Bug Summary

File:src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaInit.cpp
Warning:line 4090, column 27
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaInit.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model static -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include/clang/Sema -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libclangSema/../include -I /usr/src/gnu/usr.bin/clang/libclangSema/obj -I /usr/src/gnu/usr.bin/clang/libclangSema/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libclangSema/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -stack-protector 2 -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaInit.cpp

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/lib/Sema/SemaInit.cpp

1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for initializers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/ExprObjC.h"
17#include "clang/AST/ExprOpenMP.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/CharInfo.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Sema/Designator.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/SemaInternal.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34//===----------------------------------------------------------------------===//
35// Sema Initialization Checking
36//===----------------------------------------------------------------------===//
37
38/// Check whether T is compatible with a wide character type (wchar_t,
39/// char16_t or char32_t).
40static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41 if (Context.typesAreCompatible(Context.getWideCharType(), T))
42 return true;
43 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44 return Context.typesAreCompatible(Context.Char16Ty, T) ||
45 Context.typesAreCompatible(Context.Char32Ty, T);
46 }
47 return false;
48}
49
50enum StringInitFailureKind {
51 SIF_None,
52 SIF_NarrowStringIntoWideChar,
53 SIF_WideStringIntoChar,
54 SIF_IncompatWideStringIntoWideChar,
55 SIF_UTF8StringIntoPlainChar,
56 SIF_PlainStringIntoUTF8Char,
57 SIF_Other
58};
59
60/// Check whether the array of type AT can be initialized by the Init
61/// expression by means of string initialization. Returns SIF_None if so,
62/// otherwise returns a StringInitFailureKind that describes why the
63/// initialization would not work.
64static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65 ASTContext &Context) {
66 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67 return SIF_Other;
68
69 // See if this is a string literal or @encode.
70 Init = Init->IgnoreParens();
71
72 // Handle @encode, which is a narrow string.
73 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74 return SIF_None;
75
76 // Otherwise we can only handle string literals.
77 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78 if (!SL)
79 return SIF_Other;
80
81 const QualType ElemTy =
82 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83
84 switch (SL->getKind()) {
85 case StringLiteral::UTF8:
86 // char8_t array can be initialized with a UTF-8 string.
87 if (ElemTy->isChar8Type())
88 return SIF_None;
89 LLVM_FALLTHROUGH[[gnu::fallthrough]];
90 case StringLiteral::Ascii:
91 // char array can be initialized with a narrow string.
92 // Only allow char x[] = "foo"; not char x[] = L"foo";
93 if (ElemTy->isCharType())
94 return (SL->getKind() == StringLiteral::UTF8 &&
95 Context.getLangOpts().Char8)
96 ? SIF_UTF8StringIntoPlainChar
97 : SIF_None;
98 if (ElemTy->isChar8Type())
99 return SIF_PlainStringIntoUTF8Char;
100 if (IsWideCharCompatible(ElemTy, Context))
101 return SIF_NarrowStringIntoWideChar;
102 return SIF_Other;
103 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
104 // "An array with element type compatible with a qualified or unqualified
105 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
106 // string literal with the corresponding encoding prefix (L, u, or U,
107 // respectively), optionally enclosed in braces.
108 case StringLiteral::UTF16:
109 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
110 return SIF_None;
111 if (ElemTy->isCharType() || ElemTy->isChar8Type())
112 return SIF_WideStringIntoChar;
113 if (IsWideCharCompatible(ElemTy, Context))
114 return SIF_IncompatWideStringIntoWideChar;
115 return SIF_Other;
116 case StringLiteral::UTF32:
117 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
118 return SIF_None;
119 if (ElemTy->isCharType() || ElemTy->isChar8Type())
120 return SIF_WideStringIntoChar;
121 if (IsWideCharCompatible(ElemTy, Context))
122 return SIF_IncompatWideStringIntoWideChar;
123 return SIF_Other;
124 case StringLiteral::Wide:
125 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
126 return SIF_None;
127 if (ElemTy->isCharType() || ElemTy->isChar8Type())
128 return SIF_WideStringIntoChar;
129 if (IsWideCharCompatible(ElemTy, Context))
130 return SIF_IncompatWideStringIntoWideChar;
131 return SIF_Other;
132 }
133
134 llvm_unreachable("missed a StringLiteral kind?")__builtin_unreachable();
135}
136
137static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
138 ASTContext &Context) {
139 const ArrayType *arrayType = Context.getAsArrayType(declType);
140 if (!arrayType)
141 return SIF_Other;
142 return IsStringInit(init, arrayType, Context);
143}
144
145bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
146 return ::IsStringInit(Init, AT, Context) == SIF_None;
147}
148
149/// Update the type of a string literal, including any surrounding parentheses,
150/// to match the type of the object which it is initializing.
151static void updateStringLiteralType(Expr *E, QualType Ty) {
152 while (true) {
153 E->setType(Ty);
154 E->setValueKind(VK_PRValue);
155 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
156 break;
157 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
158 E = PE->getSubExpr();
159 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
160 assert(UO->getOpcode() == UO_Extension)((void)0);
161 E = UO->getSubExpr();
162 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
163 E = GSE->getResultExpr();
164 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
165 E = CE->getChosenSubExpr();
166 } else {
167 llvm_unreachable("unexpected expr in string literal init")__builtin_unreachable();
168 }
169 }
170}
171
172/// Fix a compound literal initializing an array so it's correctly marked
173/// as an rvalue.
174static void updateGNUCompoundLiteralRValue(Expr *E) {
175 while (true) {
176 E->setValueKind(VK_PRValue);
177 if (isa<CompoundLiteralExpr>(E)) {
178 break;
179 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
180 E = PE->getSubExpr();
181 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
182 assert(UO->getOpcode() == UO_Extension)((void)0);
183 E = UO->getSubExpr();
184 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
185 E = GSE->getResultExpr();
186 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
187 E = CE->getChosenSubExpr();
188 } else {
189 llvm_unreachable("unexpected expr in array compound literal init")__builtin_unreachable();
190 }
191 }
192}
193
194static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
195 Sema &S) {
196 // Get the length of the string as parsed.
197 auto *ConstantArrayTy =
198 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
199 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
200
201 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
202 // C99 6.7.8p14. We have an array of character type with unknown size
203 // being initialized to a string literal.
204 llvm::APInt ConstVal(32, StrLength);
205 // Return a new array type (C99 6.7.8p22).
206 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
207 ConstVal, nullptr,
208 ArrayType::Normal, 0);
209 updateStringLiteralType(Str, DeclT);
210 return;
211 }
212
213 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
214
215 // We have an array of character type with known size. However,
216 // the size may be smaller or larger than the string we are initializing.
217 // FIXME: Avoid truncation for 64-bit length strings.
218 if (S.getLangOpts().CPlusPlus) {
219 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
220 // For Pascal strings it's OK to strip off the terminating null character,
221 // so the example below is valid:
222 //
223 // unsigned char a[2] = "\pa";
224 if (SL->isPascal())
225 StrLength--;
226 }
227
228 // [dcl.init.string]p2
229 if (StrLength > CAT->getSize().getZExtValue())
230 S.Diag(Str->getBeginLoc(),
231 diag::err_initializer_string_for_char_array_too_long)
232 << Str->getSourceRange();
233 } else {
234 // C99 6.7.8p14.
235 if (StrLength-1 > CAT->getSize().getZExtValue())
236 S.Diag(Str->getBeginLoc(),
237 diag::ext_initializer_string_for_char_array_too_long)
238 << Str->getSourceRange();
239 }
240
241 // Set the type to the actual size that we are initializing. If we have
242 // something like:
243 // char x[1] = "foo";
244 // then this will set the string literal's type to char[1].
245 updateStringLiteralType(Str, DeclT);
246}
247
248//===----------------------------------------------------------------------===//
249// Semantic checking for initializer lists.
250//===----------------------------------------------------------------------===//
251
252namespace {
253
254/// Semantic checking for initializer lists.
255///
256/// The InitListChecker class contains a set of routines that each
257/// handle the initialization of a certain kind of entity, e.g.,
258/// arrays, vectors, struct/union types, scalars, etc. The
259/// InitListChecker itself performs a recursive walk of the subobject
260/// structure of the type to be initialized, while stepping through
261/// the initializer list one element at a time. The IList and Index
262/// parameters to each of the Check* routines contain the active
263/// (syntactic) initializer list and the index into that initializer
264/// list that represents the current initializer. Each routine is
265/// responsible for moving that Index forward as it consumes elements.
266///
267/// Each Check* routine also has a StructuredList/StructuredIndex
268/// arguments, which contains the current "structured" (semantic)
269/// initializer list and the index into that initializer list where we
270/// are copying initializers as we map them over to the semantic
271/// list. Once we have completed our recursive walk of the subobject
272/// structure, we will have constructed a full semantic initializer
273/// list.
274///
275/// C99 designators cause changes in the initializer list traversal,
276/// because they make the initialization "jump" into a specific
277/// subobject and then continue the initialization from that
278/// point. CheckDesignatedInitializer() recursively steps into the
279/// designated subobject and manages backing out the recursion to
280/// initialize the subobjects after the one designated.
281///
282/// If an initializer list contains any designators, we build a placeholder
283/// structured list even in 'verify only' mode, so that we can track which
284/// elements need 'empty' initializtion.
285class InitListChecker {
286 Sema &SemaRef;
287 bool hadError = false;
288 bool VerifyOnly; // No diagnostics.
289 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
290 bool InOverloadResolution;
291 InitListExpr *FullyStructuredList = nullptr;
292 NoInitExpr *DummyExpr = nullptr;
293
294 NoInitExpr *getDummyInit() {
295 if (!DummyExpr)
296 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
297 return DummyExpr;
298 }
299
300 void CheckImplicitInitList(const InitializedEntity &Entity,
301 InitListExpr *ParentIList, QualType T,
302 unsigned &Index, InitListExpr *StructuredList,
303 unsigned &StructuredIndex);
304 void CheckExplicitInitList(const InitializedEntity &Entity,
305 InitListExpr *IList, QualType &T,
306 InitListExpr *StructuredList,
307 bool TopLevelObject = false);
308 void CheckListElementTypes(const InitializedEntity &Entity,
309 InitListExpr *IList, QualType &DeclType,
310 bool SubobjectIsDesignatorContext,
311 unsigned &Index,
312 InitListExpr *StructuredList,
313 unsigned &StructuredIndex,
314 bool TopLevelObject = false);
315 void CheckSubElementType(const InitializedEntity &Entity,
316 InitListExpr *IList, QualType ElemType,
317 unsigned &Index,
318 InitListExpr *StructuredList,
319 unsigned &StructuredIndex,
320 bool DirectlyDesignated = false);
321 void CheckComplexType(const InitializedEntity &Entity,
322 InitListExpr *IList, QualType DeclType,
323 unsigned &Index,
324 InitListExpr *StructuredList,
325 unsigned &StructuredIndex);
326 void CheckScalarType(const InitializedEntity &Entity,
327 InitListExpr *IList, QualType DeclType,
328 unsigned &Index,
329 InitListExpr *StructuredList,
330 unsigned &StructuredIndex);
331 void CheckReferenceType(const InitializedEntity &Entity,
332 InitListExpr *IList, QualType DeclType,
333 unsigned &Index,
334 InitListExpr *StructuredList,
335 unsigned &StructuredIndex);
336 void CheckVectorType(const InitializedEntity &Entity,
337 InitListExpr *IList, QualType DeclType, unsigned &Index,
338 InitListExpr *StructuredList,
339 unsigned &StructuredIndex);
340 void CheckStructUnionTypes(const InitializedEntity &Entity,
341 InitListExpr *IList, QualType DeclType,
342 CXXRecordDecl::base_class_range Bases,
343 RecordDecl::field_iterator Field,
344 bool SubobjectIsDesignatorContext, unsigned &Index,
345 InitListExpr *StructuredList,
346 unsigned &StructuredIndex,
347 bool TopLevelObject = false);
348 void CheckArrayType(const InitializedEntity &Entity,
349 InitListExpr *IList, QualType &DeclType,
350 llvm::APSInt elementIndex,
351 bool SubobjectIsDesignatorContext, unsigned &Index,
352 InitListExpr *StructuredList,
353 unsigned &StructuredIndex);
354 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
355 InitListExpr *IList, DesignatedInitExpr *DIE,
356 unsigned DesigIdx,
357 QualType &CurrentObjectType,
358 RecordDecl::field_iterator *NextField,
359 llvm::APSInt *NextElementIndex,
360 unsigned &Index,
361 InitListExpr *StructuredList,
362 unsigned &StructuredIndex,
363 bool FinishSubobjectInit,
364 bool TopLevelObject);
365 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
366 QualType CurrentObjectType,
367 InitListExpr *StructuredList,
368 unsigned StructuredIndex,
369 SourceRange InitRange,
370 bool IsFullyOverwritten = false);
371 void UpdateStructuredListElement(InitListExpr *StructuredList,
372 unsigned &StructuredIndex,
373 Expr *expr);
374 InitListExpr *createInitListExpr(QualType CurrentObjectType,
375 SourceRange InitRange,
376 unsigned ExpectedNumInits);
377 int numArrayElements(QualType DeclType);
378 int numStructUnionElements(QualType DeclType);
379
380 ExprResult PerformEmptyInit(SourceLocation Loc,
381 const InitializedEntity &Entity);
382
383 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
384 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
385 bool FullyOverwritten = true) {
386 // Overriding an initializer via a designator is valid with C99 designated
387 // initializers, but ill-formed with C++20 designated initializers.
388 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
389 ? diag::ext_initializer_overrides
390 : diag::warn_initializer_overrides;
391
392 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
393 // In overload resolution, we have to strictly enforce the rules, and so
394 // don't allow any overriding of prior initializers. This matters for a
395 // case such as:
396 //
397 // union U { int a, b; };
398 // struct S { int a, b; };
399 // void f(U), f(S);
400 //
401 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
402 // consistency, we disallow all overriding of prior initializers in
403 // overload resolution, not only overriding of union members.
404 hadError = true;
405 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
406 // If we'll be keeping around the old initializer but overwriting part of
407 // the object it initialized, and that object is not trivially
408 // destructible, this can leak. Don't allow that, not even as an
409 // extension.
410 //
411 // FIXME: It might be reasonable to allow this in cases where the part of
412 // the initializer that we're overriding has trivial destruction.
413 DiagID = diag::err_initializer_overrides_destructed;
414 } else if (!OldInit->getSourceRange().isValid()) {
415 // We need to check on source range validity because the previous
416 // initializer does not have to be an explicit initializer. e.g.,
417 //
418 // struct P { int a, b; };
419 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
420 //
421 // There is an overwrite taking place because the first braced initializer
422 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
423 //
424 // Such overwrites are harmless, so we don't diagnose them. (Note that in
425 // C++, this cannot be reached unless we've already seen and diagnosed a
426 // different conformance issue, such as a mixture of designated and
427 // non-designated initializers or a multi-level designator.)
428 return;
429 }
430
431 if (!VerifyOnly) {
432 SemaRef.Diag(NewInitRange.getBegin(), DiagID)
433 << NewInitRange << FullyOverwritten << OldInit->getType();
434 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
435 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
436 << OldInit->getSourceRange();
437 }
438 }
439
440 // Explanation on the "FillWithNoInit" mode:
441 //
442 // Assume we have the following definitions (Case#1):
443 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
444 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
445 //
446 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
447 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
448 //
449 // But if we have (Case#2):
450 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
451 //
452 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
453 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
454 //
455 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
456 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
457 // initializers but with special "NoInitExpr" place holders, which tells the
458 // CodeGen not to generate any initializers for these parts.
459 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
460 const InitializedEntity &ParentEntity,
461 InitListExpr *ILE, bool &RequiresSecondPass,
462 bool FillWithNoInit);
463 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
464 const InitializedEntity &ParentEntity,
465 InitListExpr *ILE, bool &RequiresSecondPass,
466 bool FillWithNoInit = false);
467 void FillInEmptyInitializations(const InitializedEntity &Entity,
468 InitListExpr *ILE, bool &RequiresSecondPass,
469 InitListExpr *OuterILE, unsigned OuterIndex,
470 bool FillWithNoInit = false);
471 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
472 Expr *InitExpr, FieldDecl *Field,
473 bool TopLevelObject);
474 void CheckEmptyInitializable(const InitializedEntity &Entity,
475 SourceLocation Loc);
476
477public:
478 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
479 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
480 bool InOverloadResolution = false);
481 bool HadError() { return hadError; }
482
483 // Retrieves the fully-structured initializer list used for
484 // semantic analysis and code generation.
485 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
486};
487
488} // end anonymous namespace
489
490ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
491 const InitializedEntity &Entity) {
492 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
493 true);
494 MultiExprArg SubInit;
495 Expr *InitExpr;
496 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
497
498 // C++ [dcl.init.aggr]p7:
499 // If there are fewer initializer-clauses in the list than there are
500 // members in the aggregate, then each member not explicitly initialized
501 // ...
502 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
503 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
504 if (EmptyInitList) {
505 // C++1y / DR1070:
506 // shall be initialized [...] from an empty initializer list.
507 //
508 // We apply the resolution of this DR to C++11 but not C++98, since C++98
509 // does not have useful semantics for initialization from an init list.
510 // We treat this as copy-initialization, because aggregate initialization
511 // always performs copy-initialization on its elements.
512 //
513 // Only do this if we're initializing a class type, to avoid filling in
514 // the initializer list where possible.
515 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
516 InitListExpr(SemaRef.Context, Loc, None, Loc);
517 InitExpr->setType(SemaRef.Context.VoidTy);
518 SubInit = InitExpr;
519 Kind = InitializationKind::CreateCopy(Loc, Loc);
520 } else {
521 // C++03:
522 // shall be value-initialized.
523 }
524
525 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
526 // libstdc++4.6 marks the vector default constructor as explicit in
527 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
528 // stlport does so too. Look for std::__debug for libstdc++, and for
529 // std:: for stlport. This is effectively a compiler-side implementation of
530 // LWG2193.
531 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
532 InitializationSequence::FK_ExplicitConstructor) {
533 OverloadCandidateSet::iterator Best;
534 OverloadingResult O =
535 InitSeq.getFailedCandidateSet()
536 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
537 (void)O;
538 assert(O == OR_Success && "Inconsistent overload resolution")((void)0);
539 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
540 CXXRecordDecl *R = CtorDecl->getParent();
541
542 if (CtorDecl->getMinRequiredArguments() == 0 &&
543 CtorDecl->isExplicit() && R->getDeclName() &&
544 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
545 bool IsInStd = false;
546 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
547 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
548 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
549 IsInStd = true;
550 }
551
552 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
553 .Cases("basic_string", "deque", "forward_list", true)
554 .Cases("list", "map", "multimap", "multiset", true)
555 .Cases("priority_queue", "queue", "set", "stack", true)
556 .Cases("unordered_map", "unordered_set", "vector", true)
557 .Default(false)) {
558 InitSeq.InitializeFrom(
559 SemaRef, Entity,
560 InitializationKind::CreateValue(Loc, Loc, Loc, true),
561 MultiExprArg(), /*TopLevelOfInitList=*/false,
562 TreatUnavailableAsInvalid);
563 // Emit a warning for this. System header warnings aren't shown
564 // by default, but people working on system headers should see it.
565 if (!VerifyOnly) {
566 SemaRef.Diag(CtorDecl->getLocation(),
567 diag::warn_invalid_initializer_from_system_header);
568 if (Entity.getKind() == InitializedEntity::EK_Member)
569 SemaRef.Diag(Entity.getDecl()->getLocation(),
570 diag::note_used_in_initialization_here);
571 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
572 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
573 }
574 }
575 }
576 }
577 if (!InitSeq) {
578 if (!VerifyOnly) {
579 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
580 if (Entity.getKind() == InitializedEntity::EK_Member)
581 SemaRef.Diag(Entity.getDecl()->getLocation(),
582 diag::note_in_omitted_aggregate_initializer)
583 << /*field*/1 << Entity.getDecl();
584 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
585 bool IsTrailingArrayNewMember =
586 Entity.getParent() &&
587 Entity.getParent()->isVariableLengthArrayNew();
588 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
589 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
590 << Entity.getElementIndex();
591 }
592 }
593 hadError = true;
594 return ExprError();
595 }
596
597 return VerifyOnly ? ExprResult()
598 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
599}
600
601void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
602 SourceLocation Loc) {
603 // If we're building a fully-structured list, we'll check this at the end
604 // once we know which elements are actually initialized. Otherwise, we know
605 // that there are no designators so we can just check now.
606 if (FullyStructuredList)
607 return;
608 PerformEmptyInit(Loc, Entity);
609}
610
611void InitListChecker::FillInEmptyInitForBase(
612 unsigned Init, const CXXBaseSpecifier &Base,
613 const InitializedEntity &ParentEntity, InitListExpr *ILE,
614 bool &RequiresSecondPass, bool FillWithNoInit) {
615 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
616 SemaRef.Context, &Base, false, &ParentEntity);
617
618 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
619 ExprResult BaseInit = FillWithNoInit
620 ? new (SemaRef.Context) NoInitExpr(Base.getType())
621 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
622 if (BaseInit.isInvalid()) {
623 hadError = true;
624 return;
625 }
626
627 if (!VerifyOnly) {
628 assert(Init < ILE->getNumInits() && "should have been expanded")((void)0);
629 ILE->setInit(Init, BaseInit.getAs<Expr>());
630 }
631 } else if (InitListExpr *InnerILE =
632 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
633 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
634 ILE, Init, FillWithNoInit);
635 } else if (DesignatedInitUpdateExpr *InnerDIUE =
636 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
637 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
638 RequiresSecondPass, ILE, Init,
639 /*FillWithNoInit =*/true);
640 }
641}
642
643void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
644 const InitializedEntity &ParentEntity,
645 InitListExpr *ILE,
646 bool &RequiresSecondPass,
647 bool FillWithNoInit) {
648 SourceLocation Loc = ILE->getEndLoc();
649 unsigned NumInits = ILE->getNumInits();
650 InitializedEntity MemberEntity
651 = InitializedEntity::InitializeMember(Field, &ParentEntity);
652
653 if (Init >= NumInits || !ILE->getInit(Init)) {
654 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
655 if (!RType->getDecl()->isUnion())
656 assert((Init < NumInits || VerifyOnly) &&((void)0)
657 "This ILE should have been expanded")((void)0);
658
659 if (FillWithNoInit) {
660 assert(!VerifyOnly && "should not fill with no-init in verify-only mode")((void)0);
661 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
662 if (Init < NumInits)
663 ILE->setInit(Init, Filler);
664 else
665 ILE->updateInit(SemaRef.Context, Init, Filler);
666 return;
667 }
668 // C++1y [dcl.init.aggr]p7:
669 // If there are fewer initializer-clauses in the list than there are
670 // members in the aggregate, then each member not explicitly initialized
671 // shall be initialized from its brace-or-equal-initializer [...]
672 if (Field->hasInClassInitializer()) {
673 if (VerifyOnly)
674 return;
675
676 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
677 if (DIE.isInvalid()) {
678 hadError = true;
679 return;
680 }
681 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
682 if (Init < NumInits)
683 ILE->setInit(Init, DIE.get());
684 else {
685 ILE->updateInit(SemaRef.Context, Init, DIE.get());
686 RequiresSecondPass = true;
687 }
688 return;
689 }
690
691 if (Field->getType()->isReferenceType()) {
692 if (!VerifyOnly) {
693 // C++ [dcl.init.aggr]p9:
694 // If an incomplete or empty initializer-list leaves a
695 // member of reference type uninitialized, the program is
696 // ill-formed.
697 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
698 << Field->getType()
699 << ILE->getSyntacticForm()->getSourceRange();
700 SemaRef.Diag(Field->getLocation(),
701 diag::note_uninit_reference_member);
702 }
703 hadError = true;
704 return;
705 }
706
707 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
708 if (MemberInit.isInvalid()) {
709 hadError = true;
710 return;
711 }
712
713 if (hadError || VerifyOnly) {
714 // Do nothing
715 } else if (Init < NumInits) {
716 ILE->setInit(Init, MemberInit.getAs<Expr>());
717 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
718 // Empty initialization requires a constructor call, so
719 // extend the initializer list to include the constructor
720 // call and make a note that we'll need to take another pass
721 // through the initializer list.
722 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
723 RequiresSecondPass = true;
724 }
725 } else if (InitListExpr *InnerILE
726 = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
727 FillInEmptyInitializations(MemberEntity, InnerILE,
728 RequiresSecondPass, ILE, Init, FillWithNoInit);
729 } else if (DesignatedInitUpdateExpr *InnerDIUE =
730 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
731 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
732 RequiresSecondPass, ILE, Init,
733 /*FillWithNoInit =*/true);
734 }
735}
736
737/// Recursively replaces NULL values within the given initializer list
738/// with expressions that perform value-initialization of the
739/// appropriate type, and finish off the InitListExpr formation.
740void
741InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
742 InitListExpr *ILE,
743 bool &RequiresSecondPass,
744 InitListExpr *OuterILE,
745 unsigned OuterIndex,
746 bool FillWithNoInit) {
747 assert((ILE->getType() != SemaRef.Context.VoidTy) &&((void)0)
748 "Should not have void type")((void)0);
749
750 // We don't need to do any checks when just filling NoInitExprs; that can't
751 // fail.
752 if (FillWithNoInit && VerifyOnly)
753 return;
754
755 // If this is a nested initializer list, we might have changed its contents
756 // (and therefore some of its properties, such as instantiation-dependence)
757 // while filling it in. Inform the outer initializer list so that its state
758 // can be updated to match.
759 // FIXME: We should fully build the inner initializers before constructing
760 // the outer InitListExpr instead of mutating AST nodes after they have
761 // been used as subexpressions of other nodes.
762 struct UpdateOuterILEWithUpdatedInit {
763 InitListExpr *Outer;
764 unsigned OuterIndex;
765 ~UpdateOuterILEWithUpdatedInit() {
766 if (Outer)
767 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
768 }
769 } UpdateOuterRAII = {OuterILE, OuterIndex};
770
771 // A transparent ILE is not performing aggregate initialization and should
772 // not be filled in.
773 if (ILE->isTransparent())
774 return;
775
776 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
777 const RecordDecl *RDecl = RType->getDecl();
778 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
779 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
780 Entity, ILE, RequiresSecondPass, FillWithNoInit);
781 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
782 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
783 for (auto *Field : RDecl->fields()) {
784 if (Field->hasInClassInitializer()) {
785 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
786 FillWithNoInit);
787 break;
788 }
789 }
790 } else {
791 // The fields beyond ILE->getNumInits() are default initialized, so in
792 // order to leave them uninitialized, the ILE is expanded and the extra
793 // fields are then filled with NoInitExpr.
794 unsigned NumElems = numStructUnionElements(ILE->getType());
795 if (RDecl->hasFlexibleArrayMember())
796 ++NumElems;
797 if (!VerifyOnly && ILE->getNumInits() < NumElems)
798 ILE->resizeInits(SemaRef.Context, NumElems);
799
800 unsigned Init = 0;
801
802 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
803 for (auto &Base : CXXRD->bases()) {
804 if (hadError)
805 return;
806
807 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
808 FillWithNoInit);
809 ++Init;
810 }
811 }
812
813 for (auto *Field : RDecl->fields()) {
814 if (Field->isUnnamedBitfield())
815 continue;
816
817 if (hadError)
818 return;
819
820 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
821 FillWithNoInit);
822 if (hadError)
823 return;
824
825 ++Init;
826
827 // Only look at the first initialization of a union.
828 if (RDecl->isUnion())
829 break;
830 }
831 }
832
833 return;
834 }
835
836 QualType ElementType;
837
838 InitializedEntity ElementEntity = Entity;
839 unsigned NumInits = ILE->getNumInits();
840 unsigned NumElements = NumInits;
841 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
842 ElementType = AType->getElementType();
843 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
844 NumElements = CAType->getSize().getZExtValue();
845 // For an array new with an unknown bound, ask for one additional element
846 // in order to populate the array filler.
847 if (Entity.isVariableLengthArrayNew())
848 ++NumElements;
849 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
850 0, Entity);
851 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
852 ElementType = VType->getElementType();
853 NumElements = VType->getNumElements();
854 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
855 0, Entity);
856 } else
857 ElementType = ILE->getType();
858
859 bool SkipEmptyInitChecks = false;
860 for (unsigned Init = 0; Init != NumElements; ++Init) {
861 if (hadError)
862 return;
863
864 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
865 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
866 ElementEntity.setElementIndex(Init);
867
868 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
869 return;
870
871 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
872 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
873 ILE->setInit(Init, ILE->getArrayFiller());
874 else if (!InitExpr && !ILE->hasArrayFiller()) {
875 // In VerifyOnly mode, there's no point performing empty initialization
876 // more than once.
877 if (SkipEmptyInitChecks)
878 continue;
879
880 Expr *Filler = nullptr;
881
882 if (FillWithNoInit)
883 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
884 else {
885 ExprResult ElementInit =
886 PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
887 if (ElementInit.isInvalid()) {
888 hadError = true;
889 return;
890 }
891
892 Filler = ElementInit.getAs<Expr>();
893 }
894
895 if (hadError) {
896 // Do nothing
897 } else if (VerifyOnly) {
898 SkipEmptyInitChecks = true;
899 } else if (Init < NumInits) {
900 // For arrays, just set the expression used for value-initialization
901 // of the "holes" in the array.
902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
903 ILE->setArrayFiller(Filler);
904 else
905 ILE->setInit(Init, Filler);
906 } else {
907 // For arrays, just set the expression used for value-initialization
908 // of the rest of elements and exit.
909 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
910 ILE->setArrayFiller(Filler);
911 return;
912 }
913
914 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
915 // Empty initialization requires a constructor call, so
916 // extend the initializer list to include the constructor
917 // call and make a note that we'll need to take another pass
918 // through the initializer list.
919 ILE->updateInit(SemaRef.Context, Init, Filler);
920 RequiresSecondPass = true;
921 }
922 }
923 } else if (InitListExpr *InnerILE
924 = dyn_cast_or_null<InitListExpr>(InitExpr)) {
925 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
926 ILE, Init, FillWithNoInit);
927 } else if (DesignatedInitUpdateExpr *InnerDIUE =
928 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
929 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
930 RequiresSecondPass, ILE, Init,
931 /*FillWithNoInit =*/true);
932 }
933 }
934}
935
936static bool hasAnyDesignatedInits(const InitListExpr *IL) {
937 for (const Stmt *Init : *IL)
938 if (Init && isa<DesignatedInitExpr>(Init))
939 return true;
940 return false;
941}
942
943InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
944 InitListExpr *IL, QualType &T, bool VerifyOnly,
945 bool TreatUnavailableAsInvalid,
946 bool InOverloadResolution)
947 : SemaRef(S), VerifyOnly(VerifyOnly),
948 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
949 InOverloadResolution(InOverloadResolution) {
950 if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
951 FullyStructuredList =
952 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
953
954 // FIXME: Check that IL isn't already the semantic form of some other
955 // InitListExpr. If it is, we'd create a broken AST.
956 if (!VerifyOnly)
957 FullyStructuredList->setSyntacticForm(IL);
958 }
959
960 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
961 /*TopLevelObject=*/true);
962
963 if (!hadError && FullyStructuredList) {
964 bool RequiresSecondPass = false;
965 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
966 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
967 if (RequiresSecondPass && !hadError)
968 FillInEmptyInitializations(Entity, FullyStructuredList,
969 RequiresSecondPass, nullptr, 0);
970 }
971 if (hadError && FullyStructuredList)
972 FullyStructuredList->markError();
973}
974
975int InitListChecker::numArrayElements(QualType DeclType) {
976 // FIXME: use a proper constant
977 int maxElements = 0x7FFFFFFF;
978 if (const ConstantArrayType *CAT =
979 SemaRef.Context.getAsConstantArrayType(DeclType)) {
980 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
981 }
982 return maxElements;
983}
984
985int InitListChecker::numStructUnionElements(QualType DeclType) {
986 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
987 int InitializableMembers = 0;
988 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
989 InitializableMembers += CXXRD->getNumBases();
990 for (const auto *Field : structDecl->fields())
991 if (!Field->isUnnamedBitfield())
992 ++InitializableMembers;
993
994 if (structDecl->isUnion())
995 return std::min(InitializableMembers, 1);
996 return InitializableMembers - structDecl->hasFlexibleArrayMember();
997}
998
999/// Determine whether Entity is an entity for which it is idiomatic to elide
1000/// the braces in aggregate initialization.
1001static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1002 // Recursive initialization of the one and only field within an aggregate
1003 // class is considered idiomatic. This case arises in particular for
1004 // initialization of std::array, where the C++ standard suggests the idiom of
1005 //
1006 // std::array<T, N> arr = {1, 2, 3};
1007 //
1008 // (where std::array is an aggregate struct containing a single array field.
1009
1010 if (!Entity.getParent())
1011 return false;
1012
1013 // Allows elide brace initialization for aggregates with empty base.
1014 if (Entity.getKind() == InitializedEntity::EK_Base) {
1015 auto *ParentRD =
1016 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1017 CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1018 return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1019 }
1020
1021 // Allow brace elision if the only subobject is a field.
1022 if (Entity.getKind() == InitializedEntity::EK_Member) {
1023 auto *ParentRD =
1024 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1025 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1026 if (CXXRD->getNumBases()) {
1027 return false;
1028 }
1029 }
1030 auto FieldIt = ParentRD->field_begin();
1031 assert(FieldIt != ParentRD->field_end() &&((void)0)
1032 "no fields but have initializer for member?")((void)0);
1033 return ++FieldIt == ParentRD->field_end();
1034 }
1035
1036 return false;
1037}
1038
1039/// Check whether the range of the initializer \p ParentIList from element
1040/// \p Index onwards can be used to initialize an object of type \p T. Update
1041/// \p Index to indicate how many elements of the list were consumed.
1042///
1043/// This also fills in \p StructuredList, from element \p StructuredIndex
1044/// onwards, with the fully-braced, desugared form of the initialization.
1045void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1046 InitListExpr *ParentIList,
1047 QualType T, unsigned &Index,
1048 InitListExpr *StructuredList,
1049 unsigned &StructuredIndex) {
1050 int maxElements = 0;
1051
1052 if (T->isArrayType())
1053 maxElements = numArrayElements(T);
1054 else if (T->isRecordType())
1055 maxElements = numStructUnionElements(T);
1056 else if (T->isVectorType())
1057 maxElements = T->castAs<VectorType>()->getNumElements();
1058 else
1059 llvm_unreachable("CheckImplicitInitList(): Illegal type")__builtin_unreachable();
1060
1061 if (maxElements == 0) {
1062 if (!VerifyOnly)
1063 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1064 diag::err_implicit_empty_initializer);
1065 ++Index;
1066 hadError = true;
1067 return;
1068 }
1069
1070 // Build a structured initializer list corresponding to this subobject.
1071 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1072 ParentIList, Index, T, StructuredList, StructuredIndex,
1073 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1074 ParentIList->getSourceRange().getEnd()));
1075 unsigned StructuredSubobjectInitIndex = 0;
1076
1077 // Check the element types and build the structural subobject.
1078 unsigned StartIndex = Index;
1079 CheckListElementTypes(Entity, ParentIList, T,
1080 /*SubobjectIsDesignatorContext=*/false, Index,
1081 StructuredSubobjectInitList,
1082 StructuredSubobjectInitIndex);
1083
1084 if (StructuredSubobjectInitList) {
1085 StructuredSubobjectInitList->setType(T);
1086
1087 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1088 // Update the structured sub-object initializer so that it's ending
1089 // range corresponds with the end of the last initializer it used.
1090 if (EndIndex < ParentIList->getNumInits() &&
1091 ParentIList->getInit(EndIndex)) {
1092 SourceLocation EndLoc
1093 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1094 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1095 }
1096
1097 // Complain about missing braces.
1098 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1099 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1100 !isIdiomaticBraceElisionEntity(Entity)) {
1101 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102 diag::warn_missing_braces)
1103 << StructuredSubobjectInitList->getSourceRange()
1104 << FixItHint::CreateInsertion(
1105 StructuredSubobjectInitList->getBeginLoc(), "{")
1106 << FixItHint::CreateInsertion(
1107 SemaRef.getLocForEndOfToken(
1108 StructuredSubobjectInitList->getEndLoc()),
1109 "}");
1110 }
1111
1112 // Warn if this type won't be an aggregate in future versions of C++.
1113 auto *CXXRD = T->getAsCXXRecordDecl();
1114 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1115 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1116 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1117 << StructuredSubobjectInitList->getSourceRange() << T;
1118 }
1119 }
1120}
1121
1122/// Warn that \p Entity was of scalar type and was initialized by a
1123/// single-element braced initializer list.
1124static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1125 SourceRange Braces) {
1126 // Don't warn during template instantiation. If the initialization was
1127 // non-dependent, we warned during the initial parse; otherwise, the
1128 // type might not be scalar in some uses of the template.
1129 if (S.inTemplateInstantiation())
1130 return;
1131
1132 unsigned DiagID = 0;
1133
1134 switch (Entity.getKind()) {
1135 case InitializedEntity::EK_VectorElement:
1136 case InitializedEntity::EK_ComplexElement:
1137 case InitializedEntity::EK_ArrayElement:
1138 case InitializedEntity::EK_Parameter:
1139 case InitializedEntity::EK_Parameter_CF_Audited:
1140 case InitializedEntity::EK_TemplateParameter:
1141 case InitializedEntity::EK_Result:
1142 // Extra braces here are suspicious.
1143 DiagID = diag::warn_braces_around_init;
1144 break;
1145
1146 case InitializedEntity::EK_Member:
1147 // Warn on aggregate initialization but not on ctor init list or
1148 // default member initializer.
1149 if (Entity.getParent())
1150 DiagID = diag::warn_braces_around_init;
1151 break;
1152
1153 case InitializedEntity::EK_Variable:
1154 case InitializedEntity::EK_LambdaCapture:
1155 // No warning, might be direct-list-initialization.
1156 // FIXME: Should we warn for copy-list-initialization in these cases?
1157 break;
1158
1159 case InitializedEntity::EK_New:
1160 case InitializedEntity::EK_Temporary:
1161 case InitializedEntity::EK_CompoundLiteralInit:
1162 // No warning, braces are part of the syntax of the underlying construct.
1163 break;
1164
1165 case InitializedEntity::EK_RelatedResult:
1166 // No warning, we already warned when initializing the result.
1167 break;
1168
1169 case InitializedEntity::EK_Exception:
1170 case InitializedEntity::EK_Base:
1171 case InitializedEntity::EK_Delegating:
1172 case InitializedEntity::EK_BlockElement:
1173 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1174 case InitializedEntity::EK_Binding:
1175 case InitializedEntity::EK_StmtExprResult:
1176 llvm_unreachable("unexpected braced scalar init")__builtin_unreachable();
1177 }
1178
1179 if (DiagID) {
1180 S.Diag(Braces.getBegin(), DiagID)
1181 << Entity.getType()->isSizelessBuiltinType() << Braces
1182 << FixItHint::CreateRemoval(Braces.getBegin())
1183 << FixItHint::CreateRemoval(Braces.getEnd());
1184 }
1185}
1186
1187/// Check whether the initializer \p IList (that was written with explicit
1188/// braces) can be used to initialize an object of type \p T.
1189///
1190/// This also fills in \p StructuredList with the fully-braced, desugared
1191/// form of the initialization.
1192void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1193 InitListExpr *IList, QualType &T,
1194 InitListExpr *StructuredList,
1195 bool TopLevelObject) {
1196 unsigned Index = 0, StructuredIndex = 0;
1197 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1198 Index, StructuredList, StructuredIndex, TopLevelObject);
1199 if (StructuredList) {
1200 QualType ExprTy = T;
1201 if (!ExprTy->isArrayType())
1202 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1203 if (!VerifyOnly)
1204 IList->setType(ExprTy);
1205 StructuredList->setType(ExprTy);
1206 }
1207 if (hadError)
1208 return;
1209
1210 // Don't complain for incomplete types, since we'll get an error elsewhere.
1211 if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1212 // We have leftover initializers
1213 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1214 (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1215 hadError = ExtraInitsIsError;
1216 if (VerifyOnly) {
1217 return;
1218 } else if (StructuredIndex == 1 &&
1219 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1220 SIF_None) {
1221 unsigned DK =
1222 ExtraInitsIsError
1223 ? diag::err_excess_initializers_in_char_array_initializer
1224 : diag::ext_excess_initializers_in_char_array_initializer;
1225 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1226 << IList->getInit(Index)->getSourceRange();
1227 } else if (T->isSizelessBuiltinType()) {
1228 unsigned DK = ExtraInitsIsError
1229 ? diag::err_excess_initializers_for_sizeless_type
1230 : diag::ext_excess_initializers_for_sizeless_type;
1231 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1232 << T << IList->getInit(Index)->getSourceRange();
1233 } else {
1234 int initKind = T->isArrayType() ? 0 :
1235 T->isVectorType() ? 1 :
1236 T->isScalarType() ? 2 :
1237 T->isUnionType() ? 3 :
1238 4;
1239
1240 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1241 : diag::ext_excess_initializers;
1242 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1243 << initKind << IList->getInit(Index)->getSourceRange();
1244 }
1245 }
1246
1247 if (!VerifyOnly) {
1248 if (T->isScalarType() && IList->getNumInits() == 1 &&
1249 !isa<InitListExpr>(IList->getInit(0)))
1250 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1251
1252 // Warn if this is a class type that won't be an aggregate in future
1253 // versions of C++.
1254 auto *CXXRD = T->getAsCXXRecordDecl();
1255 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1256 // Don't warn if there's an equivalent default constructor that would be
1257 // used instead.
1258 bool HasEquivCtor = false;
1259 if (IList->getNumInits() == 0) {
1260 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1261 HasEquivCtor = CD && !CD->isDeleted();
1262 }
1263
1264 if (!HasEquivCtor) {
1265 SemaRef.Diag(IList->getBeginLoc(),
1266 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1267 << IList->getSourceRange() << T;
1268 }
1269 }
1270 }
1271}
1272
1273void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1274 InitListExpr *IList,
1275 QualType &DeclType,
1276 bool SubobjectIsDesignatorContext,
1277 unsigned &Index,
1278 InitListExpr *StructuredList,
1279 unsigned &StructuredIndex,
1280 bool TopLevelObject) {
1281 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1282 // Explicitly braced initializer for complex type can be real+imaginary
1283 // parts.
1284 CheckComplexType(Entity, IList, DeclType, Index,
1285 StructuredList, StructuredIndex);
1286 } else if (DeclType->isScalarType()) {
1287 CheckScalarType(Entity, IList, DeclType, Index,
1288 StructuredList, StructuredIndex);
1289 } else if (DeclType->isVectorType()) {
1290 CheckVectorType(Entity, IList, DeclType, Index,
1291 StructuredList, StructuredIndex);
1292 } else if (DeclType->isRecordType()) {
1293 assert(DeclType->isAggregateType() &&((void)0)
1294 "non-aggregate records should be handed in CheckSubElementType")((void)0);
1295 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1296 auto Bases =
1297 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1298 CXXRecordDecl::base_class_iterator());
1299 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1300 Bases = CXXRD->bases();
1301 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1302 SubobjectIsDesignatorContext, Index, StructuredList,
1303 StructuredIndex, TopLevelObject);
1304 } else if (DeclType->isArrayType()) {
1305 llvm::APSInt Zero(
1306 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1307 false);
1308 CheckArrayType(Entity, IList, DeclType, Zero,
1309 SubobjectIsDesignatorContext, Index,
1310 StructuredList, StructuredIndex);
1311 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1312 // This type is invalid, issue a diagnostic.
1313 ++Index;
1314 if (!VerifyOnly)
1315 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1316 << DeclType;
1317 hadError = true;
1318 } else if (DeclType->isReferenceType()) {
1319 CheckReferenceType(Entity, IList, DeclType, Index,
1320 StructuredList, StructuredIndex);
1321 } else if (DeclType->isObjCObjectType()) {
1322 if (!VerifyOnly)
1323 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1324 hadError = true;
1325 } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1326 DeclType->isSizelessBuiltinType()) {
1327 // Checks for scalar type are sufficient for these types too.
