| File: | src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaOverload.cpp |
| Warning: | line 13687, column 21 Although the value stored to 'RHS' is used in the enclosing expression, the value is never actually read from 'RHS' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides Sema routines for C++ overloading. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/ASTContext.h" |
| 14 | #include "clang/AST/CXXInheritance.h" |
| 15 | #include "clang/AST/DeclObjC.h" |
| 16 | #include "clang/AST/DependenceFlags.h" |
| 17 | #include "clang/AST/Expr.h" |
| 18 | #include "clang/AST/ExprCXX.h" |
| 19 | #include "clang/AST/ExprObjC.h" |
| 20 | #include "clang/AST/TypeOrdering.h" |
| 21 | #include "clang/Basic/Diagnostic.h" |
| 22 | #include "clang/Basic/DiagnosticOptions.h" |
| 23 | #include "clang/Basic/PartialDiagnostic.h" |
| 24 | #include "clang/Basic/SourceManager.h" |
| 25 | #include "clang/Basic/TargetInfo.h" |
| 26 | #include "clang/Sema/Initialization.h" |
| 27 | #include "clang/Sema/Lookup.h" |
| 28 | #include "clang/Sema/Overload.h" |
| 29 | #include "clang/Sema/SemaInternal.h" |
| 30 | #include "clang/Sema/Template.h" |
| 31 | #include "clang/Sema/TemplateDeduction.h" |
| 32 | #include "llvm/ADT/DenseSet.h" |
| 33 | #include "llvm/ADT/Optional.h" |
| 34 | #include "llvm/ADT/STLExtras.h" |
| 35 | #include "llvm/ADT/SmallPtrSet.h" |
| 36 | #include "llvm/ADT/SmallString.h" |
| 37 | #include <algorithm> |
| 38 | #include <cstdlib> |
| 39 | |
| 40 | using namespace clang; |
| 41 | using namespace sema; |
| 42 | |
| 43 | using AllowedExplicit = Sema::AllowedExplicit; |
| 44 | |
| 45 | static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { |
| 46 | return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { |
| 47 | return P->hasAttr<PassObjectSizeAttr>(); |
| 48 | }); |
| 49 | } |
| 50 | |
| 51 | /// A convenience routine for creating a decayed reference to a function. |
| 52 | static ExprResult |
| 53 | CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, |
| 54 | const Expr *Base, bool HadMultipleCandidates, |
| 55 | SourceLocation Loc = SourceLocation(), |
| 56 | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ |
| 57 | if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) |
| 58 | return ExprError(); |
| 59 | // If FoundDecl is different from Fn (such as if one is a template |
| 60 | // and the other a specialization), make sure DiagnoseUseOfDecl is |
| 61 | // called on both. |
| 62 | // FIXME: This would be more comprehensively addressed by modifying |
| 63 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl |
| 64 | // being used. |
| 65 | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) |
| 66 | return ExprError(); |
| 67 | DeclRefExpr *DRE = new (S.Context) |
| 68 | DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); |
| 69 | if (HadMultipleCandidates) |
| 70 | DRE->setHadMultipleCandidates(true); |
| 71 | |
| 72 | S.MarkDeclRefReferenced(DRE, Base); |
| 73 | if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { |
| 74 | if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { |
| 75 | S.ResolveExceptionSpec(Loc, FPT); |
| 76 | DRE->setType(Fn->getType()); |
| 77 | } |
| 78 | } |
| 79 | return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), |
| 80 | CK_FunctionToPointerDecay); |
| 81 | } |
| 82 | |
| 83 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
| 84 | bool InOverloadResolution, |
| 85 | StandardConversionSequence &SCS, |
| 86 | bool CStyle, |
| 87 | bool AllowObjCWritebackConversion); |
| 88 | |
| 89 | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
| 90 | QualType &ToType, |
| 91 | bool InOverloadResolution, |
| 92 | StandardConversionSequence &SCS, |
| 93 | bool CStyle); |
| 94 | static OverloadingResult |
| 95 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| 96 | UserDefinedConversionSequence& User, |
| 97 | OverloadCandidateSet& Conversions, |
| 98 | AllowedExplicit AllowExplicit, |
| 99 | bool AllowObjCConversionOnExplicit); |
| 100 | |
| 101 | static ImplicitConversionSequence::CompareKind |
| 102 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, |
| 103 | const StandardConversionSequence& SCS1, |
| 104 | const StandardConversionSequence& SCS2); |
| 105 | |
| 106 | static ImplicitConversionSequence::CompareKind |
| 107 | CompareQualificationConversions(Sema &S, |
| 108 | const StandardConversionSequence& SCS1, |
| 109 | const StandardConversionSequence& SCS2); |
| 110 | |
| 111 | static ImplicitConversionSequence::CompareKind |
| 112 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, |
| 113 | const StandardConversionSequence& SCS1, |
| 114 | const StandardConversionSequence& SCS2); |
| 115 | |
| 116 | /// GetConversionRank - Retrieve the implicit conversion rank |
| 117 | /// corresponding to the given implicit conversion kind. |
| 118 | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { |
| 119 | static const ImplicitConversionRank |
| 120 | Rank[(int)ICK_Num_Conversion_Kinds] = { |
| 121 | ICR_Exact_Match, |
| 122 | ICR_Exact_Match, |
| 123 | ICR_Exact_Match, |
| 124 | ICR_Exact_Match, |
| 125 | ICR_Exact_Match, |
| 126 | ICR_Exact_Match, |
| 127 | ICR_Promotion, |
| 128 | ICR_Promotion, |
| 129 | ICR_Promotion, |
| 130 | ICR_Conversion, |
| 131 | ICR_Conversion, |
| 132 | ICR_Conversion, |
| 133 | ICR_Conversion, |
| 134 | ICR_Conversion, |
| 135 | ICR_Conversion, |
| 136 | ICR_Conversion, |
| 137 | ICR_Conversion, |
| 138 | ICR_Conversion, |
| 139 | ICR_Conversion, |
| 140 | ICR_Conversion, |
| 141 | ICR_OCL_Scalar_Widening, |
| 142 | ICR_Complex_Real_Conversion, |
| 143 | ICR_Conversion, |
| 144 | ICR_Conversion, |
| 145 | ICR_Writeback_Conversion, |
| 146 | ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- |
| 147 | // it was omitted by the patch that added |
| 148 | // ICK_Zero_Event_Conversion |
| 149 | ICR_C_Conversion, |
| 150 | ICR_C_Conversion_Extension |
| 151 | }; |
| 152 | return Rank[(int)Kind]; |
| 153 | } |
| 154 | |
| 155 | /// GetImplicitConversionName - Return the name of this kind of |
| 156 | /// implicit conversion. |
| 157 | static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { |
| 158 | static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { |
| 159 | "No conversion", |
| 160 | "Lvalue-to-rvalue", |
| 161 | "Array-to-pointer", |
| 162 | "Function-to-pointer", |
| 163 | "Function pointer conversion", |
| 164 | "Qualification", |
| 165 | "Integral promotion", |
| 166 | "Floating point promotion", |
| 167 | "Complex promotion", |
| 168 | "Integral conversion", |
| 169 | "Floating conversion", |
| 170 | "Complex conversion", |
| 171 | "Floating-integral conversion", |
| 172 | "Pointer conversion", |
| 173 | "Pointer-to-member conversion", |
| 174 | "Boolean conversion", |
| 175 | "Compatible-types conversion", |
| 176 | "Derived-to-base conversion", |
| 177 | "Vector conversion", |
| 178 | "SVE Vector conversion", |
| 179 | "Vector splat", |
| 180 | "Complex-real conversion", |
| 181 | "Block Pointer conversion", |
| 182 | "Transparent Union Conversion", |
| 183 | "Writeback conversion", |
| 184 | "OpenCL Zero Event Conversion", |
| 185 | "C specific type conversion", |
| 186 | "Incompatible pointer conversion" |
| 187 | }; |
| 188 | return Name[Kind]; |
| 189 | } |
| 190 | |
| 191 | /// StandardConversionSequence - Set the standard conversion |
| 192 | /// sequence to the identity conversion. |
| 193 | void StandardConversionSequence::setAsIdentityConversion() { |
| 194 | First = ICK_Identity; |
| 195 | Second = ICK_Identity; |
| 196 | Third = ICK_Identity; |
| 197 | DeprecatedStringLiteralToCharPtr = false; |
| 198 | QualificationIncludesObjCLifetime = false; |
| 199 | ReferenceBinding = false; |
| 200 | DirectBinding = false; |
| 201 | IsLvalueReference = true; |
| 202 | BindsToFunctionLvalue = false; |
| 203 | BindsToRvalue = false; |
| 204 | BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 205 | ObjCLifetimeConversionBinding = false; |
| 206 | CopyConstructor = nullptr; |
| 207 | } |
| 208 | |
| 209 | /// getRank - Retrieve the rank of this standard conversion sequence |
| 210 | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the |
| 211 | /// implicit conversions. |
| 212 | ImplicitConversionRank StandardConversionSequence::getRank() const { |
| 213 | ImplicitConversionRank Rank = ICR_Exact_Match; |
| 214 | if (GetConversionRank(First) > Rank) |
| 215 | Rank = GetConversionRank(First); |
| 216 | if (GetConversionRank(Second) > Rank) |
| 217 | Rank = GetConversionRank(Second); |
| 218 | if (GetConversionRank(Third) > Rank) |
| 219 | Rank = GetConversionRank(Third); |
| 220 | return Rank; |
| 221 | } |
| 222 | |
| 223 | /// isPointerConversionToBool - Determines whether this conversion is |
| 224 | /// a conversion of a pointer or pointer-to-member to bool. This is |
| 225 | /// used as part of the ranking of standard conversion sequences |
| 226 | /// (C++ 13.3.3.2p4). |
| 227 | bool StandardConversionSequence::isPointerConversionToBool() const { |
| 228 | // Note that FromType has not necessarily been transformed by the |
| 229 | // array-to-pointer or function-to-pointer implicit conversions, so |
| 230 | // check for their presence as well as checking whether FromType is |
| 231 | // a pointer. |
| 232 | if (getToType(1)->isBooleanType() && |
| 233 | (getFromType()->isPointerType() || |
| 234 | getFromType()->isMemberPointerType() || |
| 235 | getFromType()->isObjCObjectPointerType() || |
| 236 | getFromType()->isBlockPointerType() || |
| 237 | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) |
| 238 | return true; |
| 239 | |
| 240 | return false; |
| 241 | } |
| 242 | |
| 243 | /// isPointerConversionToVoidPointer - Determines whether this |
| 244 | /// conversion is a conversion of a pointer to a void pointer. This is |
| 245 | /// used as part of the ranking of standard conversion sequences (C++ |
| 246 | /// 13.3.3.2p4). |
| 247 | bool |
| 248 | StandardConversionSequence:: |
| 249 | isPointerConversionToVoidPointer(ASTContext& Context) const { |
| 250 | QualType FromType = getFromType(); |
| 251 | QualType ToType = getToType(1); |
| 252 | |
| 253 | // Note that FromType has not necessarily been transformed by the |
| 254 | // array-to-pointer implicit conversion, so check for its presence |
| 255 | // and redo the conversion to get a pointer. |
| 256 | if (First == ICK_Array_To_Pointer) |
| 257 | FromType = Context.getArrayDecayedType(FromType); |
| 258 | |
| 259 | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) |
| 260 | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) |
| 261 | return ToPtrType->getPointeeType()->isVoidType(); |
| 262 | |
| 263 | return false; |
| 264 | } |
| 265 | |
| 266 | /// Skip any implicit casts which could be either part of a narrowing conversion |
| 267 | /// or after one in an implicit conversion. |
| 268 | static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, |
| 269 | const Expr *Converted) { |
| 270 | // We can have cleanups wrapping the converted expression; these need to be |
| 271 | // preserved so that destructors run if necessary. |
| 272 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { |
| 273 | Expr *Inner = |
| 274 | const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); |
| 275 | return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), |
| 276 | EWC->getObjects()); |
| 277 | } |
| 278 | |
| 279 | while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { |
| 280 | switch (ICE->getCastKind()) { |
| 281 | case CK_NoOp: |
| 282 | case CK_IntegralCast: |
| 283 | case CK_IntegralToBoolean: |
| 284 | case CK_IntegralToFloating: |
| 285 | case CK_BooleanToSignedIntegral: |
| 286 | case CK_FloatingToIntegral: |
| 287 | case CK_FloatingToBoolean: |
| 288 | case CK_FloatingCast: |
| 289 | Converted = ICE->getSubExpr(); |
| 290 | continue; |
| 291 | |
| 292 | default: |
| 293 | return Converted; |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | return Converted; |
| 298 | } |
| 299 | |
| 300 | /// Check if this standard conversion sequence represents a narrowing |
| 301 | /// conversion, according to C++11 [dcl.init.list]p7. |
| 302 | /// |
| 303 | /// \param Ctx The AST context. |
| 304 | /// \param Converted The result of applying this standard conversion sequence. |
| 305 | /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the |
| 306 | /// value of the expression prior to the narrowing conversion. |
| 307 | /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the |
| 308 | /// type of the expression prior to the narrowing conversion. |
| 309 | /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions |
| 310 | /// from floating point types to integral types should be ignored. |
| 311 | NarrowingKind StandardConversionSequence::getNarrowingKind( |
| 312 | ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, |
| 313 | QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { |
| 314 | assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++")((void)0); |
| 315 | |
| 316 | // C++11 [dcl.init.list]p7: |
| 317 | // A narrowing conversion is an implicit conversion ... |
| 318 | QualType FromType = getToType(0); |
| 319 | QualType ToType = getToType(1); |
| 320 | |
| 321 | // A conversion to an enumeration type is narrowing if the conversion to |
| 322 | // the underlying type is narrowing. This only arises for expressions of |
| 323 | // the form 'Enum{init}'. |
| 324 | if (auto *ET = ToType->getAs<EnumType>()) |
| 325 | ToType = ET->getDecl()->getIntegerType(); |
| 326 | |
| 327 | switch (Second) { |
| 328 | // 'bool' is an integral type; dispatch to the right place to handle it. |
| 329 | case ICK_Boolean_Conversion: |
| 330 | if (FromType->isRealFloatingType()) |
| 331 | goto FloatingIntegralConversion; |
| 332 | if (FromType->isIntegralOrUnscopedEnumerationType()) |
| 333 | goto IntegralConversion; |
| 334 | // -- from a pointer type or pointer-to-member type to bool, or |
| 335 | return NK_Type_Narrowing; |
| 336 | |
| 337 | // -- from a floating-point type to an integer type, or |
| 338 | // |
| 339 | // -- from an integer type or unscoped enumeration type to a floating-point |
| 340 | // type, except where the source is a constant expression and the actual |
| 341 | // value after conversion will fit into the target type and will produce |
| 342 | // the original value when converted back to the original type, or |
| 343 | case ICK_Floating_Integral: |
| 344 | FloatingIntegralConversion: |
| 345 | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { |
| 346 | return NK_Type_Narrowing; |
| 347 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
| 348 | ToType->isRealFloatingType()) { |
| 349 | if (IgnoreFloatToIntegralConversion) |
| 350 | return NK_Not_Narrowing; |
| 351 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
| 352 | assert(Initializer && "Unknown conversion expression")((void)0); |
| 353 | |
| 354 | // If it's value-dependent, we can't tell whether it's narrowing. |
| 355 | if (Initializer->isValueDependent()) |
| 356 | return NK_Dependent_Narrowing; |
| 357 | |
| 358 | if (Optional<llvm::APSInt> IntConstantValue = |
| 359 | Initializer->getIntegerConstantExpr(Ctx)) { |
| 360 | // Convert the integer to the floating type. |
| 361 | llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); |
| 362 | Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), |
| 363 | llvm::APFloat::rmNearestTiesToEven); |
| 364 | // And back. |
| 365 | llvm::APSInt ConvertedValue = *IntConstantValue; |
| 366 | bool ignored; |
| 367 | Result.convertToInteger(ConvertedValue, |
| 368 | llvm::APFloat::rmTowardZero, &ignored); |
| 369 | // If the resulting value is different, this was a narrowing conversion. |
| 370 | if (*IntConstantValue != ConvertedValue) { |
| 371 | ConstantValue = APValue(*IntConstantValue); |
| 372 | ConstantType = Initializer->getType(); |
| 373 | return NK_Constant_Narrowing; |
| 374 | } |
| 375 | } else { |
| 376 | // Variables are always narrowings. |
| 377 | return NK_Variable_Narrowing; |
| 378 | } |
| 379 | } |
| 380 | return NK_Not_Narrowing; |
| 381 | |
| 382 | // -- from long double to double or float, or from double to float, except |
| 383 | // where the source is a constant expression and the actual value after |
| 384 | // conversion is within the range of values that can be represented (even |
| 385 | // if it cannot be represented exactly), or |
| 386 | case ICK_Floating_Conversion: |
| 387 | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && |
| 388 | Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { |
| 389 | // FromType is larger than ToType. |
| 390 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
| 391 | |
| 392 | // If it's value-dependent, we can't tell whether it's narrowing. |
| 393 | if (Initializer->isValueDependent()) |
| 394 | return NK_Dependent_Narrowing; |
| 395 | |
| 396 | if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { |
| 397 | // Constant! |
| 398 | assert(ConstantValue.isFloat())((void)0); |
| 399 | llvm::APFloat FloatVal = ConstantValue.getFloat(); |
| 400 | // Convert the source value into the target type. |
| 401 | bool ignored; |
| 402 | llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( |
| 403 | Ctx.getFloatTypeSemantics(ToType), |
| 404 | llvm::APFloat::rmNearestTiesToEven, &ignored); |
| 405 | // If there was no overflow, the source value is within the range of |
| 406 | // values that can be represented. |
| 407 | if (ConvertStatus & llvm::APFloat::opOverflow) { |
| 408 | ConstantType = Initializer->getType(); |
| 409 | return NK_Constant_Narrowing; |
| 410 | } |
| 411 | } else { |
| 412 | return NK_Variable_Narrowing; |
| 413 | } |
| 414 | } |
| 415 | return NK_Not_Narrowing; |
| 416 | |
| 417 | // -- from an integer type or unscoped enumeration type to an integer type |
| 418 | // that cannot represent all the values of the original type, except where |
| 419 | // the source is a constant expression and the actual value after |
| 420 | // conversion will fit into the target type and will produce the original |
| 421 | // value when converted back to the original type. |
| 422 | case ICK_Integral_Conversion: |
| 423 | IntegralConversion: { |
| 424 | assert(FromType->isIntegralOrUnscopedEnumerationType())((void)0); |
| 425 | assert(ToType->isIntegralOrUnscopedEnumerationType())((void)0); |
| 426 | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); |
| 427 | const unsigned FromWidth = Ctx.getIntWidth(FromType); |
| 428 | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); |
| 429 | const unsigned ToWidth = Ctx.getIntWidth(ToType); |
| 430 | |
| 431 | if (FromWidth > ToWidth || |
| 432 | (FromWidth == ToWidth && FromSigned != ToSigned) || |
| 433 | (FromSigned && !ToSigned)) { |
| 434 | // Not all values of FromType can be represented in ToType. |
| 435 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
| 436 | |
| 437 | // If it's value-dependent, we can't tell whether it's narrowing. |
| 438 | if (Initializer->isValueDependent()) |
| 439 | return NK_Dependent_Narrowing; |
| 440 | |
| 441 | Optional<llvm::APSInt> OptInitializerValue; |
| 442 | if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { |
| 443 | // Such conversions on variables are always narrowing. |
| 444 | return NK_Variable_Narrowing; |
| 445 | } |
| 446 | llvm::APSInt &InitializerValue = *OptInitializerValue; |
| 447 | bool Narrowing = false; |
| 448 | if (FromWidth < ToWidth) { |
| 449 | // Negative -> unsigned is narrowing. Otherwise, more bits is never |
| 450 | // narrowing. |
| 451 | if (InitializerValue.isSigned() && InitializerValue.isNegative()) |
| 452 | Narrowing = true; |
| 453 | } else { |
| 454 | // Add a bit to the InitializerValue so we don't have to worry about |
| 455 | // signed vs. unsigned comparisons. |
| 456 | InitializerValue = InitializerValue.extend( |
| 457 | InitializerValue.getBitWidth() + 1); |
| 458 | // Convert the initializer to and from the target width and signed-ness. |
| 459 | llvm::APSInt ConvertedValue = InitializerValue; |
| 460 | ConvertedValue = ConvertedValue.trunc(ToWidth); |
| 461 | ConvertedValue.setIsSigned(ToSigned); |
| 462 | ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); |
| 463 | ConvertedValue.setIsSigned(InitializerValue.isSigned()); |
| 464 | // If the result is different, this was a narrowing conversion. |
| 465 | if (ConvertedValue != InitializerValue) |
| 466 | Narrowing = true; |
| 467 | } |
| 468 | if (Narrowing) { |
| 469 | ConstantType = Initializer->getType(); |
| 470 | ConstantValue = APValue(InitializerValue); |
| 471 | return NK_Constant_Narrowing; |
| 472 | } |
| 473 | } |
| 474 | return NK_Not_Narrowing; |
| 475 | } |
| 476 | |
| 477 | default: |
| 478 | // Other kinds of conversions are not narrowings. |
| 479 | return NK_Not_Narrowing; |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | /// dump - Print this standard conversion sequence to standard |
| 484 | /// error. Useful for debugging overloading issues. |
| 485 | LLVM_DUMP_METHOD__attribute__((noinline)) void StandardConversionSequence::dump() const { |
| 486 | raw_ostream &OS = llvm::errs(); |
| 487 | bool PrintedSomething = false; |
| 488 | if (First != ICK_Identity) { |
| 489 | OS << GetImplicitConversionName(First); |
| 490 | PrintedSomething = true; |
| 491 | } |
| 492 | |
| 493 | if (Second != ICK_Identity) { |
| 494 | if (PrintedSomething) { |
| 495 | OS << " -> "; |
| 496 | } |
| 497 | OS << GetImplicitConversionName(Second); |
| 498 | |
| 499 | if (CopyConstructor) { |
| 500 | OS << " (by copy constructor)"; |
| 501 | } else if (DirectBinding) { |
| 502 | OS << " (direct reference binding)"; |
| 503 | } else if (ReferenceBinding) { |
| 504 | OS << " (reference binding)"; |
| 505 | } |
| 506 | PrintedSomething = true; |
| 507 | } |
| 508 | |
| 509 | if (Third != ICK_Identity) { |
| 510 | if (PrintedSomething) { |
| 511 | OS << " -> "; |
| 512 | } |
| 513 | OS << GetImplicitConversionName(Third); |
| 514 | PrintedSomething = true; |
| 515 | } |
| 516 | |
| 517 | if (!PrintedSomething) { |
| 518 | OS << "No conversions required"; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | /// dump - Print this user-defined conversion sequence to standard |
| 523 | /// error. Useful for debugging overloading issues. |
| 524 | void UserDefinedConversionSequence::dump() const { |
| 525 | raw_ostream &OS = llvm::errs(); |
| 526 | if (Before.First || Before.Second || Before.Third) { |
| 527 | Before.dump(); |
| 528 | OS << " -> "; |
| 529 | } |
| 530 | if (ConversionFunction) |
| 531 | OS << '\'' << *ConversionFunction << '\''; |
| 532 | else |
| 533 | OS << "aggregate initialization"; |
| 534 | if (After.First || After.Second || After.Third) { |
| 535 | OS << " -> "; |
| 536 | After.dump(); |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | /// dump - Print this implicit conversion sequence to standard |
| 541 | /// error. Useful for debugging overloading issues. |
| 542 | void ImplicitConversionSequence::dump() const { |
| 543 | raw_ostream &OS = llvm::errs(); |
| 544 | if (isStdInitializerListElement()) |
| 545 | OS << "Worst std::initializer_list element conversion: "; |
| 546 | switch (ConversionKind) { |
| 547 | case StandardConversion: |
| 548 | OS << "Standard conversion: "; |
| 549 | Standard.dump(); |
| 550 | break; |
| 551 | case UserDefinedConversion: |
| 552 | OS << "User-defined conversion: "; |
| 553 | UserDefined.dump(); |
| 554 | break; |
| 555 | case EllipsisConversion: |
| 556 | OS << "Ellipsis conversion"; |
| 557 | break; |
| 558 | case AmbiguousConversion: |
| 559 | OS << "Ambiguous conversion"; |
| 560 | break; |
| 561 | case BadConversion: |
| 562 | OS << "Bad conversion"; |
| 563 | break; |
| 564 | } |
| 565 | |
| 566 | OS << "\n"; |
| 567 | } |
| 568 | |
| 569 | void AmbiguousConversionSequence::construct() { |
| 570 | new (&conversions()) ConversionSet(); |
| 571 | } |
| 572 | |
| 573 | void AmbiguousConversionSequence::destruct() { |
| 574 | conversions().~ConversionSet(); |
| 575 | } |
| 576 | |
| 577 | void |
| 578 | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { |
| 579 | FromTypePtr = O.FromTypePtr; |
| 580 | ToTypePtr = O.ToTypePtr; |
| 581 | new (&conversions()) ConversionSet(O.conversions()); |
| 582 | } |
| 583 | |
| 584 | namespace { |
| 585 | // Structure used by DeductionFailureInfo to store |
| 586 | // template argument information. |
| 587 | struct DFIArguments { |
| 588 | TemplateArgument FirstArg; |
| 589 | TemplateArgument SecondArg; |
| 590 | }; |
| 591 | // Structure used by DeductionFailureInfo to store |
| 592 | // template parameter and template argument information. |
| 593 | struct DFIParamWithArguments : DFIArguments { |
| 594 | TemplateParameter Param; |
| 595 | }; |
| 596 | // Structure used by DeductionFailureInfo to store template argument |
| 597 | // information and the index of the problematic call argument. |
| 598 | struct DFIDeducedMismatchArgs : DFIArguments { |
| 599 | TemplateArgumentList *TemplateArgs; |
| 600 | unsigned CallArgIndex; |
| 601 | }; |
| 602 | // Structure used by DeductionFailureInfo to store information about |
| 603 | // unsatisfied constraints. |
| 604 | struct CNSInfo { |
| 605 | TemplateArgumentList *TemplateArgs; |
| 606 | ConstraintSatisfaction Satisfaction; |
| 607 | }; |
| 608 | } |
| 609 | |
| 610 | /// Convert from Sema's representation of template deduction information |
| 611 | /// to the form used in overload-candidate information. |
| 612 | DeductionFailureInfo |
| 613 | clang::MakeDeductionFailureInfo(ASTContext &Context, |
| 614 | Sema::TemplateDeductionResult TDK, |
| 615 | TemplateDeductionInfo &Info) { |
| 616 | DeductionFailureInfo Result; |
| 617 | Result.Result = static_cast<unsigned>(TDK); |
| 618 | Result.HasDiagnostic = false; |
| 619 | switch (TDK) { |
| 620 | case Sema::TDK_Invalid: |
| 621 | case Sema::TDK_InstantiationDepth: |
| 622 | case Sema::TDK_TooManyArguments: |
| 623 | case Sema::TDK_TooFewArguments: |
| 624 | case Sema::TDK_MiscellaneousDeductionFailure: |
| 625 | case Sema::TDK_CUDATargetMismatch: |
| 626 | Result.Data = nullptr; |
| 627 | break; |
| 628 | |
| 629 | case Sema::TDK_Incomplete: |
| 630 | case Sema::TDK_InvalidExplicitArguments: |
| 631 | Result.Data = Info.Param.getOpaqueValue(); |
| 632 | break; |
| 633 | |
| 634 | case Sema::TDK_DeducedMismatch: |
| 635 | case Sema::TDK_DeducedMismatchNested: { |
| 636 | // FIXME: Should allocate from normal heap so that we can free this later. |
| 637 | auto *Saved = new (Context) DFIDeducedMismatchArgs; |
| 638 | Saved->FirstArg = Info.FirstArg; |
| 639 | Saved->SecondArg = Info.SecondArg; |
| 640 | Saved->TemplateArgs = Info.take(); |
| 641 | Saved->CallArgIndex = Info.CallArgIndex; |
| 642 | Result.Data = Saved; |
| 643 | break; |
| 644 | } |
| 645 | |
| 646 | case Sema::TDK_NonDeducedMismatch: { |
| 647 | // FIXME: Should allocate from normal heap so that we can free this later. |
| 648 | DFIArguments *Saved = new (Context) DFIArguments; |
| 649 | Saved->FirstArg = Info.FirstArg; |
| 650 | Saved->SecondArg = Info.SecondArg; |
| 651 | Result.Data = Saved; |
| 652 | break; |
| 653 | } |
| 654 | |
| 655 | case Sema::TDK_IncompletePack: |
| 656 | // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. |
| 657 | case Sema::TDK_Inconsistent: |
| 658 | case Sema::TDK_Underqualified: { |
| 659 | // FIXME: Should allocate from normal heap so that we can free this later. |
| 660 | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; |
| 661 | Saved->Param = Info.Param; |
| 662 | Saved->FirstArg = Info.FirstArg; |
| 663 | Saved->SecondArg = Info.SecondArg; |
| 664 | Result.Data = Saved; |
| 665 | break; |
| 666 | } |
| 667 | |
| 668 | case Sema::TDK_SubstitutionFailure: |
| 669 | Result.Data = Info.take(); |
| 670 | if (Info.hasSFINAEDiagnostic()) { |
| 671 | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( |
| 672 | SourceLocation(), PartialDiagnostic::NullDiagnostic()); |
| 673 | Info.takeSFINAEDiagnostic(*Diag); |
| 674 | Result.HasDiagnostic = true; |
| 675 | } |
| 676 | break; |
| 677 | |
| 678 | case Sema::TDK_ConstraintsNotSatisfied: { |
| 679 | CNSInfo *Saved = new (Context) CNSInfo; |
| 680 | Saved->TemplateArgs = Info.take(); |
| 681 | Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; |
| 682 | Result.Data = Saved; |
| 683 | break; |
| 684 | } |
| 685 | |
| 686 | case Sema::TDK_Success: |
| 687 | case Sema::TDK_NonDependentConversionFailure: |
| 688 | llvm_unreachable("not a deduction failure")__builtin_unreachable(); |
| 689 | } |
| 690 | |
| 691 | return Result; |
| 692 | } |
| 693 | |
| 694 | void DeductionFailureInfo::Destroy() { |
| 695 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| 696 | case Sema::TDK_Success: |
| 697 | case Sema::TDK_Invalid: |
| 698 | case Sema::TDK_InstantiationDepth: |
| 699 | case Sema::TDK_Incomplete: |
| 700 | case Sema::TDK_TooManyArguments: |
| 701 | case Sema::TDK_TooFewArguments: |
| 702 | case Sema::TDK_InvalidExplicitArguments: |
| 703 | case Sema::TDK_CUDATargetMismatch: |
| 704 | case Sema::TDK_NonDependentConversionFailure: |
| 705 | break; |
| 706 | |
| 707 | case Sema::TDK_IncompletePack: |
| 708 | case Sema::TDK_Inconsistent: |
| 709 | case Sema::TDK_Underqualified: |
| 710 | case Sema::TDK_DeducedMismatch: |
| 711 | case Sema::TDK_DeducedMismatchNested: |
| 712 | case Sema::TDK_NonDeducedMismatch: |
| 713 | // FIXME: Destroy the data? |
| 714 | Data = nullptr; |
| 715 | break; |
| 716 | |
| 717 | case Sema::TDK_SubstitutionFailure: |
| 718 | // FIXME: Destroy the template argument list? |
| 719 | Data = nullptr; |
| 720 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { |
| 721 | Diag->~PartialDiagnosticAt(); |
| 722 | HasDiagnostic = false; |
| 723 | } |
| 724 | break; |
| 725 | |
| 726 | case Sema::TDK_ConstraintsNotSatisfied: |
| 727 | // FIXME: Destroy the template argument list? |
| 728 | Data = nullptr; |
| 729 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { |
| 730 | Diag->~PartialDiagnosticAt(); |
| 731 | HasDiagnostic = false; |
| 732 | } |
| 733 | break; |
| 734 | |
| 735 | // Unhandled |
| 736 | case Sema::TDK_MiscellaneousDeductionFailure: |
| 737 | break; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { |
| 742 | if (HasDiagnostic) |
| 743 | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); |
| 744 | return nullptr; |
| 745 | } |
| 746 | |
| 747 | TemplateParameter DeductionFailureInfo::getTemplateParameter() { |
| 748 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| 749 | case Sema::TDK_Success: |
| 750 | case Sema::TDK_Invalid: |
| 751 | case Sema::TDK_InstantiationDepth: |
| 752 | case Sema::TDK_TooManyArguments: |
| 753 | case Sema::TDK_TooFewArguments: |
| 754 | case Sema::TDK_SubstitutionFailure: |
| 755 | case Sema::TDK_DeducedMismatch: |
| 756 | case Sema::TDK_DeducedMismatchNested: |
| 757 | case Sema::TDK_NonDeducedMismatch: |
| 758 | case Sema::TDK_CUDATargetMismatch: |
| 759 | case Sema::TDK_NonDependentConversionFailure: |
| 760 | case Sema::TDK_ConstraintsNotSatisfied: |
| 761 | return TemplateParameter(); |
| 762 | |
| 763 | case Sema::TDK_Incomplete: |
| 764 | case Sema::TDK_InvalidExplicitArguments: |
| 765 | return TemplateParameter::getFromOpaqueValue(Data); |
| 766 | |
| 767 | case Sema::TDK_IncompletePack: |
| 768 | case Sema::TDK_Inconsistent: |
| 769 | case Sema::TDK_Underqualified: |
| 770 | return static_cast<DFIParamWithArguments*>(Data)->Param; |
| 771 | |
| 772 | // Unhandled |
| 773 | case Sema::TDK_MiscellaneousDeductionFailure: |
| 774 | break; |
| 775 | } |
| 776 | |
| 777 | return TemplateParameter(); |
| 778 | } |
| 779 | |
| 780 | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { |
| 781 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| 782 | case Sema::TDK_Success: |
| 783 | case Sema::TDK_Invalid: |
| 784 | case Sema::TDK_InstantiationDepth: |
| 785 | case Sema::TDK_TooManyArguments: |
| 786 | case Sema::TDK_TooFewArguments: |
| 787 | case Sema::TDK_Incomplete: |
| 788 | case Sema::TDK_IncompletePack: |
| 789 | case Sema::TDK_InvalidExplicitArguments: |
| 790 | case Sema::TDK_Inconsistent: |
| 791 | case Sema::TDK_Underqualified: |
| 792 | case Sema::TDK_NonDeducedMismatch: |
| 793 | case Sema::TDK_CUDATargetMismatch: |
| 794 | case Sema::TDK_NonDependentConversionFailure: |
| 795 | return nullptr; |
| 796 | |
| 797 | case Sema::TDK_DeducedMismatch: |
| 798 | case Sema::TDK_DeducedMismatchNested: |
| 799 | return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; |
| 800 | |
| 801 | case Sema::TDK_SubstitutionFailure: |
| 802 | return static_cast<TemplateArgumentList*>(Data); |
| 803 | |
| 804 | case Sema::TDK_ConstraintsNotSatisfied: |
| 805 | return static_cast<CNSInfo*>(Data)->TemplateArgs; |
| 806 | |
| 807 | // Unhandled |
| 808 | case Sema::TDK_MiscellaneousDeductionFailure: |
| 809 | break; |
| 810 | } |
| 811 | |
| 812 | return nullptr; |
| 813 | } |
| 814 | |
| 815 | const TemplateArgument *DeductionFailureInfo::getFirstArg() { |
| 816 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| 817 | case Sema::TDK_Success: |
| 818 | case Sema::TDK_Invalid: |
| 819 | case Sema::TDK_InstantiationDepth: |
| 820 | case Sema::TDK_Incomplete: |
| 821 | case Sema::TDK_TooManyArguments: |
| 822 | case Sema::TDK_TooFewArguments: |
| 823 | case Sema::TDK_InvalidExplicitArguments: |
| 824 | case Sema::TDK_SubstitutionFailure: |
| 825 | case Sema::TDK_CUDATargetMismatch: |
| 826 | case Sema::TDK_NonDependentConversionFailure: |
| 827 | case Sema::TDK_ConstraintsNotSatisfied: |
| 828 | return nullptr; |
| 829 | |
| 830 | case Sema::TDK_IncompletePack: |
| 831 | case Sema::TDK_Inconsistent: |
| 832 | case Sema::TDK_Underqualified: |
| 833 | case Sema::TDK_DeducedMismatch: |
| 834 | case Sema::TDK_DeducedMismatchNested: |
| 835 | case Sema::TDK_NonDeducedMismatch: |
| 836 | return &static_cast<DFIArguments*>(Data)->FirstArg; |
| 837 | |
| 838 | // Unhandled |
| 839 | case Sema::TDK_MiscellaneousDeductionFailure: |
| 840 | break; |
| 841 | } |
| 842 | |
| 843 | return nullptr; |
| 844 | } |
| 845 | |
| 846 | const TemplateArgument *DeductionFailureInfo::getSecondArg() { |
| 847 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| 848 | case Sema::TDK_Success: |
| 849 | case Sema::TDK_Invalid: |
| 850 | case Sema::TDK_InstantiationDepth: |
| 851 | case Sema::TDK_Incomplete: |
| 852 | case Sema::TDK_IncompletePack: |
| 853 | case Sema::TDK_TooManyArguments: |
| 854 | case Sema::TDK_TooFewArguments: |
| 855 | case Sema::TDK_InvalidExplicitArguments: |
| 856 | case Sema::TDK_SubstitutionFailure: |
| 857 | case Sema::TDK_CUDATargetMismatch: |
| 858 | case Sema::TDK_NonDependentConversionFailure: |
| 859 | case Sema::TDK_ConstraintsNotSatisfied: |
| 860 | return nullptr; |
| 861 | |
| 862 | case Sema::TDK_Inconsistent: |
| 863 | case Sema::TDK_Underqualified: |
| 864 | case Sema::TDK_DeducedMismatch: |
| 865 | case Sema::TDK_DeducedMismatchNested: |
| 866 | case Sema::TDK_NonDeducedMismatch: |
| 867 | return &static_cast<DFIArguments*>(Data)->SecondArg; |
| 868 | |
| 869 | // Unhandled |
| 870 | case Sema::TDK_MiscellaneousDeductionFailure: |
| 871 | break; |
| 872 | } |
| 873 | |
| 874 | return nullptr; |
| 875 | } |
| 876 | |
| 877 | llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { |
| 878 | switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| 879 | case Sema::TDK_DeducedMismatch: |
| 880 | case Sema::TDK_DeducedMismatchNested: |
| 881 | return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; |
| 882 | |
| 883 | default: |
| 884 | return llvm::None; |
| 885 | } |
| 886 | } |
| 887 | |
| 888 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( |
| 889 | OverloadedOperatorKind Op) { |
| 890 | if (!AllowRewrittenCandidates) |
| 891 | return false; |
| 892 | return Op == OO_EqualEqual || Op == OO_Spaceship; |
| 893 | } |
| 894 | |
| 895 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( |
| 896 | ASTContext &Ctx, const FunctionDecl *FD) { |
| 897 | if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator())) |
| 898 | return false; |
| 899 | // Don't bother adding a reversed candidate that can never be a better |
| 900 | // match than the non-reversed version. |
| 901 | return FD->getNumParams() != 2 || |
| 902 | !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), |
| 903 | FD->getParamDecl(1)->getType()) || |
| 904 | FD->hasAttr<EnableIfAttr>(); |
| 905 | } |
| 906 | |
| 907 | void OverloadCandidateSet::destroyCandidates() { |
| 908 | for (iterator i = begin(), e = end(); i != e; ++i) { |
| 909 | for (auto &C : i->Conversions) |
| 910 | C.~ImplicitConversionSequence(); |
| 911 | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) |
| 912 | i->DeductionFailure.Destroy(); |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | void OverloadCandidateSet::clear(CandidateSetKind CSK) { |
| 917 | destroyCandidates(); |
| 918 | SlabAllocator.Reset(); |
| 919 | NumInlineBytesUsed = 0; |
| 920 | Candidates.clear(); |
| 921 | Functions.clear(); |
| 922 | Kind = CSK; |
| 923 | } |
| 924 | |
| 925 | namespace { |
| 926 | class UnbridgedCastsSet { |
| 927 | struct Entry { |
| 928 | Expr **Addr; |
| 929 | Expr *Saved; |
| 930 | }; |
| 931 | SmallVector<Entry, 2> Entries; |
| 932 | |
| 933 | public: |
| 934 | void save(Sema &S, Expr *&E) { |
| 935 | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast))((void)0); |
| 936 | Entry entry = { &E, E }; |
| 937 | Entries.push_back(entry); |
| 938 | E = S.stripARCUnbridgedCast(E); |
| 939 | } |
| 940 | |
| 941 | void restore() { |
| 942 | for (SmallVectorImpl<Entry>::iterator |
| 943 | i = Entries.begin(), e = Entries.end(); i != e; ++i) |
| 944 | *i->Addr = i->Saved; |
| 945 | } |
| 946 | }; |
| 947 | } |
| 948 | |
| 949 | /// checkPlaceholderForOverload - Do any interesting placeholder-like |
| 950 | /// preprocessing on the given expression. |
| 951 | /// |
| 952 | /// \param unbridgedCasts a collection to which to add unbridged casts; |
| 953 | /// without this, they will be immediately diagnosed as errors |
| 954 | /// |
| 955 | /// Return true on unrecoverable error. |
| 956 | static bool |
| 957 | checkPlaceholderForOverload(Sema &S, Expr *&E, |
| 958 | UnbridgedCastsSet *unbridgedCasts = nullptr) { |
| 959 | if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { |
| 960 | // We can't handle overloaded expressions here because overload |
| 961 | // resolution might reasonably tweak them. |
| 962 | if (placeholder->getKind() == BuiltinType::Overload) return false; |
| 963 | |
| 964 | // If the context potentially accepts unbridged ARC casts, strip |
| 965 | // the unbridged cast and add it to the collection for later restoration. |
| 966 | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && |
| 967 | unbridgedCasts) { |
| 968 | unbridgedCasts->save(S, E); |
| 969 | return false; |
| 970 | } |
| 971 | |
| 972 | // Go ahead and check everything else. |
| 973 | ExprResult result = S.CheckPlaceholderExpr(E); |
| 974 | if (result.isInvalid()) |
| 975 | return true; |
| 976 | |
| 977 | E = result.get(); |
| 978 | return false; |
| 979 | } |
| 980 | |
| 981 | // Nothing to do. |
| 982 | return false; |
| 983 | } |
| 984 | |
| 985 | /// checkArgPlaceholdersForOverload - Check a set of call operands for |
| 986 | /// placeholders. |
| 987 | static bool checkArgPlaceholdersForOverload(Sema &S, |
| 988 | MultiExprArg Args, |
| 989 | UnbridgedCastsSet &unbridged) { |
| 990 | for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| 991 | if (checkPlaceholderForOverload(S, Args[i], &unbridged)) |
| 992 | return true; |
| 993 | |
| 994 | return false; |
| 995 | } |
| 996 | |
| 997 | /// Determine whether the given New declaration is an overload of the |
| 998 | /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if |
| 999 | /// New and Old cannot be overloaded, e.g., if New has the same signature as |
| 1000 | /// some function in Old (C++ 1.3.10) or if the Old declarations aren't |
| 1001 | /// functions (or function templates) at all. When it does return Ovl_Match or |
| 1002 | /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be |
| 1003 | /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying |
| 1004 | /// declaration. |
| 1005 | /// |
| 1006 | /// Example: Given the following input: |
| 1007 | /// |
| 1008 | /// void f(int, float); // #1 |
| 1009 | /// void f(int, int); // #2 |
| 1010 | /// int f(int, int); // #3 |
| 1011 | /// |
| 1012 | /// When we process #1, there is no previous declaration of "f", so IsOverload |
| 1013 | /// will not be used. |
| 1014 | /// |
| 1015 | /// When we process #2, Old contains only the FunctionDecl for #1. By comparing |
| 1016 | /// the parameter types, we see that #1 and #2 are overloaded (since they have |
| 1017 | /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is |
| 1018 | /// unchanged. |
| 1019 | /// |
| 1020 | /// When we process #3, Old is an overload set containing #1 and #2. We compare |
| 1021 | /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then |
| 1022 | /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of |
| 1023 | /// functions are not part of the signature), IsOverload returns Ovl_Match and |
| 1024 | /// MatchedDecl will be set to point to the FunctionDecl for #2. |
| 1025 | /// |
| 1026 | /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class |
| 1027 | /// by a using declaration. The rules for whether to hide shadow declarations |
| 1028 | /// ignore some properties which otherwise figure into a function template's |
| 1029 | /// signature. |
| 1030 | Sema::OverloadKind |
| 1031 | Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, |
| 1032 | NamedDecl *&Match, bool NewIsUsingDecl) { |
| 1033 | for (LookupResult::iterator I = Old.begin(), E = Old.end(); |
| 1034 | I != E; ++I) { |
| 1035 | NamedDecl *OldD = *I; |
| 1036 | |
| 1037 | bool OldIsUsingDecl = false; |
| 1038 | if (isa<UsingShadowDecl>(OldD)) { |
| 1039 | OldIsUsingDecl = true; |
| 1040 | |
| 1041 | // We can always introduce two using declarations into the same |
| 1042 | // context, even if they have identical signatures. |
| 1043 | if (NewIsUsingDecl) continue; |
| 1044 | |
| 1045 | OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); |
| 1046 | } |
| 1047 | |
| 1048 | // A using-declaration does not conflict with another declaration |
| 1049 | // if one of them is hidden. |
| 1050 | if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) |
| 1051 | continue; |
| 1052 | |
| 1053 | // If either declaration was introduced by a using declaration, |
| 1054 | // we'll need to use slightly different rules for matching. |
| 1055 | // Essentially, these rules are the normal rules, except that |
| 1056 | // function templates hide function templates with different |
| 1057 | // return types or template parameter lists. |
| 1058 | bool UseMemberUsingDeclRules = |
| 1059 | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && |
| 1060 | !New->getFriendObjectKind(); |
| 1061 | |
| 1062 | if (FunctionDecl *OldF = OldD->getAsFunction()) { |
| 1063 | if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { |
| 1064 | if (UseMemberUsingDeclRules && OldIsUsingDecl) { |
| 1065 | HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); |
| 1066 | continue; |
| 1067 | } |
| 1068 | |
| 1069 | if (!isa<FunctionTemplateDecl>(OldD) && |
| 1070 | !shouldLinkPossiblyHiddenDecl(*I, New)) |
| 1071 | continue; |
| 1072 | |
| 1073 | Match = *I; |
| 1074 | return Ovl_Match; |
| 1075 | } |
| 1076 | |
| 1077 | // Builtins that have custom typechecking or have a reference should |
| 1078 | // not be overloadable or redeclarable. |
| 1079 | if (!getASTContext().canBuiltinBeRedeclared(OldF)) { |
| 1080 | Match = *I; |
| 1081 | return Ovl_NonFunction; |
| 1082 | } |
| 1083 | } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { |
| 1084 | // We can overload with these, which can show up when doing |
| 1085 | // redeclaration checks for UsingDecls. |
| 1086 | assert(Old.getLookupKind() == LookupUsingDeclName)((void)0); |
| 1087 | } else if (isa<TagDecl>(OldD)) { |
| 1088 | // We can always overload with tags by hiding them. |
| 1089 | } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { |
| 1090 | // Optimistically assume that an unresolved using decl will |
| 1091 | // overload; if it doesn't, we'll have to diagnose during |
| 1092 | // template instantiation. |
| 1093 | // |
| 1094 | // Exception: if the scope is dependent and this is not a class |
| 1095 | // member, the using declaration can only introduce an enumerator. |
| 1096 | if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { |
| 1097 | Match = *I; |
| 1098 | return Ovl_NonFunction; |
| 1099 | } |
| 1100 | } else { |
| 1101 | // (C++ 13p1): |
| 1102 | // Only function declarations can be overloaded; object and type |
| 1103 | // declarations cannot be overloaded. |
| 1104 | Match = *I; |
| 1105 | return Ovl_NonFunction; |
| 1106 | } |
| 1107 | } |
| 1108 | |
| 1109 | // C++ [temp.friend]p1: |
| 1110 | // For a friend function declaration that is not a template declaration: |
| 1111 | // -- if the name of the friend is a qualified or unqualified template-id, |
| 1112 | // [...], otherwise |
| 1113 | // -- if the name of the friend is a qualified-id and a matching |
| 1114 | // non-template function is found in the specified class or namespace, |
| 1115 | // the friend declaration refers to that function, otherwise, |
| 1116 | // -- if the name of the friend is a qualified-id and a matching function |
| 1117 | // template is found in the specified class or namespace, the friend |
| 1118 | // declaration refers to the deduced specialization of that function |
| 1119 | // template, otherwise |
| 1120 | // -- the name shall be an unqualified-id [...] |
| 1121 | // If we get here for a qualified friend declaration, we've just reached the |
| 1122 | // third bullet. If the type of the friend is dependent, skip this lookup |
| 1123 | // until instantiation. |
| 1124 | if (New->getFriendObjectKind() && New->getQualifier() && |
| 1125 | !New->getDescribedFunctionTemplate() && |
| 1126 | !New->getDependentSpecializationInfo() && |
| 1127 | !New->getType()->isDependentType()) { |
| 1128 | LookupResult TemplateSpecResult(LookupResult::Temporary, Old); |
| 1129 | TemplateSpecResult.addAllDecls(Old); |
| 1130 | if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, |
| 1131 | /*QualifiedFriend*/true)) { |
| 1132 | New->setInvalidDecl(); |
| 1133 | return Ovl_Overload; |
| 1134 | } |
| 1135 | |
| 1136 | Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); |
| 1137 | return Ovl_Match; |
| 1138 | } |
| 1139 | |
| 1140 | return Ovl_Overload; |
| 1141 | } |
| 1142 | |
| 1143 | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, |
| 1144 | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, |
| 1145 | bool ConsiderRequiresClauses) { |
| 1146 | // C++ [basic.start.main]p2: This function shall not be overloaded. |
| 1147 | if (New->isMain()) |
| 1148 | return false; |
| 1149 | |
| 1150 | // MSVCRT user defined entry points cannot be overloaded. |
| 1151 | if (New->isMSVCRTEntryPoint()) |
| 1152 | return false; |
| 1153 | |
| 1154 | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); |
| 1155 | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); |
| 1156 | |
| 1157 | // C++ [temp.fct]p2: |
| 1158 | // A function template can be overloaded with other function templates |
| 1159 | // and with normal (non-template) functions. |
| 1160 | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) |
| 1161 | return true; |
| 1162 | |
| 1163 | // Is the function New an overload of the function Old? |
| 1164 | QualType OldQType = Context.getCanonicalType(Old->getType()); |
| 1165 | QualType NewQType = Context.getCanonicalType(New->getType()); |
| 1166 | |
| 1167 | // Compare the signatures (C++ 1.3.10) of the two functions to |
| 1168 | // determine whether they are overloads. If we find any mismatch |
| 1169 | // in the signature, they are overloads. |
| 1170 | |
| 1171 | // If either of these functions is a K&R-style function (no |
| 1172 | // prototype), then we consider them to have matching signatures. |
| 1173 | if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || |
| 1174 | isa<FunctionNoProtoType>(NewQType.getTypePtr())) |
| 1175 | return false; |
| 1176 | |
| 1177 | const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); |
| 1178 | const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); |
| 1179 | |
| 1180 | // The signature of a function includes the types of its |
| 1181 | // parameters (C++ 1.3.10), which includes the presence or absence |
| 1182 | // of the ellipsis; see C++ DR 357). |
| 1183 | if (OldQType != NewQType && |
| 1184 | (OldType->getNumParams() != NewType->getNumParams() || |
| 1185 | OldType->isVariadic() != NewType->isVariadic() || |
| 1186 | !FunctionParamTypesAreEqual(OldType, NewType))) |
| 1187 | return true; |
| 1188 | |
| 1189 | // C++ [temp.over.link]p4: |
| 1190 | // The signature of a function template consists of its function |
| 1191 | // signature, its return type and its template parameter list. The names |
| 1192 | // of the template parameters are significant only for establishing the |
| 1193 | // relationship between the template parameters and the rest of the |
| 1194 | // signature. |
| 1195 | // |
| 1196 | // We check the return type and template parameter lists for function |
| 1197 | // templates first; the remaining checks follow. |
| 1198 | // |
| 1199 | // However, we don't consider either of these when deciding whether |
| 1200 | // a member introduced by a shadow declaration is hidden. |
| 1201 | if (!UseMemberUsingDeclRules && NewTemplate && |
| 1202 | (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), |
| 1203 | OldTemplate->getTemplateParameters(), |
| 1204 | false, TPL_TemplateMatch) || |
| 1205 | !Context.hasSameType(Old->getDeclaredReturnType(), |
| 1206 | New->getDeclaredReturnType()))) |
| 1207 | return true; |
| 1208 | |
| 1209 | // If the function is a class member, its signature includes the |
| 1210 | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. |
| 1211 | // |
| 1212 | // As part of this, also check whether one of the member functions |
| 1213 | // is static, in which case they are not overloads (C++ |
| 1214 | // 13.1p2). While not part of the definition of the signature, |
| 1215 | // this check is important to determine whether these functions |
| 1216 | // can be overloaded. |
| 1217 | CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); |
| 1218 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); |
| 1219 | if (OldMethod && NewMethod && |
| 1220 | !OldMethod->isStatic() && !NewMethod->isStatic()) { |
| 1221 | if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { |
| 1222 | if (!UseMemberUsingDeclRules && |
| 1223 | (OldMethod->getRefQualifier() == RQ_None || |
| 1224 | NewMethod->getRefQualifier() == RQ_None)) { |
| 1225 | // C++0x [over.load]p2: |
| 1226 | // - Member function declarations with the same name and the same |
| 1227 | // parameter-type-list as well as member function template |
| 1228 | // declarations with the same name, the same parameter-type-list, and |
| 1229 | // the same template parameter lists cannot be overloaded if any of |
| 1230 | // them, but not all, have a ref-qualifier (8.3.5). |
| 1231 | Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) |
| 1232 | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); |
| 1233 | Diag(OldMethod->getLocation(), diag::note_previous_declaration); |
| 1234 | } |
| 1235 | return true; |
| 1236 | } |
| 1237 | |
| 1238 | // We may not have applied the implicit const for a constexpr member |
| 1239 | // function yet (because we haven't yet resolved whether this is a static |
| 1240 | // or non-static member function). Add it now, on the assumption that this |
| 1241 | // is a redeclaration of OldMethod. |
| 1242 | auto OldQuals = OldMethod->getMethodQualifiers(); |
| 1243 | auto NewQuals = NewMethod->getMethodQualifiers(); |
| 1244 | if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && |
| 1245 | !isa<CXXConstructorDecl>(NewMethod)) |
| 1246 | NewQuals.addConst(); |
| 1247 | // We do not allow overloading based off of '__restrict'. |
| 1248 | OldQuals.removeRestrict(); |
| 1249 | NewQuals.removeRestrict(); |
| 1250 | if (OldQuals != NewQuals) |
| 1251 | return true; |
| 1252 | } |
| 1253 | |
| 1254 | // Though pass_object_size is placed on parameters and takes an argument, we |
| 1255 | // consider it to be a function-level modifier for the sake of function |
| 1256 | // identity. Either the function has one or more parameters with |
| 1257 | // pass_object_size or it doesn't. |
| 1258 | if (functionHasPassObjectSizeParams(New) != |
| 1259 | functionHasPassObjectSizeParams(Old)) |
| 1260 | return true; |
| 1261 | |
| 1262 | // enable_if attributes are an order-sensitive part of the signature. |
| 1263 | for (specific_attr_iterator<EnableIfAttr> |
| 1264 | NewI = New->specific_attr_begin<EnableIfAttr>(), |
| 1265 | NewE = New->specific_attr_end<EnableIfAttr>(), |
| 1266 | OldI = Old->specific_attr_begin<EnableIfAttr>(), |
| 1267 | OldE = Old->specific_attr_end<EnableIfAttr>(); |
| 1268 | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { |
| 1269 | if (NewI == NewE || OldI == OldE) |
| 1270 | return true; |
| 1271 | llvm::FoldingSetNodeID NewID, OldID; |
| 1272 | NewI->getCond()->Profile(NewID, Context, true); |
| 1273 | OldI->getCond()->Profile(OldID, Context, true); |
| 1274 | if (NewID != OldID) |
| 1275 | return true; |
| 1276 | } |
| 1277 | |
| 1278 | if (getLangOpts().CUDA && ConsiderCudaAttrs) { |
| 1279 | // Don't allow overloading of destructors. (In theory we could, but it |
| 1280 | // would be a giant change to clang.) |
| 1281 | if (!isa<CXXDestructorDecl>(New)) { |
| 1282 | CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), |
| 1283 | OldTarget = IdentifyCUDATarget(Old); |
| 1284 | if (NewTarget != CFT_InvalidTarget) { |
| 1285 | assert((OldTarget != CFT_InvalidTarget) &&((void)0) |
| 1286 | "Unexpected invalid target.")((void)0); |
| 1287 | |
| 1288 | // Allow overloading of functions with same signature and different CUDA |
| 1289 | // target attributes. |
| 1290 | if (NewTarget != OldTarget) |
| 1291 | return true; |
| 1292 | } |
| 1293 | } |
| 1294 | } |
| 1295 | |
| 1296 | if (ConsiderRequiresClauses) { |
| 1297 | Expr *NewRC = New->getTrailingRequiresClause(), |
| 1298 | *OldRC = Old->getTrailingRequiresClause(); |
| 1299 | if ((NewRC != nullptr) != (OldRC != nullptr)) |
| 1300 | // RC are most certainly different - these are overloads. |
| 1301 | return true; |
| 1302 | |
| 1303 | if (NewRC) { |
| 1304 | llvm::FoldingSetNodeID NewID, OldID; |
| 1305 | NewRC->Profile(NewID, Context, /*Canonical=*/true); |
| 1306 | OldRC->Profile(OldID, Context, /*Canonical=*/true); |
| 1307 | if (NewID != OldID) |
| 1308 | // RCs are not equivalent - these are overloads. |
| 1309 | return true; |
| 1310 | } |
| 1311 | } |
| 1312 | |
| 1313 | // The signatures match; this is not an overload. |
| 1314 | return false; |
| 1315 | } |
| 1316 | |
| 1317 | /// Tries a user-defined conversion from From to ToType. |
| 1318 | /// |
| 1319 | /// Produces an implicit conversion sequence for when a standard conversion |
| 1320 | /// is not an option. See TryImplicitConversion for more information. |
| 1321 | static ImplicitConversionSequence |
| 1322 | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| 1323 | bool SuppressUserConversions, |
| 1324 | AllowedExplicit AllowExplicit, |
| 1325 | bool InOverloadResolution, |
| 1326 | bool CStyle, |
| 1327 | bool AllowObjCWritebackConversion, |
| 1328 | bool AllowObjCConversionOnExplicit) { |
| 1329 | ImplicitConversionSequence ICS; |
| 1330 | |
| 1331 | if (SuppressUserConversions) { |
| 1332 | // We're not in the case above, so there is no conversion that |
| 1333 | // we can perform. |
| 1334 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| 1335 | return ICS; |
| 1336 | } |
| 1337 | |
| 1338 | // Attempt user-defined conversion. |
| 1339 | OverloadCandidateSet Conversions(From->getExprLoc(), |
| 1340 | OverloadCandidateSet::CSK_Normal); |
| 1341 | switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, |
| 1342 | Conversions, AllowExplicit, |
| 1343 | AllowObjCConversionOnExplicit)) { |
| 1344 | case OR_Success: |
| 1345 | case OR_Deleted: |
| 1346 | ICS.setUserDefined(); |
| 1347 | // C++ [over.ics.user]p4: |
| 1348 | // A conversion of an expression of class type to the same class |
| 1349 | // type is given Exact Match rank, and a conversion of an |
| 1350 | // expression of class type to a base class of that type is |
| 1351 | // given Conversion rank, in spite of the fact that a copy |
| 1352 | // constructor (i.e., a user-defined conversion function) is |
| 1353 | // called for those cases. |
| 1354 | if (CXXConstructorDecl *Constructor |
| 1355 | = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { |
| 1356 | QualType FromCanon |
| 1357 | = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); |
| 1358 | QualType ToCanon |
| 1359 | = S.Context.getCanonicalType(ToType).getUnqualifiedType(); |
| 1360 | if (Constructor->isCopyConstructor() && |
| 1361 | (FromCanon == ToCanon || |
| 1362 | S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { |
| 1363 | // Turn this into a "standard" conversion sequence, so that it |
| 1364 | // gets ranked with standard conversion sequences. |
| 1365 | DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; |
| 1366 | ICS.setStandard(); |
| 1367 | ICS.Standard.setAsIdentityConversion(); |
| 1368 | ICS.Standard.setFromType(From->getType()); |
| 1369 | ICS.Standard.setAllToTypes(ToType); |
| 1370 | ICS.Standard.CopyConstructor = Constructor; |
| 1371 | ICS.Standard.FoundCopyConstructor = Found; |
| 1372 | if (ToCanon != FromCanon) |
| 1373 | ICS.Standard.Second = ICK_Derived_To_Base; |
| 1374 | } |
| 1375 | } |
| 1376 | break; |
| 1377 | |
| 1378 | case OR_Ambiguous: |
| 1379 | ICS.setAmbiguous(); |
| 1380 | ICS.Ambiguous.setFromType(From->getType()); |
| 1381 | ICS.Ambiguous.setToType(ToType); |
| 1382 | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); |
| 1383 | Cand != Conversions.end(); ++Cand) |
| 1384 | if (Cand->Best) |
| 1385 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); |
| 1386 | break; |
| 1387 | |
| 1388 | // Fall through. |
| 1389 | case OR_No_Viable_Function: |
| 1390 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| 1391 | break; |
| 1392 | } |
| 1393 | |
| 1394 | return ICS; |
| 1395 | } |
| 1396 | |
| 1397 | /// TryImplicitConversion - Attempt to perform an implicit conversion |
| 1398 | /// from the given expression (Expr) to the given type (ToType). This |
| 1399 | /// function returns an implicit conversion sequence that can be used |
| 1400 | /// to perform the initialization. Given |
| 1401 | /// |
| 1402 | /// void f(float f); |
| 1403 | /// void g(int i) { f(i); } |
| 1404 | /// |
| 1405 | /// this routine would produce an implicit conversion sequence to |
| 1406 | /// describe the initialization of f from i, which will be a standard |
| 1407 | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ |
| 1408 | /// 4.1) followed by a floating-integral conversion (C++ 4.9). |
| 1409 | // |
| 1410 | /// Note that this routine only determines how the conversion can be |
| 1411 | /// performed; it does not actually perform the conversion. As such, |
| 1412 | /// it will not produce any diagnostics if no conversion is available, |
| 1413 | /// but will instead return an implicit conversion sequence of kind |
| 1414 | /// "BadConversion". |
| 1415 | /// |
| 1416 | /// If @p SuppressUserConversions, then user-defined conversions are |
| 1417 | /// not permitted. |
| 1418 | /// If @p AllowExplicit, then explicit user-defined conversions are |
| 1419 | /// permitted. |
| 1420 | /// |
| 1421 | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C |
| 1422 | /// writeback conversion, which allows __autoreleasing id* parameters to |
| 1423 | /// be initialized with __strong id* or __weak id* arguments. |
| 1424 | static ImplicitConversionSequence |
| 1425 | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, |
| 1426 | bool SuppressUserConversions, |
| 1427 | AllowedExplicit AllowExplicit, |
| 1428 | bool InOverloadResolution, |
| 1429 | bool CStyle, |
| 1430 | bool AllowObjCWritebackConversion, |
| 1431 | bool AllowObjCConversionOnExplicit) { |
| 1432 | ImplicitConversionSequence ICS; |
| 1433 | if (IsStandardConversion(S, From, ToType, InOverloadResolution, |
| 1434 | ICS.Standard, CStyle, AllowObjCWritebackConversion)){ |
| 1435 | ICS.setStandard(); |
| 1436 | return ICS; |
| 1437 | } |
| 1438 | |
| 1439 | if (!S.getLangOpts().CPlusPlus) { |
| 1440 | ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| 1441 | return ICS; |
| 1442 | } |
| 1443 | |
| 1444 | // C++ [over.ics.user]p4: |
| 1445 | // A conversion of an expression of class type to the same class |
| 1446 | // type is given Exact Match rank, and a conversion of an |
| 1447 | // expression of class type to a base class of that type is |
| 1448 | // given Conversion rank, in spite of the fact that a copy/move |
| 1449 | // constructor (i.e., a user-defined conversion function) is |
| 1450 | // called for those cases. |
| 1451 | QualType FromType = From->getType(); |
| 1452 | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && |
| 1453 | (S.Context.hasSameUnqualifiedType(FromType, ToType) || |
| 1454 | S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { |
| 1455 | ICS.setStandard(); |
| 1456 | ICS.Standard.setAsIdentityConversion(); |
| 1457 | ICS.Standard.setFromType(FromType); |
| 1458 | ICS.Standard.setAllToTypes(ToType); |
| 1459 | |
| 1460 | // We don't actually check at this point whether there is a valid |
| 1461 | // copy/move constructor, since overloading just assumes that it |
| 1462 | // exists. When we actually perform initialization, we'll find the |
| 1463 | // appropriate constructor to copy the returned object, if needed. |
| 1464 | ICS.Standard.CopyConstructor = nullptr; |
| 1465 | |
| 1466 | // Determine whether this is considered a derived-to-base conversion. |
| 1467 | if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) |
| 1468 | ICS.Standard.Second = ICK_Derived_To_Base; |
| 1469 | |
| 1470 | return ICS; |
| 1471 | } |
| 1472 | |
| 1473 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
| 1474 | AllowExplicit, InOverloadResolution, CStyle, |
| 1475 | AllowObjCWritebackConversion, |
| 1476 | AllowObjCConversionOnExplicit); |
| 1477 | } |
| 1478 | |
| 1479 | ImplicitConversionSequence |
| 1480 | Sema::TryImplicitConversion(Expr *From, QualType ToType, |
| 1481 | bool SuppressUserConversions, |
| 1482 | AllowedExplicit AllowExplicit, |
| 1483 | bool InOverloadResolution, |
| 1484 | bool CStyle, |
| 1485 | bool AllowObjCWritebackConversion) { |
| 1486 | return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, |
| 1487 | AllowExplicit, InOverloadResolution, CStyle, |
| 1488 | AllowObjCWritebackConversion, |
| 1489 | /*AllowObjCConversionOnExplicit=*/false); |
| 1490 | } |
| 1491 | |
| 1492 | /// PerformImplicitConversion - Perform an implicit conversion of the |
| 1493 | /// expression From to the type ToType. Returns the |
| 1494 | /// converted expression. Flavor is the kind of conversion we're |
| 1495 | /// performing, used in the error message. If @p AllowExplicit, |
| 1496 | /// explicit user-defined conversions are permitted. |
| 1497 | ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
| 1498 | AssignmentAction Action, |
| 1499 | bool AllowExplicit) { |
| 1500 | if (checkPlaceholderForOverload(*this, From)) |
| 1501 | return ExprError(); |
| 1502 | |
| 1503 | // Objective-C ARC: Determine whether we will allow the writeback conversion. |
| 1504 | bool AllowObjCWritebackConversion |
| 1505 | = getLangOpts().ObjCAutoRefCount && |
| 1506 | (Action == AA_Passing || Action == AA_Sending); |
| 1507 | if (getLangOpts().ObjC) |
| 1508 | CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, |
| 1509 | From->getType(), From); |
| 1510 | ImplicitConversionSequence ICS = ::TryImplicitConversion( |
| 1511 | *this, From, ToType, |
| 1512 | /*SuppressUserConversions=*/false, |
| 1513 | AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, |
| 1514 | /*InOverloadResolution=*/false, |
| 1515 | /*CStyle=*/false, AllowObjCWritebackConversion, |
| 1516 | /*AllowObjCConversionOnExplicit=*/false); |
| 1517 | return PerformImplicitConversion(From, ToType, ICS, Action); |
| 1518 | } |
| 1519 | |
| 1520 | /// Determine whether the conversion from FromType to ToType is a valid |
| 1521 | /// conversion that strips "noexcept" or "noreturn" off the nested function |
| 1522 | /// type. |
| 1523 | bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, |
| 1524 | QualType &ResultTy) { |
| 1525 | if (Context.hasSameUnqualifiedType(FromType, ToType)) |
| 1526 | return false; |
| 1527 | |
| 1528 | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) |
| 1529 | // or F(t noexcept) -> F(t) |
| 1530 | // where F adds one of the following at most once: |
| 1531 | // - a pointer |
| 1532 | // - a member pointer |
| 1533 | // - a block pointer |
| 1534 | // Changes here need matching changes in FindCompositePointerType. |
| 1535 | CanQualType CanTo = Context.getCanonicalType(ToType); |
| 1536 | CanQualType CanFrom = Context.getCanonicalType(FromType); |
| 1537 | Type::TypeClass TyClass = CanTo->getTypeClass(); |
| 1538 | if (TyClass != CanFrom->getTypeClass()) return false; |
| 1539 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { |
| 1540 | if (TyClass == Type::Pointer) { |
| 1541 | CanTo = CanTo.castAs<PointerType>()->getPointeeType(); |
| 1542 | CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); |
| 1543 | } else if (TyClass == Type::BlockPointer) { |
| 1544 | CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); |
| 1545 | CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); |
| 1546 | } else if (TyClass == Type::MemberPointer) { |
| 1547 | auto ToMPT = CanTo.castAs<MemberPointerType>(); |
| 1548 | auto FromMPT = CanFrom.castAs<MemberPointerType>(); |
| 1549 | // A function pointer conversion cannot change the class of the function. |
| 1550 | if (ToMPT->getClass() != FromMPT->getClass()) |
| 1551 | return false; |
| 1552 | CanTo = ToMPT->getPointeeType(); |
| 1553 | CanFrom = FromMPT->getPointeeType(); |
| 1554 | } else { |
| 1555 | return false; |
| 1556 | } |
| 1557 | |
| 1558 | TyClass = CanTo->getTypeClass(); |
| 1559 | if (TyClass != CanFrom->getTypeClass()) return false; |
| 1560 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) |
| 1561 | return false; |
| 1562 | } |
| 1563 | |
| 1564 | const auto *FromFn = cast<FunctionType>(CanFrom); |
| 1565 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); |
| 1566 | |
| 1567 | const auto *ToFn = cast<FunctionType>(CanTo); |
| 1568 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); |
| 1569 | |
| 1570 | bool Changed = false; |
| 1571 | |
| 1572 | // Drop 'noreturn' if not present in target type. |
| 1573 | if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { |
| 1574 | FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); |
| 1575 | Changed = true; |
| 1576 | } |
| 1577 | |
| 1578 | // Drop 'noexcept' if not present in target type. |
| 1579 | if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { |
| 1580 | const auto *ToFPT = cast<FunctionProtoType>(ToFn); |
| 1581 | if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { |
| 1582 | FromFn = cast<FunctionType>( |
| 1583 | Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), |
| 1584 | EST_None) |
| 1585 | .getTypePtr()); |
| 1586 | Changed = true; |
| 1587 | } |
| 1588 | |
| 1589 | // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid |
| 1590 | // only if the ExtParameterInfo lists of the two function prototypes can be |
| 1591 | // merged and the merged list is identical to ToFPT's ExtParameterInfo list. |
| 1592 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; |
| 1593 | bool CanUseToFPT, CanUseFromFPT; |
| 1594 | if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, |
| 1595 | CanUseFromFPT, NewParamInfos) && |
| 1596 | CanUseToFPT && !CanUseFromFPT) { |
| 1597 | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); |
| 1598 | ExtInfo.ExtParameterInfos = |
| 1599 | NewParamInfos.empty() ? nullptr : NewParamInfos.data(); |
| 1600 | QualType QT = Context.getFunctionType(FromFPT->getReturnType(), |
| 1601 | FromFPT->getParamTypes(), ExtInfo); |
| 1602 | FromFn = QT->getAs<FunctionType>(); |
| 1603 | Changed = true; |
| 1604 | } |
| 1605 | } |
| 1606 | |
| 1607 | if (!Changed) |
| 1608 | return false; |
| 1609 | |
| 1610 | assert(QualType(FromFn, 0).isCanonical())((void)0); |
| 1611 | if (QualType(FromFn, 0) != CanTo) return false; |
| 1612 | |
| 1613 | ResultTy = ToType; |
| 1614 | return true; |
| 1615 | } |
| 1616 | |
| 1617 | /// Determine whether the conversion from FromType to ToType is a valid |
| 1618 | /// vector conversion. |
| 1619 | /// |
| 1620 | /// \param ICK Will be set to the vector conversion kind, if this is a vector |
| 1621 | /// conversion. |
| 1622 | static bool IsVectorConversion(Sema &S, QualType FromType, |
| 1623 | QualType ToType, ImplicitConversionKind &ICK) { |
| 1624 | // We need at least one of these types to be a vector type to have a vector |
| 1625 | // conversion. |
| 1626 | if (!ToType->isVectorType() && !FromType->isVectorType()) |
| 1627 | return false; |
| 1628 | |
| 1629 | // Identical types require no conversions. |
| 1630 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) |
| 1631 | return false; |
| 1632 | |
| 1633 | // There are no conversions between extended vector types, only identity. |
| 1634 | if (ToType->isExtVectorType()) { |
| 1635 | // There are no conversions between extended vector types other than the |
| 1636 | // identity conversion. |
| 1637 | if (FromType->isExtVectorType()) |
| 1638 | return false; |
| 1639 | |
| 1640 | // Vector splat from any arithmetic type to a vector. |
| 1641 | if (FromType->isArithmeticType()) { |
| 1642 | ICK = ICK_Vector_Splat; |
| 1643 | return true; |
| 1644 | } |
| 1645 | } |
| 1646 | |
| 1647 | if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType()) |
| 1648 | if (S.Context.areCompatibleSveTypes(FromType, ToType) || |
| 1649 | S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { |
| 1650 | ICK = ICK_SVE_Vector_Conversion; |
| 1651 | return true; |
| 1652 | } |
| 1653 | |
| 1654 | // We can perform the conversion between vector types in the following cases: |
| 1655 | // 1)vector types are equivalent AltiVec and GCC vector types |
| 1656 | // 2)lax vector conversions are permitted and the vector types are of the |
| 1657 | // same size |
| 1658 | // 3)the destination type does not have the ARM MVE strict-polymorphism |
| 1659 | // attribute, which inhibits lax vector conversion for overload resolution |
| 1660 | // only |
| 1661 | if (ToType->isVectorType() && FromType->isVectorType()) { |
| 1662 | if (S.Context.areCompatibleVectorTypes(FromType, ToType) || |
| 1663 | (S.isLaxVectorConversion(FromType, ToType) && |
| 1664 | !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { |
| 1665 | ICK = ICK_Vector_Conversion; |
| 1666 | return true; |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | return false; |
| 1671 | } |
| 1672 | |
| 1673 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, |
| 1674 | bool InOverloadResolution, |
| 1675 | StandardConversionSequence &SCS, |
| 1676 | bool CStyle); |
| 1677 | |
| 1678 | /// IsStandardConversion - Determines whether there is a standard |
| 1679 | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the |
| 1680 | /// expression From to the type ToType. Standard conversion sequences |
| 1681 | /// only consider non-class types; for conversions that involve class |
| 1682 | /// types, use TryImplicitConversion. If a conversion exists, SCS will |
| 1683 | /// contain the standard conversion sequence required to perform this |
| 1684 | /// conversion and this routine will return true. Otherwise, this |
| 1685 | /// routine will return false and the value of SCS is unspecified. |
| 1686 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
| 1687 | bool InOverloadResolution, |
| 1688 | StandardConversionSequence &SCS, |
| 1689 | bool CStyle, |
| 1690 | bool AllowObjCWritebackConversion) { |
| 1691 | QualType FromType = From->getType(); |
| 1692 | |
| 1693 | // Standard conversions (C++ [conv]) |
| 1694 | SCS.setAsIdentityConversion(); |
| 1695 | SCS.IncompatibleObjC = false; |
| 1696 | SCS.setFromType(FromType); |
| 1697 | SCS.CopyConstructor = nullptr; |
| 1698 | |
| 1699 | // There are no standard conversions for class types in C++, so |
| 1700 | // abort early. When overloading in C, however, we do permit them. |
| 1701 | if (S.getLangOpts().CPlusPlus && |
| 1702 | (FromType->isRecordType() || ToType->isRecordType())) |
| 1703 | return false; |
| 1704 | |
| 1705 | // The first conversion can be an lvalue-to-rvalue conversion, |
| 1706 | // array-to-pointer conversion, or function-to-pointer conversion |
| 1707 | // (C++ 4p1). |
| 1708 | |
| 1709 | if (FromType == S.Context.OverloadTy) { |
| 1710 | DeclAccessPair AccessPair; |
| 1711 | if (FunctionDecl *Fn |
| 1712 | = S.ResolveAddressOfOverloadedFunction(From, ToType, false, |
| 1713 | AccessPair)) { |
| 1714 | // We were able to resolve the address of the overloaded function, |
| 1715 | // so we can convert to the type of that function. |
| 1716 | FromType = Fn->getType(); |
| 1717 | SCS.setFromType(FromType); |
| 1718 | |
| 1719 | // we can sometimes resolve &foo<int> regardless of ToType, so check |
| 1720 | // if the type matches (identity) or we are converting to bool |
| 1721 | if (!S.Context.hasSameUnqualifiedType( |
| 1722 | S.ExtractUnqualifiedFunctionType(ToType), FromType)) { |
| 1723 | QualType resultTy; |
| 1724 | // if the function type matches except for [[noreturn]], it's ok |
| 1725 | if (!S.IsFunctionConversion(FromType, |
| 1726 | S.ExtractUnqualifiedFunctionType(ToType), resultTy)) |
| 1727 | // otherwise, only a boolean conversion is standard |
| 1728 | if (!ToType->isBooleanType()) |
| 1729 | return false; |
| 1730 | } |
| 1731 | |
| 1732 | // Check if the "from" expression is taking the address of an overloaded |
| 1733 | // function and recompute the FromType accordingly. Take advantage of the |
| 1734 | // fact that non-static member functions *must* have such an address-of |
| 1735 | // expression. |
| 1736 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); |
| 1737 | if (Method && !Method->isStatic()) { |
| 1738 | assert(isa<UnaryOperator>(From->IgnoreParens()) &&((void)0) |
| 1739 | "Non-unary operator on non-static member address")((void)0); |
| 1740 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode()((void)0) |
| 1741 | == UO_AddrOf &&((void)0) |
| 1742 | "Non-address-of operator on non-static member address")((void)0); |
| 1743 | const Type *ClassType |
| 1744 | = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); |
| 1745 | FromType = S.Context.getMemberPointerType(FromType, ClassType); |
| 1746 | } else if (isa<UnaryOperator>(From->IgnoreParens())) { |
| 1747 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() ==((void)0) |
| 1748 | UO_AddrOf &&((void)0) |
| 1749 | "Non-address-of operator for overloaded function expression")((void)0); |
| 1750 | FromType = S.Context.getPointerType(FromType); |
| 1751 | } |
| 1752 | |
| 1753 | // Check that we've computed the proper type after overload resolution. |
| 1754 | // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't |
| 1755 | // be calling it from within an NDEBUG block. |
| 1756 | assert(S.Context.hasSameType(((void)0) |
| 1757 | FromType,((void)0) |
| 1758 | S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType()))((void)0); |
| 1759 | } else { |
| 1760 | return false; |
| 1761 | } |
| 1762 | } |
| 1763 | // Lvalue-to-rvalue conversion (C++11 4.1): |
| 1764 | // A glvalue (3.10) of a non-function, non-array type T can |
| 1765 | // be converted to a prvalue. |
| 1766 | bool argIsLValue = From->isGLValue(); |
| 1767 | if (argIsLValue && |
| 1768 | !FromType->isFunctionType() && !FromType->isArrayType() && |
| 1769 | S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { |
| 1770 | SCS.First = ICK_Lvalue_To_Rvalue; |
| 1771 | |
| 1772 | // C11 6.3.2.1p2: |
| 1773 | // ... if the lvalue has atomic type, the value has the non-atomic version |
| 1774 | // of the type of the lvalue ... |
| 1775 | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) |
| 1776 | FromType = Atomic->getValueType(); |
| 1777 | |
| 1778 | // If T is a non-class type, the type of the rvalue is the |
| 1779 | // cv-unqualified version of T. Otherwise, the type of the rvalue |
| 1780 | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we |
| 1781 | // just strip the qualifiers because they don't matter. |
| 1782 | FromType = FromType.getUnqualifiedType(); |
| 1783 | } else if (FromType->isArrayType()) { |
| 1784 | // Array-to-pointer conversion (C++ 4.2) |
| 1785 | SCS.First = ICK_Array_To_Pointer; |
| 1786 | |
| 1787 | // An lvalue or rvalue of type "array of N T" or "array of unknown |
| 1788 | // bound of T" can be converted to an rvalue of type "pointer to |
| 1789 | // T" (C++ 4.2p1). |
| 1790 | FromType = S.Context.getArrayDecayedType(FromType); |
| 1791 | |
| 1792 | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { |
| 1793 | // This conversion is deprecated in C++03 (D.4) |
| 1794 | SCS.DeprecatedStringLiteralToCharPtr = true; |
| 1795 | |
| 1796 | // For the purpose of ranking in overload resolution |
| 1797 | // (13.3.3.1.1), this conversion is considered an |
| 1798 | // array-to-pointer conversion followed by a qualification |
| 1799 | // conversion (4.4). (C++ 4.2p2) |
| 1800 | SCS.Second = ICK_Identity; |
| 1801 | SCS.Third = ICK_Qualification; |
| 1802 | SCS.QualificationIncludesObjCLifetime = false; |
| 1803 | SCS.setAllToTypes(FromType); |
| 1804 | return true; |
| 1805 | } |
| 1806 | } else if (FromType->isFunctionType() && argIsLValue) { |
| 1807 | // Function-to-pointer conversion (C++ 4.3). |
| 1808 | SCS.First = ICK_Function_To_Pointer; |
| 1809 | |
| 1810 | if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) |
| 1811 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) |
| 1812 | if (!S.checkAddressOfFunctionIsAvailable(FD)) |
| 1813 | return false; |
| 1814 | |
| 1815 | // An lvalue of function type T can be converted to an rvalue of |
| 1816 | // type "pointer to T." The result is a pointer to the |
| 1817 | // function. (C++ 4.3p1). |
| 1818 | FromType = S.Context.getPointerType(FromType); |
| 1819 | } else { |
| 1820 | // We don't require any conversions for the first step. |
| 1821 | SCS.First = ICK_Identity; |
| 1822 | } |
| 1823 | SCS.setToType(0, FromType); |
| 1824 | |
| 1825 | // The second conversion can be an integral promotion, floating |
| 1826 | // point promotion, integral conversion, floating point conversion, |
| 1827 | // floating-integral conversion, pointer conversion, |
| 1828 | // pointer-to-member conversion, or boolean conversion (C++ 4p1). |
| 1829 | // For overloading in C, this can also be a "compatible-type" |
| 1830 | // conversion. |
| 1831 | bool IncompatibleObjC = false; |
| 1832 | ImplicitConversionKind SecondICK = ICK_Identity; |
| 1833 | if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { |
| 1834 | // The unqualified versions of the types are the same: there's no |
| 1835 | // conversion to do. |
| 1836 | SCS.Second = ICK_Identity; |
| 1837 | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { |
| 1838 | // Integral promotion (C++ 4.5). |
| 1839 | SCS.Second = ICK_Integral_Promotion; |
| 1840 | FromType = ToType.getUnqualifiedType(); |
| 1841 | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { |
| 1842 | // Floating point promotion (C++ 4.6). |
| 1843 | SCS.Second = ICK_Floating_Promotion; |
| 1844 | FromType = ToType.getUnqualifiedType(); |
| 1845 | } else if (S.IsComplexPromotion(FromType, ToType)) { |
| 1846 | // Complex promotion (Clang extension) |
| 1847 | SCS.Second = ICK_Complex_Promotion; |
| 1848 | FromType = ToType.getUnqualifiedType(); |
| 1849 | } else if (ToType->isBooleanType() && |
| 1850 | (FromType->isArithmeticType() || |
| 1851 | FromType->isAnyPointerType() || |
| 1852 | FromType->isBlockPointerType() || |
| 1853 | FromType->isMemberPointerType())) { |
| 1854 | // Boolean conversions (C++ 4.12). |
| 1855 | SCS.Second = ICK_Boolean_Conversion; |
| 1856 | FromType = S.Context.BoolTy; |
| 1857 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
| 1858 | ToType->isIntegralType(S.Context)) { |
| 1859 | // Integral conversions (C++ 4.7). |
| 1860 | SCS.Second = ICK_Integral_Conversion; |
| 1861 | FromType = ToType.getUnqualifiedType(); |
| 1862 | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { |
| 1863 | // Complex conversions (C99 6.3.1.6) |
| 1864 | SCS.Second = ICK_Complex_Conversion; |
| 1865 | FromType = ToType.getUnqualifiedType(); |
| 1866 | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || |
| 1867 | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { |
| 1868 | // Complex-real conversions (C99 6.3.1.7) |
| 1869 | SCS.Second = ICK_Complex_Real; |
| 1870 | FromType = ToType.getUnqualifiedType(); |
| 1871 | } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { |
| 1872 | // FIXME: disable conversions between long double and __float128 if |
| 1873 | // their representation is different until there is back end support |
| 1874 | // We of course allow this conversion if long double is really double. |
| 1875 | |
| 1876 | // Conversions between bfloat and other floats are not permitted. |
| 1877 | if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) |
| 1878 | return false; |
| 1879 | if (&S.Context.getFloatTypeSemantics(FromType) != |
| 1880 | &S.Context.getFloatTypeSemantics(ToType)) { |
| 1881 | bool Float128AndLongDouble = ((FromType == S.Context.Float128Ty && |
| 1882 | ToType == S.Context.LongDoubleTy) || |
| 1883 | (FromType == S.Context.LongDoubleTy && |
| 1884 | ToType == S.Context.Float128Ty)); |
| 1885 | if (Float128AndLongDouble && |
| 1886 | (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == |
| 1887 | &llvm::APFloat::PPCDoubleDouble())) |
| 1888 | return false; |
| 1889 | } |
| 1890 | // Floating point conversions (C++ 4.8). |
| 1891 | SCS.Second = ICK_Floating_Conversion; |
| 1892 | FromType = ToType.getUnqualifiedType(); |
| 1893 | } else if ((FromType->isRealFloatingType() && |
| 1894 | ToType->isIntegralType(S.Context)) || |
| 1895 | (FromType->isIntegralOrUnscopedEnumerationType() && |
| 1896 | ToType->isRealFloatingType())) { |
| 1897 | // Conversions between bfloat and int are not permitted. |
| 1898 | if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) |
| 1899 | return false; |
| 1900 | |
| 1901 | // Floating-integral conversions (C++ 4.9). |
| 1902 | SCS.Second = ICK_Floating_Integral; |
| 1903 | FromType = ToType.getUnqualifiedType(); |
| 1904 | } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { |
| 1905 | SCS.Second = ICK_Block_Pointer_Conversion; |
| 1906 | } else if (AllowObjCWritebackConversion && |
| 1907 | S.isObjCWritebackConversion(FromType, ToType, FromType)) { |
| 1908 | SCS.Second = ICK_Writeback_Conversion; |
| 1909 | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, |
| 1910 | FromType, IncompatibleObjC)) { |
| 1911 | // Pointer conversions (C++ 4.10). |
| 1912 | SCS.Second = ICK_Pointer_Conversion; |
| 1913 | SCS.IncompatibleObjC = IncompatibleObjC; |
| 1914 | FromType = FromType.getUnqualifiedType(); |
| 1915 | } else if (S.IsMemberPointerConversion(From, FromType, ToType, |
| 1916 | InOverloadResolution, FromType)) { |
| 1917 | // Pointer to member conversions (4.11). |
| 1918 | SCS.Second = ICK_Pointer_Member; |
| 1919 | } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { |
| 1920 | SCS.Second = SecondICK; |
| 1921 | FromType = ToType.getUnqualifiedType(); |
| 1922 | } else if (!S.getLangOpts().CPlusPlus && |
| 1923 | S.Context.typesAreCompatible(ToType, FromType)) { |
| 1924 | // Compatible conversions (Clang extension for C function overloading) |
| 1925 | SCS.Second = ICK_Compatible_Conversion; |
| 1926 | FromType = ToType.getUnqualifiedType(); |
| 1927 | } else if (IsTransparentUnionStandardConversion(S, From, ToType, |
| 1928 | InOverloadResolution, |
| 1929 | SCS, CStyle)) { |
| 1930 | SCS.Second = ICK_TransparentUnionConversion; |
| 1931 | FromType = ToType; |
| 1932 | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, |
| 1933 | CStyle)) { |
| 1934 | // tryAtomicConversion has updated the standard conversion sequence |
| 1935 | // appropriately. |
| 1936 | return true; |
| 1937 | } else if (ToType->isEventT() && |
| 1938 | From->isIntegerConstantExpr(S.getASTContext()) && |
| 1939 | From->EvaluateKnownConstInt(S.getASTContext()) == 0) { |
| 1940 | SCS.Second = ICK_Zero_Event_Conversion; |
| 1941 | FromType = ToType; |
| 1942 | } else if (ToType->isQueueT() && |
| 1943 | From->isIntegerConstantExpr(S.getASTContext()) && |
| 1944 | (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { |
| 1945 | SCS.Second = ICK_Zero_Queue_Conversion; |
| 1946 | FromType = ToType; |
| 1947 | } else if (ToType->isSamplerT() && |
| 1948 | From->isIntegerConstantExpr(S.getASTContext())) { |
| 1949 | SCS.Second = ICK_Compatible_Conversion; |
| 1950 | FromType = ToType; |
| 1951 | } else { |
| 1952 | // No second conversion required. |
| 1953 | SCS.Second = ICK_Identity; |
| 1954 | } |
| 1955 | SCS.setToType(1, FromType); |
| 1956 | |
