2024 | Instruction *InsertBefor = nullptr); |
| 2025 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2026 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2027 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2028 | const Twine &NameStr = "", |
| 2029 | Instruction *InsertBefor = nullptr); |
| 2030 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2031 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2032 | |
| 2033 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2034 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 2035 | |
| 2036 | /// Swap the operands and adjust the mask to preserve the semantics |
| 2037 | /// of the instruction. |
| 2038 | void commute(); |
| 2039 | |
| 2040 | /// Return true if a shufflevector instruction can be |
| 2041 | /// formed with the specified operands. |
| 2042 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2043 | const Value *Mask); |
| 2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2045 | ArrayRef<int> Mask); |
| 2046 | |
| 2047 | /// Overload to return most specific vector type. |
| 2048 | /// |
| 2049 | VectorType *getType() const { |
| 2050 | return cast<VectorType>(Instruction::getType()); |
| 2051 | } |
| 2052 | |
| 2053 | /// Transparently provide more efficient getOperand methods. |
| 2054 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2055 | |
| 2056 | /// Return the shuffle mask value of this instruction for the given element |
| 2057 | /// index. Return UndefMaskElem if the element is undef. |
| 2058 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
| 2059 | |
| 2060 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
| 2061 | /// elements of the mask are returned as UndefMaskElem. |
| 2062 | static void getShuffleMask(const Constant *Mask, |
| 2063 | SmallVectorImpl<int> &Result); |
| 2064 | |
| 2065 | /// Return the mask for this instruction as a vector of integers. Undefined |
| 2066 | /// elements of the mask are returned as UndefMaskElem. |
| 2067 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
| 2068 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
| 2069 | } |
| 2070 | |
| 2071 | /// Return the mask for this instruction, for use in bitcode. |
| 2072 | /// |
| 2073 | /// TODO: This is temporary until we decide a new bitcode encoding for |
| 2074 | /// shufflevector. |
| 2075 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
| 2076 | |
| 2077 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
| 2078 | Type *ResultTy); |
| 2079 | |
| 2080 | void setShuffleMask(ArrayRef<int> Mask); |
| 2081 | |
| 2082 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
| 2083 | |
| 2084 | /// Return true if this shuffle returns a vector with a different number of |
| 2085 | /// elements than its source vectors. |
| 2086 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
| 2087 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
| 2088 | bool changesLength() const { |
| 2089 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2090 | ->getElementCount() |
| 2091 | .getKnownMinValue(); |
| 2092 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2093 | return NumSourceElts != NumMaskElts; |
| 2094 | } |
| 2095 | |
| 2096 | /// Return true if this shuffle returns a vector with a greater number of |
| 2097 | /// elements than its source vectors. |
| 2098 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
| 2099 | bool increasesLength() const { |
| 2100 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2101 | ->getElementCount() |
| 2102 | .getKnownMinValue(); |
| 2103 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2104 | return NumSourceElts < NumMaskElts; |
| 2105 | } |
| 2106 | |
| 2107 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2108 | /// vector. |
| 2109 | /// Example: <7,5,undef,7> |
| 2110 | /// This assumes that vector operands are the same length as the mask. |
| 2111 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
| 2112 | static bool isSingleSourceMask(const Constant *Mask) { |
| 2113 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2114 | SmallVector<int, 16> MaskAsInts; |
| 2115 | getShuffleMask(Mask, MaskAsInts); |
| 2116 | return isSingleSourceMask(MaskAsInts); |
| 2117 | } |
| 2118 | |
| 2119 | /// Return true if this shuffle chooses elements from exactly one source |
| 2120 | /// vector without changing the length of that vector. |
| 2121 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
| 2122 | /// TODO: Optionally allow length-changing shuffles. |
| 2123 | bool isSingleSource() const { |
| 2124 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
| 2125 | } |
| 2126 | |
| 2127 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2128 | /// vector without lane crossings. A shuffle using this mask is not |
| 2129 | /// necessarily a no-op because it may change the number of elements from its |
| 2130 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
| 2131 | /// Example: <undef,undef,2,3> |
| 2132 | static bool isIdentityMask(ArrayRef<int> Mask); |
| 2133 | static bool isIdentityMask(const Constant *Mask) { |
| 2134 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2135 | SmallVector<int, 16> MaskAsInts; |
| 2136 | getShuffleMask(Mask, MaskAsInts); |
| 2137 | return isIdentityMask(MaskAsInts); |
| 2138 | } |
| 2139 | |
| 2140 | /// Return true if this shuffle chooses elements from exactly one source |
| 2141 | /// vector without lane crossings and does not change the number of elements |
| 2142 | /// from its input vectors. |
| 2143 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
| 2144 | bool isIdentity() const { |
| 2145 | return !changesLength() && isIdentityMask(ShuffleMask); |
| 2146 | } |
| 2147 | |
| 2148 | /// Return true if this shuffle lengthens exactly one source vector with |
| 2149 | /// undefs in the high elements. |
| 2150 | bool isIdentityWithPadding() const; |
| 2151 | |
| 2152 | /// Return true if this shuffle extracts the first N elements of exactly one |
| 2153 | /// source vector. |
| 2154 | bool isIdentityWithExtract() const; |
| 2155 | |
| 2156 | /// Return true if this shuffle concatenates its 2 source vectors. This |
| 2157 | /// returns false if either input is undefined. In that case, the shuffle is |
| 2158 | /// is better classified as an identity with padding operation. |
| 2159 | bool isConcat() const; |
| 2160 | |
| 2161 | /// Return true if this shuffle mask chooses elements from its source vectors |
| 2162 | /// without lane crossings. A shuffle using this mask would be |
| 2163 | /// equivalent to a vector select with a constant condition operand. |
| 2164 | /// Example: <4,1,6,undef> |
| 2165 | /// This returns false if the mask does not choose from both input vectors. |
| 2166 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2167 | /// This assumes that vector operands are the same length as the mask |
| 2168 | /// (a length-changing shuffle can never be equivalent to a vector select). |
| 2169 | static bool isSelectMask(ArrayRef<int> Mask); |
| 2170 | static bool isSelectMask(const Constant *Mask) { |
| 2171 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2172 | SmallVector<int, 16> MaskAsInts; |
| 2173 | getShuffleMask(Mask, MaskAsInts); |
| 2174 | return isSelectMask(MaskAsInts); |
| 2175 | } |
| 2176 | |
| 2177 | /// Return true if this shuffle chooses elements from its source vectors |
| 2178 | /// without lane crossings and all operands have the same number of elements. |
| 2179 | /// In other words, this shuffle is equivalent to a vector select with a |
| 2180 | /// constant condition operand. |
| 2181 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
| 2182 | /// This returns false if the mask does not choose from both input vectors. |
| 2183 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2184 | /// TODO: Optionally allow length-changing shuffles. |
| 2185 | bool isSelect() const { |
| 2186 | return !changesLength() && isSelectMask(ShuffleMask); |
| 2187 | } |
| 2188 | |
| 2189 | /// Return true if this shuffle mask swaps the order of elements from exactly |
| 2190 | /// one source vector. |
| 2191 | /// Example: <7,6,undef,4> |
| 2192 | /// This assumes that vector operands are the same length as the mask. |
| 2193 | static bool isReverseMask(ArrayRef<int> Mask); |
| 2194 | static bool isReverseMask(const Constant *Mask) { |
| 2195 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2196 | SmallVector<int, 16> MaskAsInts; |
| 2197 | getShuffleMask(Mask, MaskAsInts); |
| 2198 | return isReverseMask(MaskAsInts); |
| 2199 | } |
| 2200 | |
| 2201 | /// Return true if this shuffle swaps the order of elements from exactly |
| 2202 | /// one source vector. |
| 2203 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
| 2204 | /// TODO: Optionally allow length-changing shuffles. |
| 2205 | bool isReverse() const { |
| 2206 | return !changesLength() && isReverseMask(ShuffleMask); |
| 2207 | } |
| 2208 | |
| 2209 | /// Return true if this shuffle mask chooses all elements with the same value |
| 2210 | /// as the first element of exactly one source vector. |
| 2211 | /// Example: <4,undef,undef,4> |
| 2212 | /// This assumes that vector operands are the same length as the mask. |
| 2213 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
| 2214 | static bool isZeroEltSplatMask(const Constant *Mask) { |
| 2215 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2216 | SmallVector<int, 16> MaskAsInts; |
| 2217 | getShuffleMask(Mask, MaskAsInts); |
| 2218 | return isZeroEltSplatMask(MaskAsInts); |
| 2219 | } |
| 2220 | |
| 2221 | /// Return true if all elements of this shuffle are the same value as the |
| 2222 | /// first element of exactly one source vector without changing the length |
| 2223 | /// of that vector. |
| 2224 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
| 2225 | /// TODO: Optionally allow length-changing shuffles. |
| 2226 | /// TODO: Optionally allow splats from other elements. |
| 2227 | bool isZeroEltSplat() const { |
| 2228 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
| 2229 | } |
| 2230 | |
| 2231 | /// Return true if this shuffle mask is a transpose mask. |
| 2232 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
| 2233 | /// even- or odd-numbered vector elements from two n-dimensional source |
| 2234 | /// vectors and write each result into consecutive elements of an |
| 2235 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
| 2236 | /// the transpose, one for the even elements and another for the odd elements. |
| 2237 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
| 2238 | /// instructions operate. |
| 2239 | /// |
| 2240 | /// For example, a simple 2x2 matrix can be transposed with: |
| 2241 | /// |
| 2242 | /// ; Original matrix |
| 2243 | /// m0 = < a, b > |
| 2244 | /// m1 = < c, d > |
| 2245 | /// |
| 2246 | /// ; Transposed matrix |
| 2247 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
| 2248 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
| 2249 | /// |
| 2250 | /// For matrices having greater than n columns, the resulting nx2 transposed |
| 2251 | /// matrix is stored in two result vectors such that one vector contains |
| 2252 | /// interleaved elements from all the even-numbered rows and the other vector |
| 2253 | /// contains interleaved elements from all the odd-numbered rows. For example, |
| 2254 | /// a 2x4 matrix can be transposed with: |
| 2255 | /// |
| 2256 | /// ; Original matrix |
| 2257 | /// m0 = < a, b, c, d > |
| 2258 | /// m1 = < e, f, g, h > |
| 2259 | /// |
| 2260 | /// ; Transposed matrix |
| 2261 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
| 2262 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
| 2263 | static bool isTransposeMask(ArrayRef<int> Mask); |
| 2264 | static bool isTransposeMask(const Constant *Mask) { |
| 2265 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2266 | SmallVector<int, 16> MaskAsInts; |
| 2267 | getShuffleMask(Mask, MaskAsInts); |
| 2268 | return isTransposeMask(MaskAsInts); |
| 2269 | } |
| 2270 | |
| 2271 | /// Return true if this shuffle transposes the elements of its inputs without |
| 2272 | /// changing the length of the vectors. This operation may also be known as a |
| 2273 | /// merge or interleave. See the description for isTransposeMask() for the |
| 2274 | /// exact specification. |
| 2275 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
| 2276 | bool isTranspose() const { |
| 2277 | return !changesLength() && isTransposeMask(ShuffleMask); |
| 2278 | } |
| 2279 | |
| 2280 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2281 | /// A valid extract subvector mask returns a smaller vector from a single |
| 2282 | /// source operand. The base extraction index is returned as well. |
| 2283 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
| 2284 | int &Index); |
| 2285 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
| 2286 | int &Index) { |
| 2287 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((void)0); |
| 2288 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2289 | // case. |
| 2290 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2291 | return false; |
| 2292 | SmallVector<int, 16> MaskAsInts; |
| 2293 | getShuffleMask(Mask, MaskAsInts); |
| 2294 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
| 2295 | } |
| 2296 | |
| 2297 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2298 | bool isExtractSubvectorMask(int &Index) const { |
| 2299 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2300 | // case. |
| 2301 | if (isa<ScalableVectorType>(getType())) |
| 2302 | return false; |
| 2303 | |
| 2304 | int NumSrcElts = |
| 2305 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
| 2306 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
| 2307 | } |
| 2308 | |
| 2309 | /// Change values in a shuffle permute mask assuming the two vector operands |
| 2310 | /// of length InVecNumElts have swapped position. |
| 2311 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
| 2312 | unsigned InVecNumElts) { |
| 2313 | for (int &Idx : Mask) { |
| 2314 | if (Idx == -1) |
| 2315 | continue; |
| 2316 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
| 2317 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((void)0) |
| 2318 | "shufflevector mask index out of range")((void)0); |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2323 | static bool classof(const Instruction *I) { |
| 2324 | return I->getOpcode() == Instruction::ShuffleVector; |
| 2325 | } |
| 2326 | static bool classof(const Value *V) { |
| 2327 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2328 | } |
| 2329 | }; |
| 2330 | |
| 2331 | template <> |
| 2332 | struct OperandTraits<ShuffleVectorInst> |
| 2333 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
| 2334 | |
| 2335 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<ShuffleVectorInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst ::getNumOperands() const { return OperandTraits<ShuffleVectorInst >::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ShuffleVectorInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 2336 | |
| 2337 | //===----------------------------------------------------------------------===// |
| 2338 | // ExtractValueInst Class |
| 2339 | //===----------------------------------------------------------------------===// |
| 2340 | |
| 2341 | /// This instruction extracts a struct member or array |
| 2342 | /// element value from an aggregate value. |
| 2343 | /// |
| 2344 | class ExtractValueInst : public UnaryInstruction { |
| 2345 | SmallVector<unsigned, 4> Indices; |
| 2346 | |
| 2347 | ExtractValueInst(const ExtractValueInst &EVI); |
| 2348 | |
| 2349 | /// Constructors - Create a extractvalue instruction with a base aggregate |
| 2350 | /// value and a list of indices. The first ctor can optionally insert before |
| 2351 | /// an existing instruction, the second appends the new instruction to the |
| 2352 | /// specified BasicBlock. |
| 2353 | inline ExtractValueInst(Value *Agg, |
| 2354 | ArrayRef<unsigned> Idxs, |
| 2355 | const Twine &NameStr, |
| 2356 | Instruction *InsertBefore); |
| 2357 | inline ExtractValueInst(Value *Agg, |
| 2358 | ArrayRef<unsigned> Idxs, |
| 2359 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2360 | |
| 2361 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
| 2362 | |
| 2363 | protected: |
| 2364 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2365 | friend class Instruction; |
| 2366 | |
| 2367 | ExtractValueInst *cloneImpl() const; |
| 2368 | |
| 2369 | public: |
| 2370 | static ExtractValueInst *Create(Value *Agg, |
| 2371 | ArrayRef<unsigned> Idxs, |
| 2372 | const Twine &NameStr = "", |
| 2373 | Instruction *InsertBefore = nullptr) { |
| 2374 | return new |
| 2375 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
| 2376 | } |
| 2377 | |
| 2378 | static ExtractValueInst *Create(Value *Agg, |
| 2379 | ArrayRef<unsigned> Idxs, |
| 2380 | const Twine &NameStr, |
| 2381 | BasicBlock *InsertAtEnd) { |
| 2382 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
| 2383 | } |
| 2384 | |
| 2385 | /// Returns the type of the element that would be extracted |
| 2386 | /// with an extractvalue instruction with the specified parameters. |
| 2387 | /// |
| 2388 | /// Null is returned if the indices are invalid for the specified type. |
| 2389 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
| 2390 | |
| 2391 | using idx_iterator = const unsigned*; |
| 2392 | |
| 2393 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2394 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2395 | inline iterator_range<idx_iterator> indices() const { |
| 2396 | return make_range(idx_begin(), idx_end()); |
| 2397 | } |
| 2398 | |
| 2399 | Value *getAggregateOperand() { |
| 2400 | return getOperand(0); |
| 2401 | } |
| 2402 | const Value *getAggregateOperand() const { |
| 2403 | return getOperand(0); |
| 2404 | } |
| 2405 | static unsigned getAggregateOperandIndex() { |
| 2406 | return 0U; // get index for modifying correct operand |
| 2407 | } |
| 2408 | |
| 2409 | ArrayRef<unsigned> getIndices() const { |
| 2410 | return Indices; |
| 2411 | } |
| 2412 | |
| 2413 | unsigned getNumIndices() const { |
| 2414 | return (unsigned)Indices.size(); |
| 2415 | } |
| 2416 | |
| 2417 | bool hasIndices() const { |
| 2418 | return true; |
| 2419 | } |
| 2420 | |
| 2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2422 | static bool classof(const Instruction *I) { |
| 2423 | return I->getOpcode() == Instruction::ExtractValue; |
| 2424 | } |
| 2425 | static bool classof(const Value *V) { |
| 2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2427 | } |
| 2428 | }; |
| 2429 | |
| 2430 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2431 | ArrayRef<unsigned> Idxs, |
| 2432 | const Twine &NameStr, |
| 2433 | Instruction *InsertBefore) |
| 2434 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2435 | ExtractValue, Agg, InsertBefore) { |
| 2436 | init(Idxs, NameStr); |
| 2437 | } |
| 2438 | |
| 2439 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2440 | ArrayRef<unsigned> Idxs, |
| 2441 | const Twine &NameStr, |
| 2442 | BasicBlock *InsertAtEnd) |
| 2443 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2444 | ExtractValue, Agg, InsertAtEnd) { |
| 2445 | init(Idxs, NameStr); |
| 2446 | } |
| 2447 | |
| 2448 | //===----------------------------------------------------------------------===// |
| 2449 | // InsertValueInst Class |
| 2450 | //===----------------------------------------------------------------------===// |
| 2451 | |
| 2452 | /// This instruction inserts a struct field of array element |
| 2453 | /// value into an aggregate value. |
| 2454 | /// |
| 2455 | class InsertValueInst : public Instruction { |
| 2456 | SmallVector<unsigned, 4> Indices; |
| 2457 | |
| 2458 | InsertValueInst(const InsertValueInst &IVI); |
| 2459 | |
| 2460 | /// Constructors - Create a insertvalue instruction with a base aggregate |
| 2461 | /// value, a value to insert, and a list of indices. The first ctor can |
| 2462 | /// optionally insert before an existing instruction, the second appends |
| 2463 | /// the new instruction to the specified BasicBlock. |
| 2464 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2465 | ArrayRef<unsigned> Idxs, |
| 2466 | const Twine &NameStr, |
| 2467 | Instruction *InsertBefore); |
| 2468 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2469 | ArrayRef<unsigned> Idxs, |
| 2470 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2471 | |
| 2472 | /// Constructors - These two constructors are convenience methods because one |
| 2473 | /// and two index insertvalue instructions are so common. |
| 2474 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
| 2475 | const Twine &NameStr = "", |
| 2476 | Instruction *InsertBefore = nullptr); |
| 2477 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
| 2478 | BasicBlock *InsertAtEnd); |
| 2479 | |
| 2480 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| 2481 | const Twine &NameStr); |
| 2482 | |
| 2483 | protected: |
| 2484 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2485 | friend class Instruction; |
| 2486 | |
| 2487 | InsertValueInst *cloneImpl() const; |
| 2488 | |
| 2489 | public: |
| 2490 | // allocate space for exactly two operands |
| 2491 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2492 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2493 | |
| 2494 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2495 | ArrayRef<unsigned> Idxs, |
| 2496 | const Twine &NameStr = "", |
| 2497 | Instruction *InsertBefore = nullptr) { |
| 2498 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
| 2499 | } |
| 2500 | |
| 2501 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2502 | ArrayRef<unsigned> Idxs, |
| 2503 | const Twine &NameStr, |
| 2504 | BasicBlock *InsertAtEnd) { |
| 2505 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
| 2506 | } |
| 2507 | |
| 2508 | /// Transparently provide more efficient getOperand methods. |
| 2509 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2510 | |
| 2511 | using idx_iterator = const unsigned*; |
| 2512 | |
| 2513 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2514 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2515 | inline iterator_range<idx_iterator> indices() const { |
| 2516 | return make_range(idx_begin(), idx_end()); |
| 2517 | } |
| 2518 | |
| 2519 | Value *getAggregateOperand() { |
| 2520 | return getOperand(0); |
| 2521 | } |
| 2522 | const Value *getAggregateOperand() const { |
| 2523 | return getOperand(0); |
| 2524 | } |
| 2525 | static unsigned getAggregateOperandIndex() { |
| 2526 | return 0U; // get index for modifying correct operand |
| 2527 | } |
| 2528 | |
| 2529 | Value *getInsertedValueOperand() { |
| 2530 | return getOperand(1); |
| 2531 | } |
| 2532 | const Value *getInsertedValueOperand() const { |
| 2533 | return getOperand(1); |
| 2534 | } |
| 2535 | static unsigned getInsertedValueOperandIndex() { |
| 2536 | return 1U; // get index for modifying correct operand |
| 2537 | } |
| 2538 | |
| 2539 | ArrayRef<unsigned> getIndices() const { |
| 2540 | return Indices; |
| 2541 | } |
| 2542 | |
| 2543 | unsigned getNumIndices() const { |
| 2544 | return (unsigned)Indices.size(); |
| 2545 | } |
| 2546 | |
| 2547 | bool hasIndices() const { |
| 2548 | return true; |
| 2549 | } |
| 2550 | |
| 2551 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2552 | static bool classof(const Instruction *I) { |
| 2553 | return I->getOpcode() == Instruction::InsertValue; |
| 2554 | } |
| 2555 | static bool classof(const Value *V) { |
| 2556 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2557 | } |
| 2558 | }; |
| 2559 | |
| 2560 | template <> |
| 2561 | struct OperandTraits<InsertValueInst> : |
| 2562 | public FixedNumOperandTraits<InsertValueInst, 2> { |
| 2563 | }; |
| 2564 | |
| 2565 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2566 | Value *Val, |
| 2567 | ArrayRef<unsigned> Idxs, |
| 2568 | const Twine &NameStr, |
| 2569 | Instruction *InsertBefore) |
| 2570 | : Instruction(Agg->getType(), InsertValue, |
| 2571 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2572 | 2, InsertBefore) { |
| 2573 | init(Agg, Val, Idxs, NameStr); |
| 2574 | } |
| 2575 | |
| 2576 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2577 | Value *Val, |
| 2578 | ArrayRef<unsigned> Idxs, |
| 2579 | const Twine &NameStr, |
| 2580 | BasicBlock *InsertAtEnd) |
| 2581 | : Instruction(Agg->getType(), InsertValue, |
| 2582 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2583 | 2, InsertAtEnd) { |
| 2584 | init(Agg, Val, Idxs, NameStr); |
| 2585 | } |
| 2586 | |