1328 CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1329 StructuredIndex);
1330 } else {
1331 if (!VerifyOnly)
1332 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1333 << DeclType;
1334 hadError = true;
1335 }
1336}
1337
1338void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1339 InitListExpr *IList,
1340 QualType ElemType,
1341 unsigned &Index,
1342 InitListExpr *StructuredList,
1343 unsigned &StructuredIndex,
1344 bool DirectlyDesignated) {
1345 Expr *expr = IList->getInit(Index);
1346
1347 if (ElemType->isReferenceType())
1348 return CheckReferenceType(Entity, IList, ElemType, Index,
1349 StructuredList, StructuredIndex);
1350
1351 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1352 if (SubInitList->getNumInits() == 1 &&
1353 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1354 SIF_None) {
1355 // FIXME: It would be more faithful and no less correct to include an
1356 // InitListExpr in the semantic form of the initializer list in this case.
1357 expr = SubInitList->getInit(0);
1358 }
1359 // Nested aggregate initialization and C++ initialization are handled later.
1360 } else if (isa<ImplicitValueInitExpr>(expr)) {
1361 // This happens during template instantiation when we see an InitListExpr
1362 // that we've already checked once.
1363 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((void)0)
1364 "found implicit initialization for the wrong type")((void)0);
1365 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1366 ++Index;
1367 return;
1368 }
1369
1370 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1371 // C++ [dcl.init.aggr]p2:
1372 // Each member is copy-initialized from the corresponding
1373 // initializer-clause.
1374
1375 // FIXME: Better EqualLoc?
1376 InitializationKind Kind =
1377 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1378
1379 // Vector elements can be initialized from other vectors in which case
1380 // we need initialization entity with a type of a vector (and not a vector
1381 // element!) initializing multiple vector elements.
1382 auto TmpEntity =
1383 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1384 ? InitializedEntity::InitializeTemporary(ElemType)
1385 : Entity;
1386
1387 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1388 /*TopLevelOfInitList*/ true);
1389
1390 // C++14 [dcl.init.aggr]p13:
1391 // If the assignment-expression can initialize a member, the member is
1392 // initialized. Otherwise [...] brace elision is assumed
1393 //
1394 // Brace elision is never performed if the element is not an
1395 // assignment-expression.
1396 if (Seq || isa<InitListExpr>(expr)) {
1397 if (!VerifyOnly) {
1398 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1399 if (Result.isInvalid())
1400 hadError = true;
1401
1402 UpdateStructuredListElement(StructuredList, StructuredIndex,
1403 Result.getAs<Expr>());
1404 } else if (!Seq) {
1405 hadError = true;
1406 } else if (StructuredList) {
1407 UpdateStructuredListElement(StructuredList, StructuredIndex,
1408 getDummyInit());
1409 }
1410 ++Index;
1411 return;
1412 }
1413
1414 // Fall through for subaggregate initialization
1415 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1416 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1417 return CheckScalarType(Entity, IList, ElemType, Index,
1418 StructuredList, StructuredIndex);
1419 } else if (const ArrayType *arrayType =
1420 SemaRef.Context.getAsArrayType(ElemType)) {
1421 // arrayType can be incomplete if we're initializing a flexible
1422 // array member. There's nothing we can do with the completed
1423 // type here, though.
1424
1425 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1426 // FIXME: Should we do this checking in verify-only mode?
1427 if (!VerifyOnly)
1428 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1429 if (StructuredList)
1430 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1431 ++Index;
1432 return;
1433 }
1434
1435 // Fall through for subaggregate initialization.
1436
1437 } else {
1438 assert((ElemType->isRecordType() || ElemType->isVectorType() ||((void)0)
1439 ElemType->isOpenCLSpecificType()) && "Unexpected type")((void)0);
1440
1441 // C99 6.7.8p13:
1442 //
1443 // The initializer for a structure or union object that has
1444 // automatic storage duration shall be either an initializer
1445 // list as described below, or a single expression that has
1446 // compatible structure or union type. In the latter case, the
1447 // initial value of the object, including unnamed members, is
1448 // that of the expression.
1449 ExprResult ExprRes = expr;
1450 if (SemaRef.CheckSingleAssignmentConstraints(
1451 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1452 if (ExprRes.isInvalid())
1453 hadError = true;
1454 else {
1455 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1456 if (ExprRes.isInvalid())
1457 hadError = true;
1458 }
1459 UpdateStructuredListElement(StructuredList, StructuredIndex,
1460 ExprRes.getAs<Expr>());
1461 ++Index;
1462 return;
1463 }
1464 ExprRes.get();
1465 // Fall through for subaggregate initialization
1466 }
1467
1468 // C++ [dcl.init.aggr]p12:
1469 //
1470 // [...] Otherwise, if the member is itself a non-empty
1471 // subaggregate, brace elision is assumed and the initializer is
1472 // considered for the initialization of the first member of
1473 // the subaggregate.
1474 // OpenCL vector initializer is handled elsewhere.
1475 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1476 ElemType->isAggregateType()) {
1477 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1478 StructuredIndex);
1479 ++StructuredIndex;
1480
1481 // In C++20, brace elision is not permitted for a designated initializer.
1482 if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1483 if (InOverloadResolution)
1484 hadError = true;
1485 if (!VerifyOnly) {
1486 SemaRef.Diag(expr->getBeginLoc(),
1487 diag::ext_designated_init_brace_elision)
1488 << expr->getSourceRange()
1489 << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1490 << FixItHint::CreateInsertion(
1491 SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1492 }
1493 }
1494 } else {
1495 if (!VerifyOnly) {
1496 // We cannot initialize this element, so let PerformCopyInitialization
1497 // produce the appropriate diagnostic. We already checked that this
1498 // initialization will fail.
1499 ExprResult Copy =
1500 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1501 /*TopLevelOfInitList=*/true);
1502 (void)Copy;
1503 assert(Copy.isInvalid() &&((void)0)
1504 "expected non-aggregate initialization to fail")((void)0);
1505 }
1506 hadError = true;
1507 ++Index;
1508 ++StructuredIndex;
1509 }
1510}
1511
1512void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1513 InitListExpr *IList, QualType DeclType,
1514 unsigned &Index,
1515 InitListExpr *StructuredList,
1516 unsigned &StructuredIndex) {
1517 assert(Index == 0 && "Index in explicit init list must be zero")((void)0);
1518
1519 // As an extension, clang supports complex initializers, which initialize
1520 // a complex number component-wise. When an explicit initializer list for
1521 // a complex number contains two two initializers, this extension kicks in:
1522 // it exepcts the initializer list to contain two elements convertible to
1523 // the element type of the complex type. The first element initializes
1524 // the real part, and the second element intitializes the imaginary part.
1525
1526 if (IList->getNumInits() != 2)
1527 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1528 StructuredIndex);
1529
1530 // This is an extension in C. (The builtin _Complex type does not exist
1531 // in the C++ standard.)
1532 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1533 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1534 << IList->getSourceRange();
1535
1536 // Initialize the complex number.
1537 QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1538 InitializedEntity ElementEntity =
1539 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1540
1541 for (unsigned i = 0; i < 2; ++i) {
1542 ElementEntity.setElementIndex(Index);
1543 CheckSubElementType(ElementEntity, IList, elementType, Index,
1544 StructuredList, StructuredIndex);
1545 }
1546}
1547
1548void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1549 InitListExpr *IList, QualType DeclType,
1550 unsigned &Index,
1551 InitListExpr *StructuredList,
1552 unsigned &StructuredIndex) {
1553 if (Index >= IList->getNumInits()) {
1554 if (!VerifyOnly) {
1555 if (DeclType->isSizelessBuiltinType())
1556 SemaRef.Diag(IList->getBeginLoc(),
1557 SemaRef.getLangOpts().CPlusPlus11
1558 ? diag::warn_cxx98_compat_empty_sizeless_initializer
1559 : diag::err_empty_sizeless_initializer)
1560 << DeclType << IList->getSourceRange();
1561 else
1562 SemaRef.Diag(IList->getBeginLoc(),
1563 SemaRef.getLangOpts().CPlusPlus11
1564 ? diag::warn_cxx98_compat_empty_scalar_initializer
1565 : diag::err_empty_scalar_initializer)
1566 << IList->getSourceRange();
1567 }
1568 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1569 ++Index;
1570 ++StructuredIndex;
1571 return;
1572 }
1573
1574 Expr *expr = IList->getInit(Index);
1575 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1576 // FIXME: This is invalid, and accepting it causes overload resolution
1577 // to pick the wrong overload in some corner cases.
1578 if (!VerifyOnly)
1579 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1580 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1581
1582 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1583 StructuredIndex);
1584 return;
1585 } else if (isa<DesignatedInitExpr>(expr)) {
1586 if (!VerifyOnly)
1587 SemaRef.Diag(expr->getBeginLoc(),
1588 diag::err_designator_for_scalar_or_sizeless_init)
1589 << DeclType->isSizelessBuiltinType() << DeclType
1590 << expr->getSourceRange();
1591 hadError = true;
1592 ++Index;
1593 ++StructuredIndex;
1594 return;
1595 }
1596
1597 ExprResult Result;
1598 if (VerifyOnly) {
1599 if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1600 Result = getDummyInit();
1601 else
1602 Result = ExprError();
1603 } else {
1604 Result =
1605 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1606 /*TopLevelOfInitList=*/true);
1607 }
1608
1609 Expr *ResultExpr = nullptr;
1610
1611 if (Result.isInvalid())
1612 hadError = true; // types weren't compatible.
1613 else {
1614 ResultExpr = Result.getAs<Expr>();
1615
1616 if (ResultExpr != expr && !VerifyOnly) {
1617 // The type was promoted, update initializer list.
1618 // FIXME: Why are we updating the syntactic init list?
1619 IList->setInit(Index, ResultExpr);
1620 }
1621 }
1622 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1623 ++Index;
1624}
1625
1626void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1627 InitListExpr *IList, QualType DeclType,
1628 unsigned &Index,
1629 InitListExpr *StructuredList,
1630 unsigned &StructuredIndex) {
1631 if (Index >= IList->getNumInits()) {
1632 // FIXME: It would be wonderful if we could point at the actual member. In
1633 // general, it would be useful to pass location information down the stack,
1634 // so that we know the location (or decl) of the "current object" being
1635 // initialized.
1636 if (!VerifyOnly)
1637 SemaRef.Diag(IList->getBeginLoc(),
1638 diag::err_init_reference_member_uninitialized)
1639 << DeclType << IList->getSourceRange();
1640 hadError = true;
1641 ++Index;
1642 ++StructuredIndex;
1643 return;
1644 }
1645
1646 Expr *expr = IList->getInit(Index);
1647 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1648 if (!VerifyOnly)
1649 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1650 << DeclType << IList->getSourceRange();
1651 hadError = true;
1652 ++Index;
1653 ++StructuredIndex;
1654 return;
1655 }
1656
1657 ExprResult Result;
1658 if (VerifyOnly) {
1659 if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1660 Result = getDummyInit();
1661 else
1662 Result = ExprError();
1663 } else {
1664 Result =
1665 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1666 /*TopLevelOfInitList=*/true);
1667 }
1668
1669 if (Result.isInvalid())
1670 hadError = true;
1671
1672 expr = Result.getAs<Expr>();
1673 // FIXME: Why are we updating the syntactic init list?
1674 if (!VerifyOnly && expr)
1675 IList->setInit(Index, expr);
1676
1677 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1678 ++Index;
1679}
1680
1681void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1682 InitListExpr *IList, QualType DeclType,
1683 unsigned &Index,
1684 InitListExpr *StructuredList,
1685 unsigned &StructuredIndex) {
1686 const VectorType *VT = DeclType->castAs<VectorType>();
1687 unsigned maxElements = VT->getNumElements();
1688 unsigned numEltsInit = 0;
1689 QualType elementType = VT->getElementType();
1690
1691 if (Index >= IList->getNumInits()) {
1692 // Make sure the element type can be value-initialized.
1693 CheckEmptyInitializable(
1694 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1695 IList->getEndLoc());
1696 return;
1697 }
1698
1699 if (!SemaRef.getLangOpts().OpenCL) {
1700 // If the initializing element is a vector, try to copy-initialize
1701 // instead of breaking it apart (which is doomed to failure anyway).
1702 Expr *Init = IList->getInit(Index);
1703 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1704 ExprResult Result;
1705 if (VerifyOnly) {
1706 if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1707 Result = getDummyInit();
1708 else
1709 Result = ExprError();
1710 } else {
1711 Result =
1712 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1713 /*TopLevelOfInitList=*/true);
1714 }
1715
1716 Expr *ResultExpr = nullptr;
1717 if (Result.isInvalid())
1718 hadError = true; // types weren't compatible.
1719 else {
1720 ResultExpr = Result.getAs<Expr>();
1721
1722 if (ResultExpr != Init && !VerifyOnly) {
1723 // The type was promoted, update initializer list.
1724 // FIXME: Why are we updating the syntactic init list?
1725 IList->setInit(Index, ResultExpr);
1726 }
1727 }
1728 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1729 ++Index;
1730 return;
1731 }
1732
1733 InitializedEntity ElementEntity =
1734 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1735
1736 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1737 // Don't attempt to go past the end of the init list
1738 if (Index >= IList->getNumInits()) {
1739 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1740 break;
1741 }
1742
1743 ElementEntity.setElementIndex(Index);
1744 CheckSubElementType(ElementEntity, IList, elementType, Index,
1745 StructuredList, StructuredIndex);
1746 }
1747
1748 if (VerifyOnly)
1749 return;
1750
1751 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1752 const VectorType *T = Entity.getType()->castAs<VectorType>();
1753 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1754 T->getVectorKind() == VectorType::NeonPolyVector)) {
1755 // The ability to use vector initializer lists is a GNU vector extension
1756 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1757 // endian machines it works fine, however on big endian machines it
1758 // exhibits surprising behaviour:
1759 //
1760 // uint32x2_t x = {42, 64};
1761 // return vget_lane_u32(x, 0); // Will return 64.
1762 //
1763 // Because of this, explicitly call out that it is non-portable.
1764 //
1765 SemaRef.Diag(IList->getBeginLoc(),
1766 diag::warn_neon_vector_initializer_non_portable);
1767
1768 const char *typeCode;
1769 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1770
1771 if (elementType->isFloatingType())
1772 typeCode = "f";
1773 else if (elementType->isSignedIntegerType())
1774 typeCode = "s";
1775 else if (elementType->isUnsignedIntegerType())
1776 typeCode = "u";
1777 else
1778 llvm_unreachable("Invalid element type!")__builtin_unreachable();
1779
1780 SemaRef.Diag(IList->getBeginLoc(),
1781 SemaRef.Context.getTypeSize(VT) > 64
1782 ? diag::note_neon_vector_initializer_non_portable_q
1783 : diag::note_neon_vector_initializer_non_portable)
1784 << typeCode << typeSize;
1785 }
1786
1787 return;
1788 }
1789
1790 InitializedEntity ElementEntity =
1791 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1792
1793 // OpenCL initializers allows vectors to be constructed from vectors.
1794 for (unsigned i = 0; i < maxElements; ++i) {
1795 // Don't attempt to go past the end of the init list
1796 if (Index >= IList->getNumInits())
1797 break;
1798
1799 ElementEntity.setElementIndex(Index);
1800
1801 QualType IType = IList->getInit(Index)->getType();
1802 if (!IType->isVectorType()) {
1803 CheckSubElementType(ElementEntity, IList, elementType, Index,
1804 StructuredList, StructuredIndex);
1805 ++numEltsInit;
1806 } else {
1807 QualType VecType;
1808 const VectorType *IVT = IType->castAs<VectorType>();
1809 unsigned numIElts = IVT->getNumElements();
1810
1811 if (IType->isExtVectorType())
1812 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1813 else
1814 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1815 IVT->getVectorKind());
1816 CheckSubElementType(ElementEntity, IList, VecType, Index,
1817 StructuredList, StructuredIndex);
1818 numEltsInit += numIElts;
1819 }
1820 }
1821
1822 // OpenCL requires all elements to be initialized.
1823 if (numEltsInit != maxElements) {
1824 if (!VerifyOnly)
1825 SemaRef.Diag(IList->getBeginLoc(),
1826 diag::err_vector_incorrect_num_initializers)
1827 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1828 hadError = true;
1829 }
1830}
1831
1832/// Check if the type of a class element has an accessible destructor, and marks
1833/// it referenced. Returns true if we shouldn't form a reference to the
1834/// destructor.
1835///
1836/// Aggregate initialization requires a class element's destructor be
1837/// accessible per 11.6.1 [dcl.init.aggr]:
1838///
1839/// The destructor for each element of class type is potentially invoked
1840/// (15.4 [class.dtor]) from the context where the aggregate initialization
1841/// occurs.
1842static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1843 Sema &SemaRef) {
1844 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1845 if (!CXXRD)
1846 return false;
1847
1848 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1849 SemaRef.CheckDestructorAccess(Loc, Destructor,
1850 SemaRef.PDiag(diag::err_access_dtor_temp)
1851 << ElementType);
1852 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1853 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1854}
1855
1856void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1857 InitListExpr *IList, QualType &DeclType,
1858 llvm::APSInt elementIndex,
1859 bool SubobjectIsDesignatorContext,
1860 unsigned &Index,
1861 InitListExpr *StructuredList,
1862 unsigned &StructuredIndex) {
1863 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1864
1865 if (!VerifyOnly) {
1866 if (checkDestructorReference(arrayType->getElementType(),
1867 IList->getEndLoc(), SemaRef)) {
1868 hadError = true;
1869 return;
1870 }
1871 }
1872
1873 // Check for the special-case of initializing an array with a string.
1874 if (Index < IList->getNumInits()) {
1875 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1876 SIF_None) {
1877 // We place the string literal directly into the resulting
1878 // initializer list. This is the only place where the structure
1879 // of the structured initializer list doesn't match exactly,
1880 // because doing so would involve allocating one character
1881 // constant for each string.
1882 // FIXME: Should we do these checks in verify-only mode too?
1883 if (!VerifyOnly)
1884 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1885 if (StructuredList) {
1886 UpdateStructuredListElement(StructuredList, StructuredIndex,
1887 IList->getInit(Index));
1888 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1889 }
1890 ++Index;
1891 return;
1892 }
1893 }
1894 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1895 // Check for VLAs; in standard C it would be possible to check this
1896 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1897 // them in all sorts of strange places).
1898 if (!VerifyOnly)
1899 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1900 diag::err_variable_object_no_init)
1901 << VAT->getSizeExpr()->getSourceRange();
1902 hadError = true;
1903 ++Index;
1904 ++StructuredIndex;
1905 return;
1906 }
1907
1908 // We might know the maximum number of elements in advance.
1909 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1910 elementIndex.isUnsigned());
1911 bool maxElementsKnown = false;
1912 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1913 maxElements = CAT->getSize();
1914 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1915 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1916 maxElementsKnown = true;
1917 }
1918
1919 QualType elementType = arrayType->getElementType();
1920 while (Index < IList->getNumInits()) {
1921 Expr *Init = IList->getInit(Index);
1922 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1923 // If we're not the subobject that matches up with the '{' for
1924 // the designator, we shouldn't be handling the
1925 // designator. Return immediately.
1926 if (!SubobjectIsDesignatorContext)
1927 return;
1928
1929 // Handle this designated initializer. elementIndex will be
1930 // updated to be the next array element we'll initialize.
1931 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1932 DeclType, nullptr, &elementIndex, Index,
1933 StructuredList, StructuredIndex, true,
1934 false)) {
1935 hadError = true;
1936 continue;
1937 }
1938
1939 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1940 maxElements = maxElements.extend(elementIndex.getBitWidth());
1941 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1942 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1943 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1944
1945 // If the array is of incomplete type, keep track of the number of
1946 // elements in the initializer.
1947 if (!maxElementsKnown && elementIndex > maxElements)
1948 maxElements = elementIndex;
1949
1950 continue;
1951 }
1952
1953 // If we know the maximum number of elements, and we've already
1954 // hit it, stop consuming elements in the initializer list.
1955 if (maxElementsKnown && elementIndex == maxElements)
1956 break;
1957
1958 InitializedEntity ElementEntity =
1959 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1960 Entity);
1961 // Check this element.
1962 CheckSubElementType(ElementEntity, IList, elementType, Index,
1963 StructuredList, StructuredIndex);
1964 ++elementIndex;
1965
1966 // If the array is of incomplete type, keep track of the number of
1967 // elements in the initializer.
1968 if (!maxElementsKnown && elementIndex > maxElements)
1969 maxElements = elementIndex;
1970 }
1971 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1972 // If this is an incomplete array type, the actual type needs to
1973 // be calculated here.
1974 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1975 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1976 // Sizing an array implicitly to zero is not allowed by ISO C,
1977 // but is supported by GNU.
1978 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1979 }
1980
1981 DeclType = SemaRef.Context.getConstantArrayType(
1982 elementType, maxElements, nullptr, ArrayType::Normal, 0);
1983 }
1984 if (!hadError) {
1985 // If there are any members of the array that get value-initialized, check
1986 // that is possible. That happens if we know the bound and don't have
1987 // enough elements, or if we're performing an array new with an unknown
1988 // bound.
1989 if ((maxElementsKnown && elementIndex < maxElements) ||
1990 Entity.isVariableLengthArrayNew())
1991 CheckEmptyInitializable(
1992 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1993 IList->getEndLoc());
1994 }
1995}
1996
1997bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1998 Expr *InitExpr,
1999 FieldDecl *Field,
2000 bool TopLevelObject) {
2001 // Handle GNU flexible array initializers.
2002 unsigned FlexArrayDiag;
2003 if (isa<InitListExpr>(InitExpr) &&
2004 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2005 // Empty flexible array init always allowed as an extension
2006 FlexArrayDiag = diag::ext_flexible_array_init;
2007 } else if (SemaRef.getLangOpts().CPlusPlus) {
2008 // Disallow flexible array init in C++; it is not required for gcc
2009 // compatibility, and it needs work to IRGen correctly in general.
2010 FlexArrayDiag = diag::err_flexible_array_init;
2011 } else if (!TopLevelObject) {
2012 // Disallow flexible array init on non-top-level object
2013 FlexArrayDiag = diag::err_flexible_array_init;
2014 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2015 // Disallow flexible array init on anything which is not a variable.
2016 FlexArrayDiag = diag::err_flexible_array_init;
2017 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2018 // Disallow flexible array init on local variables.
2019 FlexArrayDiag = diag::err_flexible_array_init;
2020 } else {
2021 // Allow other cases.
2022 FlexArrayDiag = diag::ext_flexible_array_init;
2023 }
2024
2025 if (!VerifyOnly) {
2026 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2027 << InitExpr->getBeginLoc();
2028 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2029 << Field;
2030 }
2031
2032 return FlexArrayDiag != diag::ext_flexible_array_init;
2033}
2034
2035void InitListChecker::CheckStructUnionTypes(
2036 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2037 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2038 bool SubobjectIsDesignatorContext, unsigned &Index,
2039 InitListExpr *StructuredList, unsigned &StructuredIndex,
2040 bool TopLevelObject) {
2041 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2042
2043 // If the record is invalid, some of it's members are invalid. To avoid
2044 // confusion, we forgo checking the intializer for the entire record.
2045 if (structDecl->isInvalidDecl()) {
2046 // Assume it was supposed to consume a single initializer.
2047 ++Index;
2048 hadError = true;
2049 return;
2050 }
2051
2052 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2053 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2054
2055 if (!VerifyOnly)
2056 for (FieldDecl *FD : RD->fields()) {
2057 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2058 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2059 hadError = true;
2060 return;
2061 }
2062 }
2063
2064 // If there's a default initializer, use it.
2065 if (isa<CXXRecordDecl>(RD) &&
2066 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2067 if (!StructuredList)
2068 return;
2069 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2070 Field != FieldEnd; ++Field) {
2071 if (Field->hasInClassInitializer()) {
2072 StructuredList->setInitializedFieldInUnion(*Field);
2073 // FIXME: Actually build a CXXDefaultInitExpr?
2074 return;
2075 }
2076 }
2077 }
2078
2079 // Value-initialize the first member of the union that isn't an unnamed
2080 // bitfield.
2081 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2082 Field != FieldEnd; ++Field) {
2083 if (!Field->isUnnamedBitfield()) {
2084 CheckEmptyInitializable(
2085 InitializedEntity::InitializeMember(*Field, &Entity),
2086 IList->getEndLoc());
2087 if (StructuredList)
2088 StructuredList->setInitializedFieldInUnion(*Field);
2089 break;
2090 }
2091 }
2092 return;
2093 }
2094
2095 bool InitializedSomething = false;
2096
2097 // If we have any base classes, they are initialized prior to the fields.
2098 for (auto &Base : Bases) {
2099 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2100
2101 // Designated inits always initialize fields, so if we see one, all
2102 // remaining base classes have no explicit initializer.
2103 if (Init && isa<DesignatedInitExpr>(Init))
2104 Init = nullptr;
2105
2106 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2107 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2108 SemaRef.Context, &Base, false, &Entity);
2109 if (Init) {
2110 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2111 StructuredList, StructuredIndex);
2112 InitializedSomething = true;
2113 } else {
2114 CheckEmptyInitializable(BaseEntity, InitLoc);
2115 }
2116
2117 if (!VerifyOnly)
2118 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2119 hadError = true;
2120 return;
2121 }
2122 }
2123
2124 // If structDecl is a forward declaration, this loop won't do
2125 // anything except look at designated initializers; That's okay,
2126 // because an error should get printed out elsewhere. It might be
2127 // worthwhile to skip over the rest of the initializer, though.
2128 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2129 RecordDecl::field_iterator FieldEnd = RD->field_end();
2130 bool CheckForMissingFields =
2131 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2132 bool HasDesignatedInit = false;
2133
2134 while (Index < IList->getNumInits()) {
2135 Expr *Init = IList->getInit(Index);
2136 SourceLocation InitLoc = Init->getBeginLoc();
2137
2138 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2139 // If we're not the subobject that matches up with the '{' for
2140 // the designator, we shouldn't be handling the
2141 // designator. Return immediately.
2142 if (!SubobjectIsDesignatorContext)
2143 return;
2144
2145 HasDesignatedInit = true;
2146
2147 // Handle this designated initializer. Field will be updated to
2148 // the next field that we'll be initializing.
2149 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2150 DeclType, &Field, nullptr, Index,
2151 StructuredList, StructuredIndex,
2152 true, TopLevelObject))
2153 hadError = true;
2154 else if (!VerifyOnly) {
2155 // Find the field named by the designated initializer.
2156 RecordDecl::field_iterator F = RD->field_begin();
2157 while (std::next(F) != Field)
2158 ++F;
2159 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2160 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2161 hadError = true;
2162 return;
2163 }
2164 }
2165
2166 InitializedSomething = true;
2167
2168 // Disable check for missing fields when designators are used.
2169 // This matches gcc behaviour.
2170 CheckForMissingFields = false;
2171 continue;
2172 }
2173
2174 if (Field == FieldEnd) {
2175 // We've run out of fields. We're done.
2176 break;
2177 }
2178
2179 // We've already initialized a member of a union. We're done.
2180 if (InitializedSomething && DeclType->isUnionType())
2181 break;
2182
2183 // If we've hit the flexible array member at the end, we're done.
2184 if (Field->getType()->isIncompleteArrayType())
2185 break;
2186
2187 if (Field->isUnnamedBitfield()) {
2188 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2189 ++Field;
2190 continue;
2191 }
2192
2193 // Make sure we can use this declaration.
2194 bool InvalidUse;
2195 if (VerifyOnly)
2196 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2197 else
2198 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2199 *Field, IList->getInit(Index)->getBeginLoc());
2200 if (InvalidUse) {
2201 ++Index;
2202 ++Field;
2203 hadError = true;
2204 continue;
2205 }
2206
2207 if (!VerifyOnly) {
2208 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2209 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2210 hadError = true;
2211 return;
2212 }
2213 }
2214
2215 InitializedEntity MemberEntity =
2216 InitializedEntity::InitializeMember(*Field, &Entity);
2217 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2218 StructuredList, StructuredIndex);
2219 InitializedSomething = true;
2220
2221 if (DeclType->isUnionType() && StructuredList) {
2222 // Initialize the first field within the union.
2223 StructuredList->setInitializedFieldInUnion(*Field);
2224 }
2225
2226 ++Field;
2227 }
2228
2229 // Emit warnings for missing struct field initializers.
2230 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2231 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2232 !DeclType->isUnionType()) {
2233 // It is possible we have one or more unnamed bitfields remaining.
2234 // Find first (if any) named field and emit warning.
2235 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2236 it != end; ++it) {
2237 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2238 SemaRef.Diag(IList->getSourceRange().getEnd(),
2239 diag::warn_missing_field_initializers) << *it;
2240 break;
2241 }
2242 }
2243 }
2244
2245 // Check that any remaining fields can be value-initialized if we're not
2246 // building a structured list. (If we are, we'll check this later.)
2247 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2248 !Field->getType()->isIncompleteArrayType()) {
2249 for (; Field != FieldEnd && !hadError; ++Field) {
2250 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2251 CheckEmptyInitializable(
2252 InitializedEntity::InitializeMember(*Field, &Entity),
2253 IList->getEndLoc());
2254 }
2255 }
2256
2257 // Check that the types of the remaining fields have accessible destructors.
2258 if (!VerifyOnly) {
2259 // If the initializer expression has a designated initializer, check the
2260 // elements for which a designated initializer is not provided too.
2261 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2262 : Field;
2263 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2264 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2265 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2266 hadError = true;
2267 return;
2268 }
2269 }
2270 }
2271
2272 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2273 Index >= IList->getNumInits())
2274 return;
2275
2276 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2277 TopLevelObject)) {
2278 hadError = true;
2279 ++Index;
2280 return;
2281 }
2282
2283 InitializedEntity MemberEntity =
2284 InitializedEntity::InitializeMember(*Field, &Entity);
2285
2286 if (isa<InitListExpr>(IList->getInit(Index)))
2287 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2288 StructuredList, StructuredIndex);
2289 else
2290 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2291 StructuredList, StructuredIndex);
2292}
2293
2294/// Expand a field designator that refers to a member of an
2295/// anonymous struct or union into a series of field designators that
2296/// refers to the field within the appropriate subobject.
2297///
2298static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2299 DesignatedInitExpr *DIE,
2300 unsigned DesigIdx,
2301 IndirectFieldDecl *IndirectField) {
2302 typedef DesignatedInitExpr::Designator Designator;
2303
2304 // Build the replacement designators.
2305 SmallVector<Designator, 4> Replacements;
2306 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2307 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2308 if (PI + 1 == PE)
2309 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2310 DIE->getDesignator(DesigIdx)->getDotLoc(),
2311 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2312 else
2313 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2314 SourceLocation(), SourceLocation()));
2315 assert(isa<FieldDecl>(*PI))((void)0);
2316 Replacements.back().setField(cast<FieldDecl>(*PI));
2317 }
2318
2319 // Expand the current designator into the set of replacement
2320 // designators, so we have a full subobject path down to where the
2321 // member of the anonymous struct/union is actually stored.
2322 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2323 &Replacements[0] + Replacements.size());
2324}
2325
2326static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2327 DesignatedInitExpr *DIE) {
2328 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2329 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2330 for (unsigned I = 0; I < NumIndexExprs; ++I)
2331 IndexExprs[I] = DIE->getSubExpr(I + 1);
2332 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2333 IndexExprs,
2334 DIE->getEqualOrColonLoc(),
2335 DIE->usesGNUSyntax(), DIE->getInit());
2336}
2337
2338namespace {
2339
2340// Callback to only accept typo corrections that are for field members of
2341// the given struct or union.
2342class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2343 public:
2344 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2345 : Record(RD) {}
2346
2347 bool ValidateCandidate(const TypoCorrection &candidate) override {
2348 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2349 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2350 }
2351
2352 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2353 return std::make_unique<FieldInitializerValidatorCCC>(*this);
2354 }
2355
2356 private:
2357 RecordDecl *Record;
2358};
2359
2360} // end anonymous namespace
2361
2362/// Check the well-formedness of a C99 designated initializer.
2363///
2364/// Determines whether the designated initializer @p DIE, which
2365/// resides at the given @p Index within the initializer list @p
2366/// IList, is well-formed for a current object of type @p DeclType
2367/// (C99 6.7.8). The actual subobject that this designator refers to
2368/// within the current subobject is returned in either
2369/// @p NextField or @p NextElementIndex (whichever is appropriate).
2370///
2371/// @param IList The initializer list in which this designated
2372/// initializer occurs.
2373///
2374/// @param DIE The designated initializer expression.
2375///
2376/// @param DesigIdx The index of the current designator.
2377///
2378/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2379/// into which the designation in @p DIE should refer.
2380///
2381/// @param NextField If non-NULL and the first designator in @p DIE is
2382/// a field, this will be set to the field declaration corresponding
2383/// to the field named by the designator. On input, this is expected to be
2384/// the next field that would be initialized in the absence of designation,
2385/// if the complete object being initialized is a struct.
2386///
2387/// @param NextElementIndex If non-NULL and the first designator in @p
2388/// DIE is an array designator or GNU array-range designator, this
2389/// will be set to the last index initialized by this designator.
2390///
2391/// @param Index Index into @p IList where the designated initializer
2392/// @p DIE occurs.
2393///
2394/// @param StructuredList The initializer list expression that
2395/// describes all of the subobject initializers in the order they'll
2396/// actually be initialized.
2397///
2398/// @returns true if there was an error, false otherwise.
2399bool
2400InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2401 InitListExpr *IList,
2402 DesignatedInitExpr *DIE,
2403 unsigned DesigIdx,
2404 QualType &CurrentObjectType,
2405 RecordDecl::field_iterator *NextField,
2406 llvm::APSInt *NextElementIndex,
2407 unsigned &Index,
2408 InitListExpr *StructuredList,
2409 unsigned &StructuredIndex,
2410 bool FinishSubobjectInit,
2411 bool TopLevelObject) {
2412 if (DesigIdx == DIE->size()) {
2413 // C++20 designated initialization can result in direct-list-initialization
2414 // of the designated subobject. This is the only way that we can end up
2415 // performing direct initialization as part of aggregate initialization, so
2416 // it needs special handling.
2417 if (DIE->isDirectInit()) {
2418 Expr *Init = DIE->getInit();
2419 assert(isa<InitListExpr>(Init) &&((void)0)
2420 "designator result in direct non-list initialization?")((void)0);
2421 InitializationKind Kind = InitializationKind::CreateDirectList(
2422 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2423 InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2424 /*TopLevelOfInitList*/ true);
2425 if (StructuredList) {
2426 ExprResult Result = VerifyOnly
2427 ? getDummyInit()
2428 : Seq.Perform(SemaRef, Entity, Kind, Init);
2429 UpdateStructuredListElement(StructuredList, StructuredIndex,
2430 Result.get());
2431 }
2432 ++Index;
2433 return !Seq;
2434 }
2435
2436 // Check the actual initialization for the designated object type.
2437 bool prevHadError = hadError;
2438
2439 // Temporarily remove the designator expression from the
2440 // initializer list that the child calls see, so that we don't try
2441 // to re-process the designator.
2442 unsigned OldIndex = Index;
2443 IList->setInit(OldIndex, DIE->getInit());
2444
2445 CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2446 StructuredIndex, /*DirectlyDesignated=*/true);
2447
2448 // Restore the designated initializer expression in the syntactic
2449 // form of the initializer list.
2450 if (IList->getInit(OldIndex) != DIE->getInit())
2451 DIE->setInit(IList->getInit(OldIndex));
2452 IList->setInit(OldIndex, DIE);
2453
2454 return hadError && !prevHadError;
2455 }
2456
2457 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2458 bool IsFirstDesignator = (DesigIdx == 0);
2459 if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2460 // Determine the structural initializer list that corresponds to the
2461 // current subobject.
2462 if (IsFirstDesignator)
2463 StructuredList = FullyStructuredList;
2464 else {
2465 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2466 StructuredList->getInit(StructuredIndex) : nullptr;
2467 if (!ExistingInit && StructuredList->hasArrayFiller())
2468 ExistingInit = StructuredList->getArrayFiller();
2469
2470 if (!ExistingInit)
2471 StructuredList = getStructuredSubobjectInit(
2472 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2473 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2474 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2475 StructuredList = Result;
2476 else {
2477 // We are creating an initializer list that initializes the
2478 // subobjects of the current object, but there was already an
2479 // initialization that completely initialized the current
2480 // subobject, e.g., by a compound literal:
2481 //
2482 // struct X { int a, b; };
2483 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2484 //
2485 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2486 // designated initializer re-initializes only its current object
2487 // subobject [0].b.
2488 diagnoseInitOverride(ExistingInit,
2489 SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2490 /*FullyOverwritten=*/false);
2491
2492 if (!VerifyOnly) {
2493 if (DesignatedInitUpdateExpr *E =
2494 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2495 StructuredList = E->getUpdater();
2496 else {
2497 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2498 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2499 ExistingInit, DIE->getEndLoc());
2500 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2501 StructuredList = DIUE->getUpdater();
2502 }
2503 } else {
2504 // We don't need to track the structured representation of a
2505 // designated init update of an already-fully-initialized object in
2506 // verify-only mode. The only reason we would need the structure is
2507 // to determine where the uninitialized "holes" are, and in this
2508 // case, we know there aren't any and we can't introduce any.
2509 StructuredList = nullptr;
2510 }
2511 }
2512 }
2513 }
2514
2515 if (D->isFieldDesignator()) {
2516 // C99 6.7.8p7:
2517 //
2518 // If a designator has the form
2519 //
2520 // . identifier
2521 //
2522 // then the current object (defined below) shall have
2523 // structure or union type and the identifier shall be the
2524 // name of a member of that type.
2525 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2526 if (!RT) {
2527 SourceLocation Loc = D->getDotLoc();
2528 if (Loc.isInvalid())
2529 Loc = D->getFieldLoc();
2530 if (!VerifyOnly)
2531 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2532 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2533 ++Index;
2534 return true;
2535 }
2536
2537 FieldDecl *KnownField = D->getField();
2538 if (!KnownField) {
2539 IdentifierInfo *FieldName = D->getFieldName();
2540 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2541 for (NamedDecl *ND : Lookup) {
2542 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2543 KnownField = FD;
2544 break;
2545 }
2546 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2547 // In verify mode, don't modify the original.
2548 if (VerifyOnly)
2549 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2550 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2551 D = DIE->getDesignator(DesigIdx);
2552 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2553 break;
2554 }
2555 }
2556 if (!KnownField) {
2557 if (VerifyOnly) {
2558 ++Index;
2559 return true; // No typo correction when just trying this out.
2560 }
2561
2562 // Name lookup found something, but it wasn't a field.
2563 if (!Lookup.empty()) {
2564 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2565 << FieldName;
2566 SemaRef.Diag(Lookup.front()->getLocation(),
2567 diag::note_field_designator_found);
2568 ++Index;
2569 return true;
2570 }
2571
2572 // Name lookup didn't find anything.
2573 // Determine whether this was a typo for another field name.
2574 FieldInitializerValidatorCCC CCC(RT->getDecl());
2575 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2576 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2577 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2578 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2579 SemaRef.diagnoseTypo(
2580 Corrected,
2581 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2582 << FieldName << CurrentObjectType);
2583 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2584 hadError = true;
2585 } else {
2586 // Typo correction didn't find anything.
2587 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2588 << FieldName << CurrentObjectType;
2589 ++Index;
2590 return true;
2591 }
2592 }
2593 }
2594
2595 unsigned NumBases = 0;
2596 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2597 NumBases = CXXRD->getNumBases();
2598
2599 unsigned FieldIndex = NumBases;
2600
2601 for (auto *FI : RT->getDecl()->fields()) {
2602 if (FI->isUnnamedBitfield())
2603 continue;
2604 if (declaresSameEntity(KnownField, FI)) {
2605 KnownField = FI;
2606 break;
2607 }
2608 ++FieldIndex;
2609 }
2610
2611 RecordDecl::field_iterator Field =
2612 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2613
2614 // All of the fields of a union are located at the same place in
2615 // the initializer list.
2616 if (RT->getDecl()->isUnion()) {
2617 FieldIndex = 0;
2618 if (StructuredList) {
2619 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2620 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2621 assert(StructuredList->getNumInits() == 1((void)0)
2622 && "A union should never have more than one initializer!")((void)0);
2623
2624 Expr *ExistingInit = StructuredList->getInit(0);
2625 if (ExistingInit) {
2626 // We're about to throw away an initializer, emit warning.
2627 diagnoseInitOverride(
2628 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2629 }
2630
2631 // remove existing initializer
2632 StructuredList->resizeInits(SemaRef.Context, 0);
2633 StructuredList->setInitializedFieldInUnion(nullptr);
2634 }
2635
2636 StructuredList->setInitializedFieldInUnion(*Field);
2637 }
2638 }
2639
2640 // Make sure we can use this declaration.
2641 bool InvalidUse;
2642 if (VerifyOnly)
2643 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2644 else
2645 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2646 if (InvalidUse) {
2647 ++Index;
2648 return true;
2649 }
2650
2651 // C++20 [dcl.init.list]p3:
2652 // The ordered identifiers in the designators of the designated-
2653 // initializer-list shall form a subsequence of the ordered identifiers
2654 // in the direct non-static data members of T.
2655 //
2656 // Note that this is not a condition on forming the aggregate
2657 // initialization, only on actually performing initialization,
2658 // so it is not checked in VerifyOnly mode.
2659 //
2660 // FIXME: This is the only reordering diagnostic we produce, and it only
2661 // catches cases where we have a top-level field designator that jumps
2662 // backwards. This is the only such case that is reachable in an
2663 // otherwise-valid C++20 program, so is the only case that's required for
2664 // conformance, but for consistency, we should diagnose all the other
2665 // cases where a designator takes us backwards too.
2666 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2667 NextField &&
2668 (*NextField == RT->getDecl()->field_end() ||
2669 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2670 // Find the field that we just initialized.
2671 FieldDecl *PrevField = nullptr;
2672 for (auto FI = RT->getDecl()->field_begin();
2673 FI != RT->getDecl()->field_end(); ++FI) {
2674 if (FI->isUnnamedBitfield())
2675 continue;
2676 if (*NextField != RT->getDecl()->field_end() &&
2677 declaresSameEntity(*FI, **NextField))
2678 break;
2679 PrevField = *FI;
2680 }
2681
2682 if (PrevField &&
2683 PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2684 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2685 << KnownField << PrevField << DIE->getSourceRange();
2686
2687 unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2688 if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2689 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2690 SemaRef.Diag(PrevInit->getBeginLoc(),
2691 diag::note_previous_field_init)
2692 << PrevField << PrevInit->getSourceRange();
2693 }
2694 }
2695 }
2696 }
2697
2698
2699 // Update the designator with the field declaration.
2700 if (!VerifyOnly)
2701 D->setField(*Field);
2702
2703 // Make sure that our non-designated initializer list has space
2704 // for a subobject corresponding to this field.
2705 if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2706 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2707
2708 // This designator names a flexible array member.
2709 if (Field->getType()->isIncompleteArrayType()) {
2710 bool Invalid = false;
2711 if ((DesigIdx + 1) != DIE->size()) {
2712 // We can't designate an object within the flexible array
2713 // member (because GCC doesn't allow it).
2714 if (!VerifyOnly) {
2715 DesignatedInitExpr::Designator *NextD
2716 = DIE->getDesignator(DesigIdx + 1);
2717 SemaRef.Diag(NextD->getBeginLoc(),
2718 diag::err_designator_into_flexible_array_member)
2719 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2720 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2721 << *Field;
2722 }
2723 Invalid = true;
2724 }
2725
2726 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2727 !isa<StringLiteral>(DIE->getInit())) {
2728 // The initializer is not an initializer list.
2729 if (!VerifyOnly) {
2730 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2731 diag::err_flexible_array_init_needs_braces)
2732 << DIE->getInit()->getSourceRange();
2733 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2734 << *Field;
2735 }
2736 Invalid = true;
2737 }
2738
2739 // Check GNU flexible array initializer.
2740 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2741 TopLevelObject))
2742 Invalid = true;
2743
2744 if (Invalid) {
2745 ++Index;
2746 return true;
2747 }
2748
2749 // Initialize the array.
2750 bool prevHadError = hadError;
2751 unsigned newStructuredIndex = FieldIndex;
2752 unsigned OldIndex = Index;
2753 IList->setInit(Index, DIE->getInit());
2754
2755 InitializedEntity MemberEntity =
2756 InitializedEntity::InitializeMember(*Field, &Entity);
2757 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2758 StructuredList, newStructuredIndex);
2759
2760 IList->setInit(OldIndex, DIE);
2761 if (hadError && !prevHadError) {
2762 ++Field;
2763 ++FieldIndex;
2764 if (NextField)
2765 *NextField = Field;
2766 StructuredIndex = FieldIndex;
2767 return true;
2768 }
2769 } else {
2770 // Recurse to check later designated subobjects.