| 1957 | // The third conversion can be a function pointer conversion or a |
| 1958 | // qualification conversion (C++ [conv.fctptr], [conv.qual]). |
| 1959 | bool ObjCLifetimeConversion; |
| 1960 | if (S.IsFunctionConversion(FromType, ToType, FromType)) { |
| 1961 | // Function pointer conversions (removing 'noexcept') including removal of |
| 1962 | // 'noreturn' (Clang extension). |
| 1963 | SCS.Third = ICK_Function_Conversion; |
| 1964 | } else if (S.IsQualificationConversion(FromType, ToType, CStyle, |
| 1965 | ObjCLifetimeConversion)) { |
| 1966 | SCS.Third = ICK_Qualification; |
| 1967 | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; |
| 1968 | FromType = ToType; |
| 1969 | } else { |
| 1970 | // No conversion required |
| 1971 | SCS.Third = ICK_Identity; |
| 1972 | } |
| 1973 | |
| 1974 | // C++ [over.best.ics]p6: |
| 1975 | // [...] Any difference in top-level cv-qualification is |
| 1976 | // subsumed by the initialization itself and does not constitute |
| 1977 | // a conversion. [...] |
| 1978 | QualType CanonFrom = S.Context.getCanonicalType(FromType); |
| 1979 | QualType CanonTo = S.Context.getCanonicalType(ToType); |
| 1980 | if (CanonFrom.getLocalUnqualifiedType() |
| 1981 | == CanonTo.getLocalUnqualifiedType() && |
| 1982 | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { |
| 1983 | FromType = ToType; |
| 1984 | CanonFrom = CanonTo; |
| 1985 | } |
| 1986 | |
| 1987 | SCS.setToType(2, FromType); |
| 1988 | |
| 1989 | if (CanonFrom == CanonTo) |
| 1990 | return true; |
| 1991 | |
| 1992 | // If we have not converted the argument type to the parameter type, |
| 1993 | // this is a bad conversion sequence, unless we're resolving an overload in C. |
| 1994 | if (S.getLangOpts().CPlusPlus || !InOverloadResolution) |
| 1995 | return false; |
| 1996 | |
| 1997 | ExprResult ER = ExprResult{From}; |
| 1998 | Sema::AssignConvertType Conv = |
| 1999 | S.CheckSingleAssignmentConstraints(ToType, ER, |
| 2000 | /*Diagnose=*/false, |
| 2001 | /*DiagnoseCFAudited=*/false, |
| 2002 | /*ConvertRHS=*/false); |
| 2003 | ImplicitConversionKind SecondConv; |
| 2004 | switch (Conv) { |
| 2005 | case Sema::Compatible: |
| 2006 | SecondConv = ICK_C_Only_Conversion; |
| 2007 | break; |
| 2008 | // For our purposes, discarding qualifiers is just as bad as using an |
| 2009 | // incompatible pointer. Note that an IncompatiblePointer conversion can drop |
| 2010 | // qualifiers, as well. |
| 2011 | case Sema::CompatiblePointerDiscardsQualifiers: |
| 2012 | case Sema::IncompatiblePointer: |
| 2013 | case Sema::IncompatiblePointerSign: |
| 2014 | SecondConv = ICK_Incompatible_Pointer_Conversion; |
| 2015 | break; |
| 2016 | default: |
| 2017 | return false; |
| 2018 | } |
| 2019 | |
| 2020 | // First can only be an lvalue conversion, so we pretend that this was the |
| 2021 | // second conversion. First should already be valid from earlier in the |
| 2022 | // function. |
| 2023 | SCS.Second = SecondConv; |
| 2024 | SCS.setToType(1, ToType); |
| 2025 | |
| 2026 | // Third is Identity, because Second should rank us worse than any other |
| 2027 | // conversion. This could also be ICK_Qualification, but it's simpler to just |
| 2028 | // lump everything in with the second conversion, and we don't gain anything |
| 2029 | // from making this ICK_Qualification. |
| 2030 | SCS.Third = ICK_Identity; |
| 2031 | SCS.setToType(2, ToType); |
| 2032 | return true; |
| 2033 | } |
| 2034 | |
| 2035 | static bool |
| 2036 | IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
| 2037 | QualType &ToType, |
| 2038 | bool InOverloadResolution, |
| 2039 | StandardConversionSequence &SCS, |
| 2040 | bool CStyle) { |
| 2041 | |
| 2042 | const RecordType *UT = ToType->getAsUnionType(); |
| 2043 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| 2044 | return false; |
| 2045 | // The field to initialize within the transparent union. |
| 2046 | RecordDecl *UD = UT->getDecl(); |
| 2047 | // It's compatible if the expression matches any of the fields. |
| 2048 | for (const auto *it : UD->fields()) { |
| 2049 | if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, |
| 2050 | CStyle, /*AllowObjCWritebackConversion=*/false)) { |
| 2051 | ToType = it->getType(); |
| 2052 | return true; |
| 2053 | } |
| 2054 | } |
| 2055 | return false; |
| 2056 | } |
| 2057 | |
| 2058 | /// IsIntegralPromotion - Determines whether the conversion from the |
| 2059 | /// expression From (whose potentially-adjusted type is FromType) to |
| 2060 | /// ToType is an integral promotion (C++ 4.5). If so, returns true and |
| 2061 | /// sets PromotedType to the promoted type. |
| 2062 | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { |
| 2063 | const BuiltinType *To = ToType->getAs<BuiltinType>(); |
| 2064 | // All integers are built-in. |
| 2065 | if (!To) { |
| 2066 | return false; |
| 2067 | } |
| 2068 | |
| 2069 | // An rvalue of type char, signed char, unsigned char, short int, or |
| 2070 | // unsigned short int can be converted to an rvalue of type int if |
| 2071 | // int can represent all the values of the source type; otherwise, |
| 2072 | // the source rvalue can be converted to an rvalue of type unsigned |
| 2073 | // int (C++ 4.5p1). |
| 2074 | if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && |
| 2075 | !FromType->isEnumeralType()) { |
| 2076 | if (// We can promote any signed, promotable integer type to an int |
| 2077 | (FromType->isSignedIntegerType() || |
| 2078 | // We can promote any unsigned integer type whose size is |
| 2079 | // less than int to an int. |
| 2080 | Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { |
| 2081 | return To->getKind() == BuiltinType::Int; |
| 2082 | } |
| 2083 | |
| 2084 | return To->getKind() == BuiltinType::UInt; |
| 2085 | } |
| 2086 | |
| 2087 | // C++11 [conv.prom]p3: |
| 2088 | // A prvalue of an unscoped enumeration type whose underlying type is not |
| 2089 | // fixed (7.2) can be converted to an rvalue a prvalue of the first of the |
| 2090 | // following types that can represent all the values of the enumeration |
| 2091 | // (i.e., the values in the range bmin to bmax as described in 7.2): int, |
| 2092 | // unsigned int, long int, unsigned long int, long long int, or unsigned |
| 2093 | // long long int. If none of the types in that list can represent all the |
| 2094 | // values of the enumeration, an rvalue a prvalue of an unscoped enumeration |
| 2095 | // type can be converted to an rvalue a prvalue of the extended integer type |
| 2096 | // with lowest integer conversion rank (4.13) greater than the rank of long |
| 2097 | // long in which all the values of the enumeration can be represented. If |
| 2098 | // there are two such extended types, the signed one is chosen. |
| 2099 | // C++11 [conv.prom]p4: |
| 2100 | // A prvalue of an unscoped enumeration type whose underlying type is fixed |
| 2101 | // can be converted to a prvalue of its underlying type. Moreover, if |
| 2102 | // integral promotion can be applied to its underlying type, a prvalue of an |
| 2103 | // unscoped enumeration type whose underlying type is fixed can also be |
| 2104 | // converted to a prvalue of the promoted underlying type. |
| 2105 | if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { |
| 2106 | // C++0x 7.2p9: Note that this implicit enum to int conversion is not |
| 2107 | // provided for a scoped enumeration. |
| 2108 | if (FromEnumType->getDecl()->isScoped()) |
| 2109 | return false; |
| 2110 | |
| 2111 | // We can perform an integral promotion to the underlying type of the enum, |
| 2112 | // even if that's not the promoted type. Note that the check for promoting |
| 2113 | // the underlying type is based on the type alone, and does not consider |
| 2114 | // the bitfield-ness of the actual source expression. |
| 2115 | if (FromEnumType->getDecl()->isFixed()) { |
| 2116 | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); |
| 2117 | return Context.hasSameUnqualifiedType(Underlying, ToType) || |
| 2118 | IsIntegralPromotion(nullptr, Underlying, ToType); |
| 2119 | } |
| 2120 | |
| 2121 | // We have already pre-calculated the promotion type, so this is trivial. |
| 2122 | if (ToType->isIntegerType() && |
| 2123 | isCompleteType(From->getBeginLoc(), FromType)) |
| 2124 | return Context.hasSameUnqualifiedType( |
| 2125 | ToType, FromEnumType->getDecl()->getPromotionType()); |
| 2126 | |
| 2127 | // C++ [conv.prom]p5: |
| 2128 | // If the bit-field has an enumerated type, it is treated as any other |
| 2129 | // value of that type for promotion purposes. |
| 2130 | // |
| 2131 | // ... so do not fall through into the bit-field checks below in C++. |
| 2132 | if (getLangOpts().CPlusPlus) |
| 2133 | return false; |
| 2134 | } |
| 2135 | |
| 2136 | // C++0x [conv.prom]p2: |
| 2137 | // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted |
| 2138 | // to an rvalue a prvalue of the first of the following types that can |
| 2139 | // represent all the values of its underlying type: int, unsigned int, |
| 2140 | // long int, unsigned long int, long long int, or unsigned long long int. |
| 2141 | // If none of the types in that list can represent all the values of its |
| 2142 | // underlying type, an rvalue a prvalue of type char16_t, char32_t, |
| 2143 | // or wchar_t can be converted to an rvalue a prvalue of its underlying |
| 2144 | // type. |
| 2145 | if (FromType->isAnyCharacterType() && !FromType->isCharType() && |
| 2146 | ToType->isIntegerType()) { |
| 2147 | // Determine whether the type we're converting from is signed or |
| 2148 | // unsigned. |
| 2149 | bool FromIsSigned = FromType->isSignedIntegerType(); |
| 2150 | uint64_t FromSize = Context.getTypeSize(FromType); |
| 2151 | |
| 2152 | // The types we'll try to promote to, in the appropriate |
| 2153 | // order. Try each of these types. |
| 2154 | QualType PromoteTypes[6] = { |
| 2155 | Context.IntTy, Context.UnsignedIntTy, |
| 2156 | Context.LongTy, Context.UnsignedLongTy , |
| 2157 | Context.LongLongTy, Context.UnsignedLongLongTy |
| 2158 | }; |
| 2159 | for (int Idx = 0; Idx < 6; ++Idx) { |
| 2160 | uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); |
| 2161 | if (FromSize < ToSize || |
| 2162 | (FromSize == ToSize && |
| 2163 | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { |
| 2164 | // We found the type that we can promote to. If this is the |
| 2165 | // type we wanted, we have a promotion. Otherwise, no |
| 2166 | // promotion. |
| 2167 | return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); |
| 2168 | } |
| 2169 | } |
| 2170 | } |
| 2171 | |
| 2172 | // An rvalue for an integral bit-field (9.6) can be converted to an |
| 2173 | // rvalue of type int if int can represent all the values of the |
| 2174 | // bit-field; otherwise, it can be converted to unsigned int if |
| 2175 | // unsigned int can represent all the values of the bit-field. If |
| 2176 | // the bit-field is larger yet, no integral promotion applies to |
| 2177 | // it. If the bit-field has an enumerated type, it is treated as any |
| 2178 | // other value of that type for promotion purposes (C++ 4.5p3). |
| 2179 | // FIXME: We should delay checking of bit-fields until we actually perform the |
| 2180 | // conversion. |
| 2181 | // |
| 2182 | // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be |
| 2183 | // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum |
| 2184 | // bit-fields and those whose underlying type is larger than int) for GCC |
| 2185 | // compatibility. |
| 2186 | if (From) { |
| 2187 | if (FieldDecl *MemberDecl = From->getSourceBitField()) { |
| 2188 | Optional<llvm::APSInt> BitWidth; |
| 2189 | if (FromType->isIntegralType(Context) && |
| 2190 | (BitWidth = |
| 2191 | MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { |
| 2192 | llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); |
| 2193 | ToSize = Context.getTypeSize(ToType); |
| 2194 | |
| 2195 | // Are we promoting to an int from a bitfield that fits in an int? |
| 2196 | if (*BitWidth < ToSize || |
| 2197 | (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { |
| 2198 | return To->getKind() == BuiltinType::Int; |
| 2199 | } |
| 2200 | |
| 2201 | // Are we promoting to an unsigned int from an unsigned bitfield |
| 2202 | // that fits into an unsigned int? |
| 2203 | if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { |
| 2204 | return To->getKind() == BuiltinType::UInt; |
| 2205 | } |
| 2206 | |
| 2207 | return false; |
| 2208 | } |
| 2209 | } |
| 2210 | } |
| 2211 | |
| 2212 | // An rvalue of type bool can be converted to an rvalue of type int, |
| 2213 | // with false becoming zero and true becoming one (C++ 4.5p4). |
| 2214 | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { |
| 2215 | return true; |
| 2216 | } |
| 2217 | |
| 2218 | return false; |
| 2219 | } |
| 2220 | |
| 2221 | /// IsFloatingPointPromotion - Determines whether the conversion from |
| 2222 | /// FromType to ToType is a floating point promotion (C++ 4.6). If so, |
| 2223 | /// returns true and sets PromotedType to the promoted type. |
| 2224 | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { |
| 2225 | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) |
| 2226 | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { |
| 2227 | /// An rvalue of type float can be converted to an rvalue of type |
| 2228 | /// double. (C++ 4.6p1). |
| 2229 | if (FromBuiltin->getKind() == BuiltinType::Float && |
| 2230 | ToBuiltin->getKind() == BuiltinType::Double) |
| 2231 | return true; |
| 2232 | |
| 2233 | // C99 6.3.1.5p1: |
| 2234 | // When a float is promoted to double or long double, or a |
| 2235 | // double is promoted to long double [...]. |
| 2236 | if (!getLangOpts().CPlusPlus && |
| 2237 | (FromBuiltin->getKind() == BuiltinType::Float || |
| 2238 | FromBuiltin->getKind() == BuiltinType::Double) && |
| 2239 | (ToBuiltin->getKind() == BuiltinType::LongDouble || |
| 2240 | ToBuiltin->getKind() == BuiltinType::Float128)) |
| 2241 | return true; |
| 2242 | |
| 2243 | // Half can be promoted to float. |
| 2244 | if (!getLangOpts().NativeHalfType && |
| 2245 | FromBuiltin->getKind() == BuiltinType::Half && |
| 2246 | ToBuiltin->getKind() == BuiltinType::Float) |
| 2247 | return true; |
| 2248 | } |
| 2249 | |
| 2250 | return false; |
| 2251 | } |
| 2252 | |
| 2253 | /// Determine if a conversion is a complex promotion. |
| 2254 | /// |
| 2255 | /// A complex promotion is defined as a complex -> complex conversion |
| 2256 | /// where the conversion between the underlying real types is a |
| 2257 | /// floating-point or integral promotion. |
| 2258 | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { |
| 2259 | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); |
| 2260 | if (!FromComplex) |
| 2261 | return false; |
| 2262 | |
| 2263 | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); |
| 2264 | if (!ToComplex) |
| 2265 | return false; |
| 2266 | |
| 2267 | return IsFloatingPointPromotion(FromComplex->getElementType(), |
| 2268 | ToComplex->getElementType()) || |
| 2269 | IsIntegralPromotion(nullptr, FromComplex->getElementType(), |
| 2270 | ToComplex->getElementType()); |
| 2271 | } |
| 2272 | |
| 2273 | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from |
| 2274 | /// the pointer type FromPtr to a pointer to type ToPointee, with the |
| 2275 | /// same type qualifiers as FromPtr has on its pointee type. ToType, |
| 2276 | /// if non-empty, will be a pointer to ToType that may or may not have |
| 2277 | /// the right set of qualifiers on its pointee. |
| 2278 | /// |
| 2279 | static QualType |
| 2280 | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, |
| 2281 | QualType ToPointee, QualType ToType, |
| 2282 | ASTContext &Context, |
| 2283 | bool StripObjCLifetime = false) { |
| 2284 | assert((FromPtr->getTypeClass() == Type::Pointer ||((void)0) |
| 2285 | FromPtr->getTypeClass() == Type::ObjCObjectPointer) &&((void)0) |
| 2286 | "Invalid similarly-qualified pointer type")((void)0); |
| 2287 | |
| 2288 | /// Conversions to 'id' subsume cv-qualifier conversions. |
| 2289 | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) |
| 2290 | return ToType.getUnqualifiedType(); |
| 2291 | |
| 2292 | QualType CanonFromPointee |
| 2293 | = Context.getCanonicalType(FromPtr->getPointeeType()); |
| 2294 | QualType CanonToPointee = Context.getCanonicalType(ToPointee); |
| 2295 | Qualifiers Quals = CanonFromPointee.getQualifiers(); |
| 2296 | |
| 2297 | if (StripObjCLifetime) |
| 2298 | Quals.removeObjCLifetime(); |
| 2299 | |
| 2300 | // Exact qualifier match -> return the pointer type we're converting to. |
| 2301 | if (CanonToPointee.getLocalQualifiers() == Quals) { |
| 2302 | // ToType is exactly what we need. Return it. |
| 2303 | if (!ToType.isNull()) |
| 2304 | return ToType.getUnqualifiedType(); |
| 2305 | |
| 2306 | // Build a pointer to ToPointee. It has the right qualifiers |
| 2307 | // already. |
| 2308 | if (isa<ObjCObjectPointerType>(ToType)) |
| 2309 | return Context.getObjCObjectPointerType(ToPointee); |
| 2310 | return Context.getPointerType(ToPointee); |
| 2311 | } |
| 2312 | |
| 2313 | // Just build a canonical type that has the right qualifiers. |
| 2314 | QualType QualifiedCanonToPointee |
| 2315 | = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); |
| 2316 | |
| 2317 | if (isa<ObjCObjectPointerType>(ToType)) |
| 2318 | return Context.getObjCObjectPointerType(QualifiedCanonToPointee); |
| 2319 | return Context.getPointerType(QualifiedCanonToPointee); |
| 2320 | } |
| 2321 | |
| 2322 | static bool isNullPointerConstantForConversion(Expr *Expr, |
| 2323 | bool InOverloadResolution, |
| 2324 | ASTContext &Context) { |
| 2325 | // Handle value-dependent integral null pointer constants correctly. |
| 2326 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 |
| 2327 | if (Expr->isValueDependent() && !Expr->isTypeDependent() && |
| 2328 | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) |
| 2329 | return !InOverloadResolution; |
| 2330 | |
| 2331 | return Expr->isNullPointerConstant(Context, |
| 2332 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
| 2333 | : Expr::NPC_ValueDependentIsNull); |
| 2334 | } |
| 2335 | |
| 2336 | /// IsPointerConversion - Determines whether the conversion of the |
| 2337 | /// expression From, which has the (possibly adjusted) type FromType, |
| 2338 | /// can be converted to the type ToType via a pointer conversion (C++ |
| 2339 | /// 4.10). If so, returns true and places the converted type (that |
| 2340 | /// might differ from ToType in its cv-qualifiers at some level) into |
| 2341 | /// ConvertedType. |
| 2342 | /// |
| 2343 | /// This routine also supports conversions to and from block pointers |
| 2344 | /// and conversions with Objective-C's 'id', 'id<protocols...>', and |
| 2345 | /// pointers to interfaces. FIXME: Once we've determined the |
| 2346 | /// appropriate overloading rules for Objective-C, we may want to |
| 2347 | /// split the Objective-C checks into a different routine; however, |
| 2348 | /// GCC seems to consider all of these conversions to be pointer |
| 2349 | /// conversions, so for now they live here. IncompatibleObjC will be |
| 2350 | /// set if the conversion is an allowed Objective-C conversion that |
| 2351 | /// should result in a warning. |
| 2352 | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, |
| 2353 | bool InOverloadResolution, |
| 2354 | QualType& ConvertedType, |
| 2355 | bool &IncompatibleObjC) { |
| 2356 | IncompatibleObjC = false; |
| 2357 | if (isObjCPointerConversion(FromType, ToType, ConvertedType, |
| 2358 | IncompatibleObjC)) |
| 2359 | return true; |
| 2360 | |
| 2361 | // Conversion from a null pointer constant to any Objective-C pointer type. |
| 2362 | if (ToType->isObjCObjectPointerType() && |
| 2363 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| 2364 | ConvertedType = ToType; |
| 2365 | return true; |
| 2366 | } |
| 2367 | |
| 2368 | // Blocks: Block pointers can be converted to void*. |
| 2369 | if (FromType->isBlockPointerType() && ToType->isPointerType() && |
| 2370 | ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { |
| 2371 | ConvertedType = ToType; |
| 2372 | return true; |
| 2373 | } |
| 2374 | // Blocks: A null pointer constant can be converted to a block |
| 2375 | // pointer type. |
| 2376 | if (ToType->isBlockPointerType() && |
| 2377 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| 2378 | ConvertedType = ToType; |
| 2379 | return true; |
| 2380 | } |
| 2381 | |
| 2382 | // If the left-hand-side is nullptr_t, the right side can be a null |
| 2383 | // pointer constant. |
| 2384 | if (ToType->isNullPtrType() && |
| 2385 | isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| 2386 | ConvertedType = ToType; |
| 2387 | return true; |
| 2388 | } |
| 2389 | |
| 2390 | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); |
| 2391 | if (!ToTypePtr) |
| 2392 | return false; |
| 2393 | |
| 2394 | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). |
| 2395 | if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| 2396 | ConvertedType = ToType; |
| 2397 | return true; |
| 2398 | } |
| 2399 | |
| 2400 | // Beyond this point, both types need to be pointers |
| 2401 | // , including objective-c pointers. |
| 2402 | QualType ToPointeeType = ToTypePtr->getPointeeType(); |
| 2403 | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && |
| 2404 | !getLangOpts().ObjCAutoRefCount) { |
| 2405 | ConvertedType = BuildSimilarlyQualifiedPointerType( |
| 2406 | FromType->getAs<ObjCObjectPointerType>(), |
| 2407 | ToPointeeType, |
| 2408 | ToType, Context); |
| 2409 | return true; |
| 2410 | } |
| 2411 | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); |
| 2412 | if (!FromTypePtr) |
| 2413 | return false; |
| 2414 | |
| 2415 | QualType FromPointeeType = FromTypePtr->getPointeeType(); |
| 2416 | |
| 2417 | // If the unqualified pointee types are the same, this can't be a |
| 2418 | // pointer conversion, so don't do all of the work below. |
| 2419 | if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) |
| 2420 | return false; |
| 2421 | |
| 2422 | // An rvalue of type "pointer to cv T," where T is an object type, |
| 2423 | // can be converted to an rvalue of type "pointer to cv void" (C++ |
| 2424 | // 4.10p2). |
| 2425 | if (FromPointeeType->isIncompleteOrObjectType() && |
| 2426 | ToPointeeType->isVoidType()) { |
| 2427 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| 2428 | ToPointeeType, |
| 2429 | ToType, Context, |
| 2430 | /*StripObjCLifetime=*/true); |
| 2431 | return true; |
| 2432 | } |
| 2433 | |
| 2434 | // MSVC allows implicit function to void* type conversion. |
| 2435 | if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && |
| 2436 | ToPointeeType->isVoidType()) { |
| 2437 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| 2438 | ToPointeeType, |
| 2439 | ToType, Context); |
| 2440 | return true; |
| 2441 | } |
| 2442 | |
| 2443 | // When we're overloading in C, we allow a special kind of pointer |
| 2444 | // conversion for compatible-but-not-identical pointee types. |
| 2445 | if (!getLangOpts().CPlusPlus && |
| 2446 | Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { |
| 2447 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| 2448 | ToPointeeType, |
| 2449 | ToType, Context); |
| 2450 | return true; |
| 2451 | } |
| 2452 | |
| 2453 | // C++ [conv.ptr]p3: |
| 2454 | // |
| 2455 | // An rvalue of type "pointer to cv D," where D is a class type, |
| 2456 | // can be converted to an rvalue of type "pointer to cv B," where |
| 2457 | // B is a base class (clause 10) of D. If B is an inaccessible |
| 2458 | // (clause 11) or ambiguous (10.2) base class of D, a program that |
| 2459 | // necessitates this conversion is ill-formed. The result of the |
| 2460 | // conversion is a pointer to the base class sub-object of the |
| 2461 | // derived class object. The null pointer value is converted to |
| 2462 | // the null pointer value of the destination type. |
| 2463 | // |
| 2464 | // Note that we do not check for ambiguity or inaccessibility |
| 2465 | // here. That is handled by CheckPointerConversion. |
| 2466 | if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && |
| 2467 | ToPointeeType->isRecordType() && |
| 2468 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && |
| 2469 | IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { |
| 2470 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| 2471 | ToPointeeType, |
| 2472 | ToType, Context); |
| 2473 | return true; |
| 2474 | } |
| 2475 | |
| 2476 | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && |
| 2477 | Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { |
| 2478 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| 2479 | ToPointeeType, |
| 2480 | ToType, Context); |
| 2481 | return true; |
| 2482 | } |
| 2483 | |
| 2484 | return false; |
| 2485 | } |
| 2486 | |
| 2487 | /// Adopt the given qualifiers for the given type. |
| 2488 | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ |
| 2489 | Qualifiers TQs = T.getQualifiers(); |
| 2490 | |
| 2491 | // Check whether qualifiers already match. |
| 2492 | if (TQs == Qs) |
| 2493 | return T; |
| 2494 | |
| 2495 | if (Qs.compatiblyIncludes(TQs)) |
| 2496 | return Context.getQualifiedType(T, Qs); |
| 2497 | |
| 2498 | return Context.getQualifiedType(T.getUnqualifiedType(), Qs); |
| 2499 | } |
| 2500 | |
| 2501 | /// isObjCPointerConversion - Determines whether this is an |
| 2502 | /// Objective-C pointer conversion. Subroutine of IsPointerConversion, |
| 2503 | /// with the same arguments and return values. |
| 2504 | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, |
| 2505 | QualType& ConvertedType, |
| 2506 | bool &IncompatibleObjC) { |
| 2507 | if (!getLangOpts().ObjC) |
| 2508 | return false; |
| 2509 | |
| 2510 | // The set of qualifiers on the type we're converting from. |
| 2511 | Qualifiers FromQualifiers = FromType.getQualifiers(); |
| 2512 | |
| 2513 | // First, we handle all conversions on ObjC object pointer types. |
| 2514 | const ObjCObjectPointerType* ToObjCPtr = |
| 2515 | ToType->getAs<ObjCObjectPointerType>(); |
| 2516 | const ObjCObjectPointerType *FromObjCPtr = |
| 2517 | FromType->getAs<ObjCObjectPointerType>(); |
| 2518 | |
| 2519 | if (ToObjCPtr && FromObjCPtr) { |
| 2520 | // If the pointee types are the same (ignoring qualifications), |
| 2521 | // then this is not a pointer conversion. |
| 2522 | if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), |
| 2523 | FromObjCPtr->getPointeeType())) |
| 2524 | return false; |
| 2525 | |
| 2526 | // Conversion between Objective-C pointers. |
| 2527 | if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { |
| 2528 | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); |
| 2529 | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); |
| 2530 | if (getLangOpts().CPlusPlus && LHS && RHS && |
| 2531 | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( |
| 2532 | FromObjCPtr->getPointeeType())) |
| 2533 | return false; |
| 2534 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, |
| 2535 | ToObjCPtr->getPointeeType(), |
| 2536 | ToType, Context); |
| 2537 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
| 2538 | return true; |
| 2539 | } |
| 2540 | |
| 2541 | if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { |
| 2542 | // Okay: this is some kind of implicit downcast of Objective-C |
| 2543 | // interfaces, which is permitted. However, we're going to |
| 2544 | // complain about it. |
| 2545 | IncompatibleObjC = true; |
| 2546 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, |
| 2547 | ToObjCPtr->getPointeeType(), |
| 2548 | ToType, Context); |
| 2549 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
| 2550 | return true; |
| 2551 | } |
| 2552 | } |
| 2553 | // Beyond this point, both types need to be C pointers or block pointers. |
| 2554 | QualType ToPointeeType; |
| 2555 | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) |
| 2556 | ToPointeeType = ToCPtr->getPointeeType(); |
| 2557 | else if (const BlockPointerType *ToBlockPtr = |
| 2558 | ToType->getAs<BlockPointerType>()) { |
| 2559 | // Objective C++: We're able to convert from a pointer to any object |
| 2560 | // to a block pointer type. |
| 2561 | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { |
| 2562 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
| 2563 | return true; |
| 2564 | } |
| 2565 | ToPointeeType = ToBlockPtr->getPointeeType(); |
| 2566 | } |
| 2567 | else if (FromType->getAs<BlockPointerType>() && |
| 2568 | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { |
| 2569 | // Objective C++: We're able to convert from a block pointer type to a |
| 2570 | // pointer to any object. |
| 2571 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
| 2572 | return true; |
| 2573 | } |
| 2574 | else |
| 2575 | return false; |
| 2576 | |
| 2577 | QualType FromPointeeType; |
| 2578 | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) |
| 2579 | FromPointeeType = FromCPtr->getPointeeType(); |
| 2580 | else if (const BlockPointerType *FromBlockPtr = |
| 2581 | FromType->getAs<BlockPointerType>()) |
| 2582 | FromPointeeType = FromBlockPtr->getPointeeType(); |
| 2583 | else |
| 2584 | return false; |
| 2585 | |
| 2586 | // If we have pointers to pointers, recursively check whether this |
| 2587 | // is an Objective-C conversion. |
| 2588 | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && |
| 2589 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
| 2590 | IncompatibleObjC)) { |
| 2591 | // We always complain about this conversion. |
| 2592 | IncompatibleObjC = true; |
| 2593 | ConvertedType = Context.getPointerType(ConvertedType); |
| 2594 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
| 2595 | return true; |
| 2596 | } |
| 2597 | // Allow conversion of pointee being objective-c pointer to another one; |
| 2598 | // as in I* to id. |
| 2599 | if (FromPointeeType->getAs<ObjCObjectPointerType>() && |
| 2600 | ToPointeeType->getAs<ObjCObjectPointerType>() && |
| 2601 | isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
| 2602 | IncompatibleObjC)) { |
| 2603 | |
| 2604 | ConvertedType = Context.getPointerType(ConvertedType); |
| 2605 | ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
| 2606 | return true; |
| 2607 | } |
| 2608 | |
| 2609 | // If we have pointers to functions or blocks, check whether the only |
| 2610 | // differences in the argument and result types are in Objective-C |
| 2611 | // pointer conversions. If so, we permit the conversion (but |
| 2612 | // complain about it). |
| 2613 | const FunctionProtoType *FromFunctionType |
| 2614 | = FromPointeeType->getAs<FunctionProtoType>(); |
| 2615 | const FunctionProtoType *ToFunctionType |
| 2616 | = ToPointeeType->getAs<FunctionProtoType>(); |
| 2617 | if (FromFunctionType && ToFunctionType) { |
| 2618 | // If the function types are exactly the same, this isn't an |
| 2619 | // Objective-C pointer conversion. |
| 2620 | if (Context.getCanonicalType(FromPointeeType) |
| 2621 | == Context.getCanonicalType(ToPointeeType)) |
| 2622 | return false; |
| 2623 | |
| 2624 | // Perform the quick checks that will tell us whether these |
| 2625 | // function types are obviously different. |
| 2626 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || |
| 2627 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || |
| 2628 | FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) |
| 2629 | return false; |
| 2630 | |
| 2631 | bool HasObjCConversion = false; |
| 2632 | if (Context.getCanonicalType(FromFunctionType->getReturnType()) == |
| 2633 | Context.getCanonicalType(ToFunctionType->getReturnType())) { |
| 2634 | // Okay, the types match exactly. Nothing to do. |
| 2635 | } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), |
| 2636 | ToFunctionType->getReturnType(), |
| 2637 | ConvertedType, IncompatibleObjC)) { |
| 2638 | // Okay, we have an Objective-C pointer conversion. |
| 2639 | HasObjCConversion = true; |
| 2640 | } else { |
| 2641 | // Function types are too different. Abort. |
| 2642 | return false; |
| 2643 | } |
| 2644 | |
| 2645 | // Check argument types. |
| 2646 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); |
| 2647 | ArgIdx != NumArgs; ++ArgIdx) { |
| 2648 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); |
| 2649 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); |
| 2650 | if (Context.getCanonicalType(FromArgType) |
| 2651 | == Context.getCanonicalType(ToArgType)) { |
| 2652 | // Okay, the types match exactly. Nothing to do. |
| 2653 | } else if (isObjCPointerConversion(FromArgType, ToArgType, |
| 2654 | ConvertedType, IncompatibleObjC)) { |
| 2655 | // Okay, we have an Objective-C pointer conversion. |
| 2656 | HasObjCConversion = true; |
| 2657 | } else { |
| 2658 | // Argument types are too different. Abort. |
| 2659 | return false; |
| 2660 | } |
| 2661 | } |
| 2662 | |
| 2663 | if (HasObjCConversion) { |
| 2664 | // We had an Objective-C conversion. Allow this pointer |
| 2665 | // conversion, but complain about it. |
| 2666 | ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
| 2667 | IncompatibleObjC = true; |
| 2668 | return true; |
| 2669 | } |
| 2670 | } |
| 2671 | |
| 2672 | return false; |
| 2673 | } |
| 2674 | |
| 2675 | /// Determine whether this is an Objective-C writeback conversion, |
| 2676 | /// used for parameter passing when performing automatic reference counting. |
| 2677 | /// |
| 2678 | /// \param FromType The type we're converting form. |
| 2679 | /// |
| 2680 | /// \param ToType The type we're converting to. |
| 2681 | /// |
| 2682 | /// \param ConvertedType The type that will be produced after applying |
| 2683 | /// this conversion. |
| 2684 | bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, |
| 2685 | QualType &ConvertedType) { |
| 2686 | if (!getLangOpts().ObjCAutoRefCount || |
| 2687 | Context.hasSameUnqualifiedType(FromType, ToType)) |
| 2688 | return false; |
| 2689 | |
| 2690 | // Parameter must be a pointer to __autoreleasing (with no other qualifiers). |
| 2691 | QualType ToPointee; |
| 2692 | if (const PointerType *ToPointer = ToType->getAs<PointerType>()) |
| 2693 | ToPointee = ToPointer->getPointeeType(); |
| 2694 | else |
| 2695 | return false; |
| 2696 | |
| 2697 | Qualifiers ToQuals = ToPointee.getQualifiers(); |
| 2698 | if (!ToPointee->isObjCLifetimeType() || |
| 2699 | ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || |
| 2700 | !ToQuals.withoutObjCLifetime().empty()) |
| 2701 | return false; |
| 2702 | |
| 2703 | // Argument must be a pointer to __strong to __weak. |
| 2704 | QualType FromPointee; |
| 2705 | if (const PointerType *FromPointer = FromType->getAs<PointerType>()) |
| 2706 | FromPointee = FromPointer->getPointeeType(); |
| 2707 | else |
| 2708 | return false; |
| 2709 | |
| 2710 | Qualifiers FromQuals = FromPointee.getQualifiers(); |
| 2711 | if (!FromPointee->isObjCLifetimeType() || |
| 2712 | (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && |
| 2713 | FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) |
| 2714 | return false; |
| 2715 | |
| 2716 | // Make sure that we have compatible qualifiers. |
| 2717 | FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); |
| 2718 | if (!ToQuals.compatiblyIncludes(FromQuals)) |
| 2719 | return false; |
| 2720 | |
| 2721 | // Remove qualifiers from the pointee type we're converting from; they |
| 2722 | // aren't used in the compatibility check belong, and we'll be adding back |
| 2723 | // qualifiers (with __autoreleasing) if the compatibility check succeeds. |
| 2724 | FromPointee = FromPointee.getUnqualifiedType(); |
| 2725 | |
| 2726 | // The unqualified form of the pointee types must be compatible. |
| 2727 | ToPointee = ToPointee.getUnqualifiedType(); |
| 2728 | bool IncompatibleObjC; |
| 2729 | if (Context.typesAreCompatible(FromPointee, ToPointee)) |
| 2730 | FromPointee = ToPointee; |
| 2731 | else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, |
| 2732 | IncompatibleObjC)) |
| 2733 | return false; |
| 2734 | |
| 2735 | /// Construct the type we're converting to, which is a pointer to |
| 2736 | /// __autoreleasing pointee. |
| 2737 | FromPointee = Context.getQualifiedType(FromPointee, FromQuals); |
| 2738 | ConvertedType = Context.getPointerType(FromPointee); |
| 2739 | return true; |
| 2740 | } |
| 2741 | |
| 2742 | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, |
| 2743 | QualType& ConvertedType) { |
| 2744 | QualType ToPointeeType; |
| 2745 | if (const BlockPointerType *ToBlockPtr = |
| 2746 | ToType->getAs<BlockPointerType>()) |
| 2747 | ToPointeeType = ToBlockPtr->getPointeeType(); |
| 2748 | else |
| 2749 | return false; |
| 2750 | |
| 2751 | QualType FromPointeeType; |
| 2752 | if (const BlockPointerType *FromBlockPtr = |
| 2753 | FromType->getAs<BlockPointerType>()) |
| 2754 | FromPointeeType = FromBlockPtr->getPointeeType(); |
| 2755 | else |
| 2756 | return false; |
| 2757 | // We have pointer to blocks, check whether the only |
| 2758 | // differences in the argument and result types are in Objective-C |
| 2759 | // pointer conversions. If so, we permit the conversion. |
| 2760 | |
| 2761 | const FunctionProtoType *FromFunctionType |
| 2762 | = FromPointeeType->getAs<FunctionProtoType>(); |
| 2763 | const FunctionProtoType *ToFunctionType |
| 2764 | = ToPointeeType->getAs<FunctionProtoType>(); |
| 2765 | |
| 2766 | if (!FromFunctionType || !ToFunctionType) |
| 2767 | return false; |
| 2768 | |
| 2769 | if (Context.hasSameType(FromPointeeType, ToPointeeType)) |
| 2770 | return true; |
| 2771 | |
| 2772 | // Perform the quick checks that will tell us whether these |
| 2773 | // function types are obviously different. |
| 2774 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || |
| 2775 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) |
| 2776 | return false; |
| 2777 | |
| 2778 | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); |
| 2779 | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); |
| 2780 | if (FromEInfo != ToEInfo) |
| 2781 | return false; |
| 2782 | |
| 2783 | bool IncompatibleObjC = false; |
| 2784 | if (Context.hasSameType(FromFunctionType->getReturnType(), |
| 2785 | ToFunctionType->getReturnType())) { |
| 2786 | // Okay, the types match exactly. Nothing to do. |
| 2787 | } else { |
| 2788 | QualType RHS = FromFunctionType->getReturnType(); |
| 2789 | QualType LHS = ToFunctionType->getReturnType(); |
| 2790 | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && |
| 2791 | !RHS.hasQualifiers() && LHS.hasQualifiers()) |
| 2792 | LHS = LHS.getUnqualifiedType(); |
| 2793 | |
| 2794 | if (Context.hasSameType(RHS,LHS)) { |
| 2795 | // OK exact match. |
| 2796 | } else if (isObjCPointerConversion(RHS, LHS, |
| 2797 | ConvertedType, IncompatibleObjC)) { |
| 2798 | if (IncompatibleObjC) |
| 2799 | return false; |
| 2800 | // Okay, we have an Objective-C pointer conversion. |
| 2801 | } |
| 2802 | else |
| 2803 | return false; |
| 2804 | } |
| 2805 | |
| 2806 | // Check argument types. |
| 2807 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); |
| 2808 | ArgIdx != NumArgs; ++ArgIdx) { |
| 2809 | IncompatibleObjC = false; |
| 2810 | QualType FromArgType = FromFunctionType->getParamType(ArgIdx); |
| 2811 | QualType ToArgType = ToFunctionType->getParamType(ArgIdx); |
| 2812 | if (Context.hasSameType(FromArgType, ToArgType)) { |
| 2813 | // Okay, the types match exactly. Nothing to do. |
| 2814 | } else if (isObjCPointerConversion(ToArgType, FromArgType, |
| 2815 | ConvertedType, IncompatibleObjC)) { |
| 2816 | if (IncompatibleObjC) |
| 2817 | return false; |
| 2818 | // Okay, we have an Objective-C pointer conversion. |
| 2819 | } else |
| 2820 | // Argument types are too different. Abort. |
| 2821 | return false; |
| 2822 | } |
| 2823 | |
| 2824 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; |
| 2825 | bool CanUseToFPT, CanUseFromFPT; |
| 2826 | if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, |
| 2827 | CanUseToFPT, CanUseFromFPT, |
| 2828 | NewParamInfos)) |
| 2829 | return false; |
| 2830 | |
| 2831 | ConvertedType = ToType; |
| 2832 | return true; |
| 2833 | } |
| 2834 | |
| 2835 | enum { |
| 2836 | ft_default, |
| 2837 | ft_different_class, |
| 2838 | ft_parameter_arity, |
| 2839 | ft_parameter_mismatch, |
| 2840 | ft_return_type, |
| 2841 | ft_qualifer_mismatch, |
| 2842 | ft_noexcept |
| 2843 | }; |
| 2844 | |
| 2845 | /// Attempts to get the FunctionProtoType from a Type. Handles |
| 2846 | /// MemberFunctionPointers properly. |
| 2847 | static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { |
| 2848 | if (auto *FPT = FromType->getAs<FunctionProtoType>()) |
| 2849 | return FPT; |
| 2850 | |
| 2851 | if (auto *MPT = FromType->getAs<MemberPointerType>()) |
| 2852 | return MPT->getPointeeType()->getAs<FunctionProtoType>(); |
| 2853 | |
| 2854 | return nullptr; |
| 2855 | } |
| 2856 | |
| 2857 | /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing |
| 2858 | /// function types. Catches different number of parameter, mismatch in |
| 2859 | /// parameter types, and different return types. |
| 2860 | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, |
| 2861 | QualType FromType, QualType ToType) { |
| 2862 | // If either type is not valid, include no extra info. |
| 2863 | if (FromType.isNull() || ToType.isNull()) { |
| 2864 | PDiag << ft_default; |
| 2865 | return; |
| 2866 | } |
| 2867 | |
| 2868 | // Get the function type from the pointers. |
| 2869 | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { |
| 2870 | const auto *FromMember = FromType->castAs<MemberPointerType>(), |
| 2871 | *ToMember = ToType->castAs<MemberPointerType>(); |
| 2872 | if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { |
| 2873 | PDiag << ft_different_class << QualType(ToMember->getClass(), 0) |
| 2874 | << QualType(FromMember->getClass(), 0); |
| 2875 | return; |
| 2876 | } |
| 2877 | FromType = FromMember->getPointeeType(); |
| 2878 | ToType = ToMember->getPointeeType(); |
| 2879 | } |
| 2880 | |
| 2881 | if (FromType->isPointerType()) |
| 2882 | FromType = FromType->getPointeeType(); |
| 2883 | if (ToType->isPointerType()) |
| 2884 | ToType = ToType->getPointeeType(); |
| 2885 | |
| 2886 | // Remove references. |
| 2887 | FromType = FromType.getNonReferenceType(); |
| 2888 | ToType = ToType.getNonReferenceType(); |
| 2889 | |
| 2890 | // Don't print extra info for non-specialized template functions. |
| 2891 | if (FromType->isInstantiationDependentType() && |
| 2892 | !FromType->getAs<TemplateSpecializationType>()) { |
| 2893 | PDiag << ft_default; |
| 2894 | return; |
| 2895 | } |
| 2896 | |
| 2897 | // No extra info for same types. |
| 2898 | if (Context.hasSameType(FromType, ToType)) { |
| 2899 | PDiag << ft_default; |
| 2900 | return; |
| 2901 | } |
| 2902 | |
| 2903 | const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), |
| 2904 | *ToFunction = tryGetFunctionProtoType(ToType); |
| 2905 | |
| 2906 | // Both types need to be function types. |
| 2907 | if (!FromFunction || !ToFunction) { |
| 2908 | PDiag << ft_default; |
| 2909 | return; |
| 2910 | } |
| 2911 | |
| 2912 | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { |
| 2913 | PDiag << ft_parameter_arity << ToFunction->getNumParams() |
| 2914 | << FromFunction->getNumParams(); |
| 2915 | return; |
| 2916 | } |
| 2917 | |
| 2918 | // Handle different parameter types. |
| 2919 | unsigned ArgPos; |
| 2920 | if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { |
| 2921 | PDiag << ft_parameter_mismatch << ArgPos + 1 |
| 2922 | << ToFunction->getParamType(ArgPos) |
| 2923 | << FromFunction->getParamType(ArgPos); |
| 2924 | return; |
| 2925 | } |
| 2926 | |
| 2927 | // Handle different return type. |
| 2928 | if (!Context.hasSameType(FromFunction->getReturnType(), |
| 2929 | ToFunction->getReturnType())) { |
| 2930 | PDiag << ft_return_type << ToFunction->getReturnType() |
| 2931 | << FromFunction->getReturnType(); |
| 2932 | return; |
| 2933 | } |
| 2934 | |
| 2935 | if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { |
| 2936 | PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() |
| 2937 | << FromFunction->getMethodQuals(); |
| 2938 | return; |
| 2939 | } |
| 2940 | |
| 2941 | // Handle exception specification differences on canonical type (in C++17 |
| 2942 | // onwards). |
| 2943 | if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) |
| 2944 | ->isNothrow() != |
| 2945 | cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) |
| 2946 | ->isNothrow()) { |
| 2947 | PDiag << ft_noexcept; |
| 2948 | return; |
| 2949 | } |
| 2950 | |
| 2951 | // Unable to find a difference, so add no extra info. |
| 2952 | PDiag << ft_default; |
| 2953 | } |
| 2954 | |
| 2955 | /// FunctionParamTypesAreEqual - This routine checks two function proto types |
| 2956 | /// for equality of their argument types. Caller has already checked that |
| 2957 | /// they have same number of arguments. If the parameters are different, |
| 2958 | /// ArgPos will have the parameter index of the first different parameter. |
| 2959 | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, |
| 2960 | const FunctionProtoType *NewType, |
| 2961 | unsigned *ArgPos) { |
| 2962 | for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), |
| 2963 | N = NewType->param_type_begin(), |
| 2964 | E = OldType->param_type_end(); |
| 2965 | O && (O != E); ++O, ++N) { |
| 2966 | // Ignore address spaces in pointee type. This is to disallow overloading |
| 2967 | // on __ptr32/__ptr64 address spaces. |
| 2968 | QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType()); |
| 2969 | QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType()); |
| 2970 | |
| 2971 | if (!Context.hasSameType(Old, New)) { |
| 2972 | if (ArgPos) |
| 2973 | *ArgPos = O - OldType->param_type_begin(); |
| 2974 | return false; |
| 2975 | } |
| 2976 | } |
| 2977 | return true; |
| 2978 | } |
| 2979 | |
| 2980 | /// CheckPointerConversion - Check the pointer conversion from the |
| 2981 | /// expression From to the type ToType. This routine checks for |
| 2982 | /// ambiguous or inaccessible derived-to-base pointer |
| 2983 | /// conversions for which IsPointerConversion has already returned |
| 2984 | /// true. It returns true and produces a diagnostic if there was an |
| 2985 | /// error, or returns false otherwise. |
| 2986 | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, |
| 2987 | CastKind &Kind, |
| 2988 | CXXCastPath& BasePath, |
| 2989 | bool IgnoreBaseAccess, |
| 2990 | bool Diagnose) { |
| 2991 | QualType FromType = From->getType(); |
| 2992 | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; |
| 2993 | |
| 2994 | Kind = CK_BitCast; |
| 2995 | |
| 2996 | if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && |
| 2997 | From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == |
| 2998 | Expr::NPCK_ZeroExpression) { |
| 2999 | if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) |
| 3000 | DiagRuntimeBehavior(From->getExprLoc(), From, |
| 3001 | PDiag(diag::warn_impcast_bool_to_null_pointer) |
| 3002 | << ToType << From->getSourceRange()); |
| 3003 | else if (!isUnevaluatedContext()) |
| 3004 | Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) |
| 3005 | << ToType << From->getSourceRange(); |
| 3006 | } |
| 3007 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { |
| 3008 | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { |
| 3009 | QualType FromPointeeType = FromPtrType->getPointeeType(), |
| 3010 | ToPointeeType = ToPtrType->getPointeeType(); |
| 3011 | |
| 3012 | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && |
| 3013 | !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { |
| 3014 | // We must have a derived-to-base conversion. Check an |
| 3015 | // ambiguous or inaccessible conversion. |
| 3016 | unsigned InaccessibleID = 0; |
| 3017 | unsigned AmbiguousID = 0; |
| 3018 | if (Diagnose) { |
| 3019 | InaccessibleID = diag::err_upcast_to_inaccessible_base; |
| 3020 | AmbiguousID = diag::err_ambiguous_derived_to_base_conv; |
| 3021 | } |
| 3022 | if (CheckDerivedToBaseConversion( |
| 3023 | FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, |
| 3024 | From->getExprLoc(), From->getSourceRange(), DeclarationName(), |
| 3025 | &BasePath, IgnoreBaseAccess)) |
| 3026 | return true; |
| 3027 | |
| 3028 | // The conversion was successful. |
| 3029 | Kind = CK_DerivedToBase; |
| 3030 | } |
| 3031 | |
| 3032 | if (Diagnose && !IsCStyleOrFunctionalCast && |
| 3033 | FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { |
| 3034 | assert(getLangOpts().MSVCCompat &&((void)0) |
| 3035 | "this should only be possible with MSVCCompat!")((void)0); |
| 3036 | Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) |
| 3037 | << From->getSourceRange(); |
| 3038 | } |
| 3039 | } |
| 3040 | } else if (const ObjCObjectPointerType *ToPtrType = |
| 3041 | ToType->getAs<ObjCObjectPointerType>()) { |
| 3042 | if (const ObjCObjectPointerType *FromPtrType = |
| 3043 | FromType->getAs<ObjCObjectPointerType>()) { |
| 3044 | // Objective-C++ conversions are always okay. |
| 3045 | // FIXME: We should have a different class of conversions for the |
| 3046 | // Objective-C++ implicit conversions. |
| 3047 | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) |
| 3048 | return false; |
| 3049 | } else if (FromType->isBlockPointerType()) { |
| 3050 | Kind = CK_BlockPointerToObjCPointerCast; |
| 3051 | } else { |
| 3052 | Kind = CK_CPointerToObjCPointerCast; |
| 3053 | } |
| 3054 | } else if (ToType->isBlockPointerType()) { |
| 3055 | if (!FromType->isBlockPointerType()) |
| 3056 | Kind = CK_AnyPointerToBlockPointerCast; |
| 3057 | } |
| 3058 | |
| 3059 | // We shouldn't fall into this case unless it's valid for other |
| 3060 | // reasons. |
| 3061 | if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) |
| 3062 | Kind = CK_NullToPointer; |
| 3063 | |
| 3064 | return false; |
| 3065 | } |
| 3066 | |
| 3067 | /// IsMemberPointerConversion - Determines whether the conversion of the |
| 3068 | /// expression From, which has the (possibly adjusted) type FromType, can be |
| 3069 | /// converted to the type ToType via a member pointer conversion (C++ 4.11). |
| 3070 | /// If so, returns true and places the converted type (that might differ from |
| 3071 | /// ToType in its cv-qualifiers at some level) into ConvertedType. |
| 3072 | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, |
| 3073 | QualType ToType, |
| 3074 | bool InOverloadResolution, |
| 3075 | QualType &ConvertedType) { |
| 3076 | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); |
| 3077 | if (!ToTypePtr) |
| 3078 | return false; |
| 3079 | |
| 3080 | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) |
| 3081 | if (From->isNullPointerConstant(Context, |
| 3082 | InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
| 3083 | : Expr::NPC_ValueDependentIsNull)) { |
| 3084 | ConvertedType = ToType; |
| 3085 | return true; |
| 3086 | } |
| 3087 | |
| 3088 | // Otherwise, both types have to be member pointers. |
| 3089 | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); |
| 3090 | if (!FromTypePtr) |
| 3091 | return false; |
| 3092 | |
| 3093 | // A pointer to member of B can be converted to a pointer to member of D, |
| 3094 | // where D is derived from B (C++ 4.11p2). |
| 3095 | QualType FromClass(FromTypePtr->getClass(), 0); |
| 3096 | QualType ToClass(ToTypePtr->getClass(), 0); |
| 3097 | |
| 3098 | if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && |
| 3099 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { |
| 3100 | ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), |
| 3101 | ToClass.getTypePtr()); |
| 3102 | return true; |
| 3103 | } |
| 3104 | |
| 3105 | return false; |
| 3106 | } |
| 3107 | |
| 3108 | /// CheckMemberPointerConversion - Check the member pointer conversion from the |
| 3109 | /// expression From to the type ToType. This routine checks for ambiguous or |
| 3110 | /// virtual or inaccessible base-to-derived member pointer conversions |
| 3111 | /// for which IsMemberPointerConversion has already returned true. It returns |
| 3112 | /// true and produces a diagnostic if there was an error, or returns false |
| 3113 | /// otherwise. |
| 3114 | bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, |
| 3115 | CastKind &Kind, |
| 3116 | CXXCastPath &BasePath, |
| 3117 | bool IgnoreBaseAccess) { |
| 3118 | QualType FromType = From->getType(); |
| 3119 | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); |
| 3120 | if (!FromPtrType) { |
| 3121 | // This must be a null pointer to member pointer conversion |
| 3122 | assert(From->isNullPointerConstant(Context,((void)0) |
| 3123 | Expr::NPC_ValueDependentIsNull) &&((void)0) |
| 3124 | "Expr must be null pointer constant!")((void)0); |
| 3125 | Kind = CK_NullToMemberPointer; |
| 3126 | return false; |
| 3127 | } |
| 3128 | |
| 3129 | const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); |
| 3130 | assert(ToPtrType && "No member pointer cast has a target type "((void)0) |
| 3131 | "that is not a member pointer.")((void)0); |
| 3132 | |
| 3133 | QualType FromClass = QualType(FromPtrType->getClass(), 0); |
| 3134 | QualType ToClass = QualType(ToPtrType->getClass(), 0); |
| 3135 | |
| 3136 | // FIXME: What about dependent types? |
| 3137 | assert(FromClass->isRecordType() && "Pointer into non-class.")((void)0); |
| 3138 | assert(ToClass->isRecordType() && "Pointer into non-class.")((void)0); |
| 3139 | |
| 3140 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 3141 | /*DetectVirtual=*/true); |
| 3142 | bool DerivationOkay = |
| 3143 | IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); |
| 3144 | assert(DerivationOkay &&((void)0) |
| 3145 | "Should not have been called if derivation isn't OK.")((void)0); |
| 3146 | (void)DerivationOkay; |
| 3147 | |
| 3148 | if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). |
| 3149 | getUnqualifiedType())) { |
| 3150 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
| 3151 | Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) |
| 3152 | << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); |
| 3153 | return true; |
| 3154 | } |
| 3155 | |
| 3156 | if (const RecordType *VBase = Paths.getDetectedVirtual()) { |
| 3157 | Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) |
| 3158 | << FromClass << ToClass << QualType(VBase, 0) |
| 3159 | << From->getSourceRange(); |
| 3160 | return true; |
| 3161 | } |
| 3162 | |
| 3163 | if (!IgnoreBaseAccess) |
| 3164 | CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, |
| 3165 | Paths.front(), |
| 3166 | diag::err_downcast_from_inaccessible_base); |
| 3167 | |
| 3168 | // Must be a base to derived member conversion. |
| 3169 | BuildBasePathArray(Paths, BasePath); |
| 3170 | Kind = CK_BaseToDerivedMemberPointer; |
| 3171 | return false; |
| 3172 | } |
| 3173 | |
| 3174 | /// Determine whether the lifetime conversion between the two given |
| 3175 | /// qualifiers sets is nontrivial. |
| 3176 | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, |
| 3177 | Qualifiers ToQuals) { |
| 3178 | // Converting anything to const __unsafe_unretained is trivial. |
| 3179 | if (ToQuals.hasConst() && |
| 3180 | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) |
| 3181 | return false; |
| 3182 | |
| 3183 | return true; |
| 3184 | } |
| 3185 | |
| 3186 | /// Perform a single iteration of the loop for checking if a qualification |
| 3187 | /// conversion is valid. |
| 3188 | /// |
| 3189 | /// Specifically, check whether any change between the qualifiers of \p |
| 3190 | /// FromType and \p ToType is permissible, given knowledge about whether every |
| 3191 | /// outer layer is const-qualified. |
| 3192 | static bool isQualificationConversionStep(QualType FromType, QualType ToType, |
| 3193 | bool CStyle, bool IsTopLevel, |
| 3194 | bool &PreviousToQualsIncludeConst, |
| 3195 | bool &ObjCLifetimeConversion) { |
| 3196 | Qualifiers FromQuals = FromType.getQualifiers(); |
| 3197 | Qualifiers ToQuals = ToType.getQualifiers(); |
| 3198 | |
| 3199 | // Ignore __unaligned qualifier if this type is void. |
| 3200 | if (ToType.getUnqualifiedType()->isVoidType()) |
| 3201 | FromQuals.removeUnaligned(); |
| 3202 | |
| 3203 | // Objective-C ARC: |
| 3204 | // Check Objective-C lifetime conversions. |
| 3205 | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { |
| 3206 | if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { |
| 3207 | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) |
| 3208 | ObjCLifetimeConversion = true; |
| 3209 | FromQuals.removeObjCLifetime(); |
| 3210 | ToQuals.removeObjCLifetime(); |
| 3211 | } else { |
| 3212 | // Qualification conversions cannot cast between different |
| 3213 | // Objective-C lifetime qualifiers. |
| 3214 | return false; |
| 3215 | } |
| 3216 | } |
| 3217 | |
| 3218 | // Allow addition/removal of GC attributes but not changing GC attributes. |
| 3219 | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && |
| 3220 | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { |
| 3221 | FromQuals.removeObjCGCAttr(); |
| 3222 | ToQuals.removeObjCGCAttr(); |
| 3223 | } |
| 3224 | |
| 3225 | // -- for every j > 0, if const is in cv 1,j then const is in cv |
| 3226 | // 2,j, and similarly for volatile. |
| 3227 | if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) |
| 3228 | return false; |
| 3229 | |
| 3230 | // If address spaces mismatch: |
| 3231 | // - in top level it is only valid to convert to addr space that is a |
| 3232 | // superset in all cases apart from C-style casts where we allow |
| 3233 | // conversions between overlapping address spaces. |
| 3234 | // - in non-top levels it is not a valid conversion. |
| 3235 | if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && |
| 3236 | (!IsTopLevel || |
| 3237 | !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || |
| 3238 | (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) |
| 3239 | return false; |
| 3240 | |
| 3241 | // -- if the cv 1,j and cv 2,j are different, then const is in |
| 3242 | // every cv for 0 < k < j. |
| 3243 | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && |
| 3244 | !PreviousToQualsIncludeConst) |
| 3245 | return false; |
| 3246 | |
| 3247 | // Keep track of whether all prior cv-qualifiers in the "to" type |
| 3248 | // include const. |
| 3249 | PreviousToQualsIncludeConst = |
| 3250 | PreviousToQualsIncludeConst && ToQuals.hasConst(); |
| 3251 | return true; |
| 3252 | } |
| 3253 | |
| 3254 | /// IsQualificationConversion - Determines whether the conversion from |
| 3255 | /// an rvalue of type FromType to ToType is a qualification conversion |
| 3256 | /// (C++ 4.4). |
| 3257 | /// |
| 3258 | /// \param ObjCLifetimeConversion Output parameter that will be set to indicate |
| 3259 | /// when the qualification conversion involves a change in the Objective-C |
| 3260 | /// object lifetime. |
| 3261 | bool |
| 3262 | Sema::IsQualificationConversion(QualType FromType, QualType ToType, |
| 3263 | bool CStyle, bool &ObjCLifetimeConversion) { |
| 3264 | FromType = Context.getCanonicalType(FromType); |
| 3265 | ToType = Context.getCanonicalType(ToType); |
| 3266 | ObjCLifetimeConversion = false; |
| 3267 | |
| 3268 | // If FromType and ToType are the same type, this is not a |
| 3269 | // qualification conversion. |
| 3270 | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) |
| 3271 | return false; |
| 3272 | |
| 3273 | // (C++ 4.4p4): |
| 3274 | // A conversion can add cv-qualifiers at levels other than the first |
| 3275 | // in multi-level pointers, subject to the following rules: [...] |
| 3276 | bool PreviousToQualsIncludeConst = true; |
| 3277 | bool UnwrappedAnyPointer = false; |
| 3278 | while (Context.UnwrapSimilarTypes(FromType, ToType)) { |
| 3279 | if (!isQualificationConversionStep( |
| 3280 | FromType, ToType, CStyle, !UnwrappedAnyPointer, |
| 3281 | PreviousToQualsIncludeConst, ObjCLifetimeConversion)) |
| 3282 | return false; |
| 3283 | UnwrappedAnyPointer = true; |
| 3284 | } |
| 3285 | |
| 3286 | // We are left with FromType and ToType being the pointee types |
| 3287 | // after unwrapping the original FromType and ToType the same number |
| 3288 | // of times. If we unwrapped any pointers, and if FromType and |
| 3289 | // ToType have the same unqualified type (since we checked |
| 3290 | // qualifiers above), then this is a qualification conversion. |
| 3291 | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); |
| 3292 | } |
| 3293 | |
| 3294 | /// - Determine whether this is a conversion from a scalar type to an |
| 3295 | /// atomic type. |
| 3296 | /// |
| 3297 | /// If successful, updates \c SCS's second and third steps in the conversion |
| 3298 | /// sequence to finish the conversion. |
| 3299 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, |
| 3300 | bool InOverloadResolution, |
| 3301 | StandardConversionSequence &SCS, |
| 3302 | bool CStyle) { |
| 3303 | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); |
| 3304 | if (!ToAtomic) |
| 3305 | return false; |
| 3306 | |
| 3307 | StandardConversionSequence InnerSCS; |
| 3308 | if (!IsStandardConversion(S, From, ToAtomic->getValueType(), |
| 3309 | InOverloadResolution, InnerSCS, |
| 3310 | CStyle, /*AllowObjCWritebackConversion=*/false)) |
| 3311 | return false; |
| 3312 | |
| 3313 | SCS.Second = InnerSCS.Second; |
| 3314 | SCS.setToType(1, InnerSCS.getToType(1)); |
| 3315 | SCS.Third = InnerSCS.Third; |
| 3316 | SCS.QualificationIncludesObjCLifetime |
| 3317 | = InnerSCS.QualificationIncludesObjCLifetime; |
| 3318 | SCS.setToType(2, InnerSCS.getToType(2)); |
| 3319 | return true; |
| 3320 | } |
| 3321 | |
| 3322 | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, |
| 3323 | CXXConstructorDecl *Constructor, |
| 3324 | QualType Type) { |
| 3325 | const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); |
| 3326 | if (CtorType->getNumParams() > 0) { |
| 3327 | QualType FirstArg = CtorType->getParamType(0); |
| 3328 | if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) |
| 3329 | return true; |
| 3330 | } |
| 3331 | return false; |
| 3332 | } |
| 3333 | |
| 3334 | static OverloadingResult |
| 3335 | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, |
| 3336 | CXXRecordDecl *To, |
| 3337 | UserDefinedConversionSequence &User, |
| 3338 | OverloadCandidateSet &CandidateSet, |
| 3339 | bool AllowExplicit) { |
| 3340 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 3341 | for (auto *D : S.LookupConstructors(To)) { |
| 3342 | auto Info = getConstructorInfo(D); |
| 3343 | if (!Info) |
| 3344 | continue; |
| 3345 | |
| 3346 | bool Usable = !Info.Constructor->isInvalidDecl() && |
| 3347 | S.isInitListConstructor(Info.Constructor); |
| 3348 | if (Usable) { |
| 3349 | bool SuppressUserConversions = false; |
| 3350 | if (Info.ConstructorTmpl) |
| 3351 | S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, |
| 3352 | /*ExplicitArgs*/ nullptr, From, |
| 3353 | CandidateSet, SuppressUserConversions, |
| 3354 | /*PartialOverloading*/ false, |
| 3355 | AllowExplicit); |
| 3356 | else |
| 3357 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, |
| 3358 | CandidateSet, SuppressUserConversions, |
| 3359 | /*PartialOverloading*/ false, AllowExplicit); |
| 3360 | } |
| 3361 | } |
| 3362 | |
| 3363 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 3364 | |
| 3365 | OverloadCandidateSet::iterator Best; |
| 3366 | switch (auto Result = |
| 3367 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { |
| 3368 | case OR_Deleted: |
| 3369 | case OR_Success: { |
| 3370 | // Record the standard conversion we used and the conversion function. |
| 3371 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); |
| 3372 | QualType ThisType = Constructor->getThisType(); |
| 3373 | // Initializer lists don't have conversions as such. |
| 3374 | User.Before.setAsIdentityConversion(); |
| 3375 | User.HadMultipleCandidates = HadMultipleCandidates; |
| 3376 | User.ConversionFunction = Constructor; |
| 3377 | User.FoundConversionFunction = Best->FoundDecl; |
| 3378 | User.After.setAsIdentityConversion(); |
| 3379 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); |
| 3380 | User.After.setAllToTypes(ToType); |
| 3381 | return Result; |
| 3382 | } |
| 3383 | |
| 3384 | case OR_No_Viable_Function: |
| 3385 | return OR_No_Viable_Function; |
| 3386 | case OR_Ambiguous: |
| 3387 | return OR_Ambiguous; |
| 3388 | } |
| 3389 | |
| 3390 | llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable(); |
| 3391 | } |
| 3392 | |
| 3393 | /// Determines whether there is a user-defined conversion sequence |
| 3394 | /// (C++ [over.ics.user]) that converts expression From to the type |
| 3395 | /// ToType. If such a conversion exists, User will contain the |
| 3396 | /// user-defined conversion sequence that performs such a conversion |
| 3397 | /// and this routine will return true. Otherwise, this routine returns |
| 3398 | /// false and User is unspecified. |
| 3399 | /// |
| 3400 | /// \param AllowExplicit true if the conversion should consider C++0x |
| 3401 | /// "explicit" conversion functions as well as non-explicit conversion |
| 3402 | /// functions (C++0x [class.conv.fct]p2). |
| 3403 | /// |
| 3404 | /// \param AllowObjCConversionOnExplicit true if the conversion should |
| 3405 | /// allow an extra Objective-C pointer conversion on uses of explicit |
| 3406 | /// constructors. Requires \c AllowExplicit to also be set. |
| 3407 | static OverloadingResult |
| 3408 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| 3409 | UserDefinedConversionSequence &User, |
| 3410 | OverloadCandidateSet &CandidateSet, |
| 3411 | AllowedExplicit AllowExplicit, |
| 3412 | bool AllowObjCConversionOnExplicit) { |
| 3413 | assert(AllowExplicit != AllowedExplicit::None ||((void)0) |
| 3414 | !AllowObjCConversionOnExplicit)((void)0); |
| 3415 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 3416 | |
| 3417 | // Whether we will only visit constructors. |
| 3418 | bool ConstructorsOnly = false; |
| 3419 | |
| 3420 | // If the type we are conversion to is a class type, enumerate its |
| 3421 | // constructors. |
| 3422 | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { |
| 3423 | // C++ [over.match.ctor]p1: |
| 3424 | // When objects of class type are direct-initialized (8.5), or |
| 3425 | // copy-initialized from an expression of the same or a |
| 3426 | // derived class type (8.5), overload resolution selects the |
| 3427 | // constructor. [...] For copy-initialization, the candidate |
| 3428 | // functions are all the converting constructors (12.3.1) of |
| 3429 | // that class. The argument list is the expression-list within |
| 3430 | // the parentheses of the initializer. |
| 3431 | if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || |
| 3432 | (From->getType()->getAs<RecordType>() && |
| 3433 | S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) |
| 3434 | ConstructorsOnly = true; |
| 3435 | |
| 3436 | if (!S.isCompleteType(From->getExprLoc(), ToType)) { |
| 3437 | // We're not going to find any constructors. |
| 3438 | } else if (CXXRecordDecl *ToRecordDecl |
| 3439 | = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { |
| 3440 | |
| 3441 | Expr **Args = &From; |
| 3442 | unsigned NumArgs = 1; |
| 3443 | bool ListInitializing = false; |
| 3444 | if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { |
| 3445 | // But first, see if there is an init-list-constructor that will work. |
| 3446 | OverloadingResult Result = IsInitializerListConstructorConversion( |
| 3447 | S, From, ToType, ToRecordDecl, User, CandidateSet, |
| 3448 | AllowExplicit == AllowedExplicit::All); |
| 3449 | if (Result != OR_No_Viable_Function) |
| 3450 | return Result; |
| 3451 | // Never mind. |
| 3452 | CandidateSet.clear( |
| 3453 | OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 3454 | |
| 3455 | // If we're list-initializing, we pass the individual elements as |
| 3456 | // arguments, not the entire list. |
| 3457 | Args = InitList->getInits(); |
| 3458 | NumArgs = InitList->getNumInits(); |
| 3459 | ListInitializing = true; |
| 3460 | } |
| 3461 | |
| 3462 | for (auto *D : S.LookupConstructors(ToRecordDecl)) { |
| 3463 | auto Info = getConstructorInfo(D); |
| 3464 | if (!Info) |
| 3465 | continue; |
| 3466 | |
| 3467 | bool Usable = !Info.Constructor->isInvalidDecl(); |
| 3468 | if (!ListInitializing) |
| 3469 | Usable = Usable && Info.Constructor->isConvertingConstructor( |
| 3470 | /*AllowExplicit*/ true); |
| 3471 | if (Usable) { |
| 3472 | bool SuppressUserConversions = !ConstructorsOnly; |
| 3473 | // C++20 [over.best.ics.general]/4.5: |
| 3474 | // if the target is the first parameter of a constructor [of class |
| 3475 | // X] and the constructor [...] is a candidate by [...] the second |
| 3476 | // phase of [over.match.list] when the initializer list has exactly |
| 3477 | // one element that is itself an initializer list, [...] and the |
| 3478 | // conversion is to X or reference to cv X, user-defined conversion |
| 3479 | // sequences are not cnosidered. |
| 3480 | if (SuppressUserConversions && ListInitializing) { |
| 3481 | SuppressUserConversions = |
| 3482 | NumArgs == 1 && isa<InitListExpr>(Args[0]) && |
| 3483 | isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, |
| 3484 | ToType); |
| 3485 | } |
| 3486 | if (Info.ConstructorTmpl) |
| 3487 | S.AddTemplateOverloadCandidate( |
| 3488 | Info.ConstructorTmpl, Info.FoundDecl, |
| 3489 | /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), |
| 3490 | CandidateSet, SuppressUserConversions, |
| 3491 | /*PartialOverloading*/ false, |
| 3492 | AllowExplicit == AllowedExplicit::All); |
| 3493 | else |
| 3494 | // Allow one user-defined conversion when user specifies a |
| 3495 | // From->ToType conversion via an static cast (c-style, etc). |
| 3496 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
| 3497 | llvm::makeArrayRef(Args, NumArgs), |
| 3498 | CandidateSet, SuppressUserConversions, |
| 3499 | /*PartialOverloading*/ false, |
| 3500 | AllowExplicit == AllowedExplicit::All); |
| 3501 | } |
| 3502 | } |
| 3503 | } |
| 3504 | } |
| 3505 | |
| 3506 | // Enumerate conversion functions, if we're allowed to. |
| 3507 | if (ConstructorsOnly || isa<InitListExpr>(From)) { |
| 3508 | } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { |
| 3509 | // No conversion functions from incomplete types. |
| 3510 | } else if (const RecordType *FromRecordType = |
| 3511 | From->getType()->getAs<RecordType>()) { |
| 3512 | if (CXXRecordDecl *FromRecordDecl |
| 3513 | = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { |
| 3514 | // Add all of the conversion functions as candidates. |
| 3515 | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); |
| 3516 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 3517 | DeclAccessPair FoundDecl = I.getPair(); |
| 3518 | NamedDecl *D = FoundDecl.getDecl(); |
| 3519 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
| 3520 | if (isa<UsingShadowDecl>(D)) |
| 3521 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| 3522 | |
| 3523 | CXXConversionDecl *Conv; |
| 3524 | FunctionTemplateDecl *ConvTemplate; |
| 3525 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) |
| 3526 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| 3527 | else |
| 3528 | Conv = cast<CXXConversionDecl>(D); |
| 3529 | |
| 3530 | if (ConvTemplate) |
| 3531 | S.AddTemplateConversionCandidate( |
| 3532 | ConvTemplate, FoundDecl, ActingContext, From, ToType, |
| 3533 | CandidateSet, AllowObjCConversionOnExplicit, |
| 3534 | AllowExplicit != AllowedExplicit::None); |
| 3535 | else |
| 3536 | S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, |
| 3537 | CandidateSet, AllowObjCConversionOnExplicit, |
| 3538 | AllowExplicit != AllowedExplicit::None); |
| 3539 | } |
| 3540 | } |
| 3541 | } |
| 3542 | |
| 3543 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 3544 | |
| 3545 | OverloadCandidateSet::iterator Best; |
| 3546 | switch (auto Result = |
| 3547 | CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { |
| 3548 | case OR_Success: |
| 3549 | case OR_Deleted: |
| 3550 | // Record the standard conversion we used and the conversion function. |
| 3551 | if (CXXConstructorDecl *Constructor |
| 3552 | = dyn_cast<CXXConstructorDecl>(Best->Function)) { |
| 3553 | // C++ [over.ics.user]p1: |
| 3554 | // If the user-defined conversion is specified by a |
| 3555 | // constructor (12.3.1), the initial standard conversion |
| 3556 | // sequence converts the source type to the type required by |
| 3557 | // the argument of the constructor. |
| 3558 | // |
| 3559 | QualType ThisType = Constructor->getThisType(); |
| 3560 | if (isa<InitListExpr>(From)) { |
| 3561 | // Initializer lists don't have conversions as such. |
| 3562 | User.Before.setAsIdentityConversion(); |
| 3563 | } else { |
| 3564 | if (Best->Conversions[0].isEllipsis()) |
| 3565 | User.EllipsisConversion = true; |
| 3566 | else { |
| 3567 | User.Before = Best->Conversions[0].Standard; |
| 3568 | User.EllipsisConversion = false; |
| 3569 | } |
| 3570 | } |
| 3571 | User.HadMultipleCandidates = HadMultipleCandidates; |
| 3572 | User.ConversionFunction = Constructor; |
| 3573 | User.FoundConversionFunction = Best->FoundDecl; |
| 3574 | User.After.setAsIdentityConversion(); |
| 3575 | User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); |
| 3576 | User.After.setAllToTypes(ToType); |
| 3577 | return Result; |
| 3578 | } |
| 3579 | if (CXXConversionDecl *Conversion |
| 3580 | = dyn_cast<CXXConversionDecl>(Best->Function)) { |
| 3581 | // C++ [over.ics.user]p1: |
| 3582 | // |
| 3583 | // [...] If the user-defined conversion is specified by a |
| 3584 | // conversion function (12.3.2), the initial standard |
| 3585 | // conversion sequence converts the source type to the |
| 3586 | // implicit object parameter of the conversion function. |
| 3587 | User.Before = Best->Conversions[0].Standard; |
| 3588 | User.HadMultipleCandidates = HadMultipleCandidates; |
| 3589 | User.ConversionFunction = Conversion; |
| 3590 | User.FoundConversionFunction = Best->FoundDecl; |
| 3591 | User.EllipsisConversion = false; |
| 3592 | |
| 3593 | // C++ [over.ics.user]p2: |
| 3594 | // The second standard conversion sequence converts the |
| 3595 | // result of the user-defined conversion to the target type |
| 3596 | // for the sequence. Since an implicit conversion sequence |
| 3597 | // is an initialization, the special rules for |
| 3598 | // initialization by user-defined conversion apply when |
| 3599 | // selecting the best user-defined conversion for a |
| 3600 | // user-defined conversion sequence (see 13.3.3 and |
| 3601 | // 13.3.3.1). |
| 3602 | User.After = Best->FinalConversion; |
| 3603 | return Result; |
| 3604 | } |
| 3605 | llvm_unreachable("Not a constructor or conversion function?")__builtin_unreachable(); |
| 3606 | |
| 3607 | case OR_No_Viable_Function: |
| 3608 | return OR_No_Viable_Function; |
| 3609 | |
| 3610 | case OR_Ambiguous: |
| 3611 | return OR_Ambiguous; |
| 3612 | } |
| 3613 | |
| 3614 | llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable(); |
| 3615 | } |
| 3616 | |
| 3617 | bool |
| 3618 | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { |
| 3619 | ImplicitConversionSequence ICS; |
| 3620 | OverloadCandidateSet CandidateSet(From->getExprLoc(), |
| 3621 | OverloadCandidateSet::CSK_Normal); |
| 3622 | OverloadingResult OvResult = |
| 3623 | IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, |
| 3624 | CandidateSet, AllowedExplicit::None, false); |
| 3625 | |
| 3626 | if (!(OvResult == OR_Ambiguous || |
| 3627 | (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) |
| 3628 | return false; |
| 3629 | |
| 3630 | auto Cands = CandidateSet.CompleteCandidates( |
| 3631 | *this, |
| 3632 | OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, |
| 3633 | From); |
| 3634 | if (OvResult == OR_Ambiguous) |
| 3635 | Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) |
| 3636 | << From->getType() << ToType << From->getSourceRange(); |
| 3637 | else { // OR_No_Viable_Function && !CandidateSet.empty() |
| 3638 | if (!RequireCompleteType(From->getBeginLoc(), ToType, |
| 3639 | diag::err_typecheck_nonviable_condition_incomplete, |
| 3640 | From->getType(), From->getSourceRange())) |
| 3641 | Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) |
| 3642 | << false << From->getType() << From->getSourceRange() << ToType; |
| 3643 | } |
| 3644 | |
| 3645 | CandidateSet.NoteCandidates( |
| 3646 | *this, From, Cands); |
| 3647 | return true; |
| 3648 | } |
| 3649 | |
| 3650 | // Helper for compareConversionFunctions that gets the FunctionType that the |
| 3651 | // conversion-operator return value 'points' to, or nullptr. |
| 3652 | static const FunctionType * |
| 3653 | getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { |
| 3654 | const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); |
| 3655 | const PointerType *RetPtrTy = |
| 3656 | ConvFuncTy->getReturnType()->getAs<PointerType>(); |
| 3657 | |
| 3658 | if (!RetPtrTy) |
| 3659 | return nullptr; |
| 3660 | |
| 3661 | return RetPtrTy->getPointeeType()->getAs<FunctionType>(); |
| 3662 | } |
| 3663 | |
| 3664 | /// Compare the user-defined conversion functions or constructors |
| 3665 | /// of two user-defined conversion sequences to determine whether any ordering |
| 3666 | /// is possible. |
| 3667 | static ImplicitConversionSequence::CompareKind |
| 3668 | compareConversionFunctions(Sema &S, FunctionDecl *Function1, |
| 3669 | FunctionDecl *Function2) { |
| 3670 | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); |
| 3671 | CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); |
| 3672 | if (!Conv1 || !Conv2) |
| 3673 | return ImplicitConversionSequence::Indistinguishable; |
| 3674 | |
| 3675 | if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) |
| 3676 | return ImplicitConversionSequence::Indistinguishable; |
| 3677 | |
| 3678 | // Objective-C++: |
| 3679 | // If both conversion functions are implicitly-declared conversions from |
| 3680 | // a lambda closure type to a function pointer and a block pointer, |
| 3681 | // respectively, always prefer the conversion to a function pointer, |
| 3682 | // because the function pointer is more lightweight and is more likely |
| 3683 | // to keep code working. |
| 3684 | if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { |
| 3685 | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); |
| 3686 | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); |
| 3687 | if (Block1 != Block2) |
| 3688 | return Block1 ? ImplicitConversionSequence::Worse |
| 3689 | : ImplicitConversionSequence::Better; |
| 3690 | } |
| 3691 | |
| 3692 | // In order to support multiple calling conventions for the lambda conversion |
| 3693 | // operator (such as when the free and member function calling convention is |
| 3694 | // different), prefer the 'free' mechanism, followed by the calling-convention |
| 3695 | // of operator(). The latter is in place to support the MSVC-like solution of |
| 3696 | // defining ALL of the possible conversions in regards to calling-convention. |
| 3697 | const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); |
| 3698 | const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); |
| 3699 | |
| 3700 | if (Conv1FuncRet && Conv2FuncRet && |
| 3701 | Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { |
| 3702 | CallingConv Conv1CC = Conv1FuncRet->getCallConv(); |
| 3703 | CallingConv Conv2CC = Conv2FuncRet->getCallConv(); |
| 3704 | |
| 3705 | CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); |
| 3706 | const FunctionProtoType *CallOpProto = |
| 3707 | CallOp->getType()->getAs<FunctionProtoType>(); |
| 3708 | |
| 3709 | CallingConv CallOpCC = |
| 3710 | CallOp->getType()->castAs<FunctionType>()->getCallConv(); |
| 3711 | CallingConv DefaultFree = S.Context.getDefaultCallingConvention( |
| 3712 | CallOpProto->isVariadic(), /*IsCXXMethod=*/false); |
| 3713 | CallingConv DefaultMember = S.Context.getDefaultCallingConvention( |
| 3714 | CallOpProto->isVariadic(), /*IsCXXMethod=*/true); |
| 3715 | |
| 3716 | CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; |
| 3717 | for (CallingConv CC : PrefOrder) { |
| 3718 | if (Conv1CC == CC) |
| 3719 | return ImplicitConversionSequence::Better; |
| 3720 | if (Conv2CC == CC) |
| 3721 | return ImplicitConversionSequence::Worse; |
| 3722 | } |
| 3723 | } |
| 3724 | |
| 3725 | return ImplicitConversionSequence::Indistinguishable; |
| 3726 | } |
| 3727 | |
| 3728 | static bool hasDeprecatedStringLiteralToCharPtrConversion( |
| 3729 | const ImplicitConversionSequence &ICS) { |
| 3730 | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || |
| 3731 | (ICS.isUserDefined() && |
| 3732 | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); |
| 3733 | } |
| 3734 | |
| 3735 | /// CompareImplicitConversionSequences - Compare two implicit |
| 3736 | /// conversion sequences to determine whether one is better than the |
| 3737 | /// other or if they are indistinguishable (C++ 13.3.3.2). |
| 3738 | static ImplicitConversionSequence::CompareKind |
| 3739 | CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, |
| 3740 | const ImplicitConversionSequence& ICS1, |
| 3741 | const ImplicitConversionSequence& ICS2) |
| 3742 | { |
| 3743 | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit |
| 3744 | // conversion sequences (as defined in 13.3.3.1) |
| 3745 | // -- a standard conversion sequence (13.3.3.1.1) is a better |
| 3746 | // conversion sequence than a user-defined conversion sequence or |
| 3747 | // an ellipsis conversion sequence, and |
| 3748 | // -- a user-defined conversion sequence (13.3.3.1.2) is a better |
| 3749 | // conversion sequence than an ellipsis conversion sequence |
| 3750 | // (13.3.3.1.3). |
| 3751 | // |
| 3752 | // C++0x [over.best.ics]p10: |
| 3753 | // For the purpose of ranking implicit conversion sequences as |
| 3754 | // described in 13.3.3.2, the ambiguous conversion sequence is |
| 3755 | // treated as a user-defined sequence that is indistinguishable |
| 3756 | // from any other user-defined conversion sequence. |
| 3757 | |
| 3758 | // String literal to 'char *' conversion has been deprecated in C++03. It has |
| 3759 | // been removed from C++11. We still accept this conversion, if it happens at |
| 3760 | // the best viable function. Otherwise, this conversion is considered worse |
| 3761 | // than ellipsis conversion. Consider this as an extension; this is not in the |
| 3762 | // standard. For example: |
| 3763 | // |
| 3764 | // int &f(...); // #1 |
| 3765 | // void f(char*); // #2 |
| 3766 | // void g() { int &r = f("foo"); } |
| 3767 | // |
| 3768 | // In C++03, we pick #2 as the best viable function. |
| 3769 | // In C++11, we pick #1 as the best viable function, because ellipsis |
| 3770 | // conversion is better than string-literal to char* conversion (since there |
| 3771 | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't |
| 3772 | // convert arguments, #2 would be the best viable function in C++11. |
| 3773 | // If the best viable function has this conversion, a warning will be issued |
| 3774 | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. |
| 3775 | |
| 3776 | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && |
| 3777 | hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != |
| 3778 | hasDeprecatedStringLiteralToCharPtrConversion(ICS2)) |
| 3779 | return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) |
| 3780 | ? ImplicitConversionSequence::Worse |
| 3781 | : ImplicitConversionSequence::Better; |
| 3782 | |
| 3783 | if (ICS1.getKindRank() < ICS2.getKindRank()) |
| 3784 | return ImplicitConversionSequence::Better; |
| 3785 | if (ICS2.getKindRank() < ICS1.getKindRank()) |
| 3786 | return ImplicitConversionSequence::Worse; |
| 3787 | |
| 3788 | // The following checks require both conversion sequences to be of |
| 3789 | // the same kind. |
| 3790 | if (ICS1.getKind() != ICS2.getKind()) |
| 3791 | return ImplicitConversionSequence::Indistinguishable; |
| 3792 | |
| 3793 | ImplicitConversionSequence::CompareKind Result = |
| 3794 | ImplicitConversionSequence::Indistinguishable; |
| 3795 | |
| 3796 | // Two implicit conversion sequences of the same form are |
| 3797 | // indistinguishable conversion sequences unless one of the |
| 3798 | // following rules apply: (C++ 13.3.3.2p3): |
| 3799 | |
| 3800 | // List-initialization sequence L1 is a better conversion sequence than |
| 3801 | // list-initialization sequence L2 if: |
| 3802 | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, |
| 3803 | // if not that, |
| 3804 | // - L1 converts to type "array of N1 T", L2 converts to type "array of N2 T", |
| 3805 | // and N1 is smaller than N2., |
| 3806 | // even if one of the other rules in this paragraph would otherwise apply. |
| 3807 | if (!ICS1.isBad()) { |
| 3808 | if (ICS1.isStdInitializerListElement() && |
| 3809 | !ICS2.isStdInitializerListElement()) |
| 3810 | return ImplicitConversionSequence::Better; |
| 3811 | if (!ICS1.isStdInitializerListElement() && |
| 3812 | ICS2.isStdInitializerListElement()) |
| 3813 | return ImplicitConversionSequence::Worse; |
| 3814 | } |
| 3815 | |
| 3816 | if (ICS1.isStandard()) |
| 3817 | // Standard conversion sequence S1 is a better conversion sequence than |
| 3818 | // standard conversion sequence S2 if [...] |
| 3819 | Result = CompareStandardConversionSequences(S, Loc, |
| 3820 | ICS1.Standard, ICS2.Standard); |