| 2587 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<InsertValueInst>::op_begin (const_cast<InsertValueInst*>(this))[i_nocapture].get() ); } void InsertValueInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2588 | |
| 2589 | //===----------------------------------------------------------------------===// |
| 2590 | // PHINode Class |
| 2591 | //===----------------------------------------------------------------------===// |
| 2592 | |
| 2593 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
| 2594 | // node, that can not exist in nature, but can be synthesized in a computer |
| 2595 | // scientist's overactive imagination. |
| 2596 | // |
| 2597 | class PHINode : public Instruction { |
| 2598 | /// The number of operands actually allocated. NumOperands is |
| 2599 | /// the number actually in use. |
| 2600 | unsigned ReservedSpace; |
| 2601 | |
| 2602 | PHINode(const PHINode &PN); |
| 2603 | |
| 2604 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
| 2605 | const Twine &NameStr = "", |
| 2606 | Instruction *InsertBefore = nullptr) |
| 2607 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
| 2608 | ReservedSpace(NumReservedValues) { |
| 2609 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2610 | setName(NameStr); |
| 2611 | allocHungoffUses(ReservedSpace); |
| 2612 | } |
| 2613 | |
| 2614 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
| 2615 | BasicBlock *InsertAtEnd) |
| 2616 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
| 2617 | ReservedSpace(NumReservedValues) { |
| 2618 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")((void)0); |
| 2619 | setName(NameStr); |
| 2620 | allocHungoffUses(ReservedSpace); |
| 2621 | } |
| 2622 | |
| 2623 | protected: |
| 2624 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2625 | friend class Instruction; |
| 2626 | |
| 2627 | PHINode *cloneImpl() const; |
| 2628 | |
| 2629 | // allocHungoffUses - this is more complicated than the generic |
| 2630 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
| 2631 | // values and pointers to the incoming blocks, all in one allocation. |
| 2632 | void allocHungoffUses(unsigned N) { |
| 2633 | User::allocHungoffUses(N, /* IsPhi */ true); |
| 2634 | } |
| 2635 | |
| 2636 | public: |
| 2637 | /// Constructors - NumReservedValues is a hint for the number of incoming |
| 2638 | /// edges that this phi node will have (use 0 if you really have no idea). |
| 2639 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2640 | const Twine &NameStr = "", |
| 2641 | Instruction *InsertBefore = nullptr) { |
| 2642 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
| 2643 | } |
| 2644 | |
| 2645 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2646 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 2647 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
| 2648 | } |
| 2649 | |
| 2650 | /// Provide fast operand accessors |
| 2651 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2652 | |
| 2653 | // Block iterator interface. This provides access to the list of incoming |
| 2654 | // basic blocks, which parallels the list of incoming values. |
| 2655 | |
| 2656 | using block_iterator = BasicBlock **; |
| 2657 | using const_block_iterator = BasicBlock * const *; |
| 2658 | |
| 2659 | block_iterator block_begin() { |
| 2660 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
| 2661 | } |
| 2662 | |
| 2663 | const_block_iterator block_begin() const { |
| 2664 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
| 2665 | } |
| 2666 | |
| 2667 | block_iterator block_end() { |
| 2668 | return block_begin() + getNumOperands(); |
| 2669 | } |
| 2670 | |
| 2671 | const_block_iterator block_end() const { |
| 2672 | return block_begin() + getNumOperands(); |
| 2673 | } |
| 2674 | |
| 2675 | iterator_range<block_iterator> blocks() { |
| 2676 | return make_range(block_begin(), block_end()); |
| 2677 | } |
| 2678 | |
| 2679 | iterator_range<const_block_iterator> blocks() const { |
| 2680 | return make_range(block_begin(), block_end()); |
| 2681 | } |
| 2682 | |
| 2683 | op_range incoming_values() { return operands(); } |
| 2684 | |
| 2685 | const_op_range incoming_values() const { return operands(); } |
| 2686 | |
| 2687 | /// Return the number of incoming edges |
| 2688 | /// |
| 2689 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
| 2690 | |
| 2691 | /// Return incoming value number x |
| 2692 | /// |
| 2693 | Value *getIncomingValue(unsigned i) const { |
| 2694 | return getOperand(i); |
| 2695 | } |
| 2696 | void setIncomingValue(unsigned i, Value *V) { |
| 2697 | assert(V && "PHI node got a null value!")((void)0); |
| 2698 | assert(getType() == V->getType() &&((void)0) |
| 2699 | "All operands to PHI node must be the same type as the PHI node!")((void)0); |
| 2700 | setOperand(i, V); |
| 2701 | } |
| 2702 | |
| 2703 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
| 2704 | return i; |
| 2705 | } |
| 2706 | |
| 2707 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
| 2708 | return i; |
| 2709 | } |
| 2710 | |
| 2711 | /// Return incoming basic block number @p i. |
| 2712 | /// |
| 2713 | BasicBlock *getIncomingBlock(unsigned i) const { |
| 2714 | return block_begin()[i]; |
| 2715 | } |
| 2716 | |
| 2717 | /// Return incoming basic block corresponding |
| 2718 | /// to an operand of the PHI. |
| 2719 | /// |
| 2720 | BasicBlock *getIncomingBlock(const Use &U) const { |
| 2721 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((void)0); |
| 2722 | return getIncomingBlock(unsigned(&U - op_begin())); |
| 2723 | } |
| 2724 | |
| 2725 | /// Return incoming basic block corresponding |
| 2726 | /// to value use iterator. |
| 2727 | /// |
| 2728 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
| 2729 | return getIncomingBlock(I.getUse()); |
| 2730 | } |
| 2731 | |
| 2732 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
| 2733 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2734 | block_begin()[i] = BB; |
| 2735 | } |
| 2736 | |
| 2737 | /// Replace every incoming basic block \p Old to basic block \p New. |
| 2738 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
| 2739 | assert(New && Old && "PHI node got a null basic block!")((void)0); |
| 2740 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2741 | if (getIncomingBlock(Op) == Old) |
| 2742 | setIncomingBlock(Op, New); |
| 2743 | } |
| 2744 | |
| 2745 | /// Add an incoming value to the end of the PHI list |
| 2746 | /// |
| 2747 | void addIncoming(Value *V, BasicBlock *BB) { |
| 2748 | if (getNumOperands() == ReservedSpace) |
| 2749 | growOperands(); // Get more space! |
| 2750 | // Initialize some new operands. |
| 2751 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 2752 | setIncomingValue(getNumOperands() - 1, V); |
| 2753 | setIncomingBlock(getNumOperands() - 1, BB); |
| 2754 | } |
| 2755 | |
| 2756 | /// Remove an incoming value. This is useful if a |
| 2757 | /// predecessor basic block is deleted. The value removed is returned. |
| 2758 | /// |
| 2759 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
| 2760 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
| 2761 | /// dummy values. The only time there should be zero incoming values to a PHI |
| 2762 | /// node is when the block is dead, so this strategy is sound. |
| 2763 | /// |
| 2764 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
| 2765 | |
| 2766 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
| 2767 | int Idx = getBasicBlockIndex(BB); |
| 2768 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((void)0); |
| 2769 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
| 2770 | } |
| 2771 | |
| 2772 | /// Return the first index of the specified basic |
| 2773 | /// block in the value list for this PHI. Returns -1 if no instance. |
| 2774 | /// |
| 2775 | int getBasicBlockIndex(const BasicBlock *BB) const { |
| 2776 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| 2777 | if (block_begin()[i] == BB) |
| 2778 | return i; |
| 2779 | return -1; |
| 2780 | } |
| 2781 | |
| 2782 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
| 2783 | int Idx = getBasicBlockIndex(BB); |
| 2784 | assert(Idx >= 0 && "Invalid basic block argument!")((void)0); |
| 2785 | return getIncomingValue(Idx); |
| 2786 | } |
| 2787 | |
| 2788 | /// Set every incoming value(s) for block \p BB to \p V. |
| 2789 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
| 2790 | assert(BB && "PHI node got a null basic block!")((void)0); |
| 2791 | bool Found = false; |
| 2792 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2793 | if (getIncomingBlock(Op) == BB) { |
| 2794 | Found = true; |
| 2795 | setIncomingValue(Op, V); |
| 2796 | } |
| 2797 | (void)Found; |
| 2798 | assert(Found && "Invalid basic block argument to set!")((void)0); |
| 2799 | } |
| 2800 | |
| 2801 | /// If the specified PHI node always merges together the |
| 2802 | /// same value, return the value, otherwise return null. |
| 2803 | Value *hasConstantValue() const; |
| 2804 | |
| 2805 | /// Whether the specified PHI node always merges |
| 2806 | /// together the same value, assuming undefs are equal to a unique |
| 2807 | /// non-undef value. |
| 2808 | bool hasConstantOrUndefValue() const; |
| 2809 | |
| 2810 | /// If the PHI node is complete which means all of its parent's predecessors |
| 2811 | /// have incoming value in this PHI, return true, otherwise return false. |
| 2812 | bool isComplete() const { |
| 2813 | return llvm::all_of(predecessors(getParent()), |
| 2814 | [this](const BasicBlock *Pred) { |
| 2815 | return getBasicBlockIndex(Pred) >= 0; |
| 2816 | }); |
| 2817 | } |
| 2818 | |
| 2819 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2820 | static bool classof(const Instruction *I) { |
| 2821 | return I->getOpcode() == Instruction::PHI; |
| 2822 | } |
| 2823 | static bool classof(const Value *V) { |
| 2824 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2825 | } |
| 2826 | |
| 2827 | private: |
| 2828 | void growOperands(); |
| 2829 | }; |
| 2830 | |
| 2831 | template <> |
| 2832 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
| 2833 | }; |
| 2834 | |
| 2835 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((void)0); return cast_or_null<Value>( OperandTraits <PHINode>::op_begin(const_cast<PHINode*>(this))[i_nocapture ].get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<PHINode>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands () const { return OperandTraits<PHINode>::operands(this ); } template <int Idx_nocapture> Use &PHINode::Op( ) { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &PHINode::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 2836 | |
| 2837 | //===----------------------------------------------------------------------===// |
| 2838 | // LandingPadInst Class |
| 2839 | //===----------------------------------------------------------------------===// |
| 2840 | |
| 2841 | //===--------------------------------------------------------------------------- |
| 2842 | /// The landingpad instruction holds all of the information |
| 2843 | /// necessary to generate correct exception handling. The landingpad instruction |
| 2844 | /// cannot be moved from the top of a landing pad block, which itself is |
| 2845 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
| 2846 | /// SubclassData field in Value to store whether or not the landingpad is a |
| 2847 | /// cleanup. |
| 2848 | /// |
| 2849 | class LandingPadInst : public Instruction { |
| 2850 | using CleanupField = BoolBitfieldElementT<0>; |
| 2851 | |
| 2852 | /// The number of operands actually allocated. NumOperands is |
| 2853 | /// the number actually in use. |
| 2854 | unsigned ReservedSpace; |
| 2855 | |
| 2856 | LandingPadInst(const LandingPadInst &LP); |
| 2857 | |
| 2858 | public: |
| 2859 | enum ClauseType { Catch, Filter }; |
| 2860 | |
| 2861 | private: |
| 2862 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2863 | const Twine &NameStr, Instruction *InsertBefore); |
| 2864 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2865 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2866 | |
| 2867 | // Allocate space for exactly zero operands. |
| 2868 | void *operator new(size_t S) { return User::operator new(S); } |
| 2869 | |
| 2870 | void growOperands(unsigned Size); |
| 2871 | void init(unsigned NumReservedValues, const Twine &NameStr); |
| 2872 | |
| 2873 | protected: |
| 2874 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2875 | friend class Instruction; |
| 2876 | |
| 2877 | LandingPadInst *cloneImpl() const; |
| 2878 | |
| 2879 | public: |
| 2880 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2881 | |
| 2882 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
| 2883 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
| 2884 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2885 | const Twine &NameStr = "", |
| 2886 | Instruction *InsertBefore = nullptr); |
| 2887 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2888 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2889 | |
| 2890 | /// Provide fast operand accessors |
| 2891 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2892 | |
| 2893 | /// Return 'true' if this landingpad instruction is a |
| 2894 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
| 2895 | /// doesn't catch the exception. |
| 2896 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
| 2897 | |
| 2898 | /// Indicate that this landingpad instruction is a cleanup. |
| 2899 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
| 2900 | |
| 2901 | /// Add a catch or filter clause to the landing pad. |
| 2902 | void addClause(Constant *ClauseVal); |
| 2903 | |
| 2904 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
| 2905 | /// determine what type of clause this is. |
| 2906 | Constant *getClause(unsigned Idx) const { |
| 2907 | return cast<Constant>(getOperandList()[Idx]); |
| 2908 | } |
| 2909 | |
| 2910 | /// Return 'true' if the clause and index Idx is a catch clause. |
| 2911 | bool isCatch(unsigned Idx) const { |
| 2912 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2913 | } |
| 2914 | |
| 2915 | /// Return 'true' if the clause and index Idx is a filter clause. |
| 2916 | bool isFilter(unsigned Idx) const { |
| 2917 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 2918 | } |
| 2919 | |
| 2920 | /// Get the number of clauses for this landing pad. |
| 2921 | unsigned getNumClauses() const { return getNumOperands(); } |
| 2922 | |
| 2923 | /// Grow the size of the operand list to accommodate the new |
| 2924 | /// number of clauses. |
| 2925 | void reserveClauses(unsigned Size) { growOperands(Size); } |
| 2926 | |
| 2927 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2928 | static bool classof(const Instruction *I) { |
| 2929 | return I->getOpcode() == Instruction::LandingPad; |
| 2930 | } |
| 2931 | static bool classof(const Value *V) { |
| 2932 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2933 | } |
| 2934 | }; |
| 2935 | |
| 2936 | template <> |
| 2937 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
| 2938 | }; |
| 2939 | |
| 2940 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<LandingPadInst>::op_begin( const_cast<LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 2941 | |
| 2942 | //===----------------------------------------------------------------------===// |
| 2943 | // ReturnInst Class |
| 2944 | //===----------------------------------------------------------------------===// |
| 2945 | |
| 2946 | //===--------------------------------------------------------------------------- |
| 2947 | /// Return a value (possibly void), from a function. Execution |
| 2948 | /// does not continue in this function any longer. |
| 2949 | /// |
| 2950 | class ReturnInst : public Instruction { |
| 2951 | ReturnInst(const ReturnInst &RI); |
| 2952 | |
| 2953 | private: |
| 2954 | // ReturnInst constructors: |
| 2955 | // ReturnInst() - 'ret void' instruction |
| 2956 | // ReturnInst( null) - 'ret void' instruction |
| 2957 | // ReturnInst(Value* X) - 'ret X' instruction |
| 2958 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
| 2959 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
| 2960 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
| 2961 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
| 2962 | // |
| 2963 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
| 2964 | // if it was passed NULL. |
| 2965 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
| 2966 | Instruction *InsertBefore = nullptr); |
| 2967 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
| 2968 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 2969 | |
| 2970 | protected: |
| 2971 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2972 | friend class Instruction; |
| 2973 | |
| 2974 | ReturnInst *cloneImpl() const; |
| 2975 | |
| 2976 | public: |
| 2977 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
| 2978 | Instruction *InsertBefore = nullptr) { |
| 2979 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
| 2980 | } |
| 2981 | |
| 2982 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
| 2983 | BasicBlock *InsertAtEnd) { |
| 2984 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
| 2985 | } |
| 2986 | |
| 2987 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
| 2988 | return new(0) ReturnInst(C, InsertAtEnd); |
| 2989 | } |
| 2990 | |
| 2991 | /// Provide fast operand accessors |
| 2992 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2993 | |
| 2994 | /// Convenience accessor. Returns null if there is no return value. |
| 2995 | Value *getReturnValue() const { |
| 2996 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
| 2997 | } |
| 2998 | |
| 2999 | unsigned getNumSuccessors() const { return 0; } |
| 3000 | |
| 3001 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3002 | static bool classof(const Instruction *I) { |
| 3003 | return (I->getOpcode() == Instruction::Ret); |
| 3004 | } |
| 3005 | static bool classof(const Value *V) { |
| 3006 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3007 | } |
| 3008 | |
| 3009 | private: |
| 3010 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3011 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3012 | } |
| 3013 | |
| 3014 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 3015 | llvm_unreachable("ReturnInst has no successors!")__builtin_unreachable(); |
| 3016 | } |
| 3017 | }; |
| 3018 | |
| 3019 | template <> |
| 3020 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
| 3021 | }; |
| 3022 | |
| 3023 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ReturnInst>::op_begin(const_cast <ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3024 | |
| 3025 | //===----------------------------------------------------------------------===// |
| 3026 | // BranchInst Class |
| 3027 | //===----------------------------------------------------------------------===// |
| 3028 | |
| 3029 | //===--------------------------------------------------------------------------- |
| 3030 | /// Conditional or Unconditional Branch instruction. |
| 3031 | /// |
| 3032 | class BranchInst : public Instruction { |
| 3033 | /// Ops list - Branches are strange. The operands are ordered: |
| 3034 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
| 3035 | /// they don't have to check for cond/uncond branchness. These are mostly |
| 3036 | /// accessed relative from op_end(). |
| 3037 | BranchInst(const BranchInst &BI); |
| 3038 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
| 3039 | // BranchInst(BB *B) - 'br B' |
| 3040 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
| 3041 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
| 3042 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
| 3043 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
| 3044 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
| 3045 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
| 3046 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3047 | Instruction *InsertBefore = nullptr); |
| 3048 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
| 3049 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3050 | BasicBlock *InsertAtEnd); |
| 3051 | |
| 3052 | void AssertOK(); |
| 3053 | |
| 3054 | protected: |
| 3055 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3056 | friend class Instruction; |
| 3057 | |
| 3058 | BranchInst *cloneImpl() const; |
| 3059 | |
| 3060 | public: |
| 3061 | /// Iterator type that casts an operand to a basic block. |
| 3062 | /// |
| 3063 | /// This only makes sense because the successors are stored as adjacent |
| 3064 | /// operands for branch instructions. |
| 3065 | struct succ_op_iterator |
| 3066 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3067 | std::random_access_iterator_tag, BasicBlock *, |
| 3068 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3069 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3070 | |
| 3071 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3072 | BasicBlock *operator->() const { return operator*(); } |
| 3073 | }; |
| 3074 | |
| 3075 | /// The const version of `succ_op_iterator`. |
| 3076 | struct const_succ_op_iterator |
| 3077 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3078 | std::random_access_iterator_tag, |
| 3079 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3080 | const BasicBlock *> { |
| 3081 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3082 | : iterator_adaptor_base(I) {} |
| 3083 | |
| 3084 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3085 | const BasicBlock *operator->() const { return operator*(); } |
| 3086 | }; |
| 3087 | |
| 3088 | static BranchInst *Create(BasicBlock *IfTrue, |
| 3089 | Instruction *InsertBefore = nullptr) { |
| 3090 | return new(1) BranchInst(IfTrue, InsertBefore); |
| 3091 | } |
| 3092 | |
| 3093 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3094 | Value *Cond, Instruction *InsertBefore = nullptr) { |
| 3095 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
| 3096 | } |
| 3097 | |
| 3098 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
| 3099 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
| 3100 | } |
| 3101 | |
| 3102 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3103 | Value *Cond, BasicBlock *InsertAtEnd) { |
| 3104 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
| 3105 | } |
| 3106 | |
| 3107 | /// Transparently provide more efficient getOperand methods. |
| 3108 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3109 | |
| 3110 | bool isUnconditional() const { return getNumOperands() == 1; } |
| 3111 | bool isConditional() const { return getNumOperands() == 3; } |
| 3112 | |
| 3113 | Value *getCondition() const { |
| 3114 | assert(isConditional() && "Cannot get condition of an uncond branch!")((void)0); |
| 3115 | return Op<-3>(); |
| 3116 | } |
| 3117 | |
| 3118 | void setCondition(Value *V) { |
| 3119 | assert(isConditional() && "Cannot set condition of unconditional branch!")((void)0); |
| 3120 | Op<-3>() = V; |
| 3121 | } |
| 3122 | |
| 3123 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
| 3124 | |
| 3125 | BasicBlock *getSuccessor(unsigned i) const { |
| 3126 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3127 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
| 3128 | } |
| 3129 | |
| 3130 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3131 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((void)0); |
| 3132 | *(&Op<-1>() - idx) = NewSucc; |
| 3133 | } |
| 3134 | |
| 3135 | /// Swap the successors of this branch instruction. |
| 3136 | /// |
| 3137 | /// Swaps the successors of the branch instruction. This also swaps any |
| 3138 | /// branch weight metadata associated with the instruction so that it |
| 3139 | /// continues to map correctly to each operand. |
| 3140 | void swapSuccessors(); |
| 3141 | |
| 3142 | iterator_range<succ_op_iterator> successors() { |
| 3143 | return make_range( |
| 3144 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3145 | succ_op_iterator(value_op_end())); |
| 3146 | } |
| 3147 | |
| 3148 | iterator_range<const_succ_op_iterator> successors() const { |
| 3149 | return make_range(const_succ_op_iterator( |
| 3150 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3151 | const_succ_op_iterator(value_op_end())); |
| 3152 | } |
| 3153 | |
| 3154 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3155 | static bool classof(const Instruction *I) { |
| 3156 | return (I->getOpcode() == Instruction::Br); |
| 3157 | } |
| 3158 | static bool classof(const Value *V) { |
| 3159 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3160 | } |
| 3161 | }; |
| 3162 | |
| 3163 | template <> |