2771 QualType FieldType = Field->getType();
2772 unsigned newStructuredIndex = FieldIndex;
2773
2774 InitializedEntity MemberEntity =
2775 InitializedEntity::InitializeMember(*Field, &Entity);
2776 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2777 FieldType, nullptr, nullptr, Index,
2778 StructuredList, newStructuredIndex,
2779 FinishSubobjectInit, false))
2780 return true;
2781 }
2782
2783 // Find the position of the next field to be initialized in this
2784 // subobject.
2785 ++Field;
2786 ++FieldIndex;
2787
2788 // If this the first designator, our caller will continue checking
2789 // the rest of this struct/class/union subobject.
2790 if (IsFirstDesignator) {
2791 if (NextField)
2792 *NextField = Field;
2793 StructuredIndex = FieldIndex;
2794 return false;
2795 }
2796
2797 if (!FinishSubobjectInit)
2798 return false;
2799
2800 // We've already initialized something in the union; we're done.
2801 if (RT->getDecl()->isUnion())
2802 return hadError;
2803
2804 // Check the remaining fields within this class/struct/union subobject.
2805 bool prevHadError = hadError;
2806
2807 auto NoBases =
2808 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2809 CXXRecordDecl::base_class_iterator());
2810 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2811 false, Index, StructuredList, FieldIndex);
2812 return hadError && !prevHadError;
2813 }
2814
2815 // C99 6.7.8p6:
2816 //
2817 // If a designator has the form
2818 //
2819 // [ constant-expression ]
2820 //
2821 // then the current object (defined below) shall have array
2822 // type and the expression shall be an integer constant
2823 // expression. If the array is of unknown size, any
2824 // nonnegative value is valid.
2825 //
2826 // Additionally, cope with the GNU extension that permits
2827 // designators of the form
2828 //
2829 // [ constant-expression ... constant-expression ]
2830 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2831 if (!AT) {
2832 if (!VerifyOnly)
2833 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2834 << CurrentObjectType;
2835 ++Index;
2836 return true;
2837 }
2838
2839 Expr *IndexExpr = nullptr;
2840 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2841 if (D->isArrayDesignator()) {
2842 IndexExpr = DIE->getArrayIndex(*D);
2843 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2844 DesignatedEndIndex = DesignatedStartIndex;
2845 } else {
2846 assert(D->isArrayRangeDesignator() && "Need array-range designator")((void)0);
2847
2848 DesignatedStartIndex =
2849 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2850 DesignatedEndIndex =
2851 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2852 IndexExpr = DIE->getArrayRangeEnd(*D);
2853
2854 // Codegen can't handle evaluating array range designators that have side
2855 // effects, because we replicate the AST value for each initialized element.
2856 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2857 // elements with something that has a side effect, so codegen can emit an
2858 // "error unsupported" error instead of miscompiling the app.
2859 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2860 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2861 FullyStructuredList->sawArrayRangeDesignator();
2862 }
2863
2864 if (isa<ConstantArrayType>(AT)) {
2865 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2866 DesignatedStartIndex
2867 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2868 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2869 DesignatedEndIndex
2870 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2871 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2872 if (DesignatedEndIndex >= MaxElements) {
2873 if (!VerifyOnly)
2874 SemaRef.Diag(IndexExpr->getBeginLoc(),
2875 diag::err_array_designator_too_large)
2876 << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
2877 << IndexExpr->getSourceRange();
2878 ++Index;
2879 return true;
2880 }
2881 } else {
2882 unsigned DesignatedIndexBitWidth =
2883 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2884 DesignatedStartIndex =
2885 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2886 DesignatedEndIndex =
2887 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2888 DesignatedStartIndex.setIsUnsigned(true);
2889 DesignatedEndIndex.setIsUnsigned(true);
2890 }
2891
2892 bool IsStringLiteralInitUpdate =
2893 StructuredList && StructuredList->isStringLiteralInit();
2894 if (IsStringLiteralInitUpdate && VerifyOnly) {
2895 // We're just verifying an update to a string literal init. We don't need
2896 // to split the string up into individual characters to do that.
2897 StructuredList = nullptr;
2898 } else if (IsStringLiteralInitUpdate) {
2899 // We're modifying a string literal init; we have to decompose the string
2900 // so we can modify the individual characters.
2901 ASTContext &Context = SemaRef.Context;
2902 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2903
2904 // Compute the character type
2905 QualType CharTy = AT->getElementType();
2906
2907 // Compute the type of the integer literals.
2908 QualType PromotedCharTy = CharTy;
2909 if (CharTy->isPromotableIntegerType())
2910 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2911 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2912
2913 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2914 // Get the length of the string.
2915 uint64_t StrLen = SL->getLength();
2916 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2917 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2918 StructuredList->resizeInits(Context, StrLen);
2919
2920 // Build a literal for each character in the string, and put them into
2921 // the init list.
2922 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2923 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2924 Expr *Init = new (Context) IntegerLiteral(
2925 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2926 if (CharTy != PromotedCharTy)
2927 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2928 Init, nullptr, VK_PRValue,
2929 FPOptionsOverride());
2930 StructuredList->updateInit(Context, i, Init);
2931 }
2932 } else {
2933 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2934 std::string Str;
2935 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2936
2937 // Get the length of the string.
2938 uint64_t StrLen = Str.size();
2939 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2940 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2941 StructuredList->resizeInits(Context, StrLen);
2942
2943 // Build a literal for each character in the string, and put them into
2944 // the init list.
2945 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2946 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2947 Expr *Init = new (Context) IntegerLiteral(
2948 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2949 if (CharTy != PromotedCharTy)
2950 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2951 Init, nullptr, VK_PRValue,
2952 FPOptionsOverride());
2953 StructuredList->updateInit(Context, i, Init);
2954 }
2955 }
2956 }
2957
2958 // Make sure that our non-designated initializer list has space
2959 // for a subobject corresponding to this array element.
2960 if (StructuredList &&
2961 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2962 StructuredList->resizeInits(SemaRef.Context,
2963 DesignatedEndIndex.getZExtValue() + 1);
2964
2965 // Repeatedly perform subobject initializations in the range
2966 // [DesignatedStartIndex, DesignatedEndIndex].
2967
2968 // Move to the next designator
2969 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2970 unsigned OldIndex = Index;
2971
2972 InitializedEntity ElementEntity =
2973 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2974
2975 while (DesignatedStartIndex <= DesignatedEndIndex) {
2976 // Recurse to check later designated subobjects.
2977 QualType ElementType = AT->getElementType();
2978 Index = OldIndex;
2979
2980 ElementEntity.setElementIndex(ElementIndex);
2981 if (CheckDesignatedInitializer(
2982 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2983 nullptr, Index, StructuredList, ElementIndex,
2984 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2985 false))
2986 return true;
2987
2988 // Move to the next index in the array that we'll be initializing.
2989 ++DesignatedStartIndex;
2990 ElementIndex = DesignatedStartIndex.getZExtValue();
2991 }
2992
2993 // If this the first designator, our caller will continue checking
2994 // the rest of this array subobject.
2995 if (IsFirstDesignator) {
2996 if (NextElementIndex)
2997 *NextElementIndex = DesignatedStartIndex;
2998 StructuredIndex = ElementIndex;
2999 return false;
3000 }
3001
3002 if (!FinishSubobjectInit)
3003 return false;
3004
3005 // Check the remaining elements within this array subobject.
3006 bool prevHadError = hadError;
3007 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3008 /*SubobjectIsDesignatorContext=*/false, Index,
3009 StructuredList, ElementIndex);
3010 return hadError && !prevHadError;
3011}
3012
3013// Get the structured initializer list for a subobject of type
3014// @p CurrentObjectType.
3015InitListExpr *
3016InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3017 QualType CurrentObjectType,
3018 InitListExpr *StructuredList,
3019 unsigned StructuredIndex,
3020 SourceRange InitRange,
3021 bool IsFullyOverwritten) {
3022 if (!StructuredList)
3023 return nullptr;
3024
3025 Expr *ExistingInit = nullptr;
3026 if (StructuredIndex < StructuredList->getNumInits())
3027 ExistingInit = StructuredList->getInit(StructuredIndex);
3028
3029 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3030 // There might have already been initializers for subobjects of the current
3031 // object, but a subsequent initializer list will overwrite the entirety
3032 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3033 //
3034 // struct P { char x[6]; };
3035 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3036 //
3037 // The first designated initializer is ignored, and l.x is just "f".
3038 if (!IsFullyOverwritten)
3039 return Result;
3040
3041 if (ExistingInit) {
3042 // We are creating an initializer list that initializes the
3043 // subobjects of the current object, but there was already an
3044 // initialization that completely initialized the current
3045 // subobject:
3046 //
3047 // struct X { int a, b; };
3048 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3049 //
3050 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3051 // designated initializer overwrites the [0].b initializer
3052 // from the prior initialization.
3053 //
3054 // When the existing initializer is an expression rather than an
3055 // initializer list, we cannot decompose and update it in this way.
3056 // For example:
3057 //
3058 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3059 //
3060 // This case is handled by CheckDesignatedInitializer.
3061 diagnoseInitOverride(ExistingInit, InitRange);
3062 }
3063
3064 unsigned ExpectedNumInits = 0;
3065 if (Index < IList->getNumInits()) {
3066 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3067 ExpectedNumInits = Init->getNumInits();
3068 else
3069 ExpectedNumInits = IList->getNumInits() - Index;
3070 }
3071
3072 InitListExpr *Result =
3073 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3074
3075 // Link this new initializer list into the structured initializer
3076 // lists.
3077 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3078 return Result;
3079}
3080
3081InitListExpr *
3082InitListChecker::createInitListExpr(QualType CurrentObjectType,
3083 SourceRange InitRange,
3084 unsigned ExpectedNumInits) {
3085 InitListExpr *Result
3086 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3087 InitRange.getBegin(), None,
3088 InitRange.getEnd());
3089
3090 QualType ResultType = CurrentObjectType;
3091 if (!ResultType->isArrayType())
3092 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3093 Result->setType(ResultType);
3094
3095 // Pre-allocate storage for the structured initializer list.
3096 unsigned NumElements = 0;
3097
3098 if (const ArrayType *AType
3099 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3100 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3101 NumElements = CAType->getSize().getZExtValue();
3102 // Simple heuristic so that we don't allocate a very large
3103 // initializer with many empty entries at the end.
3104 if (NumElements > ExpectedNumInits)
3105 NumElements = 0;
3106 }
3107 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3108 NumElements = VType->getNumElements();
3109 } else if (CurrentObjectType->isRecordType()) {
3110 NumElements = numStructUnionElements(CurrentObjectType);
3111 }
3112
3113 Result->reserveInits(SemaRef.Context, NumElements);
3114
3115 return Result;
3116}
3117
3118/// Update the initializer at index @p StructuredIndex within the
3119/// structured initializer list to the value @p expr.
3120void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3121 unsigned &StructuredIndex,
3122 Expr *expr) {
3123 // No structured initializer list to update
3124 if (!StructuredList)
3125 return;
3126
3127 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3128 StructuredIndex, expr)) {
3129 // This initializer overwrites a previous initializer.
3130 // No need to diagnose when `expr` is nullptr because a more relevant
3131 // diagnostic has already been issued and this diagnostic is potentially
3132 // noise.
3133 if (expr)
3134 diagnoseInitOverride(PrevInit, expr->getSourceRange());
3135 }
3136
3137 ++StructuredIndex;
3138}
3139
3140/// Determine whether we can perform aggregate initialization for the purposes
3141/// of overload resolution.
3142bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3143 const InitializedEntity &Entity, InitListExpr *From) {
3144 QualType Type = Entity.getType();
3145 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3146 /*TreatUnavailableAsInvalid=*/false,
3147 /*InOverloadResolution=*/true);
3148 return !Check.HadError();
3149}
3150
3151/// Check that the given Index expression is a valid array designator
3152/// value. This is essentially just a wrapper around
3153/// VerifyIntegerConstantExpression that also checks for negative values
3154/// and produces a reasonable diagnostic if there is a
3155/// failure. Returns the index expression, possibly with an implicit cast
3156/// added, on success. If everything went okay, Value will receive the
3157/// value of the constant expression.
3158static ExprResult
3159CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3160 SourceLocation Loc = Index->getBeginLoc();
3161
3162 // Make sure this is an integer constant expression.
3163 ExprResult Result =
3164 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3165 if (Result.isInvalid())
3166 return Result;
3167
3168 if (Value.isSigned() && Value.isNegative())
3169 return S.Diag(Loc, diag::err_array_designator_negative)
3170 << toString(Value, 10) << Index->getSourceRange();
3171
3172 Value.setIsUnsigned(true);
3173 return Result;
3174}
3175
3176ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3177 SourceLocation EqualOrColonLoc,
3178 bool GNUSyntax,
3179 ExprResult Init) {
3180 typedef DesignatedInitExpr::Designator ASTDesignator;
3181
3182 bool Invalid = false;
3183 SmallVector<ASTDesignator, 32> Designators;
3184 SmallVector<Expr *, 32> InitExpressions;
3185
3186 // Build designators and check array designator expressions.
3187 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3188 const Designator &D = Desig.getDesignator(Idx);
3189 switch (D.getKind()) {
3190 case Designator::FieldDesignator:
3191 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3192 D.getFieldLoc()));
3193 break;
3194
3195 case Designator::ArrayDesignator: {
3196 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3197 llvm::APSInt IndexValue;
3198 if (!Index->isTypeDependent() && !Index->isValueDependent())
3199 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3200 if (!Index)
3201 Invalid = true;
3202 else {
3203 Designators.push_back(ASTDesignator(InitExpressions.size(),
3204 D.getLBracketLoc(),
3205 D.getRBracketLoc()));
3206 InitExpressions.push_back(Index);
3207 }
3208 break;
3209 }
3210
3211 case Designator::ArrayRangeDesignator: {
3212 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3213 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3214 llvm::APSInt StartValue;
3215 llvm::APSInt EndValue;
3216 bool StartDependent = StartIndex->isTypeDependent() ||
3217 StartIndex->isValueDependent();
3218 bool EndDependent = EndIndex->isTypeDependent() ||
3219 EndIndex->isValueDependent();
3220 if (!StartDependent)
3221 StartIndex =
3222 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3223 if (!EndDependent)
3224 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3225
3226 if (!StartIndex || !EndIndex)
3227 Invalid = true;
3228 else {
3229 // Make sure we're comparing values with the same bit width.
3230 if (StartDependent || EndDependent) {
3231 // Nothing to compute.
3232 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3233 EndValue = EndValue.extend(StartValue.getBitWidth());
3234 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3235 StartValue = StartValue.extend(EndValue.getBitWidth());
3236
3237 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3238 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3239 << toString(StartValue, 10) << toString(EndValue, 10)
3240 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3241 Invalid = true;
3242 } else {
3243 Designators.push_back(ASTDesignator(InitExpressions.size(),
3244 D.getLBracketLoc(),
3245 D.getEllipsisLoc(),
3246 D.getRBracketLoc()));
3247 InitExpressions.push_back(StartIndex);
3248 InitExpressions.push_back(EndIndex);
3249 }
3250 }
3251 break;
3252 }
3253 }
3254 }
3255
3256 if (Invalid || Init.isInvalid())
3257 return ExprError();
3258
3259 // Clear out the expressions within the designation.
3260 Desig.ClearExprs(*this);
3261
3262 return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3263 EqualOrColonLoc, GNUSyntax,
3264 Init.getAs<Expr>());
3265}
3266
3267//===----------------------------------------------------------------------===//
3268// Initialization entity
3269//===----------------------------------------------------------------------===//
3270
3271InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3272 const InitializedEntity &Parent)
3273 : Parent(&Parent), Index(Index)
3274{
3275 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3276 Kind = EK_ArrayElement;
3277 Type = AT->getElementType();
3278 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3279 Kind = EK_VectorElement;
3280 Type = VT->getElementType();
3281 } else {
3282 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3283 assert(CT && "Unexpected type")((void)0);
3284 Kind = EK_ComplexElement;
3285 Type = CT->getElementType();
3286 }
3287}
3288
3289InitializedEntity
3290InitializedEntity::InitializeBase(ASTContext &Context,
3291 const CXXBaseSpecifier *Base,
3292 bool IsInheritedVirtualBase,
3293 const InitializedEntity *Parent) {
3294 InitializedEntity Result;
3295 Result.Kind = EK_Base;
3296 Result.Parent = Parent;
3297 Result.Base = {Base, IsInheritedVirtualBase};
3298 Result.Type = Base->getType();
3299 return Result;
3300}
3301
3302DeclarationName InitializedEntity::getName() const {
3303 switch (getKind()) {
3304 case EK_Parameter:
3305 case EK_Parameter_CF_Audited: {
3306 ParmVarDecl *D = Parameter.getPointer();
3307 return (D ? D->getDeclName() : DeclarationName());
3308 }
3309
3310 case EK_Variable:
3311 case EK_Member:
3312 case EK_Binding:
3313 case EK_TemplateParameter:
3314 return Variable.VariableOrMember->getDeclName();
3315
3316 case EK_LambdaCapture:
3317 return DeclarationName(Capture.VarID);
3318
3319 case EK_Result:
3320 case EK_StmtExprResult:
3321 case EK_Exception:
3322 case EK_New:
3323 case EK_Temporary:
3324 case EK_Base:
3325 case EK_Delegating:
3326 case EK_ArrayElement:
3327 case EK_VectorElement:
3328 case EK_ComplexElement:
3329 case EK_BlockElement:
3330 case EK_LambdaToBlockConversionBlockElement:
3331 case EK_CompoundLiteralInit:
3332 case EK_RelatedResult:
3333 return DeclarationName();
3334 }
3335
3336 llvm_unreachable("Invalid EntityKind!")__builtin_unreachable();
3337}
3338
3339ValueDecl *InitializedEntity::getDecl() const {
3340 switch (getKind()) {
3341 case EK_Variable:
3342 case EK_Member:
3343 case EK_Binding:
3344 case EK_TemplateParameter:
3345 return Variable.VariableOrMember;
3346
3347 case EK_Parameter:
3348 case EK_Parameter_CF_Audited:
3349 return Parameter.getPointer();
3350
3351 case EK_Result:
3352 case EK_StmtExprResult:
3353 case EK_Exception:
3354 case EK_New:
3355 case EK_Temporary:
3356 case EK_Base:
3357 case EK_Delegating:
3358 case EK_ArrayElement:
3359 case EK_VectorElement:
3360 case EK_ComplexElement:
3361 case EK_BlockElement:
3362 case EK_LambdaToBlockConversionBlockElement:
3363 case EK_LambdaCapture:
3364 case EK_CompoundLiteralInit:
3365 case EK_RelatedResult:
3366 return nullptr;
3367 }
3368
3369 llvm_unreachable("Invalid EntityKind!")__builtin_unreachable();
3370}
3371
3372bool InitializedEntity::allowsNRVO() const {
3373 switch (getKind()) {
3374 case EK_Result:
3375 case EK_Exception:
3376 return LocAndNRVO.NRVO;
3377
3378 case EK_StmtExprResult:
3379 case EK_Variable:
3380 case EK_Parameter:
3381 case EK_Parameter_CF_Audited:
3382 case EK_TemplateParameter:
3383 case EK_Member:
3384 case EK_Binding:
3385 case EK_New:
3386 case EK_Temporary:
3387 case EK_CompoundLiteralInit:
3388 case EK_Base:
3389 case EK_Delegating:
3390 case EK_ArrayElement:
3391 case EK_VectorElement:
3392 case EK_ComplexElement:
3393 case EK_BlockElement:
3394 case EK_LambdaToBlockConversionBlockElement:
3395 case EK_LambdaCapture:
3396 case EK_RelatedResult:
3397 break;
3398 }
3399
3400 return false;
3401}
3402
3403unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3404 assert(getParent() != this)((void)0);
3405 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3406 for (unsigned I = 0; I != Depth; ++I)
3407 OS << "`-";
3408
3409 switch (getKind()) {
3410 case EK_Variable: OS << "Variable"; break;
3411 case EK_Parameter: OS << "Parameter"; break;
3412 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3413 break;
3414 case EK_TemplateParameter: OS << "TemplateParameter"; break;
3415 case EK_Result: OS << "Result"; break;
3416 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3417 case EK_Exception: OS << "Exception"; break;
3418 case EK_Member: OS << "Member"; break;
3419 case EK_Binding: OS << "Binding"; break;
3420 case EK_New: OS << "New"; break;
3421 case EK_Temporary: OS << "Temporary"; break;
3422 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3423 case EK_RelatedResult: OS << "RelatedResult"; break;
3424 case EK_Base: OS << "Base"; break;
3425 case EK_Delegating: OS << "Delegating"; break;
3426 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3427 case EK_VectorElement: OS << "VectorElement " << Index; break;
3428 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3429 case EK_BlockElement: OS << "Block"; break;
3430 case EK_LambdaToBlockConversionBlockElement:
3431 OS << "Block (lambda)";
3432 break;
3433 case EK_LambdaCapture:
3434 OS << "LambdaCapture ";
3435 OS << DeclarationName(Capture.VarID);
3436 break;
3437 }
3438
3439 if (auto *D = getDecl()) {
3440 OS << " ";
3441 D->printQualifiedName(OS);
3442 }
3443
3444 OS << " '" << getType().getAsString() << "'\n";
3445
3446 return Depth + 1;
3447}
3448
3449LLVM_DUMP_METHOD__attribute__((noinline)) void InitializedEntity::dump() const {
3450 dumpImpl(llvm::errs());
3451}
3452
3453//===----------------------------------------------------------------------===//
3454// Initialization sequence
3455//===----------------------------------------------------------------------===//
3456
3457void InitializationSequence::Step::Destroy() {
3458 switch (Kind) {
3459 case SK_ResolveAddressOfOverloadedFunction:
3460 case SK_CastDerivedToBasePRValue:
3461 case SK_CastDerivedToBaseXValue:
3462 case SK_CastDerivedToBaseLValue:
3463 case SK_BindReference:
3464 case SK_BindReferenceToTemporary:
3465 case SK_FinalCopy:
3466 case SK_ExtraneousCopyToTemporary:
3467 case SK_UserConversion:
3468 case SK_QualificationConversionPRValue:
3469 case SK_QualificationConversionXValue:
3470 case SK_QualificationConversionLValue:
3471 case SK_FunctionReferenceConversion:
3472 case SK_AtomicConversion:
3473 case SK_ListInitialization:
3474 case SK_UnwrapInitList:
3475 case SK_RewrapInitList:
3476 case SK_ConstructorInitialization:
3477 case SK_ConstructorInitializationFromList:
3478 case SK_ZeroInitialization:
3479 case SK_CAssignment:
3480 case SK_StringInit:
3481 case SK_ObjCObjectConversion:
3482 case SK_ArrayLoopIndex:
3483 case SK_ArrayLoopInit:
3484 case SK_ArrayInit:
3485 case SK_GNUArrayInit:
3486 case SK_ParenthesizedArrayInit:
3487 case SK_PassByIndirectCopyRestore:
3488 case SK_PassByIndirectRestore:
3489 case SK_ProduceObjCObject:
3490 case SK_StdInitializerList:
3491 case SK_StdInitializerListConstructorCall:
3492 case SK_OCLSamplerInit:
3493 case SK_OCLZeroOpaqueType:
3494 break;
3495
3496 case SK_ConversionSequence:
3497 case SK_ConversionSequenceNoNarrowing:
3498 delete ICS;
3499 }
3500}
3501
3502bool InitializationSequence::isDirectReferenceBinding() const {
3503 // There can be some lvalue adjustments after the SK_BindReference step.
3504 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3505 if (I->Kind == SK_BindReference)
3506 return true;
3507 if (I->Kind == SK_BindReferenceToTemporary)
3508 return false;
3509 }
3510 return false;
3511}
3512
3513bool InitializationSequence::isAmbiguous() const {
3514 if (!Failed())
3515 return false;
3516
3517 switch (getFailureKind()) {
3518 case FK_TooManyInitsForReference:
3519 case FK_ParenthesizedListInitForReference:
3520 case FK_ArrayNeedsInitList:
3521 case FK_ArrayNeedsInitListOrStringLiteral:
3522 case FK_ArrayNeedsInitListOrWideStringLiteral:
3523 case FK_NarrowStringIntoWideCharArray:
3524 case FK_WideStringIntoCharArray:
3525 case FK_IncompatWideStringIntoWideChar:
3526 case FK_PlainStringIntoUTF8Char:
3527 case FK_UTF8StringIntoPlainChar:
3528 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3529 case FK_NonConstLValueReferenceBindingToTemporary:
3530 case FK_NonConstLValueReferenceBindingToBitfield:
3531 case FK_NonConstLValueReferenceBindingToVectorElement:
3532 case FK_NonConstLValueReferenceBindingToMatrixElement:
3533 case FK_NonConstLValueReferenceBindingToUnrelated:
3534 case FK_RValueReferenceBindingToLValue:
3535 case FK_ReferenceAddrspaceMismatchTemporary:
3536 case FK_ReferenceInitDropsQualifiers:
3537 case FK_ReferenceInitFailed:
3538 case FK_ConversionFailed:
3539 case FK_ConversionFromPropertyFailed:
3540 case FK_TooManyInitsForScalar:
3541 case FK_ParenthesizedListInitForScalar:
3542 case FK_ReferenceBindingToInitList:
3543 case FK_InitListBadDestinationType:
3544 case FK_DefaultInitOfConst:
3545 case FK_Incomplete:
3546 case FK_ArrayTypeMismatch:
3547 case FK_NonConstantArrayInit:
3548 case FK_ListInitializationFailed:
3549 case FK_VariableLengthArrayHasInitializer:
3550 case FK_PlaceholderType:
3551 case FK_ExplicitConstructor:
3552 case FK_AddressOfUnaddressableFunction:
3553 return false;
3554
3555 case FK_ReferenceInitOverloadFailed:
3556 case FK_UserConversionOverloadFailed:
3557 case FK_ConstructorOverloadFailed:
3558 case FK_ListConstructorOverloadFailed:
3559 return FailedOverloadResult == OR_Ambiguous;
3560 }
3561
3562 llvm_unreachable("Invalid EntityKind!")__builtin_unreachable();
3563}
3564
3565bool InitializationSequence::isConstructorInitialization() const {
3566 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3567}
3568
3569void
3570InitializationSequence
3571::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3572 DeclAccessPair Found,
3573 bool HadMultipleCandidates) {
3574 Step S;
3575 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3576 S.Type = Function->getType();
3577 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3578 S.Function.Function = Function;
3579 S.Function.FoundDecl = Found;
3580 Steps.push_back(S);
3581}
3582
3583void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3584 ExprValueKind VK) {
3585 Step S;
3586 switch (VK) {
3587 case VK_PRValue:
3588 S.Kind = SK_CastDerivedToBasePRValue;
3589 break;
3590 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3591 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3592 }
3593 S.Type = BaseType;
3594 Steps.push_back(S);
3595}
3596
3597void InitializationSequence::AddReferenceBindingStep(QualType T,
3598 bool BindingTemporary) {
3599 Step S;
3600 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3601 S.Type = T;
3602 Steps.push_back(S);
3603}
3604
3605void InitializationSequence::AddFinalCopy(QualType T) {
3606 Step S;
3607 S.Kind = SK_FinalCopy;
3608 S.Type = T;
3609 Steps.push_back(S);
3610}
3611
3612void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3613 Step S;
3614 S.Kind = SK_ExtraneousCopyToTemporary;
3615 S.Type = T;
3616 Steps.push_back(S);
3617}
3618
3619void
3620InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3621 DeclAccessPair FoundDecl,
3622 QualType T,
3623 bool HadMultipleCandidates) {
3624 Step S;
3625 S.Kind = SK_UserConversion;
3626 S.Type = T;
3627 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3628 S.Function.Function = Function;
3629 S.Function.FoundDecl = FoundDecl;
3630 Steps.push_back(S);
3631}
3632
3633void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3634 ExprValueKind VK) {
3635 Step S;
3636 S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3637 switch (VK) {
3638 case VK_PRValue:
3639 S.Kind = SK_QualificationConversionPRValue;
3640 break;
3641 case VK_XValue:
3642 S.Kind = SK_QualificationConversionXValue;
3643 break;
3644 case VK_LValue:
3645 S.Kind = SK_QualificationConversionLValue;
3646 break;
3647 }
3648 S.Type = Ty;
3649 Steps.push_back(S);
3650}
3651
3652void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3653 Step S;
3654 S.Kind = SK_FunctionReferenceConversion;
3655 S.Type = Ty;
3656 Steps.push_back(S);
3657}
3658
3659void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3660 Step S;
3661 S.Kind = SK_AtomicConversion;
3662 S.Type = Ty;
3663 Steps.push_back(S);
3664}
3665
3666void InitializationSequence::AddConversionSequenceStep(
3667 const ImplicitConversionSequence &ICS, QualType T,
3668 bool TopLevelOfInitList) {
3669 Step S;
3670 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3671 : SK_ConversionSequence;
3672 S.Type = T;
3673 S.ICS = new ImplicitConversionSequence(ICS);
3674 Steps.push_back(S);
3675}
3676
3677void InitializationSequence::AddListInitializationStep(QualType T) {
3678 Step S;
3679 S.Kind = SK_ListInitialization;
3680 S.Type = T;
3681 Steps.push_back(S);
3682}
3683
3684void InitializationSequence::AddConstructorInitializationStep(
3685 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3686 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3687 Step S;
3688 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3689 : SK_ConstructorInitializationFromList
3690 : SK_ConstructorInitialization;
3691 S.Type = T;
3692 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3693 S.Function.Function = Constructor;
3694 S.Function.FoundDecl = FoundDecl;
3695 Steps.push_back(S);
3696}
3697
3698void InitializationSequence::AddZeroInitializationStep(QualType T) {
3699 Step S;
3700 S.Kind = SK_ZeroInitialization;
3701 S.Type = T;
3702 Steps.push_back(S);
3703}
3704
3705void InitializationSequence::AddCAssignmentStep(QualType T) {
3706 Step S;
3707 S.Kind = SK_CAssignment;
3708 S.Type = T;
3709 Steps.push_back(S);
3710}
3711
3712void InitializationSequence::AddStringInitStep(QualType T) {
3713 Step S;
3714 S.Kind = SK_StringInit;
3715 S.Type = T;
3716 Steps.push_back(S);
3717}
3718
3719void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3720 Step S;
3721 S.Kind = SK_ObjCObjectConversion;
3722 S.Type = T;
3723 Steps.push_back(S);
3724}
3725
3726void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3727 Step S;
3728 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3729 S.Type = T;
3730 Steps.push_back(S);
3731}
3732
3733void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3734 Step S;
3735 S.Kind = SK_ArrayLoopIndex;
3736 S.Type = EltT;
3737 Steps.insert(Steps.begin(), S);
3738
3739 S.Kind = SK_ArrayLoopInit;
3740 S.Type = T;
3741 Steps.push_back(S);
3742}
3743
3744void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3745 Step S;
3746 S.Kind = SK_ParenthesizedArrayInit;
3747 S.Type = T;
3748 Steps.push_back(S);
3749}
3750
3751void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3752 bool shouldCopy) {
3753 Step s;
3754 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3755 : SK_PassByIndirectRestore);
3756 s.Type = type;
3757 Steps.push_back(s);
3758}
3759
3760void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3761 Step S;
3762 S.Kind = SK_ProduceObjCObject;
3763 S.Type = T;
3764 Steps.push_back(S);
3765}
3766
3767void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3768 Step S;
3769 S.Kind = SK_StdInitializerList;
3770 S.Type = T;
3771 Steps.push_back(S);
3772}
3773
3774void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3775 Step S;
3776 S.Kind = SK_OCLSamplerInit;
3777 S.Type = T;
3778 Steps.push_back(S);
3779}
3780
3781void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3782 Step S;
3783 S.Kind = SK_OCLZeroOpaqueType;
3784 S.Type = T;
3785 Steps.push_back(S);
3786}
3787
3788void InitializationSequence::RewrapReferenceInitList(QualType T,
3789 InitListExpr *Syntactic) {
3790 assert(Syntactic->getNumInits() == 1 &&((void)0)
3791 "Can only rewrap trivial init lists.")((void)0);
3792 Step S;
3793 S.Kind = SK_UnwrapInitList;
3794 S.Type = Syntactic->getInit(0)->getType();
3795 Steps.insert(Steps.begin(), S);
3796
3797 S.Kind = SK_RewrapInitList;
3798 S.Type = T;
3799 S.WrappingSyntacticList = Syntactic;
3800 Steps.push_back(S);
3801}
3802
3803void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3804 OverloadingResult Result) {
3805 setSequenceKind(FailedSequence);
3806 this->Failure = Failure;
3807 this->FailedOverloadResult = Result;
3808}
3809
3810//===----------------------------------------------------------------------===//
3811// Attempt initialization
3812//===----------------------------------------------------------------------===//
3813
3814/// Tries to add a zero initializer. Returns true if that worked.
3815static bool
3816maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3817 const InitializedEntity &Entity) {
3818 if (Entity.getKind() != InitializedEntity::EK_Variable)
3819 return false;
3820
3821 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3822 if (VD->getInit() || VD->getEndLoc().isMacroID())
3823 return false;
3824
3825 QualType VariableTy = VD->getType().getCanonicalType();
3826 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3827 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3828 if (!Init.empty()) {
3829 Sequence.AddZeroInitializationStep(Entity.getType());
3830 Sequence.SetZeroInitializationFixit(Init, Loc);
3831 return true;
3832 }
3833 return false;
3834}
3835
3836static void MaybeProduceObjCObject(Sema &S,
3837 InitializationSequence &Sequence,
3838 const InitializedEntity &Entity) {
3839 if (!S.getLangOpts().ObjCAutoRefCount) return;
3840
3841 /// When initializing a parameter, produce the value if it's marked
3842 /// __attribute__((ns_consumed)).
3843 if (Entity.isParameterKind()) {
3844 if (!Entity.isParameterConsumed())
3845 return;
3846
3847 assert(Entity.getType()->isObjCRetainableType() &&((void)0)
3848 "consuming an object of unretainable type?")((void)0);
3849 Sequence.AddProduceObjCObjectStep(Entity.getType());
3850
3851 /// When initializing a return value, if the return type is a
3852 /// retainable type, then returns need to immediately retain the
3853 /// object. If an autorelease is required, it will be done at the
3854 /// last instant.
3855 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3856 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3857 if (!Entity.getType()->isObjCRetainableType())
3858 return;
3859
3860 Sequence.AddProduceObjCObjectStep(Entity.getType());
3861 }
3862}
3863
3864static void TryListInitialization(Sema &S,
3865 const InitializedEntity &Entity,
3866 const InitializationKind &Kind,
3867 InitListExpr *InitList,
3868 InitializationSequence &Sequence,
3869 bool TreatUnavailableAsInvalid);
3870
3871/// When initializing from init list via constructor, handle
3872/// initialization of an object of type std::initializer_list<T>.
3873///
3874/// \return true if we have handled initialization of an object of type
3875/// std::initializer_list<T>, false otherwise.
3876static bool TryInitializerListConstruction(Sema &S,
3877 InitListExpr *List,
3878 QualType DestType,
3879 InitializationSequence &Sequence,
3880 bool TreatUnavailableAsInvalid) {
3881 QualType E;
3882 if (!S.isStdInitializerList(DestType, &E))
3883 return false;
3884
3885 if (!S.isCompleteType(List->getExprLoc(), E)) {
3886 Sequence.setIncompleteTypeFailure(E);
3887 return true;
3888 }
3889
3890 // Try initializing a temporary array from the init list.
3891 QualType ArrayType = S.Context.getConstantArrayType(
3892 E.withConst(),
3893 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3894 List->getNumInits()),
3895 nullptr, clang::ArrayType::Normal, 0);
3896 InitializedEntity HiddenArray =
3897 InitializedEntity::InitializeTemporary(ArrayType);
3898 InitializationKind Kind = InitializationKind::CreateDirectList(
3899 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3900 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3901 TreatUnavailableAsInvalid);
3902 if (Sequence)
3903 Sequence.AddStdInitializerListConstructionStep(DestType);
3904 return true;
3905}
3906
3907/// Determine if the constructor has the signature of a copy or move
3908/// constructor for the type T of the class in which it was found. That is,
3909/// determine if its first parameter is of type T or reference to (possibly
3910/// cv-qualified) T.
3911static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3912 const ConstructorInfo &Info) {
3913 if (Info.Constructor->getNumParams() == 0)
3914 return false;
3915
3916 QualType ParmT =
3917 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3918 QualType ClassT =
3919 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3920
3921 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3922}
3923
3924static OverloadingResult
3925ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3926 MultiExprArg Args,
3927 OverloadCandidateSet &CandidateSet,
3928 QualType DestType,
3929 DeclContext::lookup_result Ctors,
3930 OverloadCandidateSet::iterator &Best,
3931 bool CopyInitializing, bool AllowExplicit,
3932 bool OnlyListConstructors, bool IsListInit,
3933 bool SecondStepOfCopyInit = false) {
3934 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3935 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3936
3937 for (NamedDecl *D : Ctors) {
3938 auto Info = getConstructorInfo(D);
3939 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3940 continue;
3941
3942 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3943 continue;
3944
3945 // C++11 [over.best.ics]p4:
3946 // ... and the constructor or user-defined conversion function is a
3947 // candidate by
3948 // - 13.3.1.3, when the argument is the temporary in the second step
3949 // of a class copy-initialization, or
3950 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3951 // - the second phase of 13.3.1.7 when the initializer list has exactly
3952 // one element that is itself an initializer list, and the target is
3953 // the first parameter of a constructor of class X, and the conversion
3954 // is to X or reference to (possibly cv-qualified X),
3955 // user-defined conversion sequences are not considered.
3956 bool SuppressUserConversions =
3957 SecondStepOfCopyInit ||
3958 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3959 hasCopyOrMoveCtorParam(S.Context, Info));
3960
3961 if (Info.ConstructorTmpl)
3962 S.AddTemplateOverloadCandidate(
3963 Info.ConstructorTmpl, Info.FoundDecl,
3964 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3965 /*PartialOverloading=*/false, AllowExplicit);
3966 else {
3967 // C++ [over.match.copy]p1:
3968 // - When initializing a temporary to be bound to the first parameter
3969 // of a constructor [for type T] that takes a reference to possibly
3970 // cv-qualified T as its first argument, called with a single
3971 // argument in the context of direct-initialization, explicit
3972 // conversion functions are also considered.
3973 // FIXME: What if a constructor template instantiates to such a signature?
3974 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3975 Args.size() == 1 &&
3976 hasCopyOrMoveCtorParam(S.Context, Info);
3977 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3978 CandidateSet, SuppressUserConversions,
3979 /*PartialOverloading=*/false, AllowExplicit,
3980 AllowExplicitConv);
3981 }
3982 }
3983
3984 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3985 //
3986 // When initializing an object of class type T by constructor
3987 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3988 // from a single expression of class type U, conversion functions of
3989 // U that convert to the non-reference type cv T are candidates.
3990 // Explicit conversion functions are only candidates during
3991 // direct-initialization.
3992 //
3993 // Note: SecondStepOfCopyInit is only ever true in this case when
3994 // evaluating whether to produce a C++98 compatibility warning.
3995 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3996 !SecondStepOfCopyInit) {
3997 Expr *Initializer = Args[0];
3998 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3999 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4000 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4001 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4002 NamedDecl *D = *I;
4003 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4004 D = D->getUnderlyingDecl();
4005
4006 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4007 CXXConversionDecl *Conv;
4008 if (ConvTemplate)
4009 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4010 else
4011 Conv = cast<CXXConversionDecl>(D);
4012
4013 if (ConvTemplate)
4014 S.AddTemplateConversionCandidate(
4015 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4016 CandidateSet, AllowExplicit, AllowExplicit,
4017 /*AllowResultConversion*/ false);
4018 else
4019 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4020 DestType, CandidateSet, AllowExplicit,
4021 AllowExplicit,
4022 /*AllowResultConversion*/ false);
4023 }
4024 }
4025 }
4026
4027 // Perform overload resolution and return the result.
4028 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4029}
4030
4031/// Attempt initialization by constructor (C++ [dcl.init]), which
4032/// enumerates the constructors of the initialized entity and performs overload
4033/// resolution to select the best.
4034/// \param DestType The destination class type.
4035/// \param DestArrayType The destination type, which is either DestType or
4036/// a (possibly multidimensional) array of DestType.
4037/// \param IsListInit Is this list-initialization?
4038/// \param IsInitListCopy Is this non-list-initialization resulting from a
4039/// list-initialization from {x} where x is the same
4040/// type as the entity?
4041static void TryConstructorInitialization(Sema &S,
4042 const InitializedEntity &Entity,
4043 const InitializationKind &Kind,
4044 MultiExprArg Args, QualType DestType,
4045 QualType DestArrayType,
4046 InitializationSequence &Sequence,
4047 bool IsListInit = false,
4048 bool IsInitListCopy = false) {
4049 assert(((!IsListInit && !IsInitListCopy) ||((void)0)
4050 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((void)0)
4051 "IsListInit/IsInitListCopy must come with a single initializer list "((void)0)
4052 "argument.")((void)0);
4053 InitListExpr *ILE =
4054 (IsListInit
19.1
'IsListInit' is false
19.1
'IsListInit' is false
|| IsInitListCopy
19.2
'IsInitListCopy' is false
19.2
'IsInitListCopy' is false
) ? cast<InitListExpr>(Args[0]) : nullptr;
20
'?' condition is false
4055 MultiExprArg UnwrappedArgs =
4056 ILE
20.1
'ILE' is null
20.1
'ILE' is null
? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
21
'?' condition is false
4057
4058 // The type we're constructing needs to be complete.
4059 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
22
Calling 'Sema::isCompleteType'
25
Returning from 'Sema::isCompleteType'
26
Taking false branch
4060 Sequence.setIncompleteTypeFailure(DestType);
4061 return;
4062 }
4063
4064 // C++17 [dcl.init]p17:
4065 // - If the initializer expression is a prvalue and the cv-unqualified
4066 // version of the source type is the same class as the class of the
4067 // destination, the initializer expression is used to initialize the
4068 // destination object.
4069 // Per DR (no number yet), this does not apply when initializing a base
4070 // class or delegating to another constructor from a mem-initializer.
4071 // ObjC++: Lambda captured by the block in the lambda to block conversion
4072 // should avoid copy elision.
4073 if (S.getLangOpts().CPlusPlus17 &&
27
Assuming field 'CPlusPlus17' is 0
28
Taking false branch
4074 Entity.getKind() != InitializedEntity::EK_Base &&
4075 Entity.getKind() != InitializedEntity::EK_Delegating &&
4076 Entity.getKind() !=
4077 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4078 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4079 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4080 // Convert qualifications if necessary.
4081 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4082 if (ILE)
4083 Sequence.RewrapReferenceInitList(DestType, ILE);
4084 return;
4085 }
4086
4087 const RecordType *DestRecordType = DestType->getAs<RecordType>();
29
Assuming the object is not a 'RecordType'
30
'DestRecordType' initialized to a null pointer value
4088 assert(DestRecordType && "Constructor initialization requires record type")((void)0);
4089 CXXRecordDecl *DestRecordDecl
4090 = cast<CXXRecordDecl>(DestRecordType->getDecl());
31
Called C++ object pointer is null
4091
4092 // Build the candidate set directly in the initialization sequence
4093 // structure, so that it will persist if we fail.
4094 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4095
4096 // Determine whether we are allowed to call explicit constructors or
4097 // explicit conversion operators.
4098 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4099 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4100
4101 // - Otherwise, if T is a class type, constructors are considered. The
4102 // applicable constructors are enumerated, and the best one is chosen
4103 // through overload resolution.
4104 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4105
4106 OverloadingResult Result = OR_No_Viable_Function;
4107 OverloadCandidateSet::iterator Best;
4108 bool AsInitializerList = false;
4109
4110 // C++11 [over.match.list]p1, per DR1467:
4111 // When objects of non-aggregate type T are list-initialized, such that
4112 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
4113 // according to the rules in this section, overload resolution selects
4114 // the constructor in two phases:
4115 //
4116 // - Initially, the candidate functions are the initializer-list
4117 // constructors of the class T and the argument list consists of the
4118 // initializer list as a single argument.
4119 if (IsListInit) {
4120 AsInitializerList = true;
4121
4122 // If the initializer list has no elements and T has a default constructor,
4123 // the first phase is omitted.