| 3821 | else if (ICS1.isUserDefined()) { |
| 3822 | // User-defined conversion sequence U1 is a better conversion |
| 3823 | // sequence than another user-defined conversion sequence U2 if |
| 3824 | // they contain the same user-defined conversion function or |
| 3825 | // constructor and if the second standard conversion sequence of |
| 3826 | // U1 is better than the second standard conversion sequence of |
| 3827 | // U2 (C++ 13.3.3.2p3). |
| 3828 | if (ICS1.UserDefined.ConversionFunction == |
| 3829 | ICS2.UserDefined.ConversionFunction) |
| 3830 | Result = CompareStandardConversionSequences(S, Loc, |
| 3831 | ICS1.UserDefined.After, |
| 3832 | ICS2.UserDefined.After); |
| 3833 | else |
| 3834 | Result = compareConversionFunctions(S, |
| 3835 | ICS1.UserDefined.ConversionFunction, |
| 3836 | ICS2.UserDefined.ConversionFunction); |
| 3837 | } |
| 3838 | |
| 3839 | return Result; |
| 3840 | } |
| 3841 | |
| 3842 | // Per 13.3.3.2p3, compare the given standard conversion sequences to |
| 3843 | // determine if one is a proper subset of the other. |
| 3844 | static ImplicitConversionSequence::CompareKind |
| 3845 | compareStandardConversionSubsets(ASTContext &Context, |
| 3846 | const StandardConversionSequence& SCS1, |
| 3847 | const StandardConversionSequence& SCS2) { |
| 3848 | ImplicitConversionSequence::CompareKind Result |
| 3849 | = ImplicitConversionSequence::Indistinguishable; |
| 3850 | |
| 3851 | // the identity conversion sequence is considered to be a subsequence of |
| 3852 | // any non-identity conversion sequence |
| 3853 | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) |
| 3854 | return ImplicitConversionSequence::Better; |
| 3855 | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) |
| 3856 | return ImplicitConversionSequence::Worse; |
| 3857 | |
| 3858 | if (SCS1.Second != SCS2.Second) { |
| 3859 | if (SCS1.Second == ICK_Identity) |
| 3860 | Result = ImplicitConversionSequence::Better; |
| 3861 | else if (SCS2.Second == ICK_Identity) |
| 3862 | Result = ImplicitConversionSequence::Worse; |
| 3863 | else |
| 3864 | return ImplicitConversionSequence::Indistinguishable; |
| 3865 | } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) |
| 3866 | return ImplicitConversionSequence::Indistinguishable; |
| 3867 | |
| 3868 | if (SCS1.Third == SCS2.Third) { |
| 3869 | return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result |
| 3870 | : ImplicitConversionSequence::Indistinguishable; |
| 3871 | } |
| 3872 | |
| 3873 | if (SCS1.Third == ICK_Identity) |
| 3874 | return Result == ImplicitConversionSequence::Worse |
| 3875 | ? ImplicitConversionSequence::Indistinguishable |
| 3876 | : ImplicitConversionSequence::Better; |
| 3877 | |
| 3878 | if (SCS2.Third == ICK_Identity) |
| 3879 | return Result == ImplicitConversionSequence::Better |
| 3880 | ? ImplicitConversionSequence::Indistinguishable |
| 3881 | : ImplicitConversionSequence::Worse; |
| 3882 | |
| 3883 | return ImplicitConversionSequence::Indistinguishable; |
| 3884 | } |
| 3885 | |
| 3886 | /// Determine whether one of the given reference bindings is better |
| 3887 | /// than the other based on what kind of bindings they are. |
| 3888 | static bool |
| 3889 | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, |
| 3890 | const StandardConversionSequence &SCS2) { |
| 3891 | // C++0x [over.ics.rank]p3b4: |
| 3892 | // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an |
| 3893 | // implicit object parameter of a non-static member function declared |
| 3894 | // without a ref-qualifier, and *either* S1 binds an rvalue reference |
| 3895 | // to an rvalue and S2 binds an lvalue reference *or S1 binds an |
| 3896 | // lvalue reference to a function lvalue and S2 binds an rvalue |
| 3897 | // reference*. |
| 3898 | // |
| 3899 | // FIXME: Rvalue references. We're going rogue with the above edits, |
| 3900 | // because the semantics in the current C++0x working paper (N3225 at the |
| 3901 | // time of this writing) break the standard definition of std::forward |
| 3902 | // and std::reference_wrapper when dealing with references to functions. |
| 3903 | // Proposed wording changes submitted to CWG for consideration. |
| 3904 | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || |
| 3905 | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) |
| 3906 | return false; |
| 3907 | |
| 3908 | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && |
| 3909 | SCS2.IsLvalueReference) || |
| 3910 | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && |
| 3911 | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); |
| 3912 | } |
| 3913 | |
| 3914 | enum class FixedEnumPromotion { |
| 3915 | None, |
| 3916 | ToUnderlyingType, |
| 3917 | ToPromotedUnderlyingType |
| 3918 | }; |
| 3919 | |
| 3920 | /// Returns kind of fixed enum promotion the \a SCS uses. |
| 3921 | static FixedEnumPromotion |
| 3922 | getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { |
| 3923 | |
| 3924 | if (SCS.Second != ICK_Integral_Promotion) |
| 3925 | return FixedEnumPromotion::None; |
| 3926 | |
| 3927 | QualType FromType = SCS.getFromType(); |
| 3928 | if (!FromType->isEnumeralType()) |
| 3929 | return FixedEnumPromotion::None; |
| 3930 | |
| 3931 | EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); |
| 3932 | if (!Enum->isFixed()) |
| 3933 | return FixedEnumPromotion::None; |
| 3934 | |
| 3935 | QualType UnderlyingType = Enum->getIntegerType(); |
| 3936 | if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) |
| 3937 | return FixedEnumPromotion::ToUnderlyingType; |
| 3938 | |
| 3939 | return FixedEnumPromotion::ToPromotedUnderlyingType; |
| 3940 | } |
| 3941 | |
| 3942 | /// CompareStandardConversionSequences - Compare two standard |
| 3943 | /// conversion sequences to determine whether one is better than the |
| 3944 | /// other or if they are indistinguishable (C++ 13.3.3.2p3). |
| 3945 | static ImplicitConversionSequence::CompareKind |
| 3946 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, |
| 3947 | const StandardConversionSequence& SCS1, |
| 3948 | const StandardConversionSequence& SCS2) |
| 3949 | { |
| 3950 | // Standard conversion sequence S1 is a better conversion sequence |
| 3951 | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): |
| 3952 | |
| 3953 | // -- S1 is a proper subsequence of S2 (comparing the conversion |
| 3954 | // sequences in the canonical form defined by 13.3.3.1.1, |
| 3955 | // excluding any Lvalue Transformation; the identity conversion |
| 3956 | // sequence is considered to be a subsequence of any |
| 3957 | // non-identity conversion sequence) or, if not that, |
| 3958 | if (ImplicitConversionSequence::CompareKind CK |
| 3959 | = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) |
| 3960 | return CK; |
| 3961 | |
| 3962 | // -- the rank of S1 is better than the rank of S2 (by the rules |
| 3963 | // defined below), or, if not that, |
| 3964 | ImplicitConversionRank Rank1 = SCS1.getRank(); |
| 3965 | ImplicitConversionRank Rank2 = SCS2.getRank(); |
| 3966 | if (Rank1 < Rank2) |
| 3967 | return ImplicitConversionSequence::Better; |
| 3968 | else if (Rank2 < Rank1) |
| 3969 | return ImplicitConversionSequence::Worse; |
| 3970 | |
| 3971 | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank |
| 3972 | // are indistinguishable unless one of the following rules |
| 3973 | // applies: |
| 3974 | |
| 3975 | // A conversion that is not a conversion of a pointer, or |
| 3976 | // pointer to member, to bool is better than another conversion |
| 3977 | // that is such a conversion. |
| 3978 | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) |
| 3979 | return SCS2.isPointerConversionToBool() |
| 3980 | ? ImplicitConversionSequence::Better |
| 3981 | : ImplicitConversionSequence::Worse; |
| 3982 | |
| 3983 | // C++14 [over.ics.rank]p4b2: |
| 3984 | // This is retroactively applied to C++11 by CWG 1601. |
| 3985 | // |
| 3986 | // A conversion that promotes an enumeration whose underlying type is fixed |
| 3987 | // to its underlying type is better than one that promotes to the promoted |
| 3988 | // underlying type, if the two are different. |
| 3989 | FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); |
| 3990 | FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); |
| 3991 | if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && |
| 3992 | FEP1 != FEP2) |
| 3993 | return FEP1 == FixedEnumPromotion::ToUnderlyingType |
| 3994 | ? ImplicitConversionSequence::Better |
| 3995 | : ImplicitConversionSequence::Worse; |
| 3996 | |
| 3997 | // C++ [over.ics.rank]p4b2: |
| 3998 | // |
| 3999 | // If class B is derived directly or indirectly from class A, |
| 4000 | // conversion of B* to A* is better than conversion of B* to |
| 4001 | // void*, and conversion of A* to void* is better than conversion |
| 4002 | // of B* to void*. |
| 4003 | bool SCS1ConvertsToVoid |
| 4004 | = SCS1.isPointerConversionToVoidPointer(S.Context); |
| 4005 | bool SCS2ConvertsToVoid |
| 4006 | = SCS2.isPointerConversionToVoidPointer(S.Context); |
| 4007 | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { |
| 4008 | // Exactly one of the conversion sequences is a conversion to |
| 4009 | // a void pointer; it's the worse conversion. |
| 4010 | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better |
| 4011 | : ImplicitConversionSequence::Worse; |
| 4012 | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { |
| 4013 | // Neither conversion sequence converts to a void pointer; compare |
| 4014 | // their derived-to-base conversions. |
| 4015 | if (ImplicitConversionSequence::CompareKind DerivedCK |
| 4016 | = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) |
| 4017 | return DerivedCK; |
| 4018 | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && |
| 4019 | !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { |
| 4020 | // Both conversion sequences are conversions to void |
| 4021 | // pointers. Compare the source types to determine if there's an |
| 4022 | // inheritance relationship in their sources. |
| 4023 | QualType FromType1 = SCS1.getFromType(); |
| 4024 | QualType FromType2 = SCS2.getFromType(); |
| 4025 | |
| 4026 | // Adjust the types we're converting from via the array-to-pointer |
| 4027 | // conversion, if we need to. |
| 4028 | if (SCS1.First == ICK_Array_To_Pointer) |
| 4029 | FromType1 = S.Context.getArrayDecayedType(FromType1); |
| 4030 | if (SCS2.First == ICK_Array_To_Pointer) |
| 4031 | FromType2 = S.Context.getArrayDecayedType(FromType2); |
| 4032 | |
| 4033 | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); |
| 4034 | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); |
| 4035 | |
| 4036 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
| 4037 | return ImplicitConversionSequence::Better; |
| 4038 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
| 4039 | return ImplicitConversionSequence::Worse; |
| 4040 | |
| 4041 | // Objective-C++: If one interface is more specific than the |
| 4042 | // other, it is the better one. |
| 4043 | const ObjCObjectPointerType* FromObjCPtr1 |
| 4044 | = FromType1->getAs<ObjCObjectPointerType>(); |
| 4045 | const ObjCObjectPointerType* FromObjCPtr2 |
| 4046 | = FromType2->getAs<ObjCObjectPointerType>(); |
| 4047 | if (FromObjCPtr1 && FromObjCPtr2) { |
| 4048 | bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, |
| 4049 | FromObjCPtr2); |
| 4050 | bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, |
| 4051 | FromObjCPtr1); |
| 4052 | if (AssignLeft != AssignRight) { |
| 4053 | return AssignLeft? ImplicitConversionSequence::Better |
| 4054 | : ImplicitConversionSequence::Worse; |
| 4055 | } |
| 4056 | } |
| 4057 | } |
| 4058 | |
| 4059 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
| 4060 | // Check for a better reference binding based on the kind of bindings. |
| 4061 | if (isBetterReferenceBindingKind(SCS1, SCS2)) |
| 4062 | return ImplicitConversionSequence::Better; |
| 4063 | else if (isBetterReferenceBindingKind(SCS2, SCS1)) |
| 4064 | return ImplicitConversionSequence::Worse; |
| 4065 | } |
| 4066 | |
| 4067 | // Compare based on qualification conversions (C++ 13.3.3.2p3, |
| 4068 | // bullet 3). |
| 4069 | if (ImplicitConversionSequence::CompareKind QualCK |
| 4070 | = CompareQualificationConversions(S, SCS1, SCS2)) |
| 4071 | return QualCK; |
| 4072 | |
| 4073 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
| 4074 | // C++ [over.ics.rank]p3b4: |
| 4075 | // -- S1 and S2 are reference bindings (8.5.3), and the types to |
| 4076 | // which the references refer are the same type except for |
| 4077 | // top-level cv-qualifiers, and the type to which the reference |
| 4078 | // initialized by S2 refers is more cv-qualified than the type |
| 4079 | // to which the reference initialized by S1 refers. |
| 4080 | QualType T1 = SCS1.getToType(2); |
| 4081 | QualType T2 = SCS2.getToType(2); |
| 4082 | T1 = S.Context.getCanonicalType(T1); |
| 4083 | T2 = S.Context.getCanonicalType(T2); |
| 4084 | Qualifiers T1Quals, T2Quals; |
| 4085 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); |
| 4086 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); |
| 4087 | if (UnqualT1 == UnqualT2) { |
| 4088 | // Objective-C++ ARC: If the references refer to objects with different |
| 4089 | // lifetimes, prefer bindings that don't change lifetime. |
| 4090 | if (SCS1.ObjCLifetimeConversionBinding != |
| 4091 | SCS2.ObjCLifetimeConversionBinding) { |
| 4092 | return SCS1.ObjCLifetimeConversionBinding |
| 4093 | ? ImplicitConversionSequence::Worse |
| 4094 | : ImplicitConversionSequence::Better; |
| 4095 | } |
| 4096 | |
| 4097 | // If the type is an array type, promote the element qualifiers to the |
| 4098 | // type for comparison. |
| 4099 | if (isa<ArrayType>(T1) && T1Quals) |
| 4100 | T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); |
| 4101 | if (isa<ArrayType>(T2) && T2Quals) |
| 4102 | T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); |
| 4103 | if (T2.isMoreQualifiedThan(T1)) |
| 4104 | return ImplicitConversionSequence::Better; |
| 4105 | if (T1.isMoreQualifiedThan(T2)) |
| 4106 | return ImplicitConversionSequence::Worse; |
| 4107 | } |
| 4108 | } |
| 4109 | |
| 4110 | // In Microsoft mode (below 19.28), prefer an integral conversion to a |
| 4111 | // floating-to-integral conversion if the integral conversion |
| 4112 | // is between types of the same size. |
| 4113 | // For example: |
| 4114 | // void f(float); |
| 4115 | // void f(int); |
| 4116 | // int main { |
| 4117 | // long a; |
| 4118 | // f(a); |
| 4119 | // } |
| 4120 | // Here, MSVC will call f(int) instead of generating a compile error |
| 4121 | // as clang will do in standard mode. |
| 4122 | if (S.getLangOpts().MSVCCompat && |
| 4123 | !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && |
| 4124 | SCS1.Second == ICK_Integral_Conversion && |
| 4125 | SCS2.Second == ICK_Floating_Integral && |
| 4126 | S.Context.getTypeSize(SCS1.getFromType()) == |
| 4127 | S.Context.getTypeSize(SCS1.getToType(2))) |
| 4128 | return ImplicitConversionSequence::Better; |
| 4129 | |
| 4130 | // Prefer a compatible vector conversion over a lax vector conversion |
| 4131 | // For example: |
| 4132 | // |
| 4133 | // typedef float __v4sf __attribute__((__vector_size__(16))); |
| 4134 | // void f(vector float); |
| 4135 | // void f(vector signed int); |
| 4136 | // int main() { |
| 4137 | // __v4sf a; |
| 4138 | // f(a); |
| 4139 | // } |
| 4140 | // Here, we'd like to choose f(vector float) and not |
| 4141 | // report an ambiguous call error |
| 4142 | if (SCS1.Second == ICK_Vector_Conversion && |
| 4143 | SCS2.Second == ICK_Vector_Conversion) { |
| 4144 | bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( |
| 4145 | SCS1.getFromType(), SCS1.getToType(2)); |
| 4146 | bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( |
| 4147 | SCS2.getFromType(), SCS2.getToType(2)); |
| 4148 | |
| 4149 | if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) |
| 4150 | return SCS1IsCompatibleVectorConversion |
| 4151 | ? ImplicitConversionSequence::Better |
| 4152 | : ImplicitConversionSequence::Worse; |
| 4153 | } |
| 4154 | |
| 4155 | if (SCS1.Second == ICK_SVE_Vector_Conversion && |
| 4156 | SCS2.Second == ICK_SVE_Vector_Conversion) { |
| 4157 | bool SCS1IsCompatibleSVEVectorConversion = |
| 4158 | S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); |
| 4159 | bool SCS2IsCompatibleSVEVectorConversion = |
| 4160 | S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); |
| 4161 | |
| 4162 | if (SCS1IsCompatibleSVEVectorConversion != |
| 4163 | SCS2IsCompatibleSVEVectorConversion) |
| 4164 | return SCS1IsCompatibleSVEVectorConversion |
| 4165 | ? ImplicitConversionSequence::Better |
| 4166 | : ImplicitConversionSequence::Worse; |
| 4167 | } |
| 4168 | |
| 4169 | return ImplicitConversionSequence::Indistinguishable; |
| 4170 | } |
| 4171 | |
| 4172 | /// CompareQualificationConversions - Compares two standard conversion |
| 4173 | /// sequences to determine whether they can be ranked based on their |
| 4174 | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). |
| 4175 | static ImplicitConversionSequence::CompareKind |
| 4176 | CompareQualificationConversions(Sema &S, |
| 4177 | const StandardConversionSequence& SCS1, |
| 4178 | const StandardConversionSequence& SCS2) { |
| 4179 | // C++ 13.3.3.2p3: |
| 4180 | // -- S1 and S2 differ only in their qualification conversion and |
| 4181 | // yield similar types T1 and T2 (C++ 4.4), respectively, and the |
| 4182 | // cv-qualification signature of type T1 is a proper subset of |
| 4183 | // the cv-qualification signature of type T2, and S1 is not the |
| 4184 | // deprecated string literal array-to-pointer conversion (4.2). |
| 4185 | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || |
| 4186 | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) |
| 4187 | return ImplicitConversionSequence::Indistinguishable; |
| 4188 | |
| 4189 | // FIXME: the example in the standard doesn't use a qualification |
| 4190 | // conversion (!) |
| 4191 | QualType T1 = SCS1.getToType(2); |
| 4192 | QualType T2 = SCS2.getToType(2); |
| 4193 | T1 = S.Context.getCanonicalType(T1); |
| 4194 | T2 = S.Context.getCanonicalType(T2); |
| 4195 | assert(!T1->isReferenceType() && !T2->isReferenceType())((void)0); |
| 4196 | Qualifiers T1Quals, T2Quals; |
| 4197 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); |
| 4198 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); |
| 4199 | |
| 4200 | // If the types are the same, we won't learn anything by unwrapping |
| 4201 | // them. |
| 4202 | if (UnqualT1 == UnqualT2) |
| 4203 | return ImplicitConversionSequence::Indistinguishable; |
| 4204 | |
| 4205 | ImplicitConversionSequence::CompareKind Result |
| 4206 | = ImplicitConversionSequence::Indistinguishable; |
| 4207 | |
| 4208 | // Objective-C++ ARC: |
| 4209 | // Prefer qualification conversions not involving a change in lifetime |
| 4210 | // to qualification conversions that do not change lifetime. |
| 4211 | if (SCS1.QualificationIncludesObjCLifetime != |
| 4212 | SCS2.QualificationIncludesObjCLifetime) { |
| 4213 | Result = SCS1.QualificationIncludesObjCLifetime |
| 4214 | ? ImplicitConversionSequence::Worse |
| 4215 | : ImplicitConversionSequence::Better; |
| 4216 | } |
| 4217 | |
| 4218 | while (S.Context.UnwrapSimilarTypes(T1, T2)) { |
| 4219 | // Within each iteration of the loop, we check the qualifiers to |
| 4220 | // determine if this still looks like a qualification |
| 4221 | // conversion. Then, if all is well, we unwrap one more level of |
| 4222 | // pointers or pointers-to-members and do it all again |
| 4223 | // until there are no more pointers or pointers-to-members left |
| 4224 | // to unwrap. This essentially mimics what |
| 4225 | // IsQualificationConversion does, but here we're checking for a |
| 4226 | // strict subset of qualifiers. |
| 4227 | if (T1.getQualifiers().withoutObjCLifetime() == |
| 4228 | T2.getQualifiers().withoutObjCLifetime()) |
| 4229 | // The qualifiers are the same, so this doesn't tell us anything |
| 4230 | // about how the sequences rank. |
| 4231 | // ObjC ownership quals are omitted above as they interfere with |
| 4232 | // the ARC overload rule. |
| 4233 | ; |
| 4234 | else if (T2.isMoreQualifiedThan(T1)) { |
| 4235 | // T1 has fewer qualifiers, so it could be the better sequence. |
| 4236 | if (Result == ImplicitConversionSequence::Worse) |
| 4237 | // Neither has qualifiers that are a subset of the other's |
| 4238 | // qualifiers. |
| 4239 | return ImplicitConversionSequence::Indistinguishable; |
| 4240 | |
| 4241 | Result = ImplicitConversionSequence::Better; |
| 4242 | } else if (T1.isMoreQualifiedThan(T2)) { |
| 4243 | // T2 has fewer qualifiers, so it could be the better sequence. |
| 4244 | if (Result == ImplicitConversionSequence::Better) |
| 4245 | // Neither has qualifiers that are a subset of the other's |
| 4246 | // qualifiers. |
| 4247 | return ImplicitConversionSequence::Indistinguishable; |
| 4248 | |
| 4249 | Result = ImplicitConversionSequence::Worse; |
| 4250 | } else { |
| 4251 | // Qualifiers are disjoint. |
| 4252 | return ImplicitConversionSequence::Indistinguishable; |
| 4253 | } |
| 4254 | |
| 4255 | // If the types after this point are equivalent, we're done. |
| 4256 | if (S.Context.hasSameUnqualifiedType(T1, T2)) |
| 4257 | break; |
| 4258 | } |
| 4259 | |
| 4260 | // Check that the winning standard conversion sequence isn't using |
| 4261 | // the deprecated string literal array to pointer conversion. |
| 4262 | switch (Result) { |
| 4263 | case ImplicitConversionSequence::Better: |
| 4264 | if (SCS1.DeprecatedStringLiteralToCharPtr) |
| 4265 | Result = ImplicitConversionSequence::Indistinguishable; |
| 4266 | break; |
| 4267 | |
| 4268 | case ImplicitConversionSequence::Indistinguishable: |
| 4269 | break; |
| 4270 | |
| 4271 | case ImplicitConversionSequence::Worse: |
| 4272 | if (SCS2.DeprecatedStringLiteralToCharPtr) |
| 4273 | Result = ImplicitConversionSequence::Indistinguishable; |
| 4274 | break; |
| 4275 | } |
| 4276 | |
| 4277 | return Result; |
| 4278 | } |
| 4279 | |
| 4280 | /// CompareDerivedToBaseConversions - Compares two standard conversion |
| 4281 | /// sequences to determine whether they can be ranked based on their |
| 4282 | /// various kinds of derived-to-base conversions (C++ |
| 4283 | /// [over.ics.rank]p4b3). As part of these checks, we also look at |
| 4284 | /// conversions between Objective-C interface types. |
| 4285 | static ImplicitConversionSequence::CompareKind |
| 4286 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, |
| 4287 | const StandardConversionSequence& SCS1, |
| 4288 | const StandardConversionSequence& SCS2) { |
| 4289 | QualType FromType1 = SCS1.getFromType(); |
| 4290 | QualType ToType1 = SCS1.getToType(1); |
| 4291 | QualType FromType2 = SCS2.getFromType(); |
| 4292 | QualType ToType2 = SCS2.getToType(1); |
| 4293 | |
| 4294 | // Adjust the types we're converting from via the array-to-pointer |
| 4295 | // conversion, if we need to. |
| 4296 | if (SCS1.First == ICK_Array_To_Pointer) |
| 4297 | FromType1 = S.Context.getArrayDecayedType(FromType1); |
| 4298 | if (SCS2.First == ICK_Array_To_Pointer) |
| 4299 | FromType2 = S.Context.getArrayDecayedType(FromType2); |
| 4300 | |
| 4301 | // Canonicalize all of the types. |
| 4302 | FromType1 = S.Context.getCanonicalType(FromType1); |
| 4303 | ToType1 = S.Context.getCanonicalType(ToType1); |
| 4304 | FromType2 = S.Context.getCanonicalType(FromType2); |
| 4305 | ToType2 = S.Context.getCanonicalType(ToType2); |
| 4306 | |
| 4307 | // C++ [over.ics.rank]p4b3: |
| 4308 | // |
| 4309 | // If class B is derived directly or indirectly from class A and |
| 4310 | // class C is derived directly or indirectly from B, |
| 4311 | // |
| 4312 | // Compare based on pointer conversions. |
| 4313 | if (SCS1.Second == ICK_Pointer_Conversion && |
| 4314 | SCS2.Second == ICK_Pointer_Conversion && |
| 4315 | /*FIXME: Remove if Objective-C id conversions get their own rank*/ |
| 4316 | FromType1->isPointerType() && FromType2->isPointerType() && |
| 4317 | ToType1->isPointerType() && ToType2->isPointerType()) { |
| 4318 | QualType FromPointee1 = |
| 4319 | FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| 4320 | QualType ToPointee1 = |
| 4321 | ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| 4322 | QualType FromPointee2 = |
| 4323 | FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| 4324 | QualType ToPointee2 = |
| 4325 | ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| 4326 | |
| 4327 | // -- conversion of C* to B* is better than conversion of C* to A*, |
| 4328 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
| 4329 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) |
| 4330 | return ImplicitConversionSequence::Better; |
| 4331 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) |
| 4332 | return ImplicitConversionSequence::Worse; |
| 4333 | } |
| 4334 | |
| 4335 | // -- conversion of B* to A* is better than conversion of C* to A*, |
| 4336 | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { |
| 4337 | if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
| 4338 | return ImplicitConversionSequence::Better; |
| 4339 | else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
| 4340 | return ImplicitConversionSequence::Worse; |
| 4341 | } |
| 4342 | } else if (SCS1.Second == ICK_Pointer_Conversion && |
| 4343 | SCS2.Second == ICK_Pointer_Conversion) { |
| 4344 | const ObjCObjectPointerType *FromPtr1 |
| 4345 | = FromType1->getAs<ObjCObjectPointerType>(); |
| 4346 | const ObjCObjectPointerType *FromPtr2 |
| 4347 | = FromType2->getAs<ObjCObjectPointerType>(); |
| 4348 | const ObjCObjectPointerType *ToPtr1 |
| 4349 | = ToType1->getAs<ObjCObjectPointerType>(); |
| 4350 | const ObjCObjectPointerType *ToPtr2 |
| 4351 | = ToType2->getAs<ObjCObjectPointerType>(); |
| 4352 | |
| 4353 | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { |
| 4354 | // Apply the same conversion ranking rules for Objective-C pointer types |
| 4355 | // that we do for C++ pointers to class types. However, we employ the |
| 4356 | // Objective-C pseudo-subtyping relationship used for assignment of |
| 4357 | // Objective-C pointer types. |
| 4358 | bool FromAssignLeft |
| 4359 | = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); |
| 4360 | bool FromAssignRight |
| 4361 | = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); |
| 4362 | bool ToAssignLeft |
| 4363 | = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); |
| 4364 | bool ToAssignRight |
| 4365 | = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); |
| 4366 | |
| 4367 | // A conversion to an a non-id object pointer type or qualified 'id' |
| 4368 | // type is better than a conversion to 'id'. |
| 4369 | if (ToPtr1->isObjCIdType() && |
| 4370 | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) |
| 4371 | return ImplicitConversionSequence::Worse; |
| 4372 | if (ToPtr2->isObjCIdType() && |
| 4373 | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) |
| 4374 | return ImplicitConversionSequence::Better; |
| 4375 | |
| 4376 | // A conversion to a non-id object pointer type is better than a |
| 4377 | // conversion to a qualified 'id' type |
| 4378 | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) |
| 4379 | return ImplicitConversionSequence::Worse; |
| 4380 | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) |
| 4381 | return ImplicitConversionSequence::Better; |
| 4382 | |
| 4383 | // A conversion to an a non-Class object pointer type or qualified 'Class' |
| 4384 | // type is better than a conversion to 'Class'. |
| 4385 | if (ToPtr1->isObjCClassType() && |
| 4386 | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) |
| 4387 | return ImplicitConversionSequence::Worse; |
| 4388 | if (ToPtr2->isObjCClassType() && |
| 4389 | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) |
| 4390 | return ImplicitConversionSequence::Better; |
| 4391 | |
| 4392 | // A conversion to a non-Class object pointer type is better than a |
| 4393 | // conversion to a qualified 'Class' type. |
| 4394 | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) |
| 4395 | return ImplicitConversionSequence::Worse; |
| 4396 | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) |
| 4397 | return ImplicitConversionSequence::Better; |
| 4398 | |
| 4399 | // -- "conversion of C* to B* is better than conversion of C* to A*," |
| 4400 | if (S.Context.hasSameType(FromType1, FromType2) && |
| 4401 | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && |
| 4402 | (ToAssignLeft != ToAssignRight)) { |
| 4403 | if (FromPtr1->isSpecialized()) { |
| 4404 | // "conversion of B<A> * to B * is better than conversion of B * to |
| 4405 | // C *. |
| 4406 | bool IsFirstSame = |
| 4407 | FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); |
| 4408 | bool IsSecondSame = |
| 4409 | FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); |
| 4410 | if (IsFirstSame) { |
| 4411 | if (!IsSecondSame) |
| 4412 | return ImplicitConversionSequence::Better; |
| 4413 | } else if (IsSecondSame) |
| 4414 | return ImplicitConversionSequence::Worse; |
| 4415 | } |
| 4416 | return ToAssignLeft? ImplicitConversionSequence::Worse |
| 4417 | : ImplicitConversionSequence::Better; |
| 4418 | } |
| 4419 | |
| 4420 | // -- "conversion of B* to A* is better than conversion of C* to A*," |
| 4421 | if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && |
| 4422 | (FromAssignLeft != FromAssignRight)) |
| 4423 | return FromAssignLeft? ImplicitConversionSequence::Better |
| 4424 | : ImplicitConversionSequence::Worse; |
| 4425 | } |
| 4426 | } |
| 4427 | |
| 4428 | // Ranking of member-pointer types. |
| 4429 | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && |
| 4430 | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && |
| 4431 | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { |
| 4432 | const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); |
| 4433 | const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); |
| 4434 | const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); |
| 4435 | const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); |
| 4436 | const Type *FromPointeeType1 = FromMemPointer1->getClass(); |
| 4437 | const Type *ToPointeeType1 = ToMemPointer1->getClass(); |
| 4438 | const Type *FromPointeeType2 = FromMemPointer2->getClass(); |
| 4439 | const Type *ToPointeeType2 = ToMemPointer2->getClass(); |
| 4440 | QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); |
| 4441 | QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); |
| 4442 | QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); |
| 4443 | QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); |
| 4444 | // conversion of A::* to B::* is better than conversion of A::* to C::*, |
| 4445 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
| 4446 | if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) |
| 4447 | return ImplicitConversionSequence::Worse; |
| 4448 | else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) |
| 4449 | return ImplicitConversionSequence::Better; |
| 4450 | } |
| 4451 | // conversion of B::* to C::* is better than conversion of A::* to C::* |
| 4452 | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { |
| 4453 | if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) |
| 4454 | return ImplicitConversionSequence::Better; |
| 4455 | else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) |
| 4456 | return ImplicitConversionSequence::Worse; |
| 4457 | } |
| 4458 | } |
| 4459 | |
| 4460 | if (SCS1.Second == ICK_Derived_To_Base) { |
| 4461 | // -- conversion of C to B is better than conversion of C to A, |
| 4462 | // -- binding of an expression of type C to a reference of type |
| 4463 | // B& is better than binding an expression of type C to a |
| 4464 | // reference of type A&, |
| 4465 | if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && |
| 4466 | !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
| 4467 | if (S.IsDerivedFrom(Loc, ToType1, ToType2)) |
| 4468 | return ImplicitConversionSequence::Better; |
| 4469 | else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) |
| 4470 | return ImplicitConversionSequence::Worse; |
| 4471 | } |
| 4472 | |
| 4473 | // -- conversion of B to A is better than conversion of C to A. |
| 4474 | // -- binding of an expression of type B to a reference of type |
| 4475 | // A& is better than binding an expression of type C to a |
| 4476 | // reference of type A&, |
| 4477 | if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && |
| 4478 | S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
| 4479 | if (S.IsDerivedFrom(Loc, FromType2, FromType1)) |
| 4480 | return ImplicitConversionSequence::Better; |
| 4481 | else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) |
| 4482 | return ImplicitConversionSequence::Worse; |
| 4483 | } |
| 4484 | } |
| 4485 | |
| 4486 | return ImplicitConversionSequence::Indistinguishable; |
| 4487 | } |
| 4488 | |
| 4489 | /// Determine whether the given type is valid, e.g., it is not an invalid |
| 4490 | /// C++ class. |
| 4491 | static bool isTypeValid(QualType T) { |
| 4492 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) |
| 4493 | return !Record->isInvalidDecl(); |
| 4494 | |
| 4495 | return true; |
| 4496 | } |
| 4497 | |
| 4498 | static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { |
| 4499 | if (!T.getQualifiers().hasUnaligned()) |
| 4500 | return T; |
| 4501 | |
| 4502 | Qualifiers Q; |
| 4503 | T = Ctx.getUnqualifiedArrayType(T, Q); |
| 4504 | Q.removeUnaligned(); |
| 4505 | return Ctx.getQualifiedType(T, Q); |
| 4506 | } |
| 4507 | |
| 4508 | /// CompareReferenceRelationship - Compare the two types T1 and T2 to |
| 4509 | /// determine whether they are reference-compatible, |
| 4510 | /// reference-related, or incompatible, for use in C++ initialization by |
| 4511 | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference |
| 4512 | /// type, and the first type (T1) is the pointee type of the reference |
| 4513 | /// type being initialized. |
| 4514 | Sema::ReferenceCompareResult |
| 4515 | Sema::CompareReferenceRelationship(SourceLocation Loc, |
| 4516 | QualType OrigT1, QualType OrigT2, |
| 4517 | ReferenceConversions *ConvOut) { |
| 4518 | assert(!OrigT1->isReferenceType() &&((void)0) |
| 4519 | "T1 must be the pointee type of the reference type")((void)0); |
| 4520 | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type")((void)0); |
| 4521 | |
| 4522 | QualType T1 = Context.getCanonicalType(OrigT1); |
| 4523 | QualType T2 = Context.getCanonicalType(OrigT2); |
| 4524 | Qualifiers T1Quals, T2Quals; |
| 4525 | QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); |
| 4526 | QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); |
| 4527 | |
| 4528 | ReferenceConversions ConvTmp; |
| 4529 | ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; |
| 4530 | Conv = ReferenceConversions(); |
| 4531 | |
| 4532 | // C++2a [dcl.init.ref]p4: |
| 4533 | // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is |
| 4534 | // reference-related to "cv2 T2" if T1 is similar to T2, or |
| 4535 | // T1 is a base class of T2. |
| 4536 | // "cv1 T1" is reference-compatible with "cv2 T2" if |
| 4537 | // a prvalue of type "pointer to cv2 T2" can be converted to the type |
| 4538 | // "pointer to cv1 T1" via a standard conversion sequence. |
| 4539 | |
| 4540 | // Check for standard conversions we can apply to pointers: derived-to-base |
| 4541 | // conversions, ObjC pointer conversions, and function pointer conversions. |
| 4542 | // (Qualification conversions are checked last.) |
| 4543 | QualType ConvertedT2; |
| 4544 | if (UnqualT1 == UnqualT2) { |
| 4545 | // Nothing to do. |
| 4546 | } else if (isCompleteType(Loc, OrigT2) && |
| 4547 | isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && |
| 4548 | IsDerivedFrom(Loc, UnqualT2, UnqualT1)) |
| 4549 | Conv |= ReferenceConversions::DerivedToBase; |
| 4550 | else if (UnqualT1->isObjCObjectOrInterfaceType() && |
| 4551 | UnqualT2->isObjCObjectOrInterfaceType() && |
| 4552 | Context.canBindObjCObjectType(UnqualT1, UnqualT2)) |
| 4553 | Conv |= ReferenceConversions::ObjC; |
| 4554 | else if (UnqualT2->isFunctionType() && |
| 4555 | IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { |
| 4556 | Conv |= ReferenceConversions::Function; |
| 4557 | // No need to check qualifiers; function types don't have them. |
| 4558 | return Ref_Compatible; |
| 4559 | } |
| 4560 | bool ConvertedReferent = Conv != 0; |
| 4561 | |
| 4562 | // We can have a qualification conversion. Compute whether the types are |
| 4563 | // similar at the same time. |
| 4564 | bool PreviousToQualsIncludeConst = true; |
| 4565 | bool TopLevel = true; |
| 4566 | do { |
| 4567 | if (T1 == T2) |
| 4568 | break; |
| 4569 | |
| 4570 | // We will need a qualification conversion. |
| 4571 | Conv |= ReferenceConversions::Qualification; |
| 4572 | |
| 4573 | // Track whether we performed a qualification conversion anywhere other |
| 4574 | // than the top level. This matters for ranking reference bindings in |
| 4575 | // overload resolution. |
| 4576 | if (!TopLevel) |
| 4577 | Conv |= ReferenceConversions::NestedQualification; |
| 4578 | |
| 4579 | // MS compiler ignores __unaligned qualifier for references; do the same. |
| 4580 | T1 = withoutUnaligned(Context, T1); |
| 4581 | T2 = withoutUnaligned(Context, T2); |
| 4582 | |
| 4583 | // If we find a qualifier mismatch, the types are not reference-compatible, |
| 4584 | // but are still be reference-related if they're similar. |
| 4585 | bool ObjCLifetimeConversion = false; |
| 4586 | if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, |
| 4587 | PreviousToQualsIncludeConst, |
| 4588 | ObjCLifetimeConversion)) |
| 4589 | return (ConvertedReferent || Context.hasSimilarType(T1, T2)) |
| 4590 | ? Ref_Related |
| 4591 | : Ref_Incompatible; |
| 4592 | |
| 4593 | // FIXME: Should we track this for any level other than the first? |
| 4594 | if (ObjCLifetimeConversion) |
| 4595 | Conv |= ReferenceConversions::ObjCLifetime; |
| 4596 | |
| 4597 | TopLevel = false; |
| 4598 | } while (Context.UnwrapSimilarTypes(T1, T2)); |
| 4599 | |
| 4600 | // At this point, if the types are reference-related, we must either have the |
| 4601 | // same inner type (ignoring qualifiers), or must have already worked out how |
| 4602 | // to convert the referent. |
| 4603 | return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) |
| 4604 | ? Ref_Compatible |
| 4605 | : Ref_Incompatible; |
| 4606 | } |
| 4607 | |
| 4608 | /// Look for a user-defined conversion to a value reference-compatible |
| 4609 | /// with DeclType. Return true if something definite is found. |
| 4610 | static bool |
| 4611 | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, |
| 4612 | QualType DeclType, SourceLocation DeclLoc, |
| 4613 | Expr *Init, QualType T2, bool AllowRvalues, |
| 4614 | bool AllowExplicit) { |
| 4615 | assert(T2->isRecordType() && "Can only find conversions of record types.")((void)0); |
| 4616 | auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); |
| 4617 | |
| 4618 | OverloadCandidateSet CandidateSet( |
| 4619 | DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 4620 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
| 4621 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 4622 | NamedDecl *D = *I; |
| 4623 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| 4624 | if (isa<UsingShadowDecl>(D)) |
| 4625 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| 4626 | |
| 4627 | FunctionTemplateDecl *ConvTemplate |
| 4628 | = dyn_cast<FunctionTemplateDecl>(D); |
| 4629 | CXXConversionDecl *Conv; |
| 4630 | if (ConvTemplate) |
| 4631 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| 4632 | else |
| 4633 | Conv = cast<CXXConversionDecl>(D); |
| 4634 | |
| 4635 | if (AllowRvalues) { |
| 4636 | // If we are initializing an rvalue reference, don't permit conversion |
| 4637 | // functions that return lvalues. |
| 4638 | if (!ConvTemplate && DeclType->isRValueReferenceType()) { |
| 4639 | const ReferenceType *RefType |
| 4640 | = Conv->getConversionType()->getAs<LValueReferenceType>(); |
| 4641 | if (RefType && !RefType->getPointeeType()->isFunctionType()) |
| 4642 | continue; |
| 4643 | } |
| 4644 | |
| 4645 | if (!ConvTemplate && |
| 4646 | S.CompareReferenceRelationship( |
| 4647 | DeclLoc, |
| 4648 | Conv->getConversionType() |
| 4649 | .getNonReferenceType() |
| 4650 | .getUnqualifiedType(), |
| 4651 | DeclType.getNonReferenceType().getUnqualifiedType()) == |
| 4652 | Sema::Ref_Incompatible) |
| 4653 | continue; |
| 4654 | } else { |
| 4655 | // If the conversion function doesn't return a reference type, |
| 4656 | // it can't be considered for this conversion. An rvalue reference |
| 4657 | // is only acceptable if its referencee is a function type. |
| 4658 | |
| 4659 | const ReferenceType *RefType = |
| 4660 | Conv->getConversionType()->getAs<ReferenceType>(); |
| 4661 | if (!RefType || |
| 4662 | (!RefType->isLValueReferenceType() && |
| 4663 | !RefType->getPointeeType()->isFunctionType())) |
| 4664 | continue; |
| 4665 | } |
| 4666 | |
| 4667 | if (ConvTemplate) |
| 4668 | S.AddTemplateConversionCandidate( |
| 4669 | ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, |
| 4670 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); |
| 4671 | else |
| 4672 | S.AddConversionCandidate( |
| 4673 | Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, |
| 4674 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); |
| 4675 | } |
| 4676 | |
| 4677 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 4678 | |
| 4679 | OverloadCandidateSet::iterator Best; |
| 4680 | switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { |
| 4681 | case OR_Success: |
| 4682 | // C++ [over.ics.ref]p1: |
| 4683 | // |
| 4684 | // [...] If the parameter binds directly to the result of |
| 4685 | // applying a conversion function to the argument |
| 4686 | // expression, the implicit conversion sequence is a |
| 4687 | // user-defined conversion sequence (13.3.3.1.2), with the |
| 4688 | // second standard conversion sequence either an identity |
| 4689 | // conversion or, if the conversion function returns an |
| 4690 | // entity of a type that is a derived class of the parameter |
| 4691 | // type, a derived-to-base Conversion. |
| 4692 | if (!Best->FinalConversion.DirectBinding) |
| 4693 | return false; |
| 4694 | |
| 4695 | ICS.setUserDefined(); |
| 4696 | ICS.UserDefined.Before = Best->Conversions[0].Standard; |
| 4697 | ICS.UserDefined.After = Best->FinalConversion; |
| 4698 | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; |
| 4699 | ICS.UserDefined.ConversionFunction = Best->Function; |
| 4700 | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; |
| 4701 | ICS.UserDefined.EllipsisConversion = false; |
| 4702 | assert(ICS.UserDefined.After.ReferenceBinding &&((void)0) |
| 4703 | ICS.UserDefined.After.DirectBinding &&((void)0) |
| 4704 | "Expected a direct reference binding!")((void)0); |
| 4705 | return true; |
| 4706 | |
| 4707 | case OR_Ambiguous: |
| 4708 | ICS.setAmbiguous(); |
| 4709 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
| 4710 | Cand != CandidateSet.end(); ++Cand) |
| 4711 | if (Cand->Best) |
| 4712 | ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); |
| 4713 | return true; |
| 4714 | |
| 4715 | case OR_No_Viable_Function: |
| 4716 | case OR_Deleted: |
| 4717 | // There was no suitable conversion, or we found a deleted |
| 4718 | // conversion; continue with other checks. |
| 4719 | return false; |
| 4720 | } |
| 4721 | |
| 4722 | llvm_unreachable("Invalid OverloadResult!")__builtin_unreachable(); |
| 4723 | } |
| 4724 | |
| 4725 | /// Compute an implicit conversion sequence for reference |
| 4726 | /// initialization. |
| 4727 | static ImplicitConversionSequence |
| 4728 | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, |
| 4729 | SourceLocation DeclLoc, |
| 4730 | bool SuppressUserConversions, |
| 4731 | bool AllowExplicit) { |
| 4732 | assert(DeclType->isReferenceType() && "Reference init needs a reference")((void)0); |
| 4733 | |
| 4734 | // Most paths end in a failed conversion. |
| 4735 | ImplicitConversionSequence ICS; |
| 4736 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
| 4737 | |
| 4738 | QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); |
| 4739 | QualType T2 = Init->getType(); |
| 4740 | |
| 4741 | // If the initializer is the address of an overloaded function, try |
| 4742 | // to resolve the overloaded function. If all goes well, T2 is the |
| 4743 | // type of the resulting function. |
| 4744 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
| 4745 | DeclAccessPair Found; |
| 4746 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, |
| 4747 | false, Found)) |
| 4748 | T2 = Fn->getType(); |
| 4749 | } |
| 4750 | |
| 4751 | // Compute some basic properties of the types and the initializer. |
| 4752 | bool isRValRef = DeclType->isRValueReferenceType(); |
| 4753 | Expr::Classification InitCategory = Init->Classify(S.Context); |
| 4754 | |
| 4755 | Sema::ReferenceConversions RefConv; |
| 4756 | Sema::ReferenceCompareResult RefRelationship = |
| 4757 | S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); |
| 4758 | |
| 4759 | auto SetAsReferenceBinding = [&](bool BindsDirectly) { |
| 4760 | ICS.setStandard(); |
| 4761 | ICS.Standard.First = ICK_Identity; |
| 4762 | // FIXME: A reference binding can be a function conversion too. We should |
| 4763 | // consider that when ordering reference-to-function bindings. |
| 4764 | ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) |
| 4765 | ? ICK_Derived_To_Base |
| 4766 | : (RefConv & Sema::ReferenceConversions::ObjC) |
| 4767 | ? ICK_Compatible_Conversion |
| 4768 | : ICK_Identity; |
| 4769 | // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank |
| 4770 | // a reference binding that performs a non-top-level qualification |
| 4771 | // conversion as a qualification conversion, not as an identity conversion. |
| 4772 | ICS.Standard.Third = (RefConv & |
| 4773 | Sema::ReferenceConversions::NestedQualification) |
| 4774 | ? ICK_Qualification |
| 4775 | : ICK_Identity; |
| 4776 | ICS.Standard.setFromType(T2); |
| 4777 | ICS.Standard.setToType(0, T2); |
| 4778 | ICS.Standard.setToType(1, T1); |
| 4779 | ICS.Standard.setToType(2, T1); |
| 4780 | ICS.Standard.ReferenceBinding = true; |
| 4781 | ICS.Standard.DirectBinding = BindsDirectly; |
| 4782 | ICS.Standard.IsLvalueReference = !isRValRef; |
| 4783 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); |
| 4784 | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); |
| 4785 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 4786 | ICS.Standard.ObjCLifetimeConversionBinding = |
| 4787 | (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; |
| 4788 | ICS.Standard.CopyConstructor = nullptr; |
| 4789 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; |
| 4790 | }; |
| 4791 | |
| 4792 | // C++0x [dcl.init.ref]p5: |
| 4793 | // A reference to type "cv1 T1" is initialized by an expression |
| 4794 | // of type "cv2 T2" as follows: |
| 4795 | |
| 4796 | // -- If reference is an lvalue reference and the initializer expression |
| 4797 | if (!isRValRef) { |
| 4798 | // -- is an lvalue (but is not a bit-field), and "cv1 T1" is |
| 4799 | // reference-compatible with "cv2 T2," or |
| 4800 | // |
| 4801 | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. |
| 4802 | if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { |
| 4803 | // C++ [over.ics.ref]p1: |
| 4804 | // When a parameter of reference type binds directly (8.5.3) |
| 4805 | // to an argument expression, the implicit conversion sequence |
| 4806 | // is the identity conversion, unless the argument expression |
| 4807 | // has a type that is a derived class of the parameter type, |
| 4808 | // in which case the implicit conversion sequence is a |
| 4809 | // derived-to-base Conversion (13.3.3.1). |
| 4810 | SetAsReferenceBinding(/*BindsDirectly=*/true); |
| 4811 | |
| 4812 | // Nothing more to do: the inaccessibility/ambiguity check for |
| 4813 | // derived-to-base conversions is suppressed when we're |
| 4814 | // computing the implicit conversion sequence (C++ |
| 4815 | // [over.best.ics]p2). |
| 4816 | return ICS; |
| 4817 | } |
| 4818 | |
| 4819 | // -- has a class type (i.e., T2 is a class type), where T1 is |
| 4820 | // not reference-related to T2, and can be implicitly |
| 4821 | // converted to an lvalue of type "cv3 T3," where "cv1 T1" |
| 4822 | // is reference-compatible with "cv3 T3" 92) (this |
| 4823 | // conversion is selected by enumerating the applicable |
| 4824 | // conversion functions (13.3.1.6) and choosing the best |
| 4825 | // one through overload resolution (13.3)), |
| 4826 | if (!SuppressUserConversions && T2->isRecordType() && |
| 4827 | S.isCompleteType(DeclLoc, T2) && |
| 4828 | RefRelationship == Sema::Ref_Incompatible) { |
| 4829 | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
| 4830 | Init, T2, /*AllowRvalues=*/false, |
| 4831 | AllowExplicit)) |
| 4832 | return ICS; |
| 4833 | } |
| 4834 | } |
| 4835 | |
| 4836 | // -- Otherwise, the reference shall be an lvalue reference to a |
| 4837 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
| 4838 | // shall be an rvalue reference. |
| 4839 | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { |
| 4840 | if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) |
| 4841 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); |
| 4842 | return ICS; |
| 4843 | } |
| 4844 | |
| 4845 | // -- If the initializer expression |
| 4846 | // |
| 4847 | // -- is an xvalue, class prvalue, array prvalue or function |
| 4848 | // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or |
| 4849 | if (RefRelationship == Sema::Ref_Compatible && |
| 4850 | (InitCategory.isXValue() || |
| 4851 | (InitCategory.isPRValue() && |
| 4852 | (T2->isRecordType() || T2->isArrayType())) || |
| 4853 | (InitCategory.isLValue() && T2->isFunctionType()))) { |
| 4854 | // In C++11, this is always a direct binding. In C++98/03, it's a direct |
| 4855 | // binding unless we're binding to a class prvalue. |
| 4856 | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we |
| 4857 | // allow the use of rvalue references in C++98/03 for the benefit of |
| 4858 | // standard library implementors; therefore, we need the xvalue check here. |
| 4859 | SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || |
| 4860 | !(InitCategory.isPRValue() || T2->isRecordType())); |
| 4861 | return ICS; |
| 4862 | } |
| 4863 | |
| 4864 | // -- has a class type (i.e., T2 is a class type), where T1 is not |
| 4865 | // reference-related to T2, and can be implicitly converted to |
| 4866 | // an xvalue, class prvalue, or function lvalue of type |
| 4867 | // "cv3 T3", where "cv1 T1" is reference-compatible with |
| 4868 | // "cv3 T3", |
| 4869 | // |
| 4870 | // then the reference is bound to the value of the initializer |
| 4871 | // expression in the first case and to the result of the conversion |
| 4872 | // in the second case (or, in either case, to an appropriate base |
| 4873 | // class subobject). |
| 4874 | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
| 4875 | T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && |
| 4876 | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
| 4877 | Init, T2, /*AllowRvalues=*/true, |
| 4878 | AllowExplicit)) { |
| 4879 | // In the second case, if the reference is an rvalue reference |
| 4880 | // and the second standard conversion sequence of the |
| 4881 | // user-defined conversion sequence includes an lvalue-to-rvalue |
| 4882 | // conversion, the program is ill-formed. |
| 4883 | if (ICS.isUserDefined() && isRValRef && |
| 4884 | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) |
| 4885 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
| 4886 | |
| 4887 | return ICS; |
| 4888 | } |
| 4889 | |
| 4890 | // A temporary of function type cannot be created; don't even try. |
| 4891 | if (T1->isFunctionType()) |
| 4892 | return ICS; |
| 4893 | |
| 4894 | // -- Otherwise, a temporary of type "cv1 T1" is created and |
| 4895 | // initialized from the initializer expression using the |
| 4896 | // rules for a non-reference copy initialization (8.5). The |
| 4897 | // reference is then bound to the temporary. If T1 is |
| 4898 | // reference-related to T2, cv1 must be the same |
| 4899 | // cv-qualification as, or greater cv-qualification than, |
| 4900 | // cv2; otherwise, the program is ill-formed. |
| 4901 | if (RefRelationship == Sema::Ref_Related) { |
| 4902 | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then |
| 4903 | // we would be reference-compatible or reference-compatible with |
| 4904 | // added qualification. But that wasn't the case, so the reference |
| 4905 | // initialization fails. |
| 4906 | // |
| 4907 | // Note that we only want to check address spaces and cvr-qualifiers here. |
| 4908 | // ObjC GC, lifetime and unaligned qualifiers aren't important. |
| 4909 | Qualifiers T1Quals = T1.getQualifiers(); |
| 4910 | Qualifiers T2Quals = T2.getQualifiers(); |
| 4911 | T1Quals.removeObjCGCAttr(); |
| 4912 | T1Quals.removeObjCLifetime(); |
| 4913 | T2Quals.removeObjCGCAttr(); |
| 4914 | T2Quals.removeObjCLifetime(); |
| 4915 | // MS compiler ignores __unaligned qualifier for references; do the same. |
| 4916 | T1Quals.removeUnaligned(); |
| 4917 | T2Quals.removeUnaligned(); |
| 4918 | if (!T1Quals.compatiblyIncludes(T2Quals)) |
| 4919 | return ICS; |
| 4920 | } |
| 4921 | |
| 4922 | // If at least one of the types is a class type, the types are not |
| 4923 | // related, and we aren't allowed any user conversions, the |
| 4924 | // reference binding fails. This case is important for breaking |
| 4925 | // recursion, since TryImplicitConversion below will attempt to |
| 4926 | // create a temporary through the use of a copy constructor. |
| 4927 | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
| 4928 | (T1->isRecordType() || T2->isRecordType())) |
| 4929 | return ICS; |
| 4930 | |
| 4931 | // If T1 is reference-related to T2 and the reference is an rvalue |
| 4932 | // reference, the initializer expression shall not be an lvalue. |
| 4933 | if (RefRelationship >= Sema::Ref_Related && isRValRef && |
| 4934 | Init->Classify(S.Context).isLValue()) { |
| 4935 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); |
| 4936 | return ICS; |
| 4937 | } |
| 4938 | |
| 4939 | // C++ [over.ics.ref]p2: |
| 4940 | // When a parameter of reference type is not bound directly to |
| 4941 | // an argument expression, the conversion sequence is the one |
| 4942 | // required to convert the argument expression to the |
| 4943 | // underlying type of the reference according to |
| 4944 | // 13.3.3.1. Conceptually, this conversion sequence corresponds |
| 4945 | // to copy-initializing a temporary of the underlying type with |
| 4946 | // the argument expression. Any difference in top-level |
| 4947 | // cv-qualification is subsumed by the initialization itself |
| 4948 | // and does not constitute a conversion. |
| 4949 | ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, |
| 4950 | AllowedExplicit::None, |
| 4951 | /*InOverloadResolution=*/false, |
| 4952 | /*CStyle=*/false, |
| 4953 | /*AllowObjCWritebackConversion=*/false, |
| 4954 | /*AllowObjCConversionOnExplicit=*/false); |
| 4955 | |
| 4956 | // Of course, that's still a reference binding. |
| 4957 | if (ICS.isStandard()) { |
| 4958 | ICS.Standard.ReferenceBinding = true; |
| 4959 | ICS.Standard.IsLvalueReference = !isRValRef; |
| 4960 | ICS.Standard.BindsToFunctionLvalue = false; |
| 4961 | ICS.Standard.BindsToRvalue = true; |
| 4962 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 4963 | ICS.Standard.ObjCLifetimeConversionBinding = false; |
| 4964 | } else if (ICS.isUserDefined()) { |
| 4965 | const ReferenceType *LValRefType = |
| 4966 | ICS.UserDefined.ConversionFunction->getReturnType() |
| 4967 | ->getAs<LValueReferenceType>(); |
| 4968 | |
| 4969 | // C++ [over.ics.ref]p3: |
| 4970 | // Except for an implicit object parameter, for which see 13.3.1, a |
| 4971 | // standard conversion sequence cannot be formed if it requires [...] |
| 4972 | // binding an rvalue reference to an lvalue other than a function |
| 4973 | // lvalue. |
| 4974 | // Note that the function case is not possible here. |
| 4975 | if (isRValRef && LValRefType) { |
| 4976 | ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
| 4977 | return ICS; |
| 4978 | } |
| 4979 | |
| 4980 | ICS.UserDefined.After.ReferenceBinding = true; |
| 4981 | ICS.UserDefined.After.IsLvalueReference = !isRValRef; |
| 4982 | ICS.UserDefined.After.BindsToFunctionLvalue = false; |
| 4983 | ICS.UserDefined.After.BindsToRvalue = !LValRefType; |
| 4984 | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 4985 | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; |
| 4986 | } |
| 4987 | |
| 4988 | return ICS; |
| 4989 | } |
| 4990 | |
| 4991 | static ImplicitConversionSequence |
| 4992 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
| 4993 | bool SuppressUserConversions, |
| 4994 | bool InOverloadResolution, |
| 4995 | bool AllowObjCWritebackConversion, |
| 4996 | bool AllowExplicit = false); |
| 4997 | |
| 4998 | /// TryListConversion - Try to copy-initialize a value of type ToType from the |
| 4999 | /// initializer list From. |
| 5000 | static ImplicitConversionSequence |
| 5001 | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, |
| 5002 | bool SuppressUserConversions, |
| 5003 | bool InOverloadResolution, |
| 5004 | bool AllowObjCWritebackConversion) { |
| 5005 | // C++11 [over.ics.list]p1: |
| 5006 | // When an argument is an initializer list, it is not an expression and |
| 5007 | // special rules apply for converting it to a parameter type. |
| 5008 | |
| 5009 | ImplicitConversionSequence Result; |
| 5010 | Result.setBad(BadConversionSequence::no_conversion, From, ToType); |
| 5011 | |
| 5012 | // We need a complete type for what follows. Incomplete types can never be |
| 5013 | // initialized from init lists. |
| 5014 | if (!S.isCompleteType(From->getBeginLoc(), ToType)) |
| 5015 | return Result; |
| 5016 | |
| 5017 | // Per DR1467: |
| 5018 | // If the parameter type is a class X and the initializer list has a single |
| 5019 | // element of type cv U, where U is X or a class derived from X, the |
| 5020 | // implicit conversion sequence is the one required to convert the element |
| 5021 | // to the parameter type. |
| 5022 | // |
| 5023 | // Otherwise, if the parameter type is a character array [... ] |
| 5024 | // and the initializer list has a single element that is an |
| 5025 | // appropriately-typed string literal (8.5.2 [dcl.init.string]), the |
| 5026 | // implicit conversion sequence is the identity conversion. |
| 5027 | if (From->getNumInits() == 1) { |
| 5028 | if (ToType->isRecordType()) { |
| 5029 | QualType InitType = From->getInit(0)->getType(); |
| 5030 | if (S.Context.hasSameUnqualifiedType(InitType, ToType) || |
| 5031 | S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) |
| 5032 | return TryCopyInitialization(S, From->getInit(0), ToType, |
| 5033 | SuppressUserConversions, |
| 5034 | InOverloadResolution, |
| 5035 | AllowObjCWritebackConversion); |
| 5036 | } |
| 5037 | |
| 5038 | if (const auto *AT = S.Context.getAsArrayType(ToType)) { |
| 5039 | if (S.IsStringInit(From->getInit(0), AT)) { |
| 5040 | InitializedEntity Entity = |
| 5041 | InitializedEntity::InitializeParameter(S.Context, ToType, |
| 5042 | /*Consumed=*/false); |
| 5043 | if (S.CanPerformCopyInitialization(Entity, From)) { |
| 5044 | Result.setStandard(); |
| 5045 | Result.Standard.setAsIdentityConversion(); |
| 5046 | Result.Standard.setFromType(ToType); |
| 5047 | Result.Standard.setAllToTypes(ToType); |
| 5048 | return Result; |
| 5049 | } |
| 5050 | } |
| 5051 | } |
| 5052 | } |
| 5053 | |
| 5054 | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). |
| 5055 | // C++11 [over.ics.list]p2: |
| 5056 | // If the parameter type is std::initializer_list<X> or "array of X" and |
| 5057 | // all the elements can be implicitly converted to X, the implicit |
| 5058 | // conversion sequence is the worst conversion necessary to convert an |
| 5059 | // element of the list to X. |
| 5060 | // |
| 5061 | // C++14 [over.ics.list]p3: |
| 5062 | // Otherwise, if the parameter type is "array of N X", if the initializer |
| 5063 | // list has exactly N elements or if it has fewer than N elements and X is |
| 5064 | // default-constructible, and if all the elements of the initializer list |
| 5065 | // can be implicitly converted to X, the implicit conversion sequence is |
| 5066 | // the worst conversion necessary to convert an element of the list to X. |
| 5067 | // |
| 5068 | // FIXME: We're missing a lot of these checks. |
| 5069 | bool toStdInitializerList = false; |
| 5070 | QualType X; |
| 5071 | if (ToType->isArrayType()) |
| 5072 | X = S.Context.getAsArrayType(ToType)->getElementType(); |
| 5073 | else |
| 5074 | toStdInitializerList = S.isStdInitializerList(ToType, &X); |
| 5075 | if (!X.isNull()) { |
| 5076 | for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { |
| 5077 | Expr *Init = From->getInit(i); |
| 5078 | ImplicitConversionSequence ICS = |
| 5079 | TryCopyInitialization(S, Init, X, SuppressUserConversions, |
| 5080 | InOverloadResolution, |
| 5081 | AllowObjCWritebackConversion); |
| 5082 | // If a single element isn't convertible, fail. |
| 5083 | if (ICS.isBad()) { |
| 5084 | Result = ICS; |
| 5085 | break; |
| 5086 | } |
| 5087 | // Otherwise, look for the worst conversion. |
| 5088 | if (Result.isBad() || CompareImplicitConversionSequences( |
| 5089 | S, From->getBeginLoc(), ICS, Result) == |
| 5090 | ImplicitConversionSequence::Worse) |
| 5091 | Result = ICS; |
| 5092 | } |
| 5093 | |
| 5094 | // For an empty list, we won't have computed any conversion sequence. |
| 5095 | // Introduce the identity conversion sequence. |
| 5096 | if (From->getNumInits() == 0) { |
| 5097 | Result.setStandard(); |
| 5098 | Result.Standard.setAsIdentityConversion(); |
| 5099 | Result.Standard.setFromType(ToType); |
| 5100 | Result.Standard.setAllToTypes(ToType); |
| 5101 | } |
| 5102 | |
| 5103 | Result.setStdInitializerListElement(toStdInitializerList); |
| 5104 | return Result; |
| 5105 | } |
| 5106 | |
| 5107 | // C++14 [over.ics.list]p4: |
| 5108 | // C++11 [over.ics.list]p3: |
| 5109 | // Otherwise, if the parameter is a non-aggregate class X and overload |
| 5110 | // resolution chooses a single best constructor [...] the implicit |
| 5111 | // conversion sequence is a user-defined conversion sequence. If multiple |
| 5112 | // constructors are viable but none is better than the others, the |
| 5113 | // implicit conversion sequence is a user-defined conversion sequence. |
| 5114 | if (ToType->isRecordType() && !ToType->isAggregateType()) { |
| 5115 | // This function can deal with initializer lists. |
| 5116 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
| 5117 | AllowedExplicit::None, |
| 5118 | InOverloadResolution, /*CStyle=*/false, |
| 5119 | AllowObjCWritebackConversion, |
| 5120 | /*AllowObjCConversionOnExplicit=*/false); |
| 5121 | } |
| 5122 | |
| 5123 | // C++14 [over.ics.list]p5: |
| 5124 | // C++11 [over.ics.list]p4: |
| 5125 | // Otherwise, if the parameter has an aggregate type which can be |
| 5126 | // initialized from the initializer list [...] the implicit conversion |
| 5127 | // sequence is a user-defined conversion sequence. |
| 5128 | if (ToType->isAggregateType()) { |
| 5129 | // Type is an aggregate, argument is an init list. At this point it comes |
| 5130 | // down to checking whether the initialization works. |
| 5131 | // FIXME: Find out whether this parameter is consumed or not. |
| 5132 | InitializedEntity Entity = |
| 5133 | InitializedEntity::InitializeParameter(S.Context, ToType, |
| 5134 | /*Consumed=*/false); |
| 5135 | if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, |
| 5136 | From)) { |
| 5137 | Result.setUserDefined(); |
| 5138 | Result.UserDefined.Before.setAsIdentityConversion(); |
| 5139 | // Initializer lists don't have a type. |
| 5140 | Result.UserDefined.Before.setFromType(QualType()); |
| 5141 | Result.UserDefined.Before.setAllToTypes(QualType()); |
| 5142 | |
| 5143 | Result.UserDefined.After.setAsIdentityConversion(); |
| 5144 | Result.UserDefined.After.setFromType(ToType); |
| 5145 | Result.UserDefined.After.setAllToTypes(ToType); |
| 5146 | Result.UserDefined.ConversionFunction = nullptr; |
| 5147 | } |
| 5148 | return Result; |
| 5149 | } |
| 5150 | |
| 5151 | // C++14 [over.ics.list]p6: |
| 5152 | // C++11 [over.ics.list]p5: |
| 5153 | // Otherwise, if the parameter is a reference, see 13.3.3.1.4. |
| 5154 | if (ToType->isReferenceType()) { |
| 5155 | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't |
| 5156 | // mention initializer lists in any way. So we go by what list- |
| 5157 | // initialization would do and try to extrapolate from that. |
| 5158 | |
| 5159 | QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); |
| 5160 | |
| 5161 | // If the initializer list has a single element that is reference-related |
| 5162 | // to the parameter type, we initialize the reference from that. |
| 5163 | if (From->getNumInits() == 1) { |
| 5164 | Expr *Init = From->getInit(0); |
| 5165 | |
| 5166 | QualType T2 = Init->getType(); |
| 5167 | |
| 5168 | // If the initializer is the address of an overloaded function, try |
| 5169 | // to resolve the overloaded function. If all goes well, T2 is the |
| 5170 | // type of the resulting function. |
| 5171 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
| 5172 | DeclAccessPair Found; |
| 5173 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( |
| 5174 | Init, ToType, false, Found)) |
| 5175 | T2 = Fn->getType(); |
| 5176 | } |
| 5177 | |
| 5178 | // Compute some basic properties of the types and the initializer. |
| 5179 | Sema::ReferenceCompareResult RefRelationship = |
| 5180 | S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); |
| 5181 | |
| 5182 | if (RefRelationship >= Sema::Ref_Related) { |
| 5183 | return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), |
| 5184 | SuppressUserConversions, |
| 5185 | /*AllowExplicit=*/false); |
| 5186 | } |
| 5187 | } |
| 5188 | |
| 5189 | // Otherwise, we bind the reference to a temporary created from the |
| 5190 | // initializer list. |
| 5191 | Result = TryListConversion(S, From, T1, SuppressUserConversions, |
| 5192 | InOverloadResolution, |
| 5193 | AllowObjCWritebackConversion); |
| 5194 | if (Result.isFailure()) |
| 5195 | return Result; |
| 5196 | assert(!Result.isEllipsis() &&((void)0) |
| 5197 | "Sub-initialization cannot result in ellipsis conversion.")((void)0); |
| 5198 | |
| 5199 | // Can we even bind to a temporary? |
| 5200 | if (ToType->isRValueReferenceType() || |
| 5201 | (T1.isConstQualified() && !T1.isVolatileQualified())) { |
| 5202 | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : |
| 5203 | Result.UserDefined.After; |
| 5204 | SCS.ReferenceBinding = true; |
| 5205 | SCS.IsLvalueReference = ToType->isLValueReferenceType(); |
| 5206 | SCS.BindsToRvalue = true; |
| 5207 | SCS.BindsToFunctionLvalue = false; |
| 5208 | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 5209 | SCS.ObjCLifetimeConversionBinding = false; |
| 5210 | } else |
| 5211 | Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, |
| 5212 | From, ToType); |
| 5213 | return Result; |
| 5214 | } |
| 5215 | |
| 5216 | // C++14 [over.ics.list]p7: |
| 5217 | // C++11 [over.ics.list]p6: |
| 5218 | // Otherwise, if the parameter type is not a class: |
| 5219 | if (!ToType->isRecordType()) { |
| 5220 | // - if the initializer list has one element that is not itself an |
| 5221 | // initializer list, the implicit conversion sequence is the one |
| 5222 | // required to convert the element to the parameter type. |
| 5223 | unsigned NumInits = From->getNumInits(); |
| 5224 | if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) |
| 5225 | Result = TryCopyInitialization(S, From->getInit(0), ToType, |
| 5226 | SuppressUserConversions, |
| 5227 | InOverloadResolution, |
| 5228 | AllowObjCWritebackConversion); |
| 5229 | // - if the initializer list has no elements, the implicit conversion |
| 5230 | // sequence is the identity conversion. |
| 5231 | else if (NumInits == 0) { |
| 5232 | Result.setStandard(); |
| 5233 | Result.Standard.setAsIdentityConversion(); |
| 5234 | Result.Standard.setFromType(ToType); |
| 5235 | Result.Standard.setAllToTypes(ToType); |
| 5236 | } |
| 5237 | return Result; |
| 5238 | } |
| 5239 | |
| 5240 | // C++14 [over.ics.list]p8: |
| 5241 | // C++11 [over.ics.list]p7: |
| 5242 | // In all cases other than those enumerated above, no conversion is possible |
| 5243 | return Result; |
| 5244 | } |
| 5245 | |
| 5246 | /// TryCopyInitialization - Try to copy-initialize a value of type |
| 5247 | /// ToType from the expression From. Return the implicit conversion |
| 5248 | /// sequence required to pass this argument, which may be a bad |
| 5249 | /// conversion sequence (meaning that the argument cannot be passed to |
| 5250 | /// a parameter of this type). If @p SuppressUserConversions, then we |
| 5251 | /// do not permit any user-defined conversion sequences. |
| 5252 | static ImplicitConversionSequence |
| 5253 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
| 5254 | bool SuppressUserConversions, |
| 5255 | bool InOverloadResolution, |
| 5256 | bool AllowObjCWritebackConversion, |
| 5257 | bool AllowExplicit) { |
| 5258 | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) |
| 5259 | return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, |
| 5260 | InOverloadResolution,AllowObjCWritebackConversion); |
| 5261 | |
| 5262 | if (ToType->isReferenceType()) |
| 5263 | return TryReferenceInit(S, From, ToType, |
| 5264 | /*FIXME:*/ From->getBeginLoc(), |
| 5265 | SuppressUserConversions, AllowExplicit); |
| 5266 | |
| 5267 | return TryImplicitConversion(S, From, ToType, |
| 5268 | SuppressUserConversions, |
| 5269 | AllowedExplicit::None, |
| 5270 | InOverloadResolution, |
| 5271 | /*CStyle=*/false, |
| 5272 | AllowObjCWritebackConversion, |
| 5273 | /*AllowObjCConversionOnExplicit=*/false); |
| 5274 | } |
| 5275 | |
| 5276 | static bool TryCopyInitialization(const CanQualType FromQTy, |
| 5277 | const CanQualType ToQTy, |
| 5278 | Sema &S, |
| 5279 | SourceLocation Loc, |
| 5280 | ExprValueKind FromVK) { |
| 5281 | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); |
| 5282 | ImplicitConversionSequence ICS = |
| 5283 | TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); |
| 5284 | |
| 5285 | return !ICS.isBad(); |
| 5286 | } |
| 5287 | |
| 5288 | /// TryObjectArgumentInitialization - Try to initialize the object |
| 5289 | /// parameter of the given member function (@c Method) from the |
| 5290 | /// expression @p From. |
| 5291 | static ImplicitConversionSequence |
| 5292 | TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, |
| 5293 | Expr::Classification FromClassification, |
| 5294 | CXXMethodDecl *Method, |
| 5295 | CXXRecordDecl *ActingContext) { |
| 5296 | QualType ClassType = S.Context.getTypeDeclType(ActingContext); |
| 5297 | // [class.dtor]p2: A destructor can be invoked for a const, volatile or |
| 5298 | // const volatile object. |
| 5299 | Qualifiers Quals = Method->getMethodQualifiers(); |
| 5300 | if (isa<CXXDestructorDecl>(Method)) { |
| 5301 | Quals.addConst(); |
| 5302 | Quals.addVolatile(); |
| 5303 | } |
| 5304 | |
| 5305 | QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); |
| 5306 | |
| 5307 | // Set up the conversion sequence as a "bad" conversion, to allow us |
| 5308 | // to exit early. |
| 5309 | ImplicitConversionSequence ICS; |
| 5310 | |
| 5311 | // We need to have an object of class type. |
| 5312 | if (const PointerType *PT = FromType->getAs<PointerType>()) { |
| 5313 | FromType = PT->getPointeeType(); |
| 5314 | |
| 5315 | // When we had a pointer, it's implicitly dereferenced, so we |
| 5316 | // better have an lvalue. |
| 5317 | assert(FromClassification.isLValue())((void)0); |
| 5318 | } |
| 5319 | |
| 5320 | assert(FromType->isRecordType())((void)0); |
| 5321 | |
| 5322 | // C++0x [over.match.funcs]p4: |
| 5323 | // For non-static member functions, the type of the implicit object |
| 5324 | // parameter is |
| 5325 | // |
| 5326 | // - "lvalue reference to cv X" for functions declared without a |
| 5327 | // ref-qualifier or with the & ref-qualifier |
| 5328 | // - "rvalue reference to cv X" for functions declared with the && |
| 5329 | // ref-qualifier |
| 5330 | // |
| 5331 | // where X is the class of which the function is a member and cv is the |
| 5332 | // cv-qualification on the member function declaration. |
| 5333 | // |
| 5334 | // However, when finding an implicit conversion sequence for the argument, we |
| 5335 | // are not allowed to perform user-defined conversions |
| 5336 | // (C++ [over.match.funcs]p5). We perform a simplified version of |
| 5337 | // reference binding here, that allows class rvalues to bind to |
| 5338 | // non-constant references. |
| 5339 | |
| 5340 | // First check the qualifiers. |
| 5341 | QualType FromTypeCanon = S.Context.getCanonicalType(FromType); |
| 5342 | if (ImplicitParamType.getCVRQualifiers() |
| 5343 | != FromTypeCanon.getLocalCVRQualifiers() && |
| 5344 | !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { |
| 5345 | ICS.setBad(BadConversionSequence::bad_qualifiers, |
| 5346 | FromType, ImplicitParamType); |
| 5347 | return ICS; |
| 5348 | } |
| 5349 | |
| 5350 | if (FromTypeCanon.hasAddressSpace()) { |
| 5351 | Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); |
| 5352 | Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); |
| 5353 | if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { |
| 5354 | ICS.setBad(BadConversionSequence::bad_qualifiers, |
| 5355 | FromType, ImplicitParamType); |
| 5356 | return ICS; |
| 5357 | } |
| 5358 | } |
| 5359 | |
| 5360 | // Check that we have either the same type or a derived type. It |
| 5361 | // affects the conversion rank. |
| 5362 | QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); |
| 5363 | ImplicitConversionKind SecondKind; |
| 5364 | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { |
| 5365 | SecondKind = ICK_Identity; |
| 5366 | } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) |
| 5367 | SecondKind = ICK_Derived_To_Base; |
| 5368 | else { |
| 5369 | ICS.setBad(BadConversionSequence::unrelated_class, |
| 5370 | FromType, ImplicitParamType); |
| 5371 | return ICS; |
| 5372 | } |
| 5373 | |
| 5374 | // Check the ref-qualifier. |
| 5375 | switch (Method->getRefQualifier()) { |
| 5376 | case RQ_None: |
| 5377 | // Do nothing; we don't care about lvalueness or rvalueness. |
| 5378 | break; |
| 5379 | |
| 5380 | case RQ_LValue: |
| 5381 | if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { |
| 5382 | // non-const lvalue reference cannot bind to an rvalue |
| 5383 | ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, |
| 5384 | ImplicitParamType); |
| 5385 | return ICS; |
| 5386 | } |
| 5387 | break; |
| 5388 | |
| 5389 | case RQ_RValue: |
| 5390 | if (!FromClassification.isRValue()) { |
| 5391 | // rvalue reference cannot bind to an lvalue |
| 5392 | ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, |
| 5393 | ImplicitParamType); |
| 5394 | return ICS; |
| 5395 | } |
| 5396 | break; |
| 5397 | } |
| 5398 | |
| 5399 | // Success. Mark this as a reference binding. |
| 5400 | ICS.setStandard(); |
| 5401 | ICS.Standard.setAsIdentityConversion(); |
| 5402 | ICS.Standard.Second = SecondKind; |
| 5403 | ICS.Standard.setFromType(FromType); |
| 5404 | ICS.Standard.setAllToTypes(ImplicitParamType); |
| 5405 | ICS.Standard.ReferenceBinding = true; |
| 5406 | ICS.Standard.DirectBinding = true; |
| 5407 | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; |
| 5408 | ICS.Standard.BindsToFunctionLvalue = false; |
| 5409 | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); |
| 5410 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier |
| 5411 | = (Method->getRefQualifier() == RQ_None); |
| 5412 | return ICS; |
| 5413 | } |
| 5414 | |
| 5415 | /// PerformObjectArgumentInitialization - Perform initialization of |
| 5416 | /// the implicit object parameter for the given Method with the given |
| 5417 | /// expression. |
| 5418 | ExprResult |
| 5419 | Sema::PerformObjectArgumentInitialization(Expr *From, |
| 5420 | NestedNameSpecifier *Qualifier, |
| 5421 | NamedDecl *FoundDecl, |
| 5422 | CXXMethodDecl *Method) { |
| 5423 | QualType FromRecordType, DestType; |
| 5424 | QualType ImplicitParamRecordType = |
| 5425 | Method->getThisType()->castAs<PointerType>()->getPointeeType(); |
| 5426 | |
| 5427 | Expr::Classification FromClassification; |
| 5428 | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { |
| 5429 | FromRecordType = PT->getPointeeType(); |
| 5430 | DestType = Method->getThisType(); |
| 5431 | FromClassification = Expr::Classification::makeSimpleLValue(); |
| 5432 | } else { |
| 5433 | FromRecordType = From->getType(); |
| 5434 | DestType = ImplicitParamRecordType; |
| 5435 | FromClassification = From->Classify(Context); |
| 5436 | |
| 5437 | // When performing member access on a prvalue, materialize a temporary. |
| 5438 | if (From->isPRValue()) { |
| 5439 | From = CreateMaterializeTemporaryExpr(FromRecordType, From, |
| 5440 | Method->getRefQualifier() != |
| 5441 | RefQualifierKind::RQ_RValue); |
| 5442 | } |
| 5443 | } |
| 5444 | |
| 5445 | // Note that we always use the true parent context when performing |
| 5446 | // the actual argument initialization. |
| 5447 | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( |
| 5448 | *this, From->getBeginLoc(), From->getType(), FromClassification, Method, |
| 5449 | Method->getParent()); |
| 5450 | if (ICS.isBad()) { |
| 5451 | switch (ICS.Bad.Kind) { |
| 5452 | case BadConversionSequence::bad_qualifiers: { |
| 5453 | Qualifiers FromQs = FromRecordType.getQualifiers(); |
| 5454 | Qualifiers ToQs = DestType.getQualifiers(); |
| 5455 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
| 5456 | if (CVR) { |
| 5457 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) |
| 5458 | << Method->getDeclName() << FromRecordType << (CVR - 1) |
| 5459 | << From->getSourceRange(); |
| 5460 | Diag(Method->getLocation(), diag::note_previous_decl) |
| 5461 | << Method->getDeclName(); |
| 5462 | return ExprError(); |
| 5463 | } |
| 5464 | break; |
| 5465 | } |
| 5466 | |
| 5467 | case BadConversionSequence::lvalue_ref_to_rvalue: |
| 5468 | case BadConversionSequence::rvalue_ref_to_lvalue: { |
| 5469 | bool IsRValueQualified = |
| 5470 | Method->getRefQualifier() == RefQualifierKind::RQ_RValue; |
| 5471 | Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) |
| 5472 | << Method->getDeclName() << FromClassification.isRValue() |
| 5473 | << IsRValueQualified; |
| 5474 | Diag(Method->getLocation(), diag::note_previous_decl) |
| 5475 | << Method->getDeclName(); |
| 5476 | return ExprError(); |
| 5477 | } |
| 5478 | |
| 5479 | case BadConversionSequence::no_conversion: |
| 5480 | case BadConversionSequence::unrelated_class: |
| 5481 | break; |
| 5482 | } |
| 5483 | |
| 5484 | return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) |
| 5485 | << ImplicitParamRecordType << FromRecordType |
| 5486 | << From->getSourceRange(); |
| 5487 | } |
| 5488 | |
| 5489 | if (ICS.Standard.Second == ICK_Derived_To_Base) { |
| 5490 | ExprResult FromRes = |
| 5491 | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); |
| 5492 | if (FromRes.isInvalid()) |
| 5493 | return ExprError(); |
| 5494 | From = FromRes.get(); |
| 5495 | } |
| 5496 | |
| 5497 | if (!Context.hasSameType(From->getType(), DestType)) { |
| 5498 | CastKind CK; |
| 5499 | QualType PteeTy = DestType->getPointeeType(); |
| 5500 | LangAS DestAS = |
| 5501 | PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); |
| 5502 | if (FromRecordType.getAddressSpace() != DestAS) |
| 5503 | CK = CK_AddressSpaceConversion; |
| 5504 | else |
| 5505 | CK = CK_NoOp; |
| 5506 | From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); |
| 5507 | } |
| 5508 | return From; |
| 5509 | } |
| 5510 | |
| 5511 | /// TryContextuallyConvertToBool - Attempt to contextually convert the |
| 5512 | /// expression From to bool (C++0x [conv]p3). |
| 5513 | static ImplicitConversionSequence |
| 5514 | TryContextuallyConvertToBool(Sema &S, Expr *From) { |
| 5515 | // C++ [dcl.init]/17.8: |
| 5516 | // - Otherwise, if the initialization is direct-initialization, the source |
| 5517 | // type is std::nullptr_t, and the destination type is bool, the initial |
| 5518 | // value of the object being initialized is false. |
| 5519 | if (From->getType()->isNullPtrType()) |
| 5520 | return ImplicitConversionSequence::getNullptrToBool(From->getType(), |
| 5521 | S.Context.BoolTy, |
| 5522 | From->isGLValue()); |
| 5523 | |
| 5524 | // All other direct-initialization of bool is equivalent to an implicit |
| 5525 | // conversion to bool in which explicit conversions are permitted. |
| 5526 | return TryImplicitConversion(S, From, S.Context.BoolTy, |
| 5527 | /*SuppressUserConversions=*/false, |
| 5528 | AllowedExplicit::Conversions, |
| 5529 | /*InOverloadResolution=*/false, |
| 5530 | /*CStyle=*/false, |
| 5531 | /*AllowObjCWritebackConversion=*/false, |
| 5532 | /*AllowObjCConversionOnExplicit=*/false); |
| 5533 | } |
| 5534 | |
| 5535 | /// PerformContextuallyConvertToBool - Perform a contextual conversion |
| 5536 | /// of the expression From to bool (C++0x [conv]p3). |
| 5537 | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { |
| 5538 | if (checkPlaceholderForOverload(*this, From)) |
| 5539 | return ExprError(); |
| 5540 | |
| 5541 | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); |
| 5542 | if (!ICS.isBad()) |
| 5543 | return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); |
| 5544 | |
| 5545 | if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) |
| 5546 | return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) |
| 5547 | << From->getType() << From->getSourceRange(); |
| 5548 | return ExprError(); |
| 5549 | } |
| 5550 | |
| 5551 | /// Check that the specified conversion is permitted in a converted constant |
| 5552 | /// expression, according to C++11 [expr.const]p3. Return true if the conversion |
| 5553 | /// is acceptable. |
| 5554 | static bool CheckConvertedConstantConversions(Sema &S, |
| 5555 | StandardConversionSequence &SCS) { |
| 5556 | // Since we know that the target type is an integral or unscoped enumeration |
| 5557 | // type, most conversion kinds are impossible. All possible First and Third |
| 5558 | // conversions are fine. |
| 5559 | switch (SCS.Second) { |
| 5560 | case ICK_Identity: |
| 5561 | case ICK_Integral_Promotion: |
| 5562 | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. |
| 5563 | case ICK_Zero_Queue_Conversion: |
| 5564 | return true; |
| 5565 | |
| 5566 | case ICK_Boolean_Conversion: |
| 5567 | // Conversion from an integral or unscoped enumeration type to bool is |
| 5568 | // classified as ICK_Boolean_Conversion, but it's also arguably an integral |
| 5569 | // conversion, so we allow it in a converted constant expression. |
| 5570 | // |
| 5571 | // FIXME: Per core issue 1407, we should not allow this, but that breaks |
| 5572 | // a lot of popular code. We should at least add a warning for this |
| 5573 | // (non-conforming) extension. |
| 5574 | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && |
| 5575 | SCS.getToType(2)->isBooleanType(); |
| 5576 | |
| 5577 | case ICK_Pointer_Conversion: |
| 5578 | case ICK_Pointer_Member: |
| 5579 | // C++1z: null pointer conversions and null member pointer conversions are |
| 5580 | // only permitted if the source type is std::nullptr_t. |
| 5581 | return SCS.getFromType()->isNullPtrType(); |
| 5582 | |
| 5583 | case ICK_Floating_Promotion: |
| 5584 | case ICK_Complex_Promotion: |
| 5585 | case ICK_Floating_Conversion: |
| 5586 | case ICK_Complex_Conversion: |
| 5587 | case ICK_Floating_Integral: |
| 5588 | case ICK_Compatible_Conversion: |
| 5589 | case ICK_Derived_To_Base: |
| 5590 | case ICK_Vector_Conversion: |
| 5591 | case ICK_SVE_Vector_Conversion: |
| 5592 | case ICK_Vector_Splat: |
| 5593 | case ICK_Complex_Real: |
| 5594 | case ICK_Block_Pointer_Conversion: |
| 5595 | case ICK_TransparentUnionConversion: |
| 5596 | case ICK_Writeback_Conversion: |
| 5597 | case ICK_Zero_Event_Conversion: |
| 5598 | case ICK_C_Only_Conversion: |
| 5599 | case ICK_Incompatible_Pointer_Conversion: |
| 5600 | return false; |
| 5601 | |
| 5602 | case ICK_Lvalue_To_Rvalue: |
| 5603 | case ICK_Array_To_Pointer: |
| 5604 | case ICK_Function_To_Pointer: |
| 5605 | llvm_unreachable("found a first conversion kind in Second")__builtin_unreachable(); |
| 5606 | |
| 5607 | case ICK_Function_Conversion: |
| 5608 | case ICK_Qualification: |
| 5609 | llvm_unreachable("found a third conversion kind in Second")__builtin_unreachable(); |
| 5610 | |
| 5611 | case ICK_Num_Conversion_Kinds: |
| 5612 | break; |
| 5613 | } |
| 5614 | |
| 5615 | llvm_unreachable("unknown conversion kind")__builtin_unreachable(); |
| 5616 | } |
| 5617 | |
| 5618 | /// CheckConvertedConstantExpression - Check that the expression From is a |