| 3164 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
| 3165 | }; |
| 3166 | |
| 3167 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<BranchInst>::op_begin(const_cast <BranchInst*>(this))[i_nocapture].get()); } void BranchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3168 | |
| 3169 | //===----------------------------------------------------------------------===// |
| 3170 | // SwitchInst Class |
| 3171 | //===----------------------------------------------------------------------===// |
| 3172 | |
| 3173 | //===--------------------------------------------------------------------------- |
| 3174 | /// Multiway switch |
| 3175 | /// |
| 3176 | class SwitchInst : public Instruction { |
| 3177 | unsigned ReservedSpace; |
| 3178 | |
| 3179 | // Operand[0] = Value to switch on |
| 3180 | // Operand[1] = Default basic block destination |
| 3181 | // Operand[2n ] = Value to match |
| 3182 | // Operand[2n+1] = BasicBlock to go to on match |
| 3183 | SwitchInst(const SwitchInst &SI); |
| 3184 | |
| 3185 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3186 | /// default destination. The number of additional cases can be specified here |
| 3187 | /// to make memory allocation more efficient. This constructor can also |
| 3188 | /// auto-insert before another instruction. |
| 3189 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3190 | Instruction *InsertBefore); |
| 3191 | |
| 3192 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3193 | /// default destination. The number of additional cases can be specified here |
| 3194 | /// to make memory allocation more efficient. This constructor also |
| 3195 | /// auto-inserts at the end of the specified BasicBlock. |
| 3196 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3197 | BasicBlock *InsertAtEnd); |
| 3198 | |
| 3199 | // allocate space for exactly zero operands |
| 3200 | void *operator new(size_t S) { return User::operator new(S); } |
| 3201 | |
| 3202 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
| 3203 | void growOperands(); |
| 3204 | |
| 3205 | protected: |
| 3206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3207 | friend class Instruction; |
| 3208 | |
| 3209 | SwitchInst *cloneImpl() const; |
| 3210 | |
| 3211 | public: |
| 3212 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3213 | |
| 3214 | // -2 |
| 3215 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
| 3216 | |
| 3217 | template <typename CaseHandleT> class CaseIteratorImpl; |
| 3218 | |
| 3219 | /// A handle to a particular switch case. It exposes a convenient interface |
| 3220 | /// to both the case value and the successor block. |
| 3221 | /// |
| 3222 | /// We define this as a template and instantiate it to form both a const and |
| 3223 | /// non-const handle. |
| 3224 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
| 3225 | class CaseHandleImpl { |
| 3226 | // Directly befriend both const and non-const iterators. |
| 3227 | friend class SwitchInst::CaseIteratorImpl< |
| 3228 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
| 3229 | |
| 3230 | protected: |
| 3231 | // Expose the switch type we're parameterized with to the iterator. |
| 3232 | using SwitchInstType = SwitchInstT; |
| 3233 | |
| 3234 | SwitchInstT *SI; |
| 3235 | ptrdiff_t Index; |
| 3236 | |
| 3237 | CaseHandleImpl() = default; |
| 3238 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
| 3239 | |
| 3240 | public: |
| 3241 | /// Resolves case value for current case. |
| 3242 | ConstantIntT *getCaseValue() const { |
| 3243 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3244 | "Index out the number of cases.")((void)0); |
| 3245 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
| 3246 | } |
| 3247 | |
| 3248 | /// Resolves successor for current case. |
| 3249 | BasicBlockT *getCaseSuccessor() const { |
| 3250 | assert(((unsigned)Index < SI->getNumCases() ||((void)0) |
| 3251 | (unsigned)Index == DefaultPseudoIndex) &&((void)0) |
| 3252 | "Index out the number of cases.")((void)0); |
| 3253 | return SI->getSuccessor(getSuccessorIndex()); |
| 3254 | } |
| 3255 | |
| 3256 | /// Returns number of current case. |
| 3257 | unsigned getCaseIndex() const { return Index; } |
| 3258 | |
| 3259 | /// Returns successor index for current case successor. |
| 3260 | unsigned getSuccessorIndex() const { |
| 3261 | assert(((unsigned)Index == DefaultPseudoIndex ||((void)0) |
| 3262 | (unsigned)Index < SI->getNumCases()) &&((void)0) |
| 3263 | "Index out the number of cases.")((void)0); |
| 3264 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
| 3265 | } |
| 3266 | |
| 3267 | bool operator==(const CaseHandleImpl &RHS) const { |
| 3268 | assert(SI == RHS.SI && "Incompatible operators.")((void)0); |
| 3269 | return Index == RHS.Index; |
| 3270 | } |
| 3271 | }; |
| 3272 | |
| 3273 | using ConstCaseHandle = |
| 3274 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
| 3275 | |
| 3276 | class CaseHandle |
| 3277 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
| 3278 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
| 3279 | |
| 3280 | public: |
| 3281 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
| 3282 | |
| 3283 | /// Sets the new value for current case. |
| 3284 | void setValue(ConstantInt *V) { |
| 3285 | assert((unsigned)Index < SI->getNumCases() &&((void)0) |
| 3286 | "Index out the number of cases.")((void)0); |
| 3287 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
| 3288 | } |
| 3289 | |
| 3290 | /// Sets the new successor for current case. |
| 3291 | void setSuccessor(BasicBlock *S) { |
| 3292 | SI->setSuccessor(getSuccessorIndex(), S); |
| 3293 | } |
| 3294 | }; |
| 3295 | |
| 3296 | template <typename CaseHandleT> |
| 3297 | class CaseIteratorImpl |
| 3298 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
| 3299 | std::random_access_iterator_tag, |
| 3300 | CaseHandleT> { |
| 3301 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
| 3302 | |
| 3303 | CaseHandleT Case; |
| 3304 | |
| 3305 | public: |
| 3306 | /// Default constructed iterator is in an invalid state until assigned to |
| 3307 | /// a case for a particular switch. |
| 3308 | CaseIteratorImpl() = default; |
| 3309 | |
| 3310 | /// Initializes case iterator for given SwitchInst and for given |
| 3311 | /// case number. |
| 3312 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
| 3313 | |
| 3314 | /// Initializes case iterator for given SwitchInst and for given |
| 3315 | /// successor index. |
| 3316 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
| 3317 | unsigned SuccessorIndex) { |
| 3318 | assert(SuccessorIndex < SI->getNumSuccessors() &&((void)0) |
| 3319 | "Successor index # out of range!")((void)0); |
| 3320 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
| 3321 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
| 3322 | } |
| 3323 | |
| 3324 | /// Support converting to the const variant. This will be a no-op for const |
| 3325 | /// variant. |
| 3326 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
| 3327 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
| 3328 | } |
| 3329 | |
| 3330 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
| 3331 | // Check index correctness after addition. |
| 3332 | // Note: Index == getNumCases() means end(). |
| 3333 | assert(Case.Index + N >= 0 &&((void)0) |
| 3334 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((void)0) |
| 3335 | "Case.Index out the number of cases.")((void)0); |
| 3336 | Case.Index += N; |
| 3337 | return *this; |
| 3338 | } |
| 3339 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
| 3340 | // Check index correctness after subtraction. |
| 3341 | // Note: Case.Index == getNumCases() means end(). |
| 3342 | assert(Case.Index - N >= 0 &&((void)0) |
| 3343 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((void)0) |
| 3344 | "Case.Index out the number of cases.")((void)0); |
| 3345 | Case.Index -= N; |
| 3346 | return *this; |
| 3347 | } |
| 3348 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
| 3349 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3350 | return Case.Index - RHS.Case.Index; |
| 3351 | } |
| 3352 | bool operator==(const CaseIteratorImpl &RHS) const { |
| 3353 | return Case == RHS.Case; |
| 3354 | } |
| 3355 | bool operator<(const CaseIteratorImpl &RHS) const { |
| 3356 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((void)0); |
| 3357 | return Case.Index < RHS.Case.Index; |
| 3358 | } |
| 3359 | CaseHandleT &operator*() { return Case; } |
| 3360 | const CaseHandleT &operator*() const { return Case; } |
| 3361 | }; |
| 3362 | |
| 3363 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
| 3364 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
| 3365 | |
| 3366 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3367 | unsigned NumCases, |
| 3368 | Instruction *InsertBefore = nullptr) { |
| 3369 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
| 3370 | } |
| 3371 | |
| 3372 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3373 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
| 3374 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
| 3375 | } |
| 3376 | |
| 3377 | /// Provide fast operand accessors |
| 3378 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3379 | |
| 3380 | // Accessor Methods for Switch stmt |
| 3381 | Value *getCondition() const { return getOperand(0); } |
| 3382 | void setCondition(Value *V) { setOperand(0, V); } |
| 3383 | |
| 3384 | BasicBlock *getDefaultDest() const { |
| 3385 | return cast<BasicBlock>(getOperand(1)); |
| 3386 | } |
| 3387 | |
| 3388 | void setDefaultDest(BasicBlock *DefaultCase) { |
| 3389 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
| 3390 | } |
| 3391 | |
| 3392 | /// Return the number of 'cases' in this switch instruction, excluding the |
| 3393 | /// default case. |
| 3394 | unsigned getNumCases() const { |
| 3395 | return getNumOperands()/2 - 1; |
| 3396 | } |
| 3397 | |
| 3398 | /// Returns a read/write iterator that points to the first case in the |
| 3399 | /// SwitchInst. |
| 3400 | CaseIt case_begin() { |
| 3401 | return CaseIt(this, 0); |
| 3402 | } |
| 3403 | |
| 3404 | /// Returns a read-only iterator that points to the first case in the |
| 3405 | /// SwitchInst. |
| 3406 | ConstCaseIt case_begin() const { |
| 3407 | return ConstCaseIt(this, 0); |
| 3408 | } |
| 3409 | |
| 3410 | /// Returns a read/write iterator that points one past the last in the |
| 3411 | /// SwitchInst. |
| 3412 | CaseIt case_end() { |
| 3413 | return CaseIt(this, getNumCases()); |
| 3414 | } |
| 3415 | |
| 3416 | /// Returns a read-only iterator that points one past the last in the |
| 3417 | /// SwitchInst. |
| 3418 | ConstCaseIt case_end() const { |
| 3419 | return ConstCaseIt(this, getNumCases()); |
| 3420 | } |
| 3421 | |
| 3422 | /// Iteration adapter for range-for loops. |
| 3423 | iterator_range<CaseIt> cases() { |
| 3424 | return make_range(case_begin(), case_end()); |
| 3425 | } |
| 3426 | |
| 3427 | /// Constant iteration adapter for range-for loops. |
| 3428 | iterator_range<ConstCaseIt> cases() const { |
| 3429 | return make_range(case_begin(), case_end()); |
| 3430 | } |
| 3431 | |
| 3432 | /// Returns an iterator that points to the default case. |
| 3433 | /// Note: this iterator allows to resolve successor only. Attempt |
| 3434 | /// to resolve case value causes an assertion. |
| 3435 | /// Also note, that increment and decrement also causes an assertion and |
| 3436 | /// makes iterator invalid. |
| 3437 | CaseIt case_default() { |
| 3438 | return CaseIt(this, DefaultPseudoIndex); |
| 3439 | } |
| 3440 | ConstCaseIt case_default() const { |
| 3441 | return ConstCaseIt(this, DefaultPseudoIndex); |
| 3442 | } |
| 3443 | |
| 3444 | /// Search all of the case values for the specified constant. If it is |
| 3445 | /// explicitly handled, return the case iterator of it, otherwise return |
| 3446 | /// default case iterator to indicate that it is handled by the default |
| 3447 | /// handler. |
| 3448 | CaseIt findCaseValue(const ConstantInt *C) { |
| 3449 | CaseIt I = llvm::find_if( |
| 3450 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); |
| 3451 | if (I != case_end()) |
| 3452 | return I; |
| 3453 | |
| 3454 | return case_default(); |
| 3455 | } |
| 3456 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
| 3457 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { |
| 3458 | return Case.getCaseValue() == C; |
| 3459 | }); |
| 3460 | if (I != case_end()) |
| 3461 | return I; |
| 3462 | |
| 3463 | return case_default(); |
| 3464 | } |
| 3465 | |
| 3466 | /// Finds the unique case value for a given successor. Returns null if the |
| 3467 | /// successor is not found, not unique, or is the default case. |
| 3468 | ConstantInt *findCaseDest(BasicBlock *BB) { |
| 3469 | if (BB == getDefaultDest()) |
| 3470 | return nullptr; |
| 3471 | |
| 3472 | ConstantInt *CI = nullptr; |
| 3473 | for (auto Case : cases()) { |
| 3474 | if (Case.getCaseSuccessor() != BB) |
| 3475 | continue; |
| 3476 | |
| 3477 | if (CI) |
| 3478 | return nullptr; // Multiple cases lead to BB. |
| 3479 | |
| 3480 | CI = Case.getCaseValue(); |
| 3481 | } |
| 3482 | |
| 3483 | return CI; |
| 3484 | } |
| 3485 | |
| 3486 | /// Add an entry to the switch instruction. |
| 3487 | /// Note: |
| 3488 | /// This action invalidates case_end(). Old case_end() iterator will |
| 3489 | /// point to the added case. |
| 3490 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
| 3491 | |
| 3492 | /// This method removes the specified case and its successor from the switch |
| 3493 | /// instruction. Note that this operation may reorder the remaining cases at |
| 3494 | /// index idx and above. |
| 3495 | /// Note: |
| 3496 | /// This action invalidates iterators for all cases following the one removed, |
| 3497 | /// including the case_end() iterator. It returns an iterator for the next |
| 3498 | /// case. |
| 3499 | CaseIt removeCase(CaseIt I); |
| 3500 | |
| 3501 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
| 3502 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3503 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((void)0); |
| 3504 | return cast<BasicBlock>(getOperand(idx*2+1)); |
| 3505 | } |
| 3506 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3507 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((void)0); |
| 3508 | setOperand(idx * 2 + 1, NewSucc); |
| 3509 | } |
| 3510 | |
| 3511 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3512 | static bool classof(const Instruction *I) { |
| 3513 | return I->getOpcode() == Instruction::Switch; |
| 3514 | } |
| 3515 | static bool classof(const Value *V) { |
| 3516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3517 | } |
| 3518 | }; |
| 3519 | |
| 3520 | /// A wrapper class to simplify modification of SwitchInst cases along with |
| 3521 | /// their prof branch_weights metadata. |
| 3522 | class SwitchInstProfUpdateWrapper { |
| 3523 | SwitchInst &SI; |
| 3524 | Optional<SmallVector<uint32_t, 8> > Weights = None; |
| 3525 | bool Changed = false; |
| 3526 | |
| 3527 | protected: |
| 3528 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); |
| 3529 | |
| 3530 | MDNode *buildProfBranchWeightsMD(); |
| 3531 | |
| 3532 | void init(); |
| 3533 | |
| 3534 | public: |
| 3535 | using CaseWeightOpt = Optional<uint32_t>; |
| 3536 | SwitchInst *operator->() { return &SI; } |
| 3537 | SwitchInst &operator*() { return SI; } |
| 3538 | operator SwitchInst *() { return &SI; } |
| 3539 | |
| 3540 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } |
| 3541 | |
| 3542 | ~SwitchInstProfUpdateWrapper() { |
| 3543 | if (Changed) |
| 3544 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); |
| 3545 | } |
| 3546 | |
| 3547 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove |
| 3548 | /// correspondent branch weight. |
| 3549 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); |
| 3550 | |
| 3551 | /// Delegate the call to the underlying SwitchInst::addCase() and set the |
| 3552 | /// specified branch weight for the added case. |
| 3553 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); |
| 3554 | |
| 3555 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark |
| 3556 | /// this object to not touch the underlying SwitchInst in destructor. |
| 3557 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 3558 | |
| 3559 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); |
| 3560 | CaseWeightOpt getSuccessorWeight(unsigned idx); |
| 3561 | |
| 3562 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); |
| 3563 | }; |
| 3564 | |
| 3565 | template <> |
| 3566 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { |
| 3567 | }; |
| 3568 | |
| 3569 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<SwitchInst>::op_begin(const_cast <SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3570 | |
| 3571 | //===----------------------------------------------------------------------===// |
| 3572 | // IndirectBrInst Class |
| 3573 | //===----------------------------------------------------------------------===// |
| 3574 | |
| 3575 | //===--------------------------------------------------------------------------- |
| 3576 | /// Indirect Branch Instruction. |
| 3577 | /// |
| 3578 | class IndirectBrInst : public Instruction { |
| 3579 | unsigned ReservedSpace; |
| 3580 | |
| 3581 | // Operand[0] = Address to jump to |
| 3582 | // Operand[n+1] = n-th destination |
| 3583 | IndirectBrInst(const IndirectBrInst &IBI); |
| 3584 | |
| 3585 | /// Create a new indirectbr instruction, specifying an |
| 3586 | /// Address to jump to. The number of expected destinations can be specified |
| 3587 | /// here to make memory allocation more efficient. This constructor can also |
| 3588 | /// autoinsert before another instruction. |
| 3589 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); |
| 3590 | |
| 3591 | /// Create a new indirectbr instruction, specifying an |
| 3592 | /// Address to jump to. The number of expected destinations can be specified |
| 3593 | /// here to make memory allocation more efficient. This constructor also |
| 3594 | /// autoinserts at the end of the specified BasicBlock. |
| 3595 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); |
| 3596 | |
| 3597 | // allocate space for exactly zero operands |
| 3598 | void *operator new(size_t S) { return User::operator new(S); } |
| 3599 | |
| 3600 | void init(Value *Address, unsigned NumDests); |
| 3601 | void growOperands(); |
| 3602 | |
| 3603 | protected: |
| 3604 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3605 | friend class Instruction; |
| 3606 | |
| 3607 | IndirectBrInst *cloneImpl() const; |
| 3608 | |
| 3609 | public: |
| 3610 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3611 | |
| 3612 | /// Iterator type that casts an operand to a basic block. |
| 3613 | /// |
| 3614 | /// This only makes sense because the successors are stored as adjacent |
| 3615 | /// operands for indirectbr instructions. |
| 3616 | struct succ_op_iterator |
| 3617 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3618 | std::random_access_iterator_tag, BasicBlock *, |
| 3619 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3620 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3621 | |
| 3622 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3623 | BasicBlock *operator->() const { return operator*(); } |
| 3624 | }; |
| 3625 | |
| 3626 | /// The const version of `succ_op_iterator`. |
| 3627 | struct const_succ_op_iterator |
| 3628 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3629 | std::random_access_iterator_tag, |
| 3630 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3631 | const BasicBlock *> { |
| 3632 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3633 | : iterator_adaptor_base(I) {} |
| 3634 | |
| 3635 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3636 | const BasicBlock *operator->() const { return operator*(); } |
| 3637 | }; |
| 3638 | |
| 3639 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3640 | Instruction *InsertBefore = nullptr) { |
| 3641 | return new IndirectBrInst(Address, NumDests, InsertBefore); |
| 3642 | } |
| 3643 | |
| 3644 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3645 | BasicBlock *InsertAtEnd) { |
| 3646 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); |
| 3647 | } |
| 3648 | |
| 3649 | /// Provide fast operand accessors. |
| 3650 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3651 | |
| 3652 | // Accessor Methods for IndirectBrInst instruction. |
| 3653 | Value *getAddress() { return getOperand(0); } |
| 3654 | const Value *getAddress() const { return getOperand(0); } |
| 3655 | void setAddress(Value *V) { setOperand(0, V); } |
| 3656 | |
| 3657 | /// return the number of possible destinations in this |
| 3658 | /// indirectbr instruction. |
| 3659 | unsigned getNumDestinations() const { return getNumOperands()-1; } |
| 3660 | |
| 3661 | /// Return the specified destination. |
| 3662 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } |
| 3663 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } |
| 3664 | |
| 3665 | /// Add a destination. |
| 3666 | /// |
| 3667 | void addDestination(BasicBlock *Dest); |
| 3668 | |
| 3669 | /// This method removes the specified successor from the |
| 3670 | /// indirectbr instruction. |
| 3671 | void removeDestination(unsigned i); |
| 3672 | |
| 3673 | unsigned getNumSuccessors() const { return getNumOperands()-1; } |
| 3674 | BasicBlock *getSuccessor(unsigned i) const { |
| 3675 | return cast<BasicBlock>(getOperand(i+1)); |
| 3676 | } |
| 3677 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3678 | setOperand(i + 1, NewSucc); |
| 3679 | } |
| 3680 | |
| 3681 | iterator_range<succ_op_iterator> successors() { |
| 3682 | return make_range(succ_op_iterator(std::next(value_op_begin())), |
| 3683 | succ_op_iterator(value_op_end())); |
| 3684 | } |
| 3685 | |
| 3686 | iterator_range<const_succ_op_iterator> successors() const { |
| 3687 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), |
| 3688 | const_succ_op_iterator(value_op_end())); |
| 3689 | } |
| 3690 | |
| 3691 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3692 | static bool classof(const Instruction *I) { |
| 3693 | return I->getOpcode() == Instruction::IndirectBr; |
| 3694 | } |
| 3695 | static bool classof(const Value *V) { |
| 3696 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3697 | } |
| 3698 | }; |
| 3699 | |
| 3700 | template <> |
| 3701 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { |
| 3702 | }; |
| 3703 | |
| 3704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<IndirectBrInst>::op_begin( const_cast<IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<IndirectBrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits <IndirectBrInst>::operands(this); } template <int Idx_nocapture > Use &IndirectBrInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 3705 | |
| 3706 | //===----------------------------------------------------------------------===// |
| 3707 | // InvokeInst Class |
| 3708 | //===----------------------------------------------------------------------===// |
| 3709 | |
| 3710 | /// Invoke instruction. The SubclassData field is used to hold the |
| 3711 | /// calling convention of the call. |
| 3712 | /// |
| 3713 | class InvokeInst : public CallBase { |
| 3714 | /// The number of operands for this call beyond the called function, |
| 3715 | /// arguments, and operand bundles. |
| 3716 | static constexpr int NumExtraOperands = 2; |
| 3717 | |
| 3718 | /// The index from the end of the operand array to the normal destination. |
| 3719 | static constexpr int NormalDestOpEndIdx = -3; |
| 3720 | |
| 3721 | /// The index from the end of the operand array to the unwind destination. |
| 3722 | static constexpr int UnwindDestOpEndIdx = -2; |
| 3723 | |
| 3724 | InvokeInst(const InvokeInst &BI); |
| 3725 | |
| 3726 | /// Construct an InvokeInst given a range of arguments. |
| 3727 | /// |
| 3728 | /// Construct an InvokeInst from a range of arguments |
| 3729 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3730 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3731 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3732 | const Twine &NameStr, Instruction *InsertBefore); |
| 3733 | |
| 3734 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3735 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3736 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3737 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3738 | |
| 3739 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3740 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3741 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3742 | |