4124 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4125 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4126 CandidateSet, DestType, Ctors, Best,
4127 CopyInitialization, AllowExplicit,
4128 /*OnlyListConstructors=*/true,
4129 IsListInit);
4130 }
4131
4132 // C++11 [over.match.list]p1:
4133 // - If no viable initializer-list constructor is found, overload resolution
4134 // is performed again, where the candidate functions are all the
4135 // constructors of the class T and the argument list consists of the
4136 // elements of the initializer list.
4137 if (Result == OR_No_Viable_Function) {
4138 AsInitializerList = false;
4139 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4140 CandidateSet, DestType, Ctors, Best,
4141 CopyInitialization, AllowExplicit,
4142 /*OnlyListConstructors=*/false,
4143 IsListInit);
4144 }
4145 if (Result) {
4146 Sequence.SetOverloadFailure(
4147 IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4148 : InitializationSequence::FK_ConstructorOverloadFailed,
4149 Result);
4150
4151 if (Result != OR_Deleted)
4152 return;
4153 }
4154
4155 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4156
4157 // In C++17, ResolveConstructorOverload can select a conversion function
4158 // instead of a constructor.
4159 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4160 // Add the user-defined conversion step that calls the conversion function.
4161 QualType ConvType = CD->getConversionType();
4162 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&((void)0)
4163 "should not have selected this conversion function")((void)0);
4164 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4165 HadMultipleCandidates);
4166 if (!S.Context.hasSameType(ConvType, DestType))
4167 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4168 if (IsListInit)
4169 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4170 return;
4171 }
4172
4173 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4174 if (Result != OR_Deleted) {
4175 // C++11 [dcl.init]p6:
4176 // If a program calls for the default initialization of an object
4177 // of a const-qualified type T, T shall be a class type with a
4178 // user-provided default constructor.
4179 // C++ core issue 253 proposal:
4180 // If the implicit default constructor initializes all subobjects, no
4181 // initializer should be required.
4182 // The 253 proposal is for example needed to process libstdc++ headers
4183 // in 5.x.
4184 if (Kind.getKind() == InitializationKind::IK_Default &&
4185 Entity.getType().isConstQualified()) {
4186 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4187 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4188 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4189 return;
4190 }
4191 }
4192
4193 // C++11 [over.match.list]p1:
4194 // In copy-list-initialization, if an explicit constructor is chosen, the
4195 // initializer is ill-formed.
4196 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4197 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4198 return;
4199 }
4200 }
4201
4202 // [class.copy.elision]p3:
4203 // In some copy-initialization contexts, a two-stage overload resolution
4204 // is performed.
4205 // If the first overload resolution selects a deleted function, we also
4206 // need the initialization sequence to decide whether to perform the second
4207 // overload resolution.
4208 // For deleted functions in other contexts, there is no need to get the
4209 // initialization sequence.
4210 if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4211 return;
4212
4213 // Add the constructor initialization step. Any cv-qualification conversion is
4214 // subsumed by the initialization.
4215 Sequence.AddConstructorInitializationStep(
4216 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4217 IsListInit | IsInitListCopy, AsInitializerList);
4218}
4219
4220static bool
4221ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4222 Expr *Initializer,
4223 QualType &SourceType,
4224 QualType &UnqualifiedSourceType,
4225 QualType UnqualifiedTargetType,
4226 InitializationSequence &Sequence) {
4227 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4228 S.Context.OverloadTy) {
4229 DeclAccessPair Found;
4230 bool HadMultipleCandidates = false;
4231 if (FunctionDecl *Fn
4232 = S.ResolveAddressOfOverloadedFunction(Initializer,
4233 UnqualifiedTargetType,
4234 false, Found,
4235 &HadMultipleCandidates)) {
4236 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4237 HadMultipleCandidates);
4238 SourceType = Fn->getType();
4239 UnqualifiedSourceType = SourceType.getUnqualifiedType();
4240 } else if (!UnqualifiedTargetType->isRecordType()) {
4241 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4242 return true;
4243 }
4244 }
4245 return false;
4246}
4247
4248static void TryReferenceInitializationCore(Sema &S,
4249 const InitializedEntity &Entity,
4250 const InitializationKind &Kind,
4251 Expr *Initializer,
4252 QualType cv1T1, QualType T1,
4253 Qualifiers T1Quals,
4254 QualType cv2T2, QualType T2,
4255 Qualifiers T2Quals,
4256 InitializationSequence &Sequence);
4257
4258static void TryValueInitialization(Sema &S,
4259 const InitializedEntity &Entity,
4260 const InitializationKind &Kind,
4261 InitializationSequence &Sequence,
4262 InitListExpr *InitList = nullptr);
4263
4264/// Attempt list initialization of a reference.
4265static void TryReferenceListInitialization(Sema &S,
4266 const InitializedEntity &Entity,
4267 const InitializationKind &Kind,
4268 InitListExpr *InitList,
4269 InitializationSequence &Sequence,
4270 bool TreatUnavailableAsInvalid) {
4271 // First, catch C++03 where this isn't possible.
4272 if (!S.getLangOpts().CPlusPlus11) {
4273 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4274 return;
4275 }
4276 // Can't reference initialize a compound literal.
4277 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4278 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4279 return;
4280 }
4281
4282 QualType DestType = Entity.getType();
4283 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4284 Qualifiers T1Quals;
4285 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4286
4287 // Reference initialization via an initializer list works thus:
4288 // If the initializer list consists of a single element that is
4289 // reference-related to the referenced type, bind directly to that element
4290 // (possibly creating temporaries).
4291 // Otherwise, initialize a temporary with the initializer list and
4292 // bind to that.
4293 if (InitList->getNumInits() == 1) {
4294 Expr *Initializer = InitList->getInit(0);
4295 QualType cv2T2 = S.getCompletedType(Initializer);
4296 Qualifiers T2Quals;
4297 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4298
4299 // If this fails, creating a temporary wouldn't work either.
4300 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4301 T1, Sequence))
4302 return;
4303
4304 SourceLocation DeclLoc = Initializer->getBeginLoc();
4305 Sema::ReferenceCompareResult RefRelationship
4306 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4307 if (RefRelationship >= Sema::Ref_Related) {
4308 // Try to bind the reference here.
4309 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4310 T1Quals, cv2T2, T2, T2Quals, Sequence);
4311 if (Sequence)
4312 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4313 return;
4314 }
4315
4316 // Update the initializer if we've resolved an overloaded function.
4317 if (Sequence.step_begin() != Sequence.step_end())
4318 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4319 }
4320 // Perform address space compatibility check.
4321 QualType cv1T1IgnoreAS = cv1T1;
4322 if (T1Quals.hasAddressSpace()) {
4323 Qualifiers T2Quals;
4324 (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4325 if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4326 Sequence.SetFailed(
4327 InitializationSequence::FK_ReferenceInitDropsQualifiers);
4328 return;
4329 }
4330 // Ignore address space of reference type at this point and perform address
4331 // space conversion after the reference binding step.
4332 cv1T1IgnoreAS =
4333 S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4334 }
4335 // Not reference-related. Create a temporary and bind to that.
4336 InitializedEntity TempEntity =
4337 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4338
4339 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4340 TreatUnavailableAsInvalid);
4341 if (Sequence) {
4342 if (DestType->isRValueReferenceType() ||
4343 (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4344 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4345 /*BindingTemporary=*/true);
4346 if (T1Quals.hasAddressSpace())
4347 Sequence.AddQualificationConversionStep(
4348 cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4349 } else
4350 Sequence.SetFailed(
4351 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4352 }
4353}
4354
4355/// Attempt list initialization (C++0x [dcl.init.list])
4356static void TryListInitialization(Sema &S,
4357 const InitializedEntity &Entity,
4358 const InitializationKind &Kind,
4359 InitListExpr *InitList,
4360 InitializationSequence &Sequence,
4361 bool TreatUnavailableAsInvalid) {
4362 QualType DestType = Entity.getType();
4363
4364 // C++ doesn't allow scalar initialization with more than one argument.
4365 // But C99 complex numbers are scalars and it makes sense there.
4366 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4367 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4368 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4369 return;
4370 }
4371 if (DestType->isReferenceType()) {
4372 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4373 TreatUnavailableAsInvalid);
4374 return;
4375 }
4376
4377 if (DestType->isRecordType() &&
4378 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4379 Sequence.setIncompleteTypeFailure(DestType);
4380 return;
4381 }
4382
4383 // C++11 [dcl.init.list]p3, per DR1467:
4384 // - If T is a class type and the initializer list has a single element of
4385 // type cv U, where U is T or a class derived from T, the object is
4386 // initialized from that element (by copy-initialization for
4387 // copy-list-initialization, or by direct-initialization for
4388 // direct-list-initialization).
4389 // - Otherwise, if T is a character array and the initializer list has a
4390 // single element that is an appropriately-typed string literal
4391 // (8.5.2 [dcl.init.string]), initialization is performed as described
4392 // in that section.
4393 // - Otherwise, if T is an aggregate, [...] (continue below).
4394 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4395 if (DestType->isRecordType()) {
4396 QualType InitType = InitList->getInit(0)->getType();
4397 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4398 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4399 Expr *InitListAsExpr = InitList;
4400 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4401 DestType, Sequence,
4402 /*InitListSyntax*/false,
4403 /*IsInitListCopy*/true);
4404 return;
4405 }
4406 }
4407 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4408 Expr *SubInit[1] = {InitList->getInit(0)};
4409 if (!isa<VariableArrayType>(DestAT) &&
4410 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4411 InitializationKind SubKind =
4412 Kind.getKind() == InitializationKind::IK_DirectList
4413 ? InitializationKind::CreateDirect(Kind.getLocation(),
4414 InitList->getLBraceLoc(),
4415 InitList->getRBraceLoc())
4416 : Kind;
4417 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4418 /*TopLevelOfInitList*/ true,
4419 TreatUnavailableAsInvalid);
4420
4421 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4422 // the element is not an appropriately-typed string literal, in which
4423 // case we should proceed as in C++11 (below).
4424 if (Sequence) {
4425 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4426 return;
4427 }
4428 }
4429 }
4430 }
4431
4432 // C++11 [dcl.init.list]p3:
4433 // - If T is an aggregate, aggregate initialization is performed.
4434 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4435 (S.getLangOpts().CPlusPlus11 &&
4436 S.isStdInitializerList(DestType, nullptr))) {
4437 if (S.getLangOpts().CPlusPlus11) {
4438 // - Otherwise, if the initializer list has no elements and T is a
4439 // class type with a default constructor, the object is
4440 // value-initialized.
4441 if (InitList->getNumInits() == 0) {
4442 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4443 if (S.LookupDefaultConstructor(RD)) {
4444 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4445 return;
4446 }
4447 }
4448
4449 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4450 // an initializer_list object constructed [...]
4451 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4452 TreatUnavailableAsInvalid))
4453 return;
4454
4455 // - Otherwise, if T is a class type, constructors are considered.
4456 Expr *InitListAsExpr = InitList;
4457 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4458 DestType, Sequence, /*InitListSyntax*/true);
4459 } else
4460 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4461 return;
4462 }
4463
4464 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4465 InitList->getNumInits() == 1) {
4466 Expr *E = InitList->getInit(0);
4467
4468 // - Otherwise, if T is an enumeration with a fixed underlying type,
4469 // the initializer-list has a single element v, and the initialization
4470 // is direct-list-initialization, the object is initialized with the
4471 // value T(v); if a narrowing conversion is required to convert v to
4472 // the underlying type of T, the program is ill-formed.
4473 auto *ET = DestType->getAs<EnumType>();
4474 if (S.getLangOpts().CPlusPlus17 &&
4475 Kind.getKind() == InitializationKind::IK_DirectList &&
4476 ET && ET->getDecl()->isFixed() &&
4477 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4478 (E->getType()->isIntegralOrEnumerationType() ||
4479 E->getType()->isFloatingType())) {
4480 // There are two ways that T(v) can work when T is an enumeration type.
4481 // If there is either an implicit conversion sequence from v to T or
4482 // a conversion function that can convert from v to T, then we use that.
4483 // Otherwise, if v is of integral, enumeration, or floating-point type,
4484 // it is converted to the enumeration type via its underlying type.
4485 // There is no overlap possible between these two cases (except when the
4486 // source value is already of the destination type), and the first
4487 // case is handled by the general case for single-element lists below.
4488 ImplicitConversionSequence ICS;
4489 ICS.setStandard();
4490 ICS.Standard.setAsIdentityConversion();
4491 if (!E->isPRValue())
4492 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4493 // If E is of a floating-point type, then the conversion is ill-formed
4494 // due to narrowing, but go through the motions in order to produce the
4495 // right diagnostic.
4496 ICS.Standard.Second = E->getType()->isFloatingType()
4497 ? ICK_Floating_Integral
4498 : ICK_Integral_Conversion;
4499 ICS.Standard.setFromType(E->getType());
4500 ICS.Standard.setToType(0, E->getType());
4501 ICS.Standard.setToType(1, DestType);
4502 ICS.Standard.setToType(2, DestType);
4503 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4504 /*TopLevelOfInitList*/true);
4505 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4506 return;
4507 }
4508
4509 // - Otherwise, if the initializer list has a single element of type E
4510 // [...references are handled above...], the object or reference is
4511 // initialized from that element (by copy-initialization for
4512 // copy-list-initialization, or by direct-initialization for
4513 // direct-list-initialization); if a narrowing conversion is required
4514 // to convert the element to T, the program is ill-formed.
4515 //
4516 // Per core-24034, this is direct-initialization if we were performing
4517 // direct-list-initialization and copy-initialization otherwise.
4518 // We can't use InitListChecker for this, because it always performs
4519 // copy-initialization. This only matters if we might use an 'explicit'
4520 // conversion operator, or for the special case conversion of nullptr_t to
4521 // bool, so we only need to handle those cases.
4522 //
4523 // FIXME: Why not do this in all cases?
4524 Expr *Init = InitList->getInit(0);
4525 if (Init->getType()->isRecordType() ||
4526 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4527 InitializationKind SubKind =
4528 Kind.getKind() == InitializationKind::IK_DirectList
4529 ? InitializationKind::CreateDirect(Kind.getLocation(),
4530 InitList->getLBraceLoc(),
4531 InitList->getRBraceLoc())
4532 : Kind;
4533 Expr *SubInit[1] = { Init };
4534 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4535 /*TopLevelOfInitList*/true,
4536 TreatUnavailableAsInvalid);
4537 if (Sequence)
4538 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4539 return;
4540 }
4541 }
4542
4543 InitListChecker CheckInitList(S, Entity, InitList,
4544 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4545 if (CheckInitList.HadError()) {
4546 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4547 return;
4548 }
4549
4550 // Add the list initialization step with the built init list.
4551 Sequence.AddListInitializationStep(DestType);
4552}
4553
4554/// Try a reference initialization that involves calling a conversion
4555/// function.
4556static OverloadingResult TryRefInitWithConversionFunction(
4557 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4558 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4559 InitializationSequence &Sequence) {
4560 QualType DestType = Entity.getType();
4561 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4562 QualType T1 = cv1T1.getUnqualifiedType();
4563 QualType cv2T2 = Initializer->getType();
4564 QualType T2 = cv2T2.getUnqualifiedType();
4565
4566 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&((void)0)
4567 "Must have incompatible references when binding via conversion")((void)0);
4568
4569 // Build the candidate set directly in the initialization sequence
4570 // structure, so that it will persist if we fail.
4571 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4572 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4573
4574 // Determine whether we are allowed to call explicit conversion operators.
4575 // Note that none of [over.match.copy], [over.match.conv], nor
4576 // [over.match.ref] permit an explicit constructor to be chosen when
4577 // initializing a reference, not even for direct-initialization.
4578 bool AllowExplicitCtors = false;
4579 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4580
4581 const RecordType *T1RecordType = nullptr;
4582 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4583 S.isCompleteType(Kind.getLocation(), T1)) {
4584 // The type we're converting to is a class type. Enumerate its constructors
4585 // to see if there is a suitable conversion.
4586 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4587
4588 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4589 auto Info = getConstructorInfo(D);
4590 if (!Info.Constructor)
4591 continue;
4592
4593 if (!Info.Constructor->isInvalidDecl() &&
4594 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4595 if (Info.ConstructorTmpl)
4596 S.AddTemplateOverloadCandidate(
4597 Info.ConstructorTmpl, Info.FoundDecl,
4598 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4599 /*SuppressUserConversions=*/true,
4600 /*PartialOverloading*/ false, AllowExplicitCtors);
4601 else
4602 S.AddOverloadCandidate(
4603 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4604 /*SuppressUserConversions=*/true,
4605 /*PartialOverloading*/ false, AllowExplicitCtors);
4606 }
4607 }
4608 }
4609 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4610 return OR_No_Viable_Function;
4611
4612 const RecordType *T2RecordType = nullptr;
4613 if ((T2RecordType = T2->getAs<RecordType>()) &&
4614 S.isCompleteType(Kind.getLocation(), T2)) {
4615 // The type we're converting from is a class type, enumerate its conversion
4616 // functions.
4617 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4618
4619 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4620 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4621 NamedDecl *D = *I;
4622 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4623 if (isa<UsingShadowDecl>(D))
4624 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4625
4626 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4627 CXXConversionDecl *Conv;
4628 if (ConvTemplate)
4629 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4630 else
4631 Conv = cast<CXXConversionDecl>(D);
4632
4633 // If the conversion function doesn't return a reference type,
4634 // it can't be considered for this conversion unless we're allowed to
4635 // consider rvalues.
4636 // FIXME: Do we need to make sure that we only consider conversion
4637 // candidates with reference-compatible results? That might be needed to
4638 // break recursion.
4639 if ((AllowRValues ||
4640 Conv->getConversionType()->isLValueReferenceType())) {
4641 if (ConvTemplate)
4642 S.AddTemplateConversionCandidate(
4643 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4644 CandidateSet,
4645 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4646 else
4647 S.AddConversionCandidate(
4648 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4649 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4650 }
4651 }
4652 }
4653 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4654 return OR_No_Viable_Function;
4655
4656 SourceLocation DeclLoc = Initializer->getBeginLoc();
4657
4658 // Perform overload resolution. If it fails, return the failed result.
4659 OverloadCandidateSet::iterator Best;
4660 if (OverloadingResult Result
4661 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4662 return Result;
4663
4664 FunctionDecl *Function = Best->Function;
4665 // This is the overload that will be used for this initialization step if we
4666 // use this initialization. Mark it as referenced.
4667 Function->setReferenced();
4668
4669 // Compute the returned type and value kind of the conversion.
4670 QualType cv3T3;
4671 if (isa<CXXConversionDecl>(Function))
4672 cv3T3 = Function->getReturnType();
4673 else
4674 cv3T3 = T1;
4675
4676 ExprValueKind VK = VK_PRValue;
4677 if (cv3T3->isLValueReferenceType())
4678 VK = VK_LValue;
4679 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4680 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4681 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4682
4683 // Add the user-defined conversion step.
4684 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4685 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4686 HadMultipleCandidates);
4687
4688 // Determine whether we'll need to perform derived-to-base adjustments or
4689 // other conversions.
4690 Sema::ReferenceConversions RefConv;
4691 Sema::ReferenceCompareResult NewRefRelationship =
4692 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4693
4694 // Add the final conversion sequence, if necessary.
4695 if (NewRefRelationship == Sema::Ref_Incompatible) {
4696 assert(!isa<CXXConstructorDecl>(Function) &&((void)0)
4697 "should not have conversion after constructor")((void)0);
4698
4699 ImplicitConversionSequence ICS;
4700 ICS.setStandard();
4701 ICS.Standard = Best->FinalConversion;
4702 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4703
4704 // Every implicit conversion results in a prvalue, except for a glvalue
4705 // derived-to-base conversion, which we handle below.
4706 cv3T3 = ICS.Standard.getToType(2);
4707 VK = VK_PRValue;
4708 }
4709
4710 // If the converted initializer is a prvalue, its type T4 is adjusted to
4711 // type "cv1 T4" and the temporary materialization conversion is applied.
4712 //
4713 // We adjust the cv-qualifications to match the reference regardless of
4714 // whether we have a prvalue so that the AST records the change. In this
4715 // case, T4 is "cv3 T3".
4716 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4717 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4718 Sequence.AddQualificationConversionStep(cv1T4, VK);
4719 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4720 VK = IsLValueRef ? VK_LValue : VK_XValue;
4721
4722 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4723 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4724 else if (RefConv & Sema::ReferenceConversions::ObjC)
4725 Sequence.AddObjCObjectConversionStep(cv1T1);
4726 else if (RefConv & Sema::ReferenceConversions::Function)
4727 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4728 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4729 if (!S.Context.hasSameType(cv1T4, cv1T1))
4730 Sequence.AddQualificationConversionStep(cv1T1, VK);
4731 }
4732
4733 return OR_Success;
4734}
4735
4736static void CheckCXX98CompatAccessibleCopy(Sema &S,
4737 const InitializedEntity &Entity,
4738 Expr *CurInitExpr);
4739
4740/// Attempt reference initialization (C++0x [dcl.init.ref])
4741static void TryReferenceInitialization(Sema &S,
4742 const InitializedEntity &Entity,
4743 const InitializationKind &Kind,
4744 Expr *Initializer,
4745 InitializationSequence &Sequence) {
4746 QualType DestType = Entity.getType();
4747 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4748 Qualifiers T1Quals;
4749 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4750 QualType cv2T2 = S.getCompletedType(Initializer);
4751 Qualifiers T2Quals;
4752 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4753
4754 // If the initializer is the address of an overloaded function, try
4755 // to resolve the overloaded function. If all goes well, T2 is the
4756 // type of the resulting function.
4757 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4758 T1, Sequence))
4759 return;
4760
4761 // Delegate everything else to a subfunction.
4762 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4763 T1Quals, cv2T2, T2, T2Quals, Sequence);
4764}
4765
4766/// Determine whether an expression is a non-referenceable glvalue (one to
4767/// which a reference can never bind). Attempting to bind a reference to
4768/// such a glvalue will always create a temporary.
4769static bool isNonReferenceableGLValue(Expr *E) {
4770 return E->refersToBitField() || E->refersToVectorElement() ||
4771 E->refersToMatrixElement();
4772}
4773
4774/// Reference initialization without resolving overloaded functions.
4775///
4776/// We also can get here in C if we call a builtin which is declared as
4777/// a function with a parameter of reference type (such as __builtin_va_end()).
4778static void TryReferenceInitializationCore(Sema &S,
4779 const InitializedEntity &Entity,
4780 const InitializationKind &Kind,
4781 Expr *Initializer,
4782 QualType cv1T1, QualType T1,
4783 Qualifiers T1Quals,
4784 QualType cv2T2, QualType T2,
4785 Qualifiers T2Quals,
4786 InitializationSequence &Sequence) {
4787 QualType DestType = Entity.getType();
4788 SourceLocation DeclLoc = Initializer->getBeginLoc();
4789
4790 // Compute some basic properties of the types and the initializer.
4791 bool isLValueRef = DestType->isLValueReferenceType();
4792 bool isRValueRef = !isLValueRef;
4793 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4794
4795 Sema::ReferenceConversions RefConv;
4796 Sema::ReferenceCompareResult RefRelationship =
4797 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4798
4799 // C++0x [dcl.init.ref]p5:
4800 // A reference to type "cv1 T1" is initialized by an expression of type
4801 // "cv2 T2" as follows:
4802 //
4803 // - If the reference is an lvalue reference and the initializer
4804 // expression
4805 // Note the analogous bullet points for rvalue refs to functions. Because
4806 // there are no function rvalues in C++, rvalue refs to functions are treated
4807 // like lvalue refs.
4808 OverloadingResult ConvOvlResult = OR_Success;
4809 bool T1Function = T1->isFunctionType();
4810 if (isLValueRef || T1Function) {
4811 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4812 (RefRelationship == Sema::Ref_Compatible ||
4813 (Kind.isCStyleOrFunctionalCast() &&
4814 RefRelationship == Sema::Ref_Related))) {
4815 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4816 // reference-compatible with "cv2 T2," or
4817 if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4818 Sema::ReferenceConversions::ObjC)) {
4819 // If we're converting the pointee, add any qualifiers first;
4820 // these qualifiers must all be top-level, so just convert to "cv1 T2".
4821 if (RefConv & (Sema::ReferenceConversions::Qualification))
4822 Sequence.AddQualificationConversionStep(
4823 S.Context.getQualifiedType(T2, T1Quals),
4824 Initializer->getValueKind());
4825 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4826 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4827 else
4828 Sequence.AddObjCObjectConversionStep(cv1T1);
4829 } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4830 // Perform a (possibly multi-level) qualification conversion.
4831 Sequence.AddQualificationConversionStep(cv1T1,
4832 Initializer->getValueKind());
4833 } else if (RefConv & Sema::ReferenceConversions::Function) {
4834 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4835 }
4836
4837 // We only create a temporary here when binding a reference to a
4838 // bit-field or vector element. Those cases are't supposed to be
4839 // handled by this bullet, but the outcome is the same either way.
4840 Sequence.AddReferenceBindingStep(cv1T1, false);
4841 return;
4842 }
4843
4844 // - has a class type (i.e., T2 is a class type), where T1 is not
4845 // reference-related to T2, and can be implicitly converted to an
4846 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4847 // with "cv3 T3" (this conversion is selected by enumerating the
4848 // applicable conversion functions (13.3.1.6) and choosing the best
4849 // one through overload resolution (13.3)),
4850 // If we have an rvalue ref to function type here, the rhs must be
4851 // an rvalue. DR1287 removed the "implicitly" here.
4852 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4853 (isLValueRef || InitCategory.isRValue())) {
4854 if (S.getLangOpts().CPlusPlus) {
4855 // Try conversion functions only for C++.
4856 ConvOvlResult = TryRefInitWithConversionFunction(
4857 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4858 /*IsLValueRef*/ isLValueRef, Sequence);
4859 if (ConvOvlResult == OR_Success)
4860 return;
4861 if (ConvOvlResult != OR_No_Viable_Function)
4862 Sequence.SetOverloadFailure(
4863 InitializationSequence::FK_ReferenceInitOverloadFailed,
4864 ConvOvlResult);
4865 } else {
4866 ConvOvlResult = OR_No_Viable_Function;
4867 }
4868 }
4869 }
4870
4871 // - Otherwise, the reference shall be an lvalue reference to a
4872 // non-volatile const type (i.e., cv1 shall be const), or the reference
4873 // shall be an rvalue reference.
4874 // For address spaces, we interpret this to mean that an addr space
4875 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4876 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4877 T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4878 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4879 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4880 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4881 Sequence.SetOverloadFailure(
4882 InitializationSequence::FK_ReferenceInitOverloadFailed,
4883 ConvOvlResult);
4884 else if (!InitCategory.isLValue())
4885 Sequence.SetFailed(
4886 T1Quals.isAddressSpaceSupersetOf(T2Quals)
4887 ? InitializationSequence::
4888 FK_NonConstLValueReferenceBindingToTemporary
4889 : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4890 else {
4891 InitializationSequence::FailureKind FK;
4892 switch (RefRelationship) {
4893 case Sema::Ref_Compatible:
4894 if (Initializer->refersToBitField())
4895 FK = InitializationSequence::
4896 FK_NonConstLValueReferenceBindingToBitfield;
4897 else if (Initializer->refersToVectorElement())
4898 FK = InitializationSequence::
4899 FK_NonConstLValueReferenceBindingToVectorElement;
4900 else if (Initializer->refersToMatrixElement())
4901 FK = InitializationSequence::
4902 FK_NonConstLValueReferenceBindingToMatrixElement;
4903 else
4904 llvm_unreachable("unexpected kind of compatible initializer")__builtin_unreachable();
4905 break;
4906 case Sema::Ref_Related:
4907 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4908 break;
4909 case Sema::Ref_Incompatible:
4910 FK = InitializationSequence::
4911 FK_NonConstLValueReferenceBindingToUnrelated;
4912 break;
4913 }
4914 Sequence.SetFailed(FK);
4915 }
4916 return;
4917 }
4918
4919 // - If the initializer expression
4920 // - is an
4921 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4922 // [1z] rvalue (but not a bit-field) or
4923 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4924 //
4925 // Note: functions are handled above and below rather than here...
4926 if (!T1Function &&
4927 (RefRelationship == Sema::Ref_Compatible ||
4928 (Kind.isCStyleOrFunctionalCast() &&
4929 RefRelationship == Sema::Ref_Related)) &&
4930 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4931 (InitCategory.isPRValue() &&
4932 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4933 T2->isArrayType())))) {
4934 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
4935 if (InitCategory.isPRValue() && T2->isRecordType()) {
4936 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4937 // compiler the freedom to perform a copy here or bind to the
4938 // object, while C++0x requires that we bind directly to the
4939 // object. Hence, we always bind to the object without making an
4940 // extra copy. However, in C++03 requires that we check for the
4941 // presence of a suitable copy constructor:
4942 //
4943 // The constructor that would be used to make the copy shall
4944 // be callable whether or not the copy is actually done.
4945 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4946 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4947 else if (S.getLangOpts().CPlusPlus11)
4948 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4949 }
4950
4951 // C++1z [dcl.init.ref]/5.2.1.2:
4952 // If the converted initializer is a prvalue, its type T4 is adjusted
4953 // to type "cv1 T4" and the temporary materialization conversion is
4954 // applied.
4955 // Postpone address space conversions to after the temporary materialization
4956 // conversion to allow creating temporaries in the alloca address space.
4957 auto T1QualsIgnoreAS = T1Quals;
4958 auto T2QualsIgnoreAS = T2Quals;
4959 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4960 T1QualsIgnoreAS.removeAddressSpace();
4961 T2QualsIgnoreAS.removeAddressSpace();
4962 }
4963 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4964 if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4965 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4966 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
4967 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4968 // Add addr space conversion if required.
4969 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4970 auto T4Quals = cv1T4.getQualifiers();
4971 T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4972 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4973 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4974 cv1T4 = cv1T4WithAS;
4975 }
4976
4977 // In any case, the reference is bound to the resulting glvalue (or to
4978 // an appropriate base class subobject).
4979 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4980 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4981 else if (RefConv & Sema::ReferenceConversions::ObjC)
4982 Sequence.AddObjCObjectConversionStep(cv1T1);
4983 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4984 if (!S.Context.hasSameType(cv1T4, cv1T1))
4985 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4986 }
4987 return;
4988 }
4989
4990 // - has a class type (i.e., T2 is a class type), where T1 is not
4991 // reference-related to T2, and can be implicitly converted to an
4992 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4993 // where "cv1 T1" is reference-compatible with "cv3 T3",
4994 //
4995 // DR1287 removes the "implicitly" here.
4996 if (T2->isRecordType()) {
4997 if (RefRelationship == Sema::Ref_Incompatible) {
4998 ConvOvlResult = TryRefInitWithConversionFunction(
4999 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5000 /*IsLValueRef*/ isLValueRef, Sequence);
5001 if (ConvOvlResult)
5002 Sequence.SetOverloadFailure(
5003 InitializationSequence::FK_ReferenceInitOverloadFailed,
5004 ConvOvlResult);
5005
5006 return;
5007 }
5008
5009 if (RefRelationship == Sema::Ref_Compatible &&
5010 isRValueRef && InitCategory.isLValue()) {
5011 Sequence.SetFailed(
5012 InitializationSequence::FK_RValueReferenceBindingToLValue);
5013 return;
5014 }
5015
5016 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5017 return;
5018 }
5019
5020 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
5021 // from the initializer expression using the rules for a non-reference
5022 // copy-initialization (8.5). The reference is then bound to the
5023 // temporary. [...]
5024
5025 // Ignore address space of reference type at this point and perform address
5026 // space conversion after the reference binding step.
5027 QualType cv1T1IgnoreAS =
5028 T1Quals.hasAddressSpace()
5029 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5030 : cv1T1;
5031
5032 InitializedEntity TempEntity =
5033 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5034
5035 // FIXME: Why do we use an implicit conversion here rather than trying
5036 // copy-initialization?
5037 ImplicitConversionSequence ICS
5038 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5039 /*SuppressUserConversions=*/false,
5040 Sema::AllowedExplicit::None,
5041 /*FIXME:InOverloadResolution=*/false,
5042 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5043 /*AllowObjCWritebackConversion=*/false);
5044
5045 if (ICS.isBad()) {
5046 // FIXME: Use the conversion function set stored in ICS to turn
5047 // this into an overloading ambiguity diagnostic. However, we need
5048 // to keep that set as an OverloadCandidateSet rather than as some
5049 // other kind of set.
5050 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5051 Sequence.SetOverloadFailure(
5052 InitializationSequence::FK_ReferenceInitOverloadFailed,
5053 ConvOvlResult);
5054 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5055 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5056 else
5057 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5058 return;
5059 } else {
5060 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5061 }
5062
5063 // [...] If T1 is reference-related to T2, cv1 must be the
5064 // same cv-qualification as, or greater cv-qualification
5065 // than, cv2; otherwise, the program is ill-formed.
5066 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5067 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5068 if (RefRelationship == Sema::Ref_Related &&
5069 ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5070 !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5071 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5072 return;
5073 }
5074
5075 // [...] If T1 is reference-related to T2 and the reference is an rvalue
5076 // reference, the initializer expression shall not be an lvalue.
5077 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5078 InitCategory.isLValue()) {
5079 Sequence.SetFailed(
5080 InitializationSequence::FK_RValueReferenceBindingToLValue);
5081 return;
5082 }
5083
5084 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5085
5086 if (T1Quals.hasAddressSpace()) {
5087 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5088 LangAS::Default)) {
5089 Sequence.SetFailed(
5090 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5091 return;
5092 }
5093 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5094 : VK_XValue);
5095 }
5096}
5097
5098/// Attempt character array initialization from a string literal
5099/// (C++ [dcl.init.string], C99 6.7.8).
5100static void TryStringLiteralInitialization(Sema &S,
5101 const InitializedEntity &Entity,
5102 const InitializationKind &Kind,
5103 Expr *Initializer,
5104 InitializationSequence &Sequence) {
5105 Sequence.AddStringInitStep(Entity.getType());
5106}
5107
5108/// Attempt value initialization (C++ [dcl.init]p7).
5109static void TryValueInitialization(Sema &S,
5110 const InitializedEntity &Entity,
5111 const InitializationKind &Kind,
5112 InitializationSequence &Sequence,
5113 InitListExpr *InitList) {
5114 assert((!InitList || InitList->getNumInits() == 0) &&((void)0)
5115 "Shouldn't use value-init for non-empty init lists")((void)0);
5116
5117 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5118 //
5119 // To value-initialize an object of type T means:
5120 QualType T = Entity.getType();
5121
5122 // -- if T is an array type, then each element is value-initialized;
5123 T = S.Context.getBaseElementType(T);
5124
5125 if (const RecordType *RT = T->getAs<RecordType>()) {
5126 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5127 bool NeedZeroInitialization = true;
5128 // C++98:
5129 // -- if T is a class type (clause 9) with a user-declared constructor
5130 // (12.1), then the default constructor for T is called (and the
5131 // initialization is ill-formed if T has no accessible default
5132 // constructor);
5133 // C++11:
5134 // -- if T is a class type (clause 9) with either no default constructor
5135 // (12.1 [class.ctor]) or a default constructor that is user-provided
5136 // or deleted, then the object is default-initialized;
5137 //
5138 // Note that the C++11 rule is the same as the C++98 rule if there are no
5139 // defaulted or deleted constructors, so we just use it unconditionally.
5140 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5141 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5142 NeedZeroInitialization = false;
5143
5144 // -- if T is a (possibly cv-qualified) non-union class type without a
5145 // user-provided or deleted default constructor, then the object is
5146 // zero-initialized and, if T has a non-trivial default constructor,
5147 // default-initialized;
5148 // The 'non-union' here was removed by DR1502. The 'non-trivial default
5149 // constructor' part was removed by DR1507.
5150 if (NeedZeroInitialization)
5151 Sequence.AddZeroInitializationStep(Entity.getType());
5152
5153 // C++03:
5154 // -- if T is a non-union class type without a user-declared constructor,
5155 // then every non-static data member and base class component of T is
5156 // value-initialized;
5157 // [...] A program that calls for [...] value-initialization of an
5158 // entity of reference type is ill-formed.
5159 //
5160 // C++11 doesn't need this handling, because value-initialization does not
5161 // occur recursively there, and the implicit default constructor is
5162 // defined as deleted in the problematic cases.
5163 if (!S.getLangOpts().CPlusPlus11 &&
5164 ClassDecl->hasUninitializedReferenceMember()) {
5165 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5166 return;
5167 }
5168
5169 // If this is list-value-initialization, pass the empty init list on when
5170 // building the constructor call. This affects the semantics of a few
5171 // things (such as whether an explicit default constructor can be called).
5172 Expr *InitListAsExpr = InitList;
5173 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5174 bool InitListSyntax = InitList;
5175
5176 // FIXME: Instead of creating a CXXConstructExpr of array type here,
5177 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5178 return TryConstructorInitialization(
5179 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5180 }
5181 }
5182
5183 Sequence.AddZeroInitializationStep(Entity.getType());
5184}
5185
5186/// Attempt default initialization (C++ [dcl.init]p6).
5187static void TryDefaultInitialization(Sema &S,
5188 const InitializedEntity &Entity,
5189 const InitializationKind &Kind,
5190 InitializationSequence &Sequence) {
5191 assert(Kind.getKind() == InitializationKind::IK_Default)((void)0);
5192
5193 // C++ [dcl.init]p6:
5194 // To default-initialize an object of type T means:
5195 // - if T is an array type, each element is default-initialized;
5196 QualType DestType = S.Context.getBaseElementType(Entity.getType());
5197
5198 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
5199 // constructor for T is called (and the initialization is ill-formed if
5200 // T has no accessible default constructor);
5201 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
17
Assuming field 'CPlusPlus' is not equal to 0
18
Taking true branch
5202 TryConstructorInitialization(S, Entity, Kind, None, DestType,
19
Calling 'TryConstructorInitialization'
5203 Entity.getType(), Sequence);
5204 return;
5205 }
5206
5207 // - otherwise, no initialization is performed.
5208
5209 // If a program calls for the default initialization of an object of
5210 // a const-qualified type T, T shall be a class type with a user-provided
5211 // default constructor.
5212 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5213 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5214 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5215 return;
5216 }
5217
5218 // If the destination type has a lifetime property, zero-initialize it.
5219 if (DestType.getQualifiers().hasObjCLifetime()) {
5220 Sequence.AddZeroInitializationStep(Entity.getType());
5221 return;
5222 }
5223}
5224
5225/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5226/// which enumerates all conversion functions and performs overload resolution
5227/// to select the best.
5228static void TryUserDefinedConversion(Sema &S,
5229 QualType DestType,
5230 const InitializationKind &Kind,
5231 Expr *Initializer,
5232 InitializationSequence &Sequence,
5233 bool TopLevelOfInitList) {
5234 assert(!DestType->isReferenceType() && "References are handled elsewhere")((void)0);
5235 QualType SourceType = Initializer->getType();
5236 assert((DestType->isRecordType() || SourceType->isRecordType()) &&((void)0)
5237 "Must have a class type to perform a user-defined conversion")((void)0);
5238
5239 // Build the candidate set directly in the initialization sequence
5240 // structure, so that it will persist if we fail.
5241 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5242 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5243 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5244
5245 // Determine whether we are allowed to call explicit constructors or
5246 // explicit conversion operators.
5247 bool AllowExplicit = Kind.AllowExplicit();
5248
5249 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5250 // The type we're converting to is a class type. Enumerate its constructors
5251 // to see if there is a suitable conversion.
5252 CXXRecordDecl *DestRecordDecl
5253 = cast<CXXRecordDecl>(DestRecordType->getDecl());
5254
5255 // Try to complete the type we're converting to.
5256 if (S.isCompleteType(Kind.getLocation(), DestType)) {
5257 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5258 auto Info = getConstructorInfo(D);
5259 if (!Info.Constructor)
5260 continue;
5261
5262 if (!Info.Constructor->isInvalidDecl() &&
5263 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5264 if (Info.ConstructorTmpl)
5265 S.AddTemplateOverloadCandidate(
5266 Info.ConstructorTmpl, Info.FoundDecl,
5267 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5268 /*SuppressUserConversions=*/true,
5269 /*PartialOverloading*/ false, AllowExplicit);
5270 else
5271 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5272 Initializer, CandidateSet,
5273 /*SuppressUserConversions=*/true,
5274 /*PartialOverloading*/ false, AllowExplicit);
5275 }
5276 }
5277 }
5278 }
5279
5280 SourceLocation DeclLoc = Initializer->getBeginLoc();
5281
5282 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5283 // The type we're converting from is a class type, enumerate its conversion
5284 // functions.
5285
5286 // We can only enumerate the conversion functions for a complete type; if
5287 // the type isn't complete, simply skip this step.
5288 if (S.isCompleteType(DeclLoc, SourceType)) {
5289 CXXRecordDecl *SourceRecordDecl
5290 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5291
5292 const auto &Conversions =
5293 SourceRecordDecl->getVisibleConversionFunctions();
5294 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5295 NamedDecl *D = *I;
5296 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5297 if (isa<UsingShadowDecl>(D))
5298 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5299
5300 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5301 CXXConversionDecl *Conv;
5302 if (ConvTemplate)
5303 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5304 else
5305 Conv = cast<CXXConversionDecl>(D);
5306
5307 if (ConvTemplate)
5308 S.AddTemplateConversionCandidate(
5309 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5310 CandidateSet, AllowExplicit, AllowExplicit);
5311 else
5312 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5313 DestType, CandidateSet, AllowExplicit,
5314 AllowExplicit);
5315 }
5316 }
5317 }
5318
5319 // Perform overload resolution. If it fails, return the failed result.
5320 OverloadCandidateSet::iterator Best;
5321 if (OverloadingResult Result
5322 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5323 Sequence.SetOverloadFailure(
5324 InitializationSequence::FK_UserConversionOverloadFailed, Result);
5325
5326 // [class.copy.elision]p3:
5327 // In some copy-initialization contexts, a two-stage overload resolution
5328 // is performed.
5329 // If the first overload resolution selects a deleted function, we also
5330 // need the initialization sequence to decide whether to perform the second
5331 // overload resolution.
5332 if (!(Result == OR_Deleted &&
5333 Kind.getKind() == InitializationKind::IK_Copy))
5334 return;
5335 }
5336
5337 FunctionDecl *Function = Best->Function;
5338 Function->setReferenced();
5339 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5340
5341 if (isa<CXXConstructorDecl>(Function)) {
5342 // Add the user-defined conversion step. Any cv-qualification conversion is
5343 // subsumed by the initialization. Per DR5, the created temporary is of the
5344 // cv-unqualified type of the destination.
5345 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5346 DestType.getUnqualifiedType(),
5347 HadMultipleCandidates);
5348
5349 // C++14 and before:
5350 // - if the function is a constructor, the call initializes a temporary
5351 // of the cv-unqualified version of the destination type. The [...]
5352 // temporary [...] is then used to direct-initialize, according to the
5353 // rules above, the object that is the destination of the
5354 // copy-initialization.
5355 // Note that this just performs a simple object copy from the temporary.
5356 //
5357 // C++17:
5358 // - if the function is a constructor, the call is a prvalue of the
5359 // cv-unqualified version of the destination type whose return object
5360 // is initialized by the constructor. The call is used to
5361 // direct-initialize, according to the rules above, the object that
5362 // is the destination of the copy-initialization.
5363 // Therefore we need to do nothing further.
5364 //
5365 // FIXME: Mark this copy as extraneous.
5366 if (!S.getLangOpts().CPlusPlus17)
5367 Sequence.AddFinalCopy(DestType);
5368 else if (DestType.hasQualifiers())
5369 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5370 return;
5371 }
5372
5373 // Add the user-defined conversion step that calls the conversion function.
5374 QualType ConvType = Function->getCallResultType();
5375 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5376 HadMultipleCandidates);
5377
5378 if (ConvType->getAs<RecordType>()) {
5379 // The call is used to direct-initialize [...] the object that is the
5380 // destination of the copy-initialization.
5381 //
5382 // In C++17, this does not call a constructor if we enter /17.6.1:
5383 // - If the initializer expression is a prvalue and the cv-unqualified
5384 // version of the source type is the same as the class of the
5385 // destination [... do not make an extra copy]
5386 //
5387 // FIXME: Mark this copy as extraneous.