| 5619 | /// converted constant expression of type T, perform the conversion and produce |
| 5620 | /// the converted expression, per C++11 [expr.const]p3. |
| 5621 | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, |
| 5622 | QualType T, APValue &Value, |
| 5623 | Sema::CCEKind CCE, |
| 5624 | bool RequireInt, |
| 5625 | NamedDecl *Dest) { |
| 5626 | assert(S.getLangOpts().CPlusPlus11 &&((void)0) |
| 5627 | "converted constant expression outside C++11")((void)0); |
| 5628 | |
| 5629 | if (checkPlaceholderForOverload(S, From)) |
| 5630 | return ExprError(); |
| 5631 | |
| 5632 | // C++1z [expr.const]p3: |
| 5633 | // A converted constant expression of type T is an expression, |
| 5634 | // implicitly converted to type T, where the converted |
| 5635 | // expression is a constant expression and the implicit conversion |
| 5636 | // sequence contains only [... list of conversions ...]. |
| 5637 | ImplicitConversionSequence ICS = |
| 5638 | CCE == Sema::CCEK_ExplicitBool |
| 5639 | ? TryContextuallyConvertToBool(S, From) |
| 5640 | : TryCopyInitialization(S, From, T, |
| 5641 | /*SuppressUserConversions=*/false, |
| 5642 | /*InOverloadResolution=*/false, |
| 5643 | /*AllowObjCWritebackConversion=*/false, |
| 5644 | /*AllowExplicit=*/false); |
| 5645 | StandardConversionSequence *SCS = nullptr; |
| 5646 | switch (ICS.getKind()) { |
| 5647 | case ImplicitConversionSequence::StandardConversion: |
| 5648 | SCS = &ICS.Standard; |
| 5649 | break; |
| 5650 | case ImplicitConversionSequence::UserDefinedConversion: |
| 5651 | if (T->isRecordType()) |
| 5652 | SCS = &ICS.UserDefined.Before; |
| 5653 | else |
| 5654 | SCS = &ICS.UserDefined.After; |
| 5655 | break; |
| 5656 | case ImplicitConversionSequence::AmbiguousConversion: |
| 5657 | case ImplicitConversionSequence::BadConversion: |
| 5658 | if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) |
| 5659 | return S.Diag(From->getBeginLoc(), |
| 5660 | diag::err_typecheck_converted_constant_expression) |
| 5661 | << From->getType() << From->getSourceRange() << T; |
| 5662 | return ExprError(); |
| 5663 | |
| 5664 | case ImplicitConversionSequence::EllipsisConversion: |
| 5665 | llvm_unreachable("ellipsis conversion in converted constant expression")__builtin_unreachable(); |
| 5666 | } |
| 5667 | |
| 5668 | // Check that we would only use permitted conversions. |
| 5669 | if (!CheckConvertedConstantConversions(S, *SCS)) { |
| 5670 | return S.Diag(From->getBeginLoc(), |
| 5671 | diag::err_typecheck_converted_constant_expression_disallowed) |
| 5672 | << From->getType() << From->getSourceRange() << T; |
| 5673 | } |
| 5674 | // [...] and where the reference binding (if any) binds directly. |
| 5675 | if (SCS->ReferenceBinding && !SCS->DirectBinding) { |
| 5676 | return S.Diag(From->getBeginLoc(), |
| 5677 | diag::err_typecheck_converted_constant_expression_indirect) |
| 5678 | << From->getType() << From->getSourceRange() << T; |
| 5679 | } |
| 5680 | |
| 5681 | // Usually we can simply apply the ImplicitConversionSequence we formed |
| 5682 | // earlier, but that's not guaranteed to work when initializing an object of |
| 5683 | // class type. |
| 5684 | ExprResult Result; |
| 5685 | if (T->isRecordType()) { |
| 5686 | assert(CCE == Sema::CCEK_TemplateArg &&((void)0) |
| 5687 | "unexpected class type converted constant expr")((void)0); |
| 5688 | Result = S.PerformCopyInitialization( |
| 5689 | InitializedEntity::InitializeTemplateParameter( |
| 5690 | T, cast<NonTypeTemplateParmDecl>(Dest)), |
| 5691 | SourceLocation(), From); |
| 5692 | } else { |
| 5693 | Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); |
| 5694 | } |
| 5695 | if (Result.isInvalid()) |
| 5696 | return Result; |
| 5697 | |
| 5698 | // C++2a [intro.execution]p5: |
| 5699 | // A full-expression is [...] a constant-expression [...] |
| 5700 | Result = |
| 5701 | S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), |
| 5702 | /*DiscardedValue=*/false, /*IsConstexpr=*/true); |
| 5703 | if (Result.isInvalid()) |
| 5704 | return Result; |
| 5705 | |
| 5706 | // Check for a narrowing implicit conversion. |
| 5707 | bool ReturnPreNarrowingValue = false; |
| 5708 | APValue PreNarrowingValue; |
| 5709 | QualType PreNarrowingType; |
| 5710 | switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, |
| 5711 | PreNarrowingType)) { |
| 5712 | case NK_Dependent_Narrowing: |
| 5713 | // Implicit conversion to a narrower type, but the expression is |
| 5714 | // value-dependent so we can't tell whether it's actually narrowing. |
| 5715 | case NK_Variable_Narrowing: |
| 5716 | // Implicit conversion to a narrower type, and the value is not a constant |
| 5717 | // expression. We'll diagnose this in a moment. |
| 5718 | case NK_Not_Narrowing: |
| 5719 | break; |
| 5720 | |
| 5721 | case NK_Constant_Narrowing: |
| 5722 | if (CCE == Sema::CCEK_ArrayBound && |
| 5723 | PreNarrowingType->isIntegralOrEnumerationType() && |
| 5724 | PreNarrowingValue.isInt()) { |
| 5725 | // Don't diagnose array bound narrowing here; we produce more precise |
| 5726 | // errors by allowing the un-narrowed value through. |
| 5727 | ReturnPreNarrowingValue = true; |
| 5728 | break; |
| 5729 | } |
| 5730 | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) |
| 5731 | << CCE << /*Constant*/ 1 |
| 5732 | << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; |
| 5733 | break; |
| 5734 | |
| 5735 | case NK_Type_Narrowing: |
| 5736 | // FIXME: It would be better to diagnose that the expression is not a |
| 5737 | // constant expression. |
| 5738 | S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) |
| 5739 | << CCE << /*Constant*/ 0 << From->getType() << T; |
| 5740 | break; |
| 5741 | } |
| 5742 | |
| 5743 | if (Result.get()->isValueDependent()) { |
| 5744 | Value = APValue(); |
| 5745 | return Result; |
| 5746 | } |
| 5747 | |
| 5748 | // Check the expression is a constant expression. |
| 5749 | SmallVector<PartialDiagnosticAt, 8> Notes; |
| 5750 | Expr::EvalResult Eval; |
| 5751 | Eval.Diag = &Notes; |
| 5752 | |
| 5753 | ConstantExprKind Kind; |
| 5754 | if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) |
| 5755 | Kind = ConstantExprKind::ClassTemplateArgument; |
| 5756 | else if (CCE == Sema::CCEK_TemplateArg) |
| 5757 | Kind = ConstantExprKind::NonClassTemplateArgument; |
| 5758 | else |
| 5759 | Kind = ConstantExprKind::Normal; |
| 5760 | |
| 5761 | if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) || |
| 5762 | (RequireInt && !Eval.Val.isInt())) { |
| 5763 | // The expression can't be folded, so we can't keep it at this position in |
| 5764 | // the AST. |
| 5765 | Result = ExprError(); |
| 5766 | } else { |
| 5767 | Value = Eval.Val; |
| 5768 | |
| 5769 | if (Notes.empty()) { |
| 5770 | // It's a constant expression. |
| 5771 | Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value); |
| 5772 | if (ReturnPreNarrowingValue) |
| 5773 | Value = std::move(PreNarrowingValue); |
| 5774 | return E; |
| 5775 | } |
| 5776 | } |
| 5777 | |
| 5778 | // It's not a constant expression. Produce an appropriate diagnostic. |
| 5779 | if (Notes.size() == 1 && |
| 5780 | Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { |
| 5781 | S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; |
| 5782 | } else if (!Notes.empty() && Notes[0].second.getDiagID() == |
| 5783 | diag::note_constexpr_invalid_template_arg) { |
| 5784 | Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); |
| 5785 | for (unsigned I = 0; I < Notes.size(); ++I) |
| 5786 | S.Diag(Notes[I].first, Notes[I].second); |
| 5787 | } else { |
| 5788 | S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) |
| 5789 | << CCE << From->getSourceRange(); |
| 5790 | for (unsigned I = 0; I < Notes.size(); ++I) |
| 5791 | S.Diag(Notes[I].first, Notes[I].second); |
| 5792 | } |
| 5793 | return ExprError(); |
| 5794 | } |
| 5795 | |
| 5796 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, |
| 5797 | APValue &Value, CCEKind CCE, |
| 5798 | NamedDecl *Dest) { |
| 5799 | return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, |
| 5800 | Dest); |
| 5801 | } |
| 5802 | |
| 5803 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, |
| 5804 | llvm::APSInt &Value, |
| 5805 | CCEKind CCE) { |
| 5806 | assert(T->isIntegralOrEnumerationType() && "unexpected converted const type")((void)0); |
| 5807 | |
| 5808 | APValue V; |
| 5809 | auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, |
| 5810 | /*Dest=*/nullptr); |
| 5811 | if (!R.isInvalid() && !R.get()->isValueDependent()) |
| 5812 | Value = V.getInt(); |
| 5813 | return R; |
| 5814 | } |
| 5815 | |
| 5816 | |
| 5817 | /// dropPointerConversions - If the given standard conversion sequence |
| 5818 | /// involves any pointer conversions, remove them. This may change |
| 5819 | /// the result type of the conversion sequence. |
| 5820 | static void dropPointerConversion(StandardConversionSequence &SCS) { |
| 5821 | if (SCS.Second == ICK_Pointer_Conversion) { |
| 5822 | SCS.Second = ICK_Identity; |
| 5823 | SCS.Third = ICK_Identity; |
| 5824 | SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; |
| 5825 | } |
| 5826 | } |
| 5827 | |
| 5828 | /// TryContextuallyConvertToObjCPointer - Attempt to contextually |
| 5829 | /// convert the expression From to an Objective-C pointer type. |
| 5830 | static ImplicitConversionSequence |
| 5831 | TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { |
| 5832 | // Do an implicit conversion to 'id'. |
| 5833 | QualType Ty = S.Context.getObjCIdType(); |
| 5834 | ImplicitConversionSequence ICS |
| 5835 | = TryImplicitConversion(S, From, Ty, |
| 5836 | // FIXME: Are these flags correct? |
| 5837 | /*SuppressUserConversions=*/false, |
| 5838 | AllowedExplicit::Conversions, |
| 5839 | /*InOverloadResolution=*/false, |
| 5840 | /*CStyle=*/false, |
| 5841 | /*AllowObjCWritebackConversion=*/false, |
| 5842 | /*AllowObjCConversionOnExplicit=*/true); |
| 5843 | |
| 5844 | // Strip off any final conversions to 'id'. |
| 5845 | switch (ICS.getKind()) { |
| 5846 | case ImplicitConversionSequence::BadConversion: |
| 5847 | case ImplicitConversionSequence::AmbiguousConversion: |
| 5848 | case ImplicitConversionSequence::EllipsisConversion: |
| 5849 | break; |
| 5850 | |
| 5851 | case ImplicitConversionSequence::UserDefinedConversion: |
| 5852 | dropPointerConversion(ICS.UserDefined.After); |
| 5853 | break; |
| 5854 | |
| 5855 | case ImplicitConversionSequence::StandardConversion: |
| 5856 | dropPointerConversion(ICS.Standard); |
| 5857 | break; |
| 5858 | } |
| 5859 | |
| 5860 | return ICS; |
| 5861 | } |
| 5862 | |
| 5863 | /// PerformContextuallyConvertToObjCPointer - Perform a contextual |
| 5864 | /// conversion of the expression From to an Objective-C pointer type. |
| 5865 | /// Returns a valid but null ExprResult if no conversion sequence exists. |
| 5866 | ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { |
| 5867 | if (checkPlaceholderForOverload(*this, From)) |
| 5868 | return ExprError(); |
| 5869 | |
| 5870 | QualType Ty = Context.getObjCIdType(); |
| 5871 | ImplicitConversionSequence ICS = |
| 5872 | TryContextuallyConvertToObjCPointer(*this, From); |
| 5873 | if (!ICS.isBad()) |
| 5874 | return PerformImplicitConversion(From, Ty, ICS, AA_Converting); |
| 5875 | return ExprResult(); |
| 5876 | } |
| 5877 | |
| 5878 | /// Determine whether the provided type is an integral type, or an enumeration |
| 5879 | /// type of a permitted flavor. |
| 5880 | bool Sema::ICEConvertDiagnoser::match(QualType T) { |
| 5881 | return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() |
| 5882 | : T->isIntegralOrUnscopedEnumerationType(); |
| 5883 | } |
| 5884 | |
| 5885 | static ExprResult |
| 5886 | diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, |
| 5887 | Sema::ContextualImplicitConverter &Converter, |
| 5888 | QualType T, UnresolvedSetImpl &ViableConversions) { |
| 5889 | |
| 5890 | if (Converter.Suppress) |
| 5891 | return ExprError(); |
| 5892 | |
| 5893 | Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); |
| 5894 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { |
| 5895 | CXXConversionDecl *Conv = |
| 5896 | cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); |
| 5897 | QualType ConvTy = Conv->getConversionType().getNonReferenceType(); |
| 5898 | Converter.noteAmbiguous(SemaRef, Conv, ConvTy); |
| 5899 | } |
| 5900 | return From; |
| 5901 | } |
| 5902 | |
| 5903 | static bool |
| 5904 | diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, |
| 5905 | Sema::ContextualImplicitConverter &Converter, |
| 5906 | QualType T, bool HadMultipleCandidates, |
| 5907 | UnresolvedSetImpl &ExplicitConversions) { |
| 5908 | if (ExplicitConversions.size() == 1 && !Converter.Suppress) { |
| 5909 | DeclAccessPair Found = ExplicitConversions[0]; |
| 5910 | CXXConversionDecl *Conversion = |
| 5911 | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); |
| 5912 | |
| 5913 | // The user probably meant to invoke the given explicit |
| 5914 | // conversion; use it. |
| 5915 | QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); |
| 5916 | std::string TypeStr; |
| 5917 | ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); |
| 5918 | |
| 5919 | Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) |
| 5920 | << FixItHint::CreateInsertion(From->getBeginLoc(), |
| 5921 | "static_cast<" + TypeStr + ">(") |
| 5922 | << FixItHint::CreateInsertion( |
| 5923 | SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); |
| 5924 | Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); |
| 5925 | |
| 5926 | // If we aren't in a SFINAE context, build a call to the |
| 5927 | // explicit conversion function. |
| 5928 | if (SemaRef.isSFINAEContext()) |
| 5929 | return true; |
| 5930 | |
| 5931 | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); |
| 5932 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, |
| 5933 | HadMultipleCandidates); |
| 5934 | if (Result.isInvalid()) |
| 5935 | return true; |
| 5936 | // Record usage of conversion in an implicit cast. |
| 5937 | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), |
| 5938 | CK_UserDefinedConversion, Result.get(), |
| 5939 | nullptr, Result.get()->getValueKind(), |
| 5940 | SemaRef.CurFPFeatureOverrides()); |
| 5941 | } |
| 5942 | return false; |
| 5943 | } |
| 5944 | |
| 5945 | static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, |
| 5946 | Sema::ContextualImplicitConverter &Converter, |
| 5947 | QualType T, bool HadMultipleCandidates, |
| 5948 | DeclAccessPair &Found) { |
| 5949 | CXXConversionDecl *Conversion = |
| 5950 | cast<CXXConversionDecl>(Found->getUnderlyingDecl()); |
| 5951 | SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); |
| 5952 | |
| 5953 | QualType ToType = Conversion->getConversionType().getNonReferenceType(); |
| 5954 | if (!Converter.SuppressConversion) { |
| 5955 | if (SemaRef.isSFINAEContext()) |
| 5956 | return true; |
| 5957 | |
| 5958 | Converter.diagnoseConversion(SemaRef, Loc, T, ToType) |
| 5959 | << From->getSourceRange(); |
| 5960 | } |
| 5961 | |
| 5962 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, |
| 5963 | HadMultipleCandidates); |
| 5964 | if (Result.isInvalid()) |
| 5965 | return true; |
| 5966 | // Record usage of conversion in an implicit cast. |
| 5967 | From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), |
| 5968 | CK_UserDefinedConversion, Result.get(), |
| 5969 | nullptr, Result.get()->getValueKind(), |
| 5970 | SemaRef.CurFPFeatureOverrides()); |
| 5971 | return false; |
| 5972 | } |
| 5973 | |
| 5974 | static ExprResult finishContextualImplicitConversion( |
| 5975 | Sema &SemaRef, SourceLocation Loc, Expr *From, |
| 5976 | Sema::ContextualImplicitConverter &Converter) { |
| 5977 | if (!Converter.match(From->getType()) && !Converter.Suppress) |
| 5978 | Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) |
| 5979 | << From->getSourceRange(); |
| 5980 | |
| 5981 | return SemaRef.DefaultLvalueConversion(From); |
| 5982 | } |
| 5983 | |
| 5984 | static void |
| 5985 | collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, |
| 5986 | UnresolvedSetImpl &ViableConversions, |
| 5987 | OverloadCandidateSet &CandidateSet) { |
| 5988 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { |
| 5989 | DeclAccessPair FoundDecl = ViableConversions[I]; |
| 5990 | NamedDecl *D = FoundDecl.getDecl(); |
| 5991 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
| 5992 | if (isa<UsingShadowDecl>(D)) |
| 5993 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| 5994 | |
| 5995 | CXXConversionDecl *Conv; |
| 5996 | FunctionTemplateDecl *ConvTemplate; |
| 5997 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) |
| 5998 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| 5999 | else |
| 6000 | Conv = cast<CXXConversionDecl>(D); |
| 6001 | |
| 6002 | if (ConvTemplate) |
| 6003 | SemaRef.AddTemplateConversionCandidate( |
| 6004 | ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, |
| 6005 | /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); |
| 6006 | else |
| 6007 | SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, |
| 6008 | ToType, CandidateSet, |
| 6009 | /*AllowObjCConversionOnExplicit=*/false, |
| 6010 | /*AllowExplicit*/ true); |
| 6011 | } |
| 6012 | } |
| 6013 | |
| 6014 | /// Attempt to convert the given expression to a type which is accepted |
| 6015 | /// by the given converter. |
| 6016 | /// |
| 6017 | /// This routine will attempt to convert an expression of class type to a |
| 6018 | /// type accepted by the specified converter. In C++11 and before, the class |
| 6019 | /// must have a single non-explicit conversion function converting to a matching |
| 6020 | /// type. In C++1y, there can be multiple such conversion functions, but only |
| 6021 | /// one target type. |
| 6022 | /// |
| 6023 | /// \param Loc The source location of the construct that requires the |
| 6024 | /// conversion. |
| 6025 | /// |
| 6026 | /// \param From The expression we're converting from. |
| 6027 | /// |
| 6028 | /// \param Converter Used to control and diagnose the conversion process. |
| 6029 | /// |
| 6030 | /// \returns The expression, converted to an integral or enumeration type if |
| 6031 | /// successful. |
| 6032 | ExprResult Sema::PerformContextualImplicitConversion( |
| 6033 | SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { |
| 6034 | // We can't perform any more checking for type-dependent expressions. |
| 6035 | if (From->isTypeDependent()) |
| 6036 | return From; |
| 6037 | |
| 6038 | // Process placeholders immediately. |
| 6039 | if (From->hasPlaceholderType()) { |
| 6040 | ExprResult result = CheckPlaceholderExpr(From); |
| 6041 | if (result.isInvalid()) |
| 6042 | return result; |
| 6043 | From = result.get(); |
| 6044 | } |
| 6045 | |
| 6046 | // If the expression already has a matching type, we're golden. |
| 6047 | QualType T = From->getType(); |
| 6048 | if (Converter.match(T)) |
| 6049 | return DefaultLvalueConversion(From); |
| 6050 | |
| 6051 | // FIXME: Check for missing '()' if T is a function type? |
| 6052 | |
| 6053 | // We can only perform contextual implicit conversions on objects of class |
| 6054 | // type. |
| 6055 | const RecordType *RecordTy = T->getAs<RecordType>(); |
| 6056 | if (!RecordTy || !getLangOpts().CPlusPlus) { |
| 6057 | if (!Converter.Suppress) |
| 6058 | Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); |
| 6059 | return From; |
| 6060 | } |
| 6061 | |
| 6062 | // We must have a complete class type. |
| 6063 | struct TypeDiagnoserPartialDiag : TypeDiagnoser { |
| 6064 | ContextualImplicitConverter &Converter; |
| 6065 | Expr *From; |
| 6066 | |
| 6067 | TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) |
| 6068 | : Converter(Converter), From(From) {} |
| 6069 | |
| 6070 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { |
| 6071 | Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); |
| 6072 | } |
| 6073 | } IncompleteDiagnoser(Converter, From); |
| 6074 | |
| 6075 | if (Converter.Suppress ? !isCompleteType(Loc, T) |
| 6076 | : RequireCompleteType(Loc, T, IncompleteDiagnoser)) |
| 6077 | return From; |
| 6078 | |
| 6079 | // Look for a conversion to an integral or enumeration type. |
| 6080 | UnresolvedSet<4> |
| 6081 | ViableConversions; // These are *potentially* viable in C++1y. |
| 6082 | UnresolvedSet<4> ExplicitConversions; |
| 6083 | const auto &Conversions = |
| 6084 | cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); |
| 6085 | |
| 6086 | bool HadMultipleCandidates = |
| 6087 | (std::distance(Conversions.begin(), Conversions.end()) > 1); |
| 6088 | |
| 6089 | // To check that there is only one target type, in C++1y: |
| 6090 | QualType ToType; |
| 6091 | bool HasUniqueTargetType = true; |
| 6092 | |
| 6093 | // Collect explicit or viable (potentially in C++1y) conversions. |
| 6094 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 6095 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
| 6096 | CXXConversionDecl *Conversion; |
| 6097 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
| 6098 | if (ConvTemplate) { |
| 6099 | if (getLangOpts().CPlusPlus14) |
| 6100 | Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| 6101 | else |
| 6102 | continue; // C++11 does not consider conversion operator templates(?). |
| 6103 | } else |
| 6104 | Conversion = cast<CXXConversionDecl>(D); |
| 6105 | |
| 6106 | assert((!ConvTemplate || getLangOpts().CPlusPlus14) &&((void)0) |
| 6107 | "Conversion operator templates are considered potentially "((void)0) |
| 6108 | "viable in C++1y")((void)0); |
| 6109 | |
| 6110 | QualType CurToType = Conversion->getConversionType().getNonReferenceType(); |
| 6111 | if (Converter.match(CurToType) || ConvTemplate) { |
| 6112 | |
| 6113 | if (Conversion->isExplicit()) { |
| 6114 | // FIXME: For C++1y, do we need this restriction? |
| 6115 | // cf. diagnoseNoViableConversion() |
| 6116 | if (!ConvTemplate) |
| 6117 | ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); |
| 6118 | } else { |
| 6119 | if (!ConvTemplate && getLangOpts().CPlusPlus14) { |
| 6120 | if (ToType.isNull()) |
| 6121 | ToType = CurToType.getUnqualifiedType(); |
| 6122 | else if (HasUniqueTargetType && |
| 6123 | (CurToType.getUnqualifiedType() != ToType)) |
| 6124 | HasUniqueTargetType = false; |
| 6125 | } |
| 6126 | ViableConversions.addDecl(I.getDecl(), I.getAccess()); |
| 6127 | } |
| 6128 | } |
| 6129 | } |
| 6130 | |
| 6131 | if (getLangOpts().CPlusPlus14) { |
| 6132 | // C++1y [conv]p6: |
| 6133 | // ... An expression e of class type E appearing in such a context |
| 6134 | // is said to be contextually implicitly converted to a specified |
| 6135 | // type T and is well-formed if and only if e can be implicitly |
| 6136 | // converted to a type T that is determined as follows: E is searched |
| 6137 | // for conversion functions whose return type is cv T or reference to |
| 6138 | // cv T such that T is allowed by the context. There shall be |
| 6139 | // exactly one such T. |
| 6140 | |
| 6141 | // If no unique T is found: |
| 6142 | if (ToType.isNull()) { |
| 6143 | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, |
| 6144 | HadMultipleCandidates, |
| 6145 | ExplicitConversions)) |
| 6146 | return ExprError(); |
| 6147 | return finishContextualImplicitConversion(*this, Loc, From, Converter); |
| 6148 | } |
| 6149 | |
| 6150 | // If more than one unique Ts are found: |
| 6151 | if (!HasUniqueTargetType) |
| 6152 | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, |
| 6153 | ViableConversions); |
| 6154 | |
| 6155 | // If one unique T is found: |
| 6156 | // First, build a candidate set from the previously recorded |
| 6157 | // potentially viable conversions. |
| 6158 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
| 6159 | collectViableConversionCandidates(*this, From, ToType, ViableConversions, |
| 6160 | CandidateSet); |
| 6161 | |
| 6162 | // Then, perform overload resolution over the candidate set. |
| 6163 | OverloadCandidateSet::iterator Best; |
| 6164 | switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { |
| 6165 | case OR_Success: { |
| 6166 | // Apply this conversion. |
| 6167 | DeclAccessPair Found = |
| 6168 | DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); |
| 6169 | if (recordConversion(*this, Loc, From, Converter, T, |
| 6170 | HadMultipleCandidates, Found)) |
| 6171 | return ExprError(); |
| 6172 | break; |
| 6173 | } |
| 6174 | case OR_Ambiguous: |
| 6175 | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, |
| 6176 | ViableConversions); |
| 6177 | case OR_No_Viable_Function: |
| 6178 | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, |
| 6179 | HadMultipleCandidates, |
| 6180 | ExplicitConversions)) |
| 6181 | return ExprError(); |
| 6182 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
| 6183 | case OR_Deleted: |
| 6184 | // We'll complain below about a non-integral condition type. |
| 6185 | break; |
| 6186 | } |
| 6187 | } else { |
| 6188 | switch (ViableConversions.size()) { |
| 6189 | case 0: { |
| 6190 | if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, |
| 6191 | HadMultipleCandidates, |
| 6192 | ExplicitConversions)) |
| 6193 | return ExprError(); |
| 6194 | |
| 6195 | // We'll complain below about a non-integral condition type. |
| 6196 | break; |
| 6197 | } |
| 6198 | case 1: { |
| 6199 | // Apply this conversion. |
| 6200 | DeclAccessPair Found = ViableConversions[0]; |
| 6201 | if (recordConversion(*this, Loc, From, Converter, T, |
| 6202 | HadMultipleCandidates, Found)) |
| 6203 | return ExprError(); |
| 6204 | break; |
| 6205 | } |
| 6206 | default: |
| 6207 | return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, |
| 6208 | ViableConversions); |
| 6209 | } |
| 6210 | } |
| 6211 | |
| 6212 | return finishContextualImplicitConversion(*this, Loc, From, Converter); |
| 6213 | } |
| 6214 | |
| 6215 | /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is |
| 6216 | /// an acceptable non-member overloaded operator for a call whose |
| 6217 | /// arguments have types T1 (and, if non-empty, T2). This routine |
| 6218 | /// implements the check in C++ [over.match.oper]p3b2 concerning |
| 6219 | /// enumeration types. |
| 6220 | static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, |
| 6221 | FunctionDecl *Fn, |
| 6222 | ArrayRef<Expr *> Args) { |
| 6223 | QualType T1 = Args[0]->getType(); |
| 6224 | QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); |
| 6225 | |
| 6226 | if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) |
| 6227 | return true; |
| 6228 | |
| 6229 | if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) |
| 6230 | return true; |
| 6231 | |
| 6232 | const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); |
| 6233 | if (Proto->getNumParams() < 1) |
| 6234 | return false; |
| 6235 | |
| 6236 | if (T1->isEnumeralType()) { |
| 6237 | QualType ArgType = Proto->getParamType(0).getNonReferenceType(); |
| 6238 | if (Context.hasSameUnqualifiedType(T1, ArgType)) |
| 6239 | return true; |
| 6240 | } |
| 6241 | |
| 6242 | if (Proto->getNumParams() < 2) |
| 6243 | return false; |
| 6244 | |
| 6245 | if (!T2.isNull() && T2->isEnumeralType()) { |
| 6246 | QualType ArgType = Proto->getParamType(1).getNonReferenceType(); |
| 6247 | if (Context.hasSameUnqualifiedType(T2, ArgType)) |
| 6248 | return true; |
| 6249 | } |
| 6250 | |
| 6251 | return false; |
| 6252 | } |
| 6253 | |
| 6254 | /// AddOverloadCandidate - Adds the given function to the set of |
| 6255 | /// candidate functions, using the given function call arguments. If |
| 6256 | /// @p SuppressUserConversions, then don't allow user-defined |
| 6257 | /// conversions via constructors or conversion operators. |
| 6258 | /// |
| 6259 | /// \param PartialOverloading true if we are performing "partial" overloading |
| 6260 | /// based on an incomplete set of function arguments. This feature is used by |
| 6261 | /// code completion. |
| 6262 | void Sema::AddOverloadCandidate( |
| 6263 | FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, |
| 6264 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, |
| 6265 | bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, |
| 6266 | ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, |
| 6267 | OverloadCandidateParamOrder PO) { |
| 6268 | const FunctionProtoType *Proto |
| 6269 | = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); |
| 6270 | assert(Proto && "Functions without a prototype cannot be overloaded")((void)0); |
| 6271 | assert(!Function->getDescribedFunctionTemplate() &&((void)0) |
| 6272 | "Use AddTemplateOverloadCandidate for function templates")((void)0); |
| 6273 | |
| 6274 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { |
| 6275 | if (!isa<CXXConstructorDecl>(Method)) { |
| 6276 | // If we get here, it's because we're calling a member function |
| 6277 | // that is named without a member access expression (e.g., |
| 6278 | // "this->f") that was either written explicitly or created |
| 6279 | // implicitly. This can happen with a qualified call to a member |
| 6280 | // function, e.g., X::f(). We use an empty type for the implied |
| 6281 | // object argument (C++ [over.call.func]p3), and the acting context |
| 6282 | // is irrelevant. |
| 6283 | AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), |
| 6284 | Expr::Classification::makeSimpleLValue(), Args, |
| 6285 | CandidateSet, SuppressUserConversions, |
| 6286 | PartialOverloading, EarlyConversions, PO); |
| 6287 | return; |
| 6288 | } |
| 6289 | // We treat a constructor like a non-member function, since its object |
| 6290 | // argument doesn't participate in overload resolution. |
| 6291 | } |
| 6292 | |
| 6293 | if (!CandidateSet.isNewCandidate(Function, PO)) |
| 6294 | return; |
| 6295 | |
| 6296 | // C++11 [class.copy]p11: [DR1402] |
| 6297 | // A defaulted move constructor that is defined as deleted is ignored by |
| 6298 | // overload resolution. |
| 6299 | CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); |
| 6300 | if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && |
| 6301 | Constructor->isMoveConstructor()) |
| 6302 | return; |
| 6303 | |
| 6304 | // Overload resolution is always an unevaluated context. |
| 6305 | EnterExpressionEvaluationContext Unevaluated( |
| 6306 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 6307 | |
| 6308 | // C++ [over.match.oper]p3: |
| 6309 | // if no operand has a class type, only those non-member functions in the |
| 6310 | // lookup set that have a first parameter of type T1 or "reference to |
| 6311 | // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there |
| 6312 | // is a right operand) a second parameter of type T2 or "reference to |
| 6313 | // (possibly cv-qualified) T2", when T2 is an enumeration type, are |
| 6314 | // candidate functions. |
| 6315 | if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && |
| 6316 | !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) |
| 6317 | return; |
| 6318 | |
| 6319 | // Add this candidate |
| 6320 | OverloadCandidate &Candidate = |
| 6321 | CandidateSet.addCandidate(Args.size(), EarlyConversions); |
| 6322 | Candidate.FoundDecl = FoundDecl; |
| 6323 | Candidate.Function = Function; |
| 6324 | Candidate.Viable = true; |
| 6325 | Candidate.RewriteKind = |
| 6326 | CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); |
| 6327 | Candidate.IsSurrogate = false; |
| 6328 | Candidate.IsADLCandidate = IsADLCandidate; |
| 6329 | Candidate.IgnoreObjectArgument = false; |
| 6330 | Candidate.ExplicitCallArguments = Args.size(); |
| 6331 | |
| 6332 | // Explicit functions are not actually candidates at all if we're not |
| 6333 | // allowing them in this context, but keep them around so we can point |
| 6334 | // to them in diagnostics. |
| 6335 | if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { |
| 6336 | Candidate.Viable = false; |
| 6337 | Candidate.FailureKind = ovl_fail_explicit; |
| 6338 | return; |
| 6339 | } |
| 6340 | |
| 6341 | if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() && |
| 6342 | !Function->getAttr<TargetAttr>()->isDefaultVersion()) { |
| 6343 | Candidate.Viable = false; |
| 6344 | Candidate.FailureKind = ovl_non_default_multiversion_function; |
| 6345 | return; |
| 6346 | } |
| 6347 | |
| 6348 | if (Constructor) { |
| 6349 | // C++ [class.copy]p3: |
| 6350 | // A member function template is never instantiated to perform the copy |
| 6351 | // of a class object to an object of its class type. |
| 6352 | QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); |
| 6353 | if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && |
| 6354 | (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || |
| 6355 | IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), |
| 6356 | ClassType))) { |
| 6357 | Candidate.Viable = false; |
| 6358 | Candidate.FailureKind = ovl_fail_illegal_constructor; |
| 6359 | return; |
| 6360 | } |
| 6361 | |
| 6362 | // C++ [over.match.funcs]p8: (proposed DR resolution) |
| 6363 | // A constructor inherited from class type C that has a first parameter |
| 6364 | // of type "reference to P" (including such a constructor instantiated |
| 6365 | // from a template) is excluded from the set of candidate functions when |
| 6366 | // constructing an object of type cv D if the argument list has exactly |
| 6367 | // one argument and D is reference-related to P and P is reference-related |
| 6368 | // to C. |
| 6369 | auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); |
| 6370 | if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && |
| 6371 | Constructor->getParamDecl(0)->getType()->isReferenceType()) { |
| 6372 | QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); |
| 6373 | QualType C = Context.getRecordType(Constructor->getParent()); |
| 6374 | QualType D = Context.getRecordType(Shadow->getParent()); |
| 6375 | SourceLocation Loc = Args.front()->getExprLoc(); |
| 6376 | if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && |
| 6377 | (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { |
| 6378 | Candidate.Viable = false; |
| 6379 | Candidate.FailureKind = ovl_fail_inhctor_slice; |
| 6380 | return; |
| 6381 | } |
| 6382 | } |
| 6383 | |
| 6384 | // Check that the constructor is capable of constructing an object in the |
| 6385 | // destination address space. |
| 6386 | if (!Qualifiers::isAddressSpaceSupersetOf( |
| 6387 | Constructor->getMethodQualifiers().getAddressSpace(), |
| 6388 | CandidateSet.getDestAS())) { |
| 6389 | Candidate.Viable = false; |
| 6390 | Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; |
| 6391 | } |
| 6392 | } |
| 6393 | |
| 6394 | unsigned NumParams = Proto->getNumParams(); |
| 6395 | |
| 6396 | // (C++ 13.3.2p2): A candidate function having fewer than m |
| 6397 | // parameters is viable only if it has an ellipsis in its parameter |
| 6398 | // list (8.3.5). |
| 6399 | if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && |
| 6400 | !Proto->isVariadic()) { |
| 6401 | Candidate.Viable = false; |
| 6402 | Candidate.FailureKind = ovl_fail_too_many_arguments; |
| 6403 | return; |
| 6404 | } |
| 6405 | |
| 6406 | // (C++ 13.3.2p2): A candidate function having more than m parameters |
| 6407 | // is viable only if the (m+1)st parameter has a default argument |
| 6408 | // (8.3.6). For the purposes of overload resolution, the |
| 6409 | // parameter list is truncated on the right, so that there are |
| 6410 | // exactly m parameters. |
| 6411 | unsigned MinRequiredArgs = Function->getMinRequiredArguments(); |
| 6412 | if (Args.size() < MinRequiredArgs && !PartialOverloading) { |
| 6413 | // Not enough arguments. |
| 6414 | Candidate.Viable = false; |
| 6415 | Candidate.FailureKind = ovl_fail_too_few_arguments; |
| 6416 | return; |
| 6417 | } |
| 6418 | |
| 6419 | // (CUDA B.1): Check for invalid calls between targets. |
| 6420 | if (getLangOpts().CUDA) |
| 6421 | if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) |
| 6422 | // Skip the check for callers that are implicit members, because in this |
| 6423 | // case we may not yet know what the member's target is; the target is |
| 6424 | // inferred for the member automatically, based on the bases and fields of |
| 6425 | // the class. |
| 6426 | if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) { |
| 6427 | Candidate.Viable = false; |
| 6428 | Candidate.FailureKind = ovl_fail_bad_target; |
| 6429 | return; |
| 6430 | } |
| 6431 | |
| 6432 | if (Function->getTrailingRequiresClause()) { |
| 6433 | ConstraintSatisfaction Satisfaction; |
| 6434 | if (CheckFunctionConstraints(Function, Satisfaction) || |
| 6435 | !Satisfaction.IsSatisfied) { |
| 6436 | Candidate.Viable = false; |
| 6437 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; |
| 6438 | return; |
| 6439 | } |
| 6440 | } |
| 6441 | |
| 6442 | // Determine the implicit conversion sequences for each of the |
| 6443 | // arguments. |
| 6444 | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { |
| 6445 | unsigned ConvIdx = |
| 6446 | PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; |
| 6447 | if (Candidate.Conversions[ConvIdx].isInitialized()) { |
| 6448 | // We already formed a conversion sequence for this parameter during |
| 6449 | // template argument deduction. |
| 6450 | } else if (ArgIdx < NumParams) { |
| 6451 | // (C++ 13.3.2p3): for F to be a viable function, there shall |
| 6452 | // exist for each argument an implicit conversion sequence |
| 6453 | // (13.3.3.1) that converts that argument to the corresponding |
| 6454 | // parameter of F. |
| 6455 | QualType ParamType = Proto->getParamType(ArgIdx); |
| 6456 | Candidate.Conversions[ConvIdx] = TryCopyInitialization( |
| 6457 | *this, Args[ArgIdx], ParamType, SuppressUserConversions, |
| 6458 | /*InOverloadResolution=*/true, |
| 6459 | /*AllowObjCWritebackConversion=*/ |
| 6460 | getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); |
| 6461 | if (Candidate.Conversions[ConvIdx].isBad()) { |
| 6462 | Candidate.Viable = false; |
| 6463 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 6464 | return; |
| 6465 | } |
| 6466 | } else { |
| 6467 | // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| 6468 | // argument for which there is no corresponding parameter is |
| 6469 | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| 6470 | Candidate.Conversions[ConvIdx].setEllipsis(); |
| 6471 | } |
| 6472 | } |
| 6473 | |
| 6474 | if (EnableIfAttr *FailedAttr = |
| 6475 | CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { |
| 6476 | Candidate.Viable = false; |
| 6477 | Candidate.FailureKind = ovl_fail_enable_if; |
| 6478 | Candidate.DeductionFailure.Data = FailedAttr; |
| 6479 | return; |
| 6480 | } |
| 6481 | } |
| 6482 | |
| 6483 | ObjCMethodDecl * |
| 6484 | Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, |
| 6485 | SmallVectorImpl<ObjCMethodDecl *> &Methods) { |
| 6486 | if (Methods.size() <= 1) |
| 6487 | return nullptr; |
| 6488 | |
| 6489 | for (unsigned b = 0, e = Methods.size(); b < e; b++) { |
| 6490 | bool Match = true; |
| 6491 | ObjCMethodDecl *Method = Methods[b]; |
| 6492 | unsigned NumNamedArgs = Sel.getNumArgs(); |
| 6493 | // Method might have more arguments than selector indicates. This is due |
| 6494 | // to addition of c-style arguments in method. |
| 6495 | if (Method->param_size() > NumNamedArgs) |
| 6496 | NumNamedArgs = Method->param_size(); |
| 6497 | if (Args.size() < NumNamedArgs) |
| 6498 | continue; |
| 6499 | |
| 6500 | for (unsigned i = 0; i < NumNamedArgs; i++) { |
| 6501 | // We can't do any type-checking on a type-dependent argument. |
| 6502 | if (Args[i]->isTypeDependent()) { |
| 6503 | Match = false; |
| 6504 | break; |
| 6505 | } |
| 6506 | |
| 6507 | ParmVarDecl *param = Method->parameters()[i]; |
| 6508 | Expr *argExpr = Args[i]; |
| 6509 | assert(argExpr && "SelectBestMethod(): missing expression")((void)0); |
| 6510 | |
| 6511 | // Strip the unbridged-cast placeholder expression off unless it's |
| 6512 | // a consumed argument. |
| 6513 | if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && |
| 6514 | !param->hasAttr<CFConsumedAttr>()) |
| 6515 | argExpr = stripARCUnbridgedCast(argExpr); |
| 6516 | |
| 6517 | // If the parameter is __unknown_anytype, move on to the next method. |
| 6518 | if (param->getType() == Context.UnknownAnyTy) { |
| 6519 | Match = false; |
| 6520 | break; |
| 6521 | } |
| 6522 | |
| 6523 | ImplicitConversionSequence ConversionState |
| 6524 | = TryCopyInitialization(*this, argExpr, param->getType(), |
| 6525 | /*SuppressUserConversions*/false, |
| 6526 | /*InOverloadResolution=*/true, |
| 6527 | /*AllowObjCWritebackConversion=*/ |
| 6528 | getLangOpts().ObjCAutoRefCount, |
| 6529 | /*AllowExplicit*/false); |
| 6530 | // This function looks for a reasonably-exact match, so we consider |
| 6531 | // incompatible pointer conversions to be a failure here. |
| 6532 | if (ConversionState.isBad() || |
| 6533 | (ConversionState.isStandard() && |
| 6534 | ConversionState.Standard.Second == |
| 6535 | ICK_Incompatible_Pointer_Conversion)) { |
| 6536 | Match = false; |
| 6537 | break; |
| 6538 | } |
| 6539 | } |
| 6540 | // Promote additional arguments to variadic methods. |
| 6541 | if (Match && Method->isVariadic()) { |
| 6542 | for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { |
| 6543 | if (Args[i]->isTypeDependent()) { |
| 6544 | Match = false; |
| 6545 | break; |
| 6546 | } |
| 6547 | ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, |
| 6548 | nullptr); |
| 6549 | if (Arg.isInvalid()) { |
| 6550 | Match = false; |
| 6551 | break; |
| 6552 | } |
| 6553 | } |
| 6554 | } else { |
| 6555 | // Check for extra arguments to non-variadic methods. |
| 6556 | if (Args.size() != NumNamedArgs) |
| 6557 | Match = false; |
| 6558 | else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { |
| 6559 | // Special case when selectors have no argument. In this case, select |
| 6560 | // one with the most general result type of 'id'. |
| 6561 | for (unsigned b = 0, e = Methods.size(); b < e; b++) { |
| 6562 | QualType ReturnT = Methods[b]->getReturnType(); |
| 6563 | if (ReturnT->isObjCIdType()) |
| 6564 | return Methods[b]; |
| 6565 | } |
| 6566 | } |
| 6567 | } |
| 6568 | |
| 6569 | if (Match) |
| 6570 | return Method; |
| 6571 | } |
| 6572 | return nullptr; |
| 6573 | } |
| 6574 | |
| 6575 | static bool convertArgsForAvailabilityChecks( |
| 6576 | Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, |
| 6577 | ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, |
| 6578 | Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { |
| 6579 | if (ThisArg) { |
| 6580 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); |
| 6581 | assert(!isa<CXXConstructorDecl>(Method) &&((void)0) |
| 6582 | "Shouldn't have `this` for ctors!")((void)0); |
| 6583 | assert(!Method->isStatic() && "Shouldn't have `this` for static methods!")((void)0); |
| 6584 | ExprResult R = S.PerformObjectArgumentInitialization( |
| 6585 | ThisArg, /*Qualifier=*/nullptr, Method, Method); |
| 6586 | if (R.isInvalid()) |
| 6587 | return false; |
| 6588 | ConvertedThis = R.get(); |
| 6589 | } else { |
| 6590 | if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { |
| 6591 | (void)MD; |
| 6592 | assert((MissingImplicitThis || MD->isStatic() ||((void)0) |
| 6593 | isa<CXXConstructorDecl>(MD)) &&((void)0) |
| 6594 | "Expected `this` for non-ctor instance methods")((void)0); |
| 6595 | } |
| 6596 | ConvertedThis = nullptr; |
| 6597 | } |
| 6598 | |
| 6599 | // Ignore any variadic arguments. Converting them is pointless, since the |
| 6600 | // user can't refer to them in the function condition. |
| 6601 | unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); |
| 6602 | |
| 6603 | // Convert the arguments. |
| 6604 | for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { |
| 6605 | ExprResult R; |
| 6606 | R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| 6607 | S.Context, Function->getParamDecl(I)), |
| 6608 | SourceLocation(), Args[I]); |
| 6609 | |
| 6610 | if (R.isInvalid()) |
| 6611 | return false; |
| 6612 | |
| 6613 | ConvertedArgs.push_back(R.get()); |
| 6614 | } |
| 6615 | |
| 6616 | if (Trap.hasErrorOccurred()) |
| 6617 | return false; |
| 6618 | |
| 6619 | // Push default arguments if needed. |
| 6620 | if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { |
| 6621 | for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { |
| 6622 | ParmVarDecl *P = Function->getParamDecl(i); |
| 6623 | if (!P->hasDefaultArg()) |
| 6624 | return false; |
| 6625 | ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); |
| 6626 | if (R.isInvalid()) |
| 6627 | return false; |
| 6628 | ConvertedArgs.push_back(R.get()); |
| 6629 | } |
| 6630 | |
| 6631 | if (Trap.hasErrorOccurred()) |
| 6632 | return false; |
| 6633 | } |
| 6634 | return true; |
| 6635 | } |
| 6636 | |
| 6637 | EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, |
| 6638 | SourceLocation CallLoc, |
| 6639 | ArrayRef<Expr *> Args, |
| 6640 | bool MissingImplicitThis) { |
| 6641 | auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); |
| 6642 | if (EnableIfAttrs.begin() == EnableIfAttrs.end()) |
| 6643 | return nullptr; |
| 6644 | |
| 6645 | SFINAETrap Trap(*this); |
| 6646 | SmallVector<Expr *, 16> ConvertedArgs; |
| 6647 | // FIXME: We should look into making enable_if late-parsed. |
| 6648 | Expr *DiscardedThis; |
| 6649 | if (!convertArgsForAvailabilityChecks( |
| 6650 | *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, |
| 6651 | /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) |
| 6652 | return *EnableIfAttrs.begin(); |
| 6653 | |
| 6654 | for (auto *EIA : EnableIfAttrs) { |
| 6655 | APValue Result; |
| 6656 | // FIXME: This doesn't consider value-dependent cases, because doing so is |
| 6657 | // very difficult. Ideally, we should handle them more gracefully. |
| 6658 | if (EIA->getCond()->isValueDependent() || |
| 6659 | !EIA->getCond()->EvaluateWithSubstitution( |
| 6660 | Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) |
| 6661 | return EIA; |
| 6662 | |
| 6663 | if (!Result.isInt() || !Result.getInt().getBoolValue()) |
| 6664 | return EIA; |
| 6665 | } |
| 6666 | return nullptr; |
| 6667 | } |
| 6668 | |
| 6669 | template <typename CheckFn> |
| 6670 | static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, |
| 6671 | bool ArgDependent, SourceLocation Loc, |
| 6672 | CheckFn &&IsSuccessful) { |
| 6673 | SmallVector<const DiagnoseIfAttr *, 8> Attrs; |
| 6674 | for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { |
| 6675 | if (ArgDependent == DIA->getArgDependent()) |
| 6676 | Attrs.push_back(DIA); |
| 6677 | } |
| 6678 | |
| 6679 | // Common case: No diagnose_if attributes, so we can quit early. |
| 6680 | if (Attrs.empty()) |
| 6681 | return false; |
| 6682 | |
| 6683 | auto WarningBegin = std::stable_partition( |
| 6684 | Attrs.begin(), Attrs.end(), |
| 6685 | [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); |
| 6686 | |
| 6687 | // Note that diagnose_if attributes are late-parsed, so they appear in the |
| 6688 | // correct order (unlike enable_if attributes). |
| 6689 | auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), |
| 6690 | IsSuccessful); |
| 6691 | if (ErrAttr != WarningBegin) { |
| 6692 | const DiagnoseIfAttr *DIA = *ErrAttr; |
| 6693 | S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); |
| 6694 | S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) |
| 6695 | << DIA->getParent() << DIA->getCond()->getSourceRange(); |
| 6696 | return true; |
| 6697 | } |
| 6698 | |
| 6699 | for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) |
| 6700 | if (IsSuccessful(DIA)) { |
| 6701 | S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); |
| 6702 | S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) |
| 6703 | << DIA->getParent() << DIA->getCond()->getSourceRange(); |
| 6704 | } |
| 6705 | |
| 6706 | return false; |
| 6707 | } |
| 6708 | |
| 6709 | bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, |
| 6710 | const Expr *ThisArg, |
| 6711 | ArrayRef<const Expr *> Args, |
| 6712 | SourceLocation Loc) { |
| 6713 | return diagnoseDiagnoseIfAttrsWith( |
| 6714 | *this, Function, /*ArgDependent=*/true, Loc, |
| 6715 | [&](const DiagnoseIfAttr *DIA) { |
| 6716 | APValue Result; |
| 6717 | // It's sane to use the same Args for any redecl of this function, since |
| 6718 | // EvaluateWithSubstitution only cares about the position of each |
| 6719 | // argument in the arg list, not the ParmVarDecl* it maps to. |
| 6720 | if (!DIA->getCond()->EvaluateWithSubstitution( |
| 6721 | Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) |
| 6722 | return false; |
| 6723 | return Result.isInt() && Result.getInt().getBoolValue(); |
| 6724 | }); |
| 6725 | } |
| 6726 | |
| 6727 | bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, |
| 6728 | SourceLocation Loc) { |
| 6729 | return diagnoseDiagnoseIfAttrsWith( |
| 6730 | *this, ND, /*ArgDependent=*/false, Loc, |
| 6731 | [&](const DiagnoseIfAttr *DIA) { |
| 6732 | bool Result; |
| 6733 | return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && |
| 6734 | Result; |
| 6735 | }); |
| 6736 | } |
| 6737 | |
| 6738 | /// Add all of the function declarations in the given function set to |
| 6739 | /// the overload candidate set. |
| 6740 | void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, |
| 6741 | ArrayRef<Expr *> Args, |
| 6742 | OverloadCandidateSet &CandidateSet, |
| 6743 | TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 6744 | bool SuppressUserConversions, |
| 6745 | bool PartialOverloading, |
| 6746 | bool FirstArgumentIsBase) { |
| 6747 | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { |
| 6748 | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); |
| 6749 | ArrayRef<Expr *> FunctionArgs = Args; |
| 6750 | |
| 6751 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); |
| 6752 | FunctionDecl *FD = |
| 6753 | FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); |
| 6754 | |
| 6755 | if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { |
| 6756 | QualType ObjectType; |
| 6757 | Expr::Classification ObjectClassification; |
| 6758 | if (Args.size() > 0) { |
| 6759 | if (Expr *E = Args[0]) { |
| 6760 | // Use the explicit base to restrict the lookup: |
| 6761 | ObjectType = E->getType(); |
| 6762 | // Pointers in the object arguments are implicitly dereferenced, so we |
| 6763 | // always classify them as l-values. |
| 6764 | if (!ObjectType.isNull() && ObjectType->isPointerType()) |
| 6765 | ObjectClassification = Expr::Classification::makeSimpleLValue(); |
| 6766 | else |
| 6767 | ObjectClassification = E->Classify(Context); |
| 6768 | } // .. else there is an implicit base. |
| 6769 | FunctionArgs = Args.slice(1); |
| 6770 | } |
| 6771 | if (FunTmpl) { |
| 6772 | AddMethodTemplateCandidate( |
| 6773 | FunTmpl, F.getPair(), |
| 6774 | cast<CXXRecordDecl>(FunTmpl->getDeclContext()), |
| 6775 | ExplicitTemplateArgs, ObjectType, ObjectClassification, |
| 6776 | FunctionArgs, CandidateSet, SuppressUserConversions, |
| 6777 | PartialOverloading); |
| 6778 | } else { |
| 6779 | AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), |
| 6780 | cast<CXXMethodDecl>(FD)->getParent(), ObjectType, |
| 6781 | ObjectClassification, FunctionArgs, CandidateSet, |
| 6782 | SuppressUserConversions, PartialOverloading); |
| 6783 | } |
| 6784 | } else { |
| 6785 | // This branch handles both standalone functions and static methods. |
| 6786 | |
| 6787 | // Slice the first argument (which is the base) when we access |
| 6788 | // static method as non-static. |
| 6789 | if (Args.size() > 0 && |
| 6790 | (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && |
| 6791 | !isa<CXXConstructorDecl>(FD)))) { |
| 6792 | assert(cast<CXXMethodDecl>(FD)->isStatic())((void)0); |
| 6793 | FunctionArgs = Args.slice(1); |
| 6794 | } |
| 6795 | if (FunTmpl) { |
| 6796 | AddTemplateOverloadCandidate(FunTmpl, F.getPair(), |
| 6797 | ExplicitTemplateArgs, FunctionArgs, |
| 6798 | CandidateSet, SuppressUserConversions, |
| 6799 | PartialOverloading); |
| 6800 | } else { |
| 6801 | AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, |
| 6802 | SuppressUserConversions, PartialOverloading); |
| 6803 | } |
| 6804 | } |
| 6805 | } |
| 6806 | } |
| 6807 | |
| 6808 | /// AddMethodCandidate - Adds a named decl (which is some kind of |
| 6809 | /// method) as a method candidate to the given overload set. |
| 6810 | void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, |
| 6811 | Expr::Classification ObjectClassification, |
| 6812 | ArrayRef<Expr *> Args, |
| 6813 | OverloadCandidateSet &CandidateSet, |
| 6814 | bool SuppressUserConversions, |
| 6815 | OverloadCandidateParamOrder PO) { |
| 6816 | NamedDecl *Decl = FoundDecl.getDecl(); |
| 6817 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); |
| 6818 | |
| 6819 | if (isa<UsingShadowDecl>(Decl)) |
| 6820 | Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); |
| 6821 | |
| 6822 | if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { |
| 6823 | assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) &&((void)0) |
| 6824 | "Expected a member function template")((void)0); |
| 6825 | AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, |
| 6826 | /*ExplicitArgs*/ nullptr, ObjectType, |
| 6827 | ObjectClassification, Args, CandidateSet, |
| 6828 | SuppressUserConversions, false, PO); |
| 6829 | } else { |
| 6830 | AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, |
| 6831 | ObjectType, ObjectClassification, Args, CandidateSet, |
| 6832 | SuppressUserConversions, false, None, PO); |
| 6833 | } |
| 6834 | } |
| 6835 | |
| 6836 | /// AddMethodCandidate - Adds the given C++ member function to the set |
| 6837 | /// of candidate functions, using the given function call arguments |
| 6838 | /// and the object argument (@c Object). For example, in a call |
| 6839 | /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain |
| 6840 | /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't |
| 6841 | /// allow user-defined conversions via constructors or conversion |
| 6842 | /// operators. |
| 6843 | void |
| 6844 | Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, |
| 6845 | CXXRecordDecl *ActingContext, QualType ObjectType, |
| 6846 | Expr::Classification ObjectClassification, |
| 6847 | ArrayRef<Expr *> Args, |
| 6848 | OverloadCandidateSet &CandidateSet, |
| 6849 | bool SuppressUserConversions, |
| 6850 | bool PartialOverloading, |
| 6851 | ConversionSequenceList EarlyConversions, |
| 6852 | OverloadCandidateParamOrder PO) { |
| 6853 | const FunctionProtoType *Proto |
| 6854 | = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); |
| 6855 | assert(Proto && "Methods without a prototype cannot be overloaded")((void)0); |
| 6856 | assert(!isa<CXXConstructorDecl>(Method) &&((void)0) |
| 6857 | "Use AddOverloadCandidate for constructors")((void)0); |
| 6858 | |
| 6859 | if (!CandidateSet.isNewCandidate(Method, PO)) |
| 6860 | return; |
| 6861 | |
| 6862 | // C++11 [class.copy]p23: [DR1402] |
| 6863 | // A defaulted move assignment operator that is defined as deleted is |
| 6864 | // ignored by overload resolution. |
| 6865 | if (Method->isDefaulted() && Method->isDeleted() && |
| 6866 | Method->isMoveAssignmentOperator()) |
| 6867 | return; |
| 6868 | |
| 6869 | // Overload resolution is always an unevaluated context. |
| 6870 | EnterExpressionEvaluationContext Unevaluated( |
| 6871 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 6872 | |
| 6873 | // Add this candidate |
| 6874 | OverloadCandidate &Candidate = |
| 6875 | CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); |
| 6876 | Candidate.FoundDecl = FoundDecl; |
| 6877 | Candidate.Function = Method; |
| 6878 | Candidate.RewriteKind = |
| 6879 | CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); |
| 6880 | Candidate.IsSurrogate = false; |
| 6881 | Candidate.IgnoreObjectArgument = false; |
| 6882 | Candidate.ExplicitCallArguments = Args.size(); |
| 6883 | |
| 6884 | unsigned NumParams = Proto->getNumParams(); |
| 6885 | |
| 6886 | // (C++ 13.3.2p2): A candidate function having fewer than m |
| 6887 | // parameters is viable only if it has an ellipsis in its parameter |
| 6888 | // list (8.3.5). |
| 6889 | if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && |
| 6890 | !Proto->isVariadic()) { |
| 6891 | Candidate.Viable = false; |
| 6892 | Candidate.FailureKind = ovl_fail_too_many_arguments; |
| 6893 | return; |
| 6894 | } |
| 6895 | |
| 6896 | // (C++ 13.3.2p2): A candidate function having more than m parameters |
| 6897 | // is viable only if the (m+1)st parameter has a default argument |
| 6898 | // (8.3.6). For the purposes of overload resolution, the |
| 6899 | // parameter list is truncated on the right, so that there are |
| 6900 | // exactly m parameters. |
| 6901 | unsigned MinRequiredArgs = Method->getMinRequiredArguments(); |
| 6902 | if (Args.size() < MinRequiredArgs && !PartialOverloading) { |
| 6903 | // Not enough arguments. |
| 6904 | Candidate.Viable = false; |
| 6905 | Candidate.FailureKind = ovl_fail_too_few_arguments; |
| 6906 | return; |
| 6907 | } |
| 6908 | |
| 6909 | Candidate.Viable = true; |
| 6910 | |
| 6911 | if (Method->isStatic() || ObjectType.isNull()) |
| 6912 | // The implicit object argument is ignored. |
| 6913 | Candidate.IgnoreObjectArgument = true; |
| 6914 | else { |
| 6915 | unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; |
| 6916 | // Determine the implicit conversion sequence for the object |
| 6917 | // parameter. |
| 6918 | Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization( |
| 6919 | *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, |
| 6920 | Method, ActingContext); |
| 6921 | if (Candidate.Conversions[ConvIdx].isBad()) { |
| 6922 | Candidate.Viable = false; |
| 6923 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 6924 | return; |
| 6925 | } |
| 6926 | } |
| 6927 | |
| 6928 | // (CUDA B.1): Check for invalid calls between targets. |
| 6929 | if (getLangOpts().CUDA) |
| 6930 | if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) |
| 6931 | if (!IsAllowedCUDACall(Caller, Method)) { |
| 6932 | Candidate.Viable = false; |
| 6933 | Candidate.FailureKind = ovl_fail_bad_target; |
| 6934 | return; |
| 6935 | } |
| 6936 | |
| 6937 | if (Method->getTrailingRequiresClause()) { |
| 6938 | ConstraintSatisfaction Satisfaction; |
| 6939 | if (CheckFunctionConstraints(Method, Satisfaction) || |
| 6940 | !Satisfaction.IsSatisfied) { |
| 6941 | Candidate.Viable = false; |
| 6942 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; |
| 6943 | return; |
| 6944 | } |
| 6945 | } |
| 6946 | |
| 6947 | // Determine the implicit conversion sequences for each of the |
| 6948 | // arguments. |
| 6949 | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { |
| 6950 | unsigned ConvIdx = |
| 6951 | PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); |
| 6952 | if (Candidate.Conversions[ConvIdx].isInitialized()) { |
| 6953 | // We already formed a conversion sequence for this parameter during |
| 6954 | // template argument deduction. |
| 6955 | } else if (ArgIdx < NumParams) { |
| 6956 | // (C++ 13.3.2p3): for F to be a viable function, there shall |
| 6957 | // exist for each argument an implicit conversion sequence |
| 6958 | // (13.3.3.1) that converts that argument to the corresponding |
| 6959 | // parameter of F. |
| 6960 | QualType ParamType = Proto->getParamType(ArgIdx); |
| 6961 | Candidate.Conversions[ConvIdx] |
| 6962 | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, |
| 6963 | SuppressUserConversions, |
| 6964 | /*InOverloadResolution=*/true, |
| 6965 | /*AllowObjCWritebackConversion=*/ |
| 6966 | getLangOpts().ObjCAutoRefCount); |
| 6967 | if (Candidate.Conversions[ConvIdx].isBad()) { |
| 6968 | Candidate.Viable = false; |
| 6969 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 6970 | return; |
| 6971 | } |
| 6972 | } else { |
| 6973 | // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| 6974 | // argument for which there is no corresponding parameter is |
| 6975 | // considered to "match the ellipsis" (C+ 13.3.3.1.3). |
| 6976 | Candidate.Conversions[ConvIdx].setEllipsis(); |
| 6977 | } |
| 6978 | } |
| 6979 | |
| 6980 | if (EnableIfAttr *FailedAttr = |
| 6981 | CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { |
| 6982 | Candidate.Viable = false; |
| 6983 | Candidate.FailureKind = ovl_fail_enable_if; |
| 6984 | Candidate.DeductionFailure.Data = FailedAttr; |
| 6985 | return; |
| 6986 | } |
| 6987 | |
| 6988 | if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() && |
| 6989 | !Method->getAttr<TargetAttr>()->isDefaultVersion()) { |
| 6990 | Candidate.Viable = false; |
| 6991 | Candidate.FailureKind = ovl_non_default_multiversion_function; |
| 6992 | } |
| 6993 | } |
| 6994 | |
| 6995 | /// Add a C++ member function template as a candidate to the candidate |
| 6996 | /// set, using template argument deduction to produce an appropriate member |
| 6997 | /// function template specialization. |
| 6998 | void Sema::AddMethodTemplateCandidate( |
| 6999 | FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, |
| 7000 | CXXRecordDecl *ActingContext, |
| 7001 | TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, |
| 7002 | Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, |
| 7003 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, |
| 7004 | bool PartialOverloading, OverloadCandidateParamOrder PO) { |
| 7005 | if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) |
| 7006 | return; |
| 7007 | |
| 7008 | // C++ [over.match.funcs]p7: |
| 7009 | // In each case where a candidate is a function template, candidate |
| 7010 | // function template specializations are generated using template argument |
| 7011 | // deduction (14.8.3, 14.8.2). Those candidates are then handled as |
| 7012 | // candidate functions in the usual way.113) A given name can refer to one |
| 7013 | // or more function templates and also to a set of overloaded non-template |
| 7014 | // functions. In such a case, the candidate functions generated from each |
| 7015 | // function template are combined with the set of non-template candidate |
| 7016 | // functions. |
| 7017 | TemplateDeductionInfo Info(CandidateSet.getLocation()); |
| 7018 | FunctionDecl *Specialization = nullptr; |
| 7019 | ConversionSequenceList Conversions; |
| 7020 | if (TemplateDeductionResult Result = DeduceTemplateArguments( |
| 7021 | MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, |
| 7022 | PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { |
| 7023 | return CheckNonDependentConversions( |
| 7024 | MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, |
| 7025 | SuppressUserConversions, ActingContext, ObjectType, |
| 7026 | ObjectClassification, PO); |
| 7027 | })) { |
| 7028 | OverloadCandidate &Candidate = |
| 7029 | CandidateSet.addCandidate(Conversions.size(), Conversions); |
| 7030 | Candidate.FoundDecl = FoundDecl; |
| 7031 | Candidate.Function = MethodTmpl->getTemplatedDecl(); |
| 7032 | Candidate.Viable = false; |
| 7033 | Candidate.RewriteKind = |
| 7034 | CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); |
| 7035 | Candidate.IsSurrogate = false; |
| 7036 | Candidate.IgnoreObjectArgument = |
| 7037 | cast<CXXMethodDecl>(Candidate.Function)->isStatic() || |
| 7038 | ObjectType.isNull(); |
| 7039 | Candidate.ExplicitCallArguments = Args.size(); |
| 7040 | if (Result == TDK_NonDependentConversionFailure) |
| 7041 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7042 | else { |
| 7043 | Candidate.FailureKind = ovl_fail_bad_deduction; |
| 7044 | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| 7045 | Info); |
| 7046 | } |
| 7047 | return; |
| 7048 | } |
| 7049 | |
| 7050 | // Add the function template specialization produced by template argument |
| 7051 | // deduction as a candidate. |
| 7052 | assert(Specialization && "Missing member function template specialization?")((void)0); |
| 7053 | assert(isa<CXXMethodDecl>(Specialization) &&((void)0) |
| 7054 | "Specialization is not a member function?")((void)0); |
| 7055 | AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, |
| 7056 | ActingContext, ObjectType, ObjectClassification, Args, |
| 7057 | CandidateSet, SuppressUserConversions, PartialOverloading, |
| 7058 | Conversions, PO); |
| 7059 | } |
| 7060 | |
| 7061 | /// Determine whether a given function template has a simple explicit specifier |
| 7062 | /// or a non-value-dependent explicit-specification that evaluates to true. |
| 7063 | static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { |
| 7064 | return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); |
| 7065 | } |
| 7066 | |
| 7067 | /// Add a C++ function template specialization as a candidate |
| 7068 | /// in the candidate set, using template argument deduction to produce |
| 7069 | /// an appropriate function template specialization. |
| 7070 | void Sema::AddTemplateOverloadCandidate( |
| 7071 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, |
| 7072 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, |
| 7073 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, |
| 7074 | bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, |
| 7075 | OverloadCandidateParamOrder PO) { |
| 7076 | if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) |
| 7077 | return; |
| 7078 | |
| 7079 | // If the function template has a non-dependent explicit specification, |
| 7080 | // exclude it now if appropriate; we are not permitted to perform deduction |
| 7081 | // and substitution in this case. |
| 7082 | if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { |
| 7083 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| 7084 | Candidate.FoundDecl = FoundDecl; |
| 7085 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| 7086 | Candidate.Viable = false; |
| 7087 | Candidate.FailureKind = ovl_fail_explicit; |
| 7088 | return; |
| 7089 | } |
| 7090 | |
| 7091 | // C++ [over.match.funcs]p7: |
| 7092 | // In each case where a candidate is a function template, candidate |
| 7093 | // function template specializations are generated using template argument |
| 7094 | // deduction (14.8.3, 14.8.2). Those candidates are then handled as |
| 7095 | // candidate functions in the usual way.113) A given name can refer to one |
| 7096 | // or more function templates and also to a set of overloaded non-template |
| 7097 | // functions. In such a case, the candidate functions generated from each |
| 7098 | // function template are combined with the set of non-template candidate |
| 7099 | // functions. |
| 7100 | TemplateDeductionInfo Info(CandidateSet.getLocation()); |
| 7101 | FunctionDecl *Specialization = nullptr; |
| 7102 | ConversionSequenceList Conversions; |
| 7103 | if (TemplateDeductionResult Result = DeduceTemplateArguments( |
| 7104 | FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, |
| 7105 | PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { |
| 7106 | return CheckNonDependentConversions( |
| 7107 | FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, |
| 7108 | SuppressUserConversions, nullptr, QualType(), {}, PO); |
| 7109 | })) { |
| 7110 | OverloadCandidate &Candidate = |
| 7111 | CandidateSet.addCandidate(Conversions.size(), Conversions); |
| 7112 | Candidate.FoundDecl = FoundDecl; |
| 7113 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| 7114 | Candidate.Viable = false; |
| 7115 | Candidate.RewriteKind = |
| 7116 | CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); |
| 7117 | Candidate.IsSurrogate = false; |
| 7118 | Candidate.IsADLCandidate = IsADLCandidate; |
| 7119 | // Ignore the object argument if there is one, since we don't have an object |
| 7120 | // type. |
| 7121 | Candidate.IgnoreObjectArgument = |
| 7122 | isa<CXXMethodDecl>(Candidate.Function) && |
| 7123 | !isa<CXXConstructorDecl>(Candidate.Function); |
| 7124 | Candidate.ExplicitCallArguments = Args.size(); |
| 7125 | if (Result == TDK_NonDependentConversionFailure) |
| 7126 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7127 | else { |
| 7128 | Candidate.FailureKind = ovl_fail_bad_deduction; |
| 7129 | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| 7130 | Info); |
| 7131 | } |
| 7132 | return; |
| 7133 | } |
| 7134 | |
| 7135 | // Add the function template specialization produced by template argument |
| 7136 | // deduction as a candidate. |
| 7137 | assert(Specialization && "Missing function template specialization?")((void)0); |
| 7138 | AddOverloadCandidate( |
| 7139 | Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, |
| 7140 | PartialOverloading, AllowExplicit, |
| 7141 | /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO); |
| 7142 | } |
| 7143 | |
| 7144 | /// Check that implicit conversion sequences can be formed for each argument |
| 7145 | /// whose corresponding parameter has a non-dependent type, per DR1391's |
| 7146 | /// [temp.deduct.call]p10. |
| 7147 | bool Sema::CheckNonDependentConversions( |
| 7148 | FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, |
| 7149 | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, |
| 7150 | ConversionSequenceList &Conversions, bool SuppressUserConversions, |
| 7151 | CXXRecordDecl *ActingContext, QualType ObjectType, |
| 7152 | Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { |
| 7153 | // FIXME: The cases in which we allow explicit conversions for constructor |
| 7154 | // arguments never consider calling a constructor template. It's not clear |
| 7155 | // that is correct. |
| 7156 | const bool AllowExplicit = false; |
| 7157 | |
| 7158 | auto *FD = FunctionTemplate->getTemplatedDecl(); |
| 7159 | auto *Method = dyn_cast<CXXMethodDecl>(FD); |
| 7160 | bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); |
| 7161 | unsigned ThisConversions = HasThisConversion ? 1 : 0; |
| 7162 | |
| 7163 | Conversions = |
| 7164 | CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); |
| 7165 | |
| 7166 | // Overload resolution is always an unevaluated context. |
| 7167 | EnterExpressionEvaluationContext Unevaluated( |
| 7168 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 7169 | |
| 7170 | // For a method call, check the 'this' conversion here too. DR1391 doesn't |
| 7171 | // require that, but this check should never result in a hard error, and |
| 7172 | // overload resolution is permitted to sidestep instantiations. |
| 7173 | if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && |
| 7174 | !ObjectType.isNull()) { |
| 7175 | unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; |
| 7176 | Conversions[ConvIdx] = TryObjectArgumentInitialization( |
| 7177 | *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, |
| 7178 | Method, ActingContext); |
| 7179 | if (Conversions[ConvIdx].isBad()) |
| 7180 | return true; |
| 7181 | } |
| 7182 | |
| 7183 | for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; |
| 7184 | ++I) { |
| 7185 | QualType ParamType = ParamTypes[I]; |
| 7186 | if (!ParamType->isDependentType()) { |
| 7187 | unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed |
| 7188 | ? 0 |
| 7189 | : (ThisConversions + I); |
| 7190 | Conversions[ConvIdx] |
| 7191 | = TryCopyInitialization(*this, Args[I], ParamType, |
| 7192 | SuppressUserConversions, |
| 7193 | /*InOverloadResolution=*/true, |
| 7194 | /*AllowObjCWritebackConversion=*/ |
| 7195 | getLangOpts().ObjCAutoRefCount, |
| 7196 | AllowExplicit); |
| 7197 | if (Conversions[ConvIdx].isBad()) |
| 7198 | return true; |
| 7199 | } |
| 7200 | } |
| 7201 | |
| 7202 | return false; |
| 7203 | } |
| 7204 | |
| 7205 | /// Determine whether this is an allowable conversion from the result |
| 7206 | /// of an explicit conversion operator to the expected type, per C++ |
| 7207 | /// [over.match.conv]p1 and [over.match.ref]p1. |
| 7208 | /// |
| 7209 | /// \param ConvType The return type of the conversion function. |
| 7210 | /// |
| 7211 | /// \param ToType The type we are converting to. |
| 7212 | /// |
| 7213 | /// \param AllowObjCPointerConversion Allow a conversion from one |
| 7214 | /// Objective-C pointer to another. |
| 7215 | /// |
| 7216 | /// \returns true if the conversion is allowable, false otherwise. |
| 7217 | static bool isAllowableExplicitConversion(Sema &S, |
| 7218 | QualType ConvType, QualType ToType, |
| 7219 | bool AllowObjCPointerConversion) { |
| 7220 | QualType ToNonRefType = ToType.getNonReferenceType(); |
| 7221 | |
| 7222 | // Easy case: the types are the same. |
| 7223 | if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) |
| 7224 | return true; |
| 7225 | |
| 7226 | // Allow qualification conversions. |
| 7227 | bool ObjCLifetimeConversion; |
| 7228 | if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, |
| 7229 | ObjCLifetimeConversion)) |
| 7230 | return true; |
| 7231 | |
| 7232 | // If we're not allowed to consider Objective-C pointer conversions, |
| 7233 | // we're done. |
| 7234 | if (!AllowObjCPointerConversion) |
| 7235 | return false; |
| 7236 | |
| 7237 | // Is this an Objective-C pointer conversion? |
| 7238 | bool IncompatibleObjC = false; |
| 7239 | QualType ConvertedType; |
| 7240 | return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, |
| 7241 | IncompatibleObjC); |
| 7242 | } |
| 7243 | |
| 7244 | /// AddConversionCandidate - Add a C++ conversion function as a |
| 7245 | /// candidate in the candidate set (C++ [over.match.conv], |
| 7246 | /// C++ [over.match.copy]). From is the expression we're converting from, |
| 7247 | /// and ToType is the type that we're eventually trying to convert to |
| 7248 | /// (which may or may not be the same type as the type that the |
| 7249 | /// conversion function produces). |
| 7250 | void Sema::AddConversionCandidate( |
| 7251 | CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, |
| 7252 | CXXRecordDecl *ActingContext, Expr *From, QualType ToType, |
| 7253 | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, |
| 7254 | bool AllowExplicit, bool AllowResultConversion) { |
| 7255 | assert(!Conversion->getDescribedFunctionTemplate() &&((void)0) |
| 7256 | "Conversion function templates use AddTemplateConversionCandidate")((void)0); |
| 7257 | QualType ConvType = Conversion->getConversionType().getNonReferenceType(); |
| 7258 | if (!CandidateSet.isNewCandidate(Conversion)) |
| 7259 | return; |
| 7260 | |
| 7261 | // If the conversion function has an undeduced return type, trigger its |
| 7262 | // deduction now. |
| 7263 | if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { |
| 7264 | if (DeduceReturnType(Conversion, From->getExprLoc())) |
| 7265 | return; |
| 7266 | ConvType = Conversion->getConversionType().getNonReferenceType(); |
| 7267 | } |
| 7268 | |
| 7269 | // If we don't allow any conversion of the result type, ignore conversion |
| 7270 | // functions that don't convert to exactly (possibly cv-qualified) T. |
| 7271 | if (!AllowResultConversion && |
| 7272 | !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) |
| 7273 | return; |
| 7274 | |
| 7275 | // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion |
| 7276 | // operator is only a candidate if its return type is the target type or |
| 7277 | // can be converted to the target type with a qualification conversion. |
| 7278 | // |
| 7279 | // FIXME: Include such functions in the candidate list and explain why we |
| 7280 | // can't select them. |
| 7281 | if (Conversion->isExplicit() && |
| 7282 | !isAllowableExplicitConversion(*this, ConvType, ToType, |
| 7283 | AllowObjCConversionOnExplicit)) |
| 7284 | return; |
| 7285 | |
| 7286 | // Overload resolution is always an unevaluated context. |
| 7287 | EnterExpressionEvaluationContext Unevaluated( |
| 7288 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 7289 | |
| 7290 | // Add this candidate |
| 7291 | OverloadCandidate &Candidate = CandidateSet.addCandidate(1); |
| 7292 | Candidate.FoundDecl = FoundDecl; |
| 7293 | Candidate.Function = Conversion; |
| 7294 | Candidate.IsSurrogate = false; |
| 7295 | Candidate.IgnoreObjectArgument = false; |
| 7296 | Candidate.FinalConversion.setAsIdentityConversion(); |
| 7297 | Candidate.FinalConversion.setFromType(ConvType); |
| 7298 | Candidate.FinalConversion.setAllToTypes(ToType); |
| 7299 | Candidate.Viable = true; |
| 7300 | Candidate.ExplicitCallArguments = 1; |
| 7301 | |
| 7302 | // Explicit functions are not actually candidates at all if we're not |
| 7303 | // allowing them in this context, but keep them around so we can point |
| 7304 | // to them in diagnostics. |
| 7305 | if (!AllowExplicit && Conversion->isExplicit()) { |
| 7306 | Candidate.Viable = false; |
| 7307 | Candidate.FailureKind = ovl_fail_explicit; |
| 7308 | return; |
| 7309 | } |
| 7310 | |
| 7311 | // C++ [over.match.funcs]p4: |
| 7312 | // For conversion functions, the function is considered to be a member of |
| 7313 | // the class of the implicit implied object argument for the purpose of |
| 7314 | // defining the type of the implicit object parameter. |
| 7315 | // |
| 7316 | // Determine the implicit conversion sequence for the implicit |
| 7317 | // object parameter. |
| 7318 | QualType ImplicitParamType = From->getType(); |
| 7319 | if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) |
| 7320 | ImplicitParamType = FromPtrType->getPointeeType(); |
| 7321 | CXXRecordDecl *ConversionContext |
| 7322 | = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl()); |
| 7323 | |
| 7324 | Candidate.Conversions[0] = TryObjectArgumentInitialization( |
| 7325 | *this, CandidateSet.getLocation(), From->getType(), |
| 7326 | From->Classify(Context), Conversion, ConversionContext); |
| 7327 | |
| 7328 | if (Candidate.Conversions[0].isBad()) { |
| 7329 | Candidate.Viable = false; |
| 7330 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7331 | return; |
| 7332 | } |
| 7333 | |
| 7334 | if (Conversion->getTrailingRequiresClause()) { |
| 7335 | ConstraintSatisfaction Satisfaction; |
| 7336 | if (CheckFunctionConstraints(Conversion, Satisfaction) || |
| 7337 | !Satisfaction.IsSatisfied) { |
| 7338 | Candidate.Viable = false; |
| 7339 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; |
| 7340 | return; |
| 7341 | } |
| 7342 | } |
| 7343 | |
| 7344 | // We won't go through a user-defined type conversion function to convert a |
| 7345 | // derived to base as such conversions are given Conversion Rank. They only |
| 7346 | // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] |
| 7347 | QualType FromCanon |
| 7348 | = Context.getCanonicalType(From->getType().getUnqualifiedType()); |
| 7349 | QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); |
| 7350 | if (FromCanon == ToCanon || |
| 7351 | IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { |
| 7352 | Candidate.Viable = false; |
| 7353 | Candidate.FailureKind = ovl_fail_trivial_conversion; |
| 7354 | return; |
| 7355 | } |
| 7356 | |
| 7357 | // To determine what the conversion from the result of calling the |
| 7358 | // conversion function to the type we're eventually trying to |
| 7359 | // convert to (ToType), we need to synthesize a call to the |
| 7360 | // conversion function and attempt copy initialization from it. This |
| 7361 | // makes sure that we get the right semantics with respect to |
| 7362 | // lvalues/rvalues and the type. Fortunately, we can allocate this |
| 7363 | // call on the stack and we don't need its arguments to be |
| 7364 | // well-formed. |
| 7365 | DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), |
| 7366 | VK_LValue, From->getBeginLoc()); |
| 7367 | ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, |
| 7368 | Context.getPointerType(Conversion->getType()), |
| 7369 | CK_FunctionToPointerDecay, &ConversionRef, |
| 7370 | VK_PRValue, FPOptionsOverride()); |
| 7371 | |
| 7372 | QualType ConversionType = Conversion->getConversionType(); |
| 7373 | if (!isCompleteType(From->getBeginLoc(), ConversionType)) { |
| 7374 | Candidate.Viable = false; |
| 7375 | Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| 7376 | return; |
| 7377 | } |
| 7378 | |
| 7379 | ExprValueKind VK = Expr::getValueKindForType(ConversionType); |
| 7380 | |
| 7381 | // Note that it is safe to allocate CallExpr on the stack here because |
| 7382 | // there are 0 arguments (i.e., nothing is allocated using ASTContext's |
| 7383 | // allocator). |
| 7384 | QualType CallResultType = ConversionType.getNonLValueExprType(Context); |
| 7385 | |
| 7386 | alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; |
| 7387 | CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( |
| 7388 | Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); |
| 7389 | |
| 7390 | ImplicitConversionSequence ICS = |
| 7391 | TryCopyInitialization(*this, TheTemporaryCall, ToType, |
| 7392 | /*SuppressUserConversions=*/true, |
| 7393 | /*InOverloadResolution=*/false, |
| 7394 | /*AllowObjCWritebackConversion=*/false); |
| 7395 | |
| 7396 | switch (ICS.getKind()) { |
| 7397 | case ImplicitConversionSequence::StandardConversion: |
| 7398 | Candidate.FinalConversion = ICS.Standard; |
| 7399 | |
| 7400 | // C++ [over.ics.user]p3: |
| 7401 | // If the user-defined conversion is specified by a specialization of a |
| 7402 | // conversion function template, the second standard conversion sequence |
| 7403 | // shall have exact match rank. |
| 7404 | if (Conversion->getPrimaryTemplate() && |
| 7405 | GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { |
| 7406 | Candidate.Viable = false; |
| 7407 | Candidate.FailureKind = ovl_fail_final_conversion_not_exact; |
| 7408 | return; |
| 7409 | } |
| 7410 | |
| 7411 | // C++0x [dcl.init.ref]p5: |
| 7412 | // In the second case, if the reference is an rvalue reference and |
| 7413 | // the second standard conversion sequence of the user-defined |
| 7414 | // conversion sequence includes an lvalue-to-rvalue conversion, the |
| 7415 | // program is ill-formed. |
| 7416 | if (ToType->isRValueReferenceType() && |
| 7417 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
| 7418 | Candidate.Viable = false; |
| 7419 | Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| 7420 | return; |
| 7421 | } |
| 7422 | break; |
| 7423 | |
| 7424 | case ImplicitConversionSequence::BadConversion: |
| 7425 | Candidate.Viable = false; |
| 7426 | Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| 7427 | return; |
| 7428 | |
| 7429 | default: |
| 7430 | llvm_unreachable(__builtin_unreachable() |
| 7431 | "Can only end up with a standard conversion sequence or failure")__builtin_unreachable(); |
| 7432 | } |
| 7433 | |
| 7434 | if (EnableIfAttr *FailedAttr = |
| 7435 | CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { |
| 7436 | Candidate.Viable = false; |
| 7437 | Candidate.FailureKind = ovl_fail_enable_if; |
| 7438 | Candidate.DeductionFailure.Data = FailedAttr; |
| 7439 | return; |
| 7440 | } |
| 7441 | |
| 7442 | if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() && |
| 7443 | !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) { |
| 7444 | Candidate.Viable = false; |
| 7445 | Candidate.FailureKind = ovl_non_default_multiversion_function; |
| 7446 | } |
| 7447 | } |
| 7448 | |
| 7449 | /// Adds a conversion function template specialization |
| 7450 | /// candidate to the overload set, using template argument deduction |
| 7451 | /// to deduce the template arguments of the conversion function |
| 7452 | /// template from the type that we are converting to (C++ |
| 7453 | /// [temp.deduct.conv]). |
| 7454 | void Sema::AddTemplateConversionCandidate( |
| 7455 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, |
| 7456 | CXXRecordDecl *ActingDC, Expr *From, QualType ToType, |
| 7457 | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, |
| 7458 | bool AllowExplicit, bool AllowResultConversion) { |
| 7459 | assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) &&((void)0) |
| 7460 | "Only conversion function templates permitted here")((void)0); |
| 7461 | |
| 7462 | if (!CandidateSet.isNewCandidate(FunctionTemplate)) |
| 7463 | return; |
| 7464 | |
| 7465 | // If the function template has a non-dependent explicit specification, |
| 7466 | // exclude it now if appropriate; we are not permitted to perform deduction |
| 7467 | // and substitution in this case. |
| 7468 | if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { |
| 7469 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| 7470 | Candidate.FoundDecl = FoundDecl; |
| 7471 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| 7472 | Candidate.Viable = false; |
| 7473 | Candidate.FailureKind = ovl_fail_explicit; |
| 7474 | return; |
| 7475 | } |
| 7476 | |
| 7477 | TemplateDeductionInfo Info(CandidateSet.getLocation()); |
| 7478 | CXXConversionDecl *Specialization = nullptr; |
| 7479 | if (TemplateDeductionResult Result |
| 7480 | = DeduceTemplateArguments(FunctionTemplate, ToType, |
| 7481 | Specialization, Info)) { |
| 7482 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| 7483 | Candidate.FoundDecl = FoundDecl; |
| 7484 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| 7485 | Candidate.Viable = false; |
| 7486 | Candidate.FailureKind = ovl_fail_bad_deduction; |
| 7487 | Candidate.IsSurrogate = false; |
| 7488 | Candidate.IgnoreObjectArgument = false; |
| 7489 | Candidate.ExplicitCallArguments = 1; |
| 7490 | Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| 7491 | Info); |
| 7492 | return; |
| 7493 | } |
| 7494 | |
| 7495 | // Add the conversion function template specialization produced by |
| 7496 | // template argument deduction as a candidate. |
| 7497 | assert(Specialization && "Missing function template specialization?")((void)0); |
| 7498 | AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, |