| 3743 | /// Compute the number of operands to allocate. |
| 3744 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 3745 | // We need one operand for the called function, plus our extra operands and |
| 3746 | // the input operand counts provided. |
| 3747 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; |
| 3748 | } |
| 3749 | |
| 3750 | protected: |
| 3751 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3752 | friend class Instruction; |
| 3753 | |
| 3754 | InvokeInst *cloneImpl() const; |
| 3755 | |
| 3756 | public: |
| 3757 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3758 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3759 | const Twine &NameStr, |
| 3760 | Instruction *InsertBefore = nullptr) { |
| 3761 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3762 | return new (NumOperands) |
| 3763 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3764 | NameStr, InsertBefore); |
| 3765 | } |
| 3766 | |
| 3767 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3768 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3769 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3770 | const Twine &NameStr = "", |
| 3771 | Instruction *InsertBefore = nullptr) { |
| 3772 | int NumOperands = |
| 3773 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3774 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3775 | |
| 3776 | return new (NumOperands, DescriptorBytes) |
| 3777 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3778 | NameStr, InsertBefore); |
| 3779 | } |
| 3780 | |
| 3781 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3782 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3783 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3784 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3785 | return new (NumOperands) |
| 3786 | InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands, |
| 3787 | NameStr, InsertAtEnd); |
| 3788 | } |
| 3789 | |
| 3790 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3791 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3792 | ArrayRef<OperandBundleDef> Bundles, |
| 3793 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3794 | int NumOperands = |
| 3795 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3796 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3797 | |
| 3798 | return new (NumOperands, DescriptorBytes) |
| 3799 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3800 | NameStr, InsertAtEnd); |
| 3801 | } |
| 3802 | |
| 3803 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3804 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3805 | const Twine &NameStr, |
| 3806 | Instruction *InsertBefore = nullptr) { |
| 3807 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3808 | IfException, Args, None, NameStr, InsertBefore); |
| 3809 | } |
| 3810 | |
| 3811 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3812 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3813 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3814 | const Twine &NameStr = "", |
| 3815 | Instruction *InsertBefore = nullptr) { |
| 3816 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3817 | IfException, Args, Bundles, NameStr, InsertBefore); |
| 3818 | } |
| 3819 | |
| 3820 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3821 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3822 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3823 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3824 | IfException, Args, NameStr, InsertAtEnd); |
| 3825 | } |
| 3826 | |
| 3827 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3828 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3829 | ArrayRef<OperandBundleDef> Bundles, |
| 3830 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3831 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3832 | IfException, Args, Bundles, NameStr, InsertAtEnd); |
| 3833 | } |
| 3834 | |
| 3835 | /// Create a clone of \p II with a different set of operand bundles and |
| 3836 | /// insert it before \p InsertPt. |
| 3837 | /// |
| 3838 | /// The returned invoke instruction is identical to \p II in every way except |
| 3839 | /// that the operand bundles for the new instruction are set to the operand |
| 3840 | /// bundles in \p Bundles. |
| 3841 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, |
| 3842 | Instruction *InsertPt = nullptr); |
| 3843 | |
| 3844 | // get*Dest - Return the destination basic blocks... |
| 3845 | BasicBlock *getNormalDest() const { |
| 3846 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); |
| 3847 | } |
| 3848 | BasicBlock *getUnwindDest() const { |
| 3849 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); |
| 3850 | } |
| 3851 | void setNormalDest(BasicBlock *B) { |
| 3852 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3853 | } |
| 3854 | void setUnwindDest(BasicBlock *B) { |
| 3855 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3856 | } |
| 3857 | |
| 3858 | /// Get the landingpad instruction from the landing pad |
| 3859 | /// block (the unwind destination). |
| 3860 | LandingPadInst *getLandingPadInst() const; |
| 3861 | |
| 3862 | BasicBlock *getSuccessor(unsigned i) const { |
| 3863 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3864 | return i == 0 ? getNormalDest() : getUnwindDest(); |
| 3865 | } |
| 3866 | |
| 3867 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3868 | assert(i < 2 && "Successor # out of range for invoke!")((void)0); |
| 3869 | if (i == 0) |
| 3870 | setNormalDest(NewSucc); |
| 3871 | else |
| 3872 | setUnwindDest(NewSucc); |
| 3873 | } |
| 3874 | |
| 3875 | unsigned getNumSuccessors() const { return 2; } |
| 3876 | |
| 3877 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3878 | static bool classof(const Instruction *I) { |
| 3879 | return (I->getOpcode() == Instruction::Invoke); |
| 3880 | } |
| 3881 | static bool classof(const Value *V) { |
| 3882 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3883 | } |
| 3884 | |
| 3885 | private: |
| 3886 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 3887 | // method so that subclasses cannot accidentally use it. |
| 3888 | template <typename Bitfield> |
| 3889 | void setSubclassData(typename Bitfield::Type Value) { |
| 3890 | Instruction::setSubclassData<Bitfield>(Value); |
| 3891 | } |
| 3892 | }; |
| 3893 | |
| 3894 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3895 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3896 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3897 | const Twine &NameStr, Instruction *InsertBefore) |
| 3898 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3899 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3900 | InsertBefore) { |
| 3901 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3902 | } |
| 3903 | |
| 3904 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3905 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3906 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3907 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 3908 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3909 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3910 | InsertAtEnd) { |
| 3911 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3912 | } |
| 3913 | |
| 3914 | //===----------------------------------------------------------------------===// |
| 3915 | // CallBrInst Class |
| 3916 | //===----------------------------------------------------------------------===// |
| 3917 | |
| 3918 | /// CallBr instruction, tracking function calls that may not return control but |
| 3919 | /// instead transfer it to a third location. The SubclassData field is used to |
| 3920 | /// hold the calling convention of the call. |
| 3921 | /// |
| 3922 | class CallBrInst : public CallBase { |
| 3923 | |
| 3924 | unsigned NumIndirectDests; |
| 3925 | |
| 3926 | CallBrInst(const CallBrInst &BI); |
| 3927 | |
| 3928 | /// Construct a CallBrInst given a range of arguments. |
| 3929 | /// |
| 3930 | /// Construct a CallBrInst from a range of arguments |
| 3931 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3932 | ArrayRef<BasicBlock *> IndirectDests, |
| 3933 | ArrayRef<Value *> Args, |
| 3934 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3935 | const Twine &NameStr, Instruction *InsertBefore); |
| 3936 | |
| 3937 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 3938 | ArrayRef<BasicBlock *> IndirectDests, |
| 3939 | ArrayRef<Value *> Args, |
| 3940 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3941 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3942 | |
| 3943 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, |
| 3944 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
| 3945 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3946 | |
| 3947 | /// Should the Indirect Destinations change, scan + update the Arg list. |
| 3948 | void updateArgBlockAddresses(unsigned i, BasicBlock *B); |
| 3949 | |
| 3950 | /// Compute the number of operands to allocate. |
| 3951 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, |
| 3952 | int NumBundleInputs = 0) { |
| 3953 | // We need one operand for the called function, plus our extra operands and |
| 3954 | // the input operand counts provided. |
| 3955 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; |
| 3956 | } |
| 3957 | |
| 3958 | protected: |
| 3959 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3960 | friend class Instruction; |
| 3961 | |
| 3962 | CallBrInst *cloneImpl() const; |
| 3963 | |
| 3964 | public: |
| 3965 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3966 | BasicBlock *DefaultDest, |
| 3967 | ArrayRef<BasicBlock *> IndirectDests, |
| 3968 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3969 | Instruction *InsertBefore = nullptr) { |
| 3970 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3971 | return new (NumOperands) |
| 3972 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 3973 | NumOperands, NameStr, InsertBefore); |
| 3974 | } |
| 3975 | |
| 3976 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3977 | BasicBlock *DefaultDest, |
| 3978 | ArrayRef<BasicBlock *> IndirectDests, |
| 3979 | ArrayRef<Value *> Args, |
| 3980 | ArrayRef<OperandBundleDef> Bundles = None, |
| 3981 | const Twine &NameStr = "", |
| 3982 | Instruction *InsertBefore = nullptr) { |
| 3983 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 3984 | CountBundleInputs(Bundles)); |
| 3985 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3986 | |
| 3987 | return new (NumOperands, DescriptorBytes) |
| 3988 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 3989 | NumOperands, NameStr, InsertBefore); |
| 3990 | } |
| 3991 | |
| 3992 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 3993 | BasicBlock *DefaultDest, |
| 3994 | ArrayRef<BasicBlock *> IndirectDests, |
| 3995 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 3996 | BasicBlock *InsertAtEnd) { |
| 3997 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 3998 | return new (NumOperands) |
| 3999 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None, |
| 4000 | NumOperands, NameStr, InsertAtEnd); |
| 4001 | } |
| 4002 | |
| 4003 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 4004 | BasicBlock *DefaultDest, |
| 4005 | ArrayRef<BasicBlock *> IndirectDests, |
| 4006 | ArrayRef<Value *> Args, |
| 4007 | ArrayRef<OperandBundleDef> Bundles, |
| 4008 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4009 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 4010 | CountBundleInputs(Bundles)); |
| 4011 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 4012 | |
| 4013 | return new (NumOperands, DescriptorBytes) |
| 4014 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 4015 | NumOperands, NameStr, InsertAtEnd); |
| 4016 | } |
| 4017 | |
| 4018 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4019 | ArrayRef<BasicBlock *> IndirectDests, |
| 4020 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4021 | Instruction *InsertBefore = nullptr) { |
| 4022 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4023 | IndirectDests, Args, NameStr, InsertBefore); |
| 4024 | } |
| 4025 | |
| 4026 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4027 | ArrayRef<BasicBlock *> IndirectDests, |
| 4028 | ArrayRef<Value *> Args, |
| 4029 | ArrayRef<OperandBundleDef> Bundles = None, |
| 4030 | const Twine &NameStr = "", |
| 4031 | Instruction *InsertBefore = nullptr) { |
| 4032 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4033 | IndirectDests, Args, Bundles, NameStr, InsertBefore); |
| 4034 | } |
| 4035 | |
| 4036 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4037 | ArrayRef<BasicBlock *> IndirectDests, |
| 4038 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4039 | BasicBlock *InsertAtEnd) { |
| 4040 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4041 | IndirectDests, Args, NameStr, InsertAtEnd); |
| 4042 | } |
| 4043 | |
| 4044 | static CallBrInst *Create(FunctionCallee Func, |
| 4045 | BasicBlock *DefaultDest, |
| 4046 | ArrayRef<BasicBlock *> IndirectDests, |
| 4047 | ArrayRef<Value *> Args, |
| 4048 | ArrayRef<OperandBundleDef> Bundles, |
| 4049 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4050 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4051 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); |
| 4052 | } |
| 4053 | |
| 4054 | /// Create a clone of \p CBI with a different set of operand bundles and |
| 4055 | /// insert it before \p InsertPt. |
| 4056 | /// |
| 4057 | /// The returned callbr instruction is identical to \p CBI in every way |
| 4058 | /// except that the operand bundles for the new instruction are set to the |
| 4059 | /// operand bundles in \p Bundles. |
| 4060 | static CallBrInst *Create(CallBrInst *CBI, |
| 4061 | ArrayRef<OperandBundleDef> Bundles, |
| 4062 | Instruction *InsertPt = nullptr); |
| 4063 | |
| 4064 | /// Return the number of callbr indirect dest labels. |
| 4065 | /// |
| 4066 | unsigned getNumIndirectDests() const { return NumIndirectDests; } |
| 4067 | |
| 4068 | /// getIndirectDestLabel - Return the i-th indirect dest label. |
| 4069 | /// |
| 4070 | Value *getIndirectDestLabel(unsigned i) const { |
| 4071 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4072 | return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4073 | 1); |
| 4074 | } |
| 4075 | |
| 4076 | Value *getIndirectDestLabelUse(unsigned i) const { |
| 4077 | assert(i < getNumIndirectDests() && "Out of bounds!")((void)0); |
| 4078 | return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() + |
| 4079 | 1); |
| 4080 | } |
| 4081 | |
| 4082 | // Return the destination basic blocks... |
| 4083 | BasicBlock *getDefaultDest() const { |
| 4084 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); |
| 4085 | } |
| 4086 | BasicBlock *getIndirectDest(unsigned i) const { |
| 4087 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); |
| 4088 | } |
| 4089 | SmallVector<BasicBlock *, 16> getIndirectDests() const { |
| 4090 | SmallVector<BasicBlock *, 16> IndirectDests; |
| 4091 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) |
| 4092 | IndirectDests.push_back(getIndirectDest(i)); |
| 4093 | return IndirectDests; |
| 4094 | } |
| 4095 | void setDefaultDest(BasicBlock *B) { |
| 4096 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); |
| 4097 | } |
| 4098 | void setIndirectDest(unsigned i, BasicBlock *B) { |
| 4099 | updateArgBlockAddresses(i, B); |
| 4100 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); |
| 4101 | } |
| 4102 | |
| 4103 | BasicBlock *getSuccessor(unsigned i) const { |
| 4104 | assert(i < getNumSuccessors() + 1 &&((void)0) |
| 4105 | "Successor # out of range for callbr!")((void)0); |
| 4106 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); |
| 4107 | } |
| 4108 | |
| 4109 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 4110 | assert(i < getNumIndirectDests() + 1 &&((void)0) |
| 4111 | "Successor # out of range for callbr!")((void)0); |
| 4112 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); |
| 4113 | } |
| 4114 | |
| 4115 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } |
| 4116 | |
| 4117 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4118 | static bool classof(const Instruction *I) { |
| 4119 | return (I->getOpcode() == Instruction::CallBr); |
| 4120 | } |
| 4121 | static bool classof(const Value *V) { |
| 4122 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4123 | } |
| 4124 | |
| 4125 | private: |
| 4126 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4127 | // method so that subclasses cannot accidentally use it. |
| 4128 | template <typename Bitfield> |
| 4129 | void setSubclassData(typename Bitfield::Type Value) { |
| 4130 | Instruction::setSubclassData<Bitfield>(Value); |
| 4131 | } |
| 4132 | }; |
| 4133 | |
| 4134 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4135 | ArrayRef<BasicBlock *> IndirectDests, |
| 4136 | ArrayRef<Value *> Args, |
| 4137 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4138 | const Twine &NameStr, Instruction *InsertBefore) |
| 4139 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4140 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4141 | InsertBefore) { |
| 4142 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4143 | } |
| 4144 | |
| 4145 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4146 | ArrayRef<BasicBlock *> IndirectDests, |
| 4147 | ArrayRef<Value *> Args, |
| 4148 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4149 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 4150 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4151 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4152 | InsertAtEnd) { |
| 4153 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4154 | } |
| 4155 | |
| 4156 | //===----------------------------------------------------------------------===// |
| 4157 | // ResumeInst Class |
| 4158 | //===----------------------------------------------------------------------===// |
| 4159 | |
| 4160 | //===--------------------------------------------------------------------------- |
| 4161 | /// Resume the propagation of an exception. |
| 4162 | /// |
| 4163 | class ResumeInst : public Instruction { |
| 4164 | ResumeInst(const ResumeInst &RI); |
| 4165 | |
| 4166 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); |
| 4167 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); |
| 4168 | |
| 4169 | protected: |
| 4170 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4171 | friend class Instruction; |
| 4172 | |
| 4173 | ResumeInst *cloneImpl() const; |
| 4174 | |
| 4175 | public: |
| 4176 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { |
| 4177 | return new(1) ResumeInst(Exn, InsertBefore); |
| 4178 | } |
| 4179 | |
| 4180 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { |
| 4181 | return new(1) ResumeInst(Exn, InsertAtEnd); |
| 4182 | } |
| 4183 | |
| 4184 | /// Provide fast operand accessors |
| 4185 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4186 | |
| 4187 | /// Convenience accessor. |
| 4188 | Value *getValue() const { return Op<0>(); } |
| 4189 | |
| 4190 | unsigned getNumSuccessors() const { return 0; } |
| 4191 | |
| 4192 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4193 | static bool classof(const Instruction *I) { |
| 4194 | return I->getOpcode() == Instruction::Resume; |
| 4195 | } |
| 4196 | static bool classof(const Value *V) { |
| 4197 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4198 | } |
| 4199 | |
| 4200 | private: |
| 4201 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4202 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4203 | } |
| 4204 | |
| 4205 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 4206 | llvm_unreachable("ResumeInst has no successors!")__builtin_unreachable(); |
| 4207 | } |
| 4208 | }; |
| 4209 | |
| 4210 | template <> |
| 4211 | struct OperandTraits<ResumeInst> : |
| 4212 | public FixedNumOperandTraits<ResumeInst, 1> { |
| 4213 | }; |
| 4214 | |
| 4215 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<ResumeInst>::op_begin(const_cast <ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( void)0); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 4216 | |
| 4217 | //===----------------------------------------------------------------------===// |
| 4218 | // CatchSwitchInst Class |
| 4219 | //===----------------------------------------------------------------------===// |
| 4220 | class CatchSwitchInst : public Instruction { |
| 4221 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4222 | |
| 4223 | /// The number of operands actually allocated. NumOperands is |
| 4224 | /// the number actually in use. |
| 4225 | unsigned ReservedSpace; |
| 4226 | |
| 4227 | // Operand[0] = Outer scope |
| 4228 | // Operand[1] = Unwind block destination |
| 4229 | // Operand[n] = BasicBlock to go to on match |
| 4230 | CatchSwitchInst(const CatchSwitchInst &CSI); |
| 4231 | |
| 4232 | /// Create a new switch instruction, specifying a |
| 4233 | /// default destination. The number of additional handlers can be specified |
| 4234 | /// here to make memory allocation more efficient. |
| 4235 | /// This constructor can also autoinsert before another instruction. |
| 4236 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4237 | unsigned NumHandlers, const Twine &NameStr, |
| 4238 | Instruction *InsertBefore); |
| 4239 | |
| 4240 | /// Create a new switch instruction, specifying a |
| 4241 | /// default destination. The number of additional handlers can be specified |
| 4242 | /// here to make memory allocation more efficient. |
| 4243 | /// This constructor also autoinserts at the end of the specified BasicBlock. |
| 4244 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4245 | unsigned NumHandlers, const Twine &NameStr, |
| 4246 | BasicBlock *InsertAtEnd); |
| 4247 | |
| 4248 | // allocate space for exactly zero operands |
| 4249 | void *operator new(size_t S) { return User::operator new(S); } |
| 4250 | |
| 4251 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); |
| 4252 | void growOperands(unsigned Size); |
| 4253 | |
| 4254 | protected: |
| 4255 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4256 | friend class Instruction; |
| 4257 | |
| 4258 | CatchSwitchInst *cloneImpl() const; |
| 4259 | |
| 4260 | public: |
| 4261 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 4262 | |
| 4263 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4264 | unsigned NumHandlers, |
| 4265 | const Twine &NameStr = "", |
| 4266 | Instruction *InsertBefore = nullptr) { |
| 4267 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4268 | InsertBefore); |
| 4269 | } |
| 4270 | |
| 4271 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4272 | unsigned NumHandlers, const Twine &NameStr, |
| 4273 | BasicBlock *InsertAtEnd) { |
| 4274 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4275 | InsertAtEnd); |
| 4276 | } |
| 4277 | |
| 4278 | /// Provide fast operand accessors |
| 4279 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4280 | |
| 4281 | // Accessor Methods for CatchSwitch stmt |
| 4282 | Value *getParentPad() const { return getOperand(0); } |
| 4283 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } |
| 4284 | |
| 4285 | // Accessor Methods for CatchSwitch stmt |
| 4286 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4287 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4288 | BasicBlock *getUnwindDest() const { |
| 4289 | if (hasUnwindDest()) |
| 4290 | return cast<BasicBlock>(getOperand(1)); |
| 4291 | return nullptr; |
| 4292 | } |
| 4293 | void setUnwindDest(BasicBlock *UnwindDest) { |
| 4294 | assert(UnwindDest)((void)0); |
| 4295 | assert(hasUnwindDest())((void)0); |
| 4296 | setOperand(1, UnwindDest); |
| 4297 | } |
| 4298 | |
| 4299 | /// return the number of 'handlers' in this catchswitch |
| 4300 | /// instruction, except the default handler |
| 4301 | unsigned getNumHandlers() const { |
| 4302 | if (hasUnwindDest()) |
| 4303 | return getNumOperands() - 2; |
| 4304 | return getNumOperands() - 1; |
| 4305 | } |
| 4306 | |
| 4307 | private: |
| 4308 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } |
| 4309 | static const BasicBlock *handler_helper(const Value *V) { |
| 4310 | return cast<BasicBlock>(V); |
| 4311 | } |
| 4312 | |
| 4313 | public: |
| 4314 | using DerefFnTy = BasicBlock *(*)(Value *); |
| 4315 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; |
| 4316 | using handler_range = iterator_range<handler_iterator>; |
| 4317 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); |
| 4318 | using const_handler_iterator = |
| 4319 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; |