5388 if (!S.getLangOpts().CPlusPlus17 ||
5389 Function->getReturnType()->isReferenceType() ||
5390 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5391 Sequence.AddFinalCopy(DestType);
5392 else if (!S.Context.hasSameType(ConvType, DestType))
5393 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5394 return;
5395 }
5396
5397 // If the conversion following the call to the conversion function
5398 // is interesting, add it as a separate step.
5399 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5400 Best->FinalConversion.Third) {
5401 ImplicitConversionSequence ICS;
5402 ICS.setStandard();
5403 ICS.Standard = Best->FinalConversion;
5404 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5405 }
5406}
5407
5408/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5409/// a function with a pointer return type contains a 'return false;' statement.
5410/// In C++11, 'false' is not a null pointer, so this breaks the build of any
5411/// code using that header.
5412///
5413/// Work around this by treating 'return false;' as zero-initializing the result
5414/// if it's used in a pointer-returning function in a system header.
5415static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5416 const InitializedEntity &Entity,
5417 const Expr *Init) {
5418 return S.getLangOpts().CPlusPlus11 &&
5419 Entity.getKind() == InitializedEntity::EK_Result &&
5420 Entity.getType()->isPointerType() &&
5421 isa<CXXBoolLiteralExpr>(Init) &&
5422 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5423 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5424}
5425
5426/// The non-zero enum values here are indexes into diagnostic alternatives.
5427enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5428
5429/// Determines whether this expression is an acceptable ICR source.
5430static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5431 bool isAddressOf, bool &isWeakAccess) {
5432 // Skip parens.
5433 e = e->IgnoreParens();
5434
5435 // Skip address-of nodes.
5436 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5437 if (op->getOpcode() == UO_AddrOf)
5438 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5439 isWeakAccess);
5440
5441 // Skip certain casts.
5442 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5443 switch (ce->getCastKind()) {
5444 case CK_Dependent:
5445 case CK_BitCast:
5446 case CK_LValueBitCast:
5447 case CK_NoOp:
5448 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5449
5450 case CK_ArrayToPointerDecay:
5451 return IIK_nonscalar;
5452
5453 case CK_NullToPointer:
5454 return IIK_okay;
5455
5456 default:
5457 break;
5458 }
5459
5460 // If we have a declaration reference, it had better be a local variable.
5461 } else if (isa<DeclRefExpr>(e)) {
5462 // set isWeakAccess to true, to mean that there will be an implicit
5463 // load which requires a cleanup.
5464 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5465 isWeakAccess = true;
5466
5467 if (!isAddressOf) return IIK_nonlocal;
5468
5469 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5470 if (!var) return IIK_nonlocal;
5471
5472 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5473
5474 // If we have a conditional operator, check both sides.
5475 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5476 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5477 isWeakAccess))
5478 return iik;
5479
5480 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5481
5482 // These are never scalar.
5483 } else if (isa<ArraySubscriptExpr>(e)) {
5484 return IIK_nonscalar;
5485
5486 // Otherwise, it needs to be a null pointer constant.
5487 } else {
5488 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5489 ? IIK_okay : IIK_nonlocal);
5490 }
5491
5492 return IIK_nonlocal;
5493}
5494
5495/// Check whether the given expression is a valid operand for an
5496/// indirect copy/restore.
5497static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5498 assert(src->isPRValue())((void)0);
5499 bool isWeakAccess = false;
5500 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5501 // If isWeakAccess to true, there will be an implicit
5502 // load which requires a cleanup.
5503 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5504 S.Cleanup.setExprNeedsCleanups(true);
5505
5506 if (iik == IIK_okay) return;
5507
5508 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5509 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5510 << src->getSourceRange();
5511}
5512
5513/// Determine whether we have compatible array types for the
5514/// purposes of GNU by-copy array initialization.
5515static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5516 const ArrayType *Source) {
5517 // If the source and destination array types are equivalent, we're
5518 // done.
5519 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5520 return true;
5521
5522 // Make sure that the element types are the same.
5523 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5524 return false;
5525
5526 // The only mismatch we allow is when the destination is an
5527 // incomplete array type and the source is a constant array type.
5528 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5529}
5530
5531static bool tryObjCWritebackConversion(Sema &S,
5532 InitializationSequence &Sequence,
5533 const InitializedEntity &Entity,
5534 Expr *Initializer) {
5535 bool ArrayDecay = false;
5536 QualType ArgType = Initializer->getType();
5537 QualType ArgPointee;
5538 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5539 ArrayDecay = true;
5540 ArgPointee = ArgArrayType->getElementType();
5541 ArgType = S.Context.getPointerType(ArgPointee);
5542 }
5543
5544 // Handle write-back conversion.
5545 QualType ConvertedArgType;
5546 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5547 ConvertedArgType))
5548 return false;
5549
5550 // We should copy unless we're passing to an argument explicitly
5551 // marked 'out'.
5552 bool ShouldCopy = true;
5553 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5554 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5555
5556 // Do we need an lvalue conversion?
5557 if (ArrayDecay || Initializer->isGLValue()) {
5558 ImplicitConversionSequence ICS;
5559 ICS.setStandard();
5560 ICS.Standard.setAsIdentityConversion();
5561
5562 QualType ResultType;
5563 if (ArrayDecay) {
5564 ICS.Standard.First = ICK_Array_To_Pointer;
5565 ResultType = S.Context.getPointerType(ArgPointee);
5566 } else {
5567 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5568 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5569 }
5570
5571 Sequence.AddConversionSequenceStep(ICS, ResultType);
5572 }
5573
5574 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5575 return true;
5576}
5577
5578static bool TryOCLSamplerInitialization(Sema &S,
5579 InitializationSequence &Sequence,
5580 QualType DestType,
5581 Expr *Initializer) {
5582 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5583 (!Initializer->isIntegerConstantExpr(S.Context) &&
5584 !Initializer->getType()->isSamplerT()))
5585 return false;
5586
5587 Sequence.AddOCLSamplerInitStep(DestType);
5588 return true;
5589}
5590
5591static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5592 return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5593 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5594}
5595
5596static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5597 InitializationSequence &Sequence,
5598 QualType DestType,
5599 Expr *Initializer) {
5600 if (!S.getLangOpts().OpenCL)
5601 return false;
5602
5603 //
5604 // OpenCL 1.2 spec, s6.12.10
5605 //
5606 // The event argument can also be used to associate the
5607 // async_work_group_copy with a previous async copy allowing
5608 // an event to be shared by multiple async copies; otherwise
5609 // event should be zero.
5610 //
5611 if (DestType->isEventT() || DestType->isQueueT()) {
5612 if (!IsZeroInitializer(Initializer, S))
5613 return false;
5614
5615 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5616 return true;
5617 }
5618
5619 // We should allow zero initialization for all types defined in the
5620 // cl_intel_device_side_avc_motion_estimation extension, except
5621 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5622 if (S.getOpenCLOptions().isAvailableOption(
5623 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5624 DestType->isOCLIntelSubgroupAVCType()) {
5625 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5626 DestType->isOCLIntelSubgroupAVCMceResultType())
5627 return false;
5628 if (!IsZeroInitializer(Initializer, S))
5629 return false;
5630
5631 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5632 return true;
5633 }
5634
5635 return false;
5636}
5637
5638InitializationSequence::InitializationSequence(
5639 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5640 MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5641 : FailedOverloadResult(OR_Success),
5642 FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5643 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5644 TreatUnavailableAsInvalid);
5645}
5646
5647/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5648/// address of that function, this returns true. Otherwise, it returns false.
5649static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5650 auto *DRE = dyn_cast<DeclRefExpr>(E);
5651 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5652 return false;
5653
5654 return !S.checkAddressOfFunctionIsAvailable(
5655 cast<FunctionDecl>(DRE->getDecl()));
5656}
5657
5658/// Determine whether we can perform an elementwise array copy for this kind
5659/// of entity.
5660static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5661 switch (Entity.getKind()) {
5662 case InitializedEntity::EK_LambdaCapture:
5663 // C++ [expr.prim.lambda]p24:
5664 // For array members, the array elements are direct-initialized in
5665 // increasing subscript order.
5666 return true;
5667
5668 case InitializedEntity::EK_Variable:
5669 // C++ [dcl.decomp]p1:
5670 // [...] each element is copy-initialized or direct-initialized from the
5671 // corresponding element of the assignment-expression [...]
5672 return isa<DecompositionDecl>(Entity.getDecl());
5673
5674 case InitializedEntity::EK_Member:
5675 // C++ [class.copy.ctor]p14:
5676 // - if the member is an array, each element is direct-initialized with
5677 // the corresponding subobject of x
5678 return Entity.isImplicitMemberInitializer();
5679
5680 case InitializedEntity::EK_ArrayElement:
5681 // All the above cases are intended to apply recursively, even though none
5682 // of them actually say that.
5683 if (auto *E = Entity.getParent())
5684 return canPerformArrayCopy(*E);
5685 break;
5686
5687 default:
5688 break;
5689 }
5690
5691 return false;
5692}
5693
5694void InitializationSequence::InitializeFrom(Sema &S,
5695 const InitializedEntity &Entity,
5696 const InitializationKind &Kind,
5697 MultiExprArg Args,
5698 bool TopLevelOfInitList,
5699 bool TreatUnavailableAsInvalid) {
5700 ASTContext &Context = S.Context;
5701
5702 // Eliminate non-overload placeholder types in the arguments. We
5703 // need to do this before checking whether types are dependent
5704 // because lowering a pseudo-object expression might well give us
5705 // something of dependent type.
5706 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1
Assuming 'I' is equal to 'E'
2
Loop condition is false. Execution continues on line 5723
5707 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5708 // FIXME: should we be doing this here?
5709 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5710 if (result.isInvalid()) {
5711 SetFailed(FK_PlaceholderType);
5712 return;
5713 }
5714 Args[I] = result.get();
5715 }
5716
5717 // C++0x [dcl.init]p16:
5718 // The semantics of initializers are as follows. The destination type is
5719 // the type of the object or reference being initialized and the source
5720 // type is the type of the initializer expression. The source type is not
5721 // defined when the initializer is a braced-init-list or when it is a
5722 // parenthesized list of expressions.
5723 QualType DestType = Entity.getType();
5724
5725 if (DestType->isDependentType() ||
3
Assuming the condition is false
5
Taking false branch
5726 Expr::hasAnyTypeDependentArguments(Args)) {
4
Assuming the condition is false
5727 SequenceKind = DependentSequence;
5728 return;
5729 }
5730
5731 // Almost everything is a normal sequence.
5732 setSequenceKind(NormalSequence);
5733
5734 QualType SourceType;
5735 Expr *Initializer = nullptr;
5736 if (Args.size() == 1) {
6
Assuming the condition is false
7
Taking false branch
5737 Initializer = Args[0];
5738 if (S.getLangOpts().ObjC) {
5739 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5740 DestType, Initializer->getType(),
5741 Initializer) ||
5742 S.CheckConversionToObjCLiteral(DestType, Initializer))
5743 Args[0] = Initializer;
5744 }
5745 if (!isa<InitListExpr>(Initializer))
5746 SourceType = Initializer->getType();
5747 }
5748
5749 // - If the initializer is a (non-parenthesized) braced-init-list, the
5750 // object is list-initialized (8.5.4).
5751 if (Kind.getKind() != InitializationKind::IK_Direct) {
8
Assuming the condition is true
9
Taking true branch
5752 if (InitListExpr *InitList
10.1
'InitList' is null
10.1
'InitList' is null
= dyn_cast_or_null<InitListExpr>(Initializer)) {
10
Assuming null pointer is passed into cast
11
Taking false branch
5753 TryListInitialization(S, Entity, Kind, InitList, *this,
5754 TreatUnavailableAsInvalid);
5755 return;
5756 }
5757 }
5758
5759 // - If the destination type is a reference type, see 8.5.3.
5760 if (DestType->isReferenceType()) {
12
Taking false branch
5761 // C++0x [dcl.init.ref]p1:
5762 // A variable declared to be a T& or T&&, that is, "reference to type T"
5763 // (8.3.2), shall be initialized by an object, or function, of type T or
5764 // by an object that can be converted into a T.
5765 // (Therefore, multiple arguments are not permitted.)
5766 if (Args.size() != 1)
5767 SetFailed(FK_TooManyInitsForReference);
5768 // C++17 [dcl.init.ref]p5:
5769 // A reference [...] is initialized by an expression [...] as follows:
5770 // If the initializer is not an expression, presumably we should reject,
5771 // but the standard fails to actually say so.
5772 else if (isa<InitListExpr>(Args[0]))
5773 SetFailed(FK_ParenthesizedListInitForReference);
5774 else
5775 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5776 return;
5777 }
5778
5779 // - If the initializer is (), the object is value-initialized.
5780 if (Kind.getKind() == InitializationKind::IK_Value ||
13
Assuming the condition is false
5781 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5782 TryValueInitialization(S, Entity, Kind, *this);
5783 return;
5784 }
5785
5786 // Handle default initialization.
5787 if (Kind.getKind() == InitializationKind::IK_Default) {
14
Assuming the condition is true
15
Taking true branch
5788 TryDefaultInitialization(S, Entity, Kind, *this);
16
Calling 'TryDefaultInitialization'
5789 return;
5790 }
5791
5792 // - If the destination type is an array of characters, an array of
5793 // char16_t, an array of char32_t, or an array of wchar_t, and the
5794 // initializer is a string literal, see 8.5.2.
5795 // - Otherwise, if the destination type is an array, the program is
5796 // ill-formed.
5797 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5798 if (Initializer && isa<VariableArrayType>(DestAT)) {
5799 SetFailed(FK_VariableLengthArrayHasInitializer);
5800 return;
5801 }
5802
5803 if (Initializer) {
5804 switch (IsStringInit(Initializer, DestAT, Context)) {
5805 case SIF_None:
5806 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5807 return;
5808 case SIF_NarrowStringIntoWideChar:
5809 SetFailed(FK_NarrowStringIntoWideCharArray);
5810 return;
5811 case SIF_WideStringIntoChar:
5812 SetFailed(FK_WideStringIntoCharArray);
5813 return;
5814 case SIF_IncompatWideStringIntoWideChar:
5815 SetFailed(FK_IncompatWideStringIntoWideChar);
5816 return;
5817 case SIF_PlainStringIntoUTF8Char:
5818 SetFailed(FK_PlainStringIntoUTF8Char);
5819 return;
5820 case SIF_UTF8StringIntoPlainChar:
5821 SetFailed(FK_UTF8StringIntoPlainChar);
5822 return;
5823 case SIF_Other:
5824 break;
5825 }
5826 }
5827
5828 // Some kinds of initialization permit an array to be initialized from
5829 // another array of the same type, and perform elementwise initialization.
5830 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5831 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5832 Entity.getType()) &&
5833 canPerformArrayCopy(Entity)) {
5834 // If source is a prvalue, use it directly.
5835 if (Initializer->isPRValue()) {
5836 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5837 return;
5838 }
5839
5840 // Emit element-at-a-time copy loop.
5841 InitializedEntity Element =
5842 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5843 QualType InitEltT =
5844 Context.getAsArrayType(Initializer->getType())->getElementType();
5845 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5846 Initializer->getValueKind(),
5847 Initializer->getObjectKind());
5848 Expr *OVEAsExpr = &OVE;
5849 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5850 TreatUnavailableAsInvalid);
5851 if (!Failed())
5852 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5853 return;
5854 }
5855
5856 // Note: as an GNU C extension, we allow initialization of an
5857 // array from a compound literal that creates an array of the same
5858 // type, so long as the initializer has no side effects.
5859 if (!S.getLangOpts().CPlusPlus && Initializer &&
5860 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5861 Initializer->getType()->isArrayType()) {
5862 const ArrayType *SourceAT
5863 = Context.getAsArrayType(Initializer->getType());
5864 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5865 SetFailed(FK_ArrayTypeMismatch);
5866 else if (Initializer->HasSideEffects(S.Context))
5867 SetFailed(FK_NonConstantArrayInit);
5868 else {
5869 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5870 }
5871 }
5872 // Note: as a GNU C++ extension, we allow list-initialization of a
5873 // class member of array type from a parenthesized initializer list.
5874 else if (S.getLangOpts().CPlusPlus &&
5875 Entity.getKind() == InitializedEntity::EK_Member &&
5876 Initializer && isa<InitListExpr>(Initializer)) {
5877 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5878 *this, TreatUnavailableAsInvalid);
5879 AddParenthesizedArrayInitStep(DestType);
5880 } else if (DestAT->getElementType()->isCharType())
5881 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5882 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5883 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5884 else
5885 SetFailed(FK_ArrayNeedsInitList);
5886
5887 return;
5888 }
5889
5890 // Determine whether we should consider writeback conversions for
5891 // Objective-C ARC.
5892 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5893 Entity.isParameterKind();
5894
5895 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5896 return;
5897
5898 // We're at the end of the line for C: it's either a write-back conversion
5899 // or it's a C assignment. There's no need to check anything else.
5900 if (!S.getLangOpts().CPlusPlus) {
5901 // If allowed, check whether this is an Objective-C writeback conversion.
5902 if (allowObjCWritebackConversion &&
5903 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5904 return;
5905 }
5906
5907 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5908 return;
5909
5910 // Handle initialization in C
5911 AddCAssignmentStep(DestType);
5912 MaybeProduceObjCObject(S, *this, Entity);
5913 return;
5914 }
5915
5916 assert(S.getLangOpts().CPlusPlus)((void)0);
5917
5918 // - If the destination type is a (possibly cv-qualified) class type:
5919 if (DestType->isRecordType()) {
5920 // - If the initialization is direct-initialization, or if it is
5921 // copy-initialization where the cv-unqualified version of the
5922 // source type is the same class as, or a derived class of, the
5923 // class of the destination, constructors are considered. [...]
5924 if (Kind.getKind() == InitializationKind::IK_Direct ||
5925 (Kind.getKind() == InitializationKind::IK_Copy &&
5926 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5927 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5928 TryConstructorInitialization(S, Entity, Kind, Args,
5929 DestType, DestType, *this);
5930 // - Otherwise (i.e., for the remaining copy-initialization cases),
5931 // user-defined conversion sequences that can convert from the source
5932 // type to the destination type or (when a conversion function is
5933 // used) to a derived class thereof are enumerated as described in
5934 // 13.3.1.4, and the best one is chosen through overload resolution
5935 // (13.3).
5936 else
5937 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5938 TopLevelOfInitList);
5939 return;
5940 }
5941
5942 assert(Args.size() >= 1 && "Zero-argument case handled above")((void)0);
5943
5944 // The remaining cases all need a source type.
5945 if (Args.size() > 1) {
5946 SetFailed(FK_TooManyInitsForScalar);
5947 return;
5948 } else if (isa<InitListExpr>(Args[0])) {
5949 SetFailed(FK_ParenthesizedListInitForScalar);
5950 return;
5951 }
5952
5953 // - Otherwise, if the source type is a (possibly cv-qualified) class
5954 // type, conversion functions are considered.
5955 if (!SourceType.isNull() && SourceType->isRecordType()) {
5956 // For a conversion to _Atomic(T) from either T or a class type derived
5957 // from T, initialize the T object then convert to _Atomic type.
5958 bool NeedAtomicConversion = false;
5959 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5960 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5961 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5962 Atomic->getValueType())) {
5963 DestType = Atomic->getValueType();
5964 NeedAtomicConversion = true;
5965 }
5966 }
5967
5968 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5969 TopLevelOfInitList);
5970 MaybeProduceObjCObject(S, *this, Entity);
5971 if (!Failed() && NeedAtomicConversion)
5972 AddAtomicConversionStep(Entity.getType());
5973 return;
5974 }
5975
5976 // - Otherwise, if the initialization is direct-initialization, the source
5977 // type is std::nullptr_t, and the destination type is bool, the initial
5978 // value of the object being initialized is false.
5979 if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5980 DestType->isBooleanType() &&
5981 Kind.getKind() == InitializationKind::IK_Direct) {
5982 AddConversionSequenceStep(
5983 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5984 Initializer->isGLValue()),
5985 DestType);
5986 return;
5987 }
5988
5989 // - Otherwise, the initial value of the object being initialized is the
5990 // (possibly converted) value of the initializer expression. Standard
5991 // conversions (Clause 4) will be used, if necessary, to convert the
5992 // initializer expression to the cv-unqualified version of the
5993 // destination type; no user-defined conversions are considered.
5994
5995 ImplicitConversionSequence ICS
5996 = S.TryImplicitConversion(Initializer, DestType,
5997 /*SuppressUserConversions*/true,
5998 Sema::AllowedExplicit::None,
5999 /*InOverloadResolution*/ false,
6000 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6001 allowObjCWritebackConversion);
6002
6003 if (ICS.isStandard() &&
6004 ICS.Standard.Second == ICK_Writeback_Conversion) {
6005 // Objective-C ARC writeback conversion.
6006
6007 // We should copy unless we're passing to an argument explicitly
6008 // marked 'out'.
6009 bool ShouldCopy = true;
6010 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6011 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6012
6013 // If there was an lvalue adjustment, add it as a separate conversion.
6014 if (ICS.Standard.First == ICK_Array_To_Pointer ||
6015 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6016 ImplicitConversionSequence LvalueICS;
6017 LvalueICS.setStandard();
6018 LvalueICS.Standard.setAsIdentityConversion();
6019 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6020 LvalueICS.Standard.First = ICS.Standard.First;
6021 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6022 }
6023
6024 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6025 } else if (ICS.isBad()) {
6026 DeclAccessPair dap;
6027 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6028 AddZeroInitializationStep(Entity.getType());
6029 } else if (Initializer->getType() == Context.OverloadTy &&
6030 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6031 false, dap))
6032 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6033 else if (Initializer->getType()->isFunctionType() &&
6034 isExprAnUnaddressableFunction(S, Initializer))
6035 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6036 else
6037 SetFailed(InitializationSequence::FK_ConversionFailed);
6038 } else {
6039 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6040
6041 MaybeProduceObjCObject(S, *this, Entity);
6042 }
6043}
6044
6045InitializationSequence::~InitializationSequence() {
6046 for (auto &S : Steps)
6047 S.Destroy();
6048}
6049
6050//===----------------------------------------------------------------------===//
6051// Perform initialization
6052//===----------------------------------------------------------------------===//
6053static Sema::AssignmentAction
6054getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6055 switch(Entity.getKind()) {
6056 case InitializedEntity::EK_Variable:
6057 case InitializedEntity::EK_New:
6058 case InitializedEntity::EK_Exception:
6059 case InitializedEntity::EK_Base:
6060 case InitializedEntity::EK_Delegating:
6061 return Sema::AA_Initializing;
6062
6063 case InitializedEntity::EK_Parameter:
6064 if (Entity.getDecl() &&
6065 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6066 return Sema::AA_Sending;
6067
6068 return Sema::AA_Passing;
6069
6070 case InitializedEntity::EK_Parameter_CF_Audited:
6071 if (Entity.getDecl() &&
6072 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6073 return Sema::AA_Sending;
6074
6075 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6076
6077 case InitializedEntity::EK_Result:
6078 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6079 return Sema::AA_Returning;
6080
6081 case InitializedEntity::EK_Temporary:
6082 case InitializedEntity::EK_RelatedResult:
6083 // FIXME: Can we tell apart casting vs. converting?
6084 return Sema::AA_Casting;
6085
6086 case InitializedEntity::EK_TemplateParameter:
6087 // This is really initialization, but refer to it as conversion for
6088 // consistency with CheckConvertedConstantExpression.
6089 return Sema::AA_Converting;
6090
6091 case InitializedEntity::EK_Member:
6092 case InitializedEntity::EK_Binding:
6093 case InitializedEntity::EK_ArrayElement:
6094 case InitializedEntity::EK_VectorElement:
6095 case InitializedEntity::EK_ComplexElement:
6096 case InitializedEntity::EK_BlockElement:
6097 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6098 case InitializedEntity::EK_LambdaCapture:
6099 case InitializedEntity::EK_CompoundLiteralInit:
6100 return Sema::AA_Initializing;
6101 }
6102
6103 llvm_unreachable("Invalid EntityKind!")__builtin_unreachable();
6104}
6105
6106/// Whether we should bind a created object as a temporary when
6107/// initializing the given entity.
6108static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6109 switch (Entity.getKind()) {
6110 case InitializedEntity::EK_ArrayElement:
6111 case InitializedEntity::EK_Member:
6112 case InitializedEntity::EK_Result:
6113 case InitializedEntity::EK_StmtExprResult:
6114 case InitializedEntity::EK_New:
6115 case InitializedEntity::EK_Variable:
6116 case InitializedEntity::EK_Base:
6117 case InitializedEntity::EK_Delegating:
6118 case InitializedEntity::EK_VectorElement:
6119 case InitializedEntity::EK_ComplexElement:
6120 case InitializedEntity::EK_Exception:
6121 case InitializedEntity::EK_BlockElement:
6122 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6123 case InitializedEntity::EK_LambdaCapture:
6124 case InitializedEntity::EK_CompoundLiteralInit:
6125 case InitializedEntity::EK_TemplateParameter:
6126 return false;
6127
6128 case InitializedEntity::EK_Parameter:
6129 case InitializedEntity::EK_Parameter_CF_Audited:
6130 case InitializedEntity::EK_Temporary:
6131 case InitializedEntity::EK_RelatedResult:
6132 case InitializedEntity::EK_Binding:
6133 return true;
6134 }
6135
6136 llvm_unreachable("missed an InitializedEntity kind?")__builtin_unreachable();
6137}
6138
6139/// Whether the given entity, when initialized with an object
6140/// created for that initialization, requires destruction.
6141static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6142 switch (Entity.getKind()) {
6143 case InitializedEntity::EK_Result:
6144 case InitializedEntity::EK_StmtExprResult:
6145 case InitializedEntity::EK_New:
6146 case InitializedEntity::EK_Base:
6147 case InitializedEntity::EK_Delegating:
6148 case InitializedEntity::EK_VectorElement:
6149 case InitializedEntity::EK_ComplexElement:
6150 case InitializedEntity::EK_BlockElement:
6151 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6152 case InitializedEntity::EK_LambdaCapture:
6153 return false;
6154
6155 case InitializedEntity::EK_Member:
6156 case InitializedEntity::EK_Binding:
6157 case InitializedEntity::EK_Variable:
6158 case InitializedEntity::EK_Parameter:
6159 case InitializedEntity::EK_Parameter_CF_Audited:
6160 case InitializedEntity::EK_TemplateParameter:
6161 case InitializedEntity::EK_Temporary:
6162 case InitializedEntity::EK_ArrayElement:
6163 case InitializedEntity::EK_Exception:
6164 case InitializedEntity::EK_CompoundLiteralInit:
6165 case InitializedEntity::EK_RelatedResult:
6166 return true;
6167 }
6168
6169 llvm_unreachable("missed an InitializedEntity kind?")__builtin_unreachable();
6170}
6171
6172/// Get the location at which initialization diagnostics should appear.
6173static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6174 Expr *Initializer) {
6175 switch (Entity.getKind()) {
6176 case InitializedEntity::EK_Result:
6177 case InitializedEntity::EK_StmtExprResult:
6178 return Entity.getReturnLoc();
6179
6180 case InitializedEntity::EK_Exception:
6181 return Entity.getThrowLoc();
6182
6183 case InitializedEntity::EK_Variable:
6184 case InitializedEntity::EK_Binding:
6185 return Entity.getDecl()->getLocation();
6186
6187 case InitializedEntity::EK_LambdaCapture:
6188 return Entity.getCaptureLoc();
6189
6190 case InitializedEntity::EK_ArrayElement:
6191 case InitializedEntity::EK_Member:
6192 case InitializedEntity::EK_Parameter:
6193 case InitializedEntity::EK_Parameter_CF_Audited:
6194 case InitializedEntity::EK_TemplateParameter:
6195 case InitializedEntity::EK_Temporary:
6196 case InitializedEntity::EK_New:
6197 case InitializedEntity::EK_Base:
6198 case InitializedEntity::EK_Delegating:
6199 case InitializedEntity::EK_VectorElement:
6200 case InitializedEntity::EK_ComplexElement:
6201 case InitializedEntity::EK_BlockElement:
6202 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6203 case InitializedEntity::EK_CompoundLiteralInit:
6204 case InitializedEntity::EK_RelatedResult:
6205 return Initializer->getBeginLoc();
6206 }
6207 llvm_unreachable("missed an InitializedEntity kind?")__builtin_unreachable();
6208}
6209
6210/// Make a (potentially elidable) temporary copy of the object
6211/// provided by the given initializer by calling the appropriate copy
6212/// constructor.
6213///
6214/// \param S The Sema object used for type-checking.
6215///
6216/// \param T The type of the temporary object, which must either be
6217/// the type of the initializer expression or a superclass thereof.
6218///
6219/// \param Entity The entity being initialized.
6220///
6221/// \param CurInit The initializer expression.
6222///
6223/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6224/// is permitted in C++03 (but not C++0x) when binding a reference to
6225/// an rvalue.
6226///
6227/// \returns An expression that copies the initializer expression into
6228/// a temporary object, or an error expression if a copy could not be
6229/// created.
6230static ExprResult CopyObject(Sema &S,
6231 QualType T,
6232 const InitializedEntity &Entity,
6233 ExprResult CurInit,
6234 bool IsExtraneousCopy) {
6235 if (CurInit.isInvalid())
6236 return CurInit;
6237 // Determine which class type we're copying to.
6238 Expr *CurInitExpr = (Expr *)CurInit.get();
6239 CXXRecordDecl *Class = nullptr;
6240 if (const RecordType *Record = T->getAs<RecordType>())
6241 Class = cast<CXXRecordDecl>(Record->getDecl());
6242 if (!Class)
6243 return CurInit;
6244
6245 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6246
6247 // Make sure that the type we are copying is complete.
6248 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6249 return CurInit;
6250
6251 // Perform overload resolution using the class's constructors. Per
6252 // C++11 [dcl.init]p16, second bullet for class types, this initialization
6253 // is direct-initialization.
6254 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6255 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6256
6257 OverloadCandidateSet::iterator Best;
6258 switch (ResolveConstructorOverload(
6259 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6260 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6261 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6262 /*SecondStepOfCopyInit=*/true)) {
6263 case OR_Success:
6264 break;
6265
6266 case OR_No_Viable_Function:
6267 CandidateSet.NoteCandidates(
6268 PartialDiagnosticAt(
6269 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6270 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6271 : diag::err_temp_copy_no_viable)
6272 << (int)Entity.getKind() << CurInitExpr->getType()
6273 << CurInitExpr->getSourceRange()),
6274 S, OCD_AllCandidates, CurInitExpr);
6275 if (!IsExtraneousCopy || S.isSFINAEContext())
6276 return ExprError();
6277 return CurInit;
6278
6279 case OR_Ambiguous:
6280 CandidateSet.NoteCandidates(
6281 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6282 << (int)Entity.getKind()
6283 << CurInitExpr->getType()
6284 << CurInitExpr->getSourceRange()),
6285 S, OCD_AmbiguousCandidates, CurInitExpr);
6286 return ExprError();
6287
6288 case OR_Deleted:
6289 S.Diag(Loc, diag::err_temp_copy_deleted)
6290 << (int)Entity.getKind() << CurInitExpr->getType()
6291 << CurInitExpr->getSourceRange();
6292 S.NoteDeletedFunction(Best->Function);
6293 return ExprError();
6294 }
6295
6296 bool HadMultipleCandidates = CandidateSet.size() > 1;
6297
6298 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6299 SmallVector<Expr*, 8> ConstructorArgs;
6300 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6301
6302 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6303 IsExtraneousCopy);
6304
6305 if (IsExtraneousCopy) {
6306 // If this is a totally extraneous copy for C++03 reference
6307 // binding purposes, just return the original initialization
6308 // expression. We don't generate an (elided) copy operation here
6309 // because doing so would require us to pass down a flag to avoid
6310 // infinite recursion, where each step adds another extraneous,
6311 // elidable copy.
6312
6313 // Instantiate the default arguments of any extra parameters in
6314 // the selected copy constructor, as if we were going to create a
6315 // proper call to the copy constructor.
6316 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6317 ParmVarDecl *Parm = Constructor->getParamDecl(I);
6318 if (S.RequireCompleteType(Loc, Parm->getType(),
6319 diag::err_call_incomplete_argument))
6320 break;
6321
6322 // Build the default argument expression; we don't actually care
6323 // if this succeeds or not, because this routine will complain
6324 // if there was a problem.
6325 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6326 }
6327
6328 return CurInitExpr;
6329 }
6330
6331 // Determine the arguments required to actually perform the
6332 // constructor call (we might have derived-to-base conversions, or
6333 // the copy constructor may have default arguments).
6334 if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6335 ConstructorArgs))
6336 return ExprError();
6337
6338 // C++0x [class.copy]p32:
6339 // When certain criteria are met, an implementation is allowed to
6340 // omit the copy/move construction of a class object, even if the
6341 // copy/move constructor and/or destructor for the object have
6342 // side effects. [...]
6343 // - when a temporary class object that has not been bound to a
6344 // reference (12.2) would be copied/moved to a class object
6345 // with the same cv-unqualified type, the copy/move operation
6346 // can be omitted by constructing the temporary object
6347 // directly into the target of the omitted copy/move
6348 //
6349 // Note that the other three bullets are handled elsewhere. Copy
6350 // elision for return statements and throw expressions are handled as part
6351 // of constructor initialization, while copy elision for exception handlers
6352 // is handled by the run-time.
6353 //
6354 // FIXME: If the function parameter is not the same type as the temporary, we
6355 // should still be able to elide the copy, but we don't have a way to
6356 // represent in the AST how much should be elided in this case.
6357 bool Elidable =
6358 CurInitExpr->isTemporaryObject(S.Context, Class) &&
6359 S.Context.hasSameUnqualifiedType(
6360 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6361 CurInitExpr->getType());
6362
6363 // Actually perform the constructor call.
6364 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6365 Elidable,
6366 ConstructorArgs,
6367 HadMultipleCandidates,
6368 /*ListInit*/ false,
6369 /*StdInitListInit*/ false,
6370 /*ZeroInit*/ false,
6371 CXXConstructExpr::CK_Complete,
6372 SourceRange());
6373
6374 // If we're supposed to bind temporaries, do so.
6375 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6376 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6377 return CurInit;
6378}
6379
6380/// Check whether elidable copy construction for binding a reference to
6381/// a temporary would have succeeded if we were building in C++98 mode, for
6382/// -Wc++98-compat.
6383static void CheckCXX98CompatAccessibleCopy(Sema &S,
6384 const InitializedEntity &Entity,
6385 Expr *CurInitExpr) {
6386 assert(S.getLangOpts().CPlusPlus11)((void)0);
6387
6388 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6389 if (!Record)
6390 return;
6391
6392 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6393 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6394 return;
6395
6396 // Find constructors which would have been considered.
6397 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6398 DeclContext::lookup_result Ctors =
6399 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6400
6401 // Perform overload resolution.
6402 OverloadCandidateSet::iterator Best;
6403 OverloadingResult OR = ResolveConstructorOverload(
6404 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6405 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6406 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6407 /*SecondStepOfCopyInit=*/true);
6408
6409 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6410 << OR << (int)Entity.getKind() << CurInitExpr->getType()
6411 << CurInitExpr->getSourceRange();
6412
6413 switch (OR) {
6414 case OR_Success:
6415 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6416 Best->FoundDecl, Entity, Diag);
6417 // FIXME: Check default arguments as far as that's possible.
6418 break;
6419
6420 case OR_No_Viable_Function:
6421 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6422 OCD_AllCandidates, CurInitExpr);
6423 break;
6424
6425 case OR_Ambiguous:
6426 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6427 OCD_AmbiguousCandidates, CurInitExpr);
6428 break;
6429
6430 case OR_Deleted:
6431 S.Diag(Loc, Diag);
6432 S.NoteDeletedFunction(Best->Function);
6433 break;
6434 }
6435}
6436
6437void InitializationSequence::PrintInitLocationNote(Sema &S,
6438 const InitializedEntity &Entity) {
6439 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6440 if (Entity.getDecl()->getLocation().isInvalid())
6441 return;
6442
6443 if (Entity.getDecl()->getDeclName())
6444 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6445 << Entity.getDecl()->getDeclName();
6446 else
6447 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6448 }
6449 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6450 Entity.getMethodDecl())
6451 S.Diag(Entity.getMethodDecl()->getLocation(),
6452 diag::note_method_return_type_change)
6453 << Entity.getMethodDecl()->getDeclName();
6454}
6455
6456/// Returns true if the parameters describe a constructor initialization of
6457/// an explicit temporary object, e.g. "Point(x, y)".
6458static bool isExplicitTemporary(const InitializedEntity &Entity,
6459 const InitializationKind &Kind,
6460 unsigned NumArgs) {
6461 switch (Entity.getKind()) {
6462 case InitializedEntity::EK_Temporary:
6463 case InitializedEntity::EK_CompoundLiteralInit:
6464 case InitializedEntity::EK_RelatedResult:
6465 break;
6466 default:
6467 return false;
6468 }
6469
6470 switch (Kind.getKind()) {
6471 case InitializationKind::IK_DirectList:
6472 return true;
6473 // FIXME: Hack to work around cast weirdness.
6474 case InitializationKind::IK_Direct:
6475 case InitializationKind::IK_Value:
6476 return NumArgs != 1;
6477 default:
6478 return false;
6479 }
6480}
6481
6482static ExprResult
6483PerformConstructorInitialization(Sema &S,
6484 const InitializedEntity &Entity,
6485 const InitializationKind &Kind,
6486 MultiExprArg Args,
6487 const InitializationSequence::Step& Step,
6488 bool &ConstructorInitRequiresZeroInit,
6489 bool IsListInitialization,
6490 bool IsStdInitListInitialization,
6491 SourceLocation LBraceLoc,
6492 SourceLocation RBraceLoc) {
6493 unsigned NumArgs = Args.size();
6494 CXXConstructorDecl *Constructor
6495 = cast<CXXConstructorDecl>(Step.Function.Function);
6496 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6497
6498 // Build a call to the selected constructor.
6499 SmallVector<Expr*, 8> ConstructorArgs;
6500 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6501 ? Kind.getEqualLoc()
6502 : Kind.getLocation();
6503
6504 if (Kind.getKind() == InitializationKind::IK_Default) {
6505 // Force even a trivial, implicit default constructor to be
6506 // semantically checked. We do this explicitly because we don't build
6507 // the definition for completely trivial constructors.
6508 assert(Constructor->getParent() && "No parent class for constructor.")((void)0);
6509 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6510 Constructor->isTrivial() && !Constructor->isUsed(false)) {
6511 S.runWithSufficientStackSpace(Loc, [&] {
6512 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6513 });
6514 }
6515 }
6516
6517 ExprResult CurInit((Expr *)nullptr);
6518
6519 // C++ [over.match.copy]p1:
6520 // - When initializing a temporary to be bound to the first parameter
6521 // of a constructor that takes a reference to possibly cv-qualified
6522 // T as its first argument, called with a single argument in the
6523 // context of direct-initialization, explicit conversion functions
6524 // are also considered.
6525 bool AllowExplicitConv =
6526 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6527 hasCopyOrMoveCtorParam(S.Context,
6528 getConstructorInfo(Step.Function.FoundDecl));
6529
6530 // Determine the arguments required to actually perform the constructor
6531 // call.
6532 if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6533 ConstructorArgs, AllowExplicitConv,
6534 IsListInitialization))
6535 return ExprError();
6536
6537 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6538 // An explicitly-constructed temporary, e.g., X(1, 2).
6539 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6540 return ExprError();
6541
6542 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6543 if (!TSInfo)
6544 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6545 SourceRange ParenOrBraceRange =
6546 (Kind.getKind() == InitializationKind::IK_DirectList)
6547 ? SourceRange(LBraceLoc, RBraceLoc)
6548 : Kind.getParenOrBraceRange();
6549
6550 CXXConstructorDecl *CalleeDecl = Constructor;
6551 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6552 Step.Function.FoundDecl.getDecl())) {
6553 CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6554 if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6555 return ExprError();
6556 }
6557 S.MarkFunctionReferenced(Loc, CalleeDecl);
6558
6559 CurInit = S.CheckForImmediateInvocation(
6560 CXXTemporaryObjectExpr::Create(
6561 S.Context, CalleeDecl,
6562 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6563 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6564 IsListInitialization, IsStdInitListInitialization,
6565 ConstructorInitRequiresZeroInit),
6566 CalleeDecl);
6567 } else {
6568 CXXConstructExpr::ConstructionKind ConstructKind =
6569 CXXConstructExpr::CK_Complete;
6570
6571 if (Entity.getKind() == InitializedEntity::EK_Base) {
6572 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6573 CXXConstructExpr::CK_VirtualBase :
6574 CXXConstructExpr::CK_NonVirtualBase;
6575 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6576 ConstructKind = CXXConstructExpr::CK_Delegating;
6577 }
6578
6579 // Only get the parenthesis or brace range if it is a list initialization or
6580 // direct construction.
6581 SourceRange ParenOrBraceRange;
6582 if (IsListInitialization)
6583 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6584 else if (Kind.getKind() == InitializationKind::IK_Direct)
6585 ParenOrBraceRange = Kind.getParenOrBraceRange();
6586
6587 // If the entity allows NRVO, mark the construction as elidable
6588 // unconditionally.
6589 if (Entity.allowsNRVO())
6590 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6591 Step.Function.FoundDecl,
6592 Constructor, /*Elidable=*/true,
6593 ConstructorArgs,
6594 HadMultipleCandidates,
6595 IsListInitialization,
6596 IsStdInitListInitialization,
6597 ConstructorInitRequiresZeroInit,
6598 ConstructKind,
6599 ParenOrBraceRange);
6600 else
6601 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6602 Step.Function.FoundDecl,
6603 Constructor,
6604 ConstructorArgs,
6605 HadMultipleCandidates,
6606 IsListInitialization,
6607 IsStdInitListInitialization,
6608 ConstructorInitRequiresZeroInit,
6609 ConstructKind,
6610 ParenOrBraceRange);
6611 }
6612 if (CurInit.isInvalid())
6613 return ExprError();
6614
6615 // Only check access if all of that succeeded.
6616 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6617 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6618 return ExprError();
6619
6620 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6621 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6622 return ExprError();
6623
6624 if (shouldBindAsTemporary(Entity))
6625 CurInit = S.MaybeBindToTemporary(CurInit.get());
6626
6627 return CurInit;
6628}
6629
6630namespace {
6631enum LifetimeKind {
6632 /// The lifetime of a temporary bound to this entity ends at the end of the
6633 /// full-expression, and that's (probably) fine.
6634 LK_FullExpression,
6635
6636 /// The lifetime of a temporary bound to this entity is extended to the
6637 /// lifeitme of the entity itself.
6638 LK_Extended,
6639
6640 /// The lifetime of a temporary bound to this entity probably ends too soon,
6641 /// because the entity is allocated in a new-expression.
6642 LK_New,
6643
6644 /// The lifetime of a temporary bound to this entity ends too soon, because
6645 /// the entity is a return object.
6646 LK_Return,
6647
6648 /// The lifetime of a temporary bound to this entity ends too soon, because
6649 /// the entity is the result of a statement expression.
6650 LK_StmtExprResult,
6651
6652 /// This is a mem-initializer: if it would extend a temporary (other than via
6653 /// a default member initializer), the program is ill-formed.
6654 LK_MemInitializer,
6655};
6656using LifetimeResult =
6657 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6658}
6659
6660/// Determine the declaration which an initialized entity ultimately refers to,
6661/// for the purpose of lifetime-extending a temporary bound to a reference in
6662/// the initialization of \p Entity.
6663static LifetimeResult getEntityLifetime(
6664 const InitializedEntity *Entity,
6665 const InitializedEntity *InitField = nullptr) {
6666 // C++11 [class.temporary]p5:
6667 switch (Entity->getKind()) {
6668 case InitializedEntity::EK_Variable:
6669 // The temporary [...] persists for the lifetime of the reference
6670 return {Entity, LK_Extended};
6671
6672 case InitializedEntity::EK_Member:
6673 // For subobjects, we look at the complete object.
6674 if (Entity->getParent())
6675 return getEntityLifetime(Entity->getParent(), Entity);
6676
6677 // except:
6678 // C++17 [class.base.init]p8:
6679 // A temporary expression bound to a reference member in a
6680 // mem-initializer is ill-formed.
6681 // C++17 [class.base.init]p11:
6682 // A temporary expression bound to a reference member from a
6683 // default member initializer is ill-formed.