| 7499 | CandidateSet, AllowObjCConversionOnExplicit, |
| 7500 | AllowExplicit, AllowResultConversion); |
| 7501 | } |
| 7502 | |
| 7503 | /// AddSurrogateCandidate - Adds a "surrogate" candidate function that |
| 7504 | /// converts the given @c Object to a function pointer via the |
| 7505 | /// conversion function @c Conversion, and then attempts to call it |
| 7506 | /// with the given arguments (C++ [over.call.object]p2-4). Proto is |
| 7507 | /// the type of function that we'll eventually be calling. |
| 7508 | void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, |
| 7509 | DeclAccessPair FoundDecl, |
| 7510 | CXXRecordDecl *ActingContext, |
| 7511 | const FunctionProtoType *Proto, |
| 7512 | Expr *Object, |
| 7513 | ArrayRef<Expr *> Args, |
| 7514 | OverloadCandidateSet& CandidateSet) { |
| 7515 | if (!CandidateSet.isNewCandidate(Conversion)) |
| 7516 | return; |
| 7517 | |
| 7518 | // Overload resolution is always an unevaluated context. |
| 7519 | EnterExpressionEvaluationContext Unevaluated( |
| 7520 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 7521 | |
| 7522 | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); |
| 7523 | Candidate.FoundDecl = FoundDecl; |
| 7524 | Candidate.Function = nullptr; |
| 7525 | Candidate.Surrogate = Conversion; |
| 7526 | Candidate.Viable = true; |
| 7527 | Candidate.IsSurrogate = true; |
| 7528 | Candidate.IgnoreObjectArgument = false; |
| 7529 | Candidate.ExplicitCallArguments = Args.size(); |
| 7530 | |
| 7531 | // Determine the implicit conversion sequence for the implicit |
| 7532 | // object parameter. |
| 7533 | ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization( |
| 7534 | *this, CandidateSet.getLocation(), Object->getType(), |
| 7535 | Object->Classify(Context), Conversion, ActingContext); |
| 7536 | if (ObjectInit.isBad()) { |
| 7537 | Candidate.Viable = false; |
| 7538 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7539 | Candidate.Conversions[0] = ObjectInit; |
| 7540 | return; |
| 7541 | } |
| 7542 | |
| 7543 | // The first conversion is actually a user-defined conversion whose |
| 7544 | // first conversion is ObjectInit's standard conversion (which is |
| 7545 | // effectively a reference binding). Record it as such. |
| 7546 | Candidate.Conversions[0].setUserDefined(); |
| 7547 | Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; |
| 7548 | Candidate.Conversions[0].UserDefined.EllipsisConversion = false; |
| 7549 | Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; |
| 7550 | Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; |
| 7551 | Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; |
| 7552 | Candidate.Conversions[0].UserDefined.After |
| 7553 | = Candidate.Conversions[0].UserDefined.Before; |
| 7554 | Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); |
| 7555 | |
| 7556 | // Find the |
| 7557 | unsigned NumParams = Proto->getNumParams(); |
| 7558 | |
| 7559 | // (C++ 13.3.2p2): A candidate function having fewer than m |
| 7560 | // parameters is viable only if it has an ellipsis in its parameter |
| 7561 | // list (8.3.5). |
| 7562 | if (Args.size() > NumParams && !Proto->isVariadic()) { |
| 7563 | Candidate.Viable = false; |
| 7564 | Candidate.FailureKind = ovl_fail_too_many_arguments; |
| 7565 | return; |
| 7566 | } |
| 7567 | |
| 7568 | // Function types don't have any default arguments, so just check if |
| 7569 | // we have enough arguments. |
| 7570 | if (Args.size() < NumParams) { |
| 7571 | // Not enough arguments. |
| 7572 | Candidate.Viable = false; |
| 7573 | Candidate.FailureKind = ovl_fail_too_few_arguments; |
| 7574 | return; |
| 7575 | } |
| 7576 | |
| 7577 | // Determine the implicit conversion sequences for each of the |
| 7578 | // arguments. |
| 7579 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 7580 | if (ArgIdx < NumParams) { |
| 7581 | // (C++ 13.3.2p3): for F to be a viable function, there shall |
| 7582 | // exist for each argument an implicit conversion sequence |
| 7583 | // (13.3.3.1) that converts that argument to the corresponding |
| 7584 | // parameter of F. |
| 7585 | QualType ParamType = Proto->getParamType(ArgIdx); |
| 7586 | Candidate.Conversions[ArgIdx + 1] |
| 7587 | = TryCopyInitialization(*this, Args[ArgIdx], ParamType, |
| 7588 | /*SuppressUserConversions=*/false, |
| 7589 | /*InOverloadResolution=*/false, |
| 7590 | /*AllowObjCWritebackConversion=*/ |
| 7591 | getLangOpts().ObjCAutoRefCount); |
| 7592 | if (Candidate.Conversions[ArgIdx + 1].isBad()) { |
| 7593 | Candidate.Viable = false; |
| 7594 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7595 | return; |
| 7596 | } |
| 7597 | } else { |
| 7598 | // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| 7599 | // argument for which there is no corresponding parameter is |
| 7600 | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| 7601 | Candidate.Conversions[ArgIdx + 1].setEllipsis(); |
| 7602 | } |
| 7603 | } |
| 7604 | |
| 7605 | if (EnableIfAttr *FailedAttr = |
| 7606 | CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { |
| 7607 | Candidate.Viable = false; |
| 7608 | Candidate.FailureKind = ovl_fail_enable_if; |
| 7609 | Candidate.DeductionFailure.Data = FailedAttr; |
| 7610 | return; |
| 7611 | } |
| 7612 | } |
| 7613 | |
| 7614 | /// Add all of the non-member operator function declarations in the given |
| 7615 | /// function set to the overload candidate set. |
| 7616 | void Sema::AddNonMemberOperatorCandidates( |
| 7617 | const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, |
| 7618 | OverloadCandidateSet &CandidateSet, |
| 7619 | TemplateArgumentListInfo *ExplicitTemplateArgs) { |
| 7620 | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { |
| 7621 | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); |
| 7622 | ArrayRef<Expr *> FunctionArgs = Args; |
| 7623 | |
| 7624 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); |
| 7625 | FunctionDecl *FD = |
| 7626 | FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); |
| 7627 | |
| 7628 | // Don't consider rewritten functions if we're not rewriting. |
| 7629 | if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) |
| 7630 | continue; |
| 7631 | |
| 7632 | assert(!isa<CXXMethodDecl>(FD) &&((void)0) |
| 7633 | "unqualified operator lookup found a member function")((void)0); |
| 7634 | |
| 7635 | if (FunTmpl) { |
| 7636 | AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, |
| 7637 | FunctionArgs, CandidateSet); |
| 7638 | if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) |
| 7639 | AddTemplateOverloadCandidate( |
| 7640 | FunTmpl, F.getPair(), ExplicitTemplateArgs, |
| 7641 | {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, |
| 7642 | true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); |
| 7643 | } else { |
| 7644 | if (ExplicitTemplateArgs) |
| 7645 | continue; |
| 7646 | AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); |
| 7647 | if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) |
| 7648 | AddOverloadCandidate(FD, F.getPair(), |
| 7649 | {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, |
| 7650 | false, false, true, false, ADLCallKind::NotADL, |
| 7651 | None, OverloadCandidateParamOrder::Reversed); |
| 7652 | } |
| 7653 | } |
| 7654 | } |
| 7655 | |
| 7656 | /// Add overload candidates for overloaded operators that are |
| 7657 | /// member functions. |
| 7658 | /// |
| 7659 | /// Add the overloaded operator candidates that are member functions |
| 7660 | /// for the operator Op that was used in an operator expression such |
| 7661 | /// as "x Op y". , Args/NumArgs provides the operator arguments, and |
| 7662 | /// CandidateSet will store the added overload candidates. (C++ |
| 7663 | /// [over.match.oper]). |
| 7664 | void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, |
| 7665 | SourceLocation OpLoc, |
| 7666 | ArrayRef<Expr *> Args, |
| 7667 | OverloadCandidateSet &CandidateSet, |
| 7668 | OverloadCandidateParamOrder PO) { |
| 7669 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 7670 | |
| 7671 | // C++ [over.match.oper]p3: |
| 7672 | // For a unary operator @ with an operand of a type whose |
| 7673 | // cv-unqualified version is T1, and for a binary operator @ with |
| 7674 | // a left operand of a type whose cv-unqualified version is T1 and |
| 7675 | // a right operand of a type whose cv-unqualified version is T2, |
| 7676 | // three sets of candidate functions, designated member |
| 7677 | // candidates, non-member candidates and built-in candidates, are |
| 7678 | // constructed as follows: |
| 7679 | QualType T1 = Args[0]->getType(); |
| 7680 | |
| 7681 | // -- If T1 is a complete class type or a class currently being |
| 7682 | // defined, the set of member candidates is the result of the |
| 7683 | // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, |
| 7684 | // the set of member candidates is empty. |
| 7685 | if (const RecordType *T1Rec = T1->getAs<RecordType>()) { |
| 7686 | // Complete the type if it can be completed. |
| 7687 | if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) |
| 7688 | return; |
| 7689 | // If the type is neither complete nor being defined, bail out now. |
| 7690 | if (!T1Rec->getDecl()->getDefinition()) |
| 7691 | return; |
| 7692 | |
| 7693 | LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); |
| 7694 | LookupQualifiedName(Operators, T1Rec->getDecl()); |
| 7695 | Operators.suppressDiagnostics(); |
| 7696 | |
| 7697 | for (LookupResult::iterator Oper = Operators.begin(), |
| 7698 | OperEnd = Operators.end(); |
| 7699 | Oper != OperEnd; |
| 7700 | ++Oper) |
| 7701 | AddMethodCandidate(Oper.getPair(), Args[0]->getType(), |
| 7702 | Args[0]->Classify(Context), Args.slice(1), |
| 7703 | CandidateSet, /*SuppressUserConversion=*/false, PO); |
| 7704 | } |
| 7705 | } |
| 7706 | |
| 7707 | /// AddBuiltinCandidate - Add a candidate for a built-in |
| 7708 | /// operator. ResultTy and ParamTys are the result and parameter types |
| 7709 | /// of the built-in candidate, respectively. Args and NumArgs are the |
| 7710 | /// arguments being passed to the candidate. IsAssignmentOperator |
| 7711 | /// should be true when this built-in candidate is an assignment |
| 7712 | /// operator. NumContextualBoolArguments is the number of arguments |
| 7713 | /// (at the beginning of the argument list) that will be contextually |
| 7714 | /// converted to bool. |
| 7715 | void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, |
| 7716 | OverloadCandidateSet& CandidateSet, |
| 7717 | bool IsAssignmentOperator, |
| 7718 | unsigned NumContextualBoolArguments) { |
| 7719 | // Overload resolution is always an unevaluated context. |
| 7720 | EnterExpressionEvaluationContext Unevaluated( |
| 7721 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 7722 | |
| 7723 | // Add this candidate |
| 7724 | OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); |
| 7725 | Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); |
| 7726 | Candidate.Function = nullptr; |
| 7727 | Candidate.IsSurrogate = false; |
| 7728 | Candidate.IgnoreObjectArgument = false; |
| 7729 | std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); |
| 7730 | |
| 7731 | // Determine the implicit conversion sequences for each of the |
| 7732 | // arguments. |
| 7733 | Candidate.Viable = true; |
| 7734 | Candidate.ExplicitCallArguments = Args.size(); |
| 7735 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 7736 | // C++ [over.match.oper]p4: |
| 7737 | // For the built-in assignment operators, conversions of the |
| 7738 | // left operand are restricted as follows: |
| 7739 | // -- no temporaries are introduced to hold the left operand, and |
| 7740 | // -- no user-defined conversions are applied to the left |
| 7741 | // operand to achieve a type match with the left-most |
| 7742 | // parameter of a built-in candidate. |
| 7743 | // |
| 7744 | // We block these conversions by turning off user-defined |
| 7745 | // conversions, since that is the only way that initialization of |
| 7746 | // a reference to a non-class type can occur from something that |
| 7747 | // is not of the same type. |
| 7748 | if (ArgIdx < NumContextualBoolArguments) { |
| 7749 | assert(ParamTys[ArgIdx] == Context.BoolTy &&((void)0) |
| 7750 | "Contextual conversion to bool requires bool type")((void)0); |
| 7751 | Candidate.Conversions[ArgIdx] |
| 7752 | = TryContextuallyConvertToBool(*this, Args[ArgIdx]); |
| 7753 | } else { |
| 7754 | Candidate.Conversions[ArgIdx] |
| 7755 | = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], |
| 7756 | ArgIdx == 0 && IsAssignmentOperator, |
| 7757 | /*InOverloadResolution=*/false, |
| 7758 | /*AllowObjCWritebackConversion=*/ |
| 7759 | getLangOpts().ObjCAutoRefCount); |
| 7760 | } |
| 7761 | if (Candidate.Conversions[ArgIdx].isBad()) { |
| 7762 | Candidate.Viable = false; |
| 7763 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7764 | break; |
| 7765 | } |
| 7766 | } |
| 7767 | } |
| 7768 | |
| 7769 | namespace { |
| 7770 | |
| 7771 | /// BuiltinCandidateTypeSet - A set of types that will be used for the |
| 7772 | /// candidate operator functions for built-in operators (C++ |
| 7773 | /// [over.built]). The types are separated into pointer types and |
| 7774 | /// enumeration types. |
| 7775 | class BuiltinCandidateTypeSet { |
| 7776 | /// TypeSet - A set of types. |
| 7777 | typedef llvm::SetVector<QualType, SmallVector<QualType, 8>, |
| 7778 | llvm::SmallPtrSet<QualType, 8>> TypeSet; |
| 7779 | |
| 7780 | /// PointerTypes - The set of pointer types that will be used in the |
| 7781 | /// built-in candidates. |
| 7782 | TypeSet PointerTypes; |
| 7783 | |
| 7784 | /// MemberPointerTypes - The set of member pointer types that will be |
| 7785 | /// used in the built-in candidates. |
| 7786 | TypeSet MemberPointerTypes; |
| 7787 | |
| 7788 | /// EnumerationTypes - The set of enumeration types that will be |
| 7789 | /// used in the built-in candidates. |
| 7790 | TypeSet EnumerationTypes; |
| 7791 | |
| 7792 | /// The set of vector types that will be used in the built-in |
| 7793 | /// candidates. |
| 7794 | TypeSet VectorTypes; |
| 7795 | |
| 7796 | /// The set of matrix types that will be used in the built-in |
| 7797 | /// candidates. |
| 7798 | TypeSet MatrixTypes; |
| 7799 | |
| 7800 | /// A flag indicating non-record types are viable candidates |
| 7801 | bool HasNonRecordTypes; |
| 7802 | |
| 7803 | /// A flag indicating whether either arithmetic or enumeration types |
| 7804 | /// were present in the candidate set. |
| 7805 | bool HasArithmeticOrEnumeralTypes; |
| 7806 | |
| 7807 | /// A flag indicating whether the nullptr type was present in the |
| 7808 | /// candidate set. |
| 7809 | bool HasNullPtrType; |
| 7810 | |
| 7811 | /// Sema - The semantic analysis instance where we are building the |
| 7812 | /// candidate type set. |
| 7813 | Sema &SemaRef; |
| 7814 | |
| 7815 | /// Context - The AST context in which we will build the type sets. |
| 7816 | ASTContext &Context; |
| 7817 | |
| 7818 | bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, |
| 7819 | const Qualifiers &VisibleQuals); |
| 7820 | bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); |
| 7821 | |
| 7822 | public: |
| 7823 | /// iterator - Iterates through the types that are part of the set. |
| 7824 | typedef TypeSet::iterator iterator; |
| 7825 | |
| 7826 | BuiltinCandidateTypeSet(Sema &SemaRef) |
| 7827 | : HasNonRecordTypes(false), |
| 7828 | HasArithmeticOrEnumeralTypes(false), |
| 7829 | HasNullPtrType(false), |
| 7830 | SemaRef(SemaRef), |
| 7831 | Context(SemaRef.Context) { } |
| 7832 | |
| 7833 | void AddTypesConvertedFrom(QualType Ty, |
| 7834 | SourceLocation Loc, |
| 7835 | bool AllowUserConversions, |
| 7836 | bool AllowExplicitConversions, |
| 7837 | const Qualifiers &VisibleTypeConversionsQuals); |
| 7838 | |
| 7839 | llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } |
| 7840 | llvm::iterator_range<iterator> member_pointer_types() { |
| 7841 | return MemberPointerTypes; |
| 7842 | } |
| 7843 | llvm::iterator_range<iterator> enumeration_types() { |
| 7844 | return EnumerationTypes; |
| 7845 | } |
| 7846 | llvm::iterator_range<iterator> vector_types() { return VectorTypes; } |
| 7847 | llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } |
| 7848 | |
| 7849 | bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } |
| 7850 | bool hasNonRecordTypes() { return HasNonRecordTypes; } |
| 7851 | bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } |
| 7852 | bool hasNullPtrType() const { return HasNullPtrType; } |
| 7853 | }; |
| 7854 | |
| 7855 | } // end anonymous namespace |
| 7856 | |
| 7857 | /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to |
| 7858 | /// the set of pointer types along with any more-qualified variants of |
| 7859 | /// that type. For example, if @p Ty is "int const *", this routine |
| 7860 | /// will add "int const *", "int const volatile *", "int const |
| 7861 | /// restrict *", and "int const volatile restrict *" to the set of |
| 7862 | /// pointer types. Returns true if the add of @p Ty itself succeeded, |
| 7863 | /// false otherwise. |
| 7864 | /// |
| 7865 | /// FIXME: what to do about extended qualifiers? |
| 7866 | bool |
| 7867 | BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, |
| 7868 | const Qualifiers &VisibleQuals) { |
| 7869 | |
| 7870 | // Insert this type. |
| 7871 | if (!PointerTypes.insert(Ty)) |
| 7872 | return false; |
| 7873 | |
| 7874 | QualType PointeeTy; |
| 7875 | const PointerType *PointerTy = Ty->getAs<PointerType>(); |
| 7876 | bool buildObjCPtr = false; |
| 7877 | if (!PointerTy) { |
| 7878 | const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); |
| 7879 | PointeeTy = PTy->getPointeeType(); |
| 7880 | buildObjCPtr = true; |
| 7881 | } else { |
| 7882 | PointeeTy = PointerTy->getPointeeType(); |
| 7883 | } |
| 7884 | |
| 7885 | // Don't add qualified variants of arrays. For one, they're not allowed |
| 7886 | // (the qualifier would sink to the element type), and for another, the |
| 7887 | // only overload situation where it matters is subscript or pointer +- int, |
| 7888 | // and those shouldn't have qualifier variants anyway. |
| 7889 | if (PointeeTy->isArrayType()) |
| 7890 | return true; |
| 7891 | |
| 7892 | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); |
| 7893 | bool hasVolatile = VisibleQuals.hasVolatile(); |
| 7894 | bool hasRestrict = VisibleQuals.hasRestrict(); |
| 7895 | |
| 7896 | // Iterate through all strict supersets of BaseCVR. |
| 7897 | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { |
| 7898 | if ((CVR | BaseCVR) != CVR) continue; |
| 7899 | // Skip over volatile if no volatile found anywhere in the types. |
| 7900 | if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; |
| 7901 | |
| 7902 | // Skip over restrict if no restrict found anywhere in the types, or if |
| 7903 | // the type cannot be restrict-qualified. |
| 7904 | if ((CVR & Qualifiers::Restrict) && |
| 7905 | (!hasRestrict || |
| 7906 | (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) |
| 7907 | continue; |
| 7908 | |
| 7909 | // Build qualified pointee type. |
| 7910 | QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); |
| 7911 | |
| 7912 | // Build qualified pointer type. |
| 7913 | QualType QPointerTy; |
| 7914 | if (!buildObjCPtr) |
| 7915 | QPointerTy = Context.getPointerType(QPointeeTy); |
| 7916 | else |
| 7917 | QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); |
| 7918 | |
| 7919 | // Insert qualified pointer type. |
| 7920 | PointerTypes.insert(QPointerTy); |
| 7921 | } |
| 7922 | |
| 7923 | return true; |
| 7924 | } |
| 7925 | |
| 7926 | /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty |
| 7927 | /// to the set of pointer types along with any more-qualified variants of |
| 7928 | /// that type. For example, if @p Ty is "int const *", this routine |
| 7929 | /// will add "int const *", "int const volatile *", "int const |
| 7930 | /// restrict *", and "int const volatile restrict *" to the set of |
| 7931 | /// pointer types. Returns true if the add of @p Ty itself succeeded, |
| 7932 | /// false otherwise. |
| 7933 | /// |
| 7934 | /// FIXME: what to do about extended qualifiers? |
| 7935 | bool |
| 7936 | BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( |
| 7937 | QualType Ty) { |
| 7938 | // Insert this type. |
| 7939 | if (!MemberPointerTypes.insert(Ty)) |
| 7940 | return false; |
| 7941 | |
| 7942 | const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); |
| 7943 | assert(PointerTy && "type was not a member pointer type!")((void)0); |
| 7944 | |
| 7945 | QualType PointeeTy = PointerTy->getPointeeType(); |
| 7946 | // Don't add qualified variants of arrays. For one, they're not allowed |
| 7947 | // (the qualifier would sink to the element type), and for another, the |
| 7948 | // only overload situation where it matters is subscript or pointer +- int, |
| 7949 | // and those shouldn't have qualifier variants anyway. |
| 7950 | if (PointeeTy->isArrayType()) |
| 7951 | return true; |
| 7952 | const Type *ClassTy = PointerTy->getClass(); |
| 7953 | |
| 7954 | // Iterate through all strict supersets of the pointee type's CVR |
| 7955 | // qualifiers. |
| 7956 | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); |
| 7957 | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { |
| 7958 | if ((CVR | BaseCVR) != CVR) continue; |
| 7959 | |
| 7960 | QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); |
| 7961 | MemberPointerTypes.insert( |
| 7962 | Context.getMemberPointerType(QPointeeTy, ClassTy)); |
| 7963 | } |
| 7964 | |
| 7965 | return true; |
| 7966 | } |
| 7967 | |
| 7968 | /// AddTypesConvertedFrom - Add each of the types to which the type @p |
| 7969 | /// Ty can be implicit converted to the given set of @p Types. We're |
| 7970 | /// primarily interested in pointer types and enumeration types. We also |
| 7971 | /// take member pointer types, for the conditional operator. |
| 7972 | /// AllowUserConversions is true if we should look at the conversion |
| 7973 | /// functions of a class type, and AllowExplicitConversions if we |
| 7974 | /// should also include the explicit conversion functions of a class |
| 7975 | /// type. |
| 7976 | void |
| 7977 | BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, |
| 7978 | SourceLocation Loc, |
| 7979 | bool AllowUserConversions, |
| 7980 | bool AllowExplicitConversions, |
| 7981 | const Qualifiers &VisibleQuals) { |
| 7982 | // Only deal with canonical types. |
| 7983 | Ty = Context.getCanonicalType(Ty); |
| 7984 | |
| 7985 | // Look through reference types; they aren't part of the type of an |
| 7986 | // expression for the purposes of conversions. |
| 7987 | if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) |
| 7988 | Ty = RefTy->getPointeeType(); |
| 7989 | |
| 7990 | // If we're dealing with an array type, decay to the pointer. |
| 7991 | if (Ty->isArrayType()) |
| 7992 | Ty = SemaRef.Context.getArrayDecayedType(Ty); |
| 7993 | |
| 7994 | // Otherwise, we don't care about qualifiers on the type. |
| 7995 | Ty = Ty.getLocalUnqualifiedType(); |
| 7996 | |
| 7997 | // Flag if we ever add a non-record type. |
| 7998 | const RecordType *TyRec = Ty->getAs<RecordType>(); |
| 7999 | HasNonRecordTypes = HasNonRecordTypes || !TyRec; |
| 8000 | |
| 8001 | // Flag if we encounter an arithmetic type. |
| 8002 | HasArithmeticOrEnumeralTypes = |
| 8003 | HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); |
| 8004 | |
| 8005 | if (Ty->isObjCIdType() || Ty->isObjCClassType()) |
| 8006 | PointerTypes.insert(Ty); |
| 8007 | else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { |
| 8008 | // Insert our type, and its more-qualified variants, into the set |
| 8009 | // of types. |
| 8010 | if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) |
| 8011 | return; |
| 8012 | } else if (Ty->isMemberPointerType()) { |
| 8013 | // Member pointers are far easier, since the pointee can't be converted. |
| 8014 | if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) |
| 8015 | return; |
| 8016 | } else if (Ty->isEnumeralType()) { |
| 8017 | HasArithmeticOrEnumeralTypes = true; |
| 8018 | EnumerationTypes.insert(Ty); |
| 8019 | } else if (Ty->isVectorType()) { |
| 8020 | // We treat vector types as arithmetic types in many contexts as an |
| 8021 | // extension. |
| 8022 | HasArithmeticOrEnumeralTypes = true; |
| 8023 | VectorTypes.insert(Ty); |
| 8024 | } else if (Ty->isMatrixType()) { |
| 8025 | // Similar to vector types, we treat vector types as arithmetic types in |
| 8026 | // many contexts as an extension. |
| 8027 | HasArithmeticOrEnumeralTypes = true; |
| 8028 | MatrixTypes.insert(Ty); |
| 8029 | } else if (Ty->isNullPtrType()) { |
| 8030 | HasNullPtrType = true; |
| 8031 | } else if (AllowUserConversions && TyRec) { |
| 8032 | // No conversion functions in incomplete types. |
| 8033 | if (!SemaRef.isCompleteType(Loc, Ty)) |
| 8034 | return; |
| 8035 | |
| 8036 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); |
| 8037 | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { |
| 8038 | if (isa<UsingShadowDecl>(D)) |
| 8039 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| 8040 | |
| 8041 | // Skip conversion function templates; they don't tell us anything |
| 8042 | // about which builtin types we can convert to. |
| 8043 | if (isa<FunctionTemplateDecl>(D)) |
| 8044 | continue; |
| 8045 | |
| 8046 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); |
| 8047 | if (AllowExplicitConversions || !Conv->isExplicit()) { |
| 8048 | AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, |
| 8049 | VisibleQuals); |
| 8050 | } |
| 8051 | } |
| 8052 | } |
| 8053 | } |
| 8054 | /// Helper function for adjusting address spaces for the pointer or reference |
| 8055 | /// operands of builtin operators depending on the argument. |
| 8056 | static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, |
| 8057 | Expr *Arg) { |
| 8058 | return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); |
| 8059 | } |
| 8060 | |
| 8061 | /// Helper function for AddBuiltinOperatorCandidates() that adds |
| 8062 | /// the volatile- and non-volatile-qualified assignment operators for the |
| 8063 | /// given type to the candidate set. |
| 8064 | static void AddBuiltinAssignmentOperatorCandidates(Sema &S, |
| 8065 | QualType T, |
| 8066 | ArrayRef<Expr *> Args, |
| 8067 | OverloadCandidateSet &CandidateSet) { |
| 8068 | QualType ParamTypes[2]; |
| 8069 | |
| 8070 | // T& operator=(T&, T) |
| 8071 | ParamTypes[0] = S.Context.getLValueReferenceType( |
| 8072 | AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); |
| 8073 | ParamTypes[1] = T; |
| 8074 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8075 | /*IsAssignmentOperator=*/true); |
| 8076 | |
| 8077 | if (!S.Context.getCanonicalType(T).isVolatileQualified()) { |
| 8078 | // volatile T& operator=(volatile T&, T) |
| 8079 | ParamTypes[0] = S.Context.getLValueReferenceType( |
| 8080 | AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), |
| 8081 | Args[0])); |
| 8082 | ParamTypes[1] = T; |
| 8083 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8084 | /*IsAssignmentOperator=*/true); |
| 8085 | } |
| 8086 | } |
| 8087 | |
| 8088 | /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, |
| 8089 | /// if any, found in visible type conversion functions found in ArgExpr's type. |
| 8090 | static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { |
| 8091 | Qualifiers VRQuals; |
| 8092 | const RecordType *TyRec; |
| 8093 | if (const MemberPointerType *RHSMPType = |
| 8094 | ArgExpr->getType()->getAs<MemberPointerType>()) |
| 8095 | TyRec = RHSMPType->getClass()->getAs<RecordType>(); |
| 8096 | else |
| 8097 | TyRec = ArgExpr->getType()->getAs<RecordType>(); |
| 8098 | if (!TyRec) { |
| 8099 | // Just to be safe, assume the worst case. |
| 8100 | VRQuals.addVolatile(); |
| 8101 | VRQuals.addRestrict(); |
| 8102 | return VRQuals; |
| 8103 | } |
| 8104 | |
| 8105 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); |
| 8106 | if (!ClassDecl->hasDefinition()) |
| 8107 | return VRQuals; |
| 8108 | |
| 8109 | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { |
| 8110 | if (isa<UsingShadowDecl>(D)) |
| 8111 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| 8112 | if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { |
| 8113 | QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); |
| 8114 | if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) |
| 8115 | CanTy = ResTypeRef->getPointeeType(); |
| 8116 | // Need to go down the pointer/mempointer chain and add qualifiers |
| 8117 | // as see them. |
| 8118 | bool done = false; |
| 8119 | while (!done) { |
| 8120 | if (CanTy.isRestrictQualified()) |
| 8121 | VRQuals.addRestrict(); |
| 8122 | if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) |
| 8123 | CanTy = ResTypePtr->getPointeeType(); |
| 8124 | else if (const MemberPointerType *ResTypeMPtr = |
| 8125 | CanTy->getAs<MemberPointerType>()) |
| 8126 | CanTy = ResTypeMPtr->getPointeeType(); |
| 8127 | else |
| 8128 | done = true; |
| 8129 | if (CanTy.isVolatileQualified()) |
| 8130 | VRQuals.addVolatile(); |
| 8131 | if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) |
| 8132 | return VRQuals; |
| 8133 | } |
| 8134 | } |
| 8135 | } |
| 8136 | return VRQuals; |
| 8137 | } |
| 8138 | |
| 8139 | namespace { |
| 8140 | |
| 8141 | /// Helper class to manage the addition of builtin operator overload |
| 8142 | /// candidates. It provides shared state and utility methods used throughout |
| 8143 | /// the process, as well as a helper method to add each group of builtin |
| 8144 | /// operator overloads from the standard to a candidate set. |
| 8145 | class BuiltinOperatorOverloadBuilder { |
| 8146 | // Common instance state available to all overload candidate addition methods. |
| 8147 | Sema &S; |
| 8148 | ArrayRef<Expr *> Args; |
| 8149 | Qualifiers VisibleTypeConversionsQuals; |
| 8150 | bool HasArithmeticOrEnumeralCandidateType; |
| 8151 | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; |
| 8152 | OverloadCandidateSet &CandidateSet; |
| 8153 | |
| 8154 | static constexpr int ArithmeticTypesCap = 24; |
| 8155 | SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; |
| 8156 | |
| 8157 | // Define some indices used to iterate over the arithmetic types in |
| 8158 | // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic |
| 8159 | // types are that preserved by promotion (C++ [over.built]p2). |
| 8160 | unsigned FirstIntegralType, |
| 8161 | LastIntegralType; |
| 8162 | unsigned FirstPromotedIntegralType, |
| 8163 | LastPromotedIntegralType; |
| 8164 | unsigned FirstPromotedArithmeticType, |
| 8165 | LastPromotedArithmeticType; |
| 8166 | unsigned NumArithmeticTypes; |
| 8167 | |
| 8168 | void InitArithmeticTypes() { |
| 8169 | // Start of promoted types. |
| 8170 | FirstPromotedArithmeticType = 0; |
| 8171 | ArithmeticTypes.push_back(S.Context.FloatTy); |
| 8172 | ArithmeticTypes.push_back(S.Context.DoubleTy); |
| 8173 | ArithmeticTypes.push_back(S.Context.LongDoubleTy); |
| 8174 | if (S.Context.getTargetInfo().hasFloat128Type()) |
| 8175 | ArithmeticTypes.push_back(S.Context.Float128Ty); |
| 8176 | |
| 8177 | // Start of integral types. |
| 8178 | FirstIntegralType = ArithmeticTypes.size(); |
| 8179 | FirstPromotedIntegralType = ArithmeticTypes.size(); |
| 8180 | ArithmeticTypes.push_back(S.Context.IntTy); |
| 8181 | ArithmeticTypes.push_back(S.Context.LongTy); |
| 8182 | ArithmeticTypes.push_back(S.Context.LongLongTy); |
| 8183 | if (S.Context.getTargetInfo().hasInt128Type() || |
| 8184 | (S.Context.getAuxTargetInfo() && |
| 8185 | S.Context.getAuxTargetInfo()->hasInt128Type())) |
| 8186 | ArithmeticTypes.push_back(S.Context.Int128Ty); |
| 8187 | ArithmeticTypes.push_back(S.Context.UnsignedIntTy); |
| 8188 | ArithmeticTypes.push_back(S.Context.UnsignedLongTy); |
| 8189 | ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); |
| 8190 | if (S.Context.getTargetInfo().hasInt128Type() || |
| 8191 | (S.Context.getAuxTargetInfo() && |
| 8192 | S.Context.getAuxTargetInfo()->hasInt128Type())) |
| 8193 | ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); |
| 8194 | LastPromotedIntegralType = ArithmeticTypes.size(); |
| 8195 | LastPromotedArithmeticType = ArithmeticTypes.size(); |
| 8196 | // End of promoted types. |
| 8197 | |
| 8198 | ArithmeticTypes.push_back(S.Context.BoolTy); |
| 8199 | ArithmeticTypes.push_back(S.Context.CharTy); |
| 8200 | ArithmeticTypes.push_back(S.Context.WCharTy); |
| 8201 | if (S.Context.getLangOpts().Char8) |
| 8202 | ArithmeticTypes.push_back(S.Context.Char8Ty); |
| 8203 | ArithmeticTypes.push_back(S.Context.Char16Ty); |
| 8204 | ArithmeticTypes.push_back(S.Context.Char32Ty); |
| 8205 | ArithmeticTypes.push_back(S.Context.SignedCharTy); |
| 8206 | ArithmeticTypes.push_back(S.Context.ShortTy); |
| 8207 | ArithmeticTypes.push_back(S.Context.UnsignedCharTy); |
| 8208 | ArithmeticTypes.push_back(S.Context.UnsignedShortTy); |
| 8209 | LastIntegralType = ArithmeticTypes.size(); |
| 8210 | NumArithmeticTypes = ArithmeticTypes.size(); |
| 8211 | // End of integral types. |
| 8212 | // FIXME: What about complex? What about half? |
| 8213 | |
| 8214 | assert(ArithmeticTypes.size() <= ArithmeticTypesCap &&((void)0) |
| 8215 | "Enough inline storage for all arithmetic types.")((void)0); |
| 8216 | } |
| 8217 | |
| 8218 | /// Helper method to factor out the common pattern of adding overloads |
| 8219 | /// for '++' and '--' builtin operators. |
| 8220 | void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, |
| 8221 | bool HasVolatile, |
| 8222 | bool HasRestrict) { |
| 8223 | QualType ParamTypes[2] = { |
| 8224 | S.Context.getLValueReferenceType(CandidateTy), |
| 8225 | S.Context.IntTy |
| 8226 | }; |
| 8227 | |
| 8228 | // Non-volatile version. |
| 8229 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8230 | |
| 8231 | // Use a heuristic to reduce number of builtin candidates in the set: |
| 8232 | // add volatile version only if there are conversions to a volatile type. |
| 8233 | if (HasVolatile) { |
| 8234 | ParamTypes[0] = |
| 8235 | S.Context.getLValueReferenceType( |
| 8236 | S.Context.getVolatileType(CandidateTy)); |
| 8237 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8238 | } |
| 8239 | |
| 8240 | // Add restrict version only if there are conversions to a restrict type |
| 8241 | // and our candidate type is a non-restrict-qualified pointer. |
| 8242 | if (HasRestrict && CandidateTy->isAnyPointerType() && |
| 8243 | !CandidateTy.isRestrictQualified()) { |
| 8244 | ParamTypes[0] |
| 8245 | = S.Context.getLValueReferenceType( |
| 8246 | S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); |
| 8247 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8248 | |
| 8249 | if (HasVolatile) { |
| 8250 | ParamTypes[0] |
| 8251 | = S.Context.getLValueReferenceType( |
| 8252 | S.Context.getCVRQualifiedType(CandidateTy, |
| 8253 | (Qualifiers::Volatile | |
| 8254 | Qualifiers::Restrict))); |
| 8255 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8256 | } |
| 8257 | } |
| 8258 | |
| 8259 | } |
| 8260 | |
| 8261 | /// Helper to add an overload candidate for a binary builtin with types \p L |
| 8262 | /// and \p R. |
| 8263 | void AddCandidate(QualType L, QualType R) { |
| 8264 | QualType LandR[2] = {L, R}; |
| 8265 | S.AddBuiltinCandidate(LandR, Args, CandidateSet); |
| 8266 | } |
| 8267 | |
| 8268 | public: |
| 8269 | BuiltinOperatorOverloadBuilder( |
| 8270 | Sema &S, ArrayRef<Expr *> Args, |
| 8271 | Qualifiers VisibleTypeConversionsQuals, |
| 8272 | bool HasArithmeticOrEnumeralCandidateType, |
| 8273 | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, |
| 8274 | OverloadCandidateSet &CandidateSet) |
| 8275 | : S(S), Args(Args), |
| 8276 | VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), |
| 8277 | HasArithmeticOrEnumeralCandidateType( |
| 8278 | HasArithmeticOrEnumeralCandidateType), |
| 8279 | CandidateTypes(CandidateTypes), |
| 8280 | CandidateSet(CandidateSet) { |
| 8281 | |
| 8282 | InitArithmeticTypes(); |
| 8283 | } |
| 8284 | |
| 8285 | // Increment is deprecated for bool since C++17. |
| 8286 | // |
| 8287 | // C++ [over.built]p3: |
| 8288 | // |
| 8289 | // For every pair (T, VQ), where T is an arithmetic type other |
| 8290 | // than bool, and VQ is either volatile or empty, there exist |
| 8291 | // candidate operator functions of the form |
| 8292 | // |
| 8293 | // VQ T& operator++(VQ T&); |
| 8294 | // T operator++(VQ T&, int); |
| 8295 | // |
| 8296 | // C++ [over.built]p4: |
| 8297 | // |
| 8298 | // For every pair (T, VQ), where T is an arithmetic type other |
| 8299 | // than bool, and VQ is either volatile or empty, there exist |
| 8300 | // candidate operator functions of the form |
| 8301 | // |
| 8302 | // VQ T& operator--(VQ T&); |
| 8303 | // T operator--(VQ T&, int); |
| 8304 | void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { |
| 8305 | if (!HasArithmeticOrEnumeralCandidateType) |
| 8306 | return; |
| 8307 | |
| 8308 | for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { |
| 8309 | const auto TypeOfT = ArithmeticTypes[Arith]; |
| 8310 | if (TypeOfT == S.Context.BoolTy) { |
| 8311 | if (Op == OO_MinusMinus) |
| 8312 | continue; |
| 8313 | if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) |
| 8314 | continue; |
| 8315 | } |
| 8316 | addPlusPlusMinusMinusStyleOverloads( |
| 8317 | TypeOfT, |
| 8318 | VisibleTypeConversionsQuals.hasVolatile(), |
| 8319 | VisibleTypeConversionsQuals.hasRestrict()); |
| 8320 | } |
| 8321 | } |
| 8322 | |
| 8323 | // C++ [over.built]p5: |
| 8324 | // |
| 8325 | // For every pair (T, VQ), where T is a cv-qualified or |
| 8326 | // cv-unqualified object type, and VQ is either volatile or |
| 8327 | // empty, there exist candidate operator functions of the form |
| 8328 | // |
| 8329 | // T*VQ& operator++(T*VQ&); |
| 8330 | // T*VQ& operator--(T*VQ&); |
| 8331 | // T* operator++(T*VQ&, int); |
| 8332 | // T* operator--(T*VQ&, int); |
| 8333 | void addPlusPlusMinusMinusPointerOverloads() { |
| 8334 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { |
| 8335 | // Skip pointer types that aren't pointers to object types. |
| 8336 | if (!PtrTy->getPointeeType()->isObjectType()) |
| 8337 | continue; |
| 8338 | |
| 8339 | addPlusPlusMinusMinusStyleOverloads( |
| 8340 | PtrTy, |
| 8341 | (!PtrTy.isVolatileQualified() && |
| 8342 | VisibleTypeConversionsQuals.hasVolatile()), |
| 8343 | (!PtrTy.isRestrictQualified() && |
| 8344 | VisibleTypeConversionsQuals.hasRestrict())); |
| 8345 | } |
| 8346 | } |
| 8347 | |
| 8348 | // C++ [over.built]p6: |
| 8349 | // For every cv-qualified or cv-unqualified object type T, there |
| 8350 | // exist candidate operator functions of the form |
| 8351 | // |
| 8352 | // T& operator*(T*); |
| 8353 | // |
| 8354 | // C++ [over.built]p7: |
| 8355 | // For every function type T that does not have cv-qualifiers or a |
| 8356 | // ref-qualifier, there exist candidate operator functions of the form |
| 8357 | // T& operator*(T*); |
| 8358 | void addUnaryStarPointerOverloads() { |
| 8359 | for (QualType ParamTy : CandidateTypes[0].pointer_types()) { |
| 8360 | QualType PointeeTy = ParamTy->getPointeeType(); |
| 8361 | if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) |
| 8362 | continue; |
| 8363 | |
| 8364 | if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) |
| 8365 | if (Proto->getMethodQuals() || Proto->getRefQualifier()) |
| 8366 | continue; |
| 8367 | |
| 8368 | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); |
| 8369 | } |
| 8370 | } |
| 8371 | |
| 8372 | // C++ [over.built]p9: |
| 8373 | // For every promoted arithmetic type T, there exist candidate |
| 8374 | // operator functions of the form |
| 8375 | // |
| 8376 | // T operator+(T); |
| 8377 | // T operator-(T); |
| 8378 | void addUnaryPlusOrMinusArithmeticOverloads() { |
| 8379 | if (!HasArithmeticOrEnumeralCandidateType) |
| 8380 | return; |
| 8381 | |
| 8382 | for (unsigned Arith = FirstPromotedArithmeticType; |
| 8383 | Arith < LastPromotedArithmeticType; ++Arith) { |
| 8384 | QualType ArithTy = ArithmeticTypes[Arith]; |
| 8385 | S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); |
| 8386 | } |
| 8387 | |
| 8388 | // Extension: We also add these operators for vector types. |
| 8389 | for (QualType VecTy : CandidateTypes[0].vector_types()) |
| 8390 | S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); |
| 8391 | } |
| 8392 | |
| 8393 | // C++ [over.built]p8: |
| 8394 | // For every type T, there exist candidate operator functions of |
| 8395 | // the form |
| 8396 | // |
| 8397 | // T* operator+(T*); |
| 8398 | void addUnaryPlusPointerOverloads() { |
| 8399 | for (QualType ParamTy : CandidateTypes[0].pointer_types()) |
| 8400 | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); |
| 8401 | } |
| 8402 | |
| 8403 | // C++ [over.built]p10: |
| 8404 | // For every promoted integral type T, there exist candidate |
| 8405 | // operator functions of the form |
| 8406 | // |
| 8407 | // T operator~(T); |
| 8408 | void addUnaryTildePromotedIntegralOverloads() { |
| 8409 | if (!HasArithmeticOrEnumeralCandidateType) |
| 8410 | return; |
| 8411 | |
| 8412 | for (unsigned Int = FirstPromotedIntegralType; |
| 8413 | Int < LastPromotedIntegralType; ++Int) { |
| 8414 | QualType IntTy = ArithmeticTypes[Int]; |
| 8415 | S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); |
| 8416 | } |
| 8417 | |
| 8418 | // Extension: We also add this operator for vector types. |
| 8419 | for (QualType VecTy : CandidateTypes[0].vector_types()) |
| 8420 | S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); |
| 8421 | } |
| 8422 | |
| 8423 | // C++ [over.match.oper]p16: |
| 8424 | // For every pointer to member type T or type std::nullptr_t, there |
| 8425 | // exist candidate operator functions of the form |
| 8426 | // |
| 8427 | // bool operator==(T,T); |
| 8428 | // bool operator!=(T,T); |
| 8429 | void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { |
| 8430 | /// Set of (canonical) types that we've already handled. |
| 8431 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 8432 | |
| 8433 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 8434 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { |
| 8435 | // Don't add the same builtin candidate twice. |
| 8436 | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) |
| 8437 | continue; |
| 8438 | |
| 8439 | QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; |
| 8440 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8441 | } |
| 8442 | |
| 8443 | if (CandidateTypes[ArgIdx].hasNullPtrType()) { |
| 8444 | CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); |
| 8445 | if (AddedTypes.insert(NullPtrTy).second) { |
| 8446 | QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; |
| 8447 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8448 | } |
| 8449 | } |
| 8450 | } |
| 8451 | } |
| 8452 | |
| 8453 | // C++ [over.built]p15: |
| 8454 | // |
| 8455 | // For every T, where T is an enumeration type or a pointer type, |
| 8456 | // there exist candidate operator functions of the form |
| 8457 | // |
| 8458 | // bool operator<(T, T); |
| 8459 | // bool operator>(T, T); |
| 8460 | // bool operator<=(T, T); |
| 8461 | // bool operator>=(T, T); |
| 8462 | // bool operator==(T, T); |
| 8463 | // bool operator!=(T, T); |
| 8464 | // R operator<=>(T, T) |
| 8465 | void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { |
| 8466 | // C++ [over.match.oper]p3: |
| 8467 | // [...]the built-in candidates include all of the candidate operator |
| 8468 | // functions defined in 13.6 that, compared to the given operator, [...] |
| 8469 | // do not have the same parameter-type-list as any non-template non-member |
| 8470 | // candidate. |
| 8471 | // |
| 8472 | // Note that in practice, this only affects enumeration types because there |
| 8473 | // aren't any built-in candidates of record type, and a user-defined operator |
| 8474 | // must have an operand of record or enumeration type. Also, the only other |
| 8475 | // overloaded operator with enumeration arguments, operator=, |
| 8476 | // cannot be overloaded for enumeration types, so this is the only place |
| 8477 | // where we must suppress candidates like this. |
| 8478 | llvm::DenseSet<std::pair<CanQualType, CanQualType> > |
| 8479 | UserDefinedBinaryOperators; |
| 8480 | |
| 8481 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 8482 | if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { |
| 8483 | for (OverloadCandidateSet::iterator C = CandidateSet.begin(), |
| 8484 | CEnd = CandidateSet.end(); |
| 8485 | C != CEnd; ++C) { |
| 8486 | if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) |
| 8487 | continue; |
| 8488 | |
| 8489 | if (C->Function->isFunctionTemplateSpecialization()) |
| 8490 | continue; |
| 8491 | |
| 8492 | // We interpret "same parameter-type-list" as applying to the |
| 8493 | // "synthesized candidate, with the order of the two parameters |
| 8494 | // reversed", not to the original function. |
| 8495 | bool Reversed = C->isReversed(); |
| 8496 | QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) |
| 8497 | ->getType() |
| 8498 | .getUnqualifiedType(); |
| 8499 | QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) |
| 8500 | ->getType() |
| 8501 | .getUnqualifiedType(); |
| 8502 | |
| 8503 | // Skip if either parameter isn't of enumeral type. |
| 8504 | if (!FirstParamType->isEnumeralType() || |
| 8505 | !SecondParamType->isEnumeralType()) |
| 8506 | continue; |
| 8507 | |
| 8508 | // Add this operator to the set of known user-defined operators. |
| 8509 | UserDefinedBinaryOperators.insert( |
| 8510 | std::make_pair(S.Context.getCanonicalType(FirstParamType), |
| 8511 | S.Context.getCanonicalType(SecondParamType))); |
| 8512 | } |
| 8513 | } |
| 8514 | } |
| 8515 | |
| 8516 | /// Set of (canonical) types that we've already handled. |
| 8517 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 8518 | |
| 8519 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 8520 | for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { |
| 8521 | // Don't add the same builtin candidate twice. |
| 8522 | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) |
| 8523 | continue; |
| 8524 | if (IsSpaceship && PtrTy->isFunctionPointerType()) |
| 8525 | continue; |
| 8526 | |
| 8527 | QualType ParamTypes[2] = {PtrTy, PtrTy}; |
| 8528 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8529 | } |
| 8530 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { |
| 8531 | CanQualType CanonType = S.Context.getCanonicalType(EnumTy); |
| 8532 | |
| 8533 | // Don't add the same builtin candidate twice, or if a user defined |
| 8534 | // candidate exists. |
| 8535 | if (!AddedTypes.insert(CanonType).second || |
| 8536 | UserDefinedBinaryOperators.count(std::make_pair(CanonType, |
| 8537 | CanonType))) |
| 8538 | continue; |
| 8539 | QualType ParamTypes[2] = {EnumTy, EnumTy}; |
| 8540 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8541 | } |
| 8542 | } |
| 8543 | } |
| 8544 | |
| 8545 | // C++ [over.built]p13: |
| 8546 | // |
| 8547 | // For every cv-qualified or cv-unqualified object type T |
| 8548 | // there exist candidate operator functions of the form |
| 8549 | // |
| 8550 | // T* operator+(T*, ptrdiff_t); |
| 8551 | // T& operator[](T*, ptrdiff_t); [BELOW] |
| 8552 | // T* operator-(T*, ptrdiff_t); |
| 8553 | // T* operator+(ptrdiff_t, T*); |
| 8554 | // T& operator[](ptrdiff_t, T*); [BELOW] |
| 8555 | // |
| 8556 | // C++ [over.built]p14: |
| 8557 | // |
| 8558 | // For every T, where T is a pointer to object type, there |
| 8559 | // exist candidate operator functions of the form |
| 8560 | // |
| 8561 | // ptrdiff_t operator-(T, T); |
| 8562 | void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { |
| 8563 | /// Set of (canonical) types that we've already handled. |
| 8564 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 8565 | |
| 8566 | for (int Arg = 0; Arg < 2; ++Arg) { |
| 8567 | QualType AsymmetricParamTypes[2] = { |
| 8568 | S.Context.getPointerDiffType(), |
| 8569 | S.Context.getPointerDiffType(), |
| 8570 | }; |
| 8571 | for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { |
| 8572 | QualType PointeeTy = PtrTy->getPointeeType(); |
| 8573 | if (!PointeeTy->isObjectType()) |
| 8574 | continue; |
| 8575 | |
| 8576 | AsymmetricParamTypes[Arg] = PtrTy; |
| 8577 | if (Arg == 0 || Op == OO_Plus) { |
| 8578 | // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) |
| 8579 | // T* operator+(ptrdiff_t, T*); |
| 8580 | S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); |
| 8581 | } |
| 8582 | if (Op == OO_Minus) { |
| 8583 | // ptrdiff_t operator-(T, T); |
| 8584 | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) |
| 8585 | continue; |
| 8586 | |
| 8587 | QualType ParamTypes[2] = {PtrTy, PtrTy}; |
| 8588 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8589 | } |
| 8590 | } |
| 8591 | } |
| 8592 | } |
| 8593 | |
| 8594 | // C++ [over.built]p12: |
| 8595 | // |
| 8596 | // For every pair of promoted arithmetic types L and R, there |
| 8597 | // exist candidate operator functions of the form |
| 8598 | // |
| 8599 | // LR operator*(L, R); |
| 8600 | // LR operator/(L, R); |
| 8601 | // LR operator+(L, R); |
| 8602 | // LR operator-(L, R); |
| 8603 | // bool operator<(L, R); |
| 8604 | // bool operator>(L, R); |
| 8605 | // bool operator<=(L, R); |
| 8606 | // bool operator>=(L, R); |
| 8607 | // bool operator==(L, R); |
| 8608 | // bool operator!=(L, R); |
| 8609 | // |
| 8610 | // where LR is the result of the usual arithmetic conversions |
| 8611 | // between types L and R. |
| 8612 | // |
| 8613 | // C++ [over.built]p24: |
| 8614 | // |
| 8615 | // For every pair of promoted arithmetic types L and R, there exist |
| 8616 | // candidate operator functions of the form |
| 8617 | // |
| 8618 | // LR operator?(bool, L, R); |
| 8619 | // |
| 8620 | // where LR is the result of the usual arithmetic conversions |
| 8621 | // between types L and R. |
| 8622 | // Our candidates ignore the first parameter. |
| 8623 | void addGenericBinaryArithmeticOverloads() { |
| 8624 | if (!HasArithmeticOrEnumeralCandidateType) |
| 8625 | return; |
| 8626 | |
| 8627 | for (unsigned Left = FirstPromotedArithmeticType; |
| 8628 | Left < LastPromotedArithmeticType; ++Left) { |
| 8629 | for (unsigned Right = FirstPromotedArithmeticType; |
| 8630 | Right < LastPromotedArithmeticType; ++Right) { |
| 8631 | QualType LandR[2] = { ArithmeticTypes[Left], |
| 8632 | ArithmeticTypes[Right] }; |
| 8633 | S.AddBuiltinCandidate(LandR, Args, CandidateSet); |
| 8634 | } |
| 8635 | } |
| 8636 | |
| 8637 | // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the |
| 8638 | // conditional operator for vector types. |
| 8639 | for (QualType Vec1Ty : CandidateTypes[0].vector_types()) |
| 8640 | for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { |
| 8641 | QualType LandR[2] = {Vec1Ty, Vec2Ty}; |
| 8642 | S.AddBuiltinCandidate(LandR, Args, CandidateSet); |
| 8643 | } |
| 8644 | } |
| 8645 | |
| 8646 | /// Add binary operator overloads for each candidate matrix type M1, M2: |
| 8647 | /// * (M1, M1) -> M1 |
| 8648 | /// * (M1, M1.getElementType()) -> M1 |
| 8649 | /// * (M2.getElementType(), M2) -> M2 |
| 8650 | /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. |
| 8651 | void addMatrixBinaryArithmeticOverloads() { |
| 8652 | if (!HasArithmeticOrEnumeralCandidateType) |
| 8653 | return; |
| 8654 | |
| 8655 | for (QualType M1 : CandidateTypes[0].matrix_types()) { |
| 8656 | AddCandidate(M1, cast<MatrixType>(M1)->getElementType()); |
| 8657 | AddCandidate(M1, M1); |
| 8658 | } |
| 8659 | |
| 8660 | for (QualType M2 : CandidateTypes[1].matrix_types()) { |
| 8661 | AddCandidate(cast<MatrixType>(M2)->getElementType(), M2); |
| 8662 | if (!CandidateTypes[0].containsMatrixType(M2)) |
| 8663 | AddCandidate(M2, M2); |
| 8664 | } |
| 8665 | } |
| 8666 | |
| 8667 | // C++2a [over.built]p14: |
| 8668 | // |
| 8669 | // For every integral type T there exists a candidate operator function |
| 8670 | // of the form |
| 8671 | // |
| 8672 | // std::strong_ordering operator<=>(T, T) |
| 8673 | // |
| 8674 | // C++2a [over.built]p15: |
| 8675 | // |
| 8676 | // For every pair of floating-point types L and R, there exists a candidate |
| 8677 | // operator function of the form |
| 8678 | // |
| 8679 | // std::partial_ordering operator<=>(L, R); |
| 8680 | // |
| 8681 | // FIXME: The current specification for integral types doesn't play nice with |
| 8682 | // the direction of p0946r0, which allows mixed integral and unscoped-enum |
| 8683 | // comparisons. Under the current spec this can lead to ambiguity during |
| 8684 | // overload resolution. For example: |
| 8685 | // |
| 8686 | // enum A : int {a}; |
| 8687 | // auto x = (a <=> (long)42); |
| 8688 | // |
| 8689 | // error: call is ambiguous for arguments 'A' and 'long'. |
| 8690 | // note: candidate operator<=>(int, int) |
| 8691 | // note: candidate operator<=>(long, long) |
| 8692 | // |
| 8693 | // To avoid this error, this function deviates from the specification and adds |
| 8694 | // the mixed overloads `operator<=>(L, R)` where L and R are promoted |
| 8695 | // arithmetic types (the same as the generic relational overloads). |
| 8696 | // |
| 8697 | // For now this function acts as a placeholder. |
| 8698 | void addThreeWayArithmeticOverloads() { |
| 8699 | addGenericBinaryArithmeticOverloads(); |
| 8700 | } |
| 8701 | |
| 8702 | // C++ [over.built]p17: |
| 8703 | // |
| 8704 | // For every pair of promoted integral types L and R, there |
| 8705 | // exist candidate operator functions of the form |
| 8706 | // |
| 8707 | // LR operator%(L, R); |
| 8708 | // LR operator&(L, R); |
| 8709 | // LR operator^(L, R); |
| 8710 | // LR operator|(L, R); |
| 8711 | // L operator<<(L, R); |
| 8712 | // L operator>>(L, R); |
| 8713 | // |
| 8714 | // where LR is the result of the usual arithmetic conversions |
| 8715 | // between types L and R. |
| 8716 | void addBinaryBitwiseArithmeticOverloads() { |
| 8717 | if (!HasArithmeticOrEnumeralCandidateType) |
| 8718 | return; |
| 8719 | |
| 8720 | for (unsigned Left = FirstPromotedIntegralType; |
| 8721 | Left < LastPromotedIntegralType; ++Left) { |
| 8722 | for (unsigned Right = FirstPromotedIntegralType; |
| 8723 | Right < LastPromotedIntegralType; ++Right) { |
| 8724 | QualType LandR[2] = { ArithmeticTypes[Left], |
| 8725 | ArithmeticTypes[Right] }; |
| 8726 | S.AddBuiltinCandidate(LandR, Args, CandidateSet); |
| 8727 | } |
| 8728 | } |
| 8729 | } |
| 8730 | |
| 8731 | // C++ [over.built]p20: |
| 8732 | // |
| 8733 | // For every pair (T, VQ), where T is an enumeration or |
| 8734 | // pointer to member type and VQ is either volatile or |
| 8735 | // empty, there exist candidate operator functions of the form |
| 8736 | // |
| 8737 | // VQ T& operator=(VQ T&, T); |
| 8738 | void addAssignmentMemberPointerOrEnumeralOverloads() { |
| 8739 | /// Set of (canonical) types that we've already handled. |
| 8740 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 8741 | |
| 8742 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { |
| 8743 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { |
| 8744 | if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) |
| 8745 | continue; |
| 8746 | |
| 8747 | AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); |
| 8748 | } |
| 8749 | |
| 8750 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { |
| 8751 | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) |
| 8752 | continue; |
| 8753 | |
| 8754 | AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); |
| 8755 | } |
| 8756 | } |
| 8757 | } |
| 8758 | |
| 8759 | // C++ [over.built]p19: |
| 8760 | // |
| 8761 | // For every pair (T, VQ), where T is any type and VQ is either |
| 8762 | // volatile or empty, there exist candidate operator functions |
| 8763 | // of the form |
| 8764 | // |
| 8765 | // T*VQ& operator=(T*VQ&, T*); |
| 8766 | // |
| 8767 | // C++ [over.built]p21: |
| 8768 | // |
| 8769 | // For every pair (T, VQ), where T is a cv-qualified or |
| 8770 | // cv-unqualified object type and VQ is either volatile or |
| 8771 | // empty, there exist candidate operator functions of the form |
| 8772 | // |
| 8773 | // T*VQ& operator+=(T*VQ&, ptrdiff_t); |
| 8774 | // T*VQ& operator-=(T*VQ&, ptrdiff_t); |
| 8775 | void addAssignmentPointerOverloads(bool isEqualOp) { |
| 8776 | /// Set of (canonical) types that we've already handled. |
| 8777 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 8778 | |
| 8779 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { |
| 8780 | // If this is operator=, keep track of the builtin candidates we added. |
| 8781 | if (isEqualOp) |
| 8782 | AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); |
| 8783 | else if (!PtrTy->getPointeeType()->isObjectType()) |
| 8784 | continue; |
| 8785 | |
| 8786 | // non-volatile version |
| 8787 | QualType ParamTypes[2] = { |
| 8788 | S.Context.getLValueReferenceType(PtrTy), |
| 8789 | isEqualOp ? PtrTy : S.Context.getPointerDiffType(), |
| 8790 | }; |
| 8791 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8792 | /*IsAssignmentOperator=*/ isEqualOp); |
| 8793 | |
| 8794 | bool NeedVolatile = !PtrTy.isVolatileQualified() && |
| 8795 | VisibleTypeConversionsQuals.hasVolatile(); |
| 8796 | if (NeedVolatile) { |
| 8797 | // volatile version |
| 8798 | ParamTypes[0] = |
| 8799 | S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); |
| 8800 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8801 | /*IsAssignmentOperator=*/isEqualOp); |
| 8802 | } |
| 8803 | |
| 8804 | if (!PtrTy.isRestrictQualified() && |
| 8805 | VisibleTypeConversionsQuals.hasRestrict()) { |
| 8806 | // restrict version |
| 8807 | ParamTypes[0] = |
| 8808 | S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); |
| 8809 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8810 | /*IsAssignmentOperator=*/isEqualOp); |
| 8811 | |
| 8812 | if (NeedVolatile) { |
| 8813 | // volatile restrict version |
| 8814 | ParamTypes[0] = |
| 8815 | S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( |
| 8816 | PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); |
| 8817 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8818 | /*IsAssignmentOperator=*/isEqualOp); |
| 8819 | } |
| 8820 | } |
| 8821 | } |
| 8822 | |
| 8823 | if (isEqualOp) { |
| 8824 | for (QualType PtrTy : CandidateTypes[1].pointer_types()) { |
| 8825 | // Make sure we don't add the same candidate twice. |
| 8826 | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) |
| 8827 | continue; |
| 8828 | |
| 8829 | QualType ParamTypes[2] = { |
| 8830 | S.Context.getLValueReferenceType(PtrTy), |
| 8831 | PtrTy, |
| 8832 | }; |
| 8833 | |
| 8834 | // non-volatile version |
| 8835 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8836 | /*IsAssignmentOperator=*/true); |
| 8837 | |
| 8838 | bool NeedVolatile = !PtrTy.isVolatileQualified() && |
| 8839 | VisibleTypeConversionsQuals.hasVolatile(); |
| 8840 | if (NeedVolatile) { |
| 8841 | // volatile version |
| 8842 | ParamTypes[0] = S.Context.getLValueReferenceType( |
| 8843 | S.Context.getVolatileType(PtrTy)); |
| 8844 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8845 | /*IsAssignmentOperator=*/true); |
| 8846 | } |
| 8847 | |
| 8848 | if (!PtrTy.isRestrictQualified() && |
| 8849 | VisibleTypeConversionsQuals.hasRestrict()) { |
| 8850 | // restrict version |
| 8851 | ParamTypes[0] = S.Context.getLValueReferenceType( |
| 8852 | S.Context.getRestrictType(PtrTy)); |
| 8853 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8854 | /*IsAssignmentOperator=*/true); |
| 8855 | |
| 8856 | if (NeedVolatile) { |
| 8857 | // volatile restrict version |
| 8858 | ParamTypes[0] = |
| 8859 | S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( |
| 8860 | PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); |
| 8861 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8862 | /*IsAssignmentOperator=*/true); |
| 8863 | } |
| 8864 | } |
| 8865 | } |
| 8866 | } |
| 8867 | } |
| 8868 | |
| 8869 | // C++ [over.built]p18: |
| 8870 | // |
| 8871 | // For every triple (L, VQ, R), where L is an arithmetic type, |
| 8872 | // VQ is either volatile or empty, and R is a promoted |
| 8873 | // arithmetic type, there exist candidate operator functions of |
| 8874 | // the form |
| 8875 | // |
| 8876 | // VQ L& operator=(VQ L&, R); |
| 8877 | // VQ L& operator*=(VQ L&, R); |
| 8878 | // VQ L& operator/=(VQ L&, R); |
| 8879 | // VQ L& operator+=(VQ L&, R); |
| 8880 | // VQ L& operator-=(VQ L&, R); |
| 8881 | void addAssignmentArithmeticOverloads(bool isEqualOp) { |
| 8882 | if (!HasArithmeticOrEnumeralCandidateType) |
| 8883 | return; |
| 8884 | |
| 8885 | for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { |
| 8886 | for (unsigned Right = FirstPromotedArithmeticType; |
| 8887 | Right < LastPromotedArithmeticType; ++Right) { |
| 8888 | QualType ParamTypes[2]; |
| 8889 | ParamTypes[1] = ArithmeticTypes[Right]; |
| 8890 | auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( |
| 8891 | S, ArithmeticTypes[Left], Args[0]); |
| 8892 | // Add this built-in operator as a candidate (VQ is empty). |
| 8893 | ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); |
| 8894 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8895 | /*IsAssignmentOperator=*/isEqualOp); |
| 8896 | |
| 8897 | // Add this built-in operator as a candidate (VQ is 'volatile'). |
| 8898 | if (VisibleTypeConversionsQuals.hasVolatile()) { |
| 8899 | ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy); |
| 8900 | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); |
| 8901 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8902 | /*IsAssignmentOperator=*/isEqualOp); |
| 8903 | } |
| 8904 | } |
| 8905 | } |
| 8906 | |
| 8907 | // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. |
| 8908 | for (QualType Vec1Ty : CandidateTypes[0].vector_types()) |
| 8909 | for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { |
| 8910 | QualType ParamTypes[2]; |
| 8911 | ParamTypes[1] = Vec2Ty; |
| 8912 | // Add this built-in operator as a candidate (VQ is empty). |
| 8913 | ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); |
| 8914 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8915 | /*IsAssignmentOperator=*/isEqualOp); |
| 8916 | |
| 8917 | // Add this built-in operator as a candidate (VQ is 'volatile'). |
| 8918 | if (VisibleTypeConversionsQuals.hasVolatile()) { |
| 8919 | ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); |
| 8920 | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); |
| 8921 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8922 | /*IsAssignmentOperator=*/isEqualOp); |
| 8923 | } |
| 8924 | } |
| 8925 | } |
| 8926 | |
| 8927 | // C++ [over.built]p22: |
| 8928 | // |
| 8929 | // For every triple (L, VQ, R), where L is an integral type, VQ |
| 8930 | // is either volatile or empty, and R is a promoted integral |
| 8931 | // type, there exist candidate operator functions of the form |
| 8932 | // |
| 8933 | // VQ L& operator%=(VQ L&, R); |
| 8934 | // VQ L& operator<<=(VQ L&, R); |
| 8935 | // VQ L& operator>>=(VQ L&, R); |
| 8936 | // VQ L& operator&=(VQ L&, R); |
| 8937 | // VQ L& operator^=(VQ L&, R); |
| 8938 | // VQ L& operator|=(VQ L&, R); |
| 8939 | void addAssignmentIntegralOverloads() { |
| 8940 | if (!HasArithmeticOrEnumeralCandidateType) |
| 8941 | return; |
| 8942 | |
| 8943 | for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { |
| 8944 | for (unsigned Right = FirstPromotedIntegralType; |
| 8945 | Right < LastPromotedIntegralType; ++Right) { |
| 8946 | QualType ParamTypes[2]; |
| 8947 | ParamTypes[1] = ArithmeticTypes[Right]; |
| 8948 | auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( |
| 8949 | S, ArithmeticTypes[Left], Args[0]); |
| 8950 | // Add this built-in operator as a candidate (VQ is empty). |
| 8951 | ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); |
| 8952 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8953 | if (VisibleTypeConversionsQuals.hasVolatile()) { |
| 8954 | // Add this built-in operator as a candidate (VQ is 'volatile'). |
| 8955 | ParamTypes[0] = LeftBaseTy; |
| 8956 | ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); |
| 8957 | ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); |
| 8958 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 8959 | } |
| 8960 | } |
| 8961 | } |
| 8962 | } |
| 8963 | |
| 8964 | // C++ [over.operator]p23: |
| 8965 | // |
| 8966 | // There also exist candidate operator functions of the form |
| 8967 | // |
| 8968 | // bool operator!(bool); |
| 8969 | // bool operator&&(bool, bool); |
| 8970 | // bool operator||(bool, bool); |
| 8971 | void addExclaimOverload() { |
| 8972 | QualType ParamTy = S.Context.BoolTy; |
| 8973 | S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, |
| 8974 | /*IsAssignmentOperator=*/false, |
| 8975 | /*NumContextualBoolArguments=*/1); |
| 8976 | } |
| 8977 | void addAmpAmpOrPipePipeOverload() { |
| 8978 | QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; |
| 8979 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, |
| 8980 | /*IsAssignmentOperator=*/false, |
| 8981 | /*NumContextualBoolArguments=*/2); |
| 8982 | } |
| 8983 | |
| 8984 | // C++ [over.built]p13: |
| 8985 | // |
| 8986 | // For every cv-qualified or cv-unqualified object type T there |
| 8987 | // exist candidate operator functions of the form |
| 8988 | // |
| 8989 | // T* operator+(T*, ptrdiff_t); [ABOVE] |
| 8990 | // T& operator[](T*, ptrdiff_t); |
| 8991 | // T* operator-(T*, ptrdiff_t); [ABOVE] |
| 8992 | // T* operator+(ptrdiff_t, T*); [ABOVE] |
| 8993 | // T& operator[](ptrdiff_t, T*); |
| 8994 | void addSubscriptOverloads() { |
| 8995 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { |
| 8996 | QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; |
| 8997 | QualType PointeeType = PtrTy->getPointeeType(); |
| 8998 | if (!PointeeType->isObjectType()) |
| 8999 | continue; |
| 9000 | |
| 9001 | // T& operator[](T*, ptrdiff_t) |
| 9002 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 9003 | } |
| 9004 | |
| 9005 | for (QualType PtrTy : CandidateTypes[1].pointer_types()) { |
| 9006 | QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; |
| 9007 | QualType PointeeType = PtrTy->getPointeeType(); |
| 9008 | if (!PointeeType->isObjectType()) |
| 9009 | continue; |
| 9010 | |
| 9011 | // T& operator[](ptrdiff_t, T*) |
| 9012 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 9013 | } |
| 9014 | } |
| 9015 | |
| 9016 | // C++ [over.built]p11: |
| 9017 | // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, |
| 9018 | // C1 is the same type as C2 or is a derived class of C2, T is an object |
| 9019 | // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, |
| 9020 | // there exist candidate operator functions of the form |
| 9021 | // |
| 9022 | // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); |
| 9023 | // |
| 9024 | // where CV12 is the union of CV1 and CV2. |
| 9025 | void addArrowStarOverloads() { |
| 9026 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { |
| 9027 | QualType C1Ty = PtrTy; |
| 9028 | QualType C1; |
| 9029 | QualifierCollector Q1; |
| 9030 | C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); |
| 9031 | if (!isa<RecordType>(C1)) |
| 9032 | continue; |
| 9033 | // heuristic to reduce number of builtin candidates in the set. |
| 9034 | // Add volatile/restrict version only if there are conversions to a |
| 9035 | // volatile/restrict type. |
| 9036 | if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) |
| 9037 | continue; |
| 9038 | if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) |
| 9039 | continue; |
| 9040 | for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { |
| 9041 | const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy); |
| 9042 | QualType C2 = QualType(mptr->getClass(), 0); |
| 9043 | C2 = C2.getUnqualifiedType(); |
| 9044 | if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) |
| 9045 | break; |
| 9046 | QualType ParamTypes[2] = {PtrTy, MemPtrTy}; |
| 9047 | // build CV12 T& |
| 9048 | QualType T = mptr->getPointeeType(); |
| 9049 | if (!VisibleTypeConversionsQuals.hasVolatile() && |
| 9050 | T.isVolatileQualified()) |
| 9051 | continue; |
| 9052 | if (!VisibleTypeConversionsQuals.hasRestrict() && |
| 9053 | T.isRestrictQualified()) |
| 9054 | continue; |
| 9055 | T = Q1.apply(S.Context, T); |
| 9056 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 9057 | } |
| 9058 | } |
| 9059 | } |
| 9060 | |
| 9061 | // Note that we don't consider the first argument, since it has been |
| 9062 | // contextually converted to bool long ago. The candidates below are |
| 9063 | // therefore added as binary. |
| 9064 | // |
| 9065 | // C++ [over.built]p25: |
| 9066 | // For every type T, where T is a pointer, pointer-to-member, or scoped |
| 9067 | // enumeration type, there exist candidate operator functions of the form |
| 9068 | // |
| 9069 | // T operator?(bool, T, T); |
| 9070 | // |
| 9071 | void addConditionalOperatorOverloads() { |
| 9072 | /// Set of (canonical) types that we've already handled. |
| 9073 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 9074 | |
| 9075 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { |
| 9076 | for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { |
| 9077 | if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) |
| 9078 | continue; |
| 9079 | |
| 9080 | QualType ParamTypes[2] = {PtrTy, PtrTy}; |
| 9081 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 9082 | } |
| 9083 | |
| 9084 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { |
| 9085 | if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) |
| 9086 | continue; |
| 9087 | |
| 9088 | QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; |
| 9089 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 9090 | } |
| 9091 | |
| 9092 | if (S.getLangOpts().CPlusPlus11) { |
| 9093 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { |
| 9094 | if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) |
| 9095 | continue; |
| 9096 | |
| 9097 | if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) |
| 9098 | continue; |
| 9099 | |
| 9100 | QualType ParamTypes[2] = {EnumTy, EnumTy}; |
| 9101 | S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); |
| 9102 | } |
| 9103 | } |
| 9104 | } |
| 9105 | } |
| 9106 | }; |
| 9107 | |
| 9108 | } // end anonymous namespace |
| 9109 | |
| 9110 | /// AddBuiltinOperatorCandidates - Add the appropriate built-in |
| 9111 | /// operator overloads to the candidate set (C++ [over.built]), based |
| 9112 | /// on the operator @p Op and the arguments given. For example, if the |
| 9113 | /// operator is a binary '+', this routine might add "int |
| 9114 | /// operator+(int, int)" to cover integer addition. |
| 9115 | void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, |
| 9116 | SourceLocation OpLoc, |
| 9117 | ArrayRef<Expr *> Args, |
| 9118 | OverloadCandidateSet &CandidateSet) { |
| 9119 | // Find all of the types that the arguments can convert to, but only |
| 9120 | // if the operator we're looking at has built-in operator candidates |
| 9121 | // that make use of these types. Also record whether we encounter non-record |
| 9122 | // candidate types or either arithmetic or enumeral candidate types. |
| 9123 | Qualifiers VisibleTypeConversionsQuals; |
| 9124 | VisibleTypeConversionsQuals.addConst(); |
| 9125 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) |
| 9126 | VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); |
| 9127 | |
| 9128 | bool HasNonRecordCandidateType = false; |
| 9129 | bool HasArithmeticOrEnumeralCandidateType = false; |
| 9130 | SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; |
| 9131 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 9132 | CandidateTypes.emplace_back(*this); |
| 9133 | CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), |
| 9134 | OpLoc, |
| 9135 | true, |
| 9136 | (Op == OO_Exclaim || |
| 9137 | Op == OO_AmpAmp || |
| 9138 | Op == OO_PipePipe), |
| 9139 | VisibleTypeConversionsQuals); |
| 9140 | HasNonRecordCandidateType = HasNonRecordCandidateType || |
| 9141 | CandidateTypes[ArgIdx].hasNonRecordTypes(); |
| 9142 | HasArithmeticOrEnumeralCandidateType = |
| 9143 | HasArithmeticOrEnumeralCandidateType || |
| 9144 | CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); |
| 9145 | } |
| 9146 | |
| 9147 | // Exit early when no non-record types have been added to the candidate set |
| 9148 | // for any of the arguments to the operator. |
| 9149 | // |
| 9150 | // We can't exit early for !, ||, or &&, since there we have always have |
| 9151 | // 'bool' overloads. |
| 9152 | if (!HasNonRecordCandidateType && |
| 9153 | !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) |
| 9154 | return; |
| 9155 | |
| 9156 | // Setup an object to manage the common state for building overloads. |
| 9157 | BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, |
| 9158 | VisibleTypeConversionsQuals, |
| 9159 | HasArithmeticOrEnumeralCandidateType, |
| 9160 | CandidateTypes, CandidateSet); |
| 9161 | |
| 9162 | // Dispatch over the operation to add in only those overloads which apply. |
| 9163 | switch (Op) { |
| 9164 | case OO_None: |
| 9165 | case NUM_OVERLOADED_OPERATORS: |
| 9166 | llvm_unreachable("Expected an overloaded operator")__builtin_unreachable(); |
| 9167 | |
| 9168 | case OO_New: |
| 9169 | case OO_Delete: |
| 9170 | case OO_Array_New: |
| 9171 | case OO_Array_Delete: |
| 9172 | case OO_Call: |
| 9173 | llvm_unreachable(__builtin_unreachable() |
| 9174 | "Special operators don't use AddBuiltinOperatorCandidates")__builtin_unreachable(); |
| 9175 | |
| 9176 | case OO_Comma: |
| 9177 | case OO_Arrow: |
| 9178 | case OO_Coawait: |
| 9179 | // C++ [over.match.oper]p3: |
| 9180 | // -- For the operator ',', the unary operator '&', the |
| 9181 | // operator '->', or the operator 'co_await', the |
| 9182 | // built-in candidates set is empty. |
| 9183 | break; |
| 9184 | |
| 9185 | case OO_Plus: // '+' is either unary or binary |
| 9186 | if (Args.size() == 1) |
| 9187 | OpBuilder.addUnaryPlusPointerOverloads(); |
| 9188 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
| 9189 | |
| 9190 | case OO_Minus: // '-' is either unary or binary |
| 9191 | if (Args.size() == 1) { |
| 9192 | OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); |
| 9193 | } else { |
| 9194 | OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); |
| 9195 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 9196 | OpBuilder.addMatrixBinaryArithmeticOverloads(); |
| 9197 | } |
| 9198 | break; |
| 9199 | |
| 9200 | case OO_Star: // '*' is either unary or binary |
| 9201 | if (Args.size() == 1) |
| 9202 | OpBuilder.addUnaryStarPointerOverloads(); |
| 9203 | else { |
| 9204 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 9205 | OpBuilder.addMatrixBinaryArithmeticOverloads(); |
| 9206 | } |
| 9207 | break; |
| 9208 | |
| 9209 | case OO_Slash: |
| 9210 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 9211 | break; |
| 9212 | |
| 9213 | case OO_PlusPlus: |
| 9214 | case OO_MinusMinus: |
| 9215 | OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); |
| 9216 | OpBuilder.addPlusPlusMinusMinusPointerOverloads(); |
| 9217 | break; |
| 9218 | |
| 9219 | case OO_EqualEqual: |
| 9220 | case OO_ExclaimEqual: |
| 9221 | OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); |
| 9222 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); |
| 9223 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 9224 | break; |
| 9225 | |
| 9226 | case OO_Less: |
| 9227 | case OO_Greater: |
| 9228 | case OO_LessEqual: |
| 9229 | case OO_GreaterEqual: |
| 9230 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); |
| 9231 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 9232 | break; |
| 9233 | |
| 9234 | case OO_Spaceship: |
| 9235 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); |
| 9236 | OpBuilder.addThreeWayArithmeticOverloads(); |
| 9237 | break; |
| 9238 | |
| 9239 | case OO_Percent: |
| 9240 | case OO_Caret: |
| 9241 | case OO_Pipe: |
| 9242 | case OO_LessLess: |
| 9243 | case OO_GreaterGreater: |
| 9244 | OpBuilder.addBinaryBitwiseArithmeticOverloads(); |
| 9245 | break; |
| 9246 | |
| 9247 | case OO_Amp: // '&' is either unary or binary |
| 9248 | if (Args.size() == 1) |
| 9249 | // C++ [over.match.oper]p3: |
| 9250 | // -- For the operator ',', the unary operator '&', or the |
| 9251 | // operator '->', the built-in candidates set is empty. |
| 9252 | break; |
| 9253 | |
| 9254 | OpBuilder.addBinaryBitwiseArithmeticOverloads(); |
| 9255 | break; |
| 9256 | |
| 9257 | case OO_Tilde: |
| 9258 | OpBuilder.addUnaryTildePromotedIntegralOverloads(); |
| 9259 | break; |
| 9260 | |
| 9261 | case OO_Equal: |
| 9262 | OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); |
| 9263 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
| 9264 | |
| 9265 | case OO_PlusEqual: |
| 9266 | case OO_MinusEqual: |
| 9267 | OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); |
| 9268 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
| 9269 | |
| 9270 | case OO_StarEqual: |
| 9271 | case OO_SlashEqual: |
| 9272 | OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); |
| 9273 | break; |
| 9274 | |
| 9275 | case OO_PercentEqual: |
| 9276 | case OO_LessLessEqual: |
| 9277 | case OO_GreaterGreaterEqual: |
| 9278 | case OO_AmpEqual: |
| 9279 | case OO_CaretEqual: |
| 9280 | case OO_PipeEqual: |
| 9281 | OpBuilder.addAssignmentIntegralOverloads(); |
| 9282 | break; |
| 9283 | |
| 9284 | case OO_Exclaim: |
| 9285 | OpBuilder.addExclaimOverload(); |
| 9286 | break; |
| 9287 | |
| 9288 | case OO_AmpAmp: |
| 9289 | case OO_PipePipe: |
| 9290 | OpBuilder.addAmpAmpOrPipePipeOverload(); |
| 9291 | break; |
| 9292 | |
| 9293 | case OO_Subscript: |
| 9294 | OpBuilder.addSubscriptOverloads(); |
| 9295 | break; |
| 9296 | |
| 9297 | case OO_ArrowStar: |
| 9298 | OpBuilder.addArrowStarOverloads(); |
| 9299 | break; |
| 9300 | |
| 9301 | case OO_Conditional: |
| 9302 | OpBuilder.addConditionalOperatorOverloads(); |
| 9303 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 9304 | break; |
| 9305 | } |
| 9306 | } |
| 9307 | |
| 9308 | /// Add function candidates found via argument-dependent lookup |
| 9309 | /// to the set of overloading candidates. |
| 9310 | /// |
| 9311 | /// This routine performs argument-dependent name lookup based on the |
| 9312 | /// given function name (which may also be an operator name) and adds |
| 9313 | /// all of the overload candidates found by ADL to the overload |
| 9314 | /// candidate set (C++ [basic.lookup.argdep]). |
| 9315 | void |
| 9316 | Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, |
| 9317 | SourceLocation Loc, |
| 9318 | ArrayRef<Expr *> Args, |
| 9319 | TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 9320 | OverloadCandidateSet& CandidateSet, |
| 9321 | bool PartialOverloading) { |
| 9322 | ADLResult Fns; |
| 9323 | |
| 9324 | // FIXME: This approach for uniquing ADL results (and removing |
| 9325 | // redundant candidates from the set) relies on pointer-equality, |
| 9326 | // which means we need to key off the canonical decl. However, |
| 9327 | // always going back to the canonical decl might not get us the |
| 9328 | // right set of default arguments. What default arguments are |
| 9329 | // we supposed to consider on ADL candidates, anyway? |
| 9330 | |
| 9331 | // FIXME: Pass in the explicit template arguments? |
| 9332 | ArgumentDependentLookup(Name, Loc, Args, Fns); |
| 9333 | |
| 9334 | // Erase all of the candidates we already knew about. |
| 9335 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), |
| 9336 | CandEnd = CandidateSet.end(); |
| 9337 | Cand != CandEnd; ++Cand) |
| 9338 | if (Cand->Function) { |
| 9339 | Fns.erase(Cand->Function); |
| 9340 | if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) |
| 9341 | Fns.erase(FunTmpl); |
| 9342 | } |
| 9343 | |
| 9344 | // For each of the ADL candidates we found, add it to the overload |
| 9345 | // set. |
| 9346 | for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { |
| 9347 | DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); |
| 9348 | |
| 9349 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { |
| 9350 | if (ExplicitTemplateArgs) |
| 9351 | continue; |
| 9352 | |
| 9353 | AddOverloadCandidate( |
| 9354 | FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, |
| 9355 | PartialOverloading, /*AllowExplicit=*/true, |
| 9356 | /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL); |
| 9357 | if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) { |
| 9358 | AddOverloadCandidate( |
| 9359 | FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, |
| 9360 | /*SuppressUserConversions=*/false, PartialOverloading, |
| 9361 | /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false, |
| 9362 | ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed); |
| 9363 | } |
| 9364 | } else { |
| 9365 | auto *FTD = cast<FunctionTemplateDecl>(*I); |
| 9366 | AddTemplateOverloadCandidate( |
| 9367 | FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, |
| 9368 | /*SuppressUserConversions=*/false, PartialOverloading, |
| 9369 | /*AllowExplicit=*/true, ADLCallKind::UsesADL); |
| 9370 | if (CandidateSet.getRewriteInfo().shouldAddReversed( |
| 9371 | Context, FTD->getTemplatedDecl())) { |
| 9372 | AddTemplateOverloadCandidate( |
| 9373 | FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, |
| 9374 | CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, |
| 9375 | /*AllowExplicit=*/true, ADLCallKind::UsesADL, |
| 9376 | OverloadCandidateParamOrder::Reversed); |
| 9377 | } |
| 9378 | } |
| 9379 | } |
| 9380 | } |
| 9381 | |
| 9382 | namespace { |
| 9383 | enum class Comparison { Equal, Better, Worse }; |
| 9384 | } |
| 9385 | |
| 9386 | /// Compares the enable_if attributes of two FunctionDecls, for the purposes of |
| 9387 | /// overload resolution. |
| 9388 | /// |
| 9389 | /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff |
| 9390 | /// Cand1's first N enable_if attributes have precisely the same conditions as |
| 9391 | /// Cand2's first N enable_if attributes (where N = the number of enable_if |
| 9392 | /// attributes on Cand2), and Cand1 has more than N enable_if attributes. |
| 9393 | /// |
| 9394 | /// Note that you can have a pair of candidates such that Cand1's enable_if |
| 9395 | /// attributes are worse than Cand2's, and Cand2's enable_if attributes are |
| 9396 | /// worse than Cand1's. |
| 9397 | static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, |
| 9398 | const FunctionDecl *Cand2) { |
| 9399 | // Common case: One (or both) decls don't have enable_if attrs. |
| 9400 | bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); |
| 9401 | bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); |
| 9402 | if (!Cand1Attr || !Cand2Attr) { |
| 9403 | if (Cand1Attr == Cand2Attr) |
| 9404 | return Comparison::Equal; |
| 9405 | return Cand1Attr ? Comparison::Better : Comparison::Worse; |
| 9406 | } |
| 9407 | |
| 9408 | auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); |
| 9409 | auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); |
| 9410 | |
| 9411 | llvm::FoldingSetNodeID Cand1ID, Cand2ID; |
| 9412 | for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { |
| 9413 | Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); |
| 9414 | Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); |
| 9415 | |
| 9416 | // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 |
| 9417 | // has fewer enable_if attributes than Cand2, and vice versa. |
| 9418 | if (!Cand1A) |
| 9419 | return Comparison::Worse; |
| 9420 | if (!Cand2A) |
| 9421 | return Comparison::Better; |
| 9422 | |
| 9423 | Cand1ID.clear(); |
| 9424 | Cand2ID.clear(); |
| 9425 | |
| 9426 | (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); |
| 9427 | (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); |
| 9428 | if (Cand1ID != Cand2ID) |
| 9429 | return Comparison::Worse; |
| 9430 | } |
| 9431 | |
| 9432 | return Comparison::Equal; |
| 9433 | } |
| 9434 | |
| 9435 | static Comparison |
| 9436 | isBetterMultiversionCandidate(const OverloadCandidate &Cand1, |
| 9437 | const OverloadCandidate &Cand2) { |
| 9438 | if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || |
| 9439 | !Cand2.Function->isMultiVersion()) |
| 9440 | return Comparison::Equal; |
| 9441 | |
| 9442 | // If both are invalid, they are equal. If one of them is invalid, the other |
| 9443 | // is better. |
| 9444 | if (Cand1.Function->isInvalidDecl()) { |
| 9445 | if (Cand2.Function->isInvalidDecl()) |
| 9446 | return Comparison::Equal; |
| 9447 | return Comparison::Worse; |
| 9448 | } |
| 9449 | if (Cand2.Function->isInvalidDecl()) |
| 9450 | return Comparison::Better; |
| 9451 | |
| 9452 | // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer |
| 9453 | // cpu_dispatch, else arbitrarily based on the identifiers. |
| 9454 | bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); |
| 9455 | bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); |
| 9456 | const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); |
| 9457 | const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); |
| 9458 | |
| 9459 | if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) |
| 9460 | return Comparison::Equal; |
| 9461 | |
| 9462 | if (Cand1CPUDisp && !Cand2CPUDisp) |