| 4320 | using const_handler_range = iterator_range<const_handler_iterator>; |
| 4321 | |
| 4322 | /// Returns an iterator that points to the first handler in CatchSwitchInst. |
| 4323 | handler_iterator handler_begin() { |
| 4324 | op_iterator It = op_begin() + 1; |
| 4325 | if (hasUnwindDest()) |
| 4326 | ++It; |
| 4327 | return handler_iterator(It, DerefFnTy(handler_helper)); |
| 4328 | } |
| 4329 | |
| 4330 | /// Returns an iterator that points to the first handler in the |
| 4331 | /// CatchSwitchInst. |
| 4332 | const_handler_iterator handler_begin() const { |
| 4333 | const_op_iterator It = op_begin() + 1; |
| 4334 | if (hasUnwindDest()) |
| 4335 | ++It; |
| 4336 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); |
| 4337 | } |
| 4338 | |
| 4339 | /// Returns a read-only iterator that points one past the last |
| 4340 | /// handler in the CatchSwitchInst. |
| 4341 | handler_iterator handler_end() { |
| 4342 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); |
| 4343 | } |
| 4344 | |
| 4345 | /// Returns an iterator that points one past the last handler in the |
| 4346 | /// CatchSwitchInst. |
| 4347 | const_handler_iterator handler_end() const { |
| 4348 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); |
| 4349 | } |
| 4350 | |
| 4351 | /// iteration adapter for range-for loops. |
| 4352 | handler_range handlers() { |
| 4353 | return make_range(handler_begin(), handler_end()); |
| 4354 | } |
| 4355 | |
| 4356 | /// iteration adapter for range-for loops. |
| 4357 | const_handler_range handlers() const { |
| 4358 | return make_range(handler_begin(), handler_end()); |
| 4359 | } |
| 4360 | |
| 4361 | /// Add an entry to the switch instruction... |
| 4362 | /// Note: |
| 4363 | /// This action invalidates handler_end(). Old handler_end() iterator will |
| 4364 | /// point to the added handler. |
| 4365 | void addHandler(BasicBlock *Dest); |
| 4366 | |
| 4367 | void removeHandler(handler_iterator HI); |
| 4368 | |
| 4369 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } |
| 4370 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4371 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4372 | "Successor # out of range for catchswitch!")((void)0); |
| 4373 | return cast<BasicBlock>(getOperand(Idx + 1)); |
| 4374 | } |
| 4375 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { |
| 4376 | assert(Idx < getNumSuccessors() &&((void)0) |
| 4377 | "Successor # out of range for catchswitch!")((void)0); |
| 4378 | setOperand(Idx + 1, NewSucc); |
| 4379 | } |
| 4380 | |
| 4381 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4382 | static bool classof(const Instruction *I) { |
| 4383 | return I->getOpcode() == Instruction::CatchSwitch; |
| 4384 | } |
| 4385 | static bool classof(const Value *V) { |
| 4386 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4387 | } |
| 4388 | }; |
| 4389 | |
| 4390 | template <> |
| 4391 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; |
| 4392 | |
| 4393 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchSwitchInst>::op_begin (const_cast<CatchSwitchInst*>(this))[i_nocapture].get() ); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchSwitchInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands() const { return OperandTraits <CatchSwitchInst>::operands(this); } template <int Idx_nocapture > Use &CatchSwitchInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4394 | |
| 4395 | //===----------------------------------------------------------------------===// |
| 4396 | // CleanupPadInst Class |
| 4397 | //===----------------------------------------------------------------------===// |
| 4398 | class CleanupPadInst : public FuncletPadInst { |
| 4399 | private: |
| 4400 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4401 | unsigned Values, const Twine &NameStr, |
| 4402 | Instruction *InsertBefore) |
| 4403 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4404 | NameStr, InsertBefore) {} |
| 4405 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4406 | unsigned Values, const Twine &NameStr, |
| 4407 | BasicBlock *InsertAtEnd) |
| 4408 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4409 | NameStr, InsertAtEnd) {} |
| 4410 | |
| 4411 | public: |
| 4412 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, |
| 4413 | const Twine &NameStr = "", |
| 4414 | Instruction *InsertBefore = nullptr) { |
| 4415 | unsigned Values = 1 + Args.size(); |
| 4416 | return new (Values) |
| 4417 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); |
| 4418 | } |
| 4419 | |
| 4420 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, |
| 4421 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4422 | unsigned Values = 1 + Args.size(); |
| 4423 | return new (Values) |
| 4424 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); |
| 4425 | } |
| 4426 | |
| 4427 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4428 | static bool classof(const Instruction *I) { |
| 4429 | return I->getOpcode() == Instruction::CleanupPad; |
| 4430 | } |
| 4431 | static bool classof(const Value *V) { |
| 4432 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4433 | } |
| 4434 | }; |
| 4435 | |
| 4436 | //===----------------------------------------------------------------------===// |
| 4437 | // CatchPadInst Class |
| 4438 | //===----------------------------------------------------------------------===// |
| 4439 | class CatchPadInst : public FuncletPadInst { |
| 4440 | private: |
| 4441 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4442 | unsigned Values, const Twine &NameStr, |
| 4443 | Instruction *InsertBefore) |
| 4444 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4445 | NameStr, InsertBefore) {} |
| 4446 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4447 | unsigned Values, const Twine &NameStr, |
| 4448 | BasicBlock *InsertAtEnd) |
| 4449 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4450 | NameStr, InsertAtEnd) {} |
| 4451 | |
| 4452 | public: |
| 4453 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4454 | const Twine &NameStr = "", |
| 4455 | Instruction *InsertBefore = nullptr) { |
| 4456 | unsigned Values = 1 + Args.size(); |
| 4457 | return new (Values) |
| 4458 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); |
| 4459 | } |
| 4460 | |
| 4461 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4462 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4463 | unsigned Values = 1 + Args.size(); |
| 4464 | return new (Values) |
| 4465 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); |
| 4466 | } |
| 4467 | |
| 4468 | /// Convenience accessors |
| 4469 | CatchSwitchInst *getCatchSwitch() const { |
| 4470 | return cast<CatchSwitchInst>(Op<-1>()); |
| 4471 | } |
| 4472 | void setCatchSwitch(Value *CatchSwitch) { |
| 4473 | assert(CatchSwitch)((void)0); |
| 4474 | Op<-1>() = CatchSwitch; |
| 4475 | } |
| 4476 | |
| 4477 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4478 | static bool classof(const Instruction *I) { |
| 4479 | return I->getOpcode() == Instruction::CatchPad; |
| 4480 | } |
| 4481 | static bool classof(const Value *V) { |
| 4482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4483 | } |
| 4484 | }; |
| 4485 | |
| 4486 | //===----------------------------------------------------------------------===// |
| 4487 | // CatchReturnInst Class |
| 4488 | //===----------------------------------------------------------------------===// |
| 4489 | |
| 4490 | class CatchReturnInst : public Instruction { |
| 4491 | CatchReturnInst(const CatchReturnInst &RI); |
| 4492 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); |
| 4493 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); |
| 4494 | |
| 4495 | void init(Value *CatchPad, BasicBlock *BB); |
| 4496 | |
| 4497 | protected: |
| 4498 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4499 | friend class Instruction; |
| 4500 | |
| 4501 | CatchReturnInst *cloneImpl() const; |
| 4502 | |
| 4503 | public: |
| 4504 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4505 | Instruction *InsertBefore = nullptr) { |
| 4506 | assert(CatchPad)((void)0); |
| 4507 | assert(BB)((void)0); |
| 4508 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); |
| 4509 | } |
| 4510 | |
| 4511 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4512 | BasicBlock *InsertAtEnd) { |
| 4513 | assert(CatchPad)((void)0); |
| 4514 | assert(BB)((void)0); |
| 4515 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); |
| 4516 | } |
| 4517 | |
| 4518 | /// Provide fast operand accessors |
| 4519 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4520 | |
| 4521 | /// Convenience accessors. |
| 4522 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } |
| 4523 | void setCatchPad(CatchPadInst *CatchPad) { |
| 4524 | assert(CatchPad)((void)0); |
| 4525 | Op<0>() = CatchPad; |
| 4526 | } |
| 4527 | |
| 4528 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } |
| 4529 | void setSuccessor(BasicBlock *NewSucc) { |
| 4530 | assert(NewSucc)((void)0); |
| 4531 | Op<1>() = NewSucc; |
| 4532 | } |
| 4533 | unsigned getNumSuccessors() const { return 1; } |
| 4534 | |
| 4535 | /// Get the parentPad of this catchret's catchpad's catchswitch. |
| 4536 | /// The successor block is implicitly a member of this funclet. |
| 4537 | Value *getCatchSwitchParentPad() const { |
| 4538 | return getCatchPad()->getCatchSwitch()->getParentPad(); |
| 4539 | } |
| 4540 | |
| 4541 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4542 | static bool classof(const Instruction *I) { |
| 4543 | return (I->getOpcode() == Instruction::CatchRet); |
| 4544 | } |
| 4545 | static bool classof(const Value *V) { |
| 4546 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4547 | } |
| 4548 | |
| 4549 | private: |
| 4550 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4551 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4552 | return getSuccessor(); |
| 4553 | } |
| 4554 | |
| 4555 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4556 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((void)0); |
| 4557 | setSuccessor(B); |
| 4558 | } |
| 4559 | }; |
| 4560 | |
| 4561 | template <> |
| 4562 | struct OperandTraits<CatchReturnInst> |
| 4563 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; |
| 4564 | |
| 4565 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null <Value>( OperandTraits<CatchReturnInst>::op_begin (const_cast<CatchReturnInst*>(this))[i_nocapture].get() ); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void)0); OperandTraits<CatchReturnInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands() const { return OperandTraits <CatchReturnInst>::operands(this); } template <int Idx_nocapture > Use &CatchReturnInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
| 4566 | |
| 4567 | //===----------------------------------------------------------------------===// |
| 4568 | // CleanupReturnInst Class |
| 4569 | //===----------------------------------------------------------------------===// |
| 4570 | |
| 4571 | class CleanupReturnInst : public Instruction { |
| 4572 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4573 | |
| 4574 | private: |
| 4575 | CleanupReturnInst(const CleanupReturnInst &RI); |
| 4576 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4577 | Instruction *InsertBefore = nullptr); |
| 4578 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4579 | BasicBlock *InsertAtEnd); |
| 4580 | |
| 4581 | void init(Value *CleanupPad, BasicBlock *UnwindBB); |
| 4582 | |
| 4583 | protected: |
| 4584 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4585 | friend class Instruction; |
| 4586 | |
| 4587 | CleanupReturnInst *cloneImpl() const; |
| 4588 | |
| 4589 | public: |
| 4590 | static CleanupReturnInst *Create(Value *CleanupPad, |
| 4591 | BasicBlock *UnwindBB = nullptr, |
| 4592 | Instruction *InsertBefore = nullptr) { |
| 4593 | assert(CleanupPad)((void)0); |
| 4594 | unsigned Values = 1; |
| 4595 | if (UnwindBB) |
| 4596 | ++Values; |
| 4597 | return new (Values) |
| 4598 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); |
| 4599 | } |
| 4600 | |
| 4601 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, |
| 4602 | BasicBlock *InsertAtEnd) { |
| 4603 | assert(CleanupPad)((void)0); |
| 4604 | unsigned Values = 1; |
| 4605 | if (UnwindBB) |
| 4606 | ++Values; |
| 4607 | return new (Values) |
| 4608 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); |
| 4609 | } |
| 4610 | |
| 4611 | /// Provide fast operand accessors |
| 4612 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4613 | |
| 4614 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4615 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4616 | |
| 4617 | /// Convenience accessor. |
| 4618 | CleanupPadInst *getCleanupPad() const { |
| 4619 | return cast<CleanupPadInst>(Op<0>()); |
| 4620 | } |
| 4621 | void setCleanupPad(CleanupPadInst *CleanupPad) { |
| 4622 | assert(CleanupPad)((void)0); |
| 4623 | Op<0>() = CleanupPad; |
| 4624 | } |
| 4625 | |
| 4626 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } |
| 4627 | |
| 4628 | BasicBlock *getUnwindDest() const { |
| 4629 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; |
| 4630 | } |
| 4631 | void setUnwindDest(BasicBlock *NewDest) { |
| 4632 | assert(NewDest)((void)0); |
| 4633 | assert(hasUnwindDest())((void)0); |
| 4634 | Op<1>() = NewDest; |
| 4635 | } |
| 4636 | |
| 4637 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4638 | static bool classof(const Instruction *I) { |
| 4639 | return (I->getOpcode() == Instruction::CleanupRet); |
| 4640 | } |
| 4641 | static bool classof(const Value *V) { |
| 4642 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4643 | } |
| 4644 | |
| 4645 | private: |
| 4646 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4647 | assert(Idx == 0)((void)0); |
| 4648 | return getUnwindDest(); |
| 4649 | } |
| 4650 | |
| 4651 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4652 | assert(Idx == 0)((void)0); |
| 4653 | setUnwindDest(B); |
| 4654 | } |
| 4655 | |
| 4656 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4657 | // method so that subclasses cannot accidentally use it. |
| 4658 | template <typename Bitfield> |
| 4659 | void setSubclassData(typename Bitfield::Type Value) { |
| 4660 | Instruction::setSubclassData<Bitfield>(Value); |
| 4661 | } |
| 4662 | }; |
| 4663 | |
| 4664 | template <> |
| 4665 | struct OperandTraits<CleanupReturnInst> |
| 4666 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; |
| 4667 | |
| 4668 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> ::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst ::op_iterator CleanupReturnInst::op_end() { return OperandTraits <CleanupReturnInst>::op_end(this); } CleanupReturnInst:: const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits <CleanupReturnInst>::op_end(const_cast<CleanupReturnInst *>(this)); } Value *CleanupReturnInst::getOperand(unsigned i_nocapture) const { ((void)0); return cast_or_null<Value >( OperandTraits<CleanupReturnInst>::op_begin(const_cast <CleanupReturnInst*>(this))[i_nocapture].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((void)0); OperandTraits<CleanupReturnInst>::op_begin (this)[i_nocapture] = Val_nocapture; } unsigned CleanupReturnInst ::getNumOperands() const { return OperandTraits<CleanupReturnInst >::operands(this); } template <int Idx_nocapture> Use &CleanupReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & CleanupReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
| 4669 | |
| 4670 | //===----------------------------------------------------------------------===// |
| 4671 | // UnreachableInst Class |
| 4672 | //===----------------------------------------------------------------------===// |
| 4673 | |
| 4674 | //===--------------------------------------------------------------------------- |
| 4675 | /// This function has undefined behavior. In particular, the |
| 4676 | /// presence of this instruction indicates some higher level knowledge that the |
| 4677 | /// end of the block cannot be reached. |
| 4678 | /// |
| 4679 | class UnreachableInst : public Instruction { |
| 4680 | protected: |
| 4681 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4682 | friend class Instruction; |
| 4683 | |
| 4684 | UnreachableInst *cloneImpl() const; |
| 4685 | |
| 4686 | public: |
| 4687 | explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); |
| 4688 | explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 4689 | |
| 4690 | // allocate space for exactly zero operands |
| 4691 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 4692 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 4693 | |
| 4694 | unsigned getNumSuccessors() const { return 0; } |
| 4695 | |
| 4696 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4697 | static bool classof(const Instruction *I) { |
| 4698 | return I->getOpcode() == Instruction::Unreachable; |
| 4699 | } |
| 4700 | static bool classof(const Value *V) { |
| 4701 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4702 | } |
| 4703 | |
| 4704 | private: |
| 4705 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4706 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4707 | } |
| 4708 | |
| 4709 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 4710 | llvm_unreachable("UnreachableInst has no successors!")__builtin_unreachable(); |
| 4711 | } |
| 4712 | }; |
| 4713 | |
| 4714 | //===----------------------------------------------------------------------===// |
| 4715 | // TruncInst Class |
| 4716 | //===----------------------------------------------------------------------===// |
| 4717 | |
| 4718 | /// This class represents a truncation of integer types. |
| 4719 | class TruncInst : public CastInst { |
| 4720 | protected: |
| 4721 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4722 | friend class Instruction; |
| 4723 | |
| 4724 | /// Clone an identical TruncInst |
| 4725 | TruncInst *cloneImpl() const; |
| 4726 | |
| 4727 | public: |
| 4728 | /// Constructor with insert-before-instruction semantics |
| 4729 | TruncInst( |
| 4730 | Value *S, ///< The value to be truncated |
| 4731 | Type *Ty, ///< The (smaller) type to truncate to |
| 4732 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4733 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4734 | ); |
| 4735 | |
| 4736 | /// Constructor with insert-at-end-of-block semantics |
| 4737 | TruncInst( |
| 4738 | Value *S, ///< The value to be truncated |
| 4739 | Type *Ty, ///< The (smaller) type to truncate to |
| 4740 | const Twine &NameStr, ///< A name for the new instruction |
| 4741 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4742 | ); |
| 4743 | |
| 4744 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4745 | static bool classof(const Instruction *I) { |
| 4746 | return I->getOpcode() == Trunc; |
| 4747 | } |
| 4748 | static bool classof(const Value *V) { |
| 4749 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4750 | } |
| 4751 | }; |
| 4752 | |
| 4753 | //===----------------------------------------------------------------------===// |
| 4754 | // ZExtInst Class |
| 4755 | //===----------------------------------------------------------------------===// |
| 4756 | |
| 4757 | /// This class represents zero extension of integer types. |
| 4758 | class ZExtInst : public CastInst { |
| 4759 | protected: |
| 4760 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4761 | friend class Instruction; |
| 4762 | |
| 4763 | /// Clone an identical ZExtInst |
| 4764 | ZExtInst *cloneImpl() const; |
| 4765 | |
| 4766 | public: |
| 4767 | /// Constructor with insert-before-instruction semantics |
| 4768 | ZExtInst( |
| 4769 | Value *S, ///< The value to be zero extended |
| 4770 | Type *Ty, ///< The type to zero extend to |
| 4771 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4772 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4773 | ); |
| 4774 | |
| 4775 | /// Constructor with insert-at-end semantics. |
| 4776 | ZExtInst( |
| 4777 | Value *S, ///< The value to be zero extended |
| 4778 | Type *Ty, ///< The type to zero extend to |
| 4779 | const Twine &NameStr, ///< A name for the new instruction |
| 4780 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4781 | ); |
| 4782 | |
| 4783 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4784 | static bool classof(const Instruction *I) { |
| 4785 | return I->getOpcode() == ZExt; |
| 4786 | } |
| 4787 | static bool classof(const Value *V) { |
| 4788 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4789 | } |
| 4790 | }; |
| 4791 | |
| 4792 | //===----------------------------------------------------------------------===// |
| 4793 | // SExtInst Class |
| 4794 | //===----------------------------------------------------------------------===// |
| 4795 | |
| 4796 | /// This class represents a sign extension of integer types. |
| 4797 | class SExtInst : public CastInst { |
| 4798 | protected: |
| 4799 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4800 | friend class Instruction; |
| 4801 | |
| 4802 | /// Clone an identical SExtInst |
| 4803 | SExtInst *cloneImpl() const; |
| 4804 | |
| 4805 | public: |
| 4806 | /// Constructor with insert-before-instruction semantics |
| 4807 | SExtInst( |
| 4808 | Value *S, ///< The value to be sign extended |
| 4809 | Type *Ty, ///< The type to sign extend to |
| 4810 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4811 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4812 | ); |
| 4813 | |
| 4814 | /// Constructor with insert-at-end-of-block semantics |
| 4815 | SExtInst( |
| 4816 | Value *S, ///< The value to be sign extended |
| 4817 | Type *Ty, ///< The type to sign extend to |
| 4818 | const Twine &NameStr, ///< A name for the new instruction |
| 4819 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4820 | ); |
| 4821 | |
| 4822 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4823 | static bool classof(const Instruction *I) { |
| 4824 | return I->getOpcode() == SExt; |
| 4825 | } |
| 4826 | static bool classof(const Value *V) { |
| 4827 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4828 | } |
| 4829 | }; |
| 4830 | |
| 4831 | //===----------------------------------------------------------------------===// |
| 4832 | // FPTruncInst Class |
| 4833 | //===----------------------------------------------------------------------===// |
| 4834 | |
| 4835 | /// This class represents a truncation of floating point types. |
| 4836 | class FPTruncInst : public CastInst { |
| 4837 | protected: |
| 4838 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4839 | friend class Instruction; |
| 4840 | |
| 4841 | /// Clone an identical FPTruncInst |
| 4842 | FPTruncInst *cloneImpl() const; |
| 4843 | |
| 4844 | public: |
| 4845 | /// Constructor with insert-before-instruction semantics |
| 4846 | FPTruncInst( |
| 4847 | Value *S, ///< The value to be truncated |
| 4848 | Type *Ty, ///< The type to truncate to |
| 4849 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4850 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4851 | ); |
| 4852 | |
| 4853 | /// Constructor with insert-before-instruction semantics |
| 4854 | FPTruncInst( |
| 4855 | Value *S, ///< The value to be truncated |
| 4856 | Type *Ty, ///< The type to truncate to |
| 4857 | const Twine &NameStr, ///< A name for the new instruction |
| 4858 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4859 | ); |
| 4860 | |
| 4861 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4862 | static bool classof(const Instruction *I) { |
| 4863 | return I->getOpcode() == FPTrunc; |
| 4864 | } |
| 4865 | static bool classof(const Value *V) { |
| 4866 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4867 | } |
| 4868 | }; |
| 4869 | |
| 4870 | //===----------------------------------------------------------------------===// |
| 4871 | // FPExtInst Class |
| 4872 | //===----------------------------------------------------------------------===// |
| 4873 | |
| 4874 | /// This class represents an extension of floating point types. |
| 4875 | class FPExtInst : public CastInst { |
| 4876 | protected: |
| 4877 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4878 | friend class Instruction; |
| 4879 | |
| 4880 | /// Clone an identical FPExtInst |
| 4881 | FPExtInst *cloneImpl() const; |
| 4882 | |
| 4883 | public: |
| 4884 | /// Constructor with insert-before-instruction semantics |
| 4885 | FPExtInst( |
| 4886 | Value *S, ///< The value to be extended |
| 4887 | Type *Ty, ///< The type to extend to |
| 4888 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4889 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4890 | ); |
| 4891 | |