6684 //
6685 // The context of p11 and its example suggest that it's only the use of a
6686 // default member initializer from a constructor that makes the program
6687 // ill-formed, not its mere existence, and that it can even be used by
6688 // aggregate initialization.
6689 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6690 : LK_MemInitializer};
6691
6692 case InitializedEntity::EK_Binding:
6693 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6694 // type.
6695 return {Entity, LK_Extended};
6696
6697 case InitializedEntity::EK_Parameter:
6698 case InitializedEntity::EK_Parameter_CF_Audited:
6699 // -- A temporary bound to a reference parameter in a function call
6700 // persists until the completion of the full-expression containing
6701 // the call.
6702 return {nullptr, LK_FullExpression};
6703
6704 case InitializedEntity::EK_TemplateParameter:
6705 // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6706 return {nullptr, LK_FullExpression};
6707
6708 case InitializedEntity::EK_Result:
6709 // -- The lifetime of a temporary bound to the returned value in a
6710 // function return statement is not extended; the temporary is
6711 // destroyed at the end of the full-expression in the return statement.
6712 return {nullptr, LK_Return};
6713
6714 case InitializedEntity::EK_StmtExprResult:
6715 // FIXME: Should we lifetime-extend through the result of a statement
6716 // expression?
6717 return {nullptr, LK_StmtExprResult};
6718
6719 case InitializedEntity::EK_New:
6720 // -- A temporary bound to a reference in a new-initializer persists
6721 // until the completion of the full-expression containing the
6722 // new-initializer.
6723 return {nullptr, LK_New};
6724
6725 case InitializedEntity::EK_Temporary:
6726 case InitializedEntity::EK_CompoundLiteralInit:
6727 case InitializedEntity::EK_RelatedResult:
6728 // We don't yet know the storage duration of the surrounding temporary.
6729 // Assume it's got full-expression duration for now, it will patch up our
6730 // storage duration if that's not correct.
6731 return {nullptr, LK_FullExpression};
6732
6733 case InitializedEntity::EK_ArrayElement:
6734 // For subobjects, we look at the complete object.
6735 return getEntityLifetime(Entity->getParent(), InitField);
6736
6737 case InitializedEntity::EK_Base:
6738 // For subobjects, we look at the complete object.
6739 if (Entity->getParent())
6740 return getEntityLifetime(Entity->getParent(), InitField);
6741 return {InitField, LK_MemInitializer};
6742
6743 case InitializedEntity::EK_Delegating:
6744 // We can reach this case for aggregate initialization in a constructor:
6745 // struct A { int &&r; };
6746 // struct B : A { B() : A{0} {} };
6747 // In this case, use the outermost field decl as the context.
6748 return {InitField, LK_MemInitializer};
6749
6750 case InitializedEntity::EK_BlockElement:
6751 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6752 case InitializedEntity::EK_LambdaCapture:
6753 case InitializedEntity::EK_VectorElement:
6754 case InitializedEntity::EK_ComplexElement:
6755 return {nullptr, LK_FullExpression};
6756
6757 case InitializedEntity::EK_Exception:
6758 // FIXME: Can we diagnose lifetime problems with exceptions?
6759 return {nullptr, LK_FullExpression};
6760 }
6761 llvm_unreachable("unknown entity kind")__builtin_unreachable();
6762}
6763
6764namespace {
6765enum ReferenceKind {
6766 /// Lifetime would be extended by a reference binding to a temporary.
6767 RK_ReferenceBinding,
6768 /// Lifetime would be extended by a std::initializer_list object binding to
6769 /// its backing array.
6770 RK_StdInitializerList,
6771};
6772
6773/// A temporary or local variable. This will be one of:
6774/// * A MaterializeTemporaryExpr.
6775/// * A DeclRefExpr whose declaration is a local.
6776/// * An AddrLabelExpr.
6777/// * A BlockExpr for a block with captures.
6778using Local = Expr*;
6779
6780/// Expressions we stepped over when looking for the local state. Any steps
6781/// that would inhibit lifetime extension or take us out of subexpressions of
6782/// the initializer are included.
6783struct IndirectLocalPathEntry {
6784 enum EntryKind {
6785 DefaultInit,
6786 AddressOf,
6787 VarInit,
6788 LValToRVal,
6789 LifetimeBoundCall,
6790 TemporaryCopy,
6791 LambdaCaptureInit,
6792 GslReferenceInit,
6793 GslPointerInit
6794 } Kind;
6795 Expr *E;
6796 union {
6797 const Decl *D = nullptr;
6798 const LambdaCapture *Capture;
6799 };
6800 IndirectLocalPathEntry() {}
6801 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6802 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6803 : Kind(K), E(E), D(D) {}
6804 IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6805 : Kind(K), E(E), Capture(Capture) {}
6806};
6807
6808using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6809
6810struct RevertToOldSizeRAII {
6811 IndirectLocalPath &Path;
6812 unsigned OldSize = Path.size();
6813 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6814 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6815};
6816
6817using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6818 ReferenceKind RK)>;
6819}
6820
6821static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6822 for (auto E : Path)
6823 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6824 return true;
6825 return false;
6826}
6827
6828static bool pathContainsInit(IndirectLocalPath &Path) {
6829 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6830 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6831 E.Kind == IndirectLocalPathEntry::VarInit;
6832 });
6833}
6834
6835static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6836 Expr *Init, LocalVisitor Visit,
6837 bool RevisitSubinits,
6838 bool EnableLifetimeWarnings);
6839
6840static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6841 Expr *Init, ReferenceKind RK,
6842 LocalVisitor Visit,
6843 bool EnableLifetimeWarnings);
6844
6845template <typename T> static bool isRecordWithAttr(QualType Type) {
6846 if (auto *RD = Type->getAsCXXRecordDecl())
6847 return RD->hasAttr<T>();
6848 return false;
6849}
6850
6851// Decl::isInStdNamespace will return false for iterators in some STL
6852// implementations due to them being defined in a namespace outside of the std
6853// namespace.
6854static bool isInStlNamespace(const Decl *D) {
6855 const DeclContext *DC = D->getDeclContext();
6856 if (!DC)
6857 return false;
6858 if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6859 if (const IdentifierInfo *II = ND->getIdentifier()) {
6860 StringRef Name = II->getName();
6861 if (Name.size() >= 2 && Name.front() == '_' &&
6862 (Name[1] == '_' || isUppercase(Name[1])))
6863 return true;
6864 }
6865
6866 return DC->isStdNamespace();
6867}
6868
6869static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6870 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6871 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6872 return true;
6873 if (!isInStlNamespace(Callee->getParent()))
6874 return false;
6875 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6876 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6877 return false;
6878 if (Callee->getReturnType()->isPointerType() ||
6879 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6880 if (!Callee->getIdentifier())
6881 return false;
6882 return llvm::StringSwitch<bool>(Callee->getName())
6883 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6884 .Cases("end", "rend", "cend", "crend", true)
6885 .Cases("c_str", "data", "get", true)
6886 // Map and set types.
6887 .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6888 .Default(false);
6889 } else if (Callee->getReturnType()->isReferenceType()) {
6890 if (!Callee->getIdentifier()) {
6891 auto OO = Callee->getOverloadedOperator();
6892 return OO == OverloadedOperatorKind::OO_Subscript ||
6893 OO == OverloadedOperatorKind::OO_Star;
6894 }
6895 return llvm::StringSwitch<bool>(Callee->getName())
6896 .Cases("front", "back", "at", "top", "value", true)
6897 .Default(false);
6898 }
6899 return false;
6900}
6901
6902static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6903 if (!FD->getIdentifier() || FD->getNumParams() != 1)
6904 return false;
6905 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6906 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6907 return false;
6908 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6909 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6910 return false;
6911 if (FD->getReturnType()->isPointerType() ||
6912 isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6913 return llvm::StringSwitch<bool>(FD->getName())
6914 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6915 .Cases("end", "rend", "cend", "crend", true)
6916 .Case("data", true)
6917 .Default(false);
6918 } else if (FD->getReturnType()->isReferenceType()) {
6919 return llvm::StringSwitch<bool>(FD->getName())
6920 .Cases("get", "any_cast", true)
6921 .Default(false);
6922 }
6923 return false;
6924}
6925
6926static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6927 LocalVisitor Visit) {
6928 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6929 // We are not interested in the temporary base objects of gsl Pointers:
6930 // Temp().ptr; // Here ptr might not dangle.
6931 if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6932 return;
6933 // Once we initialized a value with a reference, it can no longer dangle.
6934 if (!Value) {
6935 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6936 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6937 continue;
6938 if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6939 return;
6940 break;
6941 }
6942 }
6943 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6944 : IndirectLocalPathEntry::GslReferenceInit,
6945 Arg, D});
6946 if (Arg->isGLValue())
6947 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6948 Visit,
6949 /*EnableLifetimeWarnings=*/true);
6950 else
6951 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6952 /*EnableLifetimeWarnings=*/true);
6953 Path.pop_back();
6954 };
6955
6956 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6957 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6958 if (MD && shouldTrackImplicitObjectArg(MD))
6959 VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6960 !MD->getReturnType()->isReferenceType());
6961 return;
6962 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6963 FunctionDecl *Callee = OCE->getDirectCallee();
6964 if (Callee && Callee->isCXXInstanceMember() &&
6965 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6966 VisitPointerArg(Callee, OCE->getArg(0),
6967 !Callee->getReturnType()->isReferenceType());
6968 return;
6969 } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6970 FunctionDecl *Callee = CE->getDirectCallee();
6971 if (Callee && shouldTrackFirstArgument(Callee))
6972 VisitPointerArg(Callee, CE->getArg(0),
6973 !Callee->getReturnType()->isReferenceType());
6974 return;
6975 }
6976
6977 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6978 const auto *Ctor = CCE->getConstructor();
6979 const CXXRecordDecl *RD = Ctor->getParent();
6980 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6981 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6982 }
6983}
6984
6985static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6986 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6987 if (!TSI)
6988 return false;
6989 // Don't declare this variable in the second operand of the for-statement;
6990 // GCC miscompiles that by ending its lifetime before evaluating the
6991 // third operand. See gcc.gnu.org/PR86769.
6992 AttributedTypeLoc ATL;
6993 for (TypeLoc TL = TSI->getTypeLoc();
6994 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6995 TL = ATL.getModifiedLoc()) {
6996 if (ATL.getAttrAs<LifetimeBoundAttr>())
6997 return true;
6998 }
6999
7000 // Assume that all assignment operators with a "normal" return type return
7001 // *this, that is, an lvalue reference that is the same type as the implicit
7002 // object parameter (or the LHS for a non-member operator$=).
7003 OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7004 if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7005 QualType RetT = FD->getReturnType();
7006 if (RetT->isLValueReferenceType()) {
7007 ASTContext &Ctx = FD->getASTContext();
7008 QualType LHST;
7009 auto *MD = dyn_cast<CXXMethodDecl>(FD);
7010 if (MD && MD->isCXXInstanceMember())
7011 LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7012 else
7013 LHST = MD->getParamDecl(0)->getType();
7014 if (Ctx.hasSameType(RetT, LHST))
7015 return true;
7016 }
7017 }
7018
7019 return false;
7020}
7021
7022static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7023 LocalVisitor Visit) {
7024 const FunctionDecl *Callee;
7025 ArrayRef<Expr*> Args;
7026
7027 if (auto *CE = dyn_cast<CallExpr>(Call)) {
7028 Callee = CE->getDirectCallee();
7029 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
7030 } else {
7031 auto *CCE = cast<CXXConstructExpr>(Call);
7032 Callee = CCE->getConstructor();
7033 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
7034 }
7035 if (!Callee)
7036 return;
7037
7038 Expr *ObjectArg = nullptr;
7039 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7040 ObjectArg = Args[0];
7041 Args = Args.slice(1);
7042 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7043 ObjectArg = MCE->getImplicitObjectArgument();
7044 }
7045
7046 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7047 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7048 if (Arg->isGLValue())
7049 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7050 Visit,
7051 /*EnableLifetimeWarnings=*/false);
7052 else
7053 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7054 /*EnableLifetimeWarnings=*/false);
7055 Path.pop_back();
7056 };
7057
7058 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7059 VisitLifetimeBoundArg(Callee, ObjectArg);
7060
7061 for (unsigned I = 0,
7062 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7063 I != N; ++I) {
7064 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7065 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7066 }
7067}
7068
7069/// Visit the locals that would be reachable through a reference bound to the
7070/// glvalue expression \c Init.
7071static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7072 Expr *Init, ReferenceKind RK,
7073 LocalVisitor Visit,
7074 bool EnableLifetimeWarnings) {
7075 RevertToOldSizeRAII RAII(Path);
7076
7077 // Walk past any constructs which we can lifetime-extend across.
7078 Expr *Old;
7079 do {
7080 Old = Init;
7081
7082 if (auto *FE = dyn_cast<FullExpr>(Init))
7083 Init = FE->getSubExpr();
7084
7085 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7086 // If this is just redundant braces around an initializer, step over it.
7087 if (ILE->isTransparent())
7088 Init = ILE->getInit(0);
7089 }
7090
7091 // Step over any subobject adjustments; we may have a materialized
7092 // temporary inside them.
7093 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7094
7095 // Per current approach for DR1376, look through casts to reference type
7096 // when performing lifetime extension.
7097 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7098 if (CE->getSubExpr()->isGLValue())
7099 Init = CE->getSubExpr();
7100
7101 // Per the current approach for DR1299, look through array element access
7102 // on array glvalues when performing lifetime extension.
7103 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7104 Init = ASE->getBase();
7105 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7106 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7107 Init = ICE->getSubExpr();
7108 else
7109 // We can't lifetime extend through this but we might still find some
7110 // retained temporaries.
7111 return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7112 EnableLifetimeWarnings);
7113 }
7114
7115 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7116 // constructor inherits one as an implicit mem-initializer.
7117 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7118 Path.push_back(
7119 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7120 Init = DIE->getExpr();
7121 }
7122 } while (Init != Old);
7123
7124 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7125 if (Visit(Path, Local(MTE), RK))
7126 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7127 EnableLifetimeWarnings);
7128 }
7129
7130 if (isa<CallExpr>(Init)) {
7131 if (EnableLifetimeWarnings)
7132 handleGslAnnotatedTypes(Path, Init, Visit);
7133 return visitLifetimeBoundArguments(Path, Init, Visit);
7134 }
7135
7136 switch (Init->getStmtClass()) {
7137 case Stmt::DeclRefExprClass: {
7138 // If we find the name of a local non-reference parameter, we could have a
7139 // lifetime problem.
7140 auto *DRE = cast<DeclRefExpr>(Init);
7141 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7142 if (VD && VD->hasLocalStorage() &&
7143 !DRE->refersToEnclosingVariableOrCapture()) {
7144 if (!VD->getType()->isReferenceType()) {
7145 Visit(Path, Local(DRE), RK);
7146 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7147 // The lifetime of a reference parameter is unknown; assume it's OK
7148 // for now.
7149 break;
7150 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7151 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7152 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7153 RK_ReferenceBinding, Visit,
7154 EnableLifetimeWarnings);
7155 }
7156 }
7157 break;
7158 }
7159
7160 case Stmt::UnaryOperatorClass: {
7161 // The only unary operator that make sense to handle here
7162 // is Deref. All others don't resolve to a "name." This includes
7163 // handling all sorts of rvalues passed to a unary operator.
7164 const UnaryOperator *U = cast<UnaryOperator>(Init);
7165 if (U->getOpcode() == UO_Deref)
7166 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7167 EnableLifetimeWarnings);
7168 break;
7169 }
7170
7171 case Stmt::OMPArraySectionExprClass: {
7172 visitLocalsRetainedByInitializer(Path,
7173 cast<OMPArraySectionExpr>(Init)->getBase(),
7174 Visit, true, EnableLifetimeWarnings);
7175 break;
7176 }
7177
7178 case Stmt::ConditionalOperatorClass:
7179 case Stmt::BinaryConditionalOperatorClass: {
7180 auto *C = cast<AbstractConditionalOperator>(Init);
7181 if (!C->getTrueExpr()->getType()->isVoidType())
7182 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7183 EnableLifetimeWarnings);
7184 if (!C->getFalseExpr()->getType()->isVoidType())
7185 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7186 EnableLifetimeWarnings);
7187 break;
7188 }
7189
7190 // FIXME: Visit the left-hand side of an -> or ->*.
7191
7192 default:
7193 break;
7194 }
7195}
7196
7197/// Visit the locals that would be reachable through an object initialized by
7198/// the prvalue expression \c Init.
7199static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7200 Expr *Init, LocalVisitor Visit,
7201 bool RevisitSubinits,
7202 bool EnableLifetimeWarnings) {
7203 RevertToOldSizeRAII RAII(Path);
7204
7205 Expr *Old;
7206 do {
7207 Old = Init;
7208
7209 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7210 // constructor inherits one as an implicit mem-initializer.
7211 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7212 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7213 Init = DIE->getExpr();
7214 }
7215
7216 if (auto *FE = dyn_cast<FullExpr>(Init))
7217 Init = FE->getSubExpr();
7218
7219 // Dig out the expression which constructs the extended temporary.
7220 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7221
7222 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7223 Init = BTE->getSubExpr();
7224
7225 Init = Init->IgnoreParens();
7226
7227 // Step over value-preserving rvalue casts.
7228 if (auto *CE = dyn_cast<CastExpr>(Init)) {
7229 switch (CE->getCastKind()) {
7230 case CK_LValueToRValue:
7231 // If we can match the lvalue to a const object, we can look at its
7232 // initializer.
7233 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7234 return visitLocalsRetainedByReferenceBinding(
7235 Path, Init, RK_ReferenceBinding,
7236 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7237 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7238 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7239 if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7240 !isVarOnPath(Path, VD)) {
7241 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7242 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7243 EnableLifetimeWarnings);
7244 }
7245 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7246 if (MTE->getType().isConstQualified())
7247 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7248 true, EnableLifetimeWarnings);
7249 }
7250 return false;
7251 }, EnableLifetimeWarnings);
7252
7253 // We assume that objects can be retained by pointers cast to integers,
7254 // but not if the integer is cast to floating-point type or to _Complex.
7255 // We assume that casts to 'bool' do not preserve enough information to
7256 // retain a local object.
7257 case CK_NoOp:
7258 case CK_BitCast:
7259 case CK_BaseToDerived:
7260 case CK_DerivedToBase:
7261 case CK_UncheckedDerivedToBase:
7262 case CK_Dynamic:
7263 case CK_ToUnion:
7264 case CK_UserDefinedConversion:
7265 case CK_ConstructorConversion:
7266 case CK_IntegralToPointer:
7267 case CK_PointerToIntegral:
7268 case CK_VectorSplat:
7269 case CK_IntegralCast:
7270 case CK_CPointerToObjCPointerCast:
7271 case CK_BlockPointerToObjCPointerCast:
7272 case CK_AnyPointerToBlockPointerCast:
7273 case CK_AddressSpaceConversion:
7274 break;
7275
7276 case CK_ArrayToPointerDecay:
7277 // Model array-to-pointer decay as taking the address of the array
7278 // lvalue.
7279 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7280 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7281 RK_ReferenceBinding, Visit,
7282 EnableLifetimeWarnings);
7283
7284 default:
7285 return;
7286 }
7287
7288 Init = CE->getSubExpr();
7289 }
7290 } while (Old != Init);
7291
7292 // C++17 [dcl.init.list]p6:
7293 // initializing an initializer_list object from the array extends the
7294 // lifetime of the array exactly like binding a reference to a temporary.
7295 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7296 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7297 RK_StdInitializerList, Visit,
7298 EnableLifetimeWarnings);
7299
7300 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7301 // We already visited the elements of this initializer list while
7302 // performing the initialization. Don't visit them again unless we've
7303 // changed the lifetime of the initialized entity.
7304 if (!RevisitSubinits)
7305 return;
7306
7307 if (ILE->isTransparent())
7308 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7309 RevisitSubinits,
7310 EnableLifetimeWarnings);
7311
7312 if (ILE->getType()->isArrayType()) {
7313 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7314 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7315 RevisitSubinits,
7316 EnableLifetimeWarnings);
7317 return;
7318 }
7319
7320 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7321 assert(RD->isAggregate() && "aggregate init on non-aggregate")((void)0);
7322
7323 // If we lifetime-extend a braced initializer which is initializing an
7324 // aggregate, and that aggregate contains reference members which are
7325 // bound to temporaries, those temporaries are also lifetime-extended.
7326 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7327 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7328 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7329 RK_ReferenceBinding, Visit,
7330 EnableLifetimeWarnings);
7331 else {
7332 unsigned Index = 0;
7333 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7334 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7335 RevisitSubinits,
7336 EnableLifetimeWarnings);
7337 for (const auto *I : RD->fields()) {
7338 if (Index >= ILE->getNumInits())
7339 break;
7340 if (I->isUnnamedBitfield())
7341 continue;
7342 Expr *SubInit = ILE->getInit(Index);
7343 if (I->getType()->isReferenceType())
7344 visitLocalsRetainedByReferenceBinding(Path, SubInit,
7345 RK_ReferenceBinding, Visit,
7346 EnableLifetimeWarnings);
7347 else
7348 // This might be either aggregate-initialization of a member or
7349 // initialization of a std::initializer_list object. Regardless,
7350 // we should recursively lifetime-extend that initializer.
7351 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7352 RevisitSubinits,
7353 EnableLifetimeWarnings);
7354 ++Index;
7355 }
7356 }
7357 }
7358 return;
7359 }
7360
7361 // The lifetime of an init-capture is that of the closure object constructed
7362 // by a lambda-expression.
7363 if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7364 LambdaExpr::capture_iterator CapI = LE->capture_begin();
7365 for (Expr *E : LE->capture_inits()) {
7366 assert(CapI != LE->capture_end())((void)0);
7367 const LambdaCapture &Cap = *CapI++;
7368 if (!E)
7369 continue;
7370 if (Cap.capturesVariable())
7371 Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7372 if (E->isGLValue())
7373 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7374 Visit, EnableLifetimeWarnings);
7375 else
7376 visitLocalsRetainedByInitializer(Path, E, Visit, true,
7377 EnableLifetimeWarnings);
7378 if (Cap.capturesVariable())
7379 Path.pop_back();
7380 }
7381 }
7382
7383 // Assume that a copy or move from a temporary references the same objects
7384 // that the temporary does.
7385 if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7386 if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7387 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7388 Expr *Arg = MTE->getSubExpr();
7389 Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7390 CCE->getConstructor()});
7391 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7392 /*EnableLifetimeWarnings*/false);
7393 Path.pop_back();
7394 }
7395 }
7396 }
7397
7398 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7399 if (EnableLifetimeWarnings)
7400 handleGslAnnotatedTypes(Path, Init, Visit);
7401 return visitLifetimeBoundArguments(Path, Init, Visit);
7402 }
7403
7404 switch (Init->getStmtClass()) {
7405 case Stmt::UnaryOperatorClass: {
7406 auto *UO = cast<UnaryOperator>(Init);
7407 // If the initializer is the address of a local, we could have a lifetime
7408 // problem.
7409 if (UO->getOpcode() == UO_AddrOf) {
7410 // If this is &rvalue, then it's ill-formed and we have already diagnosed
7411 // it. Don't produce a redundant warning about the lifetime of the
7412 // temporary.
7413 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7414 return;
7415
7416 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7417 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7418 RK_ReferenceBinding, Visit,
7419 EnableLifetimeWarnings);
7420 }
7421 break;
7422 }
7423
7424 case Stmt::BinaryOperatorClass: {
7425 // Handle pointer arithmetic.
7426 auto *BO = cast<BinaryOperator>(Init);
7427 BinaryOperatorKind BOK = BO->getOpcode();
7428 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7429 break;
7430
7431 if (BO->getLHS()->getType()->isPointerType())
7432 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7433 EnableLifetimeWarnings);
7434 else if (BO->getRHS()->getType()->isPointerType())
7435 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7436 EnableLifetimeWarnings);
7437 break;
7438 }
7439
7440 case Stmt::ConditionalOperatorClass:
7441 case Stmt::BinaryConditionalOperatorClass: {
7442 auto *C = cast<AbstractConditionalOperator>(Init);
7443 // In C++, we can have a throw-expression operand, which has 'void' type
7444 // and isn't interesting from a lifetime perspective.
7445 if (!C->getTrueExpr()->getType()->isVoidType())
7446 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7447 EnableLifetimeWarnings);
7448 if (!C->getFalseExpr()->getType()->isVoidType())
7449 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7450 EnableLifetimeWarnings);
7451 break;
7452 }
7453
7454 case Stmt::BlockExprClass:
7455 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7456 // This is a local block, whose lifetime is that of the function.
7457 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7458 }
7459 break;
7460
7461 case Stmt::AddrLabelExprClass:
7462 // We want to warn if the address of a label would escape the function.
7463 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7464 break;
7465
7466 default:
7467 break;
7468 }
7469}
7470
7471/// Whether a path to an object supports lifetime extension.
7472enum PathLifetimeKind {
7473 /// Lifetime-extend along this path.
7474 Extend,
7475 /// We should lifetime-extend, but we don't because (due to technical
7476 /// limitations) we can't. This happens for default member initializers,
7477 /// which we don't clone for every use, so we don't have a unique
7478 /// MaterializeTemporaryExpr to update.
7479 ShouldExtend,
7480 /// Do not lifetime extend along this path.
7481 NoExtend
7482};
7483
7484/// Determine whether this is an indirect path to a temporary that we are
7485/// supposed to lifetime-extend along.
7486static PathLifetimeKind
7487shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7488 PathLifetimeKind Kind = PathLifetimeKind::Extend;
7489 for (auto Elem : Path) {
7490 if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7491 Kind = PathLifetimeKind::ShouldExtend;
7492 else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7493 return PathLifetimeKind::NoExtend;
7494 }
7495 return Kind;
7496}
7497
7498/// Find the range for the first interesting entry in the path at or after I.
7499static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7500 Expr *E) {
7501 for (unsigned N = Path.size(); I != N; ++I) {
7502 switch (Path[I].Kind) {
7503 case IndirectLocalPathEntry::AddressOf:
7504 case IndirectLocalPathEntry::LValToRVal:
7505 case IndirectLocalPathEntry::LifetimeBoundCall:
7506 case IndirectLocalPathEntry::TemporaryCopy:
7507 case IndirectLocalPathEntry::GslReferenceInit:
7508 case IndirectLocalPathEntry::GslPointerInit:
7509 // These exist primarily to mark the path as not permitting or
7510 // supporting lifetime extension.
7511 break;
7512
7513 case IndirectLocalPathEntry::VarInit:
7514 if (cast<VarDecl>(Path[I].D)->isImplicit())
7515 return SourceRange();
7516 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7517 case IndirectLocalPathEntry::DefaultInit:
7518 return Path[I].E->getSourceRange();
7519
7520 case IndirectLocalPathEntry::LambdaCaptureInit:
7521 if (!Path[I].Capture->capturesVariable())
7522 continue;
7523 return Path[I].E->getSourceRange();
7524 }
7525 }
7526 return E->getSourceRange();
7527}
7528
7529static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7530 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7531 if (It->Kind == IndirectLocalPathEntry::VarInit)
7532 continue;
7533 if (It->Kind == IndirectLocalPathEntry::AddressOf)
7534 continue;
7535 if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7536 continue;
7537 return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7538 It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7539 }
7540 return false;
7541}
7542
7543void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7544 Expr *Init) {
7545 LifetimeResult LR = getEntityLifetime(&Entity);
7546 LifetimeKind LK = LR.getInt();
7547 const InitializedEntity *ExtendingEntity = LR.getPointer();
7548
7549 // If this entity doesn't have an interesting lifetime, don't bother looking
7550 // for temporaries within its initializer.
7551 if (LK == LK_FullExpression)
7552 return;
7553
7554 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7555 ReferenceKind RK) -> bool {
7556 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7557 SourceLocation DiagLoc = DiagRange.getBegin();
7558
7559 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7560
7561 bool IsGslPtrInitWithGslTempOwner = false;
7562 bool IsLocalGslOwner = false;
7563 if (pathOnlyInitializesGslPointer(Path)) {
7564 if (isa<DeclRefExpr>(L)) {
7565 // We do not want to follow the references when returning a pointer originating
7566 // from a local owner to avoid the following false positive:
7567 // int &p = *localUniquePtr;
7568 // someContainer.add(std::move(localUniquePtr));
7569 // return p;
7570 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7571 if (pathContainsInit(Path) || !IsLocalGslOwner)
7572 return false;
7573 } else {
7574 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7575 isRecordWithAttr<OwnerAttr>(MTE->getType());
7576 // Skipping a chain of initializing gsl::Pointer annotated objects.
7577 // We are looking only for the final source to find out if it was
7578 // a local or temporary owner or the address of a local variable/param.
7579 if (!IsGslPtrInitWithGslTempOwner)
7580 return true;
7581 }
7582 }
7583
7584 switch (LK) {
7585 case LK_FullExpression:
7586 llvm_unreachable("already handled this")__builtin_unreachable();
7587
7588 case LK_Extended: {
7589 if (!MTE) {
7590 // The initialized entity has lifetime beyond the full-expression,
7591 // and the local entity does too, so don't warn.
7592 //
7593 // FIXME: We should consider warning if a static / thread storage
7594 // duration variable retains an automatic storage duration local.
7595 return false;
7596 }
7597
7598 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7599 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7600 return false;
7601 }
7602
7603 switch (shouldLifetimeExtendThroughPath(Path)) {
7604 case PathLifetimeKind::Extend:
7605 // Update the storage duration of the materialized temporary.
7606 // FIXME: Rebuild the expression instead of mutating it.
7607 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7608 ExtendingEntity->allocateManglingNumber());
7609 // Also visit the temporaries lifetime-extended by this initializer.
7610 return true;
7611
7612 case PathLifetimeKind::ShouldExtend:
7613 // We're supposed to lifetime-extend the temporary along this path (per
7614 // the resolution of DR1815), but we don't support that yet.
7615 //
7616 // FIXME: Properly handle this situation. Perhaps the easiest approach
7617 // would be to clone the initializer expression on each use that would
7618 // lifetime extend its temporaries.
7619 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7620 << RK << DiagRange;
7621 break;
7622
7623 case PathLifetimeKind::NoExtend:
7624 // If the path goes through the initialization of a variable or field,
7625 // it can't possibly reach a temporary created in this full-expression.
7626 // We will have already diagnosed any problems with the initializer.
7627 if (pathContainsInit(Path))
7628 return false;
7629
7630 Diag(DiagLoc, diag::warn_dangling_variable)
7631 << RK << !Entity.getParent()
7632 << ExtendingEntity->getDecl()->isImplicit()
7633 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7634 break;
7635 }
7636 break;
7637 }
7638
7639 case LK_MemInitializer: {
7640 if (isa<MaterializeTemporaryExpr>(L)) {
7641 // Under C++ DR1696, if a mem-initializer (or a default member
7642 // initializer used by the absence of one) would lifetime-extend a
7643 // temporary, the program is ill-formed.
7644 if (auto *ExtendingDecl =
7645 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7646 if (IsGslPtrInitWithGslTempOwner) {
7647 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7648 << ExtendingDecl << DiagRange;
7649 Diag(ExtendingDecl->getLocation(),
7650 diag::note_ref_or_ptr_member_declared_here)
7651 << true;
7652 return false;
7653 }
7654 bool IsSubobjectMember = ExtendingEntity != &Entity;
7655 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7656 PathLifetimeKind::NoExtend
7657 ? diag::err_dangling_member
7658 : diag::warn_dangling_member)
7659 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7660 // Don't bother adding a note pointing to the field if we're inside
7661 // its default member initializer; our primary diagnostic points to
7662 // the same place in that case.
7663 if (Path.empty() ||
7664 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7665 Diag(ExtendingDecl->getLocation(),
7666 diag::note_lifetime_extending_member_declared_here)
7667 << RK << IsSubobjectMember;
7668 }
7669 } else {
7670 // We have a mem-initializer but no particular field within it; this
7671 // is either a base class or a delegating initializer directly
7672 // initializing the base-class from something that doesn't live long
7673 // enough.
7674 //
7675 // FIXME: Warn on this.
7676 return false;
7677 }
7678 } else {
7679 // Paths via a default initializer can only occur during error recovery
7680 // (there's no other way that a default initializer can refer to a
7681 // local). Don't produce a bogus warning on those cases.
7682 if (pathContainsInit(Path))
7683 return false;
7684
7685 // Suppress false positives for code like the one below:
7686 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7687 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7688 return false;
7689
7690 auto *DRE = dyn_cast<DeclRefExpr>(L);
7691 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7692 if (!VD) {
7693 // A member was initialized to a local block.
7694 // FIXME: Warn on this.
7695 return false;
7696 }
7697
7698 if (auto *Member =
7699 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7700 bool IsPointer = !Member->getType()->isReferenceType();
7701 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7702 : diag::warn_bind_ref_member_to_parameter)
7703 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7704 Diag(Member->getLocation(),
7705 diag::note_ref_or_ptr_member_declared_here)
7706 << (unsigned)IsPointer;
7707 }
7708 }
7709 break;
7710 }
7711
7712 case LK_New:
7713 if (isa<MaterializeTemporaryExpr>(L)) {
7714 if (IsGslPtrInitWithGslTempOwner)
7715 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7716 else
7717 Diag(DiagLoc, RK == RK_ReferenceBinding
7718 ? diag::warn_new_dangling_reference
7719 : diag::warn_new_dangling_initializer_list)
7720 << !Entity.getParent() << DiagRange;
7721 } else {
7722 // We can't determine if the allocation outlives the local declaration.
7723 return false;
7724 }
7725 break;
7726
7727 case LK_Return:
7728 case LK_StmtExprResult:
7729 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7730 // We can't determine if the local variable outlives the statement
7731 // expression.
7732 if (LK == LK_StmtExprResult)
7733 return false;
7734 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7735 << Entity.getType()->isReferenceType() << DRE->getDecl()
7736 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7737 } else if (isa<BlockExpr>(L)) {
7738 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7739 } else if (isa<AddrLabelExpr>(L)) {
7740 // Don't warn when returning a label from a statement expression.
7741 // Leaving the scope doesn't end its lifetime.
7742 if (LK == LK_StmtExprResult)
7743 return false;
7744 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7745 } else {
7746 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7747 << Entity.getType()->isReferenceType() << DiagRange;
7748 }
7749 break;
7750 }
7751
7752 for (unsigned I = 0; I != Path.size(); ++I) {
7753 auto Elem = Path[I];
7754
7755 switch (Elem.Kind) {
7756 case IndirectLocalPathEntry::AddressOf:
7757 case IndirectLocalPathEntry::LValToRVal:
7758 // These exist primarily to mark the path as not permitting or
7759 // supporting lifetime extension.
7760 break;
7761
7762 case IndirectLocalPathEntry::LifetimeBoundCall:
7763 case IndirectLocalPathEntry::TemporaryCopy:
7764 case IndirectLocalPathEntry::GslPointerInit:
7765 case IndirectLocalPathEntry::GslReferenceInit:
7766 // FIXME: Consider adding a note for these.
7767 break;
7768
7769 case IndirectLocalPathEntry::DefaultInit: {
7770 auto *FD = cast<FieldDecl>(Elem.D);
7771 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7772 << FD << nextPathEntryRange(Path, I + 1, L);
7773 break;
7774 }
7775
7776 case IndirectLocalPathEntry::VarInit: {
7777 const VarDecl *VD = cast<VarDecl>(Elem.D);
7778 Diag(VD->getLocation(), diag::note_local_var_initializer)
7779 << VD->getType()->isReferenceType()
7780 << VD->isImplicit() << VD->getDeclName()
7781 << nextPathEntryRange(Path, I + 1, L);
7782 break;
7783 }
7784
7785 case IndirectLocalPathEntry::LambdaCaptureInit:
7786 if (!Elem.Capture->capturesVariable())
7787 break;
7788 // FIXME: We can't easily tell apart an init-capture from a nested
7789 // capture of an init-capture.
7790 const VarDecl *VD = Elem.Capture->getCapturedVar();
7791 Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7792 << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7793 << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7794 << nextPathEntryRange(Path, I + 1, L);
7795 break;
7796 }
7797 }
7798
7799 // We didn't lifetime-extend, so don't go any further; we don't need more
7800 // warnings or errors on inner temporaries within this one's initializer.
7801 return false;
7802 };
7803
7804 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7805 diag::warn_dangling_lifetime_pointer, SourceLocation());
7806 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7807 if (Init->isGLValue())
7808 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7809 TemporaryVisitor,
7810 EnableLifetimeWarnings);
7811 else
7812 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7813 EnableLifetimeWarnings);
7814}
7815
7816static void DiagnoseNarrowingInInitList(Sema &S,
7817 const ImplicitConversionSequence &ICS,
7818 QualType PreNarrowingType,
7819 QualType EntityType,
7820 const Expr *PostInit);
7821
7822/// Provide warnings when std::move is used on construction.
7823static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7824 bool IsReturnStmt) {
7825 if (!InitExpr)
7826 return;
7827
7828 if (S.inTemplateInstantiation())
7829 return;
7830
7831 QualType DestType = InitExpr->getType();
7832 if (!DestType->isRecordType())
7833 return;
7834
7835 unsigned DiagID = 0;
7836 if (IsReturnStmt) {
7837 const CXXConstructExpr *CCE =
7838 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7839 if (!CCE || CCE->getNumArgs() != 1)
7840 return;
7841
7842 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7843 return;
7844
7845 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7846 }
7847
7848 // Find the std::move call and get the argument.
7849 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7850 if (!CE || !CE->isCallToStdMove())
7851 return;
7852
7853 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7854
7855 if (IsReturnStmt) {
7856 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7857 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7858 return;
7859
7860 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7861 if (!VD || !VD->hasLocalStorage())
7862 return;
7863
7864 // __block variables are not moved implicitly.
7865 if (VD->hasAttr<BlocksAttr>())
7866 return;
7867
7868 QualType SourceType = VD->getType();
7869 if (!SourceType->isRecordType())
7870 return;
7871
7872 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7873 return;
7874 }
7875
7876 // If we're returning a function parameter, copy elision
7877 // is not possible.
7878 if (isa<ParmVarDecl>(VD))
7879 DiagID = diag::warn_redundant_move_on_return;
7880 else
7881 DiagID = diag::warn_pessimizing_move_on_return;
7882 } else {
7883 DiagID = diag::warn_pessimizing_move_on_initialization;
7884 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7885 if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
7886 return;
7887 }
7888
7889 S.Diag(CE->getBeginLoc(), DiagID);
7890
7891 // Get all the locations for a fix-it. Don't emit the fix-it if any location
7892 // is within a macro.
7893 SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7894 if (CallBegin.isMacroID())
7895 return;
7896 SourceLocation RParen = CE->getRParenLoc();
7897 if (RParen.isMacroID())
7898 return;
7899 SourceLocation LParen;
7900 SourceLocation ArgLoc = Arg->getBeginLoc();
7901
7902 // Special testing for the argument location. Since the fix-it needs the
7903 // location right before the argument, the argument location can be in a
7904 // macro only if it is at the beginning of the macro.
7905 while (ArgLoc.isMacroID() &&
7906 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7907 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7908 }
7909
7910 if (LParen.isMacroID())
7911 return;
7912
7913 LParen = ArgLoc.getLocWithOffset(-1);
7914
7915 S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7916 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7917 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7918}
7919
7920static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7921 // Check to see if we are dereferencing a null pointer. If so, this is
7922 // undefined behavior, so warn about it. This only handles the pattern
7923 // "*null", which is a very syntactic check.
7924 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7925 if (UO->getOpcode() == UO_Deref &&
7926 UO->getSubExpr()->IgnoreParenCasts()->
7927 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7928 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7929 S.PDiag(diag::warn_binding_null_to_reference)
7930 << UO->getSubExpr()->getSourceRange());
7931 }
7932}
7933
7934MaterializeTemporaryExpr *
7935Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7936 bool BoundToLvalueReference) {
7937 auto MTE = new (Context)
7938 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7939
7940 // Order an ExprWithCleanups for lifetime marks.
7941 //
7942 // TODO: It'll be good to have a single place to check the access of the
7943 // destructor and generate ExprWithCleanups for various uses. Currently these
7944 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7945 // but there may be a chance to merge them.
7946 Cleanup.setExprNeedsCleanups(false);
7947 return MTE;
7948}
7949
7950ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7951 // In C++98, we don't want to implicitly create an xvalue.
7952 // FIXME: This means that AST consumers need to deal with "prvalues" that
7953 // denote materialized temporaries. Maybe we should add another ValueKind
7954 // for "xvalue pretending to be a prvalue" for C++98 support.
7955 if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
7956 return E;
7957
7958 // C++1z [conv.rval]/1: T shall be a complete type.
7959 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7960 // If so, we should check for a non-abstract class type here too.
7961 QualType T = E->getType();
7962 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7963 return ExprError();
7964
7965 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7966}
7967
7968ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7969 ExprValueKind VK,
7970 CheckedConversionKind CCK) {
7971
7972 CastKind CK = CK_NoOp;
7973
7974 if (VK == VK_PRValue) {
7975 auto PointeeTy = Ty->getPointeeType();
7976 auto ExprPointeeTy = E->getType()->getPointeeType();
7977 if (!PointeeTy.isNull() &&
7978 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7979 CK = CK_AddressSpaceConversion;
7980 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7981 CK = CK_AddressSpaceConversion;
7982 }
7983
7984 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7985}
7986
7987ExprResult InitializationSequence::Perform(Sema &S,
7988 const InitializedEntity &Entity,
7989 const InitializationKind &Kind,
7990 MultiExprArg Args,
7991 QualType *ResultType) {
7992 if (Failed()) {
7993 Diagnose(S, Entity, Kind, Args);
7994 return ExprError();
7995 }
7996 if (!ZeroInitializationFixit.empty()) {
7997 unsigned DiagID = diag::err_default_init_const;
7998 if (Decl *D = Entity.getDecl())
7999 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
8000 DiagID = diag::ext_default_init_const;
8001
8002 // The initialization would have succeeded with this fixit. Since the fixit
8003 // is on the error, we need to build a valid AST in this case, so this isn't
8004 // handled in the Failed() branch above.
8005 QualType DestType = Entity.getType();
8006 S.Diag(Kind.getLocation(), DiagID)
8007 << DestType << (bool)DestType->getAs<RecordType>()
8008 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8009 ZeroInitializationFixit);
8010 }
8011
8012 if (getKind() == DependentSequence) {
8013 // If the declaration is a non-dependent, incomplete array type
8014 // that has an initializer, then its type will be completed once
8015 // the initializer is instantiated.
8016 if (ResultType && !Entity.getType()->isDependentType() &&
8017 Args.size() == 1) {
8018 QualType DeclType = Entity.getType();
8019 if (const IncompleteArrayType *ArrayT
8020 = S.Context.getAsIncompleteArrayType(DeclType)) {
8021 // FIXME: We don't currently have the ability to accurately
8022 // compute the length of an initializer list without
8023 // performing full type-checking of the initializer list
8024 // (since we have to determine where braces are implicitly
8025 // introduced and such). So, we fall back to making the array
8026 // type a dependently-sized array type with no specified
8027 // bound.
8028 if (isa<InitListExpr>((Expr *)Args[0])) {
8029 SourceRange Brackets;
8030
8031 // Scavange the location of the brackets from the entity, if we can.
8032 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8033 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8034 TypeLoc TL = TInfo->getTypeLoc();
8035 if (IncompleteArrayTypeLoc ArrayLoc =
8036 TL.getAs<IncompleteArrayTypeLoc>())
8037 Brackets = ArrayLoc.getBracketsRange();
8038 }
8039 }
8040
8041 *ResultType
8042 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8043 /*NumElts=*/nullptr,
8044 ArrayT->getSizeModifier(),
8045 ArrayT->getIndexTypeCVRQualifiers(),
8046 Brackets);
8047 }
8048
8049 }
8050 }
8051 if (Kind.getKind() == InitializationKind::IK_Direct &&
8052 !Kind.isExplicitCast()) {
8053 // Rebuild the ParenListExpr.
8054 SourceRange ParenRange = Kind.getParenOrBraceRange();
8055 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8056 Args);
8057 }
8058 assert(Kind.getKind() == InitializationKind::IK_Copy ||((void)0)
8059 Kind.isExplicitCast() ||((void)0)
8060 Kind.getKind() == InitializationKind::IK_DirectList)((void)0);
8061 return ExprResult(Args[0]);
8062 }
8063
8064 // No steps means no initialization.