| 9463 | return Comparison::Better; |
| 9464 | if (Cand2CPUDisp && !Cand1CPUDisp) |
| 9465 | return Comparison::Worse; |
| 9466 | |
| 9467 | if (Cand1CPUSpec && Cand2CPUSpec) { |
| 9468 | if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) |
| 9469 | return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() |
| 9470 | ? Comparison::Better |
| 9471 | : Comparison::Worse; |
| 9472 | |
| 9473 | std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> |
| 9474 | FirstDiff = std::mismatch( |
| 9475 | Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), |
| 9476 | Cand2CPUSpec->cpus_begin(), |
| 9477 | [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { |
| 9478 | return LHS->getName() == RHS->getName(); |
| 9479 | }); |
| 9480 | |
| 9481 | assert(FirstDiff.first != Cand1CPUSpec->cpus_end() &&((void)0) |
| 9482 | "Two different cpu-specific versions should not have the same "((void)0) |
| 9483 | "identifier list, otherwise they'd be the same decl!")((void)0); |
| 9484 | return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() |
| 9485 | ? Comparison::Better |
| 9486 | : Comparison::Worse; |
| 9487 | } |
| 9488 | llvm_unreachable("No way to get here unless both had cpu_dispatch")__builtin_unreachable(); |
| 9489 | } |
| 9490 | |
| 9491 | /// Compute the type of the implicit object parameter for the given function, |
| 9492 | /// if any. Returns None if there is no implicit object parameter, and a null |
| 9493 | /// QualType if there is a 'matches anything' implicit object parameter. |
| 9494 | static Optional<QualType> getImplicitObjectParamType(ASTContext &Context, |
| 9495 | const FunctionDecl *F) { |
| 9496 | if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F)) |
| 9497 | return llvm::None; |
| 9498 | |
| 9499 | auto *M = cast<CXXMethodDecl>(F); |
| 9500 | // Static member functions' object parameters match all types. |
| 9501 | if (M->isStatic()) |
| 9502 | return QualType(); |
| 9503 | |
| 9504 | QualType T = M->getThisObjectType(); |
| 9505 | if (M->getRefQualifier() == RQ_RValue) |
| 9506 | return Context.getRValueReferenceType(T); |
| 9507 | return Context.getLValueReferenceType(T); |
| 9508 | } |
| 9509 | |
| 9510 | static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1, |
| 9511 | const FunctionDecl *F2, unsigned NumParams) { |
| 9512 | if (declaresSameEntity(F1, F2)) |
| 9513 | return true; |
| 9514 | |
| 9515 | auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { |
| 9516 | if (First) { |
| 9517 | if (Optional<QualType> T = getImplicitObjectParamType(Context, F)) |
| 9518 | return *T; |
| 9519 | } |
| 9520 | assert(I < F->getNumParams())((void)0); |
| 9521 | return F->getParamDecl(I++)->getType(); |
| 9522 | }; |
| 9523 | |
| 9524 | unsigned I1 = 0, I2 = 0; |
| 9525 | for (unsigned I = 0; I != NumParams; ++I) { |
| 9526 | QualType T1 = NextParam(F1, I1, I == 0); |
| 9527 | QualType T2 = NextParam(F2, I2, I == 0); |
| 9528 | if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2)) |
| 9529 | return false; |
| 9530 | } |
| 9531 | return true; |
| 9532 | } |
| 9533 | |
| 9534 | /// isBetterOverloadCandidate - Determines whether the first overload |
| 9535 | /// candidate is a better candidate than the second (C++ 13.3.3p1). |
| 9536 | bool clang::isBetterOverloadCandidate( |
| 9537 | Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, |
| 9538 | SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { |
| 9539 | // Define viable functions to be better candidates than non-viable |
| 9540 | // functions. |
| 9541 | if (!Cand2.Viable) |
| 9542 | return Cand1.Viable; |
| 9543 | else if (!Cand1.Viable) |
| 9544 | return false; |
| 9545 | |
| 9546 | // [CUDA] A function with 'never' preference is marked not viable, therefore |
| 9547 | // is never shown up here. The worst preference shown up here is 'wrong side', |
| 9548 | // e.g. an H function called by a HD function in device compilation. This is |
| 9549 | // valid AST as long as the HD function is not emitted, e.g. it is an inline |
| 9550 | // function which is called only by an H function. A deferred diagnostic will |
| 9551 | // be triggered if it is emitted. However a wrong-sided function is still |
| 9552 | // a viable candidate here. |
| 9553 | // |
| 9554 | // If Cand1 can be emitted and Cand2 cannot be emitted in the current |
| 9555 | // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 |
| 9556 | // can be emitted, Cand1 is not better than Cand2. This rule should have |
| 9557 | // precedence over other rules. |
| 9558 | // |
| 9559 | // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then |
| 9560 | // other rules should be used to determine which is better. This is because |
| 9561 | // host/device based overloading resolution is mostly for determining |
| 9562 | // viability of a function. If two functions are both viable, other factors |
| 9563 | // should take precedence in preference, e.g. the standard-defined preferences |
| 9564 | // like argument conversion ranks or enable_if partial-ordering. The |
| 9565 | // preference for pass-object-size parameters is probably most similar to a |
| 9566 | // type-based-overloading decision and so should take priority. |
| 9567 | // |
| 9568 | // If other rules cannot determine which is better, CUDA preference will be |
| 9569 | // used again to determine which is better. |
| 9570 | // |
| 9571 | // TODO: Currently IdentifyCUDAPreference does not return correct values |
| 9572 | // for functions called in global variable initializers due to missing |
| 9573 | // correct context about device/host. Therefore we can only enforce this |
| 9574 | // rule when there is a caller. We should enforce this rule for functions |
| 9575 | // in global variable initializers once proper context is added. |
| 9576 | // |
| 9577 | // TODO: We can only enable the hostness based overloading resolution when |
| 9578 | // -fgpu-exclude-wrong-side-overloads is on since this requires deferring |
| 9579 | // overloading resolution diagnostics. |
| 9580 | if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && |
| 9581 | S.getLangOpts().GPUExcludeWrongSideOverloads) { |
| 9582 | if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) { |
| 9583 | bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller); |
| 9584 | bool IsCand1ImplicitHD = |
| 9585 | Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function); |
| 9586 | bool IsCand2ImplicitHD = |
| 9587 | Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function); |
| 9588 | auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function); |
| 9589 | auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function); |
| 9590 | assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never)((void)0); |
| 9591 | // The implicit HD function may be a function in a system header which |
| 9592 | // is forced by pragma. In device compilation, if we prefer HD candidates |
| 9593 | // over wrong-sided candidates, overloading resolution may change, which |
| 9594 | // may result in non-deferrable diagnostics. As a workaround, we let |
| 9595 | // implicit HD candidates take equal preference as wrong-sided candidates. |
| 9596 | // This will preserve the overloading resolution. |
| 9597 | // TODO: We still need special handling of implicit HD functions since |
| 9598 | // they may incur other diagnostics to be deferred. We should make all |
| 9599 | // host/device related diagnostics deferrable and remove special handling |
| 9600 | // of implicit HD functions. |
| 9601 | auto EmitThreshold = |
| 9602 | (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && |
| 9603 | (IsCand1ImplicitHD || IsCand2ImplicitHD)) |
| 9604 | ? Sema::CFP_Never |
| 9605 | : Sema::CFP_WrongSide; |
| 9606 | auto Cand1Emittable = P1 > EmitThreshold; |
| 9607 | auto Cand2Emittable = P2 > EmitThreshold; |
| 9608 | if (Cand1Emittable && !Cand2Emittable) |
| 9609 | return true; |
| 9610 | if (!Cand1Emittable && Cand2Emittable) |
| 9611 | return false; |
| 9612 | } |
| 9613 | } |
| 9614 | |
| 9615 | // C++ [over.match.best]p1: |
| 9616 | // |
| 9617 | // -- if F is a static member function, ICS1(F) is defined such |
| 9618 | // that ICS1(F) is neither better nor worse than ICS1(G) for |
| 9619 | // any function G, and, symmetrically, ICS1(G) is neither |
| 9620 | // better nor worse than ICS1(F). |
| 9621 | unsigned StartArg = 0; |
| 9622 | if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) |
| 9623 | StartArg = 1; |
| 9624 | |
| 9625 | auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { |
| 9626 | // We don't allow incompatible pointer conversions in C++. |
| 9627 | if (!S.getLangOpts().CPlusPlus) |
| 9628 | return ICS.isStandard() && |
| 9629 | ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; |
| 9630 | |
| 9631 | // The only ill-formed conversion we allow in C++ is the string literal to |
| 9632 | // char* conversion, which is only considered ill-formed after C++11. |
| 9633 | return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && |
| 9634 | hasDeprecatedStringLiteralToCharPtrConversion(ICS); |
| 9635 | }; |
| 9636 | |
| 9637 | // Define functions that don't require ill-formed conversions for a given |
| 9638 | // argument to be better candidates than functions that do. |
| 9639 | unsigned NumArgs = Cand1.Conversions.size(); |
| 9640 | assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch")((void)0); |
| 9641 | bool HasBetterConversion = false; |
| 9642 | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { |
| 9643 | bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); |
| 9644 | bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); |
| 9645 | if (Cand1Bad != Cand2Bad) { |
| 9646 | if (Cand1Bad) |
| 9647 | return false; |
| 9648 | HasBetterConversion = true; |
| 9649 | } |
| 9650 | } |
| 9651 | |
| 9652 | if (HasBetterConversion) |
| 9653 | return true; |
| 9654 | |
| 9655 | // C++ [over.match.best]p1: |
| 9656 | // A viable function F1 is defined to be a better function than another |
| 9657 | // viable function F2 if for all arguments i, ICSi(F1) is not a worse |
| 9658 | // conversion sequence than ICSi(F2), and then... |
| 9659 | bool HasWorseConversion = false; |
| 9660 | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { |
| 9661 | switch (CompareImplicitConversionSequences(S, Loc, |
| 9662 | Cand1.Conversions[ArgIdx], |
| 9663 | Cand2.Conversions[ArgIdx])) { |
| 9664 | case ImplicitConversionSequence::Better: |
| 9665 | // Cand1 has a better conversion sequence. |
| 9666 | HasBetterConversion = true; |
| 9667 | break; |
| 9668 | |
| 9669 | case ImplicitConversionSequence::Worse: |
| 9670 | if (Cand1.Function && Cand2.Function && |
| 9671 | Cand1.isReversed() != Cand2.isReversed() && |
| 9672 | haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function, |
| 9673 | NumArgs)) { |
| 9674 | // Work around large-scale breakage caused by considering reversed |
| 9675 | // forms of operator== in C++20: |
| 9676 | // |
| 9677 | // When comparing a function against a reversed function with the same |
| 9678 | // parameter types, if we have a better conversion for one argument and |
| 9679 | // a worse conversion for the other, the implicit conversion sequences |
| 9680 | // are treated as being equally good. |
| 9681 | // |
| 9682 | // This prevents a comparison function from being considered ambiguous |
| 9683 | // with a reversed form that is written in the same way. |
| 9684 | // |
| 9685 | // We diagnose this as an extension from CreateOverloadedBinOp. |
| 9686 | HasWorseConversion = true; |
| 9687 | break; |
| 9688 | } |
| 9689 | |
| 9690 | // Cand1 can't be better than Cand2. |
| 9691 | return false; |
| 9692 | |
| 9693 | case ImplicitConversionSequence::Indistinguishable: |
| 9694 | // Do nothing. |
| 9695 | break; |
| 9696 | } |
| 9697 | } |
| 9698 | |
| 9699 | // -- for some argument j, ICSj(F1) is a better conversion sequence than |
| 9700 | // ICSj(F2), or, if not that, |
| 9701 | if (HasBetterConversion && !HasWorseConversion) |
| 9702 | return true; |
| 9703 | |
| 9704 | // -- the context is an initialization by user-defined conversion |
| 9705 | // (see 8.5, 13.3.1.5) and the standard conversion sequence |
| 9706 | // from the return type of F1 to the destination type (i.e., |
| 9707 | // the type of the entity being initialized) is a better |
| 9708 | // conversion sequence than the standard conversion sequence |
| 9709 | // from the return type of F2 to the destination type. |
| 9710 | if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && |
| 9711 | Cand1.Function && Cand2.Function && |
| 9712 | isa<CXXConversionDecl>(Cand1.Function) && |
| 9713 | isa<CXXConversionDecl>(Cand2.Function)) { |
| 9714 | // First check whether we prefer one of the conversion functions over the |
| 9715 | // other. This only distinguishes the results in non-standard, extension |
| 9716 | // cases such as the conversion from a lambda closure type to a function |
| 9717 | // pointer or block. |
| 9718 | ImplicitConversionSequence::CompareKind Result = |
| 9719 | compareConversionFunctions(S, Cand1.Function, Cand2.Function); |
| 9720 | if (Result == ImplicitConversionSequence::Indistinguishable) |
| 9721 | Result = CompareStandardConversionSequences(S, Loc, |
| 9722 | Cand1.FinalConversion, |
| 9723 | Cand2.FinalConversion); |
| 9724 | |
| 9725 | if (Result != ImplicitConversionSequence::Indistinguishable) |
| 9726 | return Result == ImplicitConversionSequence::Better; |
| 9727 | |
| 9728 | // FIXME: Compare kind of reference binding if conversion functions |
| 9729 | // convert to a reference type used in direct reference binding, per |
| 9730 | // C++14 [over.match.best]p1 section 2 bullet 3. |
| 9731 | } |
| 9732 | |
| 9733 | // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, |
| 9734 | // as combined with the resolution to CWG issue 243. |
| 9735 | // |
| 9736 | // When the context is initialization by constructor ([over.match.ctor] or |
| 9737 | // either phase of [over.match.list]), a constructor is preferred over |
| 9738 | // a conversion function. |
| 9739 | if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && |
| 9740 | Cand1.Function && Cand2.Function && |
| 9741 | isa<CXXConstructorDecl>(Cand1.Function) != |
| 9742 | isa<CXXConstructorDecl>(Cand2.Function)) |
| 9743 | return isa<CXXConstructorDecl>(Cand1.Function); |
| 9744 | |
| 9745 | // -- F1 is a non-template function and F2 is a function template |
| 9746 | // specialization, or, if not that, |
| 9747 | bool Cand1IsSpecialization = Cand1.Function && |
| 9748 | Cand1.Function->getPrimaryTemplate(); |
| 9749 | bool Cand2IsSpecialization = Cand2.Function && |
| 9750 | Cand2.Function->getPrimaryTemplate(); |
| 9751 | if (Cand1IsSpecialization != Cand2IsSpecialization) |
| 9752 | return Cand2IsSpecialization; |
| 9753 | |
| 9754 | // -- F1 and F2 are function template specializations, and the function |
| 9755 | // template for F1 is more specialized than the template for F2 |
| 9756 | // according to the partial ordering rules described in 14.5.5.2, or, |
| 9757 | // if not that, |
| 9758 | if (Cand1IsSpecialization && Cand2IsSpecialization) { |
| 9759 | if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( |
| 9760 | Cand1.Function->getPrimaryTemplate(), |
| 9761 | Cand2.Function->getPrimaryTemplate(), Loc, |
| 9762 | isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion |
| 9763 | : TPOC_Call, |
| 9764 | Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments, |
| 9765 | Cand1.isReversed() ^ Cand2.isReversed())) |
| 9766 | return BetterTemplate == Cand1.Function->getPrimaryTemplate(); |
| 9767 | } |
| 9768 | |
| 9769 | // -— F1 and F2 are non-template functions with the same |
| 9770 | // parameter-type-lists, and F1 is more constrained than F2 [...], |
| 9771 | if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization && |
| 9772 | !Cand2IsSpecialization && Cand1.Function->hasPrototype() && |
| 9773 | Cand2.Function->hasPrototype()) { |
| 9774 | auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType()); |
| 9775 | auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType()); |
| 9776 | if (PT1->getNumParams() == PT2->getNumParams() && |
| 9777 | PT1->isVariadic() == PT2->isVariadic() && |
| 9778 | S.FunctionParamTypesAreEqual(PT1, PT2)) { |
| 9779 | Expr *RC1 = Cand1.Function->getTrailingRequiresClause(); |
| 9780 | Expr *RC2 = Cand2.Function->getTrailingRequiresClause(); |
| 9781 | if (RC1 && RC2) { |
| 9782 | bool AtLeastAsConstrained1, AtLeastAsConstrained2; |
| 9783 | if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function, |
| 9784 | {RC2}, AtLeastAsConstrained1) || |
| 9785 | S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function, |
| 9786 | {RC1}, AtLeastAsConstrained2)) |
| 9787 | return false; |
| 9788 | if (AtLeastAsConstrained1 != AtLeastAsConstrained2) |
| 9789 | return AtLeastAsConstrained1; |
| 9790 | } else if (RC1 || RC2) { |
| 9791 | return RC1 != nullptr; |
| 9792 | } |
| 9793 | } |
| 9794 | } |
| 9795 | |
| 9796 | // -- F1 is a constructor for a class D, F2 is a constructor for a base |
| 9797 | // class B of D, and for all arguments the corresponding parameters of |
| 9798 | // F1 and F2 have the same type. |
| 9799 | // FIXME: Implement the "all parameters have the same type" check. |
| 9800 | bool Cand1IsInherited = |
| 9801 | dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); |
| 9802 | bool Cand2IsInherited = |
| 9803 | dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); |
| 9804 | if (Cand1IsInherited != Cand2IsInherited) |
| 9805 | return Cand2IsInherited; |
| 9806 | else if (Cand1IsInherited) { |
| 9807 | assert(Cand2IsInherited)((void)0); |
| 9808 | auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); |
| 9809 | auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); |
| 9810 | if (Cand1Class->isDerivedFrom(Cand2Class)) |
| 9811 | return true; |
| 9812 | if (Cand2Class->isDerivedFrom(Cand1Class)) |
| 9813 | return false; |
| 9814 | // Inherited from sibling base classes: still ambiguous. |
| 9815 | } |
| 9816 | |
| 9817 | // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not |
| 9818 | // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate |
| 9819 | // with reversed order of parameters and F1 is not |
| 9820 | // |
| 9821 | // We rank reversed + different operator as worse than just reversed, but |
| 9822 | // that comparison can never happen, because we only consider reversing for |
| 9823 | // the maximally-rewritten operator (== or <=>). |
| 9824 | if (Cand1.RewriteKind != Cand2.RewriteKind) |
| 9825 | return Cand1.RewriteKind < Cand2.RewriteKind; |
| 9826 | |
| 9827 | // Check C++17 tie-breakers for deduction guides. |
| 9828 | { |
| 9829 | auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); |
| 9830 | auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); |
| 9831 | if (Guide1 && Guide2) { |
| 9832 | // -- F1 is generated from a deduction-guide and F2 is not |
| 9833 | if (Guide1->isImplicit() != Guide2->isImplicit()) |
| 9834 | return Guide2->isImplicit(); |
| 9835 | |
| 9836 | // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not |
| 9837 | if (Guide1->isCopyDeductionCandidate()) |
| 9838 | return true; |
| 9839 | } |
| 9840 | } |
| 9841 | |
| 9842 | // Check for enable_if value-based overload resolution. |
| 9843 | if (Cand1.Function && Cand2.Function) { |
| 9844 | Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); |
| 9845 | if (Cmp != Comparison::Equal) |
| 9846 | return Cmp == Comparison::Better; |
| 9847 | } |
| 9848 | |
| 9849 | bool HasPS1 = Cand1.Function != nullptr && |
| 9850 | functionHasPassObjectSizeParams(Cand1.Function); |
| 9851 | bool HasPS2 = Cand2.Function != nullptr && |
| 9852 | functionHasPassObjectSizeParams(Cand2.Function); |
| 9853 | if (HasPS1 != HasPS2 && HasPS1) |
| 9854 | return true; |
| 9855 | |
| 9856 | auto MV = isBetterMultiversionCandidate(Cand1, Cand2); |
| 9857 | if (MV == Comparison::Better) |
| 9858 | return true; |
| 9859 | if (MV == Comparison::Worse) |
| 9860 | return false; |
| 9861 | |
| 9862 | // If other rules cannot determine which is better, CUDA preference is used |
| 9863 | // to determine which is better. |
| 9864 | if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { |
| 9865 | FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); |
| 9866 | return S.IdentifyCUDAPreference(Caller, Cand1.Function) > |
| 9867 | S.IdentifyCUDAPreference(Caller, Cand2.Function); |
| 9868 | } |
| 9869 | |
| 9870 | // General member function overloading is handled above, so this only handles |
| 9871 | // constructors with address spaces. |
| 9872 | // This only handles address spaces since C++ has no other |
| 9873 | // qualifier that can be used with constructors. |
| 9874 | const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function); |
| 9875 | const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function); |
| 9876 | if (CD1 && CD2) { |
| 9877 | LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); |
| 9878 | LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); |
| 9879 | if (AS1 != AS2) { |
| 9880 | if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) |
| 9881 | return true; |
| 9882 | if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) |
| 9883 | return false; |
| 9884 | } |
| 9885 | } |
| 9886 | |
| 9887 | return false; |
| 9888 | } |
| 9889 | |
| 9890 | /// Determine whether two declarations are "equivalent" for the purposes of |
| 9891 | /// name lookup and overload resolution. This applies when the same internal/no |
| 9892 | /// linkage entity is defined by two modules (probably by textually including |
| 9893 | /// the same header). In such a case, we don't consider the declarations to |
| 9894 | /// declare the same entity, but we also don't want lookups with both |
| 9895 | /// declarations visible to be ambiguous in some cases (this happens when using |
| 9896 | /// a modularized libstdc++). |
| 9897 | bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, |
| 9898 | const NamedDecl *B) { |
| 9899 | auto *VA = dyn_cast_or_null<ValueDecl>(A); |
| 9900 | auto *VB = dyn_cast_or_null<ValueDecl>(B); |
| 9901 | if (!VA || !VB) |
| 9902 | return false; |
| 9903 | |
| 9904 | // The declarations must be declaring the same name as an internal linkage |
| 9905 | // entity in different modules. |
| 9906 | if (!VA->getDeclContext()->getRedeclContext()->Equals( |
| 9907 | VB->getDeclContext()->getRedeclContext()) || |
| 9908 | getOwningModule(VA) == getOwningModule(VB) || |
| 9909 | VA->isExternallyVisible() || VB->isExternallyVisible()) |
| 9910 | return false; |
| 9911 | |
| 9912 | // Check that the declarations appear to be equivalent. |
| 9913 | // |
| 9914 | // FIXME: Checking the type isn't really enough to resolve the ambiguity. |
| 9915 | // For constants and functions, we should check the initializer or body is |
| 9916 | // the same. For non-constant variables, we shouldn't allow it at all. |
| 9917 | if (Context.hasSameType(VA->getType(), VB->getType())) |
| 9918 | return true; |
| 9919 | |
| 9920 | // Enum constants within unnamed enumerations will have different types, but |
| 9921 | // may still be similar enough to be interchangeable for our purposes. |
| 9922 | if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { |
| 9923 | if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { |
| 9924 | // Only handle anonymous enums. If the enumerations were named and |
| 9925 | // equivalent, they would have been merged to the same type. |
| 9926 | auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); |
| 9927 | auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); |
| 9928 | if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || |
| 9929 | !Context.hasSameType(EnumA->getIntegerType(), |
| 9930 | EnumB->getIntegerType())) |
| 9931 | return false; |
| 9932 | // Allow this only if the value is the same for both enumerators. |
| 9933 | return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); |
| 9934 | } |
| 9935 | } |
| 9936 | |
| 9937 | // Nothing else is sufficiently similar. |
| 9938 | return false; |
| 9939 | } |
| 9940 | |
| 9941 | void Sema::diagnoseEquivalentInternalLinkageDeclarations( |
| 9942 | SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { |
| 9943 | assert(D && "Unknown declaration")((void)0); |
| 9944 | Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; |
| 9945 | |
| 9946 | Module *M = getOwningModule(D); |
| 9947 | Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) |
| 9948 | << !M << (M ? M->getFullModuleName() : ""); |
| 9949 | |
| 9950 | for (auto *E : Equiv) { |
| 9951 | Module *M = getOwningModule(E); |
| 9952 | Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) |
| 9953 | << !M << (M ? M->getFullModuleName() : ""); |
| 9954 | } |
| 9955 | } |
| 9956 | |
| 9957 | /// Computes the best viable function (C++ 13.3.3) |
| 9958 | /// within an overload candidate set. |
| 9959 | /// |
| 9960 | /// \param Loc The location of the function name (or operator symbol) for |
| 9961 | /// which overload resolution occurs. |
| 9962 | /// |
| 9963 | /// \param Best If overload resolution was successful or found a deleted |
| 9964 | /// function, \p Best points to the candidate function found. |
| 9965 | /// |
| 9966 | /// \returns The result of overload resolution. |
| 9967 | OverloadingResult |
| 9968 | OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, |
| 9969 | iterator &Best) { |
| 9970 | llvm::SmallVector<OverloadCandidate *, 16> Candidates; |
| 9971 | std::transform(begin(), end(), std::back_inserter(Candidates), |
| 9972 | [](OverloadCandidate &Cand) { return &Cand; }); |
| 9973 | |
| 9974 | // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but |
| 9975 | // are accepted by both clang and NVCC. However, during a particular |
| 9976 | // compilation mode only one call variant is viable. We need to |
| 9977 | // exclude non-viable overload candidates from consideration based |
| 9978 | // only on their host/device attributes. Specifically, if one |
| 9979 | // candidate call is WrongSide and the other is SameSide, we ignore |
| 9980 | // the WrongSide candidate. |
| 9981 | // We only need to remove wrong-sided candidates here if |
| 9982 | // -fgpu-exclude-wrong-side-overloads is off. When |
| 9983 | // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared |
| 9984 | // uniformly in isBetterOverloadCandidate. |
| 9985 | if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { |
| 9986 | const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); |
| 9987 | bool ContainsSameSideCandidate = |
| 9988 | llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { |
| 9989 | // Check viable function only. |
| 9990 | return Cand->Viable && Cand->Function && |
| 9991 | S.IdentifyCUDAPreference(Caller, Cand->Function) == |
| 9992 | Sema::CFP_SameSide; |
| 9993 | }); |
| 9994 | if (ContainsSameSideCandidate) { |
| 9995 | auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { |
| 9996 | // Check viable function only to avoid unnecessary data copying/moving. |
| 9997 | return Cand->Viable && Cand->Function && |
| 9998 | S.IdentifyCUDAPreference(Caller, Cand->Function) == |
| 9999 | Sema::CFP_WrongSide; |
| 10000 | }; |
| 10001 | llvm::erase_if(Candidates, IsWrongSideCandidate); |
| 10002 | } |
| 10003 | } |
| 10004 | |
| 10005 | // Find the best viable function. |
| 10006 | Best = end(); |
| 10007 | for (auto *Cand : Candidates) { |
| 10008 | Cand->Best = false; |
| 10009 | if (Cand->Viable) |
| 10010 | if (Best == end() || |
| 10011 | isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) |
| 10012 | Best = Cand; |
| 10013 | } |
| 10014 | |
| 10015 | // If we didn't find any viable functions, abort. |
| 10016 | if (Best == end()) |
| 10017 | return OR_No_Viable_Function; |
| 10018 | |
| 10019 | llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; |
| 10020 | |
| 10021 | llvm::SmallVector<OverloadCandidate*, 4> PendingBest; |
| 10022 | PendingBest.push_back(&*Best); |
| 10023 | Best->Best = true; |
| 10024 | |
| 10025 | // Make sure that this function is better than every other viable |
| 10026 | // function. If not, we have an ambiguity. |
| 10027 | while (!PendingBest.empty()) { |
| 10028 | auto *Curr = PendingBest.pop_back_val(); |
| 10029 | for (auto *Cand : Candidates) { |
| 10030 | if (Cand->Viable && !Cand->Best && |
| 10031 | !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { |
| 10032 | PendingBest.push_back(Cand); |
| 10033 | Cand->Best = true; |
| 10034 | |
| 10035 | if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, |
| 10036 | Curr->Function)) |
| 10037 | EquivalentCands.push_back(Cand->Function); |
| 10038 | else |
| 10039 | Best = end(); |
| 10040 | } |
| 10041 | } |
| 10042 | } |
| 10043 | |
| 10044 | // If we found more than one best candidate, this is ambiguous. |
| 10045 | if (Best == end()) |
| 10046 | return OR_Ambiguous; |
| 10047 | |
| 10048 | // Best is the best viable function. |
| 10049 | if (Best->Function && Best->Function->isDeleted()) |
| 10050 | return OR_Deleted; |
| 10051 | |
| 10052 | if (!EquivalentCands.empty()) |
| 10053 | S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, |
| 10054 | EquivalentCands); |
| 10055 | |
| 10056 | return OR_Success; |
| 10057 | } |
| 10058 | |
| 10059 | namespace { |
| 10060 | |
| 10061 | enum OverloadCandidateKind { |
| 10062 | oc_function, |
| 10063 | oc_method, |
| 10064 | oc_reversed_binary_operator, |
| 10065 | oc_constructor, |
| 10066 | oc_implicit_default_constructor, |
| 10067 | oc_implicit_copy_constructor, |
| 10068 | oc_implicit_move_constructor, |
| 10069 | oc_implicit_copy_assignment, |
| 10070 | oc_implicit_move_assignment, |
| 10071 | oc_implicit_equality_comparison, |
| 10072 | oc_inherited_constructor |
| 10073 | }; |
| 10074 | |
| 10075 | enum OverloadCandidateSelect { |
| 10076 | ocs_non_template, |
| 10077 | ocs_template, |
| 10078 | ocs_described_template, |
| 10079 | }; |
| 10080 | |
| 10081 | static std::pair<OverloadCandidateKind, OverloadCandidateSelect> |
| 10082 | ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn, |
| 10083 | OverloadCandidateRewriteKind CRK, |
| 10084 | std::string &Description) { |
| 10085 | |
| 10086 | bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); |
| 10087 | if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { |
| 10088 | isTemplate = true; |
| 10089 | Description = S.getTemplateArgumentBindingsText( |
| 10090 | FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); |
| 10091 | } |
| 10092 | |
| 10093 | OverloadCandidateSelect Select = [&]() { |
| 10094 | if (!Description.empty()) |
| 10095 | return ocs_described_template; |
| 10096 | return isTemplate ? ocs_template : ocs_non_template; |
| 10097 | }(); |
| 10098 | |
| 10099 | OverloadCandidateKind Kind = [&]() { |
| 10100 | if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) |
| 10101 | return oc_implicit_equality_comparison; |
| 10102 | |
| 10103 | if (CRK & CRK_Reversed) |
| 10104 | return oc_reversed_binary_operator; |
| 10105 | |
| 10106 | if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { |
| 10107 | if (!Ctor->isImplicit()) { |
| 10108 | if (isa<ConstructorUsingShadowDecl>(Found)) |
| 10109 | return oc_inherited_constructor; |
| 10110 | else |
| 10111 | return oc_constructor; |
| 10112 | } |
| 10113 | |
| 10114 | if (Ctor->isDefaultConstructor()) |
| 10115 | return oc_implicit_default_constructor; |
| 10116 | |
| 10117 | if (Ctor->isMoveConstructor()) |
| 10118 | return oc_implicit_move_constructor; |
| 10119 | |
| 10120 | assert(Ctor->isCopyConstructor() &&((void)0) |
| 10121 | "unexpected sort of implicit constructor")((void)0); |
| 10122 | return oc_implicit_copy_constructor; |
| 10123 | } |
| 10124 | |
| 10125 | if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { |
| 10126 | // This actually gets spelled 'candidate function' for now, but |
| 10127 | // it doesn't hurt to split it out. |
| 10128 | if (!Meth->isImplicit()) |
| 10129 | return oc_method; |
| 10130 | |
| 10131 | if (Meth->isMoveAssignmentOperator()) |
| 10132 | return oc_implicit_move_assignment; |
| 10133 | |
| 10134 | if (Meth->isCopyAssignmentOperator()) |
| 10135 | return oc_implicit_copy_assignment; |
| 10136 | |
| 10137 | assert(isa<CXXConversionDecl>(Meth) && "expected conversion")((void)0); |
| 10138 | return oc_method; |
| 10139 | } |
| 10140 | |
| 10141 | return oc_function; |
| 10142 | }(); |
| 10143 | |
| 10144 | return std::make_pair(Kind, Select); |
| 10145 | } |
| 10146 | |
| 10147 | void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) { |
| 10148 | // FIXME: It'd be nice to only emit a note once per using-decl per overload |
| 10149 | // set. |
| 10150 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) |
| 10151 | S.Diag(FoundDecl->getLocation(), |
| 10152 | diag::note_ovl_candidate_inherited_constructor) |
| 10153 | << Shadow->getNominatedBaseClass(); |
| 10154 | } |
| 10155 | |
| 10156 | } // end anonymous namespace |
| 10157 | |
| 10158 | static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, |
| 10159 | const FunctionDecl *FD) { |
| 10160 | for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { |
| 10161 | bool AlwaysTrue; |
| 10162 | if (EnableIf->getCond()->isValueDependent() || |
| 10163 | !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) |
| 10164 | return false; |
| 10165 | if (!AlwaysTrue) |
| 10166 | return false; |
| 10167 | } |
| 10168 | return true; |
| 10169 | } |
| 10170 | |
| 10171 | /// Returns true if we can take the address of the function. |
| 10172 | /// |
| 10173 | /// \param Complain - If true, we'll emit a diagnostic |
| 10174 | /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are |
| 10175 | /// we in overload resolution? |
| 10176 | /// \param Loc - The location of the statement we're complaining about. Ignored |
| 10177 | /// if we're not complaining, or if we're in overload resolution. |
| 10178 | static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, |
| 10179 | bool Complain, |
| 10180 | bool InOverloadResolution, |
| 10181 | SourceLocation Loc) { |
| 10182 | if (!isFunctionAlwaysEnabled(S.Context, FD)) { |
| 10183 | if (Complain) { |
| 10184 | if (InOverloadResolution) |
| 10185 | S.Diag(FD->getBeginLoc(), |
| 10186 | diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); |
| 10187 | else |
| 10188 | S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; |
| 10189 | } |
| 10190 | return false; |
| 10191 | } |
| 10192 | |
| 10193 | if (FD->getTrailingRequiresClause()) { |
| 10194 | ConstraintSatisfaction Satisfaction; |
| 10195 | if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) |
| 10196 | return false; |
| 10197 | if (!Satisfaction.IsSatisfied) { |
| 10198 | if (Complain) { |
| 10199 | if (InOverloadResolution) |
| 10200 | S.Diag(FD->getBeginLoc(), |
| 10201 | diag::note_ovl_candidate_unsatisfied_constraints); |
| 10202 | else |
| 10203 | S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) |
| 10204 | << FD; |
| 10205 | S.DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 10206 | } |
| 10207 | return false; |
| 10208 | } |
| 10209 | } |
| 10210 | |
| 10211 | auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { |
| 10212 | return P->hasAttr<PassObjectSizeAttr>(); |
| 10213 | }); |
| 10214 | if (I == FD->param_end()) |
| 10215 | return true; |
| 10216 | |
| 10217 | if (Complain) { |
| 10218 | // Add one to ParamNo because it's user-facing |
| 10219 | unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; |
| 10220 | if (InOverloadResolution) |
| 10221 | S.Diag(FD->getLocation(), |
| 10222 | diag::note_ovl_candidate_has_pass_object_size_params) |
| 10223 | << ParamNo; |
| 10224 | else |
| 10225 | S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) |
| 10226 | << FD << ParamNo; |
| 10227 | } |
| 10228 | return false; |
| 10229 | } |
| 10230 | |
| 10231 | static bool checkAddressOfCandidateIsAvailable(Sema &S, |
| 10232 | const FunctionDecl *FD) { |
| 10233 | return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, |
| 10234 | /*InOverloadResolution=*/true, |
| 10235 | /*Loc=*/SourceLocation()); |
| 10236 | } |
| 10237 | |
| 10238 | bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, |
| 10239 | bool Complain, |
| 10240 | SourceLocation Loc) { |
| 10241 | return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, |
| 10242 | /*InOverloadResolution=*/false, |
| 10243 | Loc); |
| 10244 | } |
| 10245 | |
| 10246 | // Don't print candidates other than the one that matches the calling |
| 10247 | // convention of the call operator, since that is guaranteed to exist. |
| 10248 | static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) { |
| 10249 | const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn); |
| 10250 | |
| 10251 | if (!ConvD) |
| 10252 | return false; |
| 10253 | const auto *RD = cast<CXXRecordDecl>(Fn->getParent()); |
| 10254 | if (!RD->isLambda()) |
| 10255 | return false; |
| 10256 | |
| 10257 | CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); |
| 10258 | CallingConv CallOpCC = |
| 10259 | CallOp->getType()->castAs<FunctionType>()->getCallConv(); |
| 10260 | QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType(); |
| 10261 | CallingConv ConvToCC = |
| 10262 | ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv(); |
| 10263 | |
| 10264 | return ConvToCC != CallOpCC; |
| 10265 | } |
| 10266 | |
| 10267 | // Notes the location of an overload candidate. |
| 10268 | void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, |
| 10269 | OverloadCandidateRewriteKind RewriteKind, |
| 10270 | QualType DestType, bool TakingAddress) { |
| 10271 | if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) |
| 10272 | return; |
| 10273 | if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && |
| 10274 | !Fn->getAttr<TargetAttr>()->isDefaultVersion()) |
| 10275 | return; |
| 10276 | if (shouldSkipNotingLambdaConversionDecl(Fn)) |
| 10277 | return; |
| 10278 | |
| 10279 | std::string FnDesc; |
| 10280 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = |
| 10281 | ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); |
| 10282 | PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) |
| 10283 | << (unsigned)KSPair.first << (unsigned)KSPair.second |
| 10284 | << Fn << FnDesc; |
| 10285 | |
| 10286 | HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); |
| 10287 | Diag(Fn->getLocation(), PD); |
| 10288 | MaybeEmitInheritedConstructorNote(*this, Found); |
| 10289 | } |
| 10290 | |
| 10291 | static void |
| 10292 | MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { |
| 10293 | // Perhaps the ambiguity was caused by two atomic constraints that are |
| 10294 | // 'identical' but not equivalent: |
| 10295 | // |
| 10296 | // void foo() requires (sizeof(T) > 4) { } // #1 |
| 10297 | // void foo() requires (sizeof(T) > 4) && T::value { } // #2 |
| 10298 | // |
| 10299 | // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause |
| 10300 | // #2 to subsume #1, but these constraint are not considered equivalent |
| 10301 | // according to the subsumption rules because they are not the same |
| 10302 | // source-level construct. This behavior is quite confusing and we should try |
| 10303 | // to help the user figure out what happened. |
| 10304 | |
| 10305 | SmallVector<const Expr *, 3> FirstAC, SecondAC; |
| 10306 | FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; |
| 10307 | for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { |
| 10308 | if (!I->Function) |
| 10309 | continue; |
| 10310 | SmallVector<const Expr *, 3> AC; |
| 10311 | if (auto *Template = I->Function->getPrimaryTemplate()) |
| 10312 | Template->getAssociatedConstraints(AC); |
| 10313 | else |
| 10314 | I->Function->getAssociatedConstraints(AC); |
| 10315 | if (AC.empty()) |
| 10316 | continue; |
| 10317 | if (FirstCand == nullptr) { |
| 10318 | FirstCand = I->Function; |
| 10319 | FirstAC = AC; |
| 10320 | } else if (SecondCand == nullptr) { |
| 10321 | SecondCand = I->Function; |
| 10322 | SecondAC = AC; |
| 10323 | } else { |
| 10324 | // We have more than one pair of constrained functions - this check is |
| 10325 | // expensive and we'd rather not try to diagnose it. |
| 10326 | return; |
| 10327 | } |
| 10328 | } |
| 10329 | if (!SecondCand) |
| 10330 | return; |
| 10331 | // The diagnostic can only happen if there are associated constraints on |
| 10332 | // both sides (there needs to be some identical atomic constraint). |
| 10333 | if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, |
| 10334 | SecondCand, SecondAC)) |
| 10335 | // Just show the user one diagnostic, they'll probably figure it out |
| 10336 | // from here. |
| 10337 | return; |
| 10338 | } |
| 10339 | |
| 10340 | // Notes the location of all overload candidates designated through |
| 10341 | // OverloadedExpr |
| 10342 | void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, |
| 10343 | bool TakingAddress) { |
| 10344 | assert(OverloadedExpr->getType() == Context.OverloadTy)((void)0); |
| 10345 | |
| 10346 | OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); |
| 10347 | OverloadExpr *OvlExpr = Ovl.Expression; |
| 10348 | |
| 10349 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| 10350 | IEnd = OvlExpr->decls_end(); |
| 10351 | I != IEnd; ++I) { |
| 10352 | if (FunctionTemplateDecl *FunTmpl = |
| 10353 | dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { |
| 10354 | NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, |
| 10355 | TakingAddress); |
| 10356 | } else if (FunctionDecl *Fun |
| 10357 | = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { |
| 10358 | NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); |
| 10359 | } |
| 10360 | } |
| 10361 | } |
| 10362 | |
| 10363 | /// Diagnoses an ambiguous conversion. The partial diagnostic is the |
| 10364 | /// "lead" diagnostic; it will be given two arguments, the source and |
| 10365 | /// target types of the conversion. |
| 10366 | void ImplicitConversionSequence::DiagnoseAmbiguousConversion( |
| 10367 | Sema &S, |
| 10368 | SourceLocation CaretLoc, |
| 10369 | const PartialDiagnostic &PDiag) const { |
| 10370 | S.Diag(CaretLoc, PDiag) |
| 10371 | << Ambiguous.getFromType() << Ambiguous.getToType(); |
| 10372 | unsigned CandsShown = 0; |
| 10373 | AmbiguousConversionSequence::const_iterator I, E; |
| 10374 | for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { |
| 10375 | if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) |
| 10376 | break; |
| 10377 | ++CandsShown; |
| 10378 | S.NoteOverloadCandidate(I->first, I->second); |
| 10379 | } |
| 10380 | S.Diags.overloadCandidatesShown(CandsShown); |
| 10381 | if (I != E) |
| 10382 | S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); |
| 10383 | } |
| 10384 | |
| 10385 | static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, |
| 10386 | unsigned I, bool TakingCandidateAddress) { |
| 10387 | const ImplicitConversionSequence &Conv = Cand->Conversions[I]; |
| 10388 | assert(Conv.isBad())((void)0); |
| 10389 | assert(Cand->Function && "for now, candidate must be a function")((void)0); |
| 10390 | FunctionDecl *Fn = Cand->Function; |
| 10391 | |
| 10392 | // There's a conversion slot for the object argument if this is a |
| 10393 | // non-constructor method. Note that 'I' corresponds the |
| 10394 | // conversion-slot index. |
| 10395 | bool isObjectArgument = false; |
| 10396 | if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { |
| 10397 | if (I == 0) |
| 10398 | isObjectArgument = true; |
| 10399 | else |
| 10400 | I--; |
| 10401 | } |
| 10402 | |
| 10403 | std::string FnDesc; |
| 10404 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 10405 | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), |
| 10406 | FnDesc); |
| 10407 | |
| 10408 | Expr *FromExpr = Conv.Bad.FromExpr; |
| 10409 | QualType FromTy = Conv.Bad.getFromType(); |
| 10410 | QualType ToTy = Conv.Bad.getToType(); |
| 10411 | |
| 10412 | if (FromTy == S.Context.OverloadTy) { |
| 10413 | assert(FromExpr && "overload set argument came from implicit argument?")((void)0); |
| 10414 | Expr *E = FromExpr->IgnoreParens(); |
| 10415 | if (isa<UnaryOperator>(E)) |
| 10416 | E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); |
| 10417 | DeclarationName Name = cast<OverloadExpr>(E)->getName(); |
| 10418 | |
| 10419 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) |
| 10420 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10421 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy |
| 10422 | << Name << I + 1; |
| 10423 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10424 | return; |
| 10425 | } |
| 10426 | |
| 10427 | // Do some hand-waving analysis to see if the non-viability is due |
| 10428 | // to a qualifier mismatch. |
| 10429 | CanQualType CFromTy = S.Context.getCanonicalType(FromTy); |
| 10430 | CanQualType CToTy = S.Context.getCanonicalType(ToTy); |
| 10431 | if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) |
| 10432 | CToTy = RT->getPointeeType(); |
| 10433 | else { |
| 10434 | // TODO: detect and diagnose the full richness of const mismatches. |
| 10435 | if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) |
| 10436 | if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { |
| 10437 | CFromTy = FromPT->getPointeeType(); |
| 10438 | CToTy = ToPT->getPointeeType(); |
| 10439 | } |
| 10440 | } |
| 10441 | |
| 10442 | if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && |
| 10443 | !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { |
| 10444 | Qualifiers FromQs = CFromTy.getQualifiers(); |
| 10445 | Qualifiers ToQs = CToTy.getQualifiers(); |
| 10446 | |
| 10447 | if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { |
| 10448 | if (isObjectArgument) |
| 10449 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) |
| 10450 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 10451 | << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| 10452 | << FromQs.getAddressSpace() << ToQs.getAddressSpace(); |
| 10453 | else |
| 10454 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) |
| 10455 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 10456 | << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| 10457 | << FromQs.getAddressSpace() << ToQs.getAddressSpace() |
| 10458 | << ToTy->isReferenceType() << I + 1; |
| 10459 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10460 | return; |
| 10461 | } |
| 10462 | |
| 10463 | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { |
| 10464 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) |
| 10465 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10466 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy |
| 10467 | << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() |
| 10468 | << (unsigned)isObjectArgument << I + 1; |
| 10469 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10470 | return; |
| 10471 | } |
| 10472 | |
| 10473 | if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { |
| 10474 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) |
| 10475 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10476 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy |
| 10477 | << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() |
| 10478 | << (unsigned)isObjectArgument << I + 1; |
| 10479 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10480 | return; |
| 10481 | } |
| 10482 | |
| 10483 | if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) { |
| 10484 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned) |
| 10485 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10486 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy |
| 10487 | << FromQs.hasUnaligned() << I + 1; |
| 10488 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10489 | return; |
| 10490 | } |
| 10491 | |
| 10492 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
| 10493 | assert(CVR && "expected qualifiers mismatch")((void)0); |
| 10494 | |
| 10495 | if (isObjectArgument) { |
| 10496 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) |
| 10497 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10498 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy |
| 10499 | << (CVR - 1); |
| 10500 | } else { |
| 10501 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) |
| 10502 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10503 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy |
| 10504 | << (CVR - 1) << I + 1; |
| 10505 | } |
| 10506 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10507 | return; |
| 10508 | } |
| 10509 | |
| 10510 | if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || |
| 10511 | Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { |
| 10512 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) |
| 10513 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10514 | << (unsigned)isObjectArgument << I + 1 |
| 10515 | << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) |
| 10516 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()); |
| 10517 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10518 | return; |
| 10519 | } |
| 10520 | |
| 10521 | // Special diagnostic for failure to convert an initializer list, since |
| 10522 | // telling the user that it has type void is not useful. |
| 10523 | if (FromExpr && isa<InitListExpr>(FromExpr)) { |
| 10524 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) |
| 10525 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10526 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy |
| 10527 | << ToTy << (unsigned)isObjectArgument << I + 1; |
| 10528 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10529 | return; |
| 10530 | } |
| 10531 | |
| 10532 | // Diagnose references or pointers to incomplete types differently, |
| 10533 | // since it's far from impossible that the incompleteness triggered |
| 10534 | // the failure. |
| 10535 | QualType TempFromTy = FromTy.getNonReferenceType(); |
| 10536 | if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) |
| 10537 | TempFromTy = PTy->getPointeeType(); |
| 10538 | if (TempFromTy->isIncompleteType()) { |
| 10539 | // Emit the generic diagnostic and, optionally, add the hints to it. |
| 10540 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) |
| 10541 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10542 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy |
| 10543 | << ToTy << (unsigned)isObjectArgument << I + 1 |
| 10544 | << (unsigned)(Cand->Fix.Kind); |
| 10545 | |
| 10546 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10547 | return; |
| 10548 | } |
| 10549 | |
| 10550 | // Diagnose base -> derived pointer conversions. |
| 10551 | unsigned BaseToDerivedConversion = 0; |
| 10552 | if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { |
| 10553 | if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { |
| 10554 | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( |
| 10555 | FromPtrTy->getPointeeType()) && |
| 10556 | !FromPtrTy->getPointeeType()->isIncompleteType() && |
| 10557 | !ToPtrTy->getPointeeType()->isIncompleteType() && |
| 10558 | S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), |
| 10559 | FromPtrTy->getPointeeType())) |
| 10560 | BaseToDerivedConversion = 1; |
| 10561 | } |
| 10562 | } else if (const ObjCObjectPointerType *FromPtrTy |
| 10563 | = FromTy->getAs<ObjCObjectPointerType>()) { |
| 10564 | if (const ObjCObjectPointerType *ToPtrTy |
| 10565 | = ToTy->getAs<ObjCObjectPointerType>()) |
| 10566 | if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) |
| 10567 | if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) |
| 10568 | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( |
| 10569 | FromPtrTy->getPointeeType()) && |
| 10570 | FromIface->isSuperClassOf(ToIface)) |
| 10571 | BaseToDerivedConversion = 2; |
| 10572 | } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { |
| 10573 | if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && |
| 10574 | !FromTy->isIncompleteType() && |
| 10575 | !ToRefTy->getPointeeType()->isIncompleteType() && |
| 10576 | S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { |
| 10577 | BaseToDerivedConversion = 3; |
| 10578 | } |
| 10579 | } |
| 10580 | |
| 10581 | if (BaseToDerivedConversion) { |
| 10582 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) |
| 10583 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10584 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| 10585 | << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1; |
| 10586 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10587 | return; |
| 10588 | } |
| 10589 | |
| 10590 | if (isa<ObjCObjectPointerType>(CFromTy) && |
| 10591 | isa<PointerType>(CToTy)) { |
| 10592 | Qualifiers FromQs = CFromTy.getQualifiers(); |
| 10593 | Qualifiers ToQs = CToTy.getQualifiers(); |
| 10594 | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { |
| 10595 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) |
| 10596 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 10597 | << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| 10598 | << FromTy << ToTy << (unsigned)isObjectArgument << I + 1; |
| 10599 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10600 | return; |
| 10601 | } |
| 10602 | } |
| 10603 | |
| 10604 | if (TakingCandidateAddress && |
| 10605 | !checkAddressOfCandidateIsAvailable(S, Cand->Function)) |
| 10606 | return; |
| 10607 | |
| 10608 | // Emit the generic diagnostic and, optionally, add the hints to it. |
| 10609 | PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); |
| 10610 | FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 10611 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy |
| 10612 | << ToTy << (unsigned)isObjectArgument << I + 1 |
| 10613 | << (unsigned)(Cand->Fix.Kind); |
| 10614 | |
| 10615 | // If we can fix the conversion, suggest the FixIts. |
| 10616 | for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), |
| 10617 | HE = Cand->Fix.Hints.end(); HI != HE; ++HI) |
| 10618 | FDiag << *HI; |
| 10619 | S.Diag(Fn->getLocation(), FDiag); |
| 10620 | |
| 10621 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 10622 | } |
| 10623 | |
| 10624 | /// Additional arity mismatch diagnosis specific to a function overload |
| 10625 | /// candidates. This is not covered by the more general DiagnoseArityMismatch() |
| 10626 | /// over a candidate in any candidate set. |
| 10627 | static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, |
| 10628 | unsigned NumArgs) { |
| 10629 | FunctionDecl *Fn = Cand->Function; |
| 10630 | unsigned MinParams = Fn->getMinRequiredArguments(); |
| 10631 | |
| 10632 | // With invalid overloaded operators, it's possible that we think we |
| 10633 | // have an arity mismatch when in fact it looks like we have the |
| 10634 | // right number of arguments, because only overloaded operators have |
| 10635 | // the weird behavior of overloading member and non-member functions. |
| 10636 | // Just don't report anything. |
| 10637 | if (Fn->isInvalidDecl() && |
| 10638 | Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) |
| 10639 | return true; |
| 10640 | |
| 10641 | if (NumArgs < MinParams) { |
| 10642 | assert((Cand->FailureKind == ovl_fail_too_few_arguments) ||((void)0) |
| 10643 | (Cand->FailureKind == ovl_fail_bad_deduction &&((void)0) |
| 10644 | Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments))((void)0); |
| 10645 | } else { |
| 10646 | assert((Cand->FailureKind == ovl_fail_too_many_arguments) ||((void)0) |
| 10647 | (Cand->FailureKind == ovl_fail_bad_deduction &&((void)0) |
| 10648 | Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments))((void)0); |
| 10649 | } |
| 10650 | |
| 10651 | return false; |
| 10652 | } |
| 10653 | |
| 10654 | /// General arity mismatch diagnosis over a candidate in a candidate set. |
| 10655 | static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, |
| 10656 | unsigned NumFormalArgs) { |
| 10657 | assert(isa<FunctionDecl>(D) &&((void)0) |
| 10658 | "The templated declaration should at least be a function"((void)0) |
| 10659 | " when diagnosing bad template argument deduction due to too many"((void)0) |
| 10660 | " or too few arguments")((void)0); |
| 10661 | |
| 10662 | FunctionDecl *Fn = cast<FunctionDecl>(D); |
| 10663 | |
| 10664 | // TODO: treat calls to a missing default constructor as a special case |
| 10665 | const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); |
| 10666 | unsigned MinParams = Fn->getMinRequiredArguments(); |
| 10667 | |
| 10668 | // at least / at most / exactly |
| 10669 | unsigned mode, modeCount; |
| 10670 | if (NumFormalArgs < MinParams) { |
| 10671 | if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || |
| 10672 | FnTy->isTemplateVariadic()) |
| 10673 | mode = 0; // "at least" |
| 10674 | else |
| 10675 | mode = 2; // "exactly" |
| 10676 | modeCount = MinParams; |
| 10677 | } else { |
| 10678 | if (MinParams != FnTy->getNumParams()) |
| 10679 | mode = 1; // "at most" |
| 10680 | else |
| 10681 | mode = 2; // "exactly" |
| 10682 | modeCount = FnTy->getNumParams(); |
| 10683 | } |
| 10684 | |
| 10685 | std::string Description; |
| 10686 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 10687 | ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); |
| 10688 | |
| 10689 | if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) |
| 10690 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) |
| 10691 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 10692 | << Description << mode << Fn->getParamDecl(0) << NumFormalArgs; |
| 10693 | else |
| 10694 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) |
| 10695 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 10696 | << Description << mode << modeCount << NumFormalArgs; |
| 10697 | |
| 10698 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10699 | } |
| 10700 | |
| 10701 | /// Arity mismatch diagnosis specific to a function overload candidate. |
| 10702 | static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, |
| 10703 | unsigned NumFormalArgs) { |
| 10704 | if (!CheckArityMismatch(S, Cand, NumFormalArgs)) |
| 10705 | DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); |
| 10706 | } |
| 10707 | |
| 10708 | static TemplateDecl *getDescribedTemplate(Decl *Templated) { |
| 10709 | if (TemplateDecl *TD = Templated->getDescribedTemplate()) |
| 10710 | return TD; |
| 10711 | llvm_unreachable("Unsupported: Getting the described template declaration"__builtin_unreachable() |
| 10712 | " for bad deduction diagnosis")__builtin_unreachable(); |
| 10713 | } |
| 10714 | |
| 10715 | /// Diagnose a failed template-argument deduction. |
| 10716 | static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, |
| 10717 | DeductionFailureInfo &DeductionFailure, |
| 10718 | unsigned NumArgs, |
| 10719 | bool TakingCandidateAddress) { |
| 10720 | TemplateParameter Param = DeductionFailure.getTemplateParameter(); |
| 10721 | NamedDecl *ParamD; |
| 10722 | (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || |
| 10723 | (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || |
| 10724 | (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); |
| 10725 | switch (DeductionFailure.Result) { |
| 10726 | case Sema::TDK_Success: |
| 10727 | llvm_unreachable("TDK_success while diagnosing bad deduction")__builtin_unreachable(); |
| 10728 | |
| 10729 | case Sema::TDK_Incomplete: { |
| 10730 | assert(ParamD && "no parameter found for incomplete deduction result")((void)0); |
| 10731 | S.Diag(Templated->getLocation(), |
| 10732 | diag::note_ovl_candidate_incomplete_deduction) |
| 10733 | << ParamD->getDeclName(); |
| 10734 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10735 | return; |
| 10736 | } |
| 10737 | |
| 10738 | case Sema::TDK_IncompletePack: { |
| 10739 | assert(ParamD && "no parameter found for incomplete deduction result")((void)0); |
| 10740 | S.Diag(Templated->getLocation(), |
| 10741 | diag::note_ovl_candidate_incomplete_deduction_pack) |
| 10742 | << ParamD->getDeclName() |
| 10743 | << (DeductionFailure.getFirstArg()->pack_size() + 1) |
| 10744 | << *DeductionFailure.getFirstArg(); |
| 10745 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10746 | return; |
| 10747 | } |
| 10748 | |
| 10749 | case Sema::TDK_Underqualified: { |
| 10750 | assert(ParamD && "no parameter found for bad qualifiers deduction result")((void)0); |
| 10751 | TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); |
| 10752 | |
| 10753 | QualType Param = DeductionFailure.getFirstArg()->getAsType(); |
| 10754 | |
| 10755 | // Param will have been canonicalized, but it should just be a |
| 10756 | // qualified version of ParamD, so move the qualifiers to that. |
| 10757 | QualifierCollector Qs; |
| 10758 | Qs.strip(Param); |
| 10759 | QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); |
| 10760 | assert(S.Context.hasSameType(Param, NonCanonParam))((void)0); |
| 10761 | |
| 10762 | // Arg has also been canonicalized, but there's nothing we can do |
| 10763 | // about that. It also doesn't matter as much, because it won't |
| 10764 | // have any template parameters in it (because deduction isn't |
| 10765 | // done on dependent types). |
| 10766 | QualType Arg = DeductionFailure.getSecondArg()->getAsType(); |
| 10767 | |
| 10768 | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) |
| 10769 | << ParamD->getDeclName() << Arg << NonCanonParam; |
| 10770 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10771 | return; |
| 10772 | } |
| 10773 | |
| 10774 | case Sema::TDK_Inconsistent: { |
| 10775 | assert(ParamD && "no parameter found for inconsistent deduction result")((void)0); |
| 10776 | int which = 0; |
| 10777 | if (isa<TemplateTypeParmDecl>(ParamD)) |
| 10778 | which = 0; |
| 10779 | else if (isa<NonTypeTemplateParmDecl>(ParamD)) { |
| 10780 | // Deduction might have failed because we deduced arguments of two |
| 10781 | // different types for a non-type template parameter. |
| 10782 | // FIXME: Use a different TDK value for this. |
| 10783 | QualType T1 = |
| 10784 | DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); |
| 10785 | QualType T2 = |
| 10786 | DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); |
| 10787 | if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { |
| 10788 | S.Diag(Templated->getLocation(), |
| 10789 | diag::note_ovl_candidate_inconsistent_deduction_types) |
| 10790 | << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 |
| 10791 | << *DeductionFailure.getSecondArg() << T2; |
| 10792 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10793 | return; |
| 10794 | } |
| 10795 | |
| 10796 | which = 1; |
| 10797 | } else { |
| 10798 | which = 2; |
| 10799 | } |
| 10800 | |
| 10801 | // Tweak the diagnostic if the problem is that we deduced packs of |
| 10802 | // different arities. We'll print the actual packs anyway in case that |
| 10803 | // includes additional useful information. |
| 10804 | if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && |
| 10805 | DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && |
| 10806 | DeductionFailure.getFirstArg()->pack_size() != |
| 10807 | DeductionFailure.getSecondArg()->pack_size()) { |
| 10808 | which = 3; |
| 10809 | } |
| 10810 | |
| 10811 | S.Diag(Templated->getLocation(), |
| 10812 | diag::note_ovl_candidate_inconsistent_deduction) |
| 10813 | << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() |
| 10814 | << *DeductionFailure.getSecondArg(); |
| 10815 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10816 | return; |
| 10817 | } |
| 10818 | |
| 10819 | case Sema::TDK_InvalidExplicitArguments: |
| 10820 | assert(ParamD && "no parameter found for invalid explicit arguments")((void)0); |
| 10821 | if (ParamD->getDeclName()) |
| 10822 | S.Diag(Templated->getLocation(), |
| 10823 | diag::note_ovl_candidate_explicit_arg_mismatch_named) |
| 10824 | << ParamD->getDeclName(); |
| 10825 | else { |
| 10826 | int index = 0; |
| 10827 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) |
| 10828 | index = TTP->getIndex(); |
| 10829 | else if (NonTypeTemplateParmDecl *NTTP |
| 10830 | = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) |
| 10831 | index = NTTP->getIndex(); |
| 10832 | else |
| 10833 | index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); |
| 10834 | S.Diag(Templated->getLocation(), |
| 10835 | diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) |
| 10836 | << (index + 1); |
| 10837 | } |
| 10838 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10839 | return; |
| 10840 | |
| 10841 | case Sema::TDK_ConstraintsNotSatisfied: { |
| 10842 | // Format the template argument list into the argument string. |
| 10843 | SmallString<128> TemplateArgString; |
| 10844 | TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); |
| 10845 | TemplateArgString = " "; |
| 10846 | TemplateArgString += S.getTemplateArgumentBindingsText( |
| 10847 | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); |
| 10848 | if (TemplateArgString.size() == 1) |
| 10849 | TemplateArgString.clear(); |
| 10850 | S.Diag(Templated->getLocation(), |
| 10851 | diag::note_ovl_candidate_unsatisfied_constraints) |
| 10852 | << TemplateArgString; |
| 10853 | |
| 10854 | S.DiagnoseUnsatisfiedConstraint( |
| 10855 | static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); |
| 10856 | return; |
| 10857 | } |
| 10858 | case Sema::TDK_TooManyArguments: |
| 10859 | case Sema::TDK_TooFewArguments: |
| 10860 | DiagnoseArityMismatch(S, Found, Templated, NumArgs); |
| 10861 | return; |
| 10862 | |
| 10863 | case Sema::TDK_InstantiationDepth: |
| 10864 | S.Diag(Templated->getLocation(), |
| 10865 | diag::note_ovl_candidate_instantiation_depth); |
| 10866 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10867 | return; |
| 10868 | |
| 10869 | case Sema::TDK_SubstitutionFailure: { |
| 10870 | // Format the template argument list into the argument string. |
| 10871 | SmallString<128> TemplateArgString; |
| 10872 | if (TemplateArgumentList *Args = |
| 10873 | DeductionFailure.getTemplateArgumentList()) { |
| 10874 | TemplateArgString = " "; |
| 10875 | TemplateArgString += S.getTemplateArgumentBindingsText( |
| 10876 | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); |
| 10877 | if (TemplateArgString.size() == 1) |
| 10878 | TemplateArgString.clear(); |
| 10879 | } |
| 10880 | |
| 10881 | // If this candidate was disabled by enable_if, say so. |
| 10882 | PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); |
| 10883 | if (PDiag && PDiag->second.getDiagID() == |
| 10884 | diag::err_typename_nested_not_found_enable_if) { |
| 10885 | // FIXME: Use the source range of the condition, and the fully-qualified |
| 10886 | // name of the enable_if template. These are both present in PDiag. |
| 10887 | S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) |
| 10888 | << "'enable_if'" << TemplateArgString; |
| 10889 | return; |
| 10890 | } |
| 10891 | |
| 10892 | // We found a specific requirement that disabled the enable_if. |
| 10893 | if (PDiag && PDiag->second.getDiagID() == |
| 10894 | diag::err_typename_nested_not_found_requirement) { |
| 10895 | S.Diag(Templated->getLocation(), |
| 10896 | diag::note_ovl_candidate_disabled_by_requirement) |
| 10897 | << PDiag->second.getStringArg(0) << TemplateArgString; |
| 10898 | return; |
| 10899 | } |
| 10900 | |
| 10901 | // Format the SFINAE diagnostic into the argument string. |
| 10902 | // FIXME: Add a general mechanism to include a PartialDiagnostic *'s |
| 10903 | // formatted message in another diagnostic. |
| 10904 | SmallString<128> SFINAEArgString; |
| 10905 | SourceRange R; |
| 10906 | if (PDiag) { |
| 10907 | SFINAEArgString = ": "; |
| 10908 | R = SourceRange(PDiag->first, PDiag->first); |
| 10909 | PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); |
| 10910 | } |
| 10911 | |
| 10912 | S.Diag(Templated->getLocation(), |
| 10913 | diag::note_ovl_candidate_substitution_failure) |
| 10914 | << TemplateArgString << SFINAEArgString << R; |
| 10915 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10916 | return; |
| 10917 | } |
| 10918 | |
| 10919 | case Sema::TDK_DeducedMismatch: |
| 10920 | case Sema::TDK_DeducedMismatchNested: { |
| 10921 | // Format the template argument list into the argument string. |
| 10922 | SmallString<128> TemplateArgString; |
| 10923 | if (TemplateArgumentList *Args = |
| 10924 | DeductionFailure.getTemplateArgumentList()) { |
| 10925 | TemplateArgString = " "; |
| 10926 | TemplateArgString += S.getTemplateArgumentBindingsText( |
| 10927 | getDescribedTemplate(Templated)->getTemplateParameters(), *Args); |
| 10928 | if (TemplateArgString.size() == 1) |
| 10929 | TemplateArgString.clear(); |
| 10930 | } |
| 10931 | |
| 10932 | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) |
| 10933 | << (*DeductionFailure.getCallArgIndex() + 1) |
| 10934 | << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() |
| 10935 | << TemplateArgString |
| 10936 | << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); |
| 10937 | break; |
| 10938 | } |
| 10939 | |
| 10940 | case Sema::TDK_NonDeducedMismatch: { |
| 10941 | // FIXME: Provide a source location to indicate what we couldn't match. |
| 10942 | TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); |
| 10943 | TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); |
| 10944 | if (FirstTA.getKind() == TemplateArgument::Template && |
| 10945 | SecondTA.getKind() == TemplateArgument::Template) { |
| 10946 | TemplateName FirstTN = FirstTA.getAsTemplate(); |
| 10947 | TemplateName SecondTN = SecondTA.getAsTemplate(); |
| 10948 | if (FirstTN.getKind() == TemplateName::Template && |
| 10949 | SecondTN.getKind() == TemplateName::Template) { |
| 10950 | if (FirstTN.getAsTemplateDecl()->getName() == |
| 10951 | SecondTN.getAsTemplateDecl()->getName()) { |
| 10952 | // FIXME: This fixes a bad diagnostic where both templates are named |
| 10953 | // the same. This particular case is a bit difficult since: |
| 10954 | // 1) It is passed as a string to the diagnostic printer. |
| 10955 | // 2) The diagnostic printer only attempts to find a better |
| 10956 | // name for types, not decls. |
| 10957 | // Ideally, this should folded into the diagnostic printer. |
| 10958 | S.Diag(Templated->getLocation(), |
| 10959 | diag::note_ovl_candidate_non_deduced_mismatch_qualified) |
| 10960 | << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); |
| 10961 | return; |
| 10962 | } |
| 10963 | } |
| 10964 | } |
| 10965 | |
| 10966 | if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && |
| 10967 | !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) |
| 10968 | return; |
| 10969 | |
| 10970 | // FIXME: For generic lambda parameters, check if the function is a lambda |
| 10971 | // call operator, and if so, emit a prettier and more informative |
| 10972 | // diagnostic that mentions 'auto' and lambda in addition to |
| 10973 | // (or instead of?) the canonical template type parameters. |
| 10974 | S.Diag(Templated->getLocation(), |
| 10975 | diag::note_ovl_candidate_non_deduced_mismatch) |
| 10976 | << FirstTA << SecondTA; |
| 10977 | return; |
| 10978 | } |
| 10979 | // TODO: diagnose these individually, then kill off |
| 10980 | // note_ovl_candidate_bad_deduction, which is uselessly vague. |
| 10981 | case Sema::TDK_MiscellaneousDeductionFailure: |
| 10982 | S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); |
| 10983 | MaybeEmitInheritedConstructorNote(S, Found); |
| 10984 | return; |
| 10985 | case Sema::TDK_CUDATargetMismatch: |
| 10986 | S.Diag(Templated->getLocation(), |
| 10987 | diag::note_cuda_ovl_candidate_target_mismatch); |
| 10988 | return; |
| 10989 | } |
| 10990 | } |
| 10991 | |
| 10992 | /// Diagnose a failed template-argument deduction, for function calls. |
| 10993 | static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, |
| 10994 | unsigned NumArgs, |
| 10995 | bool TakingCandidateAddress) { |
| 10996 | unsigned TDK = Cand->DeductionFailure.Result; |
| 10997 | if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { |
| 10998 | if (CheckArityMismatch(S, Cand, NumArgs)) |
| 10999 | return; |
| 11000 | } |
| 11001 | DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern |
| 11002 | Cand->DeductionFailure, NumArgs, TakingCandidateAddress); |
| 11003 | } |
| 11004 | |
| 11005 | /// CUDA: diagnose an invalid call across targets. |
| 11006 | static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { |
| 11007 | FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); |
| 11008 | FunctionDecl *Callee = Cand->Function; |
| 11009 | |
| 11010 | Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), |
| 11011 | CalleeTarget = S.IdentifyCUDATarget(Callee); |
| 11012 | |
| 11013 | std::string FnDesc; |
| 11014 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 11015 | ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, |
| 11016 | Cand->getRewriteKind(), FnDesc); |
| 11017 | |
| 11018 | S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) |
| 11019 | << (unsigned)FnKindPair.first << (unsigned)ocs_non_template |
| 11020 | << FnDesc /* Ignored */ |
| 11021 | << CalleeTarget << CallerTarget; |
| 11022 | |
| 11023 | // This could be an implicit constructor for which we could not infer the |
| 11024 | // target due to a collsion. Diagnose that case. |
| 11025 | CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); |
| 11026 | if (Meth != nullptr && Meth->isImplicit()) { |
| 11027 | CXXRecordDecl *ParentClass = Meth->getParent(); |
| 11028 | Sema::CXXSpecialMember CSM; |
| 11029 | |
| 11030 | switch (FnKindPair.first) { |
| 11031 | default: |
| 11032 | return; |
| 11033 | case oc_implicit_default_constructor: |
| 11034 | CSM = Sema::CXXDefaultConstructor; |
| 11035 | break; |
| 11036 | case oc_implicit_copy_constructor: |
| 11037 | CSM = Sema::CXXCopyConstructor; |
| 11038 | break; |
| 11039 | case oc_implicit_move_constructor: |
| 11040 | CSM = Sema::CXXMoveConstructor; |
| 11041 | break; |
| 11042 | case oc_implicit_copy_assignment: |
| 11043 | CSM = Sema::CXXCopyAssignment; |
| 11044 | break; |
| 11045 | case oc_implicit_move_assignment: |
| 11046 | CSM = Sema::CXXMoveAssignment; |
| 11047 | break; |
| 11048 | }; |
| 11049 | |
| 11050 | bool ConstRHS = false; |
| 11051 | if (Meth->getNumParams()) { |
| 11052 | if (const ReferenceType *RT = |
| 11053 | Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { |
| 11054 | ConstRHS = RT->getPointeeType().isConstQualified(); |
| 11055 | } |
| 11056 | } |
| 11057 | |
| 11058 | S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, |
| 11059 | /* ConstRHS */ ConstRHS, |
| 11060 | /* Diagnose */ true); |
| 11061 | } |
| 11062 | } |
| 11063 | |
| 11064 | static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { |
| 11065 | FunctionDecl *Callee = Cand->Function; |
| 11066 | EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); |
| 11067 | |
| 11068 | S.Diag(Callee->getLocation(), |
| 11069 | diag::note_ovl_candidate_disabled_by_function_cond_attr) |
| 11070 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); |
| 11071 | } |
| 11072 | |
| 11073 | static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { |
| 11074 | ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); |
| 11075 | assert(ES.isExplicit() && "not an explicit candidate")((void)0); |
| 11076 | |
| 11077 | unsigned Kind; |
| 11078 | switch (Cand->Function->getDeclKind()) { |
| 11079 | case Decl::Kind::CXXConstructor: |
| 11080 | Kind = 0; |
| 11081 | break; |
| 11082 | case Decl::Kind::CXXConversion: |
| 11083 | Kind = 1; |
| 11084 | break; |
| 11085 | case Decl::Kind::CXXDeductionGuide: |
| 11086 | Kind = Cand->Function->isImplicit() ? 0 : 2; |
| 11087 | break; |
| 11088 | default: |
| 11089 | llvm_unreachable("invalid Decl")__builtin_unreachable(); |
| 11090 | } |
| 11091 | |
| 11092 | // Note the location of the first (in-class) declaration; a redeclaration |
| 11093 | // (particularly an out-of-class definition) will typically lack the |
| 11094 | // 'explicit' specifier. |
| 11095 | // FIXME: This is probably a good thing to do for all 'candidate' notes. |
| 11096 | FunctionDecl *First = Cand->Function->getFirstDecl(); |
| 11097 | if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) |
| 11098 | First = Pattern->getFirstDecl(); |
| 11099 | |
| 11100 | S.Diag(First->getLocation(), |
| 11101 | diag::note_ovl_candidate_explicit) |
| 11102 | << Kind << (ES.getExpr() ? 1 : 0) |
| 11103 | << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); |
| 11104 | } |
| 11105 | |
| 11106 | /// Generates a 'note' diagnostic for an overload candidate. We've |
| 11107 | /// already generated a primary error at the call site. |
| 11108 | /// |
| 11109 | /// It really does need to be a single diagnostic with its caret |
| 11110 | /// pointed at the candidate declaration. Yes, this creates some |
| 11111 | /// major challenges of technical writing. Yes, this makes pointing |
| 11112 | /// out problems with specific arguments quite awkward. It's still |
| 11113 | /// better than generating twenty screens of text for every failed |
| 11114 | /// overload. |
| 11115 | /// |
| 11116 | /// It would be great to be able to express per-candidate problems |
| 11117 | /// more richly for those diagnostic clients that cared, but we'd |
| 11118 | /// still have to be just as careful with the default diagnostics. |
| 11119 | /// \param CtorDestAS Addr space of object being constructed (for ctor |
| 11120 | /// candidates only). |
| 11121 | static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, |
| 11122 | unsigned NumArgs, |
| 11123 | bool TakingCandidateAddress, |
| 11124 | LangAS CtorDestAS = LangAS::Default) { |
| 11125 | FunctionDecl *Fn = Cand->Function; |
| 11126 | if (shouldSkipNotingLambdaConversionDecl(Fn)) |
| 11127 | return; |
| 11128 | |
| 11129 | // Note deleted candidates, but only if they're viable. |
| 11130 | if (Cand->Viable) { |
| 11131 | if (Fn->isDeleted()) { |
| 11132 | std::string FnDesc; |
| 11133 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 11134 | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, |
| 11135 | Cand->getRewriteKind(), FnDesc); |
| 11136 | |
| 11137 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) |
| 11138 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11139 | << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); |
| 11140 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 11141 | return; |
| 11142 | } |
| 11143 | |
| 11144 | // We don't really have anything else to say about viable candidates. |
| 11145 | S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); |
| 11146 | return; |
| 11147 | } |
| 11148 | |
| 11149 | switch (Cand->FailureKind) { |
| 11150 | case ovl_fail_too_many_arguments: |
| 11151 | case ovl_fail_too_few_arguments: |
| 11152 | return DiagnoseArityMismatch(S, Cand, NumArgs); |
| 11153 | |
| 11154 | case ovl_fail_bad_deduction: |
| 11155 | return DiagnoseBadDeduction(S, Cand, NumArgs, |
| 11156 | TakingCandidateAddress); |
| 11157 | |
| 11158 | case ovl_fail_illegal_constructor: { |
| 11159 | S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) |
| 11160 | << (Fn->getPrimaryTemplate() ? 1 : 0); |
| 11161 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 11162 | return; |
| 11163 | } |
| 11164 | |
| 11165 | case ovl_fail_object_addrspace_mismatch: { |
| 11166 | Qualifiers QualsForPrinting; |
| 11167 | QualsForPrinting.setAddressSpace(CtorDestAS); |
| 11168 | S.Diag(Fn->getLocation(), |
| 11169 | diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) |
| 11170 | << QualsForPrinting; |
| 11171 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 11172 | return; |
| 11173 | } |
| 11174 | |
| 11175 | case ovl_fail_trivial_conversion: |
| 11176 | case ovl_fail_bad_final_conversion: |
| 11177 | case ovl_fail_final_conversion_not_exact: |
| 11178 | return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); |
| 11179 | |
| 11180 | case ovl_fail_bad_conversion: { |
| 11181 | unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); |
| 11182 | for (unsigned N = Cand->Conversions.size(); I != N; ++I) |
| 11183 | if (Cand->Conversions[I].isBad()) |
| 11184 | return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); |
| 11185 | |
| 11186 | // FIXME: this currently happens when we're called from SemaInit |
| 11187 | // when user-conversion overload fails. Figure out how to handle |
| 11188 | // those conditions and diagnose them well. |
| 11189 | return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); |
| 11190 | } |
| 11191 | |
| 11192 | case ovl_fail_bad_target: |
| 11193 | return DiagnoseBadTarget(S, Cand); |
| 11194 | |
| 11195 | case ovl_fail_enable_if: |
| 11196 | return DiagnoseFailedEnableIfAttr(S, Cand); |
| 11197 | |
| 11198 | case ovl_fail_explicit: |
| 11199 | return DiagnoseFailedExplicitSpec(S, Cand); |
| 11200 | |
| 11201 | case ovl_fail_inhctor_slice: |
| 11202 | // It's generally not interesting to note copy/move constructors here. |
| 11203 | if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) |
| 11204 | return; |
| 11205 | S.Diag(Fn->getLocation(), |
| 11206 | diag::note_ovl_candidate_inherited_constructor_slice) |
| 11207 | << (Fn->getPrimaryTemplate() ? 1 : 0) |
| 11208 | << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); |
| 11209 | MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); |
| 11210 | return; |
| 11211 | |
| 11212 | case ovl_fail_addr_not_available: { |
| 11213 | bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); |
| 11214 | (void)Available; |
| 11215 | assert(!Available)((void)0); |
| 11216 | break; |
| 11217 | } |
| 11218 | case ovl_non_default_multiversion_function: |
| 11219 | // Do nothing, these should simply be ignored. |
| 11220 | break; |
| 11221 | |
| 11222 | case ovl_fail_constraints_not_satisfied: { |
| 11223 | std::string FnDesc; |
| 11224 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 11225 | ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, |
| 11226 | Cand->getRewriteKind(), FnDesc); |
| 11227 | |
| 11228 | S.Diag(Fn->getLocation(), |
| 11229 | diag::note_ovl_candidate_constraints_not_satisfied) |
| 11230 | << (unsigned)FnKindPair.first << (unsigned)ocs_non_template |
| 11231 | << FnDesc /* Ignored */; |
| 11232 | ConstraintSatisfaction Satisfaction; |
| 11233 | if (S.CheckFunctionConstraints(Fn, Satisfaction)) |
| 11234 | break; |
| 11235 | S.DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 11236 | } |
| 11237 | } |
| 11238 | } |
| 11239 | |
| 11240 | static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { |
| 11241 | if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) |
| 11242 | return; |
| 11243 | |
| 11244 | // Desugar the type of the surrogate down to a function type, |
| 11245 | // retaining as many typedefs as possible while still showing |
| 11246 | // the function type (and, therefore, its parameter types). |
| 11247 | QualType FnType = Cand->Surrogate->getConversionType(); |
| 11248 | bool isLValueReference = false; |
| 11249 | bool isRValueReference = false; |
| 11250 | bool isPointer = false; |
| 11251 | if (const LValueReferenceType *FnTypeRef = |
| 11252 | FnType->getAs<LValueReferenceType>()) { |
| 11253 | FnType = FnTypeRef->getPointeeType(); |
| 11254 | isLValueReference = true; |
| 11255 | } else if (const RValueReferenceType *FnTypeRef = |
| 11256 | FnType->getAs<RValueReferenceType>()) { |
| 11257 | FnType = FnTypeRef->getPointeeType(); |
| 11258 | isRValueReference = true; |
| 11259 | } |
| 11260 | if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { |
| 11261 | FnType = FnTypePtr->getPointeeType(); |
| 11262 | isPointer = true; |
| 11263 | } |
| 11264 | // Desugar down to a function type. |
| 11265 | FnType = QualType(FnType->getAs<FunctionType>(), 0); |
| 11266 | // Reconstruct the pointer/reference as appropriate. |
| 11267 | if (isPointer) FnType = S.Context.getPointerType(FnType); |
| 11268 | if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); |
| 11269 | if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); |
| 11270 | |
| 11271 | S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) |
| 11272 | << FnType; |
| 11273 | } |
| 11274 | |
| 11275 | static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, |
| 11276 | SourceLocation OpLoc, |
| 11277 | OverloadCandidate *Cand) { |
| 11278 | assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary")((void)0); |
| 11279 | std::string TypeStr("operator"); |
| 11280 | TypeStr += Opc; |
| 11281 | TypeStr += "("; |
| 11282 | TypeStr += Cand->BuiltinParamTypes[0].getAsString(); |
| 11283 | if (Cand->Conversions.size() == 1) { |
| 11284 | TypeStr += ")"; |
| 11285 | S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; |
| 11286 | } else { |
| 11287 | TypeStr += ", "; |
| 11288 | TypeStr += Cand->BuiltinParamTypes[1].getAsString(); |
| 11289 | TypeStr += ")"; |
| 11290 | S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; |
| 11291 | } |
| 11292 | } |
| 11293 | |
| 11294 | static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, |
| 11295 | OverloadCandidate *Cand) { |
| 11296 | for (const ImplicitConversionSequence &ICS : Cand->Conversions) { |
| 11297 | if (ICS.isBad()) break; // all meaningless after first invalid |
| 11298 | if (!ICS.isAmbiguous()) continue; |
| 11299 | |
| 11300 | ICS.DiagnoseAmbiguousConversion( |
| 11301 | S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); |
| 11302 | } |
| 11303 | } |
| 11304 | |
| 11305 | static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { |
| 11306 | if (Cand->Function) |
| 11307 | return Cand->Function->getLocation(); |
| 11308 | if (Cand->IsSurrogate) |