| 4892 | /// Constructor with insert-at-end-of-block semantics |
| 4893 | FPExtInst( |
| 4894 | Value *S, ///< The value to be extended |
| 4895 | Type *Ty, ///< The type to extend to |
| 4896 | const Twine &NameStr, ///< A name for the new instruction |
| 4897 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4898 | ); |
| 4899 | |
| 4900 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4901 | static bool classof(const Instruction *I) { |
| 4902 | return I->getOpcode() == FPExt; |
| 4903 | } |
| 4904 | static bool classof(const Value *V) { |
| 4905 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4906 | } |
| 4907 | }; |
| 4908 | |
| 4909 | //===----------------------------------------------------------------------===// |
| 4910 | // UIToFPInst Class |
| 4911 | //===----------------------------------------------------------------------===// |
| 4912 | |
| 4913 | /// This class represents a cast unsigned integer to floating point. |
| 4914 | class UIToFPInst : public CastInst { |
| 4915 | protected: |
| 4916 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4917 | friend class Instruction; |
| 4918 | |
| 4919 | /// Clone an identical UIToFPInst |
| 4920 | UIToFPInst *cloneImpl() const; |
| 4921 | |
| 4922 | public: |
| 4923 | /// Constructor with insert-before-instruction semantics |
| 4924 | UIToFPInst( |
| 4925 | Value *S, ///< The value to be converted |
| 4926 | Type *Ty, ///< The type to convert to |
| 4927 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4928 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4929 | ); |
| 4930 | |
| 4931 | /// Constructor with insert-at-end-of-block semantics |
| 4932 | UIToFPInst( |
| 4933 | Value *S, ///< The value to be converted |
| 4934 | Type *Ty, ///< The type to convert to |
| 4935 | const Twine &NameStr, ///< A name for the new instruction |
| 4936 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4937 | ); |
| 4938 | |
| 4939 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4940 | static bool classof(const Instruction *I) { |
| 4941 | return I->getOpcode() == UIToFP; |
| 4942 | } |
| 4943 | static bool classof(const Value *V) { |
| 4944 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4945 | } |
| 4946 | }; |
| 4947 | |
| 4948 | //===----------------------------------------------------------------------===// |
| 4949 | // SIToFPInst Class |
| 4950 | //===----------------------------------------------------------------------===// |
| 4951 | |
| 4952 | /// This class represents a cast from signed integer to floating point. |
| 4953 | class SIToFPInst : public CastInst { |
| 4954 | protected: |
| 4955 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4956 | friend class Instruction; |
| 4957 | |
| 4958 | /// Clone an identical SIToFPInst |
| 4959 | SIToFPInst *cloneImpl() const; |
| 4960 | |
| 4961 | public: |
| 4962 | /// Constructor with insert-before-instruction semantics |
| 4963 | SIToFPInst( |
| 4964 | Value *S, ///< The value to be converted |
| 4965 | Type *Ty, ///< The type to convert to |
| 4966 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4967 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4968 | ); |
| 4969 | |
| 4970 | /// Constructor with insert-at-end-of-block semantics |
| 4971 | SIToFPInst( |
| 4972 | Value *S, ///< The value to be converted |
| 4973 | Type *Ty, ///< The type to convert to |
| 4974 | const Twine &NameStr, ///< A name for the new instruction |
| 4975 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4976 | ); |
| 4977 | |
| 4978 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4979 | static bool classof(const Instruction *I) { |
| 4980 | return I->getOpcode() == SIToFP; |
| 4981 | } |
| 4982 | static bool classof(const Value *V) { |
| 4983 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4984 | } |
| 4985 | }; |
| 4986 | |
| 4987 | //===----------------------------------------------------------------------===// |
| 4988 | // FPToUIInst Class |
| 4989 | //===----------------------------------------------------------------------===// |
| 4990 | |
| 4991 | /// This class represents a cast from floating point to unsigned integer |
| 4992 | class FPToUIInst : public CastInst { |
| 4993 | protected: |
| 4994 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4995 | friend class Instruction; |
| 4996 | |
| 4997 | /// Clone an identical FPToUIInst |
| 4998 | FPToUIInst *cloneImpl() const; |
| 4999 | |
| 5000 | public: |
| 5001 | /// Constructor with insert-before-instruction semantics |
| 5002 | FPToUIInst( |
| 5003 | Value *S, ///< The value to be converted |
| 5004 | Type *Ty, ///< The type to convert to |
| 5005 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5006 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5007 | ); |
| 5008 | |
| 5009 | /// Constructor with insert-at-end-of-block semantics |
| 5010 | FPToUIInst( |
| 5011 | Value *S, ///< The value to be converted |
| 5012 | Type *Ty, ///< The type to convert to |
| 5013 | const Twine &NameStr, ///< A name for the new instruction |
| 5014 | BasicBlock *InsertAtEnd ///< Where to insert the new instruction |
| 5015 | ); |
| 5016 | |
| 5017 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5018 | static bool classof(const Instruction *I) { |
| 5019 | return I->getOpcode() == FPToUI; |
| 5020 | } |
| 5021 | static bool classof(const Value *V) { |
| 5022 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5023 | } |
| 5024 | }; |
| 5025 | |
| 5026 | //===----------------------------------------------------------------------===// |
| 5027 | // FPToSIInst Class |
| 5028 | //===----------------------------------------------------------------------===// |
| 5029 | |
| 5030 | /// This class represents a cast from floating point to signed integer. |
| 5031 | class FPToSIInst : public CastInst { |
| 5032 | protected: |
| 5033 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5034 | friend class Instruction; |
| 5035 | |
| 5036 | /// Clone an identical FPToSIInst |
| 5037 | FPToSIInst *cloneImpl() const; |
| 5038 | |
| 5039 | public: |
| 5040 | /// Constructor with insert-before-instruction semantics |
| 5041 | FPToSIInst( |
| 5042 | Value *S, ///< The value to be converted |
| 5043 | Type *Ty, ///< The type to convert to |
| 5044 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5045 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5046 | ); |
| 5047 | |
| 5048 | /// Constructor with insert-at-end-of-block semantics |
| 5049 | FPToSIInst( |
| 5050 | Value *S, ///< The value to be converted |
| 5051 | Type *Ty, ///< The type to convert to |
| 5052 | const Twine &NameStr, ///< A name for the new instruction |
| 5053 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5054 | ); |
| 5055 | |
| 5056 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5057 | static bool classof(const Instruction *I) { |
| 5058 | return I->getOpcode() == FPToSI; |
| 5059 | } |
| 5060 | static bool classof(const Value *V) { |
| 5061 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5062 | } |
| 5063 | }; |
| 5064 | |
| 5065 | //===----------------------------------------------------------------------===// |
| 5066 | // IntToPtrInst Class |
| 5067 | //===----------------------------------------------------------------------===// |
| 5068 | |
| 5069 | /// This class represents a cast from an integer to a pointer. |
| 5070 | class IntToPtrInst : public CastInst { |
| 5071 | public: |
| 5072 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5073 | friend class Instruction; |
| 5074 | |
| 5075 | /// Constructor with insert-before-instruction semantics |
| 5076 | IntToPtrInst( |
| 5077 | Value *S, ///< The value to be converted |
| 5078 | Type *Ty, ///< The type to convert to |
| 5079 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5080 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5081 | ); |
| 5082 | |
| 5083 | /// Constructor with insert-at-end-of-block semantics |
| 5084 | IntToPtrInst( |
| 5085 | Value *S, ///< The value to be converted |
| 5086 | Type *Ty, ///< The type to convert to |
| 5087 | const Twine &NameStr, ///< A name for the new instruction |
| 5088 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5089 | ); |
| 5090 | |
| 5091 | /// Clone an identical IntToPtrInst. |
| 5092 | IntToPtrInst *cloneImpl() const; |
| 5093 | |
| 5094 | /// Returns the address space of this instruction's pointer type. |
| 5095 | unsigned getAddressSpace() const { |
| 5096 | return getType()->getPointerAddressSpace(); |
| 5097 | } |
| 5098 | |
| 5099 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5100 | static bool classof(const Instruction *I) { |
| 5101 | return I->getOpcode() == IntToPtr; |
| 5102 | } |
| 5103 | static bool classof(const Value *V) { |
| 5104 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5105 | } |
| 5106 | }; |
| 5107 | |
| 5108 | //===----------------------------------------------------------------------===// |
| 5109 | // PtrToIntInst Class |
| 5110 | //===----------------------------------------------------------------------===// |
| 5111 | |
| 5112 | /// This class represents a cast from a pointer to an integer. |
| 5113 | class PtrToIntInst : public CastInst { |
| 5114 | protected: |
| 5115 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5116 | friend class Instruction; |
| 5117 | |
| 5118 | /// Clone an identical PtrToIntInst. |
| 5119 | PtrToIntInst *cloneImpl() const; |
| 5120 | |
| 5121 | public: |
| 5122 | /// Constructor with insert-before-instruction semantics |
| 5123 | PtrToIntInst( |
| 5124 | Value *S, ///< The value to be converted |
| 5125 | Type *Ty, ///< The type to convert to |
| 5126 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5127 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5128 | ); |
| 5129 | |
| 5130 | /// Constructor with insert-at-end-of-block semantics |
| 5131 | PtrToIntInst( |
| 5132 | Value *S, ///< The value to be converted |
| 5133 | Type *Ty, ///< The type to convert to |
| 5134 | const Twine &NameStr, ///< A name for the new instruction |
| 5135 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5136 | ); |
| 5137 | |
| 5138 | /// Gets the pointer operand. |
| 5139 | Value *getPointerOperand() { return getOperand(0); } |
| 5140 | /// Gets the pointer operand. |
| 5141 | const Value *getPointerOperand() const { return getOperand(0); } |
| 5142 | /// Gets the operand index of the pointer operand. |
| 5143 | static unsigned getPointerOperandIndex() { return 0U; } |
| 5144 | |
| 5145 | /// Returns the address space of the pointer operand. |
| 5146 | unsigned getPointerAddressSpace() const { |
| 5147 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5148 | } |
| 5149 | |
| 5150 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5151 | static bool classof(const Instruction *I) { |
| 5152 | return I->getOpcode() == PtrToInt; |
| 5153 | } |
| 5154 | static bool classof(const Value *V) { |
| 5155 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5156 | } |
| 5157 | }; |
| 5158 | |
| 5159 | //===----------------------------------------------------------------------===// |
| 5160 | // BitCastInst Class |
| 5161 | //===----------------------------------------------------------------------===// |
| 5162 | |
| 5163 | /// This class represents a no-op cast from one type to another. |
| 5164 | class BitCastInst : public CastInst { |
| 5165 | protected: |
| 5166 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5167 | friend class Instruction; |
| 5168 | |
| 5169 | /// Clone an identical BitCastInst. |
| 5170 | BitCastInst *cloneImpl() const; |
| 5171 | |
| 5172 | public: |
| 5173 | /// Constructor with insert-before-instruction semantics |
| 5174 | BitCastInst( |
| 5175 | Value *S, ///< The value to be casted |
| 5176 | Type *Ty, ///< The type to casted to |
| 5177 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5178 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5179 | ); |
| 5180 | |
| 5181 | /// Constructor with insert-at-end-of-block semantics |
| 5182 | BitCastInst( |
| 5183 | Value *S, ///< The value to be casted |
| 5184 | Type *Ty, ///< The type to casted to |
| 5185 | const Twine &NameStr, ///< A name for the new instruction |
| 5186 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5187 | ); |
| 5188 | |
| 5189 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5190 | static bool classof(const Instruction *I) { |
| 5191 | return I->getOpcode() == BitCast; |
| 5192 | } |
| 5193 | static bool classof(const Value *V) { |
| 5194 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5195 | } |
| 5196 | }; |
| 5197 | |
| 5198 | //===----------------------------------------------------------------------===// |
| 5199 | // AddrSpaceCastInst Class |
| 5200 | //===----------------------------------------------------------------------===// |
| 5201 | |
| 5202 | /// This class represents a conversion between pointers from one address space |
| 5203 | /// to another. |
| 5204 | class AddrSpaceCastInst : public CastInst { |
| 5205 | protected: |
| 5206 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5207 | friend class Instruction; |
| 5208 | |
| 5209 | /// Clone an identical AddrSpaceCastInst. |
| 5210 | AddrSpaceCastInst *cloneImpl() const; |
| 5211 | |
| 5212 | public: |
| 5213 | /// Constructor with insert-before-instruction semantics |
| 5214 | AddrSpaceCastInst( |
| 5215 | Value *S, ///< The value to be casted |
| 5216 | Type *Ty, ///< The type to casted to |
| 5217 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5218 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5219 | ); |
| 5220 | |
| 5221 | /// Constructor with insert-at-end-of-block semantics |
| 5222 | AddrSpaceCastInst( |
| 5223 | Value *S, ///< The value to be casted |
| 5224 | Type *Ty, ///< The type to casted to |
| 5225 | const Twine &NameStr, ///< A name for the new instruction |
| 5226 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5227 | ); |
| 5228 | |
| 5229 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5230 | static bool classof(const Instruction *I) { |
| 5231 | return I->getOpcode() == AddrSpaceCast; |
| 5232 | } |
| 5233 | static bool classof(const Value *V) { |
| 5234 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5235 | } |
| 5236 | |
| 5237 | /// Gets the pointer operand. |
| 5238 | Value *getPointerOperand() { |
| 5239 | return getOperand(0); |
| 5240 | } |
| 5241 | |
| 5242 | /// Gets the pointer operand. |
| 5243 | const Value *getPointerOperand() const { |
| 5244 | return getOperand(0); |
| 5245 | } |
| 5246 | |
| 5247 | /// Gets the operand index of the pointer operand. |
| 5248 | static unsigned getPointerOperandIndex() { |
| 5249 | return 0U; |
| 5250 | } |
| 5251 | |
| 5252 | /// Returns the address space of the pointer operand. |
| 5253 | unsigned getSrcAddressSpace() const { |
| 5254 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5255 | } |
| 5256 | |
| 5257 | /// Returns the address space of the result. |
| 5258 | unsigned getDestAddressSpace() const { |
| 5259 | return getType()->getPointerAddressSpace(); |
| 5260 | } |
| 5261 | }; |
| 5262 | |
| 5263 | /// A helper function that returns the pointer operand of a load or store |
| 5264 | /// instruction. Returns nullptr if not load or store. |
| 5265 | inline const Value *getLoadStorePointerOperand(const Value *V) { |
| 5266 | if (auto *Load = dyn_cast<LoadInst>(V)) |
| 5267 | return Load->getPointerOperand(); |
| 5268 | if (auto *Store = dyn_cast<StoreInst>(V)) |
| 5269 | return Store->getPointerOperand(); |
| 5270 | return nullptr; |
| 5271 | } |
| 5272 | inline Value *getLoadStorePointerOperand(Value *V) { |
| 5273 | return const_cast<Value *>( |
| 5274 | getLoadStorePointerOperand(static_cast<const Value *>(V))); |
| 5275 | } |
| 5276 | |
| 5277 | /// A helper function that returns the pointer operand of a load, store |
| 5278 | /// or GEP instruction. Returns nullptr if not load, store, or GEP. |
| 5279 | inline const Value *getPointerOperand(const Value *V) { |
| 5280 | if (auto *Ptr = getLoadStorePointerOperand(V)) |
| 5281 | return Ptr; |
| 5282 | if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) |
| 5283 | return Gep->getPointerOperand(); |
| 5284 | return nullptr; |
| 5285 | } |
| 5286 | inline Value *getPointerOperand(Value *V) { |
| 5287 | return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); |
| 5288 | } |
| 5289 | |
| 5290 | /// A helper function that returns the alignment of load or store instruction. |
| 5291 | inline Align getLoadStoreAlignment(Value *I) { |
| 5292 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5293 | "Expected Load or Store instruction")((void)0); |
| 5294 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5295 | return LI->getAlign(); |
| 5296 | return cast<StoreInst>(I)->getAlign(); |
| 5297 | } |
| 5298 | |
| 5299 | /// A helper function that returns the address space of the pointer operand of |
| 5300 | /// load or store instruction. |
| 5301 | inline unsigned getLoadStoreAddressSpace(Value *I) { |
| 5302 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5303 | "Expected Load or Store instruction")((void)0); |
| 5304 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5305 | return LI->getPointerAddressSpace(); |
| 5306 | return cast<StoreInst>(I)->getPointerAddressSpace(); |
| 5307 | } |
| 5308 | |
| 5309 | /// A helper function that returns the type of a load or store instruction. |
| 5310 | inline Type *getLoadStoreType(Value *I) { |
| 5311 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&((void)0) |
| 5312 | "Expected Load or Store instruction")((void)0); |
| 5313 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5314 | return LI->getType(); |
| 5315 | return cast<StoreInst>(I)->getValueOperand()->getType(); |
| 5316 | } |
| 5317 | |
| 5318 | //===----------------------------------------------------------------------===// |
| 5319 | // FreezeInst Class |
| 5320 | //===----------------------------------------------------------------------===// |
| 5321 | |
| 5322 | /// This class represents a freeze function that returns random concrete |
| 5323 | /// value if an operand is either a poison value or an undef value |
| 5324 | class FreezeInst : public UnaryInstruction { |
| 5325 | protected: |
| 5326 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5327 | friend class Instruction; |
| 5328 | |
| 5329 | /// Clone an identical FreezeInst |
| 5330 | FreezeInst *cloneImpl() const; |
| 5331 | |
| 5332 | public: |
| 5333 | explicit FreezeInst(Value *S, |
| 5334 | const Twine &NameStr = "", |
| 5335 | Instruction *InsertBefore = nullptr); |
| 5336 | FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 5337 | |
| 5338 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5339 | static inline bool classof(const Instruction *I) { |
| 5340 | return I->getOpcode() == Freeze; |
| 5341 | } |
| 5342 | static inline bool classof(const Value *V) { |
| 5343 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5344 | } |
| 5345 | }; |
| 5346 | |
| 5347 | } // end namespace llvm |
| 5348 | |
| 5349 | #endif // LLVM_IR_INSTRUCTIONS_H |
| 1 | //===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file contains types to represent alignments. | |||
| 10 | // They are instrumented to guarantee some invariants are preserved and prevent | |||
| 11 | // invalid manipulations. | |||
| 12 | // | |||
| 13 | // - Align represents an alignment in bytes, it is always set and always a valid | |||
| 14 | // power of two, its minimum value is 1 which means no alignment requirements. | |||
| 15 | // | |||
| 16 | // - MaybeAlign is an optional type, it may be undefined or set. When it's set | |||
| 17 | // you can get the underlying Align type by using the getValue() method. | |||
| 18 | // | |||
| 19 | //===----------------------------------------------------------------------===// | |||
| 20 | ||||
| 21 | #ifndef LLVM_SUPPORT_ALIGNMENT_H_ | |||
| 22 | #define LLVM_SUPPORT_ALIGNMENT_H_ | |||
| 23 | ||||
| 24 | #include "llvm/ADT/Optional.h" | |||
| 25 | #include "llvm/Support/MathExtras.h" | |||
| 26 | #include <cassert> | |||
| 27 | #ifndef NDEBUG1 | |||
| 28 | #include <string> | |||
| 29 | #endif // NDEBUG | |||
| 30 | ||||
| 31 | namespace llvm { | |||
| 32 | ||||
| 33 | #define ALIGN_CHECK_ISPOSITIVE(decl) \ | |||
| 34 | assert(decl > 0 && (#decl " should be defined"))((void)0) | |||
| 35 | ||||
| 36 | /// This struct is a compact representation of a valid (non-zero power of two) | |||
| 37 | /// alignment. | |||
| 38 | /// It is suitable for use as static global constants. | |||
| 39 | struct Align { | |||
| 40 | private: | |||
| 41 | uint8_t ShiftValue = 0; /// The log2 of the required alignment. | |||
| 42 | /// ShiftValue is less than 64 by construction. | |||
| 43 | ||||
| 44 | friend struct MaybeAlign; | |||
| 45 | friend unsigned Log2(Align); | |||
| 46 | friend bool operator==(Align Lhs, Align Rhs); | |||
| 47 | friend bool operator!=(Align Lhs, Align Rhs); | |||
| 48 | friend bool operator<=(Align Lhs, Align Rhs); | |||
| 49 | friend bool operator>=(Align Lhs, Align Rhs); | |||
| 50 | friend bool operator<(Align Lhs, Align Rhs); | |||
| 51 | friend bool operator>(Align Lhs, Align Rhs); | |||
| 52 | friend unsigned encode(struct MaybeAlign A); | |||
| 53 | friend struct MaybeAlign decodeMaybeAlign(unsigned Value); | |||
| 54 | ||||
| 55 | /// A trivial type to allow construction of constexpr Align. | |||
| 56 | /// This is currently needed to workaround a bug in GCC 5.3 which prevents | |||
| 57 | /// definition of constexpr assign operators. | |||
| 58 | /// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic | |||
| 59 | /// FIXME: Remove this, make all assign operators constexpr and introduce user | |||
| 60 | /// defined literals when we don't have to support GCC 5.3 anymore. | |||
| 61 | /// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain | |||
| 62 | struct LogValue { | |||
| 63 | uint8_t Log; | |||
| 64 | }; | |||
| 65 | ||||
| 66 | public: | |||
| 67 | /// Default is byte-aligned. | |||
| 68 | constexpr Align() = default; | |||
| 69 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
| 70 | /// checks have been performed when building `Other`. | |||
| 71 | constexpr Align(const Align &Other) = default; | |||
| 72 | constexpr Align(Align &&Other) = default; | |||
| 73 | Align &operator=(const Align &Other) = default; | |||
| 74 | Align &operator=(Align &&Other) = default; | |||
| 75 | ||||
| 76 | explicit Align(uint64_t Value) { | |||
| 77 | assert(Value > 0 && "Value must not be 0")((void)0); | |||
| 78 | assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2")((void)0); | |||
| 79 | ShiftValue = Log2_64(Value); | |||
| 80 | assert(ShiftValue < 64 && "Broken invariant")((void)0); | |||
| 81 | } | |||
| 82 | ||||
| 83 | /// This is a hole in the type system and should not be abused. | |||
| 84 | /// Needed to interact with C for instance. | |||
| 85 | uint64_t value() const { return uint64_t(1) << ShiftValue; } | |||
| ||||
| 86 | ||||
| 87 | /// Allow constructions of constexpr Align. | |||
| 88 | template <size_t kValue> constexpr static LogValue Constant() { | |||
| 89 | return LogValue{static_cast<uint8_t>(CTLog2<kValue>())}; | |||
| 90 | } | |||
| 91 | ||||
| 92 | /// Allow constructions of constexpr Align from types. | |||
| 93 | /// Compile time equivalent to Align(alignof(T)). | |||
| 94 | template <typename T> constexpr static LogValue Of() { | |||
| 95 | return Constant<std::alignment_of<T>::value>(); | |||
| 96 | } | |||
| 97 | ||||
| 98 | /// Constexpr constructor from LogValue type. | |||
| 99 | constexpr Align(LogValue CA) : ShiftValue(CA.Log) {} | |||
| 100 | }; | |||
| 101 | ||||
| 102 | /// Treats the value 0 as a 1, so Align is always at least 1. | |||
| 103 | inline Align assumeAligned(uint64_t Value) { | |||
| 104 | return Value ? Align(Value) : Align(); | |||
| 105 | } | |||
| 106 | ||||
| 107 | /// This struct is a compact representation of a valid (power of two) or | |||
| 108 | /// undefined (0) alignment. | |||
| 109 | struct MaybeAlign : public llvm::Optional<Align> { | |||
| 110 | private: | |||
| 111 | using UP = llvm::Optional<Align>; | |||
| 112 | ||||
| 113 | public: | |||
| 114 | /// Default is undefined. | |||
| 115 | MaybeAlign() = default; | |||
| 116 | /// Do not perform checks in case of copy/move construct/assign, because the | |||
| 117 | /// checks have been performed when building `Other`. | |||
| 118 | MaybeAlign(const MaybeAlign &Other) = default; | |||
| 119 | MaybeAlign &operator=(const MaybeAlign &Other) = default; | |||
| 120 | MaybeAlign(MaybeAlign &&Other) = default; | |||
| 121 | MaybeAlign &operator=(MaybeAlign &&Other) = default; | |||
| 122 | ||||
| 123 | /// Use llvm::Optional<Align> constructor. | |||