8065 if (Steps.empty())
8066 return ExprResult((Expr *)nullptr);
8067
8068 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8069 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8070 !Entity.isParamOrTemplateParamKind()) {
8071 // Produce a C++98 compatibility warning if we are initializing a reference
8072 // from an initializer list. For parameters, we produce a better warning
8073 // elsewhere.
8074 Expr *Init = Args[0];
8075 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8076 << Init->getSourceRange();
8077 }
8078
8079 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8080 QualType ETy = Entity.getType();
8081 bool HasGlobalAS = ETy.hasAddressSpace() &&
8082 ETy.getAddressSpace() == LangAS::opencl_global;
8083
8084 if (S.getLangOpts().OpenCLVersion >= 200 &&
8085 ETy->isAtomicType() && !HasGlobalAS &&
8086 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8087 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8088 << 1
8089 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8090 return ExprError();
8091 }
8092
8093 QualType DestType = Entity.getType().getNonReferenceType();
8094 // FIXME: Ugly hack around the fact that Entity.getType() is not
8095 // the same as Entity.getDecl()->getType() in cases involving type merging,
8096 // and we want latter when it makes sense.
8097 if (ResultType)
8098 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8099 Entity.getType();
8100
8101 ExprResult CurInit((Expr *)nullptr);
8102 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8103
8104 // For initialization steps that start with a single initializer,
8105 // grab the only argument out the Args and place it into the "current"
8106 // initializer.
8107 switch (Steps.front().Kind) {
8108 case SK_ResolveAddressOfOverloadedFunction:
8109 case SK_CastDerivedToBasePRValue:
8110 case SK_CastDerivedToBaseXValue:
8111 case SK_CastDerivedToBaseLValue:
8112 case SK_BindReference:
8113 case SK_BindReferenceToTemporary:
8114 case SK_FinalCopy:
8115 case SK_ExtraneousCopyToTemporary:
8116 case SK_UserConversion:
8117 case SK_QualificationConversionLValue:
8118 case SK_QualificationConversionXValue:
8119 case SK_QualificationConversionPRValue:
8120 case SK_FunctionReferenceConversion:
8121 case SK_AtomicConversion:
8122 case SK_ConversionSequence:
8123 case SK_ConversionSequenceNoNarrowing:
8124 case SK_ListInitialization:
8125 case SK_UnwrapInitList:
8126 case SK_RewrapInitList:
8127 case SK_CAssignment:
8128 case SK_StringInit:
8129 case SK_ObjCObjectConversion:
8130 case SK_ArrayLoopIndex:
8131 case SK_ArrayLoopInit:
8132 case SK_ArrayInit:
8133 case SK_GNUArrayInit:
8134 case SK_ParenthesizedArrayInit:
8135 case SK_PassByIndirectCopyRestore:
8136 case SK_PassByIndirectRestore:
8137 case SK_ProduceObjCObject:
8138 case SK_StdInitializerList:
8139 case SK_OCLSamplerInit:
8140 case SK_OCLZeroOpaqueType: {
8141 assert(Args.size() == 1)((void)0);
8142 CurInit = Args[0];
8143 if (!CurInit.get()) return ExprError();
8144 break;
8145 }
8146
8147 case SK_ConstructorInitialization:
8148 case SK_ConstructorInitializationFromList:
8149 case SK_StdInitializerListConstructorCall:
8150 case SK_ZeroInitialization:
8151 break;
8152 }
8153
8154 // Promote from an unevaluated context to an unevaluated list context in
8155 // C++11 list-initialization; we need to instantiate entities usable in
8156 // constant expressions here in order to perform narrowing checks =(
8157 EnterExpressionEvaluationContext Evaluated(
8158 S, EnterExpressionEvaluationContext::InitList,
8159 CurInit.get() && isa<InitListExpr>(CurInit.get()));
8160
8161 // C++ [class.abstract]p2:
8162 // no objects of an abstract class can be created except as subobjects
8163 // of a class derived from it
8164 auto checkAbstractType = [&](QualType T) -> bool {
8165 if (Entity.getKind() == InitializedEntity::EK_Base ||
8166 Entity.getKind() == InitializedEntity::EK_Delegating)
8167 return false;
8168 return S.RequireNonAbstractType(Kind.getLocation(), T,
8169 diag::err_allocation_of_abstract_type);
8170 };
8171
8172 // Walk through the computed steps for the initialization sequence,
8173 // performing the specified conversions along the way.
8174 bool ConstructorInitRequiresZeroInit = false;
8175 for (step_iterator Step = step_begin(), StepEnd = step_end();
8176 Step != StepEnd; ++Step) {
8177 if (CurInit.isInvalid())
8178 return ExprError();
8179
8180 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8181
8182 switch (Step->Kind) {
8183 case SK_ResolveAddressOfOverloadedFunction:
8184 // Overload resolution determined which function invoke; update the
8185 // initializer to reflect that choice.
8186 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8187 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8188 return ExprError();
8189 CurInit = S.FixOverloadedFunctionReference(CurInit,
8190 Step->Function.FoundDecl,
8191 Step->Function.Function);
8192 break;
8193
8194 case SK_CastDerivedToBasePRValue:
8195 case SK_CastDerivedToBaseXValue:
8196 case SK_CastDerivedToBaseLValue: {
8197 // We have a derived-to-base cast that produces either an rvalue or an
8198 // lvalue. Perform that cast.
8199
8200 CXXCastPath BasePath;
8201
8202 // Casts to inaccessible base classes are allowed with C-style casts.
8203 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8204 if (S.CheckDerivedToBaseConversion(
8205 SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8206 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8207 return ExprError();
8208
8209 ExprValueKind VK =
8210 Step->Kind == SK_CastDerivedToBaseLValue
8211 ? VK_LValue
8212 : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8213 : VK_PRValue);
8214 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8215 CK_DerivedToBase, CurInit.get(),
8216 &BasePath, VK, FPOptionsOverride());
8217 break;
8218 }
8219
8220 case SK_BindReference:
8221 // Reference binding does not have any corresponding ASTs.
8222
8223 // Check exception specifications
8224 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8225 return ExprError();
8226
8227 // We don't check for e.g. function pointers here, since address
8228 // availability checks should only occur when the function first decays
8229 // into a pointer or reference.
8230 if (CurInit.get()->getType()->isFunctionProtoType()) {
8231 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8232 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8233 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8234 DRE->getBeginLoc()))
8235 return ExprError();
8236 }
8237 }
8238 }
8239
8240 CheckForNullPointerDereference(S, CurInit.get());
8241 break;
8242
8243 case SK_BindReferenceToTemporary: {
8244 // Make sure the "temporary" is actually an rvalue.
8245 assert(CurInit.get()->isPRValue() && "not a temporary")((void)0);
8246
8247 // Check exception specifications
8248 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8249 return ExprError();
8250
8251 QualType MTETy = Step->Type;
8252
8253 // When this is an incomplete array type (such as when this is
8254 // initializing an array of unknown bounds from an init list), use THAT
8255 // type instead so that we propogate the array bounds.
8256 if (MTETy->isIncompleteArrayType() &&
8257 !CurInit.get()->getType()->isIncompleteArrayType() &&
8258 S.Context.hasSameType(
8259 MTETy->getPointeeOrArrayElementType(),
8260 CurInit.get()->getType()->getPointeeOrArrayElementType()))
8261 MTETy = CurInit.get()->getType();
8262
8263 // Materialize the temporary into memory.
8264 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8265 MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8266 CurInit = MTE;
8267
8268 // If we're extending this temporary to automatic storage duration -- we
8269 // need to register its cleanup during the full-expression's cleanups.
8270 if (MTE->getStorageDuration() == SD_Automatic &&
8271 MTE->getType().isDestructedType())
8272 S.Cleanup.setExprNeedsCleanups(true);
8273 break;
8274 }
8275
8276 case SK_FinalCopy:
8277 if (checkAbstractType(Step->Type))
8278 return ExprError();
8279
8280 // If the overall initialization is initializing a temporary, we already
8281 // bound our argument if it was necessary to do so. If not (if we're
8282 // ultimately initializing a non-temporary), our argument needs to be
8283 // bound since it's initializing a function parameter.
8284 // FIXME: This is a mess. Rationalize temporary destruction.
8285 if (!shouldBindAsTemporary(Entity))
8286 CurInit = S.MaybeBindToTemporary(CurInit.get());
8287 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8288 /*IsExtraneousCopy=*/false);
8289 break;
8290
8291 case SK_ExtraneousCopyToTemporary:
8292 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8293 /*IsExtraneousCopy=*/true);
8294 break;
8295
8296 case SK_UserConversion: {
8297 // We have a user-defined conversion that invokes either a constructor
8298 // or a conversion function.
8299 CastKind CastKind;
8300 FunctionDecl *Fn = Step->Function.Function;
8301 DeclAccessPair FoundFn = Step->Function.FoundDecl;
8302 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8303 bool CreatedObject = false;
8304 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8305 // Build a call to the selected constructor.
8306 SmallVector<Expr*, 8> ConstructorArgs;
8307 SourceLocation Loc = CurInit.get()->getBeginLoc();
8308
8309 // Determine the arguments required to actually perform the constructor
8310 // call.
8311 Expr *Arg = CurInit.get();
8312 if (S.CompleteConstructorCall(Constructor, Step->Type,
8313 MultiExprArg(&Arg, 1), Loc,
8314 ConstructorArgs))
8315 return ExprError();
8316
8317 // Build an expression that constructs a temporary.
8318 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8319 FoundFn, Constructor,
8320 ConstructorArgs,
8321 HadMultipleCandidates,
8322 /*ListInit*/ false,
8323 /*StdInitListInit*/ false,
8324 /*ZeroInit*/ false,
8325 CXXConstructExpr::CK_Complete,
8326 SourceRange());
8327 if (CurInit.isInvalid())
8328 return ExprError();
8329
8330 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8331 Entity);
8332 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8333 return ExprError();
8334
8335 CastKind = CK_ConstructorConversion;
8336 CreatedObject = true;
8337 } else {
8338 // Build a call to the conversion function.
8339 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8340 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8341 FoundFn);
8342 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8343 return ExprError();
8344
8345 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8346 HadMultipleCandidates);
8347 if (CurInit.isInvalid())
8348 return ExprError();
8349
8350 CastKind = CK_UserDefinedConversion;
8351 CreatedObject = Conversion->getReturnType()->isRecordType();
8352 }
8353
8354 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8355 return ExprError();
8356
8357 CurInit = ImplicitCastExpr::Create(
8358 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8359 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8360
8361 if (shouldBindAsTemporary(Entity))
8362 // The overall entity is temporary, so this expression should be
8363 // destroyed at the end of its full-expression.
8364 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8365 else if (CreatedObject && shouldDestroyEntity(Entity)) {
8366 // The object outlasts the full-expression, but we need to prepare for
8367 // a destructor being run on it.
8368 // FIXME: It makes no sense to do this here. This should happen
8369 // regardless of how we initialized the entity.
8370 QualType T = CurInit.get()->getType();
8371 if (const RecordType *Record = T->getAs<RecordType>()) {
8372 CXXDestructorDecl *Destructor
8373 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8374 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8375 S.PDiag(diag::err_access_dtor_temp) << T);
8376 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8377 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8378 return ExprError();
8379 }
8380 }
8381 break;
8382 }
8383
8384 case SK_QualificationConversionLValue:
8385 case SK_QualificationConversionXValue:
8386 case SK_QualificationConversionPRValue: {
8387 // Perform a qualification conversion; these can never go wrong.
8388 ExprValueKind VK =
8389 Step->Kind == SK_QualificationConversionLValue
8390 ? VK_LValue
8391 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8392 : VK_PRValue);
8393 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8394 break;
8395 }
8396
8397 case SK_FunctionReferenceConversion:
8398 assert(CurInit.get()->isLValue() &&((void)0)
8399 "function reference should be lvalue")((void)0);
8400 CurInit =
8401 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8402 break;
8403
8404 case SK_AtomicConversion: {
8405 assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic")((void)0);
8406 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8407 CK_NonAtomicToAtomic, VK_PRValue);
8408 break;
8409 }
8410
8411 case SK_ConversionSequence:
8412 case SK_ConversionSequenceNoNarrowing: {
8413 if (const auto *FromPtrType =
8414 CurInit.get()->getType()->getAs<PointerType>()) {
8415 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8416 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8417 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8418 // Do not check static casts here because they are checked earlier
8419 // in Sema::ActOnCXXNamedCast()
8420 if (!Kind.isStaticCast()) {
8421 S.Diag(CurInit.get()->getExprLoc(),
8422 diag::warn_noderef_to_dereferenceable_pointer)
8423 << CurInit.get()->getSourceRange();
8424 }
8425 }
8426 }
8427 }
8428
8429 Sema::CheckedConversionKind CCK
8430 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8431 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8432 : Kind.isExplicitCast()? Sema::CCK_OtherCast
8433 : Sema::CCK_ImplicitConversion;
8434 ExprResult CurInitExprRes =
8435 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8436 getAssignmentAction(Entity), CCK);
8437 if (CurInitExprRes.isInvalid())
8438 return ExprError();
8439
8440 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8441
8442 CurInit = CurInitExprRes;
8443
8444 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8445 S.getLangOpts().CPlusPlus)
8446 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8447 CurInit.get());
8448
8449 break;
8450 }
8451
8452 case SK_ListInitialization: {
8453 if (checkAbstractType(Step->Type))
8454 return ExprError();
8455
8456 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8457 // If we're not initializing the top-level entity, we need to create an
8458 // InitializeTemporary entity for our target type.
8459 QualType Ty = Step->Type;
8460 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8461 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8462 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8463 InitListChecker PerformInitList(S, InitEntity,
8464 InitList, Ty, /*VerifyOnly=*/false,
8465 /*TreatUnavailableAsInvalid=*/false);
8466 if (PerformInitList.HadError())
8467 return ExprError();
8468
8469 // Hack: We must update *ResultType if available in order to set the
8470 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8471 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8472 if (ResultType &&
8473 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8474 if ((*ResultType)->isRValueReferenceType())
8475 Ty = S.Context.getRValueReferenceType(Ty);
8476 else if ((*ResultType)->isLValueReferenceType())
8477 Ty = S.Context.getLValueReferenceType(Ty,
8478 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8479 *ResultType = Ty;
8480 }
8481
8482 InitListExpr *StructuredInitList =
8483 PerformInitList.getFullyStructuredList();
8484 CurInit.get();
8485 CurInit = shouldBindAsTemporary(InitEntity)
8486 ? S.MaybeBindToTemporary(StructuredInitList)
8487 : StructuredInitList;
8488 break;
8489 }
8490
8491 case SK_ConstructorInitializationFromList: {
8492 if (checkAbstractType(Step->Type))
8493 return ExprError();
8494
8495 // When an initializer list is passed for a parameter of type "reference
8496 // to object", we don't get an EK_Temporary entity, but instead an
8497 // EK_Parameter entity with reference type.
8498 // FIXME: This is a hack. What we really should do is create a user
8499 // conversion step for this case, but this makes it considerably more
8500 // complicated. For now, this will do.
8501 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8502 Entity.getType().getNonReferenceType());
8503 bool UseTemporary = Entity.getType()->isReferenceType();
8504 assert(Args.size() == 1 && "expected a single argument for list init")((void)0);
8505 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8506 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8507 << InitList->getSourceRange();
8508 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8509 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8510 Entity,
8511 Kind, Arg, *Step,
8512 ConstructorInitRequiresZeroInit,
8513 /*IsListInitialization*/true,
8514 /*IsStdInitListInit*/false,
8515 InitList->getLBraceLoc(),
8516 InitList->getRBraceLoc());
8517 break;
8518 }
8519
8520 case SK_UnwrapInitList:
8521 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8522 break;
8523
8524 case SK_RewrapInitList: {
8525 Expr *E = CurInit.get();
8526 InitListExpr *Syntactic = Step->WrappingSyntacticList;
8527 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8528 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8529 ILE->setSyntacticForm(Syntactic);
8530 ILE->setType(E->getType());
8531 ILE->setValueKind(E->getValueKind());
8532 CurInit = ILE;
8533 break;
8534 }
8535
8536 case SK_ConstructorInitialization:
8537 case SK_StdInitializerListConstructorCall: {
8538 if (checkAbstractType(Step->Type))
8539 return ExprError();
8540
8541 // When an initializer list is passed for a parameter of type "reference
8542 // to object", we don't get an EK_Temporary entity, but instead an
8543 // EK_Parameter entity with reference type.
8544 // FIXME: This is a hack. What we really should do is create a user
8545 // conversion step for this case, but this makes it considerably more
8546 // complicated. For now, this will do.
8547 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8548 Entity.getType().getNonReferenceType());
8549 bool UseTemporary = Entity.getType()->isReferenceType();
8550 bool IsStdInitListInit =
8551 Step->Kind == SK_StdInitializerListConstructorCall;
8552 Expr *Source = CurInit.get();
8553 SourceRange Range = Kind.hasParenOrBraceRange()
8554 ? Kind.getParenOrBraceRange()
8555 : SourceRange();
8556 CurInit = PerformConstructorInitialization(
8557 S, UseTemporary ? TempEntity : Entity, Kind,
8558 Source ? MultiExprArg(Source) : Args, *Step,
8559 ConstructorInitRequiresZeroInit,
8560 /*IsListInitialization*/ IsStdInitListInit,
8561 /*IsStdInitListInitialization*/ IsStdInitListInit,
8562 /*LBraceLoc*/ Range.getBegin(),
8563 /*RBraceLoc*/ Range.getEnd());
8564 break;
8565 }
8566
8567 case SK_ZeroInitialization: {
8568 step_iterator NextStep = Step;
8569 ++NextStep;
8570 if (NextStep != StepEnd &&
8571 (NextStep->Kind == SK_ConstructorInitialization ||
8572 NextStep->Kind == SK_ConstructorInitializationFromList)) {
8573 // The need for zero-initialization is recorded directly into
8574 // the call to the object's constructor within the next step.
8575 ConstructorInitRequiresZeroInit = true;
8576 } else if (Kind.getKind() == InitializationKind::IK_Value &&
8577 S.getLangOpts().CPlusPlus &&
8578 !Kind.isImplicitValueInit()) {
8579 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8580 if (!TSInfo)
8581 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8582 Kind.getRange().getBegin());
8583
8584 CurInit = new (S.Context) CXXScalarValueInitExpr(
8585 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8586 Kind.getRange().getEnd());
8587 } else {
8588 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8589 }
8590 break;
8591 }
8592
8593 case SK_CAssignment: {
8594 QualType SourceType = CurInit.get()->getType();
8595
8596 // Save off the initial CurInit in case we need to emit a diagnostic
8597 ExprResult InitialCurInit = CurInit;
8598 ExprResult Result = CurInit;
8599 Sema::AssignConvertType ConvTy =
8600 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8601 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8602 if (Result.isInvalid())
8603 return ExprError();
8604 CurInit = Result;
8605
8606 // If this is a call, allow conversion to a transparent union.
8607 ExprResult CurInitExprRes = CurInit;
8608 if (ConvTy != Sema::Compatible &&
8609 Entity.isParameterKind() &&
8610 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8611 == Sema::Compatible)
8612 ConvTy = Sema::Compatible;
8613 if (CurInitExprRes.isInvalid())
8614 return ExprError();
8615 CurInit = CurInitExprRes;
8616
8617 bool Complained;
8618 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8619 Step->Type, SourceType,
8620 InitialCurInit.get(),
8621 getAssignmentAction(Entity, true),
8622 &Complained)) {
8623 PrintInitLocationNote(S, Entity);
8624 return ExprError();
8625 } else if (Complained)
8626 PrintInitLocationNote(S, Entity);
8627 break;
8628 }
8629
8630 case SK_StringInit: {
8631 QualType Ty = Step->Type;
8632 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8633 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8634 S.Context.getAsArrayType(Ty), S);
8635 break;
8636 }
8637
8638 case SK_ObjCObjectConversion:
8639 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8640 CK_ObjCObjectLValueCast,
8641 CurInit.get()->getValueKind());
8642 break;
8643
8644 case SK_ArrayLoopIndex: {
8645 Expr *Cur = CurInit.get();
8646 Expr *BaseExpr = new (S.Context)
8647 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8648 Cur->getValueKind(), Cur->getObjectKind(), Cur);
8649 Expr *IndexExpr =
8650 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8651 CurInit = S.CreateBuiltinArraySubscriptExpr(
8652 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8653 ArrayLoopCommonExprs.push_back(BaseExpr);
8654 break;
8655 }
8656
8657 case SK_ArrayLoopInit: {
8658 assert(!ArrayLoopCommonExprs.empty() &&((void)0)
8659 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")((void)0);
8660 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8661 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8662 CurInit.get());
8663 break;
8664 }
8665
8666 case SK_GNUArrayInit:
8667 // Okay: we checked everything before creating this step. Note that
8668 // this is a GNU extension.
8669 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8670 << Step->Type << CurInit.get()->getType()
8671 << CurInit.get()->getSourceRange();
8672 updateGNUCompoundLiteralRValue(CurInit.get());
8673 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8674 case SK_ArrayInit:
8675 // If the destination type is an incomplete array type, update the
8676 // type accordingly.
8677 if (ResultType) {
8678 if (const IncompleteArrayType *IncompleteDest
8679 = S.Context.getAsIncompleteArrayType(Step->Type)) {
8680 if (const ConstantArrayType *ConstantSource
8681 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8682 *ResultType = S.Context.getConstantArrayType(
8683 IncompleteDest->getElementType(),
8684 ConstantSource->getSize(),
8685 ConstantSource->getSizeExpr(),
8686 ArrayType::Normal, 0);
8687 }
8688 }
8689 }
8690 break;
8691
8692 case SK_ParenthesizedArrayInit:
8693 // Okay: we checked everything before creating this step. Note that
8694 // this is a GNU extension.
8695 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8696 << CurInit.get()->getSourceRange();
8697 break;
8698
8699 case SK_PassByIndirectCopyRestore:
8700 case SK_PassByIndirectRestore:
8701 checkIndirectCopyRestoreSource(S, CurInit.get());
8702 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8703 CurInit.get(), Step->Type,
8704 Step->Kind == SK_PassByIndirectCopyRestore);
8705 break;
8706
8707 case SK_ProduceObjCObject:
8708 CurInit = ImplicitCastExpr::Create(
8709 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8710 VK_PRValue, FPOptionsOverride());
8711 break;
8712
8713 case SK_StdInitializerList: {
8714 S.Diag(CurInit.get()->getExprLoc(),
8715 diag::warn_cxx98_compat_initializer_list_init)
8716 << CurInit.get()->getSourceRange();
8717
8718 // Materialize the temporary into memory.
8719 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8720 CurInit.get()->getType(), CurInit.get(),
8721 /*BoundToLvalueReference=*/false);
8722
8723 // Wrap it in a construction of a std::initializer_list<T>.
8724 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8725
8726 // Bind the result, in case the library has given initializer_list a
8727 // non-trivial destructor.
8728 if (shouldBindAsTemporary(Entity))
8729 CurInit = S.MaybeBindToTemporary(CurInit.get());
8730 break;
8731 }
8732
8733 case SK_OCLSamplerInit: {
8734 // Sampler initialization have 5 cases:
8735 // 1. function argument passing
8736 // 1a. argument is a file-scope variable
8737 // 1b. argument is a function-scope variable
8738 // 1c. argument is one of caller function's parameters
8739 // 2. variable initialization
8740 // 2a. initializing a file-scope variable
8741 // 2b. initializing a function-scope variable
8742 //
8743 // For file-scope variables, since they cannot be initialized by function
8744 // call of __translate_sampler_initializer in LLVM IR, their references
8745 // need to be replaced by a cast from their literal initializers to
8746 // sampler type. Since sampler variables can only be used in function
8747 // calls as arguments, we only need to replace them when handling the
8748 // argument passing.
8749 assert(Step->Type->isSamplerT() &&((void)0)
8750 "Sampler initialization on non-sampler type.")((void)0);
8751 Expr *Init = CurInit.get()->IgnoreParens();
8752 QualType SourceType = Init->getType();
8753 // Case 1
8754 if (Entity.isParameterKind()) {
8755 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8756 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8757 << SourceType;
8758 break;
8759 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8760 auto Var = cast<VarDecl>(DRE->getDecl());
8761 // Case 1b and 1c
8762 // No cast from integer to sampler is needed.
8763 if (!Var->hasGlobalStorage()) {
8764 CurInit = ImplicitCastExpr::Create(
8765 S.Context, Step->Type, CK_LValueToRValue, Init,
8766 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
8767 break;
8768 }
8769 // Case 1a
8770 // For function call with a file-scope sampler variable as argument,
8771 // get the integer literal.
8772 // Do not diagnose if the file-scope variable does not have initializer
8773 // since this has already been diagnosed when parsing the variable
8774 // declaration.
8775 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8776 break;
8777 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8778 Var->getInit()))->getSubExpr();
8779 SourceType = Init->getType();
8780 }
8781 } else {
8782 // Case 2
8783 // Check initializer is 32 bit integer constant.
8784 // If the initializer is taken from global variable, do not diagnose since
8785 // this has already been done when parsing the variable declaration.
8786 if (!Init->isConstantInitializer(S.Context, false))
8787 break;
8788
8789 if (!SourceType->isIntegerType() ||
8790 32 != S.Context.getIntWidth(SourceType)) {
8791 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8792 << SourceType;
8793 break;
8794 }
8795
8796 Expr::EvalResult EVResult;
8797 Init->EvaluateAsInt(EVResult, S.Context);
8798 llvm::APSInt Result = EVResult.Val.getInt();
8799 const uint64_t SamplerValue = Result.getLimitedValue();
8800 // 32-bit value of sampler's initializer is interpreted as
8801 // bit-field with the following structure:
8802 // |unspecified|Filter|Addressing Mode| Normalized Coords|
8803 // |31 6|5 4|3 1| 0|
8804 // This structure corresponds to enum values of sampler properties
8805 // defined in SPIR spec v1.2 and also opencl-c.h
8806 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
8807 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
8808 if (FilterMode != 1 && FilterMode != 2 &&
8809 !S.getOpenCLOptions().isAvailableOption(
8810 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
8811 S.Diag(Kind.getLocation(),
8812 diag::warn_sampler_initializer_invalid_bits)
8813 << "Filter Mode";
8814 if (AddressingMode > 4)
8815 S.Diag(Kind.getLocation(),
8816 diag::warn_sampler_initializer_invalid_bits)
8817 << "Addressing Mode";
8818 }
8819
8820 // Cases 1a, 2a and 2b
8821 // Insert cast from integer to sampler.
8822 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8823 CK_IntToOCLSampler);
8824 break;
8825 }
8826 case SK_OCLZeroOpaqueType: {
8827 assert((Step->Type->isEventT() || Step->Type->isQueueT() ||((void)0)
8828 Step->Type->isOCLIntelSubgroupAVCType()) &&((void)0)
8829 "Wrong type for initialization of OpenCL opaque type.")((void)0);
8830
8831 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8832 CK_ZeroToOCLOpaqueType,
8833 CurInit.get()->getValueKind());
8834 break;
8835 }
8836 }
8837 }
8838
8839 // Check whether the initializer has a shorter lifetime than the initialized
8840 // entity, and if not, either lifetime-extend or warn as appropriate.
8841 if (auto *Init = CurInit.get())
8842 S.checkInitializerLifetime(Entity, Init);
8843
8844 // Diagnose non-fatal problems with the completed initialization.
8845 if (Entity.getKind() == InitializedEntity::EK_Member &&
8846 cast<FieldDecl>(Entity.getDecl())->isBitField())
8847 S.CheckBitFieldInitialization(Kind.getLocation(),
8848 cast<FieldDecl>(Entity.getDecl()),
8849 CurInit.get());
8850
8851 // Check for std::move on construction.
8852 if (const Expr *E = CurInit.get()) {
8853 CheckMoveOnConstruction(S, E,
8854 Entity.getKind() == InitializedEntity::EK_Result);
8855 }
8856
8857 return CurInit;
8858}
8859
8860/// Somewhere within T there is an uninitialized reference subobject.
8861/// Dig it out and diagnose it.
8862static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8863 QualType T) {
8864 if (T->isReferenceType()) {
8865 S.Diag(Loc, diag::err_reference_without_init)
8866 << T.getNonReferenceType();
8867 return true;
8868 }
8869
8870 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8871 if (!RD || !RD->hasUninitializedReferenceMember())
8872 return false;
8873
8874 for (const auto *FI : RD->fields()) {
8875 if (FI->isUnnamedBitfield())
8876 continue;
8877
8878 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8879 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8880 return true;
8881 }
8882 }
8883
8884 for (const auto &BI : RD->bases()) {
8885 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8886 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8887 return true;
8888 }
8889 }
8890
8891 return false;
8892}
8893
8894
8895//===----------------------------------------------------------------------===//
8896// Diagnose initialization failures
8897//===----------------------------------------------------------------------===//
8898
8899/// Emit notes associated with an initialization that failed due to a
8900/// "simple" conversion failure.
8901static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8902 Expr *op) {
8903 QualType destType = entity.getType();
8904 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8905 op->getType()->isObjCObjectPointerType()) {
8906
8907 // Emit a possible note about the conversion failing because the
8908 // operand is a message send with a related result type.
8909 S.EmitRelatedResultTypeNote(op);
8910
8911 // Emit a possible note about a return failing because we're
8912 // expecting a related result type.
8913 if (entity.getKind() == InitializedEntity::EK_Result)
8914 S.EmitRelatedResultTypeNoteForReturn(destType);
8915 }
8916 QualType fromType = op->getType();
8917 auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
8918 auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
8919 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8920 destDecl->getDeclKind() == Decl::CXXRecord &&
8921 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8922 !fromDecl->hasDefinition())
8923 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8924 << S.getASTContext().getTagDeclType(fromDecl)
8925 << S.getASTContext().getTagDeclType(destDecl);
8926}
8927
8928static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8929 InitListExpr *InitList) {
8930 QualType DestType = Entity.getType();
8931
8932 QualType E;
8933 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8934 QualType ArrayType = S.Context.getConstantArrayType(
8935 E.withConst(),
8936 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8937 InitList->getNumInits()),
8938 nullptr, clang::ArrayType::Normal, 0);
8939 InitializedEntity HiddenArray =
8940 InitializedEntity::InitializeTemporary(ArrayType);
8941 return diagnoseListInit(S, HiddenArray, InitList);
8942 }
8943
8944 if (DestType->isReferenceType()) {
8945 // A list-initialization failure for a reference means that we tried to
8946 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8947 // inner initialization failed.
8948 QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8949 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8950 SourceLocation Loc = InitList->getBeginLoc();
8951 if (auto *D = Entity.getDecl())
8952 Loc = D->getLocation();
8953 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8954 return;
8955 }
8956
8957 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8958 /*VerifyOnly=*/false,
8959 /*TreatUnavailableAsInvalid=*/false);
8960 assert(DiagnoseInitList.HadError() &&((void)0)
8961 "Inconsistent init list check result.")((void)0);
8962}
8963
8964bool InitializationSequence::Diagnose(Sema &S,
8965 const InitializedEntity &Entity,
8966 const InitializationKind &Kind,
8967 ArrayRef<Expr *> Args) {
8968 if (!Failed())
8969 return false;
8970
8971 // When we want to diagnose only one element of a braced-init-list,
8972 // we need to factor it out.
8973 Expr *OnlyArg;
8974 if (Args.size() == 1) {
8975 auto *List = dyn_cast<InitListExpr>(Args[0]);
8976 if (List && List->getNumInits() == 1)
8977 OnlyArg = List->getInit(0);
8978 else
8979 OnlyArg = Args[0];
8980 }
8981 else
8982 OnlyArg = nullptr;
8983
8984 QualType DestType = Entity.getType();
8985 switch (Failure) {
8986 case FK_TooManyInitsForReference:
8987 // FIXME: Customize for the initialized entity?
8988 if (Args.empty()) {
8989 // Dig out the reference subobject which is uninitialized and diagnose it.
8990 // If this is value-initialization, this could be nested some way within
8991 // the target type.
8992 assert(Kind.getKind() == InitializationKind::IK_Value ||((void)0)
8993 DestType->isReferenceType())((void)0);
8994 bool Diagnosed =
8995 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8996 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")((void)0);
8997 (void)Diagnosed;
8998 } else // FIXME: diagnostic below could be better!
8999 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9000 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9001 break;
9002 case FK_ParenthesizedListInitForReference:
9003 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9004 << 1 << Entity.getType() << Args[0]->getSourceRange();
9005 break;
9006
9007 case FK_ArrayNeedsInitList:
9008 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9009 break;
9010 case FK_ArrayNeedsInitListOrStringLiteral:
9011 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9012 break;
9013 case FK_ArrayNeedsInitListOrWideStringLiteral:
9014 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9015 break;
9016 case FK_NarrowStringIntoWideCharArray:
9017 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9018 break;
9019 case FK_WideStringIntoCharArray:
9020 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9021 break;
9022 case FK_IncompatWideStringIntoWideChar:
9023 S.Diag(Kind.getLocation(),
9024 diag::err_array_init_incompat_wide_string_into_wchar);
9025 break;
9026 case FK_PlainStringIntoUTF8Char:
9027 S.Diag(Kind.getLocation(),
9028 diag::err_array_init_plain_string_into_char8_t);
9029 S.Diag(Args.front()->getBeginLoc(),
9030 diag::note_array_init_plain_string_into_char8_t)
9031 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9032 break;
9033 case FK_UTF8StringIntoPlainChar:
9034 S.Diag(Kind.getLocation(),
9035 diag::err_array_init_utf8_string_into_char)
9036 << S.getLangOpts().CPlusPlus20;
9037 break;
9038 case FK_ArrayTypeMismatch:
9039 case FK_NonConstantArrayInit:
9040 S.Diag(Kind.getLocation(),
9041 (Failure == FK_ArrayTypeMismatch
9042 ? diag::err_array_init_different_type
9043 : diag::err_array_init_non_constant_array))
9044 << DestType.getNonReferenceType()
9045 << OnlyArg->getType()
9046 << Args[0]->getSourceRange();
9047 break;
9048
9049 case FK_VariableLengthArrayHasInitializer:
9050 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9051 << Args[0]->getSourceRange();
9052 break;
9053
9054 case FK_AddressOfOverloadFailed: {
9055 DeclAccessPair Found;
9056 S.ResolveAddressOfOverloadedFunction(OnlyArg,
9057 DestType.getNonReferenceType(),
9058 true,
9059 Found);
9060 break;
9061 }
9062
9063 case FK_AddressOfUnaddressableFunction: {
9064 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9065 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9066 OnlyArg->getBeginLoc());
9067 break;
9068 }
9069
9070 case FK_ReferenceInitOverloadFailed:
9071 case FK_UserConversionOverloadFailed:
9072 switch (FailedOverloadResult) {
9073 case OR_Ambiguous:
9074
9075 FailedCandidateSet.NoteCandidates(
9076 PartialDiagnosticAt(
9077 Kind.getLocation(),
9078 Failure == FK_UserConversionOverloadFailed
9079 ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9080 << OnlyArg->getType() << DestType
9081 << Args[0]->getSourceRange())
9082 : (S.PDiag(diag::err_ref_init_ambiguous)
9083 << DestType << OnlyArg->getType()
9084 << Args[0]->getSourceRange())),
9085 S, OCD_AmbiguousCandidates, Args);
9086 break;
9087
9088 case OR_No_Viable_Function: {
9089 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9090 if (!S.RequireCompleteType(Kind.getLocation(),
9091 DestType.getNonReferenceType(),
9092 diag::err_typecheck_nonviable_condition_incomplete,
9093 OnlyArg->getType(), Args[0]->getSourceRange()))
9094 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9095 << (Entity.getKind() == InitializedEntity::EK_Result)
9096 << OnlyArg->getType() << Args[0]->getSourceRange()
9097 << DestType.getNonReferenceType();
9098
9099 FailedCandidateSet.NoteCandidates(S, Args, Cands);
9100 break;
9101 }
9102 case OR_Deleted: {
9103 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9104 << OnlyArg->getType() << DestType.getNonReferenceType()
9105 << Args[0]->getSourceRange();
9106 OverloadCandidateSet::iterator Best;
9107 OverloadingResult Ovl
9108 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9109 if (Ovl == OR_Deleted) {
9110 S.NoteDeletedFunction(Best->Function);
9111 } else {
9112 llvm_unreachable("Inconsistent overload resolution?")__builtin_unreachable();
9113 }
9114 break;
9115 }
9116
9117 case OR_Success:
9118 llvm_unreachable("Conversion did not fail!")__builtin_unreachable();
9119 }
9120 break;
9121
9122 case FK_NonConstLValueReferenceBindingToTemporary:
9123 if (isa<InitListExpr>(Args[0])) {
9124 S.Diag(Kind.getLocation(),
9125 diag::err_lvalue_reference_bind_to_initlist)
9126 << DestType.getNonReferenceType().isVolatileQualified()
9127 << DestType.getNonReferenceType()
9128 << Args[0]->getSourceRange();
9129 break;
9130 }
9131 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9132
9133 case FK_NonConstLValueReferenceBindingToUnrelated:
9134 S.Diag(Kind.getLocation(),
9135 Failure == FK_NonConstLValueReferenceBindingToTemporary
9136 ? diag::err_lvalue_reference_bind_to_temporary
9137 : diag::err_lvalue_reference_bind_to_unrelated)
9138 << DestType.getNonReferenceType().isVolatileQualified()
9139 << DestType.getNonReferenceType()
9140 << OnlyArg->getType()
9141 << Args[0]->getSourceRange();
9142 break;
9143
9144 case FK_NonConstLValueReferenceBindingToBitfield: {
9145 // We don't necessarily have an unambiguous source bit-field.
9146 FieldDecl *BitField = Args[0]->getSourceBitField();
9147 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9148 << DestType.isVolatileQualified()
9149 << (BitField ? BitField->getDeclName() : DeclarationName())
9150 << (BitField != nullptr)
9151 << Args[0]->getSourceRange();
9152 if (BitField)
9153 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9154 break;
9155 }
9156
9157 case FK_NonConstLValueReferenceBindingToVectorElement:
9158 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9159 << DestType.isVolatileQualified()
9160 << Args[0]->getSourceRange();
9161 break;
9162
9163 case FK_NonConstLValueReferenceBindingToMatrixElement:
9164 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9165 << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9166 break;
9167
9168 case FK_RValueReferenceBindingToLValue:
9169 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9170 << DestType.getNonReferenceType() << OnlyArg->getType()
9171 << Args[0]->getSourceRange();
9172 break;
9173
9174 case FK_ReferenceAddrspaceMismatchTemporary:
9175 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9176 << DestType << Args[0]->getSourceRange();
9177 break;
9178
9179 case FK_ReferenceInitDropsQualifiers: {
9180 QualType SourceType = OnlyArg->getType();
9181 QualType NonRefType = DestType.getNonReferenceType();
9182 Qualifiers DroppedQualifiers =
9183 SourceType.getQualifiers() - NonRefType.getQualifiers();
9184
9185 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9186 SourceType.getQualifiers()))
9187 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9188 << NonRefType << SourceType << 1 /*addr space*/
9189 << Args[0]->getSourceRange();
9190 else if (DroppedQualifiers.hasQualifiers())
9191 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9192 << NonRefType << SourceType << 0 /*cv quals*/
9193 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9194 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9195 else
9196 // FIXME: Consider decomposing the type and explaining which qualifiers
9197 // were dropped where, or on which level a 'const' is missing, etc.
9198 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9199 << NonRefType << SourceType << 2 /*incompatible quals*/
9200 << Args[0]->getSourceRange();
9201 break;
9202 }
9203
9204 case FK_ReferenceInitFailed:
9205 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9206 << DestType.getNonReferenceType()
9207 << DestType.getNonReferenceType()->isIncompleteType()
9208 << OnlyArg->isLValue()
9209 << OnlyArg->getType()
9210 << Args[0]->getSourceRange();
9211 emitBadConversionNotes(S, Entity, Args[0]);
9212 break;
9213
9214 case FK_ConversionFailed: {
9215 QualType FromType = OnlyArg->getType();
9216 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9217 << (int)Entity.getKind()
9218 << DestType
9219 << OnlyArg->isLValue()
9220 << FromType
9221 << Args[0]->getSourceRange();
9222 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9223 S.Diag(Kind.getLocation(), PDiag);
9224 emitBadConversionNotes(S, Entity, Args[0]);
9225 break;
9226 }
9227
9228 case FK_ConversionFromPropertyFailed:
9229 // No-op. This error has already been reported.
9230 break;
9231
9232 case FK_TooManyInitsForScalar: {
9233 SourceRange R;
9234
9235 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9236 if (InitList && InitList->getNumInits() >= 1) {
9237 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9238 } else {
9239 assert(Args.size() > 1 && "Expected multiple initializers!")((void)0);
9240 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9241 }
9242
9243 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9244 if (Kind.isCStyleOrFunctionalCast())
9245 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9246 << R;
9247 else
9248 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9249 << /*scalar=*/2 << R;
9250 break;
9251 }
9252
9253 case FK_ParenthesizedListInitForScalar:
9254 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9255 << 0 << Entity.getType() << Args[0]->getSourceRange();
9256 break;
9257
9258 case FK_ReferenceBindingToInitList:
9259 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9260 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9261 break;
9262
9263 case FK_InitListBadDestinationType:
9264 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9265 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9266 break;
9267
9268 case FK_ListConstructorOverloadFailed:
9269 case FK_ConstructorOverloadFailed: {
9270 SourceRange ArgsRange;
9271 if (Args.size())
9272 ArgsRange =
9273 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9274
9275 if (Failure == FK_ListConstructorOverloadFailed) {
9276 assert(Args.size() == 1 &&((void)0)
9277 "List construction from other than 1 argument.")((void)0);
9278 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9279 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9280 }
9281
9282 // FIXME: Using "DestType" for the entity we're printing is probably
9283 // bad.
9284 switch (FailedOverloadResult) {
9285 case OR_Ambiguous:
9286 FailedCandidateSet.NoteCandidates(
9287 PartialDiagnosticAt(Kind.getLocation(),
9288 S.PDiag(diag::err_ovl_ambiguous_init)
9289 << DestType << ArgsRange),
9290 S, OCD_AmbiguousCandidates, Args);
9291 break;
9292
9293 case OR_No_Viable_Function:
9294 if (Kind.getKind() == InitializationKind::IK_Default &&
9295 (Entity.getKind() == InitializedEntity::EK_Base ||
9296 Entity.getKind() == InitializedEntity::EK_Member) &&
9297 isa<CXXConstructorDecl>(S.CurContext)) {
9298 // This is implicit default initialization of a member or
9299 // base within a constructor. If no viable function was
9300 // found, notify the user that they need to explicitly
9301 // initialize this base/member.
9302 CXXConstructorDecl *Constructor
9303 = cast<CXXConstructorDecl>(S.CurContext);
9304 const CXXRecordDecl *InheritedFrom = nullptr;
9305 if (auto Inherited = Constructor->getInheritedConstructor())
9306 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9307 if (Entity.getKind() == InitializedEntity::EK_Base) {
9308 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9309 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9310 << S.Context.getTypeDeclType(Constructor->getParent())
9311 << /*base=*/0
9312 << Entity.getType()
9313 << InheritedFrom;
9314
9315 RecordDecl *BaseDecl
9316 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9317 ->getDecl();
9318 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9319 << S.Context.getTagDeclType(BaseDecl);
9320 } else {
9321 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9322 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9323 << S.Context.getTypeDeclType(Constructor->getParent())
9324 << /*member=*/1
9325 << Entity.getName()
9326 << InheritedFrom;
9327 S.Diag(Entity.getDecl()->getLocation(),
9328 diag::note_member_declared_at);
9329
9330 if (const RecordType *Record
9331 = Entity.getType()->getAs<RecordType>())
9332 S.Diag(Record->getDecl()->getLocation(),
9333 diag::note_previous_decl)
9334 << S.Context.getTagDeclType(Record->getDecl());
9335 }
9336 break;
9337 }
9338
9339 FailedCandidateSet.NoteCandidates(
9340 PartialDiagnosticAt(
9341 Kind.getLocation(),
9342 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9343 << DestType << ArgsRange),
9344 S, OCD_AllCandidates, Args);
9345 break;
9346
9347 case OR_Deleted: {
9348 OverloadCandidateSet::iterator Best;
9349 OverloadingResult Ovl
9350 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9351 if (Ovl != OR_Deleted) {
9352 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9353 << DestType << ArgsRange;
9354 llvm_unreachable("Inconsistent overload resolution?")__builtin_unreachable();
9355 break;
9356 }
9357
9358 // If this is a defaulted or implicitly-declared function, then
9359 // it was implicitly deleted. Make it clear that the deletion was
9360 // implicit.