| 11309 | return Cand->Surrogate->getLocation(); |
| 11310 | return SourceLocation(); |
| 11311 | } |
| 11312 | |
| 11313 | static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { |
| 11314 | switch ((Sema::TemplateDeductionResult)DFI.Result) { |
| 11315 | case Sema::TDK_Success: |
| 11316 | case Sema::TDK_NonDependentConversionFailure: |
| 11317 | llvm_unreachable("non-deduction failure while diagnosing bad deduction")__builtin_unreachable(); |
| 11318 | |
| 11319 | case Sema::TDK_Invalid: |
| 11320 | case Sema::TDK_Incomplete: |
| 11321 | case Sema::TDK_IncompletePack: |
| 11322 | return 1; |
| 11323 | |
| 11324 | case Sema::TDK_Underqualified: |
| 11325 | case Sema::TDK_Inconsistent: |
| 11326 | return 2; |
| 11327 | |
| 11328 | case Sema::TDK_SubstitutionFailure: |
| 11329 | case Sema::TDK_DeducedMismatch: |
| 11330 | case Sema::TDK_ConstraintsNotSatisfied: |
| 11331 | case Sema::TDK_DeducedMismatchNested: |
| 11332 | case Sema::TDK_NonDeducedMismatch: |
| 11333 | case Sema::TDK_MiscellaneousDeductionFailure: |
| 11334 | case Sema::TDK_CUDATargetMismatch: |
| 11335 | return 3; |
| 11336 | |
| 11337 | case Sema::TDK_InstantiationDepth: |
| 11338 | return 4; |
| 11339 | |
| 11340 | case Sema::TDK_InvalidExplicitArguments: |
| 11341 | return 5; |
| 11342 | |
| 11343 | case Sema::TDK_TooManyArguments: |
| 11344 | case Sema::TDK_TooFewArguments: |
| 11345 | return 6; |
| 11346 | } |
| 11347 | llvm_unreachable("Unhandled deduction result")__builtin_unreachable(); |
| 11348 | } |
| 11349 | |
| 11350 | namespace { |
| 11351 | struct CompareOverloadCandidatesForDisplay { |
| 11352 | Sema &S; |
| 11353 | SourceLocation Loc; |
| 11354 | size_t NumArgs; |
| 11355 | OverloadCandidateSet::CandidateSetKind CSK; |
| 11356 | |
| 11357 | CompareOverloadCandidatesForDisplay( |
| 11358 | Sema &S, SourceLocation Loc, size_t NArgs, |
| 11359 | OverloadCandidateSet::CandidateSetKind CSK) |
| 11360 | : S(S), NumArgs(NArgs), CSK(CSK) {} |
| 11361 | |
| 11362 | OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { |
| 11363 | // If there are too many or too few arguments, that's the high-order bit we |
| 11364 | // want to sort by, even if the immediate failure kind was something else. |
| 11365 | if (C->FailureKind == ovl_fail_too_many_arguments || |
| 11366 | C->FailureKind == ovl_fail_too_few_arguments) |
| 11367 | return static_cast<OverloadFailureKind>(C->FailureKind); |
| 11368 | |
| 11369 | if (C->Function) { |
| 11370 | if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) |
| 11371 | return ovl_fail_too_many_arguments; |
| 11372 | if (NumArgs < C->Function->getMinRequiredArguments()) |
| 11373 | return ovl_fail_too_few_arguments; |
| 11374 | } |
| 11375 | |
| 11376 | return static_cast<OverloadFailureKind>(C->FailureKind); |
| 11377 | } |
| 11378 | |
| 11379 | bool operator()(const OverloadCandidate *L, |
| 11380 | const OverloadCandidate *R) { |
| 11381 | // Fast-path this check. |
| 11382 | if (L == R) return false; |
| 11383 | |
| 11384 | // Order first by viability. |
| 11385 | if (L->Viable) { |
| 11386 | if (!R->Viable) return true; |
| 11387 | |
| 11388 | // TODO: introduce a tri-valued comparison for overload |
| 11389 | // candidates. Would be more worthwhile if we had a sort |
| 11390 | // that could exploit it. |
| 11391 | if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK)) |
| 11392 | return true; |
| 11393 | if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK)) |
| 11394 | return false; |
| 11395 | } else if (R->Viable) |
| 11396 | return false; |
| 11397 | |
| 11398 | assert(L->Viable == R->Viable)((void)0); |
| 11399 | |
| 11400 | // Criteria by which we can sort non-viable candidates: |
| 11401 | if (!L->Viable) { |
| 11402 | OverloadFailureKind LFailureKind = EffectiveFailureKind(L); |
| 11403 | OverloadFailureKind RFailureKind = EffectiveFailureKind(R); |
| 11404 | |
| 11405 | // 1. Arity mismatches come after other candidates. |
| 11406 | if (LFailureKind == ovl_fail_too_many_arguments || |
| 11407 | LFailureKind == ovl_fail_too_few_arguments) { |
| 11408 | if (RFailureKind == ovl_fail_too_many_arguments || |
| 11409 | RFailureKind == ovl_fail_too_few_arguments) { |
| 11410 | int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); |
| 11411 | int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); |
| 11412 | if (LDist == RDist) { |
| 11413 | if (LFailureKind == RFailureKind) |
| 11414 | // Sort non-surrogates before surrogates. |
| 11415 | return !L->IsSurrogate && R->IsSurrogate; |
| 11416 | // Sort candidates requiring fewer parameters than there were |
| 11417 | // arguments given after candidates requiring more parameters |
| 11418 | // than there were arguments given. |
| 11419 | return LFailureKind == ovl_fail_too_many_arguments; |
| 11420 | } |
| 11421 | return LDist < RDist; |
| 11422 | } |
| 11423 | return false; |
| 11424 | } |
| 11425 | if (RFailureKind == ovl_fail_too_many_arguments || |
| 11426 | RFailureKind == ovl_fail_too_few_arguments) |
| 11427 | return true; |
| 11428 | |
| 11429 | // 2. Bad conversions come first and are ordered by the number |
| 11430 | // of bad conversions and quality of good conversions. |
| 11431 | if (LFailureKind == ovl_fail_bad_conversion) { |
| 11432 | if (RFailureKind != ovl_fail_bad_conversion) |
| 11433 | return true; |
| 11434 | |
| 11435 | // The conversion that can be fixed with a smaller number of changes, |
| 11436 | // comes first. |
| 11437 | unsigned numLFixes = L->Fix.NumConversionsFixed; |
| 11438 | unsigned numRFixes = R->Fix.NumConversionsFixed; |
| 11439 | numLFixes = (numLFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numLFixes; |
| 11440 | numRFixes = (numRFixes == 0) ? UINT_MAX(2147483647 *2U +1U) : numRFixes; |
| 11441 | if (numLFixes != numRFixes) { |
| 11442 | return numLFixes < numRFixes; |
| 11443 | } |
| 11444 | |
| 11445 | // If there's any ordering between the defined conversions... |
| 11446 | // FIXME: this might not be transitive. |
| 11447 | assert(L->Conversions.size() == R->Conversions.size())((void)0); |
| 11448 | |
| 11449 | int leftBetter = 0; |
| 11450 | unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); |
| 11451 | for (unsigned E = L->Conversions.size(); I != E; ++I) { |
| 11452 | switch (CompareImplicitConversionSequences(S, Loc, |
| 11453 | L->Conversions[I], |
| 11454 | R->Conversions[I])) { |
| 11455 | case ImplicitConversionSequence::Better: |
| 11456 | leftBetter++; |
| 11457 | break; |
| 11458 | |
| 11459 | case ImplicitConversionSequence::Worse: |
| 11460 | leftBetter--; |
| 11461 | break; |
| 11462 | |
| 11463 | case ImplicitConversionSequence::Indistinguishable: |
| 11464 | break; |
| 11465 | } |
| 11466 | } |
| 11467 | if (leftBetter > 0) return true; |
| 11468 | if (leftBetter < 0) return false; |
| 11469 | |
| 11470 | } else if (RFailureKind == ovl_fail_bad_conversion) |
| 11471 | return false; |
| 11472 | |
| 11473 | if (LFailureKind == ovl_fail_bad_deduction) { |
| 11474 | if (RFailureKind != ovl_fail_bad_deduction) |
| 11475 | return true; |
| 11476 | |
| 11477 | if (L->DeductionFailure.Result != R->DeductionFailure.Result) |
| 11478 | return RankDeductionFailure(L->DeductionFailure) |
| 11479 | < RankDeductionFailure(R->DeductionFailure); |
| 11480 | } else if (RFailureKind == ovl_fail_bad_deduction) |
| 11481 | return false; |
| 11482 | |
| 11483 | // TODO: others? |
| 11484 | } |
| 11485 | |
| 11486 | // Sort everything else by location. |
| 11487 | SourceLocation LLoc = GetLocationForCandidate(L); |
| 11488 | SourceLocation RLoc = GetLocationForCandidate(R); |
| 11489 | |
| 11490 | // Put candidates without locations (e.g. builtins) at the end. |
| 11491 | if (LLoc.isInvalid()) return false; |
| 11492 | if (RLoc.isInvalid()) return true; |
| 11493 | |
| 11494 | return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); |
| 11495 | } |
| 11496 | }; |
| 11497 | } |
| 11498 | |
| 11499 | /// CompleteNonViableCandidate - Normally, overload resolution only |
| 11500 | /// computes up to the first bad conversion. Produces the FixIt set if |
| 11501 | /// possible. |
| 11502 | static void |
| 11503 | CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, |
| 11504 | ArrayRef<Expr *> Args, |
| 11505 | OverloadCandidateSet::CandidateSetKind CSK) { |
| 11506 | assert(!Cand->Viable)((void)0); |
| 11507 | |
| 11508 | // Don't do anything on failures other than bad conversion. |
| 11509 | if (Cand->FailureKind != ovl_fail_bad_conversion) |
| 11510 | return; |
| 11511 | |
| 11512 | // We only want the FixIts if all the arguments can be corrected. |
| 11513 | bool Unfixable = false; |
| 11514 | // Use a implicit copy initialization to check conversion fixes. |
| 11515 | Cand->Fix.setConversionChecker(TryCopyInitialization); |
| 11516 | |
| 11517 | // Attempt to fix the bad conversion. |
| 11518 | unsigned ConvCount = Cand->Conversions.size(); |
| 11519 | for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; |
| 11520 | ++ConvIdx) { |
| 11521 | assert(ConvIdx != ConvCount && "no bad conversion in candidate")((void)0); |
| 11522 | if (Cand->Conversions[ConvIdx].isInitialized() && |
| 11523 | Cand->Conversions[ConvIdx].isBad()) { |
| 11524 | Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); |
| 11525 | break; |
| 11526 | } |
| 11527 | } |
| 11528 | |
| 11529 | // FIXME: this should probably be preserved from the overload |
| 11530 | // operation somehow. |
| 11531 | bool SuppressUserConversions = false; |
| 11532 | |
| 11533 | unsigned ConvIdx = 0; |
| 11534 | unsigned ArgIdx = 0; |
| 11535 | ArrayRef<QualType> ParamTypes; |
| 11536 | bool Reversed = Cand->isReversed(); |
| 11537 | |
| 11538 | if (Cand->IsSurrogate) { |
| 11539 | QualType ConvType |
| 11540 | = Cand->Surrogate->getConversionType().getNonReferenceType(); |
| 11541 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| 11542 | ConvType = ConvPtrType->getPointeeType(); |
| 11543 | ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); |
| 11544 | // Conversion 0 is 'this', which doesn't have a corresponding parameter. |
| 11545 | ConvIdx = 1; |
| 11546 | } else if (Cand->Function) { |
| 11547 | ParamTypes = |
| 11548 | Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); |
| 11549 | if (isa<CXXMethodDecl>(Cand->Function) && |
| 11550 | !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) { |
| 11551 | // Conversion 0 is 'this', which doesn't have a corresponding parameter. |
| 11552 | ConvIdx = 1; |
| 11553 | if (CSK == OverloadCandidateSet::CSK_Operator && |
| 11554 | Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call) |
| 11555 | // Argument 0 is 'this', which doesn't have a corresponding parameter. |
| 11556 | ArgIdx = 1; |
| 11557 | } |
| 11558 | } else { |
| 11559 | // Builtin operator. |
| 11560 | assert(ConvCount <= 3)((void)0); |
| 11561 | ParamTypes = Cand->BuiltinParamTypes; |
| 11562 | } |
| 11563 | |
| 11564 | // Fill in the rest of the conversions. |
| 11565 | for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; |
| 11566 | ConvIdx != ConvCount; |
| 11567 | ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { |
| 11568 | assert(ArgIdx < Args.size() && "no argument for this arg conversion")((void)0); |
| 11569 | if (Cand->Conversions[ConvIdx].isInitialized()) { |
| 11570 | // We've already checked this conversion. |
| 11571 | } else if (ParamIdx < ParamTypes.size()) { |
| 11572 | if (ParamTypes[ParamIdx]->isDependentType()) |
| 11573 | Cand->Conversions[ConvIdx].setAsIdentityConversion( |
| 11574 | Args[ArgIdx]->getType()); |
| 11575 | else { |
| 11576 | Cand->Conversions[ConvIdx] = |
| 11577 | TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], |
| 11578 | SuppressUserConversions, |
| 11579 | /*InOverloadResolution=*/true, |
| 11580 | /*AllowObjCWritebackConversion=*/ |
| 11581 | S.getLangOpts().ObjCAutoRefCount); |
| 11582 | // Store the FixIt in the candidate if it exists. |
| 11583 | if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) |
| 11584 | Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); |
| 11585 | } |
| 11586 | } else |
| 11587 | Cand->Conversions[ConvIdx].setEllipsis(); |
| 11588 | } |
| 11589 | } |
| 11590 | |
| 11591 | SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( |
| 11592 | Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, |
| 11593 | SourceLocation OpLoc, |
| 11594 | llvm::function_ref<bool(OverloadCandidate &)> Filter) { |
| 11595 | // Sort the candidates by viability and position. Sorting directly would |
| 11596 | // be prohibitive, so we make a set of pointers and sort those. |
| 11597 | SmallVector<OverloadCandidate*, 32> Cands; |
| 11598 | if (OCD == OCD_AllCandidates) Cands.reserve(size()); |
| 11599 | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { |
| 11600 | if (!Filter(*Cand)) |
| 11601 | continue; |
| 11602 | switch (OCD) { |
| 11603 | case OCD_AllCandidates: |
| 11604 | if (!Cand->Viable) { |
| 11605 | if (!Cand->Function && !Cand->IsSurrogate) { |
| 11606 | // This a non-viable builtin candidate. We do not, in general, |
| 11607 | // want to list every possible builtin candidate. |
| 11608 | continue; |
| 11609 | } |
| 11610 | CompleteNonViableCandidate(S, Cand, Args, Kind); |
| 11611 | } |
| 11612 | break; |
| 11613 | |
| 11614 | case OCD_ViableCandidates: |
| 11615 | if (!Cand->Viable) |
| 11616 | continue; |
| 11617 | break; |
| 11618 | |
| 11619 | case OCD_AmbiguousCandidates: |
| 11620 | if (!Cand->Best) |
| 11621 | continue; |
| 11622 | break; |
| 11623 | } |
| 11624 | |
| 11625 | Cands.push_back(Cand); |
| 11626 | } |
| 11627 | |
| 11628 | llvm::stable_sort( |
| 11629 | Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); |
| 11630 | |
| 11631 | return Cands; |
| 11632 | } |
| 11633 | |
| 11634 | bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, |
| 11635 | SourceLocation OpLoc) { |
| 11636 | bool DeferHint = false; |
| 11637 | if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { |
| 11638 | // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or |
| 11639 | // host device candidates. |
| 11640 | auto WrongSidedCands = |
| 11641 | CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { |
| 11642 | return (Cand.Viable == false && |
| 11643 | Cand.FailureKind == ovl_fail_bad_target) || |
| 11644 | (Cand.Function && |
| 11645 | Cand.Function->template hasAttr<CUDAHostAttr>() && |
| 11646 | Cand.Function->template hasAttr<CUDADeviceAttr>()); |
| 11647 | }); |
| 11648 | DeferHint = !WrongSidedCands.empty(); |
| 11649 | } |
| 11650 | return DeferHint; |
| 11651 | } |
| 11652 | |
| 11653 | /// When overload resolution fails, prints diagnostic messages containing the |
| 11654 | /// candidates in the candidate set. |
| 11655 | void OverloadCandidateSet::NoteCandidates( |
| 11656 | PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, |
| 11657 | ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, |
| 11658 | llvm::function_ref<bool(OverloadCandidate &)> Filter) { |
| 11659 | |
| 11660 | auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); |
| 11661 | |
| 11662 | S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); |
| 11663 | |
| 11664 | NoteCandidates(S, Args, Cands, Opc, OpLoc); |
| 11665 | |
| 11666 | if (OCD == OCD_AmbiguousCandidates) |
| 11667 | MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); |
| 11668 | } |
| 11669 | |
| 11670 | void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, |
| 11671 | ArrayRef<OverloadCandidate *> Cands, |
| 11672 | StringRef Opc, SourceLocation OpLoc) { |
| 11673 | bool ReportedAmbiguousConversions = false; |
| 11674 | |
| 11675 | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); |
| 11676 | unsigned CandsShown = 0; |
| 11677 | auto I = Cands.begin(), E = Cands.end(); |
| 11678 | for (; I != E; ++I) { |
| 11679 | OverloadCandidate *Cand = *I; |
| 11680 | |
| 11681 | if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && |
| 11682 | ShowOverloads == Ovl_Best) { |
| 11683 | break; |
| 11684 | } |
| 11685 | ++CandsShown; |
| 11686 | |
| 11687 | if (Cand->Function) |
| 11688 | NoteFunctionCandidate(S, Cand, Args.size(), |
| 11689 | /*TakingCandidateAddress=*/false, DestAS); |
| 11690 | else if (Cand->IsSurrogate) |
| 11691 | NoteSurrogateCandidate(S, Cand); |
| 11692 | else { |
| 11693 | assert(Cand->Viable &&((void)0) |
| 11694 | "Non-viable built-in candidates are not added to Cands.")((void)0); |
| 11695 | // Generally we only see ambiguities including viable builtin |
| 11696 | // operators if overload resolution got screwed up by an |
| 11697 | // ambiguous user-defined conversion. |
| 11698 | // |
| 11699 | // FIXME: It's quite possible for different conversions to see |
| 11700 | // different ambiguities, though. |
| 11701 | if (!ReportedAmbiguousConversions) { |
| 11702 | NoteAmbiguousUserConversions(S, OpLoc, Cand); |
| 11703 | ReportedAmbiguousConversions = true; |
| 11704 | } |
| 11705 | |
| 11706 | // If this is a viable builtin, print it. |
| 11707 | NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); |
| 11708 | } |
| 11709 | } |
| 11710 | |
| 11711 | // Inform S.Diags that we've shown an overload set with N elements. This may |
| 11712 | // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). |
| 11713 | S.Diags.overloadCandidatesShown(CandsShown); |
| 11714 | |
| 11715 | if (I != E) |
| 11716 | S.Diag(OpLoc, diag::note_ovl_too_many_candidates, |
| 11717 | shouldDeferDiags(S, Args, OpLoc)) |
| 11718 | << int(E - I); |
| 11719 | } |
| 11720 | |
| 11721 | static SourceLocation |
| 11722 | GetLocationForCandidate(const TemplateSpecCandidate *Cand) { |
| 11723 | return Cand->Specialization ? Cand->Specialization->getLocation() |
| 11724 | : SourceLocation(); |
| 11725 | } |
| 11726 | |
| 11727 | namespace { |
| 11728 | struct CompareTemplateSpecCandidatesForDisplay { |
| 11729 | Sema &S; |
| 11730 | CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} |
| 11731 | |
| 11732 | bool operator()(const TemplateSpecCandidate *L, |
| 11733 | const TemplateSpecCandidate *R) { |
| 11734 | // Fast-path this check. |
| 11735 | if (L == R) |
| 11736 | return false; |
| 11737 | |
| 11738 | // Assuming that both candidates are not matches... |
| 11739 | |
| 11740 | // Sort by the ranking of deduction failures. |
| 11741 | if (L->DeductionFailure.Result != R->DeductionFailure.Result) |
| 11742 | return RankDeductionFailure(L->DeductionFailure) < |
| 11743 | RankDeductionFailure(R->DeductionFailure); |
| 11744 | |
| 11745 | // Sort everything else by location. |
| 11746 | SourceLocation LLoc = GetLocationForCandidate(L); |
| 11747 | SourceLocation RLoc = GetLocationForCandidate(R); |
| 11748 | |
| 11749 | // Put candidates without locations (e.g. builtins) at the end. |
| 11750 | if (LLoc.isInvalid()) |
| 11751 | return false; |
| 11752 | if (RLoc.isInvalid()) |
| 11753 | return true; |
| 11754 | |
| 11755 | return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); |
| 11756 | } |
| 11757 | }; |
| 11758 | } |
| 11759 | |
| 11760 | /// Diagnose a template argument deduction failure. |
| 11761 | /// We are treating these failures as overload failures due to bad |
| 11762 | /// deductions. |
| 11763 | void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, |
| 11764 | bool ForTakingAddress) { |
| 11765 | DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern |
| 11766 | DeductionFailure, /*NumArgs=*/0, ForTakingAddress); |
| 11767 | } |
| 11768 | |
| 11769 | void TemplateSpecCandidateSet::destroyCandidates() { |
| 11770 | for (iterator i = begin(), e = end(); i != e; ++i) { |
| 11771 | i->DeductionFailure.Destroy(); |
| 11772 | } |
| 11773 | } |
| 11774 | |
| 11775 | void TemplateSpecCandidateSet::clear() { |
| 11776 | destroyCandidates(); |
| 11777 | Candidates.clear(); |
| 11778 | } |
| 11779 | |
| 11780 | /// NoteCandidates - When no template specialization match is found, prints |
| 11781 | /// diagnostic messages containing the non-matching specializations that form |
| 11782 | /// the candidate set. |
| 11783 | /// This is analoguous to OverloadCandidateSet::NoteCandidates() with |
| 11784 | /// OCD == OCD_AllCandidates and Cand->Viable == false. |
| 11785 | void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { |
| 11786 | // Sort the candidates by position (assuming no candidate is a match). |
| 11787 | // Sorting directly would be prohibitive, so we make a set of pointers |
| 11788 | // and sort those. |
| 11789 | SmallVector<TemplateSpecCandidate *, 32> Cands; |
| 11790 | Cands.reserve(size()); |
| 11791 | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { |
| 11792 | if (Cand->Specialization) |
| 11793 | Cands.push_back(Cand); |
| 11794 | // Otherwise, this is a non-matching builtin candidate. We do not, |
| 11795 | // in general, want to list every possible builtin candidate. |
| 11796 | } |
| 11797 | |
| 11798 | llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); |
| 11799 | |
| 11800 | // FIXME: Perhaps rename OverloadsShown and getShowOverloads() |
| 11801 | // for generalization purposes (?). |
| 11802 | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); |
| 11803 | |
| 11804 | SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; |
| 11805 | unsigned CandsShown = 0; |
| 11806 | for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { |
| 11807 | TemplateSpecCandidate *Cand = *I; |
| 11808 | |
| 11809 | // Set an arbitrary limit on the number of candidates we'll spam |
| 11810 | // the user with. FIXME: This limit should depend on details of the |
| 11811 | // candidate list. |
| 11812 | if (CandsShown >= 4 && ShowOverloads == Ovl_Best) |
| 11813 | break; |
| 11814 | ++CandsShown; |
| 11815 | |
| 11816 | assert(Cand->Specialization &&((void)0) |
| 11817 | "Non-matching built-in candidates are not added to Cands.")((void)0); |
| 11818 | Cand->NoteDeductionFailure(S, ForTakingAddress); |
| 11819 | } |
| 11820 | |
| 11821 | if (I != E) |
| 11822 | S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); |
| 11823 | } |
| 11824 | |
| 11825 | // [PossiblyAFunctionType] --> [Return] |
| 11826 | // NonFunctionType --> NonFunctionType |
| 11827 | // R (A) --> R(A) |
| 11828 | // R (*)(A) --> R (A) |
| 11829 | // R (&)(A) --> R (A) |
| 11830 | // R (S::*)(A) --> R (A) |
| 11831 | QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { |
| 11832 | QualType Ret = PossiblyAFunctionType; |
| 11833 | if (const PointerType *ToTypePtr = |
| 11834 | PossiblyAFunctionType->getAs<PointerType>()) |
| 11835 | Ret = ToTypePtr->getPointeeType(); |
| 11836 | else if (const ReferenceType *ToTypeRef = |
| 11837 | PossiblyAFunctionType->getAs<ReferenceType>()) |
| 11838 | Ret = ToTypeRef->getPointeeType(); |
| 11839 | else if (const MemberPointerType *MemTypePtr = |
| 11840 | PossiblyAFunctionType->getAs<MemberPointerType>()) |
| 11841 | Ret = MemTypePtr->getPointeeType(); |
| 11842 | Ret = |
| 11843 | Context.getCanonicalType(Ret).getUnqualifiedType(); |
| 11844 | return Ret; |
| 11845 | } |
| 11846 | |
| 11847 | static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, |
| 11848 | bool Complain = true) { |
| 11849 | if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && |
| 11850 | S.DeduceReturnType(FD, Loc, Complain)) |
| 11851 | return true; |
| 11852 | |
| 11853 | auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
| 11854 | if (S.getLangOpts().CPlusPlus17 && |
| 11855 | isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && |
| 11856 | !S.ResolveExceptionSpec(Loc, FPT)) |
| 11857 | return true; |
| 11858 | |
| 11859 | return false; |
| 11860 | } |
| 11861 | |
| 11862 | namespace { |
| 11863 | // A helper class to help with address of function resolution |
| 11864 | // - allows us to avoid passing around all those ugly parameters |
| 11865 | class AddressOfFunctionResolver { |
| 11866 | Sema& S; |
| 11867 | Expr* SourceExpr; |
| 11868 | const QualType& TargetType; |
| 11869 | QualType TargetFunctionType; // Extracted function type from target type |
| 11870 | |
| 11871 | bool Complain; |
| 11872 | //DeclAccessPair& ResultFunctionAccessPair; |
| 11873 | ASTContext& Context; |
| 11874 | |
| 11875 | bool TargetTypeIsNonStaticMemberFunction; |
| 11876 | bool FoundNonTemplateFunction; |
| 11877 | bool StaticMemberFunctionFromBoundPointer; |
| 11878 | bool HasComplained; |
| 11879 | |
| 11880 | OverloadExpr::FindResult OvlExprInfo; |
| 11881 | OverloadExpr *OvlExpr; |
| 11882 | TemplateArgumentListInfo OvlExplicitTemplateArgs; |
| 11883 | SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; |
| 11884 | TemplateSpecCandidateSet FailedCandidates; |
| 11885 | |
| 11886 | public: |
| 11887 | AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, |
| 11888 | const QualType &TargetType, bool Complain) |
| 11889 | : S(S), SourceExpr(SourceExpr), TargetType(TargetType), |
| 11890 | Complain(Complain), Context(S.getASTContext()), |
| 11891 | TargetTypeIsNonStaticMemberFunction( |
| 11892 | !!TargetType->getAs<MemberPointerType>()), |
| 11893 | FoundNonTemplateFunction(false), |
| 11894 | StaticMemberFunctionFromBoundPointer(false), |
| 11895 | HasComplained(false), |
| 11896 | OvlExprInfo(OverloadExpr::find(SourceExpr)), |
| 11897 | OvlExpr(OvlExprInfo.Expression), |
| 11898 | FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { |
| 11899 | ExtractUnqualifiedFunctionTypeFromTargetType(); |
| 11900 | |
| 11901 | if (TargetFunctionType->isFunctionType()) { |
| 11902 | if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) |
| 11903 | if (!UME->isImplicitAccess() && |
| 11904 | !S.ResolveSingleFunctionTemplateSpecialization(UME)) |
| 11905 | StaticMemberFunctionFromBoundPointer = true; |
| 11906 | } else if (OvlExpr->hasExplicitTemplateArgs()) { |
| 11907 | DeclAccessPair dap; |
| 11908 | if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( |
| 11909 | OvlExpr, false, &dap)) { |
| 11910 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) |
| 11911 | if (!Method->isStatic()) { |
| 11912 | // If the target type is a non-function type and the function found |
| 11913 | // is a non-static member function, pretend as if that was the |
| 11914 | // target, it's the only possible type to end up with. |
| 11915 | TargetTypeIsNonStaticMemberFunction = true; |
| 11916 | |
| 11917 | // And skip adding the function if its not in the proper form. |
| 11918 | // We'll diagnose this due to an empty set of functions. |
| 11919 | if (!OvlExprInfo.HasFormOfMemberPointer) |
| 11920 | return; |
| 11921 | } |
| 11922 | |
| 11923 | Matches.push_back(std::make_pair(dap, Fn)); |
| 11924 | } |
| 11925 | return; |
| 11926 | } |
| 11927 | |
| 11928 | if (OvlExpr->hasExplicitTemplateArgs()) |
| 11929 | OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); |
| 11930 | |
| 11931 | if (FindAllFunctionsThatMatchTargetTypeExactly()) { |
| 11932 | // C++ [over.over]p4: |
| 11933 | // If more than one function is selected, [...] |
| 11934 | if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { |
| 11935 | if (FoundNonTemplateFunction) |
| 11936 | EliminateAllTemplateMatches(); |
| 11937 | else |
| 11938 | EliminateAllExceptMostSpecializedTemplate(); |
| 11939 | } |
| 11940 | } |
| 11941 | |
| 11942 | if (S.getLangOpts().CUDA && Matches.size() > 1) |
| 11943 | EliminateSuboptimalCudaMatches(); |
| 11944 | } |
| 11945 | |
| 11946 | bool hasComplained() const { return HasComplained; } |
| 11947 | |
| 11948 | private: |
| 11949 | bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { |
| 11950 | QualType Discard; |
| 11951 | return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || |
| 11952 | S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); |
| 11953 | } |
| 11954 | |
| 11955 | /// \return true if A is considered a better overload candidate for the |
| 11956 | /// desired type than B. |
| 11957 | bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { |
| 11958 | // If A doesn't have exactly the correct type, we don't want to classify it |
| 11959 | // as "better" than anything else. This way, the user is required to |
| 11960 | // disambiguate for us if there are multiple candidates and no exact match. |
| 11961 | return candidateHasExactlyCorrectType(A) && |
| 11962 | (!candidateHasExactlyCorrectType(B) || |
| 11963 | compareEnableIfAttrs(S, A, B) == Comparison::Better); |
| 11964 | } |
| 11965 | |
| 11966 | /// \return true if we were able to eliminate all but one overload candidate, |
| 11967 | /// false otherwise. |
| 11968 | bool eliminiateSuboptimalOverloadCandidates() { |
| 11969 | // Same algorithm as overload resolution -- one pass to pick the "best", |
| 11970 | // another pass to be sure that nothing is better than the best. |
| 11971 | auto Best = Matches.begin(); |
| 11972 | for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) |
| 11973 | if (isBetterCandidate(I->second, Best->second)) |
| 11974 | Best = I; |
| 11975 | |
| 11976 | const FunctionDecl *BestFn = Best->second; |
| 11977 | auto IsBestOrInferiorToBest = [this, BestFn]( |
| 11978 | const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { |
| 11979 | return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); |
| 11980 | }; |
| 11981 | |
| 11982 | // Note: We explicitly leave Matches unmodified if there isn't a clear best |
| 11983 | // option, so we can potentially give the user a better error |
| 11984 | if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) |
| 11985 | return false; |
| 11986 | Matches[0] = *Best; |
| 11987 | Matches.resize(1); |
| 11988 | return true; |
| 11989 | } |
| 11990 | |
| 11991 | bool isTargetTypeAFunction() const { |
| 11992 | return TargetFunctionType->isFunctionType(); |
| 11993 | } |
| 11994 | |
| 11995 | // [ToType] [Return] |
| 11996 | |
| 11997 | // R (*)(A) --> R (A), IsNonStaticMemberFunction = false |
| 11998 | // R (&)(A) --> R (A), IsNonStaticMemberFunction = false |
| 11999 | // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true |
| 12000 | void inline ExtractUnqualifiedFunctionTypeFromTargetType() { |
| 12001 | TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); |
| 12002 | } |
| 12003 | |
| 12004 | // return true if any matching specializations were found |
| 12005 | bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, |
| 12006 | const DeclAccessPair& CurAccessFunPair) { |
| 12007 | if (CXXMethodDecl *Method |
| 12008 | = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { |
| 12009 | // Skip non-static function templates when converting to pointer, and |
| 12010 | // static when converting to member pointer. |
| 12011 | if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) |
| 12012 | return false; |
| 12013 | } |
| 12014 | else if (TargetTypeIsNonStaticMemberFunction) |
| 12015 | return false; |
| 12016 | |
| 12017 | // C++ [over.over]p2: |
| 12018 | // If the name is a function template, template argument deduction is |
| 12019 | // done (14.8.2.2), and if the argument deduction succeeds, the |
| 12020 | // resulting template argument list is used to generate a single |
| 12021 | // function template specialization, which is added to the set of |
| 12022 | // overloaded functions considered. |
| 12023 | FunctionDecl *Specialization = nullptr; |
| 12024 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
| 12025 | if (Sema::TemplateDeductionResult Result |
| 12026 | = S.DeduceTemplateArguments(FunctionTemplate, |
| 12027 | &OvlExplicitTemplateArgs, |
| 12028 | TargetFunctionType, Specialization, |
| 12029 | Info, /*IsAddressOfFunction*/true)) { |
| 12030 | // Make a note of the failed deduction for diagnostics. |
| 12031 | FailedCandidates.addCandidate() |
| 12032 | .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), |
| 12033 | MakeDeductionFailureInfo(Context, Result, Info)); |
| 12034 | return false; |
| 12035 | } |
| 12036 | |
| 12037 | // Template argument deduction ensures that we have an exact match or |
| 12038 | // compatible pointer-to-function arguments that would be adjusted by ICS. |
| 12039 | // This function template specicalization works. |
| 12040 | assert(S.isSameOrCompatibleFunctionType(((void)0) |
| 12041 | Context.getCanonicalType(Specialization->getType()),((void)0) |
| 12042 | Context.getCanonicalType(TargetFunctionType)))((void)0); |
| 12043 | |
| 12044 | if (!S.checkAddressOfFunctionIsAvailable(Specialization)) |
| 12045 | return false; |
| 12046 | |
| 12047 | Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); |
| 12048 | return true; |
| 12049 | } |
| 12050 | |
| 12051 | bool AddMatchingNonTemplateFunction(NamedDecl* Fn, |
| 12052 | const DeclAccessPair& CurAccessFunPair) { |
| 12053 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { |
| 12054 | // Skip non-static functions when converting to pointer, and static |
| 12055 | // when converting to member pointer. |
| 12056 | if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) |
| 12057 | return false; |
| 12058 | } |
| 12059 | else if (TargetTypeIsNonStaticMemberFunction) |
| 12060 | return false; |
| 12061 | |
| 12062 | if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { |
| 12063 | if (S.getLangOpts().CUDA) |
| 12064 | if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) |
| 12065 | if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl)) |
| 12066 | return false; |
| 12067 | if (FunDecl->isMultiVersion()) { |
| 12068 | const auto *TA = FunDecl->getAttr<TargetAttr>(); |
| 12069 | if (TA && !TA->isDefaultVersion()) |
| 12070 | return false; |
| 12071 | } |
| 12072 | |
| 12073 | // If any candidate has a placeholder return type, trigger its deduction |
| 12074 | // now. |
| 12075 | if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), |
| 12076 | Complain)) { |
| 12077 | HasComplained |= Complain; |
| 12078 | return false; |
| 12079 | } |
| 12080 | |
| 12081 | if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) |
| 12082 | return false; |
| 12083 | |
| 12084 | // If we're in C, we need to support types that aren't exactly identical. |
| 12085 | if (!S.getLangOpts().CPlusPlus || |
| 12086 | candidateHasExactlyCorrectType(FunDecl)) { |
| 12087 | Matches.push_back(std::make_pair( |
| 12088 | CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); |
| 12089 | FoundNonTemplateFunction = true; |
| 12090 | return true; |
| 12091 | } |
| 12092 | } |
| 12093 | |
| 12094 | return false; |
| 12095 | } |
| 12096 | |
| 12097 | bool FindAllFunctionsThatMatchTargetTypeExactly() { |
| 12098 | bool Ret = false; |
| 12099 | |
| 12100 | // If the overload expression doesn't have the form of a pointer to |
| 12101 | // member, don't try to convert it to a pointer-to-member type. |
| 12102 | if (IsInvalidFormOfPointerToMemberFunction()) |
| 12103 | return false; |
| 12104 | |
| 12105 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| 12106 | E = OvlExpr->decls_end(); |
| 12107 | I != E; ++I) { |
| 12108 | // Look through any using declarations to find the underlying function. |
| 12109 | NamedDecl *Fn = (*I)->getUnderlyingDecl(); |
| 12110 | |
| 12111 | // C++ [over.over]p3: |
| 12112 | // Non-member functions and static member functions match |
| 12113 | // targets of type "pointer-to-function" or "reference-to-function." |
| 12114 | // Nonstatic member functions match targets of |
| 12115 | // type "pointer-to-member-function." |
| 12116 | // Note that according to DR 247, the containing class does not matter. |
| 12117 | if (FunctionTemplateDecl *FunctionTemplate |
| 12118 | = dyn_cast<FunctionTemplateDecl>(Fn)) { |
| 12119 | if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) |
| 12120 | Ret = true; |
| 12121 | } |
| 12122 | // If we have explicit template arguments supplied, skip non-templates. |
| 12123 | else if (!OvlExpr->hasExplicitTemplateArgs() && |
| 12124 | AddMatchingNonTemplateFunction(Fn, I.getPair())) |
| 12125 | Ret = true; |
| 12126 | } |
| 12127 | assert(Ret || Matches.empty())((void)0); |
| 12128 | return Ret; |
| 12129 | } |
| 12130 | |
| 12131 | void EliminateAllExceptMostSpecializedTemplate() { |
| 12132 | // [...] and any given function template specialization F1 is |
| 12133 | // eliminated if the set contains a second function template |
| 12134 | // specialization whose function template is more specialized |
| 12135 | // than the function template of F1 according to the partial |
| 12136 | // ordering rules of 14.5.5.2. |
| 12137 | |
| 12138 | // The algorithm specified above is quadratic. We instead use a |
| 12139 | // two-pass algorithm (similar to the one used to identify the |
| 12140 | // best viable function in an overload set) that identifies the |
| 12141 | // best function template (if it exists). |
| 12142 | |
| 12143 | UnresolvedSet<4> MatchesCopy; // TODO: avoid! |
| 12144 | for (unsigned I = 0, E = Matches.size(); I != E; ++I) |
| 12145 | MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); |
| 12146 | |
| 12147 | // TODO: It looks like FailedCandidates does not serve much purpose |
| 12148 | // here, since the no_viable diagnostic has index 0. |
| 12149 | UnresolvedSetIterator Result = S.getMostSpecialized( |
| 12150 | MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, |
| 12151 | SourceExpr->getBeginLoc(), S.PDiag(), |
| 12152 | S.PDiag(diag::err_addr_ovl_ambiguous) |
| 12153 | << Matches[0].second->getDeclName(), |
| 12154 | S.PDiag(diag::note_ovl_candidate) |
| 12155 | << (unsigned)oc_function << (unsigned)ocs_described_template, |
| 12156 | Complain, TargetFunctionType); |
| 12157 | |
| 12158 | if (Result != MatchesCopy.end()) { |
| 12159 | // Make it the first and only element |
| 12160 | Matches[0].first = Matches[Result - MatchesCopy.begin()].first; |
| 12161 | Matches[0].second = cast<FunctionDecl>(*Result); |
| 12162 | Matches.resize(1); |
| 12163 | } else |
| 12164 | HasComplained |= Complain; |
| 12165 | } |
| 12166 | |
| 12167 | void EliminateAllTemplateMatches() { |
| 12168 | // [...] any function template specializations in the set are |
| 12169 | // eliminated if the set also contains a non-template function, [...] |
| 12170 | for (unsigned I = 0, N = Matches.size(); I != N; ) { |
| 12171 | if (Matches[I].second->getPrimaryTemplate() == nullptr) |
| 12172 | ++I; |
| 12173 | else { |
| 12174 | Matches[I] = Matches[--N]; |
| 12175 | Matches.resize(N); |
| 12176 | } |
| 12177 | } |
| 12178 | } |
| 12179 | |
| 12180 | void EliminateSuboptimalCudaMatches() { |
| 12181 | S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches); |
| 12182 | } |
| 12183 | |
| 12184 | public: |
| 12185 | void ComplainNoMatchesFound() const { |
| 12186 | assert(Matches.empty())((void)0); |
| 12187 | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) |
| 12188 | << OvlExpr->getName() << TargetFunctionType |
| 12189 | << OvlExpr->getSourceRange(); |
| 12190 | if (FailedCandidates.empty()) |
| 12191 | S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, |
| 12192 | /*TakingAddress=*/true); |
| 12193 | else { |
| 12194 | // We have some deduction failure messages. Use them to diagnose |
| 12195 | // the function templates, and diagnose the non-template candidates |
| 12196 | // normally. |
| 12197 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| 12198 | IEnd = OvlExpr->decls_end(); |
| 12199 | I != IEnd; ++I) |
| 12200 | if (FunctionDecl *Fun = |
| 12201 | dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) |
| 12202 | if (!functionHasPassObjectSizeParams(Fun)) |
| 12203 | S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, |
| 12204 | /*TakingAddress=*/true); |
| 12205 | FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); |
| 12206 | } |
| 12207 | } |
| 12208 | |
| 12209 | bool IsInvalidFormOfPointerToMemberFunction() const { |
| 12210 | return TargetTypeIsNonStaticMemberFunction && |
| 12211 | !OvlExprInfo.HasFormOfMemberPointer; |
| 12212 | } |
| 12213 | |
| 12214 | void ComplainIsInvalidFormOfPointerToMemberFunction() const { |
| 12215 | // TODO: Should we condition this on whether any functions might |
| 12216 | // have matched, or is it more appropriate to do that in callers? |
| 12217 | // TODO: a fixit wouldn't hurt. |
| 12218 | S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) |
| 12219 | << TargetType << OvlExpr->getSourceRange(); |
| 12220 | } |
| 12221 | |
| 12222 | bool IsStaticMemberFunctionFromBoundPointer() const { |
| 12223 | return StaticMemberFunctionFromBoundPointer; |
| 12224 | } |
| 12225 | |
| 12226 | void ComplainIsStaticMemberFunctionFromBoundPointer() const { |
| 12227 | S.Diag(OvlExpr->getBeginLoc(), |
| 12228 | diag::err_invalid_form_pointer_member_function) |
| 12229 | << OvlExpr->getSourceRange(); |
| 12230 | } |
| 12231 | |
| 12232 | void ComplainOfInvalidConversion() const { |
| 12233 | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) |
| 12234 | << OvlExpr->getName() << TargetType; |
| 12235 | } |
| 12236 | |
| 12237 | void ComplainMultipleMatchesFound() const { |
| 12238 | assert(Matches.size() > 1)((void)0); |
| 12239 | S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) |
| 12240 | << OvlExpr->getName() << OvlExpr->getSourceRange(); |
| 12241 | S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, |
| 12242 | /*TakingAddress=*/true); |
| 12243 | } |
| 12244 | |
| 12245 | bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } |
| 12246 | |
| 12247 | int getNumMatches() const { return Matches.size(); } |
| 12248 | |
| 12249 | FunctionDecl* getMatchingFunctionDecl() const { |
| 12250 | if (Matches.size() != 1) return nullptr; |
| 12251 | return Matches[0].second; |
| 12252 | } |
| 12253 | |
| 12254 | const DeclAccessPair* getMatchingFunctionAccessPair() const { |
| 12255 | if (Matches.size() != 1) return nullptr; |
| 12256 | return &Matches[0].first; |
| 12257 | } |
| 12258 | }; |
| 12259 | } |
| 12260 | |
| 12261 | /// ResolveAddressOfOverloadedFunction - Try to resolve the address of |
| 12262 | /// an overloaded function (C++ [over.over]), where @p From is an |
| 12263 | /// expression with overloaded function type and @p ToType is the type |
| 12264 | /// we're trying to resolve to. For example: |
| 12265 | /// |
| 12266 | /// @code |
| 12267 | /// int f(double); |
| 12268 | /// int f(int); |
| 12269 | /// |
| 12270 | /// int (*pfd)(double) = f; // selects f(double) |
| 12271 | /// @endcode |
| 12272 | /// |
| 12273 | /// This routine returns the resulting FunctionDecl if it could be |
| 12274 | /// resolved, and NULL otherwise. When @p Complain is true, this |
| 12275 | /// routine will emit diagnostics if there is an error. |
| 12276 | FunctionDecl * |
| 12277 | Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, |
| 12278 | QualType TargetType, |
| 12279 | bool Complain, |
| 12280 | DeclAccessPair &FoundResult, |
| 12281 | bool *pHadMultipleCandidates) { |
| 12282 | assert(AddressOfExpr->getType() == Context.OverloadTy)((void)0); |
| 12283 | |
| 12284 | AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, |
| 12285 | Complain); |
| 12286 | int NumMatches = Resolver.getNumMatches(); |
| 12287 | FunctionDecl *Fn = nullptr; |
| 12288 | bool ShouldComplain = Complain && !Resolver.hasComplained(); |
| 12289 | if (NumMatches == 0 && ShouldComplain) { |
| 12290 | if (Resolver.IsInvalidFormOfPointerToMemberFunction()) |
| 12291 | Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); |
| 12292 | else |
| 12293 | Resolver.ComplainNoMatchesFound(); |
| 12294 | } |
| 12295 | else if (NumMatches > 1 && ShouldComplain) |
| 12296 | Resolver.ComplainMultipleMatchesFound(); |
| 12297 | else if (NumMatches == 1) { |
| 12298 | Fn = Resolver.getMatchingFunctionDecl(); |
| 12299 | assert(Fn)((void)0); |
| 12300 | if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) |
| 12301 | ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); |
| 12302 | FoundResult = *Resolver.getMatchingFunctionAccessPair(); |
| 12303 | if (Complain) { |
| 12304 | if (Resolver.IsStaticMemberFunctionFromBoundPointer()) |
| 12305 | Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); |
| 12306 | else |
| 12307 | CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); |
| 12308 | } |
| 12309 | } |
| 12310 | |
| 12311 | if (pHadMultipleCandidates) |
| 12312 | *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); |
| 12313 | return Fn; |
| 12314 | } |
| 12315 | |
| 12316 | /// Given an expression that refers to an overloaded function, try to |
| 12317 | /// resolve that function to a single function that can have its address taken. |
| 12318 | /// This will modify `Pair` iff it returns non-null. |
| 12319 | /// |
| 12320 | /// This routine can only succeed if from all of the candidates in the overload |
| 12321 | /// set for SrcExpr that can have their addresses taken, there is one candidate |
| 12322 | /// that is more constrained than the rest. |
| 12323 | FunctionDecl * |
| 12324 | Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { |
| 12325 | OverloadExpr::FindResult R = OverloadExpr::find(E); |
| 12326 | OverloadExpr *Ovl = R.Expression; |
| 12327 | bool IsResultAmbiguous = false; |
| 12328 | FunctionDecl *Result = nullptr; |
| 12329 | DeclAccessPair DAP; |
| 12330 | SmallVector<FunctionDecl *, 2> AmbiguousDecls; |
| 12331 | |
| 12332 | auto CheckMoreConstrained = |
| 12333 | [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> { |
| 12334 | SmallVector<const Expr *, 1> AC1, AC2; |
| 12335 | FD1->getAssociatedConstraints(AC1); |
| 12336 | FD2->getAssociatedConstraints(AC2); |
| 12337 | bool AtLeastAsConstrained1, AtLeastAsConstrained2; |
| 12338 | if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) |
| 12339 | return None; |
| 12340 | if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) |
| 12341 | return None; |
| 12342 | if (AtLeastAsConstrained1 == AtLeastAsConstrained2) |
| 12343 | return None; |
| 12344 | return AtLeastAsConstrained1; |
| 12345 | }; |
| 12346 | |
| 12347 | // Don't use the AddressOfResolver because we're specifically looking for |
| 12348 | // cases where we have one overload candidate that lacks |
| 12349 | // enable_if/pass_object_size/... |
| 12350 | for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { |
| 12351 | auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); |
| 12352 | if (!FD) |
| 12353 | return nullptr; |
| 12354 | |
| 12355 | if (!checkAddressOfFunctionIsAvailable(FD)) |
| 12356 | continue; |
| 12357 | |
| 12358 | // We have more than one result - see if it is more constrained than the |
| 12359 | // previous one. |
| 12360 | if (Result) { |
| 12361 | Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD, |
| 12362 | Result); |
| 12363 | if (!MoreConstrainedThanPrevious) { |
| 12364 | IsResultAmbiguous = true; |
| 12365 | AmbiguousDecls.push_back(FD); |
| 12366 | continue; |
| 12367 | } |
| 12368 | if (!*MoreConstrainedThanPrevious) |
| 12369 | continue; |
| 12370 | // FD is more constrained - replace Result with it. |
| 12371 | } |
| 12372 | IsResultAmbiguous = false; |
| 12373 | DAP = I.getPair(); |
| 12374 | Result = FD; |
| 12375 | } |
| 12376 | |
| 12377 | if (IsResultAmbiguous) |
| 12378 | return nullptr; |
| 12379 | |
| 12380 | if (Result) { |
| 12381 | SmallVector<const Expr *, 1> ResultAC; |
| 12382 | // We skipped over some ambiguous declarations which might be ambiguous with |
| 12383 | // the selected result. |
| 12384 | for (FunctionDecl *Skipped : AmbiguousDecls) |
| 12385 | if (!CheckMoreConstrained(Skipped, Result).hasValue()) |
| 12386 | return nullptr; |
| 12387 | Pair = DAP; |
| 12388 | } |
| 12389 | return Result; |
| 12390 | } |
| 12391 | |
| 12392 | /// Given an overloaded function, tries to turn it into a non-overloaded |
| 12393 | /// function reference using resolveAddressOfSingleOverloadCandidate. This |
| 12394 | /// will perform access checks, diagnose the use of the resultant decl, and, if |
| 12395 | /// requested, potentially perform a function-to-pointer decay. |
| 12396 | /// |
| 12397 | /// Returns false if resolveAddressOfSingleOverloadCandidate fails. |
| 12398 | /// Otherwise, returns true. This may emit diagnostics and return true. |
| 12399 | bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( |
| 12400 | ExprResult &SrcExpr, bool DoFunctionPointerConverion) { |
| 12401 | Expr *E = SrcExpr.get(); |
| 12402 | assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload")((void)0); |
| 12403 | |
| 12404 | DeclAccessPair DAP; |
| 12405 | FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); |
| 12406 | if (!Found || Found->isCPUDispatchMultiVersion() || |
| 12407 | Found->isCPUSpecificMultiVersion()) |
| 12408 | return false; |
| 12409 | |
| 12410 | // Emitting multiple diagnostics for a function that is both inaccessible and |
| 12411 | // unavailable is consistent with our behavior elsewhere. So, always check |
| 12412 | // for both. |
| 12413 | DiagnoseUseOfDecl(Found, E->getExprLoc()); |
| 12414 | CheckAddressOfMemberAccess(E, DAP); |
| 12415 | Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found); |
| 12416 | if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType()) |
| 12417 | SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); |
| 12418 | else |
| 12419 | SrcExpr = Fixed; |
| 12420 | return true; |
| 12421 | } |
| 12422 | |
| 12423 | /// Given an expression that refers to an overloaded function, try to |
| 12424 | /// resolve that overloaded function expression down to a single function. |
| 12425 | /// |
| 12426 | /// This routine can only resolve template-ids that refer to a single function |
| 12427 | /// template, where that template-id refers to a single template whose template |
| 12428 | /// arguments are either provided by the template-id or have defaults, |
| 12429 | /// as described in C++0x [temp.arg.explicit]p3. |
| 12430 | /// |
| 12431 | /// If no template-ids are found, no diagnostics are emitted and NULL is |
| 12432 | /// returned. |
| 12433 | FunctionDecl * |
| 12434 | Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, |
| 12435 | bool Complain, |
| 12436 | DeclAccessPair *FoundResult) { |
| 12437 | // C++ [over.over]p1: |
| 12438 | // [...] [Note: any redundant set of parentheses surrounding the |
| 12439 | // overloaded function name is ignored (5.1). ] |
| 12440 | // C++ [over.over]p1: |
| 12441 | // [...] The overloaded function name can be preceded by the & |
| 12442 | // operator. |
| 12443 | |
| 12444 | // If we didn't actually find any template-ids, we're done. |
| 12445 | if (!ovl->hasExplicitTemplateArgs()) |
| 12446 | return nullptr; |
| 12447 | |
| 12448 | TemplateArgumentListInfo ExplicitTemplateArgs; |
| 12449 | ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); |
| 12450 | TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); |
| 12451 | |
| 12452 | // Look through all of the overloaded functions, searching for one |
| 12453 | // whose type matches exactly. |
| 12454 | FunctionDecl *Matched = nullptr; |
| 12455 | for (UnresolvedSetIterator I = ovl->decls_begin(), |
| 12456 | E = ovl->decls_end(); I != E; ++I) { |
| 12457 | // C++0x [temp.arg.explicit]p3: |
| 12458 | // [...] In contexts where deduction is done and fails, or in contexts |
| 12459 | // where deduction is not done, if a template argument list is |
| 12460 | // specified and it, along with any default template arguments, |
| 12461 | // identifies a single function template specialization, then the |
| 12462 | // template-id is an lvalue for the function template specialization. |
| 12463 | FunctionTemplateDecl *FunctionTemplate |
| 12464 | = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); |
| 12465 | |
| 12466 | // C++ [over.over]p2: |
| 12467 | // If the name is a function template, template argument deduction is |
| 12468 | // done (14.8.2.2), and if the argument deduction succeeds, the |
| 12469 | // resulting template argument list is used to generate a single |
| 12470 | // function template specialization, which is added to the set of |
| 12471 | // overloaded functions considered. |
| 12472 | FunctionDecl *Specialization = nullptr; |
| 12473 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
| 12474 | if (TemplateDeductionResult Result |
| 12475 | = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, |
| 12476 | Specialization, Info, |
| 12477 | /*IsAddressOfFunction*/true)) { |
| 12478 | // Make a note of the failed deduction for diagnostics. |
| 12479 | // TODO: Actually use the failed-deduction info? |
| 12480 | FailedCandidates.addCandidate() |
| 12481 | .set(I.getPair(), FunctionTemplate->getTemplatedDecl(), |
| 12482 | MakeDeductionFailureInfo(Context, Result, Info)); |
| 12483 | continue; |
| 12484 | } |
| 12485 | |
| 12486 | assert(Specialization && "no specialization and no error?")((void)0); |
| 12487 | |
| 12488 | // Multiple matches; we can't resolve to a single declaration. |
| 12489 | if (Matched) { |
| 12490 | if (Complain) { |
| 12491 | Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) |
| 12492 | << ovl->getName(); |
| 12493 | NoteAllOverloadCandidates(ovl); |
| 12494 | } |
| 12495 | return nullptr; |
| 12496 | } |
| 12497 | |
| 12498 | Matched = Specialization; |
| 12499 | if (FoundResult) *FoundResult = I.getPair(); |
| 12500 | } |
| 12501 | |
| 12502 | if (Matched && |
| 12503 | completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) |
| 12504 | return nullptr; |
| 12505 | |
| 12506 | return Matched; |
| 12507 | } |
| 12508 | |
| 12509 | // Resolve and fix an overloaded expression that can be resolved |
| 12510 | // because it identifies a single function template specialization. |
| 12511 | // |
| 12512 | // Last three arguments should only be supplied if Complain = true |
| 12513 | // |
| 12514 | // Return true if it was logically possible to so resolve the |
| 12515 | // expression, regardless of whether or not it succeeded. Always |
| 12516 | // returns true if 'complain' is set. |
| 12517 | bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( |
| 12518 | ExprResult &SrcExpr, bool doFunctionPointerConverion, |
| 12519 | bool complain, SourceRange OpRangeForComplaining, |
| 12520 | QualType DestTypeForComplaining, |
| 12521 | unsigned DiagIDForComplaining) { |
| 12522 | assert(SrcExpr.get()->getType() == Context.OverloadTy)((void)0); |
| 12523 | |
| 12524 | OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); |
| 12525 | |
| 12526 | DeclAccessPair found; |
| 12527 | ExprResult SingleFunctionExpression; |
| 12528 | if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( |
| 12529 | ovl.Expression, /*complain*/ false, &found)) { |
| 12530 | if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { |
| 12531 | SrcExpr = ExprError(); |
| 12532 | return true; |
| 12533 | } |
| 12534 | |
| 12535 | // It is only correct to resolve to an instance method if we're |
| 12536 | // resolving a form that's permitted to be a pointer to member. |
| 12537 | // Otherwise we'll end up making a bound member expression, which |
| 12538 | // is illegal in all the contexts we resolve like this. |
| 12539 | if (!ovl.HasFormOfMemberPointer && |
| 12540 | isa<CXXMethodDecl>(fn) && |
| 12541 | cast<CXXMethodDecl>(fn)->isInstance()) { |
| 12542 | if (!complain) return false; |
| 12543 | |
| 12544 | Diag(ovl.Expression->getExprLoc(), |
| 12545 | diag::err_bound_member_function) |
| 12546 | << 0 << ovl.Expression->getSourceRange(); |
| 12547 | |
| 12548 | // TODO: I believe we only end up here if there's a mix of |
| 12549 | // static and non-static candidates (otherwise the expression |
| 12550 | // would have 'bound member' type, not 'overload' type). |
| 12551 | // Ideally we would note which candidate was chosen and why |
| 12552 | // the static candidates were rejected. |
| 12553 | SrcExpr = ExprError(); |
| 12554 | return true; |
| 12555 | } |
| 12556 | |
| 12557 | // Fix the expression to refer to 'fn'. |
| 12558 | SingleFunctionExpression = |
| 12559 | FixOverloadedFunctionReference(SrcExpr.get(), found, fn); |
| 12560 | |
| 12561 | // If desired, do function-to-pointer decay. |
| 12562 | if (doFunctionPointerConverion) { |
| 12563 | SingleFunctionExpression = |
| 12564 | DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); |
| 12565 | if (SingleFunctionExpression.isInvalid()) { |
| 12566 | SrcExpr = ExprError(); |
| 12567 | return true; |
| 12568 | } |
| 12569 | } |
| 12570 | } |
| 12571 | |
| 12572 | if (!SingleFunctionExpression.isUsable()) { |
| 12573 | if (complain) { |
| 12574 | Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) |
| 12575 | << ovl.Expression->getName() |
| 12576 | << DestTypeForComplaining |
| 12577 | << OpRangeForComplaining |
| 12578 | << ovl.Expression->getQualifierLoc().getSourceRange(); |
| 12579 | NoteAllOverloadCandidates(SrcExpr.get()); |
| 12580 | |
| 12581 | SrcExpr = ExprError(); |
| 12582 | return true; |
| 12583 | } |
| 12584 | |
| 12585 | return false; |
| 12586 | } |
| 12587 | |
| 12588 | SrcExpr = SingleFunctionExpression; |
| 12589 | return true; |
| 12590 | } |
| 12591 | |
| 12592 | /// Add a single candidate to the overload set. |
| 12593 | static void AddOverloadedCallCandidate(Sema &S, |
| 12594 | DeclAccessPair FoundDecl, |
| 12595 | TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 12596 | ArrayRef<Expr *> Args, |
| 12597 | OverloadCandidateSet &CandidateSet, |
| 12598 | bool PartialOverloading, |
| 12599 | bool KnownValid) { |
| 12600 | NamedDecl *Callee = FoundDecl.getDecl(); |
| 12601 | if (isa<UsingShadowDecl>(Callee)) |
| 12602 | Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); |
| 12603 | |
| 12604 | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { |
| 12605 | if (ExplicitTemplateArgs) { |
| 12606 | assert(!KnownValid && "Explicit template arguments?")((void)0); |
| 12607 | return; |
| 12608 | } |
| 12609 | // Prevent ill-formed function decls to be added as overload candidates. |
| 12610 | if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) |
| 12611 | return; |
| 12612 | |
| 12613 | S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, |
| 12614 | /*SuppressUserConversions=*/false, |
| 12615 | PartialOverloading); |
| 12616 | return; |
| 12617 | } |
| 12618 | |
| 12619 | if (FunctionTemplateDecl *FuncTemplate |
| 12620 | = dyn_cast<FunctionTemplateDecl>(Callee)) { |
| 12621 | S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, |
| 12622 | ExplicitTemplateArgs, Args, CandidateSet, |
| 12623 | /*SuppressUserConversions=*/false, |
| 12624 | PartialOverloading); |
| 12625 | return; |
| 12626 | } |
| 12627 | |
| 12628 | assert(!KnownValid && "unhandled case in overloaded call candidate")((void)0); |
| 12629 | } |
| 12630 | |
| 12631 | /// Add the overload candidates named by callee and/or found by argument |
| 12632 | /// dependent lookup to the given overload set. |
| 12633 | void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, |
| 12634 | ArrayRef<Expr *> Args, |
| 12635 | OverloadCandidateSet &CandidateSet, |
| 12636 | bool PartialOverloading) { |
| 12637 | |
| 12638 | #ifndef NDEBUG1 |
| 12639 | // Verify that ArgumentDependentLookup is consistent with the rules |
| 12640 | // in C++0x [basic.lookup.argdep]p3: |
| 12641 | // |
| 12642 | // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| 12643 | // and let Y be the lookup set produced by argument dependent |
| 12644 | // lookup (defined as follows). If X contains |
| 12645 | // |
| 12646 | // -- a declaration of a class member, or |
| 12647 | // |
| 12648 | // -- a block-scope function declaration that is not a |
| 12649 | // using-declaration, or |
| 12650 | // |
| 12651 | // -- a declaration that is neither a function or a function |
| 12652 | // template |
| 12653 | // |
| 12654 | // then Y is empty. |
| 12655 | |
| 12656 | if (ULE->requiresADL()) { |
| 12657 | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| 12658 | E = ULE->decls_end(); I != E; ++I) { |
| 12659 | assert(!(*I)->getDeclContext()->isRecord())((void)0); |
| 12660 | assert(isa<UsingShadowDecl>(*I) ||((void)0) |
| 12661 | !(*I)->getDeclContext()->isFunctionOrMethod())((void)0); |
| 12662 | assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate())((void)0); |
| 12663 | } |
| 12664 | } |
| 12665 | #endif |
| 12666 | |
| 12667 | // It would be nice to avoid this copy. |
| 12668 | TemplateArgumentListInfo TABuffer; |
| 12669 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; |
| 12670 | if (ULE->hasExplicitTemplateArgs()) { |
| 12671 | ULE->copyTemplateArgumentsInto(TABuffer); |
| 12672 | ExplicitTemplateArgs = &TABuffer; |
| 12673 | } |
| 12674 | |
| 12675 | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| 12676 | E = ULE->decls_end(); I != E; ++I) |
| 12677 | AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, |
| 12678 | CandidateSet, PartialOverloading, |
| 12679 | /*KnownValid*/ true); |
| 12680 | |
| 12681 | if (ULE->requiresADL()) |
| 12682 | AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), |
| 12683 | Args, ExplicitTemplateArgs, |
| 12684 | CandidateSet, PartialOverloading); |
| 12685 | } |
| 12686 | |
| 12687 | /// Add the call candidates from the given set of lookup results to the given |
| 12688 | /// overload set. Non-function lookup results are ignored. |
| 12689 | void Sema::AddOverloadedCallCandidates( |
| 12690 | LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 12691 | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { |
| 12692 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
| 12693 | AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, |
| 12694 | CandidateSet, false, /*KnownValid*/ false); |
| 12695 | } |
| 12696 | |
| 12697 | /// Determine whether a declaration with the specified name could be moved into |
| 12698 | /// a different namespace. |
| 12699 | static bool canBeDeclaredInNamespace(const DeclarationName &Name) { |
| 12700 | switch (Name.getCXXOverloadedOperator()) { |
| 12701 | case OO_New: case OO_Array_New: |
| 12702 | case OO_Delete: case OO_Array_Delete: |
| 12703 | return false; |
| 12704 | |
| 12705 | default: |
| 12706 | return true; |
| 12707 | } |
| 12708 | } |
| 12709 | |
| 12710 | /// Attempt to recover from an ill-formed use of a non-dependent name in a |
| 12711 | /// template, where the non-dependent name was declared after the template |
| 12712 | /// was defined. This is common in code written for a compilers which do not |
| 12713 | /// correctly implement two-stage name lookup. |
| 12714 | /// |
| 12715 | /// Returns true if a viable candidate was found and a diagnostic was issued. |
| 12716 | static bool DiagnoseTwoPhaseLookup( |
| 12717 | Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, |
| 12718 | LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, |
| 12719 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, |
| 12720 | CXXRecordDecl **FoundInClass = nullptr) { |
| 12721 | if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) |
| 12722 | return false; |
| 12723 | |
| 12724 | for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { |
| 12725 | if (DC->isTransparentContext()) |
| 12726 | continue; |
| 12727 | |
| 12728 | SemaRef.LookupQualifiedName(R, DC); |
| 12729 | |
| 12730 | if (!R.empty()) { |
| 12731 | R.suppressDiagnostics(); |
| 12732 | |
| 12733 | OverloadCandidateSet Candidates(FnLoc, CSK); |
| 12734 | SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, |
| 12735 | Candidates); |
| 12736 | |
| 12737 | OverloadCandidateSet::iterator Best; |
| 12738 | OverloadingResult OR = |
| 12739 | Candidates.BestViableFunction(SemaRef, FnLoc, Best); |
| 12740 | |
| 12741 | if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) { |
| 12742 | // We either found non-function declarations or a best viable function |
| 12743 | // at class scope. A class-scope lookup result disables ADL. Don't |
| 12744 | // look past this, but let the caller know that we found something that |
| 12745 | // either is, or might be, usable in this class. |
| 12746 | if (FoundInClass) { |
| 12747 | *FoundInClass = RD; |
| 12748 | if (OR == OR_Success) { |
| 12749 | R.clear(); |
| 12750 | R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); |
| 12751 | R.resolveKind(); |
| 12752 | } |
| 12753 | } |
| 12754 | return false; |
| 12755 | } |
| 12756 | |
| 12757 | if (OR != OR_Success) { |
| 12758 | // There wasn't a unique best function or function template. |
| 12759 | return false; |
| 12760 | } |
| 12761 | |
| 12762 | // Find the namespaces where ADL would have looked, and suggest |
| 12763 | // declaring the function there instead. |
| 12764 | Sema::AssociatedNamespaceSet AssociatedNamespaces; |
| 12765 | Sema::AssociatedClassSet AssociatedClasses; |
| 12766 | SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, |
| 12767 | AssociatedNamespaces, |
| 12768 | AssociatedClasses); |
| 12769 | Sema::AssociatedNamespaceSet SuggestedNamespaces; |
| 12770 | if (canBeDeclaredInNamespace(R.getLookupName())) { |
| 12771 | DeclContext *Std = SemaRef.getStdNamespace(); |
| 12772 | for (Sema::AssociatedNamespaceSet::iterator |
| 12773 | it = AssociatedNamespaces.begin(), |
| 12774 | end = AssociatedNamespaces.end(); it != end; ++it) { |
| 12775 | // Never suggest declaring a function within namespace 'std'. |
| 12776 | if (Std && Std->Encloses(*it)) |
| 12777 | continue; |
| 12778 | |
| 12779 | // Never suggest declaring a function within a namespace with a |
| 12780 | // reserved name, like __gnu_cxx. |
| 12781 | NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); |
| 12782 | if (NS && |
| 12783 | NS->getQualifiedNameAsString().find("__") != std::string::npos) |
| 12784 | continue; |
| 12785 | |
| 12786 | SuggestedNamespaces.insert(*it); |
| 12787 | } |
| 12788 | } |
| 12789 | |
| 12790 | SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) |
| 12791 | << R.getLookupName(); |
| 12792 | if (SuggestedNamespaces.empty()) { |
| 12793 | SemaRef.Diag(Best->Function->getLocation(), |
| 12794 | diag::note_not_found_by_two_phase_lookup) |
| 12795 | << R.getLookupName() << 0; |
| 12796 | } else if (SuggestedNamespaces.size() == 1) { |
| 12797 | SemaRef.Diag(Best->Function->getLocation(), |
| 12798 | diag::note_not_found_by_two_phase_lookup) |
| 12799 | << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); |
| 12800 | } else { |
| 12801 | // FIXME: It would be useful to list the associated namespaces here, |
| 12802 | // but the diagnostics infrastructure doesn't provide a way to produce |
| 12803 | // a localized representation of a list of items. |
| 12804 | SemaRef.Diag(Best->Function->getLocation(), |
| 12805 | diag::note_not_found_by_two_phase_lookup) |
| 12806 | << R.getLookupName() << 2; |
| 12807 | } |
| 12808 | |
| 12809 | // Try to recover by calling this function. |
| 12810 | return true; |
| 12811 | } |
| 12812 | |
| 12813 | R.clear(); |
| 12814 | } |
| 12815 | |
| 12816 | return false; |
| 12817 | } |
| 12818 | |
| 12819 | /// Attempt to recover from ill-formed use of a non-dependent operator in a |
| 12820 | /// template, where the non-dependent operator was declared after the template |
| 12821 | /// was defined. |
| 12822 | /// |
| 12823 | /// Returns true if a viable candidate was found and a diagnostic was issued. |
| 12824 | static bool |
| 12825 | DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, |
| 12826 | SourceLocation OpLoc, |
| 12827 | ArrayRef<Expr *> Args) { |
| 12828 | DeclarationName OpName = |
| 12829 | SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); |
| 12830 | LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); |
| 12831 | return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, |
| 12832 | OverloadCandidateSet::CSK_Operator, |
| 12833 | /*ExplicitTemplateArgs=*/nullptr, Args); |
| 12834 | } |
| 12835 | |
| 12836 | namespace { |
| 12837 | class BuildRecoveryCallExprRAII { |
| 12838 | Sema &SemaRef; |
| 12839 | public: |
| 12840 | BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { |
| 12841 | assert(SemaRef.IsBuildingRecoveryCallExpr == false)((void)0); |
| 12842 | SemaRef.IsBuildingRecoveryCallExpr = true; |
| 12843 | } |
| 12844 | |
| 12845 | ~BuildRecoveryCallExprRAII() { |
| 12846 | SemaRef.IsBuildingRecoveryCallExpr = false; |
| 12847 | } |
| 12848 | }; |
| 12849 | |
| 12850 | } |
| 12851 | |
| 12852 | /// Attempts to recover from a call where no functions were found. |
| 12853 | /// |
| 12854 | /// This function will do one of three things: |
| 12855 | /// * Diagnose, recover, and return a recovery expression. |
| 12856 | /// * Diagnose, fail to recover, and return ExprError(). |
| 12857 | /// * Do not diagnose, do not recover, and return ExprResult(). The caller is |
| 12858 | /// expected to diagnose as appropriate. |
| 12859 | static ExprResult |
| 12860 | BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, |
| 12861 | UnresolvedLookupExpr *ULE, |
| 12862 | SourceLocation LParenLoc, |
| 12863 | MutableArrayRef<Expr *> Args, |
| 12864 | SourceLocation RParenLoc, |
| 12865 | bool EmptyLookup, bool AllowTypoCorrection) { |
| 12866 | // Do not try to recover if it is already building a recovery call. |
| 12867 | // This stops infinite loops for template instantiations like |
| 12868 | // |
| 12869 | // template <typename T> auto foo(T t) -> decltype(foo(t)) {} |
| 12870 | // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} |
| 12871 | if (SemaRef.IsBuildingRecoveryCallExpr) |
| 12872 | return ExprResult(); |
| 12873 | BuildRecoveryCallExprRAII RCE(SemaRef); |
| 12874 | |
| 12875 | CXXScopeSpec SS; |
| 12876 | SS.Adopt(ULE->getQualifierLoc()); |
| 12877 | SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); |
| 12878 | |
| 12879 | TemplateArgumentListInfo TABuffer; |
| 12880 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; |
| 12881 | if (ULE->hasExplicitTemplateArgs()) { |
| 12882 | ULE->copyTemplateArgumentsInto(TABuffer); |
| 12883 | ExplicitTemplateArgs = &TABuffer; |
| 12884 | } |
| 12885 | |
| 12886 | LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), |
| 12887 | Sema::LookupOrdinaryName); |
| 12888 | CXXRecordDecl *FoundInClass = nullptr; |
| 12889 | if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, |
| 12890 | OverloadCandidateSet::CSK_Normal, |
| 12891 | ExplicitTemplateArgs, Args, &FoundInClass)) { |
| 12892 | // OK, diagnosed a two-phase lookup issue. |
| 12893 | } else if (EmptyLookup) { |
| 12894 | // Try to recover from an empty lookup with typo correction. |
| 12895 | R.clear(); |
| 12896 | NoTypoCorrectionCCC NoTypoValidator{}; |
| 12897 | FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), |
| 12898 | ExplicitTemplateArgs != nullptr, |
| 12899 | dyn_cast<MemberExpr>(Fn)); |
| 12900 | CorrectionCandidateCallback &Validator = |
| 12901 | AllowTypoCorrection |
| 12902 | ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) |
| 12903 | : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); |
| 12904 | if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, |
| 12905 | Args)) |
| 12906 | return ExprError(); |
| 12907 | } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { |
| 12908 | // We found a usable declaration of the name in a dependent base of some |
| 12909 | // enclosing class. |
| 12910 | // FIXME: We should also explain why the candidates found by name lookup |
| 12911 | // were not viable. |
| 12912 | if (SemaRef.DiagnoseDependentMemberLookup(R)) |
| 12913 | return ExprError(); |
| 12914 | } else { |
| 12915 | // We had viable candidates and couldn't recover; let the caller diagnose |
| 12916 | // this. |
| 12917 | return ExprResult(); |
| 12918 | } |
| 12919 | |
| 12920 | // If we get here, we should have issued a diagnostic and formed a recovery |
| 12921 | // lookup result. |
| 12922 | assert(!R.empty() && "lookup results empty despite recovery")((void)0); |
| 12923 | |
| 12924 | // If recovery created an ambiguity, just bail out. |
| 12925 | if (R.isAmbiguous()) { |
| 12926 | R.suppressDiagnostics(); |
| 12927 | return ExprError(); |
| 12928 | } |
| 12929 | |
| 12930 | // Build an implicit member call if appropriate. Just drop the |
| 12931 | // casts and such from the call, we don't really care. |
| 12932 | ExprResult NewFn = ExprError(); |
| 12933 | if ((*R.begin())->isCXXClassMember()) |
| 12934 | NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, |
| 12935 | ExplicitTemplateArgs, S); |
| 12936 | else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) |
| 12937 | NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, |
| 12938 | ExplicitTemplateArgs); |
| 12939 | else |
| 12940 | NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); |
| 12941 | |
| 12942 | if (NewFn.isInvalid()) |
| 12943 | return ExprError(); |
| 12944 | |
| 12945 | // This shouldn't cause an infinite loop because we're giving it |
| 12946 | // an expression with viable lookup results, which should never |
| 12947 | // end up here. |
| 12948 | return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, |
| 12949 | MultiExprArg(Args.data(), Args.size()), |
| 12950 | RParenLoc); |
| 12951 | } |
| 12952 | |
| 12953 | /// Constructs and populates an OverloadedCandidateSet from |
| 12954 | /// the given function. |
| 12955 | /// \returns true when an the ExprResult output parameter has been set. |
| 12956 | bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, |
| 12957 | UnresolvedLookupExpr *ULE, |
| 12958 | MultiExprArg Args, |
| 12959 | SourceLocation RParenLoc, |
| 12960 | OverloadCandidateSet *CandidateSet, |
| 12961 | ExprResult *Result) { |
| 12962 | #ifndef NDEBUG1 |
| 12963 | if (ULE->requiresADL()) { |
| 12964 | // To do ADL, we must have found an unqualified name. |
| 12965 | assert(!ULE->getQualifier() && "qualified name with ADL")((void)0); |
| 12966 | |
| 12967 | // We don't perform ADL for implicit declarations of builtins. |
| 12968 | // Verify that this was correctly set up. |
| 12969 | FunctionDecl *F; |
| 12970 | if (ULE->decls_begin() != ULE->decls_end() && |
| 12971 | ULE->decls_begin() + 1 == ULE->decls_end() && |
| 12972 | (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && |
| 12973 | F->getBuiltinID() && F->isImplicit()) |
| 12974 | llvm_unreachable("performing ADL for builtin")__builtin_unreachable(); |
| 12975 | |
| 12976 | // We don't perform ADL in C. |
| 12977 | assert(getLangOpts().CPlusPlus && "ADL enabled in C")((void)0); |
| 12978 | } |
| 12979 | #endif |
| 12980 | |
| 12981 | UnbridgedCastsSet UnbridgedCasts; |
| 12982 | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { |
| 12983 | *Result = ExprError(); |
| 12984 | return true; |
| 12985 | } |
| 12986 | |
| 12987 | // Add the functions denoted by the callee to the set of candidate |
| 12988 | // functions, including those from argument-dependent lookup. |
| 12989 | AddOverloadedCallCandidates(ULE, Args, *CandidateSet); |
| 12990 | |
| 12991 | if (getLangOpts().MSVCCompat && |
| 12992 | CurContext->isDependentContext() && !isSFINAEContext() && |
| 12993 | (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { |
| 12994 | |
| 12995 | OverloadCandidateSet::iterator Best; |
| 12996 | if (CandidateSet->empty() || |
| 12997 | CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == |
| 12998 | OR_No_Viable_Function) { |
| 12999 | // In Microsoft mode, if we are inside a template class member function |
| 13000 | // then create a type dependent CallExpr. The goal is to postpone name |
| 13001 | // lookup to instantiation time to be able to search into type dependent |
| 13002 | // base classes. |
| 13003 | CallExpr *CE = |
| 13004 | CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, |
| 13005 | RParenLoc, CurFPFeatureOverrides()); |
| 13006 | CE->markDependentForPostponedNameLookup(); |
| 13007 | *Result = CE; |
| 13008 | return true; |
| 13009 | } |
| 13010 | } |
| 13011 | |
| 13012 | if (CandidateSet->empty()) |
| 13013 | return false; |
| 13014 | |
| 13015 | UnbridgedCasts.restore(); |
| 13016 | return false; |
| 13017 | } |
| 13018 | |
| 13019 | // Guess at what the return type for an unresolvable overload should be. |
| 13020 | static QualType chooseRecoveryType(OverloadCandidateSet &CS, |
| 13021 | OverloadCandidateSet::iterator *Best) { |
| 13022 | llvm::Optional<QualType> Result; |
| 13023 | // Adjust Type after seeing a candidate. |
| 13024 | auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { |
| 13025 | if (!Candidate.Function) |
| 13026 | return; |
| 13027 | if (Candidate.Function->isInvalidDecl()) |
| 13028 | return; |
| 13029 | QualType T = Candidate.Function->getReturnType(); |
| 13030 | if (T.isNull()) |
| 13031 | return; |
| 13032 | if (!Result) |
| 13033 | Result = T; |
| 13034 | else if (Result != T) |
| 13035 | Result = QualType(); |
| 13036 | }; |
| 13037 | |
| 13038 | // Look for an unambiguous type from a progressively larger subset. |
| 13039 | // e.g. if types disagree, but all *viable* overloads return int, choose int. |
| 13040 | // |
| 13041 | // First, consider only the best candidate. |
| 13042 | if (Best && *Best != CS.end()) |
| 13043 | ConsiderCandidate(**Best); |
| 13044 | // Next, consider only viable candidates. |
| 13045 | if (!Result) |
| 13046 | for (const auto &C : CS) |
| 13047 | if (C.Viable) |
| 13048 | ConsiderCandidate(C); |
| 13049 | // Finally, consider all candidates. |
| 13050 | if (!Result) |
| 13051 | for (const auto &C : CS) |
| 13052 | ConsiderCandidate(C); |
| 13053 | |
| 13054 | if (!Result) |
| 13055 | return QualType(); |
| 13056 | auto Value = Result.getValue(); |
| 13057 | if (Value.isNull() || Value->isUndeducedType()) |
| 13058 | return QualType(); |
| 13059 | return Value; |
| 13060 | } |
| 13061 | |
| 13062 | /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns |
| 13063 | /// the completed call expression. If overload resolution fails, emits |
| 13064 | /// diagnostics and returns ExprError() |
| 13065 | static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, |
| 13066 | UnresolvedLookupExpr *ULE, |
| 13067 | SourceLocation LParenLoc, |
| 13068 | MultiExprArg Args, |
| 13069 | SourceLocation RParenLoc, |
| 13070 | Expr *ExecConfig, |
| 13071 | OverloadCandidateSet *CandidateSet, |
| 13072 | OverloadCandidateSet::iterator *Best, |
| 13073 | OverloadingResult OverloadResult, |
| 13074 | bool AllowTypoCorrection) { |
| 13075 | switch (OverloadResult) { |
| 13076 | case OR_Success: { |
| 13077 | FunctionDecl *FDecl = (*Best)->Function; |
| 13078 | SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); |
| 13079 | if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) |
| 13080 | return ExprError(); |
| 13081 | Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); |
| 13082 | return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, |
| 13083 | ExecConfig, /*IsExecConfig=*/false, |
| 13084 | (*Best)->IsADLCandidate); |
| 13085 | } |
| 13086 | |
| 13087 | case OR_No_Viable_Function: { |
| 13088 | // Try to recover by looking for viable functions which the user might |
| 13089 | // have meant to call. |
| 13090 | ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, |
| 13091 | Args, RParenLoc, |
| 13092 | CandidateSet->empty(), |
| 13093 | AllowTypoCorrection); |
| 13094 | if (Recovery.isInvalid() || Recovery.isUsable()) |
| 13095 | return Recovery; |
| 13096 | |
| 13097 | // If the user passes in a function that we can't take the address of, we |
| 13098 | // generally end up emitting really bad error messages. Here, we attempt to |
| 13099 | // emit better ones. |
| 13100 | for (const Expr *Arg : Args) { |
| 13101 | if (!Arg->getType()->isFunctionType()) |
| 13102 | continue; |
| 13103 | if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { |
| 13104 | auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| 13105 | if (FD && |
| 13106 | !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, |
| 13107 | Arg->getExprLoc())) |
| 13108 | return ExprError(); |
| 13109 | } |
| 13110 | } |
| 13111 | |
| 13112 | CandidateSet->NoteCandidates( |
| 13113 | PartialDiagnosticAt( |
| 13114 | Fn->getBeginLoc(), |
| 13115 | SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) |
| 13116 | << ULE->getName() << Fn->getSourceRange()), |
| 13117 | SemaRef, OCD_AllCandidates, Args); |
| 13118 | break; |
| 13119 | } |
| 13120 | |
| 13121 | case OR_Ambiguous: |
| 13122 | CandidateSet->NoteCandidates( |
| 13123 | PartialDiagnosticAt(Fn->getBeginLoc(), |
| 13124 | SemaRef.PDiag(diag::err_ovl_ambiguous_call) |
| 13125 | << ULE->getName() << Fn->getSourceRange()), |
| 13126 | SemaRef, OCD_AmbiguousCandidates, Args); |
| 13127 | break; |
| 13128 | |
| 13129 | case OR_Deleted: { |
| 13130 | CandidateSet->NoteCandidates( |
| 13131 | PartialDiagnosticAt(Fn->getBeginLoc(), |
| 13132 | SemaRef.PDiag(diag::err_ovl_deleted_call) |
| 13133 | << ULE->getName() << Fn->getSourceRange()), |
| 13134 | SemaRef, OCD_AllCandidates, Args); |
| 13135 | |
| 13136 | // We emitted an error for the unavailable/deleted function call but keep |
| 13137 | // the call in the AST. |
| 13138 | FunctionDecl *FDecl = (*Best)->Function; |
| 13139 | Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); |
| 13140 | return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, |
| 13141 | ExecConfig, /*IsExecConfig=*/false, |
| 13142 | (*Best)->IsADLCandidate); |
| 13143 | } |
| 13144 | } |
| 13145 | |
| 13146 | // Overload resolution failed, try to recover. |
| 13147 | SmallVector<Expr *, 8> SubExprs = {Fn}; |
| 13148 | SubExprs.append(Args.begin(), Args.end()); |
| 13149 | return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, |
| 13150 | chooseRecoveryType(*CandidateSet, Best)); |
| 13151 | } |
| 13152 | |
| 13153 | static void markUnaddressableCandidatesUnviable(Sema &S, |
| 13154 | OverloadCandidateSet &CS) { |
| 13155 | for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { |
| 13156 | if (I->Viable && |
| 13157 | !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { |
| 13158 | I->Viable = false; |
| 13159 | I->FailureKind = ovl_fail_addr_not_available; |
| 13160 | } |
| 13161 | } |
| 13162 | } |
| 13163 | |
| 13164 | /// BuildOverloadedCallExpr - Given the call expression that calls Fn |
| 13165 | /// (which eventually refers to the declaration Func) and the call |
| 13166 | /// arguments Args/NumArgs, attempt to resolve the function call down |
| 13167 | /// to a specific function. If overload resolution succeeds, returns |
| 13168 | /// the call expression produced by overload resolution. |
| 13169 | /// Otherwise, emits diagnostics and returns ExprError. |
| 13170 | ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, |
| 13171 | UnresolvedLookupExpr *ULE, |
| 13172 | SourceLocation LParenLoc, |
| 13173 | MultiExprArg Args, |
| 13174 | SourceLocation RParenLoc, |
| 13175 | Expr *ExecConfig, |
| 13176 | bool AllowTypoCorrection, |
| 13177 | bool CalleesAddressIsTaken) { |
| 13178 | OverloadCandidateSet CandidateSet(Fn->getExprLoc(), |
| 13179 | OverloadCandidateSet::CSK_Normal); |
| 13180 | ExprResult result; |
| 13181 | |
| 13182 | if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, |
| 13183 | &result)) |
| 13184 | return result; |
| 13185 | |
| 13186 | // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that |
| 13187 | // functions that aren't addressible are considered unviable. |
| 13188 | if (CalleesAddressIsTaken) |
| 13189 | markUnaddressableCandidatesUnviable(*this, CandidateSet); |
| 13190 | |
| 13191 | OverloadCandidateSet::iterator Best; |
| 13192 | OverloadingResult OverloadResult = |
| 13193 | CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); |
| 13194 | |
| 13195 | return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, |
| 13196 | ExecConfig, &CandidateSet, &Best, |
| 13197 | OverloadResult, AllowTypoCorrection); |
| 13198 | } |
| 13199 | |
| 13200 | static bool IsOverloaded(const UnresolvedSetImpl &Functions) { |
| 13201 | return Functions.size() > 1 || |
| 13202 | (Functions.size() == 1 && |
| 13203 | isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl())); |
| 13204 | } |
| 13205 | |
| 13206 | ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, |
| 13207 | NestedNameSpecifierLoc NNSLoc, |
| 13208 | DeclarationNameInfo DNI, |
| 13209 | const UnresolvedSetImpl &Fns, |
| 13210 | bool PerformADL) { |
| 13211 | return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, |
| 13212 | PerformADL, IsOverloaded(Fns), |
| 13213 | Fns.begin(), Fns.end()); |
| 13214 | } |
| 13215 | |
| 13216 | /// Create a unary operation that may resolve to an overloaded |
| 13217 | /// operator. |
| 13218 | /// |
| 13219 | /// \param OpLoc The location of the operator itself (e.g., '*'). |
| 13220 | /// |
| 13221 | /// \param Opc The UnaryOperatorKind that describes this operator. |
| 13222 | /// |
| 13223 | /// \param Fns The set of non-member functions that will be |
| 13224 | /// considered by overload resolution. The caller needs to build this |
| 13225 | /// set based on the context using, e.g., |
| 13226 | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This |
| 13227 | /// set should not contain any member functions; those will be added |
| 13228 | /// by CreateOverloadedUnaryOp(). |
| 13229 | /// |
| 13230 | /// \param Input The input argument. |
| 13231 | ExprResult |
| 13232 | Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, |
| 13233 | const UnresolvedSetImpl &Fns, |
| 13234 | Expr *Input, bool PerformADL) { |
| 13235 | OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); |
| 13236 | assert(Op != OO_None && "Invalid opcode for overloaded unary operator")((void)0); |
| 13237 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 13238 | // TODO: provide better source location info. |
| 13239 | DeclarationNameInfo OpNameInfo(OpName, OpLoc); |
| 13240 | |
| 13241 | if (checkPlaceholderForOverload(*this, Input)) |
| 13242 | return ExprError(); |
| 13243 | |
| 13244 | Expr *Args[2] = { Input, nullptr }; |
| 13245 | unsigned NumArgs = 1; |
| 13246 | |
| 13247 | // For post-increment and post-decrement, add the implicit '0' as |
| 13248 | // the second argument, so that we know this is a post-increment or |
| 13249 | // post-decrement. |