| 124 | using UP::UP; | |||
| 125 | ||||
| 126 | explicit MaybeAlign(uint64_t Value) { | |||
| 127 | assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&((void)0) | |||
| 128 | "Alignment is neither 0 nor a power of 2")((void)0); | |||
| 129 | if (Value) | |||
| 130 | emplace(Value); | |||
| 131 | } | |||
| 132 | ||||
| 133 | /// For convenience, returns a valid alignment or 1 if undefined. | |||
| 134 | Align valueOrOne() const { return hasValue() ? getValue() : Align(); } | |||
| 135 | }; | |||
| 136 | ||||
| 137 | /// Checks that SizeInBytes is a multiple of the alignment. | |||
| 138 | inline bool isAligned(Align Lhs, uint64_t SizeInBytes) { | |||
| 139 | return SizeInBytes % Lhs.value() == 0; | |||
| 140 | } | |||
| 141 | ||||
| 142 | /// Checks that Addr is a multiple of the alignment. | |||
| 143 | inline bool isAddrAligned(Align Lhs, const void *Addr) { | |||
| 144 | return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr)); | |||
| 145 | } | |||
| 146 | ||||
| 147 | /// Returns a multiple of A needed to store `Size` bytes. | |||
| 148 | inline uint64_t alignTo(uint64_t Size, Align A) { | |||
| 149 | const uint64_t Value = A.value(); | |||
| 150 | // The following line is equivalent to `(Size + Value - 1) / Value * Value`. | |||
| 151 | ||||
| 152 | // The division followed by a multiplication can be thought of as a right | |||
| 153 | // shift followed by a left shift which zeros out the extra bits produced in | |||
| 154 | // the bump; `~(Value - 1)` is a mask where all those bits being zeroed out | |||
| 155 | // are just zero. | |||
| 156 | ||||
| 157 | // Most compilers can generate this code but the pattern may be missed when | |||
| 158 | // multiple functions gets inlined. | |||
| 159 | return (Size + Value - 1) & ~(Value - 1U); | |||
| 160 | } | |||
| 161 | ||||
| 162 | /// If non-zero \p Skew is specified, the return value will be a minimal integer | |||
| 163 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for | |||
| 164 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p | |||
| 165 | /// Skew mod \p A'. | |||
| 166 | /// | |||
| 167 | /// Examples: | |||
| 168 | /// \code | |||
| 169 | /// alignTo(5, Align(8), 7) = 7 | |||
| 170 | /// alignTo(17, Align(8), 1) = 17 | |||
| 171 | /// alignTo(~0LL, Align(8), 3) = 3 | |||
| 172 | /// \endcode | |||
| 173 | inline uint64_t alignTo(uint64_t Size, Align A, uint64_t Skew) { | |||
| 174 | const uint64_t Value = A.value(); | |||
| 175 | Skew %= Value; | |||
| 176 | return ((Size + Value - 1 - Skew) & ~(Value - 1U)) + Skew; | |||
| 177 | } | |||
| 178 | ||||
| 179 | /// Returns a multiple of A needed to store `Size` bytes. | |||
| 180 | /// Returns `Size` if current alignment is undefined. | |||
| 181 | inline uint64_t alignTo(uint64_t Size, MaybeAlign A) { | |||
| 182 | return A ? alignTo(Size, A.getValue()) : Size; | |||
| 183 | } | |||
| 184 | ||||
| 185 | /// Aligns `Addr` to `Alignment` bytes, rounding up. | |||
| 186 | inline uintptr_t alignAddr(const void *Addr, Align Alignment) { | |||
| 187 | uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr); | |||
| 188 | assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=((void)0) | |||
| 189 | ArithAddr &&((void)0) | |||
| 190 | "Overflow")((void)0); | |||
| 191 | return alignTo(ArithAddr, Alignment); | |||
| 192 | } | |||
| 193 | ||||
| 194 | /// Returns the offset to the next integer (mod 2**64) that is greater than | |||
| 195 | /// or equal to \p Value and is a multiple of \p Align. | |||
| 196 | inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) { | |||
| 197 | return alignTo(Value, Alignment) - Value; | |||
| 198 | } | |||
| 199 | ||||
| 200 | /// Returns the necessary adjustment for aligning `Addr` to `Alignment` | |||
| 201 | /// bytes, rounding up. | |||
| 202 | inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) { | |||
| 203 | return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment); | |||
| 204 | } | |||
| 205 | ||||
| 206 | /// Returns the log2 of the alignment. | |||
| 207 | inline unsigned Log2(Align A) { return A.ShiftValue; } | |||
| 208 | ||||
| 209 | /// Returns the alignment that satisfies both alignments. | |||
| 210 | /// Same semantic as MinAlign. | |||
| 211 | inline Align commonAlignment(Align A, Align B) { return std::min(A, B); } | |||
| 212 | ||||
| 213 | /// Returns the alignment that satisfies both alignments. | |||
| 214 | /// Same semantic as MinAlign. | |||
| 215 | inline Align commonAlignment(Align A, uint64_t Offset) { | |||
| 216 | return Align(MinAlign(A.value(), Offset)); | |||
| 217 | } | |||
| 218 | ||||
| 219 | /// Returns the alignment that satisfies both alignments. | |||
| 220 | /// Same semantic as MinAlign. | |||
| 221 | inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) { | |||
| 222 | return A && B ? commonAlignment(*A, *B) : A ? A : B; | |||
| 223 | } | |||
| 224 | ||||
| 225 | /// Returns the alignment that satisfies both alignments. | |||
| 226 | /// Same semantic as MinAlign. | |||
| 227 | inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) { | |||
| 228 | return MaybeAlign(MinAlign((*A).value(), Offset)); | |||
| 229 | } | |||
| 230 | ||||
| 231 | /// Returns a representation of the alignment that encodes undefined as 0. | |||
| 232 | inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; } | |||
| 233 | ||||
| 234 | /// Dual operation of the encode function above. | |||
| 235 | inline MaybeAlign decodeMaybeAlign(unsigned Value) { | |||
| 236 | if (Value == 0) | |||
| 237 | return MaybeAlign(); | |||
| 238 | Align Out; | |||
| 239 | Out.ShiftValue = Value - 1; | |||
| 240 | return Out; | |||
| 241 | } | |||
| 242 | ||||
| 243 | /// Returns a representation of the alignment, the encoded value is positive by | |||
| 244 | /// definition. | |||
| 245 | inline unsigned encode(Align A) { return encode(MaybeAlign(A)); } | |||
| 246 | ||||
| 247 | /// Comparisons between Align and scalars. Rhs must be positive. | |||
| 248 | inline bool operator==(Align Lhs, uint64_t Rhs) { | |||
| 249 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 250 | return Lhs.value() == Rhs; | |||
| 251 | } | |||
| 252 | inline bool operator!=(Align Lhs, uint64_t Rhs) { | |||
| 253 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 254 | return Lhs.value() != Rhs; | |||
| 255 | } | |||
| 256 | inline bool operator<=(Align Lhs, uint64_t Rhs) { | |||
| 257 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 258 | return Lhs.value() <= Rhs; | |||
| 259 | } | |||
| 260 | inline bool operator>=(Align Lhs, uint64_t Rhs) { | |||
| 261 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 262 | return Lhs.value() >= Rhs; | |||
| 263 | } | |||
| 264 | inline bool operator<(Align Lhs, uint64_t Rhs) { | |||
| 265 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 266 | return Lhs.value() < Rhs; | |||
| 267 | } | |||
| 268 | inline bool operator>(Align Lhs, uint64_t Rhs) { | |||
| 269 | ALIGN_CHECK_ISPOSITIVE(Rhs); | |||
| 270 | return Lhs.value() > Rhs; | |||
| 271 | } | |||
| 272 | ||||
| 273 | /// Comparisons between MaybeAlign and scalars. | |||
| 274 | inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 275 | return Lhs ? (*Lhs).value() == Rhs : Rhs == 0; | |||
| 276 | } | |||
| 277 | inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 278 | return Lhs ? (*Lhs).value() != Rhs : Rhs != 0; | |||
| 279 | } | |||
| 280 | ||||
| 281 | /// Comparisons operators between Align. | |||
| 282 | inline bool operator==(Align Lhs, Align Rhs) { | |||
| 283 | return Lhs.ShiftValue == Rhs.ShiftValue; | |||
| 284 | } | |||
| 285 | inline bool operator!=(Align Lhs, Align Rhs) { | |||
| 286 | return Lhs.ShiftValue != Rhs.ShiftValue; | |||
| 287 | } | |||
| 288 | inline bool operator<=(Align Lhs, Align Rhs) { | |||
| 289 | return Lhs.ShiftValue <= Rhs.ShiftValue; | |||
| 290 | } | |||
| 291 | inline bool operator>=(Align Lhs, Align Rhs) { | |||
| 292 | return Lhs.ShiftValue >= Rhs.ShiftValue; | |||
| 293 | } | |||
| 294 | inline bool operator<(Align Lhs, Align Rhs) { | |||
| 295 | return Lhs.ShiftValue < Rhs.ShiftValue; | |||
| 296 | } | |||
| 297 | inline bool operator>(Align Lhs, Align Rhs) { | |||
| 298 | return Lhs.ShiftValue > Rhs.ShiftValue; | |||
| 299 | } | |||
| 300 | ||||
| 301 | // Don't allow relational comparisons with MaybeAlign. | |||
| 302 | bool operator<=(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 303 | bool operator>=(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 304 | bool operator<(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 305 | bool operator>(Align Lhs, MaybeAlign Rhs) = delete; | |||
| 306 | ||||
| 307 | bool operator<=(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 308 | bool operator>=(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 309 | bool operator<(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 310 | bool operator>(MaybeAlign Lhs, Align Rhs) = delete; | |||
| 311 | ||||
| 312 | bool operator<=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 313 | bool operator>=(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 314 | bool operator<(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 315 | bool operator>(MaybeAlign Lhs, MaybeAlign Rhs) = delete; | |||
| 316 | ||||
| 317 | inline Align operator*(Align Lhs, uint64_t Rhs) { | |||
| 318 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
| 319 | return Align(Lhs.value() * Rhs); | |||
| 320 | } | |||
| 321 | ||||
| 322 | inline MaybeAlign operator*(MaybeAlign Lhs, uint64_t Rhs) { | |||
| 323 | assert(Rhs > 0 && "Rhs must be positive")((void)0); | |||
| 324 | return Lhs ? Lhs.getValue() * Rhs : MaybeAlign(); | |||
| 325 | } | |||
| 326 | ||||
| 327 | inline Align operator/(Align Lhs, uint64_t Divisor) { | |||
| 328 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
| 329 | "Divisor must be positive and a power of 2")((void)0); | |||
| 330 | assert(Lhs != 1 && "Can't halve byte alignment")((void)0); | |||
| 331 | return Align(Lhs.value() / Divisor); | |||
| 332 | } | |||
| 333 | ||||
| 334 | inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) { | |||
| 335 | assert(llvm::isPowerOf2_64(Divisor) &&((void)0) | |||
| 336 | "Divisor must be positive and a power of 2")((void)0); | |||
| 337 | return Lhs ? Lhs.getValue() / Divisor : MaybeAlign(); | |||
| 338 | } | |||
| 339 | ||||
| 340 | inline Align max(MaybeAlign Lhs, Align Rhs) { | |||
| 341 | return Lhs && *Lhs > Rhs ? *Lhs : Rhs; | |||
| 342 | } | |||
| 343 | ||||
| 344 | inline Align max(Align Lhs, MaybeAlign Rhs) { | |||
| 345 | return Rhs && *Rhs > Lhs ? *Rhs : Lhs; | |||
| 346 | } | |||
| 347 | ||||
| 348 | #ifndef NDEBUG1 | |||
| 349 | // For usage in LLVM_DEBUG macros. | |||
| 350 | inline std::string DebugStr(const Align &A) { | |||
| 351 | return std::to_string(A.value()); | |||
| 352 | } | |||
| 353 | // For usage in LLVM_DEBUG macros. | |||
| 354 | inline std::string DebugStr(const MaybeAlign &MA) { | |||
| 355 | if (MA) | |||
| 356 | return std::to_string(MA->value()); | |||
| 357 | return "None"; | |||
| 358 | } | |||
| 359 | #endif // NDEBUG | |||
| 360 | ||||
| 361 | #undef ALIGN_CHECK_ISPOSITIVE | |||
| 362 | ||||
| 363 | } // namespace llvm | |||
| 364 | ||||
| 365 | #endif // LLVM_SUPPORT_ALIGNMENT_H_ |
| 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains some functions that are useful for math stuff. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
| 14 | #define LLVM_SUPPORT_MATHEXTRAS_H |
| 15 | |
| 16 | #include "llvm/Support/Compiler.h" |
| 17 | #include <cassert> |
| 18 | #include <climits> |
| 19 | #include <cmath> |
| 20 | #include <cstdint> |
| 21 | #include <cstring> |
| 22 | #include <limits> |
| 23 | #include <type_traits> |
| 24 | |
| 25 | #ifdef __ANDROID_NDK__ |
| 26 | #include <android/api-level.h> |
| 27 | #endif |
| 28 | |
| 29 | #ifdef _MSC_VER |
| 30 | // Declare these intrinsics manually rather including intrin.h. It's very |
| 31 | // expensive, and MathExtras.h is popular. |
| 32 | // #include <intrin.h> |
| 33 | extern "C" { |
| 34 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
| 35 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
| 36 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
| 37 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
| 38 | } |
| 39 | #endif |
| 40 | |
| 41 | namespace llvm { |
| 42 | |
| 43 | /// The behavior an operation has on an input of 0. |
| 44 | enum ZeroBehavior { |
| 45 | /// The returned value is undefined. |
| 46 | ZB_Undefined, |
| 47 | /// The returned value is numeric_limits<T>::max() |
| 48 | ZB_Max, |
| 49 | /// The returned value is numeric_limits<T>::digits |
| 50 | ZB_Width |
| 51 | }; |
| 52 | |
| 53 | /// Mathematical constants. |
| 54 | namespace numbers { |
| 55 | // TODO: Track C++20 std::numbers. |
| 56 | // TODO: Favor using the hexadecimal FP constants (requires C++17). |
| 57 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 |
| 58 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 |
| 59 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 |
| 60 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 |
| 61 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) |
| 62 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) |
| 63 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 |
| 64 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 |
| 65 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 |
| 66 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 |
| 67 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 |
| 68 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) |
| 69 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 |
| 70 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) |
| 71 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 |
| 72 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 |
| 73 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 |
| 74 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 |
| 75 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 |
| 76 | log2ef = 1.44269504F, // (0x1.715476P+0) |
| 77 | log10ef = .434294482F, // (0x1.bcb7b2P-2) |
| 78 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 |
| 79 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 |
| 80 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 |
| 81 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 |
| 82 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 |
| 83 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) |
| 84 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 |
| 85 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) |
| 86 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 |
| 87 | } // namespace numbers |
| 88 | |
| 89 | namespace detail { |
| 90 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
| 91 | static unsigned count(T Val, ZeroBehavior) { |
| 92 | if (!Val) |
| 93 | return std::numeric_limits<T>::digits; |
| 94 | if (Val & 0x1) |
| 95 | return 0; |
| 96 | |
| 97 | // Bisection method. |
| 98 | unsigned ZeroBits = 0; |
| 99 | T Shift = std::numeric_limits<T>::digits >> 1; |
| 100 | T Mask = std::numeric_limits<T>::max() >> Shift; |
| 101 | while (Shift) { |
| 102 | if ((Val & Mask) == 0) { |
| 103 | Val >>= Shift; |
| 104 | ZeroBits |= Shift; |
| 105 | } |
| 106 | Shift >>= 1; |
| 107 | Mask >>= Shift; |
| 108 | } |
| 109 | return ZeroBits; |
| 110 | } |
| 111 | }; |
| 112 | |
| 113 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 114 | template <typename T> struct TrailingZerosCounter<T, 4> { |
| 115 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 116 | if (ZB != ZB_Undefined && Val == 0) |
| 117 | return 32; |
| 118 | |
| 119 | #if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4) |
| 120 | return __builtin_ctz(Val); |
| 121 | #elif defined(_MSC_VER) |
| 122 | unsigned long Index; |
| 123 | _BitScanForward(&Index, Val); |
| 124 | return Index; |
| 125 | #endif |
| 126 | } |
| 127 | }; |
| 128 | |
| 129 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 130 | template <typename T> struct TrailingZerosCounter<T, 8> { |
| 131 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 132 | if (ZB != ZB_Undefined && Val == 0) |
| 133 | return 64; |
| 134 | |
| 135 | #if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4) |
| 136 | return __builtin_ctzll(Val); |
| 137 | #elif defined(_MSC_VER) |
| 138 | unsigned long Index; |
| 139 | _BitScanForward64(&Index, Val); |
| 140 | return Index; |
| 141 | #endif |
| 142 | } |
| 143 | }; |
| 144 | #endif |
| 145 | #endif |
| 146 | } // namespace detail |
| 147 | |
| 148 | /// Count number of 0's from the least significant bit to the most |
| 149 | /// stopping at the first 1. |
| 150 | /// |
| 151 | /// Only unsigned integral types are allowed. |
| 152 | /// |
| 153 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 154 | /// valid arguments. |
| 155 | template <typename T> |
| 156 | unsigned countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 157 | static_assert(std::numeric_limits<T>::is_integer && |
| 158 | !std::numeric_limits<T>::is_signed, |
| 159 | "Only unsigned integral types are allowed."); |
| 160 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 161 | } |
| 162 | |
| 163 | namespace detail { |
| 164 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
| 165 | static unsigned count(T Val, ZeroBehavior) { |
| 166 | if (!Val) |
| 167 | return std::numeric_limits<T>::digits; |
| 168 | |
| 169 | // Bisection method. |
| 170 | unsigned ZeroBits = 0; |
| 171 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
| 172 | T Tmp = Val >> Shift; |
| 173 | if (Tmp) |
| 174 | Val = Tmp; |
| 175 | else |
| 176 | ZeroBits |= Shift; |
| 177 | } |
| 178 | return ZeroBits; |
| 179 | } |
| 180 | }; |
| 181 | |
| 182 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 183 | template <typename T> struct LeadingZerosCounter<T, 4> { |
| 184 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 185 | if (ZB != ZB_Undefined && Val == 0) |
| 186 | return 32; |
| 187 | |
| 188 | #if __has_builtin(__builtin_clz)1 || defined(__GNUC__4) |
| 189 | return __builtin_clz(Val); |
| 190 | #elif defined(_MSC_VER) |
| 191 | unsigned long Index; |
| 192 | _BitScanReverse(&Index, Val); |
| 193 | return Index ^ 31; |
| 194 | #endif |
| 195 | } |
| 196 | }; |
| 197 | |
| 198 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 199 | template <typename T> struct LeadingZerosCounter<T, 8> { |
| 200 | static unsigned count(T Val, ZeroBehavior ZB) { |
| 201 | if (ZB != ZB_Undefined && Val == 0) |
| 202 | return 64; |
| 203 | |
| 204 | #if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4) |
| 205 | return __builtin_clzll(Val); |
| 206 | #elif defined(_MSC_VER) |
| 207 | unsigned long Index; |
| 208 | _BitScanReverse64(&Index, Val); |
| 209 | return Index ^ 63; |
| 210 | #endif |
| 211 | } |
| 212 | }; |
| 213 | #endif |
| 214 | #endif |
| 215 | } // namespace detail |
| 216 | |
| 217 | /// Count number of 0's from the most significant bit to the least |
| 218 | /// stopping at the first 1. |
| 219 | /// |
| 220 | /// Only unsigned integral types are allowed. |
| 221 | /// |
| 222 | /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are |
| 223 | /// valid arguments. |
| 224 | template <typename T> |
| 225 | unsigned countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) { |
| 226 | static_assert(std::numeric_limits<T>::is_integer && |
| 227 | !std::numeric_limits<T>::is_signed, |
| 228 | "Only unsigned integral types are allowed."); |
| 229 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB); |
| 230 | } |
| 231 | |
| 232 | /// Get the index of the first set bit starting from the least |
| 233 | /// significant bit. |
| 234 | /// |
| 235 | /// Only unsigned integral types are allowed. |
| 236 | /// |
| 237 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 238 | /// valid arguments. |
| 239 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 240 | if (ZB == ZB_Max && Val == 0) |
| 241 | return std::numeric_limits<T>::max(); |
| 242 | |
| 243 | return countTrailingZeros(Val, ZB_Undefined); |
| 244 | } |
| 245 | |
| 246 | /// Create a bitmask with the N right-most bits set to 1, and all other |
| 247 | /// bits set to 0. Only unsigned types are allowed. |
| 248 | template <typename T> T maskTrailingOnes(unsigned N) { |
| 249 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); |
| 250 | const unsigned Bits = CHAR_BIT8 * sizeof(T); |
| 251 | assert(N <= Bits && "Invalid bit index")((void)0); |
| 252 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
| 253 | } |
| 254 | |
| 255 | /// Create a bitmask with the N left-most bits set to 1, and all other |
| 256 | /// bits set to 0. Only unsigned types are allowed. |
| 257 | template <typename T> T maskLeadingOnes(unsigned N) { |
| 258 | return ~maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 259 | } |
| 260 | |
| 261 | /// Create a bitmask with the N right-most bits set to 0, and all other |
| 262 | /// bits set to 1. Only unsigned types are allowed. |
| 263 | template <typename T> T maskTrailingZeros(unsigned N) { |
| 264 | return maskLeadingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 265 | } |
| 266 | |
| 267 | /// Create a bitmask with the N left-most bits set to 0, and all other |
| 268 | /// bits set to 1. Only unsigned types are allowed. |
| 269 | template <typename T> T maskLeadingZeros(unsigned N) { |
| 270 | return maskTrailingOnes<T>(CHAR_BIT8 * sizeof(T) - N); |
| 271 | } |
| 272 | |
| 273 | /// Get the index of the last set bit starting from the least |
| 274 | /// significant bit. |
| 275 | /// |
| 276 | /// Only unsigned integral types are allowed. |
| 277 | /// |
| 278 | /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are |
| 279 | /// valid arguments. |
| 280 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
| 281 | if (ZB == ZB_Max && Val == 0) |
| 282 | return std::numeric_limits<T>::max(); |
| 283 | |
| 284 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
| 285 | // in the __builtin_clz intrinsic on x86. |
| 286 | return countLeadingZeros(Val, ZB_Undefined) ^ |
| 287 | (std::numeric_limits<T>::digits - 1); |
| 288 | } |
| 289 | |
| 290 | /// Macro compressed bit reversal table for 256 bits. |
| 291 | /// |
| 292 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
| 293 | static const unsigned char BitReverseTable256[256] = { |
| 294 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
| 295 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
| 296 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
| 297 | R6(0), R6(2), R6(1), R6(3) |
| 298 | #undef R2 |
| 299 | #undef R4 |
| 300 | #undef R6 |
| 301 | }; |
| 302 | |
| 303 | /// Reverse the bits in \p Val. |
| 304 | template <typename T> |
| 305 | T reverseBits(T Val) { |
| 306 | unsigned char in[sizeof(Val)]; |
| 307 | unsigned char out[sizeof(Val)]; |
| 308 | std::memcpy(in, &Val, sizeof(Val)); |
| 309 | for (unsigned i = 0; i < sizeof(Val); ++i) |
| 310 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
| 311 | std::memcpy(&Val, out, sizeof(Val)); |
| 312 | return Val; |
| 313 | } |
| 314 | |
| 315 | #if __has_builtin(__builtin_bitreverse8)1 |
| 316 | template<> |
| 317 | inline uint8_t reverseBits<uint8_t>(uint8_t Val) { |
| 318 | return __builtin_bitreverse8(Val); |
| 319 | } |
| 320 | #endif |
| 321 | |
| 322 | #if __has_builtin(__builtin_bitreverse16)1 |
| 323 | template<> |
| 324 | inline uint16_t reverseBits<uint16_t>(uint16_t Val) { |
| 325 | return __builtin_bitreverse16(Val); |
| 326 | } |
| 327 | #endif |
| 328 | |
| 329 | #if __has_builtin(__builtin_bitreverse32)1 |
| 330 | template<> |
| 331 | inline uint32_t reverseBits<uint32_t>(uint32_t Val) { |
| 332 | return __builtin_bitreverse32(Val); |
| 333 | } |
| 334 | #endif |
| 335 | |
| 336 | #if __has_builtin(__builtin_bitreverse64)1 |
| 337 | template<> |
| 338 | inline uint64_t reverseBits<uint64_t>(uint64_t Val) { |
| 339 | return __builtin_bitreverse64(Val); |
| 340 | } |
| 341 | #endif |
| 342 | |
| 343 | // NOTE: The following support functions use the _32/_64 extensions instead of |
| 344 | // type overloading so that signed and unsigned integers can be used without |
| 345 | // ambiguity. |
| 346 | |
| 347 | /// Return the high 32 bits of a 64 bit value. |
| 348 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
| 349 | return static_cast<uint32_t>(Value >> 32); |
| 350 | } |
| 351 | |
| 352 | /// Return the low 32 bits of a 64 bit value. |
| 353 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
| 354 | return static_cast<uint32_t>(Value); |
| 355 | } |
| 356 | |
| 357 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
| 358 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