| 13250 | if (Opc == UO_PostInc || Opc == UO_PostDec) { |
| 13251 | llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); |
| 13252 | Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, |
| 13253 | SourceLocation()); |
| 13254 | NumArgs = 2; |
| 13255 | } |
| 13256 | |
| 13257 | ArrayRef<Expr *> ArgsArray(Args, NumArgs); |
| 13258 | |
| 13259 | if (Input->isTypeDependent()) { |
| 13260 | if (Fns.empty()) |
| 13261 | return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, |
| 13262 | VK_PRValue, OK_Ordinary, OpLoc, false, |
| 13263 | CurFPFeatureOverrides()); |
| 13264 | |
| 13265 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators |
| 13266 | ExprResult Fn = CreateUnresolvedLookupExpr( |
| 13267 | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); |
| 13268 | if (Fn.isInvalid()) |
| 13269 | return ExprError(); |
| 13270 | return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, |
| 13271 | Context.DependentTy, VK_PRValue, OpLoc, |
| 13272 | CurFPFeatureOverrides()); |
| 13273 | } |
| 13274 | |
| 13275 | // Build an empty overload set. |
| 13276 | OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); |
| 13277 | |
| 13278 | // Add the candidates from the given function set. |
| 13279 | AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); |
| 13280 | |
| 13281 | // Add operator candidates that are member functions. |
| 13282 | AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); |
| 13283 | |
| 13284 | // Add candidates from ADL. |
| 13285 | if (PerformADL) { |
| 13286 | AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, |
| 13287 | /*ExplicitTemplateArgs*/nullptr, |
| 13288 | CandidateSet); |
| 13289 | } |
| 13290 | |
| 13291 | // Add builtin operator candidates. |
| 13292 | AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); |
| 13293 | |
| 13294 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 13295 | |
| 13296 | // Perform overload resolution. |
| 13297 | OverloadCandidateSet::iterator Best; |
| 13298 | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { |
| 13299 | case OR_Success: { |
| 13300 | // We found a built-in operator or an overloaded operator. |
| 13301 | FunctionDecl *FnDecl = Best->Function; |
| 13302 | |
| 13303 | if (FnDecl) { |
| 13304 | Expr *Base = nullptr; |
| 13305 | // We matched an overloaded operator. Build a call to that |
| 13306 | // operator. |
| 13307 | |
| 13308 | // Convert the arguments. |
| 13309 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| 13310 | CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); |
| 13311 | |
| 13312 | ExprResult InputRes = |
| 13313 | PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, |
| 13314 | Best->FoundDecl, Method); |
| 13315 | if (InputRes.isInvalid()) |
| 13316 | return ExprError(); |
| 13317 | Base = Input = InputRes.get(); |
| 13318 | } else { |
| 13319 | // Convert the arguments. |
| 13320 | ExprResult InputInit |
| 13321 | = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| 13322 | Context, |
| 13323 | FnDecl->getParamDecl(0)), |
| 13324 | SourceLocation(), |
| 13325 | Input); |
| 13326 | if (InputInit.isInvalid()) |
| 13327 | return ExprError(); |
| 13328 | Input = InputInit.get(); |
| 13329 | } |
| 13330 | |
| 13331 | // Build the actual expression node. |
| 13332 | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, |
| 13333 | Base, HadMultipleCandidates, |
| 13334 | OpLoc); |
| 13335 | if (FnExpr.isInvalid()) |
| 13336 | return ExprError(); |
| 13337 | |
| 13338 | // Determine the result type. |
| 13339 | QualType ResultTy = FnDecl->getReturnType(); |
| 13340 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| 13341 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 13342 | |
| 13343 | Args[0] = Input; |
| 13344 | CallExpr *TheCall = CXXOperatorCallExpr::Create( |
| 13345 | Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, |
| 13346 | CurFPFeatureOverrides(), Best->IsADLCandidate); |
| 13347 | |
| 13348 | if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) |
| 13349 | return ExprError(); |
| 13350 | |
| 13351 | if (CheckFunctionCall(FnDecl, TheCall, |
| 13352 | FnDecl->getType()->castAs<FunctionProtoType>())) |
| 13353 | return ExprError(); |
| 13354 | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); |
| 13355 | } else { |
| 13356 | // We matched a built-in operator. Convert the arguments, then |
| 13357 | // break out so that we will build the appropriate built-in |
| 13358 | // operator node. |
| 13359 | ExprResult InputRes = PerformImplicitConversion( |
| 13360 | Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, |
| 13361 | CCK_ForBuiltinOverloadedOp); |
| 13362 | if (InputRes.isInvalid()) |
| 13363 | return ExprError(); |
| 13364 | Input = InputRes.get(); |
| 13365 | break; |
| 13366 | } |
| 13367 | } |
| 13368 | |
| 13369 | case OR_No_Viable_Function: |
| 13370 | // This is an erroneous use of an operator which can be overloaded by |
| 13371 | // a non-member function. Check for non-member operators which were |
| 13372 | // defined too late to be candidates. |
| 13373 | if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) |
| 13374 | // FIXME: Recover by calling the found function. |
| 13375 | return ExprError(); |
| 13376 | |
| 13377 | // No viable function; fall through to handling this as a |
| 13378 | // built-in operator, which will produce an error message for us. |
| 13379 | break; |
| 13380 | |
| 13381 | case OR_Ambiguous: |
| 13382 | CandidateSet.NoteCandidates( |
| 13383 | PartialDiagnosticAt(OpLoc, |
| 13384 | PDiag(diag::err_ovl_ambiguous_oper_unary) |
| 13385 | << UnaryOperator::getOpcodeStr(Opc) |
| 13386 | << Input->getType() << Input->getSourceRange()), |
| 13387 | *this, OCD_AmbiguousCandidates, ArgsArray, |
| 13388 | UnaryOperator::getOpcodeStr(Opc), OpLoc); |
| 13389 | return ExprError(); |
| 13390 | |
| 13391 | case OR_Deleted: |
| 13392 | CandidateSet.NoteCandidates( |
| 13393 | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) |
| 13394 | << UnaryOperator::getOpcodeStr(Opc) |
| 13395 | << Input->getSourceRange()), |
| 13396 | *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc), |
| 13397 | OpLoc); |
| 13398 | return ExprError(); |
| 13399 | } |
| 13400 | |
| 13401 | // Either we found no viable overloaded operator or we matched a |
| 13402 | // built-in operator. In either case, fall through to trying to |
| 13403 | // build a built-in operation. |
| 13404 | return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| 13405 | } |
| 13406 | |
| 13407 | /// Perform lookup for an overloaded binary operator. |
| 13408 | void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, |
| 13409 | OverloadedOperatorKind Op, |
| 13410 | const UnresolvedSetImpl &Fns, |
| 13411 | ArrayRef<Expr *> Args, bool PerformADL) { |
| 13412 | SourceLocation OpLoc = CandidateSet.getLocation(); |
| 13413 | |
| 13414 | OverloadedOperatorKind ExtraOp = |
| 13415 | CandidateSet.getRewriteInfo().AllowRewrittenCandidates |
| 13416 | ? getRewrittenOverloadedOperator(Op) |
| 13417 | : OO_None; |
| 13418 | |
| 13419 | // Add the candidates from the given function set. This also adds the |
| 13420 | // rewritten candidates using these functions if necessary. |
| 13421 | AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); |
| 13422 | |
| 13423 | // Add operator candidates that are member functions. |
| 13424 | AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); |
| 13425 | if (CandidateSet.getRewriteInfo().shouldAddReversed(Op)) |
| 13426 | AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, |
| 13427 | OverloadCandidateParamOrder::Reversed); |
| 13428 | |
| 13429 | // In C++20, also add any rewritten member candidates. |
| 13430 | if (ExtraOp) { |
| 13431 | AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); |
| 13432 | if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp)) |
| 13433 | AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, |
| 13434 | CandidateSet, |
| 13435 | OverloadCandidateParamOrder::Reversed); |
| 13436 | } |
| 13437 | |
| 13438 | // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not |
| 13439 | // performed for an assignment operator (nor for operator[] nor operator->, |
| 13440 | // which don't get here). |
| 13441 | if (Op != OO_Equal && PerformADL) { |
| 13442 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 13443 | AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, |
| 13444 | /*ExplicitTemplateArgs*/ nullptr, |
| 13445 | CandidateSet); |
| 13446 | if (ExtraOp) { |
| 13447 | DeclarationName ExtraOpName = |
| 13448 | Context.DeclarationNames.getCXXOperatorName(ExtraOp); |
| 13449 | AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, |
| 13450 | /*ExplicitTemplateArgs*/ nullptr, |
| 13451 | CandidateSet); |
| 13452 | } |
| 13453 | } |
| 13454 | |
| 13455 | // Add builtin operator candidates. |
| 13456 | // |
| 13457 | // FIXME: We don't add any rewritten candidates here. This is strictly |
| 13458 | // incorrect; a builtin candidate could be hidden by a non-viable candidate, |
| 13459 | // resulting in our selecting a rewritten builtin candidate. For example: |
| 13460 | // |
| 13461 | // enum class E { e }; |
| 13462 | // bool operator!=(E, E) requires false; |
| 13463 | // bool k = E::e != E::e; |
| 13464 | // |
| 13465 | // ... should select the rewritten builtin candidate 'operator==(E, E)'. But |
| 13466 | // it seems unreasonable to consider rewritten builtin candidates. A core |
| 13467 | // issue has been filed proposing to removed this requirement. |
| 13468 | AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); |
| 13469 | } |
| 13470 | |
| 13471 | /// Create a binary operation that may resolve to an overloaded |
| 13472 | /// operator. |
| 13473 | /// |
| 13474 | /// \param OpLoc The location of the operator itself (e.g., '+'). |
| 13475 | /// |
| 13476 | /// \param Opc The BinaryOperatorKind that describes this operator. |
| 13477 | /// |
| 13478 | /// \param Fns The set of non-member functions that will be |
| 13479 | /// considered by overload resolution. The caller needs to build this |
| 13480 | /// set based on the context using, e.g., |
| 13481 | /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This |
| 13482 | /// set should not contain any member functions; those will be added |
| 13483 | /// by CreateOverloadedBinOp(). |
| 13484 | /// |
| 13485 | /// \param LHS Left-hand argument. |
| 13486 | /// \param RHS Right-hand argument. |
| 13487 | /// \param PerformADL Whether to consider operator candidates found by ADL. |
| 13488 | /// \param AllowRewrittenCandidates Whether to consider candidates found by |
| 13489 | /// C++20 operator rewrites. |
| 13490 | /// \param DefaultedFn If we are synthesizing a defaulted operator function, |
| 13491 | /// the function in question. Such a function is never a candidate in |
| 13492 | /// our overload resolution. This also enables synthesizing a three-way |
| 13493 | /// comparison from < and == as described in C++20 [class.spaceship]p1. |
| 13494 | ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, |
| 13495 | BinaryOperatorKind Opc, |
| 13496 | const UnresolvedSetImpl &Fns, Expr *LHS, |
| 13497 | Expr *RHS, bool PerformADL, |
| 13498 | bool AllowRewrittenCandidates, |
| 13499 | FunctionDecl *DefaultedFn) { |
| 13500 | Expr *Args[2] = { LHS, RHS }; |
| 13501 | LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple |
| 13502 | |
| 13503 | if (!getLangOpts().CPlusPlus20) |
| 13504 | AllowRewrittenCandidates = false; |
| 13505 | |
| 13506 | OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); |
| 13507 | |
| 13508 | // If either side is type-dependent, create an appropriate dependent |
| 13509 | // expression. |
| 13510 | if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { |
| 13511 | if (Fns.empty()) { |
| 13512 | // If there are no functions to store, just build a dependent |
| 13513 | // BinaryOperator or CompoundAssignment. |
| 13514 | if (BinaryOperator::isCompoundAssignmentOp(Opc)) |
| 13515 | return CompoundAssignOperator::Create( |
| 13516 | Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, |
| 13517 | OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, |
| 13518 | Context.DependentTy); |
| 13519 | return BinaryOperator::Create( |
| 13520 | Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue, |
| 13521 | OK_Ordinary, OpLoc, CurFPFeatureOverrides()); |
| 13522 | } |
| 13523 | |
| 13524 | // FIXME: save results of ADL from here? |
| 13525 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators |
| 13526 | // TODO: provide better source location info in DNLoc component. |
| 13527 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 13528 | DeclarationNameInfo OpNameInfo(OpName, OpLoc); |
| 13529 | ExprResult Fn = CreateUnresolvedLookupExpr( |
| 13530 | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); |
| 13531 | if (Fn.isInvalid()) |
| 13532 | return ExprError(); |
| 13533 | return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, |
| 13534 | Context.DependentTy, VK_PRValue, OpLoc, |
| 13535 | CurFPFeatureOverrides()); |
| 13536 | } |
| 13537 | |
| 13538 | // Always do placeholder-like conversions on the RHS. |
| 13539 | if (checkPlaceholderForOverload(*this, Args[1])) |
| 13540 | return ExprError(); |
| 13541 | |
| 13542 | // Do placeholder-like conversion on the LHS; note that we should |
| 13543 | // not get here with a PseudoObject LHS. |
| 13544 | assert(Args[0]->getObjectKind() != OK_ObjCProperty)((void)0); |
| 13545 | if (checkPlaceholderForOverload(*this, Args[0])) |
| 13546 | return ExprError(); |
| 13547 | |
| 13548 | // If this is the assignment operator, we only perform overload resolution |
| 13549 | // if the left-hand side is a class or enumeration type. This is actually |
| 13550 | // a hack. The standard requires that we do overload resolution between the |
| 13551 | // various built-in candidates, but as DR507 points out, this can lead to |
| 13552 | // problems. So we do it this way, which pretty much follows what GCC does. |
| 13553 | // Note that we go the traditional code path for compound assignment forms. |
| 13554 | if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) |
| 13555 | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| 13556 | |
| 13557 | // If this is the .* operator, which is not overloadable, just |
| 13558 | // create a built-in binary operator. |
| 13559 | if (Opc == BO_PtrMemD) |
| 13560 | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| 13561 | |
| 13562 | // Build the overload set. |
| 13563 | OverloadCandidateSet CandidateSet( |
| 13564 | OpLoc, OverloadCandidateSet::CSK_Operator, |
| 13565 | OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates)); |
| 13566 | if (DefaultedFn) |
| 13567 | CandidateSet.exclude(DefaultedFn); |
| 13568 | LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); |
| 13569 | |
| 13570 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 13571 | |
| 13572 | // Perform overload resolution. |
| 13573 | OverloadCandidateSet::iterator Best; |
| 13574 | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { |
| 13575 | case OR_Success: { |
| 13576 | // We found a built-in operator or an overloaded operator. |
| 13577 | FunctionDecl *FnDecl = Best->Function; |
| 13578 | |
| 13579 | bool IsReversed = Best->isReversed(); |
| 13580 | if (IsReversed) |
| 13581 | std::swap(Args[0], Args[1]); |
| 13582 | |
| 13583 | if (FnDecl) { |
| 13584 | Expr *Base = nullptr; |
| 13585 | // We matched an overloaded operator. Build a call to that |
| 13586 | // operator. |
| 13587 | |
| 13588 | OverloadedOperatorKind ChosenOp = |
| 13589 | FnDecl->getDeclName().getCXXOverloadedOperator(); |
| 13590 | |
| 13591 | // C++2a [over.match.oper]p9: |
| 13592 | // If a rewritten operator== candidate is selected by overload |
| 13593 | // resolution for an operator@, its return type shall be cv bool |
| 13594 | if (Best->RewriteKind && ChosenOp == OO_EqualEqual && |
| 13595 | !FnDecl->getReturnType()->isBooleanType()) { |
| 13596 | bool IsExtension = |
| 13597 | FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); |
| 13598 | Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool |
| 13599 | : diag::err_ovl_rewrite_equalequal_not_bool) |
| 13600 | << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) |
| 13601 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| 13602 | Diag(FnDecl->getLocation(), diag::note_declared_at); |
| 13603 | if (!IsExtension) |
| 13604 | return ExprError(); |
| 13605 | } |
| 13606 | |
| 13607 | if (AllowRewrittenCandidates && !IsReversed && |
| 13608 | CandidateSet.getRewriteInfo().isReversible()) { |
| 13609 | // We could have reversed this operator, but didn't. Check if some |
| 13610 | // reversed form was a viable candidate, and if so, if it had a |
| 13611 | // better conversion for either parameter. If so, this call is |
| 13612 | // formally ambiguous, and allowing it is an extension. |
| 13613 | llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; |
| 13614 | for (OverloadCandidate &Cand : CandidateSet) { |
| 13615 | if (Cand.Viable && Cand.Function && Cand.isReversed() && |
| 13616 | haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) { |
| 13617 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { |
| 13618 | if (CompareImplicitConversionSequences( |
| 13619 | *this, OpLoc, Cand.Conversions[ArgIdx], |
| 13620 | Best->Conversions[ArgIdx]) == |
| 13621 | ImplicitConversionSequence::Better) { |
| 13622 | AmbiguousWith.push_back(Cand.Function); |
| 13623 | break; |
| 13624 | } |
| 13625 | } |
| 13626 | } |
| 13627 | } |
| 13628 | |
| 13629 | if (!AmbiguousWith.empty()) { |
| 13630 | bool AmbiguousWithSelf = |
| 13631 | AmbiguousWith.size() == 1 && |
| 13632 | declaresSameEntity(AmbiguousWith.front(), FnDecl); |
| 13633 | Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) |
| 13634 | << BinaryOperator::getOpcodeStr(Opc) |
| 13635 | << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf |
| 13636 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| 13637 | if (AmbiguousWithSelf) { |
| 13638 | Diag(FnDecl->getLocation(), |
| 13639 | diag::note_ovl_ambiguous_oper_binary_reversed_self); |
| 13640 | } else { |
| 13641 | Diag(FnDecl->getLocation(), |
| 13642 | diag::note_ovl_ambiguous_oper_binary_selected_candidate); |
| 13643 | for (auto *F : AmbiguousWith) |
| 13644 | Diag(F->getLocation(), |
| 13645 | diag::note_ovl_ambiguous_oper_binary_reversed_candidate); |
| 13646 | } |
| 13647 | } |
| 13648 | } |
| 13649 | |
| 13650 | // Convert the arguments. |
| 13651 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| 13652 | // Best->Access is only meaningful for class members. |
| 13653 | CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); |
| 13654 | |
| 13655 | ExprResult Arg1 = |
| 13656 | PerformCopyInitialization( |
| 13657 | InitializedEntity::InitializeParameter(Context, |
| 13658 | FnDecl->getParamDecl(0)), |
| 13659 | SourceLocation(), Args[1]); |
| 13660 | if (Arg1.isInvalid()) |
| 13661 | return ExprError(); |
| 13662 | |
| 13663 | ExprResult Arg0 = |
| 13664 | PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, |
| 13665 | Best->FoundDecl, Method); |
| 13666 | if (Arg0.isInvalid()) |
| 13667 | return ExprError(); |
| 13668 | Base = Args[0] = Arg0.getAs<Expr>(); |
| 13669 | Args[1] = RHS = Arg1.getAs<Expr>(); |
| 13670 | } else { |
| 13671 | // Convert the arguments. |
| 13672 | ExprResult Arg0 = PerformCopyInitialization( |
| 13673 | InitializedEntity::InitializeParameter(Context, |
| 13674 | FnDecl->getParamDecl(0)), |
| 13675 | SourceLocation(), Args[0]); |
| 13676 | if (Arg0.isInvalid()) |
| 13677 | return ExprError(); |
| 13678 | |
| 13679 | ExprResult Arg1 = |
| 13680 | PerformCopyInitialization( |
| 13681 | InitializedEntity::InitializeParameter(Context, |
| 13682 | FnDecl->getParamDecl(1)), |
| 13683 | SourceLocation(), Args[1]); |
| 13684 | if (Arg1.isInvalid()) |
| 13685 | return ExprError(); |
| 13686 | Args[0] = LHS = Arg0.getAs<Expr>(); |
| 13687 | Args[1] = RHS = Arg1.getAs<Expr>(); |
Although the value stored to 'RHS' is used in the enclosing expression, the value is never actually read from 'RHS' | |
| 13688 | } |
| 13689 | |
| 13690 | // Build the actual expression node. |
| 13691 | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, |
| 13692 | Best->FoundDecl, Base, |
| 13693 | HadMultipleCandidates, OpLoc); |
| 13694 | if (FnExpr.isInvalid()) |
| 13695 | return ExprError(); |
| 13696 | |
| 13697 | // Determine the result type. |
| 13698 | QualType ResultTy = FnDecl->getReturnType(); |
| 13699 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| 13700 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 13701 | |
| 13702 | CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( |
| 13703 | Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, |
| 13704 | CurFPFeatureOverrides(), Best->IsADLCandidate); |
| 13705 | |
| 13706 | if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, |
| 13707 | FnDecl)) |
| 13708 | return ExprError(); |
| 13709 | |
| 13710 | ArrayRef<const Expr *> ArgsArray(Args, 2); |
| 13711 | const Expr *ImplicitThis = nullptr; |
| 13712 | // Cut off the implicit 'this'. |
| 13713 | if (isa<CXXMethodDecl>(FnDecl)) { |
| 13714 | ImplicitThis = ArgsArray[0]; |
| 13715 | ArgsArray = ArgsArray.slice(1); |
| 13716 | } |
| 13717 | |
| 13718 | // Check for a self move. |
| 13719 | if (Op == OO_Equal) |
| 13720 | DiagnoseSelfMove(Args[0], Args[1], OpLoc); |
| 13721 | |
| 13722 | if (ImplicitThis) { |
| 13723 | QualType ThisType = Context.getPointerType(ImplicitThis->getType()); |
| 13724 | QualType ThisTypeFromDecl = Context.getPointerType( |
| 13725 | cast<CXXMethodDecl>(FnDecl)->getThisObjectType()); |
| 13726 | |
| 13727 | CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType, |
| 13728 | ThisTypeFromDecl); |
| 13729 | } |
| 13730 | |
| 13731 | checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, |
| 13732 | isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), |
| 13733 | VariadicDoesNotApply); |
| 13734 | |
| 13735 | ExprResult R = MaybeBindToTemporary(TheCall); |
| 13736 | if (R.isInvalid()) |
| 13737 | return ExprError(); |
| 13738 | |
| 13739 | R = CheckForImmediateInvocation(R, FnDecl); |
| 13740 | if (R.isInvalid()) |
| 13741 | return ExprError(); |
| 13742 | |
| 13743 | // For a rewritten candidate, we've already reversed the arguments |
| 13744 | // if needed. Perform the rest of the rewrite now. |
| 13745 | if ((Best->RewriteKind & CRK_DifferentOperator) || |
| 13746 | (Op == OO_Spaceship && IsReversed)) { |
| 13747 | if (Op == OO_ExclaimEqual) { |
| 13748 | assert(ChosenOp == OO_EqualEqual && "unexpected operator name")((void)0); |
| 13749 | R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); |
| 13750 | } else { |
| 13751 | assert(ChosenOp == OO_Spaceship && "unexpected operator name")((void)0); |
| 13752 | llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); |
| 13753 | Expr *ZeroLiteral = |
| 13754 | IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); |
| 13755 | |
| 13756 | Sema::CodeSynthesisContext Ctx; |
| 13757 | Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; |
| 13758 | Ctx.Entity = FnDecl; |
| 13759 | pushCodeSynthesisContext(Ctx); |
| 13760 | |
| 13761 | R = CreateOverloadedBinOp( |
| 13762 | OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), |
| 13763 | IsReversed ? R.get() : ZeroLiteral, PerformADL, |
| 13764 | /*AllowRewrittenCandidates=*/false); |
| 13765 | |
| 13766 | popCodeSynthesisContext(); |
| 13767 | } |
| 13768 | if (R.isInvalid()) |
| 13769 | return ExprError(); |
| 13770 | } else { |
| 13771 | assert(ChosenOp == Op && "unexpected operator name")((void)0); |
| 13772 | } |
| 13773 | |
| 13774 | // Make a note in the AST if we did any rewriting. |
| 13775 | if (Best->RewriteKind != CRK_None) |
| 13776 | R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); |
| 13777 | |
| 13778 | return R; |
| 13779 | } else { |
| 13780 | // We matched a built-in operator. Convert the arguments, then |
| 13781 | // break out so that we will build the appropriate built-in |
| 13782 | // operator node. |
| 13783 | ExprResult ArgsRes0 = PerformImplicitConversion( |
| 13784 | Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], |
| 13785 | AA_Passing, CCK_ForBuiltinOverloadedOp); |
| 13786 | if (ArgsRes0.isInvalid()) |
| 13787 | return ExprError(); |
| 13788 | Args[0] = ArgsRes0.get(); |
| 13789 | |
| 13790 | ExprResult ArgsRes1 = PerformImplicitConversion( |
| 13791 | Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], |
| 13792 | AA_Passing, CCK_ForBuiltinOverloadedOp); |
| 13793 | if (ArgsRes1.isInvalid()) |
| 13794 | return ExprError(); |
| 13795 | Args[1] = ArgsRes1.get(); |
| 13796 | break; |
| 13797 | } |
| 13798 | } |
| 13799 | |
| 13800 | case OR_No_Viable_Function: { |
| 13801 | // C++ [over.match.oper]p9: |
| 13802 | // If the operator is the operator , [...] and there are no |
| 13803 | // viable functions, then the operator is assumed to be the |
| 13804 | // built-in operator and interpreted according to clause 5. |
| 13805 | if (Opc == BO_Comma) |
| 13806 | break; |
| 13807 | |
| 13808 | // When defaulting an 'operator<=>', we can try to synthesize a three-way |
| 13809 | // compare result using '==' and '<'. |
| 13810 | if (DefaultedFn && Opc == BO_Cmp) { |
| 13811 | ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], |
| 13812 | Args[1], DefaultedFn); |
| 13813 | if (E.isInvalid() || E.isUsable()) |
| 13814 | return E; |
| 13815 | } |
| 13816 | |
| 13817 | // For class as left operand for assignment or compound assignment |
| 13818 | // operator do not fall through to handling in built-in, but report that |
| 13819 | // no overloaded assignment operator found |
| 13820 | ExprResult Result = ExprError(); |
| 13821 | StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); |
| 13822 | auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, |
| 13823 | Args, OpLoc); |
| 13824 | DeferDiagsRAII DDR(*this, |
| 13825 | CandidateSet.shouldDeferDiags(*this, Args, OpLoc)); |
| 13826 | if (Args[0]->getType()->isRecordType() && |
| 13827 | Opc >= BO_Assign && Opc <= BO_OrAssign) { |
| 13828 | Diag(OpLoc, diag::err_ovl_no_viable_oper) |
| 13829 | << BinaryOperator::getOpcodeStr(Opc) |
| 13830 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| 13831 | if (Args[0]->getType()->isIncompleteType()) { |
| 13832 | Diag(OpLoc, diag::note_assign_lhs_incomplete) |
| 13833 | << Args[0]->getType() |
| 13834 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| 13835 | } |
| 13836 | } else { |
| 13837 | // This is an erroneous use of an operator which can be overloaded by |
| 13838 | // a non-member function. Check for non-member operators which were |
| 13839 | // defined too late to be candidates. |
| 13840 | if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) |
| 13841 | // FIXME: Recover by calling the found function. |
| 13842 | return ExprError(); |
| 13843 | |
| 13844 | // No viable function; try to create a built-in operation, which will |
| 13845 | // produce an error. Then, show the non-viable candidates. |
| 13846 | Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| 13847 | } |
| 13848 | assert(Result.isInvalid() &&((void)0) |
| 13849 | "C++ binary operator overloading is missing candidates!")((void)0); |
| 13850 | CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); |
| 13851 | return Result; |
| 13852 | } |
| 13853 | |
| 13854 | case OR_Ambiguous: |
| 13855 | CandidateSet.NoteCandidates( |
| 13856 | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) |
| 13857 | << BinaryOperator::getOpcodeStr(Opc) |
| 13858 | << Args[0]->getType() |
| 13859 | << Args[1]->getType() |
| 13860 | << Args[0]->getSourceRange() |
| 13861 | << Args[1]->getSourceRange()), |
| 13862 | *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), |
| 13863 | OpLoc); |
| 13864 | return ExprError(); |
| 13865 | |
| 13866 | case OR_Deleted: |
| 13867 | if (isImplicitlyDeleted(Best->Function)) { |
| 13868 | FunctionDecl *DeletedFD = Best->Function; |
| 13869 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); |
| 13870 | if (DFK.isSpecialMember()) { |
| 13871 | Diag(OpLoc, diag::err_ovl_deleted_special_oper) |
| 13872 | << Args[0]->getType() << DFK.asSpecialMember(); |
| 13873 | } else { |
| 13874 | assert(DFK.isComparison())((void)0); |
| 13875 | Diag(OpLoc, diag::err_ovl_deleted_comparison) |
| 13876 | << Args[0]->getType() << DeletedFD; |
| 13877 | } |
| 13878 | |
| 13879 | // The user probably meant to call this special member. Just |
| 13880 | // explain why it's deleted. |
| 13881 | NoteDeletedFunction(DeletedFD); |
| 13882 | return ExprError(); |
| 13883 | } |
| 13884 | CandidateSet.NoteCandidates( |
| 13885 | PartialDiagnosticAt( |
| 13886 | OpLoc, PDiag(diag::err_ovl_deleted_oper) |
| 13887 | << getOperatorSpelling(Best->Function->getDeclName() |
| 13888 | .getCXXOverloadedOperator()) |
| 13889 | << Args[0]->getSourceRange() |
| 13890 | << Args[1]->getSourceRange()), |
| 13891 | *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), |
| 13892 | OpLoc); |
| 13893 | return ExprError(); |
| 13894 | } |
| 13895 | |
| 13896 | // We matched a built-in operator; build it. |
| 13897 | return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| 13898 | } |
| 13899 | |
| 13900 | ExprResult Sema::BuildSynthesizedThreeWayComparison( |
| 13901 | SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, |
| 13902 | FunctionDecl *DefaultedFn) { |
| 13903 | const ComparisonCategoryInfo *Info = |
| 13904 | Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); |
| 13905 | // If we're not producing a known comparison category type, we can't |
| 13906 | // synthesize a three-way comparison. Let the caller diagnose this. |
| 13907 | if (!Info) |
| 13908 | return ExprResult((Expr*)nullptr); |
| 13909 | |
| 13910 | // If we ever want to perform this synthesis more generally, we will need to |
| 13911 | // apply the temporary materialization conversion to the operands. |
| 13912 | assert(LHS->isGLValue() && RHS->isGLValue() &&((void)0) |
| 13913 | "cannot use prvalue expressions more than once")((void)0); |
| 13914 | Expr *OrigLHS = LHS; |
| 13915 | Expr *OrigRHS = RHS; |
| 13916 | |
| 13917 | // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to |
| 13918 | // each of them multiple times below. |
| 13919 | LHS = new (Context) |
| 13920 | OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), |
| 13921 | LHS->getObjectKind(), LHS); |
| 13922 | RHS = new (Context) |
| 13923 | OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), |
| 13924 | RHS->getObjectKind(), RHS); |
| 13925 | |
| 13926 | ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, |
| 13927 | DefaultedFn); |
| 13928 | if (Eq.isInvalid()) |
| 13929 | return ExprError(); |
| 13930 | |
| 13931 | ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, |
| 13932 | true, DefaultedFn); |
| 13933 | if (Less.isInvalid()) |
| 13934 | return ExprError(); |
| 13935 | |
| 13936 | ExprResult Greater; |
| 13937 | if (Info->isPartial()) { |
| 13938 | Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, |
| 13939 | DefaultedFn); |
| 13940 | if (Greater.isInvalid()) |
| 13941 | return ExprError(); |
| 13942 | } |
| 13943 | |
| 13944 | // Form the list of comparisons we're going to perform. |
| 13945 | struct Comparison { |
| 13946 | ExprResult Cmp; |
| 13947 | ComparisonCategoryResult Result; |
| 13948 | } Comparisons[4] = |
| 13949 | { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal |
| 13950 | : ComparisonCategoryResult::Equivalent}, |
| 13951 | {Less, ComparisonCategoryResult::Less}, |
| 13952 | {Greater, ComparisonCategoryResult::Greater}, |
| 13953 | {ExprResult(), ComparisonCategoryResult::Unordered}, |
| 13954 | }; |
| 13955 | |
| 13956 | int I = Info->isPartial() ? 3 : 2; |
| 13957 | |
| 13958 | // Combine the comparisons with suitable conditional expressions. |
| 13959 | ExprResult Result; |
| 13960 | for (; I >= 0; --I) { |
| 13961 | // Build a reference to the comparison category constant. |
| 13962 | auto *VI = Info->lookupValueInfo(Comparisons[I].Result); |
| 13963 | // FIXME: Missing a constant for a comparison category. Diagnose this? |
| 13964 | if (!VI) |
| 13965 | return ExprResult((Expr*)nullptr); |
| 13966 | ExprResult ThisResult = |
| 13967 | BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); |
| 13968 | if (ThisResult.isInvalid()) |
| 13969 | return ExprError(); |
| 13970 | |
| 13971 | // Build a conditional unless this is the final case. |
| 13972 | if (Result.get()) { |
| 13973 | Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), |
| 13974 | ThisResult.get(), Result.get()); |
| 13975 | if (Result.isInvalid()) |
| 13976 | return ExprError(); |
| 13977 | } else { |
| 13978 | Result = ThisResult; |
| 13979 | } |
| 13980 | } |
| 13981 | |
| 13982 | // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to |
| 13983 | // bind the OpaqueValueExprs before they're (repeatedly) used. |
| 13984 | Expr *SyntacticForm = BinaryOperator::Create( |
| 13985 | Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), |
| 13986 | Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, |
| 13987 | CurFPFeatureOverrides()); |
| 13988 | Expr *SemanticForm[] = {LHS, RHS, Result.get()}; |
| 13989 | return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); |
| 13990 | } |
| 13991 | |
| 13992 | ExprResult |
| 13993 | Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, |
| 13994 | SourceLocation RLoc, |
| 13995 | Expr *Base, Expr *Idx) { |
| 13996 | Expr *Args[2] = { Base, Idx }; |
| 13997 | DeclarationName OpName = |
| 13998 | Context.DeclarationNames.getCXXOperatorName(OO_Subscript); |
| 13999 | |
| 14000 | // If either side is type-dependent, create an appropriate dependent |
| 14001 | // expression. |
| 14002 | if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { |
| 14003 | |
| 14004 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators |
| 14005 | // CHECKME: no 'operator' keyword? |
| 14006 | DeclarationNameInfo OpNameInfo(OpName, LLoc); |
| 14007 | OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); |
| 14008 | ExprResult Fn = CreateUnresolvedLookupExpr( |
| 14009 | NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); |
| 14010 | if (Fn.isInvalid()) |
| 14011 | return ExprError(); |
| 14012 | // Can't add any actual overloads yet |
| 14013 | |
| 14014 | return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, |
| 14015 | Context.DependentTy, VK_PRValue, RLoc, |
| 14016 | CurFPFeatureOverrides()); |
| 14017 | } |
| 14018 | |
| 14019 | // Handle placeholders on both operands. |
| 14020 | if (checkPlaceholderForOverload(*this, Args[0])) |
| 14021 | return ExprError(); |
| 14022 | if (checkPlaceholderForOverload(*this, Args[1])) |
| 14023 | return ExprError(); |
| 14024 | |
| 14025 | // Build an empty overload set. |
| 14026 | OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); |
| 14027 | |
| 14028 | // Subscript can only be overloaded as a member function. |
| 14029 | |
| 14030 | // Add operator candidates that are member functions. |
| 14031 | AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); |
| 14032 | |
| 14033 | // Add builtin operator candidates. |
| 14034 | AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); |
| 14035 | |
| 14036 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 14037 | |
| 14038 | // Perform overload resolution. |
| 14039 | OverloadCandidateSet::iterator Best; |
| 14040 | switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { |
| 14041 | case OR_Success: { |
| 14042 | // We found a built-in operator or an overloaded operator. |
| 14043 | FunctionDecl *FnDecl = Best->Function; |
| 14044 | |
| 14045 | if (FnDecl) { |
| 14046 | // We matched an overloaded operator. Build a call to that |
| 14047 | // operator. |
| 14048 | |
| 14049 | CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); |
| 14050 | |
| 14051 | // Convert the arguments. |
| 14052 | CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); |
| 14053 | ExprResult Arg0 = |
| 14054 | PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, |
| 14055 | Best->FoundDecl, Method); |
| 14056 | if (Arg0.isInvalid()) |
| 14057 | return ExprError(); |
| 14058 | Args[0] = Arg0.get(); |
| 14059 | |
| 14060 | // Convert the arguments. |
| 14061 | ExprResult InputInit |
| 14062 | = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| 14063 | Context, |
| 14064 | FnDecl->getParamDecl(0)), |
| 14065 | SourceLocation(), |
| 14066 | Args[1]); |
| 14067 | if (InputInit.isInvalid()) |
| 14068 | return ExprError(); |
| 14069 | |
| 14070 | Args[1] = InputInit.getAs<Expr>(); |
| 14071 | |
| 14072 | // Build the actual expression node. |
| 14073 | DeclarationNameInfo OpLocInfo(OpName, LLoc); |
| 14074 | OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); |
| 14075 | ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, |
| 14076 | Best->FoundDecl, |
| 14077 | Base, |
| 14078 | HadMultipleCandidates, |
| 14079 | OpLocInfo.getLoc(), |
| 14080 | OpLocInfo.getInfo()); |
| 14081 | if (FnExpr.isInvalid()) |
| 14082 | return ExprError(); |
| 14083 | |
| 14084 | // Determine the result type |
| 14085 | QualType ResultTy = FnDecl->getReturnType(); |
| 14086 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| 14087 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 14088 | |
| 14089 | CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( |
| 14090 | Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc, |
| 14091 | CurFPFeatureOverrides()); |
| 14092 | if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) |
| 14093 | return ExprError(); |
| 14094 | |
| 14095 | if (CheckFunctionCall(Method, TheCall, |
| 14096 | Method->getType()->castAs<FunctionProtoType>())) |
| 14097 | return ExprError(); |
| 14098 | |
| 14099 | return MaybeBindToTemporary(TheCall); |
| 14100 | } else { |
| 14101 | // We matched a built-in operator. Convert the arguments, then |
| 14102 | // break out so that we will build the appropriate built-in |
| 14103 | // operator node. |
| 14104 | ExprResult ArgsRes0 = PerformImplicitConversion( |
| 14105 | Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], |
| 14106 | AA_Passing, CCK_ForBuiltinOverloadedOp); |
| 14107 | if (ArgsRes0.isInvalid()) |
| 14108 | return ExprError(); |
| 14109 | Args[0] = ArgsRes0.get(); |
| 14110 | |
| 14111 | ExprResult ArgsRes1 = PerformImplicitConversion( |
| 14112 | Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], |
| 14113 | AA_Passing, CCK_ForBuiltinOverloadedOp); |
| 14114 | if (ArgsRes1.isInvalid()) |
| 14115 | return ExprError(); |
| 14116 | Args[1] = ArgsRes1.get(); |
| 14117 | |
| 14118 | break; |
| 14119 | } |
| 14120 | } |
| 14121 | |
| 14122 | case OR_No_Viable_Function: { |
| 14123 | PartialDiagnostic PD = CandidateSet.empty() |
| 14124 | ? (PDiag(diag::err_ovl_no_oper) |
| 14125 | << Args[0]->getType() << /*subscript*/ 0 |
| 14126 | << Args[0]->getSourceRange() << Args[1]->getSourceRange()) |
| 14127 | : (PDiag(diag::err_ovl_no_viable_subscript) |
| 14128 | << Args[0]->getType() << Args[0]->getSourceRange() |
| 14129 | << Args[1]->getSourceRange()); |
| 14130 | CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, |
| 14131 | OCD_AllCandidates, Args, "[]", LLoc); |
| 14132 | return ExprError(); |
| 14133 | } |
| 14134 | |
| 14135 | case OR_Ambiguous: |
| 14136 | CandidateSet.NoteCandidates( |
| 14137 | PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) |
| 14138 | << "[]" << Args[0]->getType() |
| 14139 | << Args[1]->getType() |
| 14140 | << Args[0]->getSourceRange() |
| 14141 | << Args[1]->getSourceRange()), |
| 14142 | *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); |
| 14143 | return ExprError(); |
| 14144 | |
| 14145 | case OR_Deleted: |
| 14146 | CandidateSet.NoteCandidates( |
| 14147 | PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper) |
| 14148 | << "[]" << Args[0]->getSourceRange() |
| 14149 | << Args[1]->getSourceRange()), |
| 14150 | *this, OCD_AllCandidates, Args, "[]", LLoc); |
| 14151 | return ExprError(); |
| 14152 | } |
| 14153 | |
| 14154 | // We matched a built-in operator; build it. |
| 14155 | return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); |
| 14156 | } |
| 14157 | |
| 14158 | /// BuildCallToMemberFunction - Build a call to a member |
| 14159 | /// function. MemExpr is the expression that refers to the member |
| 14160 | /// function (and includes the object parameter), Args/NumArgs are the |
| 14161 | /// arguments to the function call (not including the object |
| 14162 | /// parameter). The caller needs to validate that the member |
| 14163 | /// expression refers to a non-static member function or an overloaded |
| 14164 | /// member function. |
| 14165 | ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, |
| 14166 | SourceLocation LParenLoc, |
| 14167 | MultiExprArg Args, |
| 14168 | SourceLocation RParenLoc, |
| 14169 | bool AllowRecovery) { |
| 14170 | assert(MemExprE->getType() == Context.BoundMemberTy ||((void)0) |
| 14171 | MemExprE->getType() == Context.OverloadTy)((void)0); |
| 14172 | |
| 14173 | // Dig out the member expression. This holds both the object |
| 14174 | // argument and the member function we're referring to. |
| 14175 | Expr *NakedMemExpr = MemExprE->IgnoreParens(); |
| 14176 | |
| 14177 | // Determine whether this is a call to a pointer-to-member function. |
| 14178 | if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { |
| 14179 | assert(op->getType() == Context.BoundMemberTy)((void)0); |
| 14180 | assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI)((void)0); |
| 14181 | |
| 14182 | QualType fnType = |
| 14183 | op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); |
| 14184 | |
| 14185 | const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); |
| 14186 | QualType resultType = proto->getCallResultType(Context); |
| 14187 | ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); |
| 14188 | |
| 14189 | // Check that the object type isn't more qualified than the |
| 14190 | // member function we're calling. |
| 14191 | Qualifiers funcQuals = proto->getMethodQuals(); |
| 14192 | |
| 14193 | QualType objectType = op->getLHS()->getType(); |
| 14194 | if (op->getOpcode() == BO_PtrMemI) |
| 14195 | objectType = objectType->castAs<PointerType>()->getPointeeType(); |
| 14196 | Qualifiers objectQuals = objectType.getQualifiers(); |
| 14197 | |
| 14198 | Qualifiers difference = objectQuals - funcQuals; |
| 14199 | difference.removeObjCGCAttr(); |
| 14200 | difference.removeAddressSpace(); |
| 14201 | if (difference) { |
| 14202 | std::string qualsString = difference.getAsString(); |
| 14203 | Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) |
| 14204 | << fnType.getUnqualifiedType() |
| 14205 | << qualsString |
| 14206 | << (qualsString.find(' ') == std::string::npos ? 1 : 2); |
| 14207 | } |
| 14208 | |
| 14209 | CXXMemberCallExpr *call = CXXMemberCallExpr::Create( |
| 14210 | Context, MemExprE, Args, resultType, valueKind, RParenLoc, |
| 14211 | CurFPFeatureOverrides(), proto->getNumParams()); |
| 14212 | |
| 14213 | if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), |
| 14214 | call, nullptr)) |
| 14215 | return ExprError(); |
| 14216 | |
| 14217 | if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) |
| 14218 | return ExprError(); |
| 14219 | |
| 14220 | if (CheckOtherCall(call, proto)) |
| 14221 | return ExprError(); |
| 14222 | |
| 14223 | return MaybeBindToTemporary(call); |
| 14224 | } |
| 14225 | |
| 14226 | // We only try to build a recovery expr at this level if we can preserve |
| 14227 | // the return type, otherwise we return ExprError() and let the caller |
| 14228 | // recover. |
| 14229 | auto BuildRecoveryExpr = [&](QualType Type) { |
| 14230 | if (!AllowRecovery) |
| 14231 | return ExprError(); |
| 14232 | std::vector<Expr *> SubExprs = {MemExprE}; |
| 14233 | llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); }); |
| 14234 | return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, |
| 14235 | Type); |
| 14236 | }; |
| 14237 | if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) |
| 14238 | return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue, |
| 14239 | RParenLoc, CurFPFeatureOverrides()); |
| 14240 | |
| 14241 | UnbridgedCastsSet UnbridgedCasts; |
| 14242 | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) |
| 14243 | return ExprError(); |
| 14244 | |
| 14245 | MemberExpr *MemExpr; |
| 14246 | CXXMethodDecl *Method = nullptr; |
| 14247 | DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); |
| 14248 | NestedNameSpecifier *Qualifier = nullptr; |
| 14249 | if (isa<MemberExpr>(NakedMemExpr)) { |
| 14250 | MemExpr = cast<MemberExpr>(NakedMemExpr); |
| 14251 | Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); |
| 14252 | FoundDecl = MemExpr->getFoundDecl(); |
| 14253 | Qualifier = MemExpr->getQualifier(); |
| 14254 | UnbridgedCasts.restore(); |
| 14255 | } else { |
| 14256 | UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); |
| 14257 | Qualifier = UnresExpr->getQualifier(); |
| 14258 | |
| 14259 | QualType ObjectType = UnresExpr->getBaseType(); |
| 14260 | Expr::Classification ObjectClassification |
| 14261 | = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() |
| 14262 | : UnresExpr->getBase()->Classify(Context); |
| 14263 | |
| 14264 | // Add overload candidates |
| 14265 | OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), |
| 14266 | OverloadCandidateSet::CSK_Normal); |
| 14267 | |
| 14268 | // FIXME: avoid copy. |
| 14269 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; |
| 14270 | if (UnresExpr->hasExplicitTemplateArgs()) { |
| 14271 | UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| 14272 | TemplateArgs = &TemplateArgsBuffer; |
| 14273 | } |
| 14274 | |
| 14275 | for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), |
| 14276 | E = UnresExpr->decls_end(); I != E; ++I) { |
| 14277 | |
| 14278 | NamedDecl *Func = *I; |
| 14279 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); |
| 14280 | if (isa<UsingShadowDecl>(Func)) |
| 14281 | Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); |
| 14282 | |
| 14283 | |
| 14284 | // Microsoft supports direct constructor calls. |
| 14285 | if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { |
| 14286 | AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, |
| 14287 | CandidateSet, |
| 14288 | /*SuppressUserConversions*/ false); |
| 14289 | } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { |
| 14290 | // If explicit template arguments were provided, we can't call a |
| 14291 | // non-template member function. |
| 14292 | if (TemplateArgs) |
| 14293 | continue; |
| 14294 | |
| 14295 | AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, |
| 14296 | ObjectClassification, Args, CandidateSet, |
| 14297 | /*SuppressUserConversions=*/false); |
| 14298 | } else { |
| 14299 | AddMethodTemplateCandidate( |
| 14300 | cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC, |
| 14301 | TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet, |
| 14302 | /*SuppressUserConversions=*/false); |
| 14303 | } |
| 14304 | } |
| 14305 | |
| 14306 | DeclarationName DeclName = UnresExpr->getMemberName(); |
| 14307 | |
| 14308 | UnbridgedCasts.restore(); |
| 14309 | |
| 14310 | OverloadCandidateSet::iterator Best; |
| 14311 | bool Succeeded = false; |
| 14312 | switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), |
| 14313 | Best)) { |
| 14314 | case OR_Success: |
| 14315 | Method = cast<CXXMethodDecl>(Best->Function); |
| 14316 | FoundDecl = Best->FoundDecl; |
| 14317 | CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); |
| 14318 | if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc())) |
| 14319 | break; |
| 14320 | // If FoundDecl is different from Method (such as if one is a template |
| 14321 | // and the other a specialization), make sure DiagnoseUseOfDecl is |
| 14322 | // called on both. |
| 14323 | // FIXME: This would be more comprehensively addressed by modifying |
| 14324 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl |
| 14325 | // being used. |
| 14326 | if (Method != FoundDecl.getDecl() && |
| 14327 | DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc())) |
| 14328 | break; |
| 14329 | Succeeded = true; |
| 14330 | break; |
| 14331 | |
| 14332 | case OR_No_Viable_Function: |
| 14333 | CandidateSet.NoteCandidates( |
| 14334 | PartialDiagnosticAt( |
| 14335 | UnresExpr->getMemberLoc(), |
| 14336 | PDiag(diag::err_ovl_no_viable_member_function_in_call) |
| 14337 | << DeclName << MemExprE->getSourceRange()), |
| 14338 | *this, OCD_AllCandidates, Args); |
| 14339 | break; |
| 14340 | case OR_Ambiguous: |
| 14341 | CandidateSet.NoteCandidates( |
| 14342 | PartialDiagnosticAt(UnresExpr->getMemberLoc(), |
| 14343 | PDiag(diag::err_ovl_ambiguous_member_call) |
| 14344 | << DeclName << MemExprE->getSourceRange()), |
| 14345 | *this, OCD_AmbiguousCandidates, Args); |
| 14346 | break; |
| 14347 | case OR_Deleted: |
| 14348 | CandidateSet.NoteCandidates( |
| 14349 | PartialDiagnosticAt(UnresExpr->getMemberLoc(), |
| 14350 | PDiag(diag::err_ovl_deleted_member_call) |
| 14351 | << DeclName << MemExprE->getSourceRange()), |
| 14352 | *this, OCD_AllCandidates, Args); |
| 14353 | break; |
| 14354 | } |
| 14355 | // Overload resolution fails, try to recover. |
| 14356 | if (!Succeeded) |
| 14357 | return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); |
| 14358 | |
| 14359 | MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); |
| 14360 | |
| 14361 | // If overload resolution picked a static member, build a |
| 14362 | // non-member call based on that function. |
| 14363 | if (Method->isStatic()) { |
| 14364 | return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, |
| 14365 | RParenLoc); |
| 14366 | } |
| 14367 | |
| 14368 | MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); |
| 14369 | } |
| 14370 | |
| 14371 | QualType ResultType = Method->getReturnType(); |
| 14372 | ExprValueKind VK = Expr::getValueKindForType(ResultType); |
| 14373 | ResultType = ResultType.getNonLValueExprType(Context); |
| 14374 | |
| 14375 | assert(Method && "Member call to something that isn't a method?")((void)0); |
| 14376 | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); |
| 14377 | CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create( |
| 14378 | Context, MemExprE, Args, ResultType, VK, RParenLoc, |
| 14379 | CurFPFeatureOverrides(), Proto->getNumParams()); |
| 14380 | |
| 14381 | // Check for a valid return type. |
| 14382 | if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), |
| 14383 | TheCall, Method)) |
| 14384 | return BuildRecoveryExpr(ResultType); |
| 14385 | |
| 14386 | // Convert the object argument (for a non-static member function call). |
| 14387 | // We only need to do this if there was actually an overload; otherwise |
| 14388 | // it was done at lookup. |
| 14389 | if (!Method->isStatic()) { |
| 14390 | ExprResult ObjectArg = |
| 14391 | PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, |
| 14392 | FoundDecl, Method); |
| 14393 | if (ObjectArg.isInvalid()) |
| 14394 | return ExprError(); |
| 14395 | MemExpr->setBase(ObjectArg.get()); |
| 14396 | } |
| 14397 | |
| 14398 | // Convert the rest of the arguments |
| 14399 | if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, |
| 14400 | RParenLoc)) |
| 14401 | return BuildRecoveryExpr(ResultType); |
| 14402 | |
| 14403 | DiagnoseSentinelCalls(Method, LParenLoc, Args); |
| 14404 | |
| 14405 | if (CheckFunctionCall(Method, TheCall, Proto)) |
| 14406 | return ExprError(); |
| 14407 | |
| 14408 | // In the case the method to call was not selected by the overloading |
| 14409 | // resolution process, we still need to handle the enable_if attribute. Do |
| 14410 | // that here, so it will not hide previous -- and more relevant -- errors. |
| 14411 | if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { |
| 14412 | if (const EnableIfAttr *Attr = |
| 14413 | CheckEnableIf(Method, LParenLoc, Args, true)) { |
| 14414 | Diag(MemE->getMemberLoc(), |
| 14415 | diag::err_ovl_no_viable_member_function_in_call) |
| 14416 | << Method << Method->getSourceRange(); |
| 14417 | Diag(Method->getLocation(), |
| 14418 | diag::note_ovl_candidate_disabled_by_function_cond_attr) |
| 14419 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); |
| 14420 | return ExprError(); |
| 14421 | } |
| 14422 | } |
| 14423 | |
| 14424 | if ((isa<CXXConstructorDecl>(CurContext) || |
| 14425 | isa<CXXDestructorDecl>(CurContext)) && |
| 14426 | TheCall->getMethodDecl()->isPure()) { |
| 14427 | const CXXMethodDecl *MD = TheCall->getMethodDecl(); |
| 14428 | |
| 14429 | if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && |
| 14430 | MemExpr->performsVirtualDispatch(getLangOpts())) { |
| 14431 | Diag(MemExpr->getBeginLoc(), |
| 14432 | diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) |
| 14433 | << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) |
| 14434 | << MD->getParent(); |
| 14435 | |
| 14436 | Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); |
| 14437 | if (getLangOpts().AppleKext) |
| 14438 | Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) |
| 14439 | << MD->getParent() << MD->getDeclName(); |
| 14440 | } |
| 14441 | } |
| 14442 | |
| 14443 | if (CXXDestructorDecl *DD = |
| 14444 | dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) { |
| 14445 | // a->A::f() doesn't go through the vtable, except in AppleKext mode. |
| 14446 | bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; |
| 14447 | CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, |
| 14448 | CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, |
| 14449 | MemExpr->getMemberLoc()); |
| 14450 | } |
| 14451 | |
| 14452 | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), |
| 14453 | TheCall->getMethodDecl()); |
| 14454 | } |
| 14455 | |
| 14456 | /// BuildCallToObjectOfClassType - Build a call to an object of class |
| 14457 | /// type (C++ [over.call.object]), which can end up invoking an |
| 14458 | /// overloaded function call operator (@c operator()) or performing a |
| 14459 | /// user-defined conversion on the object argument. |
| 14460 | ExprResult |
| 14461 | Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, |
| 14462 | SourceLocation LParenLoc, |
| 14463 | MultiExprArg Args, |
| 14464 | SourceLocation RParenLoc) { |
| 14465 | if (checkPlaceholderForOverload(*this, Obj)) |
| 14466 | return ExprError(); |
| 14467 | ExprResult Object = Obj; |
| 14468 | |
| 14469 | UnbridgedCastsSet UnbridgedCasts; |
| 14470 | if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) |
| 14471 | return ExprError(); |
| 14472 | |
| 14473 | assert(Object.get()->getType()->isRecordType() &&((void)0) |
| 14474 | "Requires object type argument")((void)0); |
| 14475 | |
| 14476 | // C++ [over.call.object]p1: |
| 14477 | // If the primary-expression E in the function call syntax |
| 14478 | // evaluates to a class object of type "cv T", then the set of |
| 14479 | // candidate functions includes at least the function call |
| 14480 | // operators of T. The function call operators of T are obtained by |
| 14481 | // ordinary lookup of the name operator() in the context of |
| 14482 | // (E).operator(). |
| 14483 | OverloadCandidateSet CandidateSet(LParenLoc, |
| 14484 | OverloadCandidateSet::CSK_Operator); |
| 14485 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); |
| 14486 | |
| 14487 | if (RequireCompleteType(LParenLoc, Object.get()->getType(), |
| 14488 | diag::err_incomplete_object_call, Object.get())) |
| 14489 | return true; |
| 14490 | |
| 14491 | const auto *Record = Object.get()->getType()->castAs<RecordType>(); |
| 14492 | LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); |
| 14493 | LookupQualifiedName(R, Record->getDecl()); |
| 14494 | R.suppressDiagnostics(); |
| 14495 | |
| 14496 | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); |
| 14497 | Oper != OperEnd; ++Oper) { |
| 14498 | AddMethodCandidate(Oper.getPair(), Object.get()->getType(), |
| 14499 | Object.get()->Classify(Context), Args, CandidateSet, |
| 14500 | /*SuppressUserConversion=*/false); |
| 14501 | } |
| 14502 | |
| 14503 | // C++ [over.call.object]p2: |
| 14504 | // In addition, for each (non-explicit in C++0x) conversion function |
| 14505 | // declared in T of the form |
| 14506 | // |
| 14507 | // operator conversion-type-id () cv-qualifier; |
| 14508 | // |
| 14509 | // where cv-qualifier is the same cv-qualification as, or a |
| 14510 | // greater cv-qualification than, cv, and where conversion-type-id |
| 14511 | // denotes the type "pointer to function of (P1,...,Pn) returning |
| 14512 | // R", or the type "reference to pointer to function of |
| 14513 | // (P1,...,Pn) returning R", or the type "reference to function |
| 14514 | // of (P1,...,Pn) returning R", a surrogate call function [...] |
| 14515 | // is also considered as a candidate function. Similarly, |
| 14516 | // surrogate call functions are added to the set of candidate |
| 14517 | // functions for each conversion function declared in an |
| 14518 | // accessible base class provided the function is not hidden |
| 14519 | // within T by another intervening declaration. |
| 14520 | const auto &Conversions = |
| 14521 | cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); |
| 14522 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 14523 | NamedDecl *D = *I; |
| 14524 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
| 14525 | if (isa<UsingShadowDecl>(D)) |
| 14526 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| 14527 | |
| 14528 | // Skip over templated conversion functions; they aren't |
| 14529 | // surrogates. |
| 14530 | if (isa<FunctionTemplateDecl>(D)) |
| 14531 | continue; |
| 14532 | |
| 14533 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); |
| 14534 | if (!Conv->isExplicit()) { |
| 14535 | // Strip the reference type (if any) and then the pointer type (if |
| 14536 | // any) to get down to what might be a function type. |
| 14537 | QualType ConvType = Conv->getConversionType().getNonReferenceType(); |
| 14538 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| 14539 | ConvType = ConvPtrType->getPointeeType(); |
| 14540 | |
| 14541 | if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) |
| 14542 | { |
| 14543 | AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, |
| 14544 | Object.get(), Args, CandidateSet); |
| 14545 | } |
| 14546 | } |
| 14547 | } |
| 14548 | |
| 14549 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 14550 | |
| 14551 | // Perform overload resolution. |
| 14552 | OverloadCandidateSet::iterator Best; |
| 14553 | switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), |
| 14554 | Best)) { |
| 14555 | case OR_Success: |
| 14556 | // Overload resolution succeeded; we'll build the appropriate call |
| 14557 | // below. |
| 14558 | break; |
| 14559 | |
| 14560 | case OR_No_Viable_Function: { |
| 14561 | PartialDiagnostic PD = |
| 14562 | CandidateSet.empty() |
| 14563 | ? (PDiag(diag::err_ovl_no_oper) |
| 14564 | << Object.get()->getType() << /*call*/ 1 |
| 14565 | << Object.get()->getSourceRange()) |
| 14566 | : (PDiag(diag::err_ovl_no_viable_object_call) |
| 14567 | << Object.get()->getType() << Object.get()->getSourceRange()); |
| 14568 | CandidateSet.NoteCandidates( |
| 14569 | PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, |
| 14570 | OCD_AllCandidates, Args); |
| 14571 | break; |
| 14572 | } |
| 14573 | case OR_Ambiguous: |
| 14574 | CandidateSet.NoteCandidates( |
| 14575 | PartialDiagnosticAt(Object.get()->getBeginLoc(), |
| 14576 | PDiag(diag::err_ovl_ambiguous_object_call) |
| 14577 | << Object.get()->getType() |
| 14578 | << Object.get()->getSourceRange()), |
| 14579 | *this, OCD_AmbiguousCandidates, Args); |
| 14580 | break; |
| 14581 | |
| 14582 | case OR_Deleted: |
| 14583 | CandidateSet.NoteCandidates( |
| 14584 | PartialDiagnosticAt(Object.get()->getBeginLoc(), |
| 14585 | PDiag(diag::err_ovl_deleted_object_call) |
| 14586 | << Object.get()->getType() |
| 14587 | << Object.get()->getSourceRange()), |
| 14588 | *this, OCD_AllCandidates, Args); |
| 14589 | break; |
| 14590 | } |
| 14591 | |
| 14592 | if (Best == CandidateSet.end()) |
| 14593 | return true; |
| 14594 | |
| 14595 | UnbridgedCasts.restore(); |
| 14596 | |
| 14597 | if (Best->Function == nullptr) { |
| 14598 | // Since there is no function declaration, this is one of the |
| 14599 | // surrogate candidates. Dig out the conversion function. |
| 14600 | CXXConversionDecl *Conv |
| 14601 | = cast<CXXConversionDecl>( |
| 14602 | Best->Conversions[0].UserDefined.ConversionFunction); |
| 14603 | |
| 14604 | CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, |
| 14605 | Best->FoundDecl); |
| 14606 | if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) |
| 14607 | return ExprError(); |
| 14608 | assert(Conv == Best->FoundDecl.getDecl() &&((void)0) |
| 14609 | "Found Decl & conversion-to-functionptr should be same, right?!")((void)0); |
| 14610 | // We selected one of the surrogate functions that converts the |
| 14611 | // object parameter to a function pointer. Perform the conversion |
| 14612 | // on the object argument, then let BuildCallExpr finish the job. |
| 14613 | |
| 14614 | // Create an implicit member expr to refer to the conversion operator. |
| 14615 | // and then call it. |
| 14616 | ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, |
| 14617 | Conv, HadMultipleCandidates); |
| 14618 | if (Call.isInvalid()) |
| 14619 | return ExprError(); |
| 14620 | // Record usage of conversion in an implicit cast. |
| 14621 | Call = ImplicitCastExpr::Create( |
| 14622 | Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), |
| 14623 | nullptr, VK_PRValue, CurFPFeatureOverrides()); |
| 14624 | |
| 14625 | return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); |
| 14626 | } |
| 14627 | |
| 14628 | CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); |
| 14629 | |
| 14630 | // We found an overloaded operator(). Build a CXXOperatorCallExpr |
| 14631 | // that calls this method, using Object for the implicit object |
| 14632 | // parameter and passing along the remaining arguments. |
| 14633 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); |
| 14634 | |
| 14635 | // An error diagnostic has already been printed when parsing the declaration. |
| 14636 | if (Method->isInvalidDecl()) |
| 14637 | return ExprError(); |
| 14638 | |
| 14639 | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); |
| 14640 | unsigned NumParams = Proto->getNumParams(); |
| 14641 | |
| 14642 | DeclarationNameInfo OpLocInfo( |
| 14643 | Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); |
| 14644 | OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); |
| 14645 | ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, |
| 14646 | Obj, HadMultipleCandidates, |
| 14647 | OpLocInfo.getLoc(), |
| 14648 | OpLocInfo.getInfo()); |
| 14649 | if (NewFn.isInvalid()) |
| 14650 | return true; |
| 14651 | |
| 14652 | // The number of argument slots to allocate in the call. If we have default |
| 14653 | // arguments we need to allocate space for them as well. We additionally |
| 14654 | // need one more slot for the object parameter. |
| 14655 | unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams); |
| 14656 | |
| 14657 | // Build the full argument list for the method call (the implicit object |
| 14658 | // parameter is placed at the beginning of the list). |
| 14659 | SmallVector<Expr *, 8> MethodArgs(NumArgsSlots); |
| 14660 | |
| 14661 | bool IsError = false; |
| 14662 | |
| 14663 | // Initialize the implicit object parameter. |
| 14664 | ExprResult ObjRes = |
| 14665 | PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr, |
| 14666 | Best->FoundDecl, Method); |
| 14667 | if (ObjRes.isInvalid()) |
| 14668 | IsError = true; |
| 14669 | else |
| 14670 | Object = ObjRes; |
| 14671 | MethodArgs[0] = Object.get(); |
| 14672 | |
| 14673 | // Check the argument types. |
| 14674 | for (unsigned i = 0; i != NumParams; i++) { |
| 14675 | Expr *Arg; |
| 14676 | if (i < Args.size()) { |
| 14677 | Arg = Args[i]; |
| 14678 | |
| 14679 | // Pass the argument. |
| 14680 | |
| 14681 | ExprResult InputInit |
| 14682 | = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| 14683 | Context, |
| 14684 | Method->getParamDecl(i)), |
| 14685 | SourceLocation(), Arg); |
| 14686 | |
| 14687 | IsError |= InputInit.isInvalid(); |
| 14688 | Arg = InputInit.getAs<Expr>(); |
| 14689 | } else { |
| 14690 | ExprResult DefArg |
| 14691 | = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); |
| 14692 | if (DefArg.isInvalid()) { |
| 14693 | IsError = true; |
| 14694 | break; |
| 14695 | } |
| 14696 | |
| 14697 | Arg = DefArg.getAs<Expr>(); |
| 14698 | } |
| 14699 | |
| 14700 | MethodArgs[i + 1] = Arg; |
| 14701 | } |
| 14702 | |
| 14703 | // If this is a variadic call, handle args passed through "...". |
| 14704 | if (Proto->isVariadic()) { |
| 14705 | // Promote the arguments (C99 6.5.2.2p7). |
| 14706 | for (unsigned i = NumParams, e = Args.size(); i < e; i++) { |
| 14707 | ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, |
| 14708 | nullptr); |
| 14709 | IsError |= Arg.isInvalid(); |
| 14710 | MethodArgs[i + 1] = Arg.get(); |
| 14711 | } |
| 14712 | } |
| 14713 | |
| 14714 | if (IsError) |
| 14715 | return true; |
| 14716 | |
| 14717 | DiagnoseSentinelCalls(Method, LParenLoc, Args); |
| 14718 | |
| 14719 | // Once we've built TheCall, all of the expressions are properly owned. |
| 14720 | QualType ResultTy = Method->getReturnType(); |
| 14721 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| 14722 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 14723 | |
| 14724 | CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( |
| 14725 | Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, |
| 14726 | CurFPFeatureOverrides()); |
| 14727 | |
| 14728 | if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) |
| 14729 | return true; |
| 14730 | |
| 14731 | if (CheckFunctionCall(Method, TheCall, Proto)) |
| 14732 | return true; |
| 14733 | |
| 14734 | return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); |
| 14735 | } |
| 14736 | |
| 14737 | /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> |
| 14738 | /// (if one exists), where @c Base is an expression of class type and |
| 14739 | /// @c Member is the name of the member we're trying to find. |
| 14740 | ExprResult |
| 14741 | Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, |
| 14742 | bool *NoArrowOperatorFound) { |
| 14743 | assert(Base->getType()->isRecordType() &&((void)0) |
| 14744 | "left-hand side must have class type")((void)0); |
| 14745 | |
| 14746 | if (checkPlaceholderForOverload(*this, Base)) |
| 14747 | return ExprError(); |
| 14748 | |
| 14749 | SourceLocation Loc = Base->getExprLoc(); |
| 14750 | |
| 14751 | // C++ [over.ref]p1: |
| 14752 | // |
| 14753 | // [...] An expression x->m is interpreted as (x.operator->())->m |
| 14754 | // for a class object x of type T if T::operator->() exists and if |
| 14755 | // the operator is selected as the best match function by the |
| 14756 | // overload resolution mechanism (13.3). |
| 14757 | DeclarationName OpName = |
| 14758 | Context.DeclarationNames.getCXXOperatorName(OO_Arrow); |
| 14759 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); |
| 14760 | |
| 14761 | if (RequireCompleteType(Loc, Base->getType(), |
| 14762 | diag::err_typecheck_incomplete_tag, Base)) |
| 14763 | return ExprError(); |
| 14764 | |
| 14765 | LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); |
| 14766 | LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl()); |
| 14767 | R.suppressDiagnostics(); |
| 14768 | |
| 14769 | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); |
| 14770 | Oper != OperEnd; ++Oper) { |
| 14771 | AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), |
| 14772 | None, CandidateSet, /*SuppressUserConversion=*/false); |
| 14773 | } |
| 14774 | |
| 14775 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 14776 | |
| 14777 | // Perform overload resolution. |
| 14778 | OverloadCandidateSet::iterator Best; |
| 14779 | switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { |
| 14780 | case OR_Success: |
| 14781 | // Overload resolution succeeded; we'll build the call below. |
| 14782 | break; |
| 14783 | |
| 14784 | case OR_No_Viable_Function: { |
| 14785 | auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); |
| 14786 | if (CandidateSet.empty()) { |
| 14787 | QualType BaseType = Base->getType(); |
| 14788 | if (NoArrowOperatorFound) { |
| 14789 | // Report this specific error to the caller instead of emitting a |
| 14790 | // diagnostic, as requested. |
| 14791 | *NoArrowOperatorFound = true; |
| 14792 | return ExprError(); |
| 14793 | } |
| 14794 | Diag(OpLoc, diag::err_typecheck_member_reference_arrow) |
| 14795 | << BaseType << Base->getSourceRange(); |
| 14796 | if (BaseType->isRecordType() && !BaseType->isPointerType()) { |
| 14797 | Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) |
| 14798 | << FixItHint::CreateReplacement(OpLoc, "."); |
| 14799 | } |
| 14800 | } else |
| 14801 | Diag(OpLoc, diag::err_ovl_no_viable_oper) |
| 14802 | << "operator->" << Base->getSourceRange(); |
| 14803 | CandidateSet.NoteCandidates(*this, Base, Cands); |
| 14804 | return ExprError(); |
| 14805 | } |
| 14806 | case OR_Ambiguous: |
| 14807 | CandidateSet.NoteCandidates( |
| 14808 | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) |
| 14809 | << "->" << Base->getType() |
| 14810 | << Base->getSourceRange()), |
| 14811 | *this, OCD_AmbiguousCandidates, Base); |
| 14812 | return ExprError(); |
| 14813 | |
| 14814 | case OR_Deleted: |
| 14815 | CandidateSet.NoteCandidates( |
| 14816 | PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) |
| 14817 | << "->" << Base->getSourceRange()), |
| 14818 | *this, OCD_AllCandidates, Base); |
| 14819 | return ExprError(); |
| 14820 | } |
| 14821 | |
| 14822 | CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); |
| 14823 | |
| 14824 | // Convert the object parameter. |
| 14825 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); |
| 14826 | ExprResult BaseResult = |
| 14827 | PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, |
| 14828 | Best->FoundDecl, Method); |
| 14829 | if (BaseResult.isInvalid()) |
| 14830 | return ExprError(); |
| 14831 | Base = BaseResult.get(); |
| 14832 | |
| 14833 | // Build the operator call. |
| 14834 | ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, |
| 14835 | Base, HadMultipleCandidates, OpLoc); |
| 14836 | if (FnExpr.isInvalid()) |
| 14837 | return ExprError(); |
| 14838 | |
| 14839 | QualType ResultTy = Method->getReturnType(); |
| 14840 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| 14841 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 14842 | CXXOperatorCallExpr *TheCall = |
| 14843 | CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, |
| 14844 | ResultTy, VK, OpLoc, CurFPFeatureOverrides()); |
| 14845 | |
| 14846 | if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) |
| 14847 | return ExprError(); |
| 14848 | |
| 14849 | if (CheckFunctionCall(Method, TheCall, |
| 14850 | Method->getType()->castAs<FunctionProtoType>())) |
| 14851 | return ExprError(); |
| 14852 | |
| 14853 | return MaybeBindToTemporary(TheCall); |
| 14854 | } |
| 14855 | |
| 14856 | /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to |
| 14857 | /// a literal operator described by the provided lookup results. |
| 14858 | ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, |
| 14859 | DeclarationNameInfo &SuffixInfo, |
| 14860 | ArrayRef<Expr*> Args, |
| 14861 | SourceLocation LitEndLoc, |
| 14862 | TemplateArgumentListInfo *TemplateArgs) { |
| 14863 | SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); |
| 14864 | |
| 14865 | OverloadCandidateSet CandidateSet(UDSuffixLoc, |
| 14866 | OverloadCandidateSet::CSK_Normal); |
| 14867 | AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, |
| 14868 | TemplateArgs); |
| 14869 | |
| 14870 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 14871 | |
| 14872 | // Perform overload resolution. This will usually be trivial, but might need |
| 14873 | // to perform substitutions for a literal operator template. |
| 14874 | OverloadCandidateSet::iterator Best; |
| 14875 | switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { |
| 14876 | case OR_Success: |
| 14877 | case OR_Deleted: |
| 14878 | break; |
| 14879 | |
| 14880 | case OR_No_Viable_Function: |
| 14881 | CandidateSet.NoteCandidates( |
| 14882 | PartialDiagnosticAt(UDSuffixLoc, |
| 14883 | PDiag(diag::err_ovl_no_viable_function_in_call) |
| 14884 | << R.getLookupName()), |
| 14885 | *this, OCD_AllCandidates, Args); |
| 14886 | return ExprError(); |
| 14887 | |
| 14888 | case OR_Ambiguous: |
| 14889 | CandidateSet.NoteCandidates( |
| 14890 | PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) |
| 14891 | << R.getLookupName()), |
| 14892 | *this, OCD_AmbiguousCandidates, Args); |
| 14893 | return ExprError(); |
| 14894 | } |
| 14895 | |
| 14896 | FunctionDecl *FD = Best->Function; |
| 14897 | ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, |
| 14898 | nullptr, HadMultipleCandidates, |
| 14899 | SuffixInfo.getLoc(), |
| 14900 | SuffixInfo.getInfo()); |
| 14901 | if (Fn.isInvalid()) |
| 14902 | return true; |
| 14903 | |
| 14904 | // Check the argument types. This should almost always be a no-op, except |
| 14905 | // that array-to-pointer decay is applied to string literals. |
| 14906 | Expr *ConvArgs[2]; |
| 14907 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 14908 | ExprResult InputInit = PerformCopyInitialization( |
| 14909 | InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), |
| 14910 | SourceLocation(), Args[ArgIdx]); |
| 14911 | if (InputInit.isInvalid()) |
| 14912 | return true; |
| 14913 | ConvArgs[ArgIdx] = InputInit.get(); |
| 14914 | } |
| 14915 | |
| 14916 | QualType ResultTy = FD->getReturnType(); |
| 14917 | ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| 14918 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 14919 | |
| 14920 | UserDefinedLiteral *UDL = UserDefinedLiteral::Create( |
| 14921 | Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy, |
| 14922 | VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); |
| 14923 | |
| 14924 | if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) |
| 14925 | return ExprError(); |
| 14926 | |
| 14927 | if (CheckFunctionCall(FD, UDL, nullptr)) |
| 14928 | return ExprError(); |
| 14929 | |
| 14930 | return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); |
| 14931 | } |
| 14932 | |
| 14933 | /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the |
| 14934 | /// given LookupResult is non-empty, it is assumed to describe a member which |
| 14935 | /// will be invoked. Otherwise, the function will be found via argument |
| 14936 | /// dependent lookup. |
| 14937 | /// CallExpr is set to a valid expression and FRS_Success returned on success, |
| 14938 | /// otherwise CallExpr is set to ExprError() and some non-success value |
| 14939 | /// is returned. |
| 14940 | Sema::ForRangeStatus |
| 14941 | Sema::BuildForRangeBeginEndCall(SourceLocation Loc, |
| 14942 | SourceLocation RangeLoc, |
| 14943 | const DeclarationNameInfo &NameInfo, |
| 14944 | LookupResult &MemberLookup, |
| 14945 | OverloadCandidateSet *CandidateSet, |
| 14946 | Expr *Range, ExprResult *CallExpr) { |
| 14947 | Scope *S = nullptr; |
| 14948 | |
| 14949 | CandidateSet->clear(OverloadCandidateSet::CSK_Normal); |
| 14950 | if (!MemberLookup.empty()) { |
| 14951 | ExprResult MemberRef = |
| 14952 | BuildMemberReferenceExpr(Range, Range->getType(), Loc, |
| 14953 | /*IsPtr=*/false, CXXScopeSpec(), |
| 14954 | /*TemplateKWLoc=*/SourceLocation(), |
| 14955 | /*FirstQualifierInScope=*/nullptr, |
| 14956 | MemberLookup, |
| 14957 | /*TemplateArgs=*/nullptr, S); |
| 14958 | if (MemberRef.isInvalid()) { |
| 14959 | *CallExpr = ExprError(); |
| 14960 | return FRS_DiagnosticIssued; |
| 14961 | } |
| 14962 | *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr); |
| 14963 | if (CallExpr->isInvalid()) { |
| 14964 | *CallExpr = ExprError(); |
| 14965 | return FRS_DiagnosticIssued; |
| 14966 | } |
| 14967 | } else { |
| 14968 | ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, |
| 14969 | NestedNameSpecifierLoc(), |
| 14970 | NameInfo, UnresolvedSet<0>()); |
| 14971 | if (FnR.isInvalid()) |
| 14972 | return FRS_DiagnosticIssued; |
| 14973 | UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get()); |
| 14974 | |
| 14975 | bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, |
| 14976 | CandidateSet, CallExpr); |
| 14977 | if (CandidateSet->empty() || CandidateSetError) { |
| 14978 | *CallExpr = ExprError(); |
| 14979 | return FRS_NoViableFunction; |
| 14980 | } |
| 14981 | OverloadCandidateSet::iterator Best; |
| 14982 | OverloadingResult OverloadResult = |
| 14983 | CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); |
| 14984 | |
| 14985 | if (OverloadResult == OR_No_Viable_Function) { |
| 14986 | *CallExpr = ExprError(); |
| 14987 | return FRS_NoViableFunction; |
| 14988 | } |
| 14989 | *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, |
| 14990 | Loc, nullptr, CandidateSet, &Best, |
| 14991 | OverloadResult, |
| 14992 | /*AllowTypoCorrection=*/false); |
| 14993 | if (CallExpr->isInvalid() || OverloadResult != OR_Success) { |
| 14994 | *CallExpr = ExprError(); |
| 14995 | return FRS_DiagnosticIssued; |
| 14996 | } |
| 14997 | } |
| 14998 | return FRS_Success; |
| 14999 | } |
| 15000 | |
| 15001 | |
| 15002 | /// FixOverloadedFunctionReference - E is an expression that refers to |
| 15003 | /// a C++ overloaded function (possibly with some parentheses and |
| 15004 | /// perhaps a '&' around it). We have resolved the overloaded function |
| 15005 | /// to the function declaration Fn, so patch up the expression E to |
| 15006 | /// refer (possibly indirectly) to Fn. Returns the new expr. |
| 15007 | Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, |
| 15008 | FunctionDecl *Fn) { |
| 15009 | if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
| 15010 | Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), |
| 15011 | Found, Fn); |
| 15012 | if (SubExpr == PE->getSubExpr()) |
| 15013 | return PE; |
| 15014 | |
| 15015 | return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); |
| 15016 | } |
| 15017 | |
| 15018 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| 15019 | Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), |
| 15020 | Found, Fn); |
| 15021 | assert(Context.hasSameType(ICE->getSubExpr()->getType(),((void)0) |
| 15022 | SubExpr->getType()) &&((void)0) |
| 15023 | "Implicit cast type cannot be determined from overload")((void)0); |
| 15024 | assert(ICE->path_empty() && "fixing up hierarchy conversion?")((void)0); |
| 15025 | if (SubExpr == ICE->getSubExpr()) |
| 15026 | return ICE; |
| 15027 | |
| 15028 | return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), |
| 15029 | SubExpr, nullptr, ICE->getValueKind(), |
| 15030 | CurFPFeatureOverrides()); |
| 15031 | } |
| 15032 | |
| 15033 | if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { |
| 15034 | if (!GSE->isResultDependent()) { |
| 15035 | Expr *SubExpr = |
| 15036 | FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); |
| 15037 | if (SubExpr == GSE->getResultExpr()) |
| 15038 | return GSE; |
| 15039 | |
| 15040 | // Replace the resulting type information before rebuilding the generic |
| 15041 | // selection expression. |
| 15042 | ArrayRef<Expr *> A = GSE->getAssocExprs(); |
| 15043 | SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); |
| 15044 | unsigned ResultIdx = GSE->getResultIndex(); |
| 15045 | AssocExprs[ResultIdx] = SubExpr; |
| 15046 | |
| 15047 | return GenericSelectionExpr::Create( |
| 15048 | Context, GSE->getGenericLoc(), GSE->getControllingExpr(), |
| 15049 | GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), |
| 15050 | GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), |
| 15051 | ResultIdx); |
| 15052 | } |
| 15053 | // Rather than fall through to the unreachable, return the original generic |
| 15054 | // selection expression. |
| 15055 | return GSE; |
| 15056 | } |
| 15057 | |
| 15058 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { |
| 15059 | assert(UnOp->getOpcode() == UO_AddrOf &&((void)0) |
| 15060 | "Can only take the address of an overloaded function")((void)0); |
| 15061 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { |
| 15062 | if (Method->isStatic()) { |
| 15063 | // Do nothing: static member functions aren't any different |
| 15064 | // from non-member functions. |
| 15065 | } else { |
| 15066 | // Fix the subexpression, which really has to be an |
| 15067 | // UnresolvedLookupExpr holding an overloaded member function |
| 15068 | // or template. |
| 15069 | Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), |
| 15070 | Found, Fn); |
| 15071 | if (SubExpr == UnOp->getSubExpr()) |
| 15072 | return UnOp; |
| 15073 | |
| 15074 | assert(isa<DeclRefExpr>(SubExpr)((void)0) |
| 15075 | && "fixed to something other than a decl ref")((void)0); |
| 15076 | assert(cast<DeclRefExpr>(SubExpr)->getQualifier()((void)0) |
| 15077 | && "fixed to a member ref with no nested name qualifier")((void)0); |
| 15078 | |
| 15079 | // We have taken the address of a pointer to member |
| 15080 | // function. Perform the computation here so that we get the |
| 15081 | // appropriate pointer to member type. |
| 15082 | QualType ClassType |
| 15083 | = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); |
| 15084 | QualType MemPtrType |
| 15085 | = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); |
| 15086 | // Under the MS ABI, lock down the inheritance model now. |
| 15087 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| 15088 | (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); |
| 15089 | |
| 15090 | return UnaryOperator::Create( |
| 15091 | Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary, |
| 15092 | UnOp->getOperatorLoc(), false, CurFPFeatureOverrides()); |
| 15093 | } |
| 15094 | } |
| 15095 | Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), |
| 15096 | Found, Fn); |
| 15097 | if (SubExpr == UnOp->getSubExpr()) |
| 15098 | return UnOp; |
| 15099 | |
| 15100 | return UnaryOperator::Create( |
| 15101 | Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()), |
| 15102 | VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false, |
| 15103 | CurFPFeatureOverrides()); |
| 15104 | } |
| 15105 | |
| 15106 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { |
| 15107 | // FIXME: avoid copy. |
| 15108 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; |
| 15109 | if (ULE->hasExplicitTemplateArgs()) { |
| 15110 | ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| 15111 | TemplateArgs = &TemplateArgsBuffer; |
| 15112 | } |
| 15113 | |
| 15114 | DeclRefExpr *DRE = |
| 15115 | BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(), |
| 15116 | ULE->getQualifierLoc(), Found.getDecl(), |
| 15117 | ULE->getTemplateKeywordLoc(), TemplateArgs); |
| 15118 | DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); |
| 15119 | return DRE; |
| 15120 | } |
| 15121 | |
| 15122 | if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { |
| 15123 | // FIXME: avoid copy. |
| 15124 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; |
| 15125 | if (MemExpr->hasExplicitTemplateArgs()) { |
| 15126 | MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| 15127 | TemplateArgs = &TemplateArgsBuffer; |
| 15128 | } |
| 15129 | |
| 15130 | Expr *Base; |
| 15131 | |
| 15132 | // If we're filling in a static method where we used to have an |
| 15133 | // implicit member access, rewrite to a simple decl ref. |
| 15134 | if (MemExpr->isImplicitAccess()) { |
| 15135 | if (cast<CXXMethodDecl>(Fn)->isStatic()) { |
| 15136 | DeclRefExpr *DRE = BuildDeclRefExpr( |
| 15137 | Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), |
| 15138 | MemExpr->getQualifierLoc(), Found.getDecl(), |
| 15139 | MemExpr->getTemplateKeywordLoc(), TemplateArgs); |
| 15140 | DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); |
| 15141 | return DRE; |
| 15142 | } else { |
| 15143 | SourceLocation Loc = MemExpr->getMemberLoc(); |
| 15144 | if (MemExpr->getQualifier()) |
| 15145 | Loc = MemExpr->getQualifierLoc().getBeginLoc(); |
| 15146 | Base = |
| 15147 | BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); |
| 15148 | } |
| 15149 | } else |
| 15150 | Base = MemExpr->getBase(); |
| 15151 | |
| 15152 | ExprValueKind valueKind; |
| 15153 | QualType type; |
| 15154 | if (cast<CXXMethodDecl>(Fn)->isStatic()) { |
| 15155 | valueKind = VK_LValue; |
| 15156 | type = Fn->getType(); |
| 15157 | } else { |
| 15158 | valueKind = VK_PRValue; |
| 15159 | type = Context.BoundMemberTy; |
| 15160 | } |
| 15161 | |
| 15162 | return BuildMemberExpr( |
| 15163 | Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), |
| 15164 | MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, |
| 15165 | /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), |
| 15166 | type, valueKind, OK_Ordinary, TemplateArgs); |
| 15167 | } |
| 15168 | |
| 15169 | llvm_unreachable("Invalid reference to overloaded function")__builtin_unreachable(); |
| 15170 | } |
| 15171 | |
| 15172 | ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, |
| 15173 | DeclAccessPair Found, |
| 15174 | FunctionDecl *Fn) { |
| 15175 | return FixOverloadedFunctionReference(E.get(), Found, Fn); |
| 15176 | } |