| 359 | return ((uint64_t)High << 32) | (uint64_t)Low; |
| 360 | } |
| 361 | |
| 362 | /// Checks if an integer fits into the given bit width. |
| 363 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
| 364 | return N >= 64 || (-(INT64_C(1)1LL<<(N-1)) <= x && x < (INT64_C(1)1LL<<(N-1))); |
| 365 | } |
| 366 | // Template specializations to get better code for common cases. |
| 367 | template <> constexpr inline bool isInt<8>(int64_t x) { |
| 368 | return static_cast<int8_t>(x) == x; |
| 369 | } |
| 370 | template <> constexpr inline bool isInt<16>(int64_t x) { |
| 371 | return static_cast<int16_t>(x) == x; |
| 372 | } |
| 373 | template <> constexpr inline bool isInt<32>(int64_t x) { |
| 374 | return static_cast<int32_t>(x) == x; |
| 375 | } |
| 376 | |
| 377 | /// Checks if a signed integer is an N bit number shifted left by S. |
| 378 | template <unsigned N, unsigned S> |
| 379 | constexpr inline bool isShiftedInt(int64_t x) { |
| 380 | static_assert( |
| 381 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); |
| 382 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); |
| 383 | return isInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); |
| 384 | } |
| 385 | |
| 386 | /// Checks if an unsigned integer fits into the given bit width. |
| 387 | /// |
| 388 | /// This is written as two functions rather than as simply |
| 389 | /// |
| 390 | /// return N >= 64 || X < (UINT64_C(1) << N); |
| 391 | /// |
| 392 | /// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting |
| 393 | /// left too many places. |
| 394 | template <unsigned N> |
| 395 | constexpr inline std::enable_if_t<(N < 64), bool> isUInt(uint64_t X) { |
| 396 | static_assert(N > 0, "isUInt<0> doesn't make sense"); |
| 397 | return X < (UINT64_C(1)1ULL << (N)); |
| 398 | } |
| 399 | template <unsigned N> |
| 400 | constexpr inline std::enable_if_t<N >= 64, bool> isUInt(uint64_t) { |
| 401 | return true; |
| 402 | } |
| 403 | |
| 404 | // Template specializations to get better code for common cases. |
| 405 | template <> constexpr inline bool isUInt<8>(uint64_t x) { |
| 406 | return static_cast<uint8_t>(x) == x; |
| 407 | } |
| 408 | template <> constexpr inline bool isUInt<16>(uint64_t x) { |
| 409 | return static_cast<uint16_t>(x) == x; |
| 410 | } |
| 411 | template <> constexpr inline bool isUInt<32>(uint64_t x) { |
| 412 | return static_cast<uint32_t>(x) == x; |
| 413 | } |
| 414 | |
| 415 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
| 416 | template <unsigned N, unsigned S> |
| 417 | constexpr inline bool isShiftedUInt(uint64_t x) { |
| 418 | static_assert( |
| 419 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); |
| 420 | static_assert(N + S <= 64, |
| 421 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); |
| 422 | // Per the two static_asserts above, S must be strictly less than 64. So |
| 423 | // 1 << S is not undefined behavior. |
| 424 | return isUInt<N + S>(x) && (x % (UINT64_C(1)1ULL << S) == 0); |
| 425 | } |
| 426 | |
| 427 | /// Gets the maximum value for a N-bit unsigned integer. |
| 428 | inline uint64_t maxUIntN(uint64_t N) { |
| 429 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 430 | |
| 431 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
| 432 | // (uint64_t(1) << N) - 1 |
| 433 | // without checking first that N != 64. But this works and doesn't have a |
| 434 | // branch. |
| 435 | return UINT64_MAX0xffffffffffffffffULL >> (64 - N); |
| 436 | } |
| 437 | |
| 438 | /// Gets the minimum value for a N-bit signed integer. |
| 439 | inline int64_t minIntN(int64_t N) { |
| 440 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 441 | |
| 442 | return UINT64_C(1)1ULL + ~(UINT64_C(1)1ULL << (N - 1)); |
| 443 | } |
| 444 | |
| 445 | /// Gets the maximum value for a N-bit signed integer. |
| 446 | inline int64_t maxIntN(int64_t N) { |
| 447 | assert(N > 0 && N <= 64 && "integer width out of range")((void)0); |
| 448 | |
| 449 | // This relies on two's complement wraparound when N == 64, so we convert to |
| 450 | // int64_t only at the very end to avoid UB. |
| 451 | return (UINT64_C(1)1ULL << (N - 1)) - 1; |
| 452 | } |
| 453 | |
| 454 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
| 455 | inline bool isUIntN(unsigned N, uint64_t x) { |
| 456 | return N >= 64 || x <= maxUIntN(N); |
| 457 | } |
| 458 | |
| 459 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
| 460 | inline bool isIntN(unsigned N, int64_t x) { |
| 461 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
| 462 | } |
| 463 | |
| 464 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 465 | /// least significant bit with the remainder zero (32 bit version). |
| 466 | /// Ex. isMask_32(0x0000FFFFU) == true. |
| 467 | constexpr inline bool isMask_32(uint32_t Value) { |
| 468 | return Value && ((Value + 1) & Value) == 0; |
| 469 | } |
| 470 | |
| 471 | /// Return true if the argument is a non-empty sequence of ones starting at the |
| 472 | /// least significant bit with the remainder zero (64 bit version). |
| 473 | constexpr inline bool isMask_64(uint64_t Value) { |
| 474 | return Value && ((Value + 1) & Value) == 0; |
| 475 | } |
| 476 | |
| 477 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 478 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
| 479 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
| 480 | return Value && isMask_32((Value - 1) | Value); |
| 481 | } |
| 482 | |
| 483 | /// Return true if the argument contains a non-empty sequence of ones with the |
| 484 | /// remainder zero (64 bit version.) |
| 485 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
| 486 | return Value && isMask_64((Value - 1) | Value); |
| 487 | } |
| 488 | |
| 489 | /// Return true if the argument is a power of two > 0. |
| 490 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
| 491 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
| 492 | return Value && !(Value & (Value - 1)); |
| 493 | } |
| 494 | |
| 495 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
| 496 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
| 497 | return Value && !(Value & (Value - 1)); |
| 498 | } |
| 499 | |
| 500 | /// Count the number of ones from the most significant bit to the first |
| 501 | /// zero bit. |
| 502 | /// |
| 503 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
| 504 | /// Only unsigned integral types are allowed. |
| 505 | /// |
| 506 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 507 | /// ZB_Undefined are valid arguments. |
| 508 | template <typename T> |
| 509 | unsigned countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 510 | static_assert(std::numeric_limits<T>::is_integer && |
| 511 | !std::numeric_limits<T>::is_signed, |
| 512 | "Only unsigned integral types are allowed."); |
| 513 | return countLeadingZeros<T>(~Value, ZB); |
| 514 | } |
| 515 | |
| 516 | /// Count the number of ones from the least significant bit to the first |
| 517 | /// zero bit. |
| 518 | /// |
| 519 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
| 520 | /// Only unsigned integral types are allowed. |
| 521 | /// |
| 522 | /// \param ZB the behavior on an input of all ones. Only ZB_Width and |
| 523 | /// ZB_Undefined are valid arguments. |
| 524 | template <typename T> |
| 525 | unsigned countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) { |
| 526 | static_assert(std::numeric_limits<T>::is_integer && |
| 527 | !std::numeric_limits<T>::is_signed, |
| 528 | "Only unsigned integral types are allowed."); |
| 529 | return countTrailingZeros<T>(~Value, ZB); |
| 530 | } |
| 531 | |
| 532 | namespace detail { |
| 533 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
| 534 | static unsigned count(T Value) { |
| 535 | // Generic version, forward to 32 bits. |
| 536 | static_assert(SizeOfT <= 4, "Not implemented!"); |
| 537 | #if defined(__GNUC__4) |
| 538 | return __builtin_popcount(Value); |
| 539 | #else |
| 540 | uint32_t v = Value; |
| 541 | v = v - ((v >> 1) & 0x55555555); |
| 542 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| 543 | return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; |
| 544 | #endif |
| 545 | } |
| 546 | }; |
| 547 | |
| 548 | template <typename T> struct PopulationCounter<T, 8> { |
| 549 | static unsigned count(T Value) { |
| 550 | #if defined(__GNUC__4) |
| 551 | return __builtin_popcountll(Value); |
| 552 | #else |
| 553 | uint64_t v = Value; |
| 554 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
| 555 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| 556 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| 557 | return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| 558 | #endif |
| 559 | } |
| 560 | }; |
| 561 | } // namespace detail |
| 562 | |
| 563 | /// Count the number of set bits in a value. |
| 564 | /// Ex. countPopulation(0xF000F000) = 8 |
| 565 | /// Returns 0 if the word is zero. |
| 566 | template <typename T> |
| 567 | inline unsigned countPopulation(T Value) { |
| 568 | static_assert(std::numeric_limits<T>::is_integer && |
| 569 | !std::numeric_limits<T>::is_signed, |
| 570 | "Only unsigned integral types are allowed."); |
| 571 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
| 572 | } |
| 573 | |
| 574 | /// Compile time Log2. |
| 575 | /// Valid only for positive powers of two. |
| 576 | template <size_t kValue> constexpr inline size_t CTLog2() { |
| 577 | static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), |
| 578 | "Value is not a valid power of 2"); |
| 579 | return 1 + CTLog2<kValue / 2>(); |
| 580 | } |
| 581 | |
| 582 | template <> constexpr inline size_t CTLog2<1>() { return 0; } |
| 583 | |
| 584 | /// Return the log base 2 of the specified value. |
| 585 | inline double Log2(double Value) { |
| 586 | #if defined(__ANDROID_API__) && __ANDROID_API__ < 18 |
| 587 | return __builtin_log(Value) / __builtin_log(2.0); |
| 588 | #else |
| 589 | return log2(Value); |
| 590 | #endif |
| 591 | } |
| 592 | |
| 593 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 594 | /// (32 bit edition.) |
| 595 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
| 596 | inline unsigned Log2_32(uint32_t Value) { |
| 597 | return 31 - countLeadingZeros(Value); |
| 598 | } |
| 599 | |
| 600 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
| 601 | /// (64 bit edition.) |
| 602 | inline unsigned Log2_64(uint64_t Value) { |
| 603 | return 63 - countLeadingZeros(Value); |
| 604 | } |
| 605 | |
| 606 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
| 607 | /// (32 bit edition). |
| 608 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
| 609 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
| 610 | return 32 - countLeadingZeros(Value - 1); |
| 611 | } |
| 612 | |
| 613 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
| 614 | /// (64 bit edition.) |
| 615 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
| 616 | return 64 - countLeadingZeros(Value - 1); |
| 617 | } |
| 618 | |
| 619 | /// Return the greatest common divisor of the values using Euclid's algorithm. |
| 620 | template <typename T> |
| 621 | inline T greatestCommonDivisor(T A, T B) { |
| 622 | while (B) { |
| 623 | T Tmp = B; |
| 624 | B = A % B; |
| 625 | A = Tmp; |
| 626 | } |
| 627 | return A; |
| 628 | } |
| 629 | |
| 630 | inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) { |
| 631 | return greatestCommonDivisor<uint64_t>(A, B); |
| 632 | } |
| 633 | |
| 634 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
| 635 | inline double BitsToDouble(uint64_t Bits) { |
| 636 | double D; |
| 637 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 638 | memcpy(&D, &Bits, sizeof(Bits)); |
| 639 | return D; |
| 640 | } |
| 641 | |
| 642 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
| 643 | inline float BitsToFloat(uint32_t Bits) { |
| 644 | float F; |
| 645 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 646 | memcpy(&F, &Bits, sizeof(Bits)); |
| 647 | return F; |
| 648 | } |
| 649 | |
| 650 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
| 651 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
| 652 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 653 | inline uint64_t DoubleToBits(double Double) { |
| 654 | uint64_t Bits; |
| 655 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
| 656 | memcpy(&Bits, &Double, sizeof(Double)); |
| 657 | return Bits; |
| 658 | } |
| 659 | |
| 660 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
| 661 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
| 662 | /// notably x86, so this routine cannot be used if these bits are needed. |
| 663 | inline uint32_t FloatToBits(float Float) { |
| 664 | uint32_t Bits; |
| 665 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
| 666 | memcpy(&Bits, &Float, sizeof(Float)); |
| 667 | return Bits; |
| 668 | } |
| 669 | |
| 670 | /// A and B are either alignments or offsets. Return the minimum alignment that |
| 671 | /// may be assumed after adding the two together. |
| 672 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
| 673 | // The largest power of 2 that divides both A and B. |
| 674 | // |
| 675 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
| 676 | // MSVC warning C4146 |
| 677 | // return (A | B) & -(A | B); |
| 678 | return (A | B) & (1 + ~(A | B)); |
| 679 | } |
| 680 | |
| 681 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
| 682 | /// Returns zero on overflow. |
| 683 | inline uint64_t NextPowerOf2(uint64_t A) { |
| 684 | A |= (A >> 1); |
| 685 | A |= (A >> 2); |
| 686 | A |= (A >> 4); |
| 687 | A |= (A >> 8); |
| 688 | A |= (A >> 16); |
| 689 | A |= (A >> 32); |
| 690 | return A + 1; |
| 691 | } |
| 692 | |
| 693 | /// Returns the power of two which is less than or equal to the given value. |
| 694 | /// Essentially, it is a floor operation across the domain of powers of two. |
| 695 | inline uint64_t PowerOf2Floor(uint64_t A) { |
| 696 | if (!A) return 0; |
| 697 | return 1ull << (63 - countLeadingZeros(A, ZB_Undefined)); |
| 698 | } |
| 699 | |
| 700 | /// Returns the power of two which is greater than or equal to the given value. |
| 701 | /// Essentially, it is a ceil operation across the domain of powers of two. |
| 702 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
| 703 | if (!A) |
| 704 | return 0; |
| 705 | return NextPowerOf2(A - 1); |
| 706 | } |
| 707 | |
| 708 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 709 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
| 710 | /// |
| 711 | /// If non-zero \p Skew is specified, the return value will be a minimal |
| 712 | /// integer that is greater than or equal to \p Value and equal to |
| 713 | /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than |
| 714 | /// \p Align, its value is adjusted to '\p Skew mod \p Align'. |
| 715 | /// |
| 716 | /// Examples: |
| 717 | /// \code |
| 718 | /// alignTo(5, 8) = 8 |
| 719 | /// alignTo(17, 8) = 24 |
| 720 | /// alignTo(~0LL, 8) = 0 |
| 721 | /// alignTo(321, 255) = 510 |
| 722 | /// |
| 723 | /// alignTo(5, 8, 7) = 7 |
| 724 | /// alignTo(17, 8, 1) = 17 |
| 725 | /// alignTo(~0LL, 8, 3) = 3 |
| 726 | /// alignTo(321, 255, 42) = 552 |
| 727 | /// \endcode |
| 728 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 729 | assert(Align != 0u && "Align can't be 0.")((void)0); |
| 730 | Skew %= Align; |
| 731 | return (Value + Align - 1 - Skew) / Align * Align + Skew; |
| 732 | } |
| 733 | |
| 734 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
| 735 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
| 736 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
| 737 | static_assert(Align != 0u, "Align must be non-zero"); |
| 738 | return (Value + Align - 1) / Align * Align; |
| 739 | } |
| 740 | |
| 741 | /// Returns the integer ceil(Numerator / Denominator). |
| 742 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
| 743 | return alignTo(Numerator, Denominator) / Denominator; |
| 744 | } |
| 745 | |
| 746 | /// Returns the integer nearest(Numerator / Denominator). |
| 747 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { |
| 748 | return (Numerator + (Denominator / 2)) / Denominator; |
| 749 | } |
| 750 | |
| 751 | /// Returns the largest uint64_t less than or equal to \p Value and is |
| 752 | /// \p Skew mod \p Align. \p Align must be non-zero |
| 753 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
| 754 | assert(Align != 0u && "Align can't be 0.")((void)0); |
| 755 | Skew %= Align; |
| 756 | return (Value - Skew) / Align * Align + Skew; |
| 757 | } |
| 758 | |
| 759 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 760 | /// Requires 0 < B <= 32. |
| 761 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
| 762 | static_assert(B > 0, "Bit width can't be 0."); |
| 763 | static_assert(B <= 32, "Bit width out of range."); |
| 764 | return int32_t(X << (32 - B)) >> (32 - B); |
| 765 | } |
| 766 | |
| 767 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
| 768 | /// Requires 0 < B <= 32. |
| 769 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
| 770 | assert(B > 0 && "Bit width can't be 0.")((void)0); |
| 771 | assert(B <= 32 && "Bit width out of range.")((void)0); |
| 772 | return int32_t(X << (32 - B)) >> (32 - B); |
| 773 | } |
| 774 | |
| 775 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 776 | /// Requires 0 < B <= 64. |
| 777 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
| 778 | static_assert(B > 0, "Bit width can't be 0."); |
| 779 | static_assert(B <= 64, "Bit width out of range."); |
| 780 | return int64_t(x << (64 - B)) >> (64 - B); |
| 781 | } |
| 782 | |
| 783 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
| 784 | /// Requires 0 < B <= 64. |
| 785 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
| 786 | assert(B > 0 && "Bit width can't be 0.")((void)0); |
| 787 | assert(B <= 64 && "Bit width out of range.")((void)0); |
| 788 | return int64_t(X << (64 - B)) >> (64 - B); |
| 789 | } |
| 790 | |
| 791 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
| 792 | /// value of the result. |
| 793 | template <typename T> |
| 794 | std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { |
| 795 | return X > Y ? (X - Y) : (Y - X); |
| 796 | } |
| 797 | |
| 798 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
| 799 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 800 | /// the result is larger than the maximum representable value of type T. |
| 801 | template <typename T> |
| 802 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 803 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 804 | bool Dummy; |
| 805 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 806 | // Hacker's Delight, p. 29 |
| 807 | T Z = X + Y; |
| 808 | Overflowed = (Z < X || Z < Y); |
| 809 | if (Overflowed) |
| 810 | return std::numeric_limits<T>::max(); |
| 811 | else |
| 812 | return Z; |
| 813 | } |
| 814 | |
| 815 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
| 816 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
| 817 | /// the result is larger than the maximum representable value of type T. |
| 818 | template <typename T> |
| 819 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 820 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
| 821 | bool Dummy; |
| 822 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 823 | |
| 824 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
| 825 | // because it fails for uint16_t (where multiplication can have undefined |
| 826 | // behavior due to promotion to int), and requires a division in addition |
| 827 | // to the multiplication. |
| 828 | |
| 829 | Overflowed = false; |
| 830 | |
| 831 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
| 832 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
| 833 | // will necessarily be less than Log2Max as desired. |
| 834 | int Log2Z = Log2_64(X) + Log2_64(Y); |
| 835 | const T Max = std::numeric_limits<T>::max(); |
| 836 | int Log2Max = Log2_64(Max); |
| 837 | if (Log2Z < Log2Max) { |
| 838 | return X * Y; |
| 839 | } |
| 840 | if (Log2Z > Log2Max) { |
| 841 | Overflowed = true; |
| 842 | return Max; |
| 843 | } |
| 844 | |
| 845 | // We're going to use the top bit, and maybe overflow one |
| 846 | // bit past it. Multiply all but the bottom bit then add |
| 847 | // that on at the end. |
| 848 | T Z = (X >> 1) * Y; |
| 849 | if (Z & ~(Max >> 1)) { |
| 850 | Overflowed = true; |
| 851 | return Max; |
| 852 | } |
| 853 | Z <<= 1; |
| 854 | if (X & 1) |
| 855 | return SaturatingAdd(Z, Y, ResultOverflowed); |
| 856 | |
| 857 | return Z; |
| 858 | } |
| 859 | |
| 860 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
| 861 | /// the product. Clamp the result to the maximum representable value of T on |
| 862 | /// overflow. ResultOverflowed indicates if the result is larger than the |
| 863 | /// maximum representable value of type T. |
| 864 | template <typename T> |
| 865 | std::enable_if_t<std::is_unsigned<T>::value, T> |
| 866 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
| 867 | bool Dummy; |
| 868 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
| 869 | |
| 870 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
| 871 | if (Overflowed) |
| 872 | return Product; |
| 873 | |
| 874 | return SaturatingAdd(A, Product, &Overflowed); |
| 875 | } |
| 876 | |
| 877 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
| 878 | extern const float huge_valf; |
| 879 | |
| 880 | |
| 881 | /// Add two signed integers, computing the two's complement truncated result, |
| 882 | /// returning true if overflow occured. |
| 883 | template <typename T> |
| 884 | std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { |
| 885 | #if __has_builtin(__builtin_add_overflow)1 |
| 886 | return __builtin_add_overflow(X, Y, &Result); |
| 887 | #else |
| 888 | // Perform the unsigned addition. |
| 889 | using U = std::make_unsigned_t<T>; |
| 890 | const U UX = static_cast<U>(X); |
| 891 | const U UY = static_cast<U>(Y); |
| 892 | const U UResult = UX + UY; |
| 893 | |
| 894 | // Convert to signed. |
| 895 | Result = static_cast<T>(UResult); |
| 896 | |
| 897 | // Adding two positive numbers should result in a positive number. |
| 898 | if (X > 0 && Y > 0) |
| 899 | return Result <= 0; |
| 900 | // Adding two negatives should result in a negative number. |
| 901 | if (X < 0 && Y < 0) |
| 902 | return Result >= 0; |
| 903 | return false; |
| 904 | #endif |
| 905 | } |
| 906 | |
| 907 | /// Subtract two signed integers, computing the two's complement truncated |
| 908 | /// result, returning true if an overflow ocurred. |
| 909 | template <typename T> |
| 910 | std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { |
| 911 | #if __has_builtin(__builtin_sub_overflow)1 |
| 912 | return __builtin_sub_overflow(X, Y, &Result); |
| 913 | #else |
| 914 | // Perform the unsigned addition. |
| 915 | using U = std::make_unsigned_t<T>; |
| 916 | const U UX = static_cast<U>(X); |
| 917 | const U UY = static_cast<U>(Y); |
| 918 | const U UResult = UX - UY; |
| 919 | |
| 920 | // Convert to signed. |
| 921 | Result = static_cast<T>(UResult); |
| 922 | |
| 923 | // Subtracting a positive number from a negative results in a negative number. |
| 924 | if (X <= 0 && Y > 0) |
| 925 | return Result >= 0; |
| 926 | // Subtracting a negative number from a positive results in a positive number. |
| 927 | if (X >= 0 && Y < 0) |
| 928 | return Result <= 0; |
| 929 | return false; |
| 930 | #endif |
| 931 | } |
| 932 | |
| 933 | /// Multiply two signed integers, computing the two's complement truncated |
| 934 | /// result, returning true if an overflow ocurred. |
| 935 | template <typename T> |
| 936 | std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { |
| 937 | // Perform the unsigned multiplication on absolute values. |
| 938 | using U = std::make_unsigned_t<T>; |
| 939 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
| 940 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
| 941 | const U UResult = UX * UY; |
| 942 | |
| 943 | // Convert to signed. |
| 944 | const bool IsNegative = (X < 0) ^ (Y < 0); |
| 945 | Result = IsNegative ? (0 - UResult) : UResult; |
| 946 | |
| 947 | // If any of the args was 0, result is 0 and no overflow occurs. |
| 948 | if (UX == 0 || UY == 0) |
| 949 | return false; |
| 950 | |
| 951 | // UX and UY are in [1, 2^n], where n is the number of digits. |
| 952 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
| 953 | // positive) divided by an argument compares to the other. |
| 954 | if (IsNegative) |
| 955 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
| 956 | else |
| 957 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
| 958 | } |
| 959 | |
| 960 | } // End llvm namespace |
| 961 | |
| 962 | #endif |