9361 if (S.isImplicitlyDeleted(Best->Function))
9362 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9363 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9364 << DestType << ArgsRange;
9365 else
9366 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9367 << DestType << ArgsRange;
9368
9369 S.NoteDeletedFunction(Best->Function);
9370 break;
9371 }
9372
9373 case OR_Success:
9374 llvm_unreachable("Conversion did not fail!")__builtin_unreachable();
9375 }
9376 }
9377 break;
9378
9379 case FK_DefaultInitOfConst:
9380 if (Entity.getKind() == InitializedEntity::EK_Member &&
9381 isa<CXXConstructorDecl>(S.CurContext)) {
9382 // This is implicit default-initialization of a const member in
9383 // a constructor. Complain that it needs to be explicitly
9384 // initialized.
9385 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9386 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9387 << (Constructor->getInheritedConstructor() ? 2 :
9388 Constructor->isImplicit() ? 1 : 0)
9389 << S.Context.getTypeDeclType(Constructor->getParent())
9390 << /*const=*/1
9391 << Entity.getName();
9392 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9393 << Entity.getName();
9394 } else {
9395 S.Diag(Kind.getLocation(), diag::err_default_init_const)
9396 << DestType << (bool)DestType->getAs<RecordType>();
9397 }
9398 break;
9399
9400 case FK_Incomplete:
9401 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9402 diag::err_init_incomplete_type);
9403 break;
9404
9405 case FK_ListInitializationFailed: {
9406 // Run the init list checker again to emit diagnostics.
9407 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9408 diagnoseListInit(S, Entity, InitList);
9409 break;
9410 }
9411
9412 case FK_PlaceholderType: {
9413 // FIXME: Already diagnosed!
9414 break;
9415 }
9416
9417 case FK_ExplicitConstructor: {
9418 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9419 << Args[0]->getSourceRange();
9420 OverloadCandidateSet::iterator Best;
9421 OverloadingResult Ovl
9422 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9423 (void)Ovl;
9424 assert(Ovl == OR_Success && "Inconsistent overload resolution")((void)0);
9425 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9426 S.Diag(CtorDecl->getLocation(),
9427 diag::note_explicit_ctor_deduction_guide_here) << false;
9428 break;
9429 }
9430 }
9431
9432 PrintInitLocationNote(S, Entity);
9433 return true;
9434}
9435
9436void InitializationSequence::dump(raw_ostream &OS) const {
9437 switch (SequenceKind) {
9438 case FailedSequence: {
9439 OS << "Failed sequence: ";
9440 switch (Failure) {
9441 case FK_TooManyInitsForReference:
9442 OS << "too many initializers for reference";
9443 break;
9444
9445 case FK_ParenthesizedListInitForReference:
9446 OS << "parenthesized list init for reference";
9447 break;
9448
9449 case FK_ArrayNeedsInitList:
9450 OS << "array requires initializer list";
9451 break;
9452
9453 case FK_AddressOfUnaddressableFunction:
9454 OS << "address of unaddressable function was taken";
9455 break;
9456
9457 case FK_ArrayNeedsInitListOrStringLiteral:
9458 OS << "array requires initializer list or string literal";
9459 break;
9460
9461 case FK_ArrayNeedsInitListOrWideStringLiteral:
9462 OS << "array requires initializer list or wide string literal";
9463 break;
9464
9465 case FK_NarrowStringIntoWideCharArray:
9466 OS << "narrow string into wide char array";
9467 break;
9468
9469 case FK_WideStringIntoCharArray:
9470 OS << "wide string into char array";
9471 break;
9472
9473 case FK_IncompatWideStringIntoWideChar:
9474 OS << "incompatible wide string into wide char array";
9475 break;
9476
9477 case FK_PlainStringIntoUTF8Char:
9478 OS << "plain string literal into char8_t array";
9479 break;
9480
9481 case FK_UTF8StringIntoPlainChar:
9482 OS << "u8 string literal into char array";
9483 break;
9484
9485 case FK_ArrayTypeMismatch:
9486 OS << "array type mismatch";
9487 break;
9488
9489 case FK_NonConstantArrayInit:
9490 OS << "non-constant array initializer";
9491 break;
9492
9493 case FK_AddressOfOverloadFailed:
9494 OS << "address of overloaded function failed";
9495 break;
9496
9497 case FK_ReferenceInitOverloadFailed:
9498 OS << "overload resolution for reference initialization failed";
9499 break;
9500
9501 case FK_NonConstLValueReferenceBindingToTemporary:
9502 OS << "non-const lvalue reference bound to temporary";
9503 break;
9504
9505 case FK_NonConstLValueReferenceBindingToBitfield:
9506 OS << "non-const lvalue reference bound to bit-field";
9507 break;
9508
9509 case FK_NonConstLValueReferenceBindingToVectorElement:
9510 OS << "non-const lvalue reference bound to vector element";
9511 break;
9512
9513 case FK_NonConstLValueReferenceBindingToMatrixElement:
9514 OS << "non-const lvalue reference bound to matrix element";
9515 break;
9516
9517 case FK_NonConstLValueReferenceBindingToUnrelated:
9518 OS << "non-const lvalue reference bound to unrelated type";
9519 break;
9520
9521 case FK_RValueReferenceBindingToLValue:
9522 OS << "rvalue reference bound to an lvalue";
9523 break;
9524
9525 case FK_ReferenceInitDropsQualifiers:
9526 OS << "reference initialization drops qualifiers";
9527 break;
9528
9529 case FK_ReferenceAddrspaceMismatchTemporary:
9530 OS << "reference with mismatching address space bound to temporary";
9531 break;
9532
9533 case FK_ReferenceInitFailed:
9534 OS << "reference initialization failed";
9535 break;
9536
9537 case FK_ConversionFailed:
9538 OS << "conversion failed";
9539 break;
9540
9541 case FK_ConversionFromPropertyFailed:
9542 OS << "conversion from property failed";
9543 break;
9544
9545 case FK_TooManyInitsForScalar:
9546 OS << "too many initializers for scalar";
9547 break;
9548
9549 case FK_ParenthesizedListInitForScalar:
9550 OS << "parenthesized list init for reference";
9551 break;
9552
9553 case FK_ReferenceBindingToInitList:
9554 OS << "referencing binding to initializer list";
9555 break;
9556
9557 case FK_InitListBadDestinationType:
9558 OS << "initializer list for non-aggregate, non-scalar type";
9559 break;
9560
9561 case FK_UserConversionOverloadFailed:
9562 OS << "overloading failed for user-defined conversion";
9563 break;
9564
9565 case FK_ConstructorOverloadFailed:
9566 OS << "constructor overloading failed";
9567 break;
9568
9569 case FK_DefaultInitOfConst:
9570 OS << "default initialization of a const variable";
9571 break;
9572
9573 case FK_Incomplete:
9574 OS << "initialization of incomplete type";
9575 break;
9576
9577 case FK_ListInitializationFailed:
9578 OS << "list initialization checker failure";
9579 break;
9580
9581 case FK_VariableLengthArrayHasInitializer:
9582 OS << "variable length array has an initializer";
9583 break;
9584
9585 case FK_PlaceholderType:
9586 OS << "initializer expression isn't contextually valid";
9587 break;
9588
9589 case FK_ListConstructorOverloadFailed:
9590 OS << "list constructor overloading failed";
9591 break;
9592
9593 case FK_ExplicitConstructor:
9594 OS << "list copy initialization chose explicit constructor";
9595 break;
9596 }
9597 OS << '\n';
9598 return;
9599 }
9600
9601 case DependentSequence:
9602 OS << "Dependent sequence\n";
9603 return;
9604
9605 case NormalSequence:
9606 OS << "Normal sequence: ";
9607 break;
9608 }
9609
9610 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9611 if (S != step_begin()) {
9612 OS << " -> ";
9613 }
9614
9615 switch (S->Kind) {
9616 case SK_ResolveAddressOfOverloadedFunction:
9617 OS << "resolve address of overloaded function";
9618 break;
9619
9620 case SK_CastDerivedToBasePRValue:
9621 OS << "derived-to-base (prvalue)";
9622 break;
9623
9624 case SK_CastDerivedToBaseXValue:
9625 OS << "derived-to-base (xvalue)";
9626 break;
9627
9628 case SK_CastDerivedToBaseLValue:
9629 OS << "derived-to-base (lvalue)";
9630 break;
9631
9632 case SK_BindReference:
9633 OS << "bind reference to lvalue";
9634 break;
9635
9636 case SK_BindReferenceToTemporary:
9637 OS << "bind reference to a temporary";
9638 break;
9639
9640 case SK_FinalCopy:
9641 OS << "final copy in class direct-initialization";
9642 break;
9643
9644 case SK_ExtraneousCopyToTemporary:
9645 OS << "extraneous C++03 copy to temporary";
9646 break;
9647
9648 case SK_UserConversion:
9649 OS << "user-defined conversion via " << *S->Function.Function;
9650 break;
9651
9652 case SK_QualificationConversionPRValue:
9653 OS << "qualification conversion (prvalue)";
9654 break;
9655
9656 case SK_QualificationConversionXValue:
9657 OS << "qualification conversion (xvalue)";
9658 break;
9659
9660 case SK_QualificationConversionLValue:
9661 OS << "qualification conversion (lvalue)";
9662 break;
9663
9664 case SK_FunctionReferenceConversion:
9665 OS << "function reference conversion";
9666 break;
9667
9668 case SK_AtomicConversion:
9669 OS << "non-atomic-to-atomic conversion";
9670 break;
9671
9672 case SK_ConversionSequence:
9673 OS << "implicit conversion sequence (";
9674 S->ICS->dump(); // FIXME: use OS
9675 OS << ")";
9676 break;
9677
9678 case SK_ConversionSequenceNoNarrowing:
9679 OS << "implicit conversion sequence with narrowing prohibited (";
9680 S->ICS->dump(); // FIXME: use OS
9681 OS << ")";
9682 break;
9683
9684 case SK_ListInitialization:
9685 OS << "list aggregate initialization";
9686 break;
9687
9688 case SK_UnwrapInitList:
9689 OS << "unwrap reference initializer list";
9690 break;
9691
9692 case SK_RewrapInitList:
9693 OS << "rewrap reference initializer list";
9694 break;
9695
9696 case SK_ConstructorInitialization:
9697 OS << "constructor initialization";
9698 break;
9699
9700 case SK_ConstructorInitializationFromList:
9701 OS << "list initialization via constructor";
9702 break;
9703
9704 case SK_ZeroInitialization:
9705 OS << "zero initialization";
9706 break;
9707
9708 case SK_CAssignment:
9709 OS << "C assignment";
9710 break;
9711
9712 case SK_StringInit:
9713 OS << "string initialization";
9714 break;
9715
9716 case SK_ObjCObjectConversion:
9717 OS << "Objective-C object conversion";
9718 break;
9719
9720 case SK_ArrayLoopIndex:
9721 OS << "indexing for array initialization loop";
9722 break;
9723
9724 case SK_ArrayLoopInit:
9725 OS << "array initialization loop";
9726 break;
9727
9728 case SK_ArrayInit:
9729 OS << "array initialization";
9730 break;
9731
9732 case SK_GNUArrayInit:
9733 OS << "array initialization (GNU extension)";
9734 break;
9735
9736 case SK_ParenthesizedArrayInit:
9737 OS << "parenthesized array initialization";
9738 break;
9739
9740 case SK_PassByIndirectCopyRestore:
9741 OS << "pass by indirect copy and restore";
9742 break;
9743
9744 case SK_PassByIndirectRestore:
9745 OS << "pass by indirect restore";
9746 break;
9747
9748 case SK_ProduceObjCObject:
9749 OS << "Objective-C object retension";
9750 break;
9751
9752 case SK_StdInitializerList:
9753 OS << "std::initializer_list from initializer list";
9754 break;
9755
9756 case SK_StdInitializerListConstructorCall:
9757 OS << "list initialization from std::initializer_list";
9758 break;
9759
9760 case SK_OCLSamplerInit:
9761 OS << "OpenCL sampler_t from integer constant";
9762 break;
9763
9764 case SK_OCLZeroOpaqueType:
9765 OS << "OpenCL opaque type from zero";
9766 break;
9767 }
9768
9769 OS << " [" << S->Type.getAsString() << ']';
9770 }
9771
9772 OS << '\n';
9773}
9774
9775void InitializationSequence::dump() const {
9776 dump(llvm::errs());
9777}
9778
9779static bool NarrowingErrs(const LangOptions &L) {
9780 return L.CPlusPlus11 &&
9781 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9782}
9783
9784static void DiagnoseNarrowingInInitList(Sema &S,
9785 const ImplicitConversionSequence &ICS,
9786 QualType PreNarrowingType,
9787 QualType EntityType,
9788 const Expr *PostInit) {
9789 const StandardConversionSequence *SCS = nullptr;
9790 switch (ICS.getKind()) {
9791 case ImplicitConversionSequence::StandardConversion:
9792 SCS = &ICS.Standard;
9793 break;
9794 case ImplicitConversionSequence::UserDefinedConversion:
9795 SCS = &ICS.UserDefined.After;
9796 break;
9797 case ImplicitConversionSequence::AmbiguousConversion:
9798 case ImplicitConversionSequence::EllipsisConversion:
9799 case ImplicitConversionSequence::BadConversion:
9800 return;
9801 }
9802
9803 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9804 APValue ConstantValue;
9805 QualType ConstantType;
9806 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9807 ConstantType)) {
9808 case NK_Not_Narrowing:
9809 case NK_Dependent_Narrowing:
9810 // No narrowing occurred.
9811 return;
9812
9813 case NK_Type_Narrowing:
9814 // This was a floating-to-integer conversion, which is always considered a
9815 // narrowing conversion even if the value is a constant and can be
9816 // represented exactly as an integer.
9817 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9818 ? diag::ext_init_list_type_narrowing
9819 : diag::warn_init_list_type_narrowing)
9820 << PostInit->getSourceRange()
9821 << PreNarrowingType.getLocalUnqualifiedType()
9822 << EntityType.getLocalUnqualifiedType();
9823 break;
9824
9825 case NK_Constant_Narrowing:
9826 // A constant value was narrowed.
9827 S.Diag(PostInit->getBeginLoc(),
9828 NarrowingErrs(S.getLangOpts())
9829 ? diag::ext_init_list_constant_narrowing
9830 : diag::warn_init_list_constant_narrowing)
9831 << PostInit->getSourceRange()
9832 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9833 << EntityType.getLocalUnqualifiedType();
9834 break;
9835
9836 case NK_Variable_Narrowing:
9837 // A variable's value may have been narrowed.
9838 S.Diag(PostInit->getBeginLoc(),
9839 NarrowingErrs(S.getLangOpts())
9840 ? diag::ext_init_list_variable_narrowing
9841 : diag::warn_init_list_variable_narrowing)
9842 << PostInit->getSourceRange()
9843 << PreNarrowingType.getLocalUnqualifiedType()
9844 << EntityType.getLocalUnqualifiedType();
9845 break;
9846 }
9847
9848 SmallString<128> StaticCast;
9849 llvm::raw_svector_ostream OS(StaticCast);
9850 OS << "static_cast<";
9851 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9852 // It's important to use the typedef's name if there is one so that the
9853 // fixit doesn't break code using types like int64_t.
9854 //
9855 // FIXME: This will break if the typedef requires qualification. But
9856 // getQualifiedNameAsString() includes non-machine-parsable components.
9857 OS << *TT->getDecl();
9858 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9859 OS << BT->getName(S.getLangOpts());
9860 else {
9861 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
9862 // with a broken cast.
9863 return;
9864 }
9865 OS << ">(";
9866 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9867 << PostInit->getSourceRange()
9868 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9869 << FixItHint::CreateInsertion(
9870 S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9871}
9872
9873//===----------------------------------------------------------------------===//
9874// Initialization helper functions
9875//===----------------------------------------------------------------------===//
9876bool
9877Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9878 ExprResult Init) {
9879 if (Init.isInvalid())
9880 return false;
9881
9882 Expr *InitE = Init.get();
9883 assert(InitE && "No initialization expression")((void)0);
9884
9885 InitializationKind Kind =
9886 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9887 InitializationSequence Seq(*this, Entity, Kind, InitE);
9888 return !Seq.Failed();
9889}
9890
9891ExprResult
9892Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9893 SourceLocation EqualLoc,
9894 ExprResult Init,
9895 bool TopLevelOfInitList,
9896 bool AllowExplicit) {
9897 if (Init.isInvalid())
9898 return ExprError();
9899
9900 Expr *InitE = Init.get();
9901 assert(InitE && "No initialization expression?")((void)0);
9902
9903 if (EqualLoc.isInvalid())
9904 EqualLoc = InitE->getBeginLoc();
9905
9906 InitializationKind Kind = InitializationKind::CreateCopy(
9907 InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9908 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9909
9910 // Prevent infinite recursion when performing parameter copy-initialization.
9911 const bool ShouldTrackCopy =
9912 Entity.isParameterKind() && Seq.isConstructorInitialization();
9913 if (ShouldTrackCopy) {
9914 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9915 CurrentParameterCopyTypes.end()) {
9916 Seq.SetOverloadFailure(
9917 InitializationSequence::FK_ConstructorOverloadFailed,
9918 OR_No_Viable_Function);
9919
9920 // Try to give a meaningful diagnostic note for the problematic
9921 // constructor.
9922 const auto LastStep = Seq.step_end() - 1;
9923 assert(LastStep->Kind ==((void)0)
9924 InitializationSequence::SK_ConstructorInitialization)((void)0);
9925 const FunctionDecl *Function = LastStep->Function.Function;
9926 auto Candidate =
9927 llvm::find_if(Seq.getFailedCandidateSet(),
9928 [Function](const OverloadCandidate &Candidate) -> bool {
9929 return Candidate.Viable &&
9930 Candidate.Function == Function &&
9931 Candidate.Conversions.size() > 0;
9932 });
9933 if (Candidate != Seq.getFailedCandidateSet().end() &&
9934 Function->getNumParams() > 0) {
9935 Candidate->Viable = false;
9936 Candidate->FailureKind = ovl_fail_bad_conversion;
9937 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9938 InitE,
9939 Function->getParamDecl(0)->getType());
9940 }
9941 }
9942 CurrentParameterCopyTypes.push_back(Entity.getType());
9943 }
9944
9945 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9946
9947 if (ShouldTrackCopy)
9948 CurrentParameterCopyTypes.pop_back();
9949
9950 return Result;
9951}
9952
9953/// Determine whether RD is, or is derived from, a specialization of CTD.
9954static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9955 ClassTemplateDecl *CTD) {
9956 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9957 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9958 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9959 };
9960 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9961}
9962
9963QualType Sema::DeduceTemplateSpecializationFromInitializer(
9964 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9965 const InitializationKind &Kind, MultiExprArg Inits) {
9966 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9967 TSInfo->getType()->getContainedDeducedType());
9968 assert(DeducedTST && "not a deduced template specialization type")((void)0);
9969
9970 auto TemplateName = DeducedTST->getTemplateName();
9971 if (TemplateName.isDependent())
9972 return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9973
9974 // We can only perform deduction for class templates.
9975 auto *Template =
9976 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9977 if (!Template) {
9978 Diag(Kind.getLocation(),
9979 diag::err_deduced_non_class_template_specialization_type)
9980 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9981 if (auto *TD = TemplateName.getAsTemplateDecl())
9982 Diag(TD->getLocation(), diag::note_template_decl_here);
9983 return QualType();
9984 }
9985
9986 // Can't deduce from dependent arguments.
9987 if (Expr::hasAnyTypeDependentArguments(Inits)) {
9988 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9989 diag::warn_cxx14_compat_class_template_argument_deduction)
9990 << TSInfo->getTypeLoc().getSourceRange() << 0;
9991 return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9992 }
9993
9994 // FIXME: Perform "exact type" matching first, per CWG discussion?
9995 // Or implement this via an implied 'T(T) -> T' deduction guide?
9996
9997 // FIXME: Do we need/want a std::initializer_list<T> special case?
9998
9999 // Look up deduction guides, including those synthesized from constructors.
10000 //
10001 // C++1z [over.match.class.deduct]p1:
10002 // A set of functions and function templates is formed comprising:
10003 // - For each constructor of the class template designated by the
10004 // template-name, a function template [...]
10005 // - For each deduction-guide, a function or function template [...]
10006 DeclarationNameInfo NameInfo(
10007 Context.DeclarationNames.getCXXDeductionGuideName(Template),
10008 TSInfo->getTypeLoc().getEndLoc());
10009 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10010 LookupQualifiedName(Guides, Template->getDeclContext());
10011
10012 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10013 // clear on this, but they're not found by name so access does not apply.
10014 Guides.suppressDiagnostics();
10015
10016 // Figure out if this is list-initialization.
10017 InitListExpr *ListInit =
10018 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10019 ? dyn_cast<InitListExpr>(Inits[0])
10020 : nullptr;
10021
10022 // C++1z [over.match.class.deduct]p1:
10023 // Initialization and overload resolution are performed as described in
10024 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10025 // (as appropriate for the type of initialization performed) for an object
10026 // of a hypothetical class type, where the selected functions and function
10027 // templates are considered to be the constructors of that class type
10028 //
10029 // Since we know we're initializing a class type of a type unrelated to that
10030 // of the initializer, this reduces to something fairly reasonable.
10031 OverloadCandidateSet Candidates(Kind.getLocation(),
10032 OverloadCandidateSet::CSK_Normal);
10033 OverloadCandidateSet::iterator Best;
10034
10035 bool HasAnyDeductionGuide = false;
10036 bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10037
10038 auto tryToResolveOverload =
10039 [&](bool OnlyListConstructors) -> OverloadingResult {
10040 Candidates.clear(OverloadCandidateSet::CSK_Normal);
10041 HasAnyDeductionGuide = false;
10042
10043 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10044 NamedDecl *D = (*I)->getUnderlyingDecl();
10045 if (D->isInvalidDecl())
10046 continue;
10047
10048 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10049 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10050 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10051 if (!GD)
10052 continue;
10053
10054 if (!GD->isImplicit())
10055 HasAnyDeductionGuide = true;
10056
10057 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10058 // For copy-initialization, the candidate functions are all the
10059 // converting constructors (12.3.1) of that class.
10060 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10061 // The converting constructors of T are candidate functions.
10062 if (!AllowExplicit) {
10063 // Overload resolution checks whether the deduction guide is declared
10064 // explicit for us.
10065
10066 // When looking for a converting constructor, deduction guides that
10067 // could never be called with one argument are not interesting to
10068 // check or note.
10069 if (GD->getMinRequiredArguments() > 1 ||
10070 (GD->getNumParams() == 0 && !GD->isVariadic()))
10071 continue;
10072 }
10073
10074 // C++ [over.match.list]p1.1: (first phase list initialization)
10075 // Initially, the candidate functions are the initializer-list
10076 // constructors of the class T
10077 if (OnlyListConstructors && !isInitListConstructor(GD))
10078 continue;
10079
10080 // C++ [over.match.list]p1.2: (second phase list initialization)
10081 // the candidate functions are all the constructors of the class T
10082 // C++ [over.match.ctor]p1: (all other cases)
10083 // the candidate functions are all the constructors of the class of
10084 // the object being initialized
10085
10086 // C++ [over.best.ics]p4:
10087 // When [...] the constructor [...] is a candidate by
10088 // - [over.match.copy] (in all cases)
10089 // FIXME: The "second phase of [over.match.list] case can also
10090 // theoretically happen here, but it's not clear whether we can
10091 // ever have a parameter of the right type.
10092 bool SuppressUserConversions = Kind.isCopyInit();
10093
10094 if (TD)
10095 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10096 Inits, Candidates, SuppressUserConversions,
10097 /*PartialOverloading*/ false,
10098 AllowExplicit);
10099 else
10100 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10101 SuppressUserConversions,
10102 /*PartialOverloading*/ false, AllowExplicit);
10103 }
10104 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10105 };
10106
10107 OverloadingResult Result = OR_No_Viable_Function;
10108
10109 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10110 // try initializer-list constructors.
10111 if (ListInit) {
10112 bool TryListConstructors = true;
10113
10114 // Try list constructors unless the list is empty and the class has one or
10115 // more default constructors, in which case those constructors win.
10116 if (!ListInit->getNumInits()) {
10117 for (NamedDecl *D : Guides) {
10118 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10119 if (FD && FD->getMinRequiredArguments() == 0) {
10120 TryListConstructors = false;
10121 break;
10122 }
10123 }
10124 } else if (ListInit->getNumInits() == 1) {
10125 // C++ [over.match.class.deduct]:
10126 // As an exception, the first phase in [over.match.list] (considering
10127 // initializer-list constructors) is omitted if the initializer list
10128 // consists of a single expression of type cv U, where U is a
10129 // specialization of C or a class derived from a specialization of C.
10130 Expr *E = ListInit->getInit(0);
10131 auto *RD = E->getType()->getAsCXXRecordDecl();
10132 if (!isa<InitListExpr>(E) && RD &&
10133 isCompleteType(Kind.getLocation(), E->getType()) &&
10134 isOrIsDerivedFromSpecializationOf(RD, Template))
10135 TryListConstructors = false;
10136 }
10137
10138 if (TryListConstructors)
10139 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10140 // Then unwrap the initializer list and try again considering all
10141 // constructors.
10142 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10143 }
10144
10145 // If list-initialization fails, or if we're doing any other kind of
10146 // initialization, we (eventually) consider constructors.
10147 if (Result == OR_No_Viable_Function)
10148 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10149
10150 switch (Result) {
10151 case OR_Ambiguous:
10152 // FIXME: For list-initialization candidates, it'd usually be better to
10153 // list why they were not viable when given the initializer list itself as
10154 // an argument.
10155 Candidates.NoteCandidates(
10156 PartialDiagnosticAt(
10157 Kind.getLocation(),
10158 PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10159 << TemplateName),
10160 *this, OCD_AmbiguousCandidates, Inits);
10161 return QualType();
10162
10163 case OR_No_Viable_Function: {
10164 CXXRecordDecl *Primary =
10165 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10166 bool Complete =
10167 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10168 Candidates.NoteCandidates(
10169 PartialDiagnosticAt(
10170 Kind.getLocation(),
10171 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10172 : diag::err_deduced_class_template_incomplete)
10173 << TemplateName << !Guides.empty()),
10174 *this, OCD_AllCandidates, Inits);
10175 return QualType();
10176 }
10177
10178 case OR_Deleted: {
10179 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10180 << TemplateName;
10181 NoteDeletedFunction(Best->Function);
10182 return QualType();
10183 }
10184
10185 case OR_Success:
10186 // C++ [over.match.list]p1:
10187 // In copy-list-initialization, if an explicit constructor is chosen, the
10188 // initialization is ill-formed.
10189 if (Kind.isCopyInit() && ListInit &&
10190 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10191 bool IsDeductionGuide = !Best->Function->isImplicit();
10192 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10193 << TemplateName << IsDeductionGuide;
10194 Diag(Best->Function->getLocation(),
10195 diag::note_explicit_ctor_deduction_guide_here)
10196 << IsDeductionGuide;
10197 return QualType();
10198 }
10199
10200 // Make sure we didn't select an unusable deduction guide, and mark it
10201 // as referenced.
10202 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10203 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10204 break;
10205 }
10206
10207 // C++ [dcl.type.class.deduct]p1:
10208 // The placeholder is replaced by the return type of the function selected
10209 // by overload resolution for class template deduction.
10210 QualType DeducedType =
10211 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10212 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10213 diag::warn_cxx14_compat_class_template_argument_deduction)
10214 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10215
10216 // Warn if CTAD was used on a type that does not have any user-defined
10217 // deduction guides.
10218 if (!HasAnyDeductionGuide) {
10219 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10220 diag::warn_ctad_maybe_unsupported)
10221 << TemplateName;
10222 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10223 }
10224
10225 return DeducedType;
10226}

/usr/src/gnu/usr.bin/clang/libclangSema/../../../llvm/clang/include/clang/Sema/Sema.h

1//===--- Sema.h - Semantic Analysis & AST Building --------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Sema class, which performs semantic analysis and
10// builds ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_SEMA_SEMA_H
15#define LLVM_CLANG_SEMA_SEMA_H
16
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Availability.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/ExternalASTSource.h"
30#include "clang/AST/LocInfoType.h"
31#include "clang/AST/MangleNumberingContext.h"
32#include "clang/AST/NSAPI.h"
33#include "clang/AST/PrettyPrinter.h"
34#include "clang/AST/StmtCXX.h"
35#include "clang/AST/StmtOpenMP.h"
36#include "clang/AST/TypeLoc.h"
37#include "clang/AST/TypeOrdering.h"
38#include "clang/Basic/BitmaskEnum.h"
39#include "clang/Basic/Builtins.h"
40#include "clang/Basic/DarwinSDKInfo.h"
41#include "clang/Basic/ExpressionTraits.h"
42#include "clang/Basic/Module.h"
43#include "clang/Basic/OpenCLOptions.h"
44#include "clang/Basic/OpenMPKinds.h"
45#include "clang/Basic/PragmaKinds.h"
46#include "clang/Basic/Specifiers.h"
47#include "clang/Basic/TemplateKinds.h"
48#include "clang/Basic/TypeTraits.h"
49#include "clang/Sema/AnalysisBasedWarnings.h"
50#include "clang/Sema/CleanupInfo.h"
51#include "clang/Sema/DeclSpec.h"
52#include "clang/Sema/ExternalSemaSource.h"
53#include "clang/Sema/IdentifierResolver.h"
54#include "clang/Sema/ObjCMethodList.h"
55#include "clang/Sema/Ownership.h"
56#include "clang/Sema/Scope.h"
57#include "clang/Sema/SemaConcept.h"
58#include "clang/Sema/TypoCorrection.h"
59#include "clang/Sema/Weak.h"
60#include "llvm/ADT/ArrayRef.h"
61#include "llvm/ADT/Optional.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/TinyPtrVector.h"
68#include "llvm/Frontend/OpenMP/OMPConstants.h"
69#include <deque>
70#include <memory>
71#include <string>
72#include <tuple>
73#include <vector>
74
75namespace llvm {
76 class APSInt;
77 template <typename ValueT> struct DenseMapInfo;
78 template <typename ValueT, typename ValueInfoT> class DenseSet;
79 class SmallBitVector;
80 struct InlineAsmIdentifierInfo;
81}
82
83namespace clang {
84 class ADLResult;
85 class ASTConsumer;
86 class ASTContext;
87 class ASTMutationListener;
88 class ASTReader;
89 class ASTWriter;
90 class ArrayType;
91 class ParsedAttr;
92 class BindingDecl;
93 class BlockDecl;
94 class CapturedDecl;
95 class CXXBasePath;
96 class CXXBasePaths;
97 class CXXBindTemporaryExpr;
98 typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
99 class CXXConstructorDecl;
100 class CXXConversionDecl;
101 class CXXDeleteExpr;
102 class CXXDestructorDecl;
103 class CXXFieldCollector;
104 class CXXMemberCallExpr;
105 class CXXMethodDecl;
106 class CXXScopeSpec;
107 class CXXTemporary;
108 class CXXTryStmt;
109 class CallExpr;
110 class ClassTemplateDecl;
111 class ClassTemplatePartialSpecializationDecl;
112 class ClassTemplateSpecializationDecl;
113 class VarTemplatePartialSpecializationDecl;
114 class CodeCompleteConsumer;
115 class CodeCompletionAllocator;
116 class CodeCompletionTUInfo;
117 class CodeCompletionResult;
118 class CoroutineBodyStmt;
119 class Decl;
120 class DeclAccessPair;
121 class DeclContext;
122 class DeclRefExpr;
123 class DeclaratorDecl;
124 class DeducedTemplateArgument;
125 class DependentDiagnostic;
126 class DesignatedInitExpr;
127 class Designation;
128 class EnableIfAttr;
129 class EnumConstantDecl;
130 class Expr;
131 class ExtVectorType;
132 class FormatAttr;
133 class FriendDecl;
134 class FunctionDecl;
135 class FunctionProtoType;
136 class FunctionTemplateDecl;
137 class ImplicitConversionSequence;
138 typedef MutableArrayRef<ImplicitConversionSequence> ConversionSequenceList;
139 class InitListExpr;
140 class InitializationKind;
141 class InitializationSequence;
142 class InitializedEntity;
143 class IntegerLiteral;
144 class LabelStmt;
145 class LambdaExpr;
146 class LangOptions;
147 class LocalInstantiationScope;
148 class LookupResult;
149 class MacroInfo;
150 typedef ArrayRef<std::pair<IdentifierInfo *, SourceLocation>> ModuleIdPath;
151 class ModuleLoader;
152 class MultiLevelTemplateArgumentList;
153 class NamedDecl;
154 class ObjCCategoryDecl;
155 class ObjCCategoryImplDecl;
156 class ObjCCompatibleAliasDecl;
157 class ObjCContainerDecl;
158 class ObjCImplDecl;
159 class ObjCImplementationDecl;
160 class ObjCInterfaceDecl;
161 class ObjCIvarDecl;
162 template <class T> class ObjCList;
163 class ObjCMessageExpr;
164 class ObjCMethodDecl;
165 class ObjCPropertyDecl;
166 class ObjCProtocolDecl;
167 class OMPThreadPrivateDecl;
168 class OMPRequiresDecl;
169 class OMPDeclareReductionDecl;
170 class OMPDeclareSimdDecl;
171 class OMPClause;
172 struct OMPVarListLocTy;
173 struct OverloadCandidate;
174 enum class OverloadCandidateParamOrder : char;
175 enum OverloadCandidateRewriteKind : unsigned;
176 class OverloadCandidateSet;
177 class OverloadExpr;
178 class ParenListExpr;
179 class ParmVarDecl;
180 class Preprocessor;
181 class PseudoDestructorTypeStorage;
182 class PseudoObjectExpr;
183 class QualType;
184 class StandardConversionSequence;
185 class Stmt;
186 class StringLiteral;
187 class SwitchStmt;
188 class TemplateArgument;
189 class TemplateArgumentList;
190 class TemplateArgumentLoc;
191 class TemplateDecl;
192 class TemplateInstantiationCallback;
193 class TemplateParameterList;
194 class TemplatePartialOrderingContext;
195 class TemplateTemplateParmDecl;
196 class Token;
197 class TypeAliasDecl;
198 class TypedefDecl;
199 class TypedefNameDecl;
200 class TypeLoc;
201 class TypoCorrectionConsumer;
202 class UnqualifiedId;
203 class UnresolvedLookupExpr;
204 class UnresolvedMemberExpr;
205 class UnresolvedSetImpl;
206 class UnresolvedSetIterator;
207 class UsingDecl;
208 class UsingShadowDecl;
209 class ValueDecl;
210 class VarDecl;
211 class VarTemplateSpecializationDecl;
212 class VisibilityAttr;
213 class VisibleDeclConsumer;
214 class IndirectFieldDecl;
215 struct DeductionFailureInfo;
216 class TemplateSpecCandidateSet;
217
218namespace sema {
219 class AccessedEntity;
220 class BlockScopeInfo;
221 class Capture;
222 class CapturedRegionScopeInfo;
223 class CapturingScopeInfo;
224 class CompoundScopeInfo;
225 class DelayedDiagnostic;
226 class DelayedDiagnosticPool;
227 class FunctionScopeInfo;
228 class LambdaScopeInfo;
229 class PossiblyUnreachableDiag;
230 class SemaPPCallbacks;
231 class TemplateDeductionInfo;
232}
233
234namespace threadSafety {
235 class BeforeSet;
236 void threadSafetyCleanup(BeforeSet* Cache);
237}
238
239// FIXME: No way to easily map from TemplateTypeParmTypes to
240// TemplateTypeParmDecls, so we have this horrible PointerUnion.
241typedef std::pair<llvm::PointerUnion<const TemplateTypeParmType*, NamedDecl*>,
242 SourceLocation> UnexpandedParameterPack;
243
244/// Describes whether we've seen any nullability information for the given
245/// file.
246struct FileNullability {
247 /// The first pointer declarator (of any pointer kind) in the file that does
248 /// not have a corresponding nullability annotation.
249 SourceLocation PointerLoc;
250
251 /// The end location for the first pointer declarator in the file. Used for
252 /// placing fix-its.
253 SourceLocation PointerEndLoc;
254
255 /// Which kind of pointer declarator we saw.
256 uint8_t PointerKind;
257
258 /// Whether we saw any type nullability annotations in the given file.
259 bool SawTypeNullability = false;
260};
261
262/// A mapping from file IDs to a record of whether we've seen nullability
263/// information in that file.
264class FileNullabilityMap {
265 /// A mapping from file IDs to the nullability information for each file ID.
266 llvm::DenseMap<FileID, FileNullability> Map;
267
268 /// A single-element cache based on the file ID.
269 struct {
270 FileID File;
271 FileNullability Nullability;
272 } Cache;
273
274public:
275 FileNullability &operator[](FileID file) {
276 // Check the single-element cache.
277 if (file == Cache.File)
278 return Cache.Nullability;
279
280 // It's not in the single-element cache; flush the cache if we have one.
281 if (!Cache.File.isInvalid()) {
282 Map[Cache.File] = Cache.Nullability;
283 }
284
285 // Pull this entry into the cache.
286 Cache.File = file;
287 Cache.Nullability = Map[file];
288 return Cache.Nullability;
289 }
290};
291
292/// Tracks expected type during expression parsing, for use in code completion.
293/// The type is tied to a particular token, all functions that update or consume
294/// the type take a start location of the token they are looking at as a
295/// parameter. This avoids updating the type on hot paths in the parser.
296class PreferredTypeBuilder {
297public:
298 PreferredTypeBuilder(bool Enabled) : Enabled(Enabled) {}
299
300 void enterCondition(Sema &S, SourceLocation Tok);
301 void enterReturn(Sema &S, SourceLocation Tok);
302 void enterVariableInit(SourceLocation Tok, Decl *D);
303 /// Handles e.g. BaseType{ .D = Tok...
304 void enterDesignatedInitializer(SourceLocation Tok, QualType BaseType,
305 const Designation &D);
306 /// Computing a type for the function argument may require running
307 /// overloading, so we postpone its computation until it is actually needed.
308 ///
309 /// Clients should be very careful when using this funciton, as it stores a
310 /// function_ref, clients should make sure all calls to get() with the same
311 /// location happen while function_ref is alive.
312 ///
313 /// The callback should also emit signature help as a side-effect, but only
314 /// if the completion point has been reached.
315 void enterFunctionArgument(SourceLocation Tok,
316 llvm::function_ref<QualType()> ComputeType);
317
318 void enterParenExpr(SourceLocation Tok, SourceLocation LParLoc);
319 void enterUnary(Sema &S, SourceLocation Tok, tok::TokenKind OpKind,
320 SourceLocation OpLoc);
321 void enterBinary(Sema &S, SourceLocation Tok, Expr *LHS, tok::TokenKind Op);
322 void enterMemAccess(Sema &S, SourceLocation Tok, Expr *Base);
323 void enterSubscript(Sema &S, SourceLocation Tok, Expr *LHS);
324 /// Handles all type casts, including C-style cast, C++ casts, etc.
325 void enterTypeCast(SourceLocation Tok, QualType CastType);
326
327 /// Get the expected type associated with this location, if any.
328 ///
329 /// If the location is a function argument, determining the expected type
330 /// involves considering all function overloads and the arguments so far.
331 /// In this case, signature help for these function overloads will be reported
332 /// as a side-effect (only if the completion point has been reached).
333 QualType get(SourceLocation Tok) const {
334 if (!Enabled || Tok != ExpectedLoc)
335 return QualType();
336 if (!Type.isNull())
337 return Type;
338 if (ComputeType)
339 return ComputeType();
340 return QualType();
341 }
342
343private:
344 bool Enabled;
345 /// Start position of a token for which we store expected type.
346 SourceLocation ExpectedLoc;
347 /// Expected type for a token starting at ExpectedLoc.
348 QualType Type;
349 /// A function to compute expected type at ExpectedLoc. It is only considered
350 /// if Type is null.
351 llvm::function_ref<QualType()> ComputeType;
352};
353
354/// Sema - This implements semantic analysis and AST building for C.
355class Sema final {
356 Sema(const Sema &) = delete;
357 void operator=(const Sema &) = delete;
358
359 ///Source of additional semantic information.
360 ExternalSemaSource *ExternalSource;
361
362 ///Whether Sema has generated a multiplexer and has to delete it.
363 bool isMultiplexExternalSource;
364
365 static bool mightHaveNonExternalLinkage(const DeclaratorDecl *FD);
366
367 bool isVisibleSlow(const NamedDecl *D);
368
369 /// Determine whether two declarations should be linked together, given that
370 /// the old declaration might not be visible and the new declaration might
371 /// not have external linkage.
372 bool shouldLinkPossiblyHiddenDecl(const NamedDecl *Old,
373 const NamedDecl *New) {
374 if (isVisible(Old))
375 return true;
376 // See comment in below overload for why it's safe to compute the linkage
377 // of the new declaration here.
378 if (New->isExternallyDeclarable()) {
379 assert(Old->isExternallyDeclarable() &&((void)0)
380 "should not have found a non-externally-declarable previous decl")((void)0);
381 return true;
382 }
383 return false;
384 }
385 bool shouldLinkPossiblyHiddenDecl(LookupResult &Old, const NamedDecl *New);
386
387 void setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
388 QualType ResultTy,
389 ArrayRef<QualType> Args);
390
391public:
392 /// The maximum alignment, same as in llvm::Value. We duplicate them here
393 /// because that allows us not to duplicate the constants in clang code,
394 /// which we must to since we can't directly use the llvm constants.
395 /// The value is verified against llvm here: lib/CodeGen/CGDecl.cpp
396 ///
397 /// This is the greatest alignment value supported by load, store, and alloca
398 /// instructions, and global values.
399 static const unsigned MaxAlignmentExponent = 29;
400 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
401
402 typedef OpaquePtr<DeclGroupRef> DeclGroupPtrTy;
403 typedef OpaquePtr<TemplateName> TemplateTy;
404 typedef OpaquePtr<QualType> TypeTy;
405
406 OpenCLOptions OpenCLFeatures;
407 FPOptions CurFPFeatures;
408
409 const LangOptions &LangOpts;
410 Preprocessor &PP;
411 ASTContext &Context;
412 ASTConsumer &Consumer;
413 DiagnosticsEngine &Diags;
414 SourceManager &SourceMgr;
415
416 /// Flag indicating whether or not to collect detailed statistics.
417 bool CollectStats;
418
419 /// Code-completion consumer.
420 CodeCompleteConsumer *CodeCompleter;
421
422 /// CurContext - This is the current declaration context of parsing.
423 DeclContext *CurContext;
424
425 /// Generally null except when we temporarily switch decl contexts,
426 /// like in \see ActOnObjCTemporaryExitContainerContext.
427 DeclContext *OriginalLexicalContext;
428
429 /// VAListTagName - The declaration name corresponding to __va_list_tag.
430 /// This is used as part of a hack to omit that class from ADL results.
431 DeclarationName VAListTagName;
432
433 bool MSStructPragmaOn; // True when \#pragma ms_struct on
434
435 /// Controls member pointer representation format under the MS ABI.
436 LangOptions::PragmaMSPointersToMembersKind
437 MSPointerToMemberRepresentationMethod;
438
439 /// Stack of active SEH __finally scopes. Can be empty.
440 SmallVector<Scope*, 2> CurrentSEHFinally;
441
442 /// Source location for newly created implicit MSInheritanceAttrs
443 SourceLocation ImplicitMSInheritanceAttrLoc;
444
445 /// Holds TypoExprs that are created from `createDelayedTypo`. This is used by
446 /// `TransformTypos` in order to keep track of any TypoExprs that are created
447 /// recursively during typo correction and wipe them away if the correction
448 /// fails.
449 llvm::SmallVector<TypoExpr *, 2> TypoExprs;
450
451 /// pragma clang section kind
452 enum PragmaClangSectionKind {
453 PCSK_Invalid = 0,
454 PCSK_BSS = 1,
455 PCSK_Data = 2,
456 PCSK_Rodata = 3,
457 PCSK_Text = 4,
458 PCSK_Relro = 5
459 };
460
461 enum PragmaClangSectionAction {
462 PCSA_Set = 0,
463 PCSA_Clear = 1
464 };
465
466 struct PragmaClangSection {
467 std::string SectionName;
468 bool Valid = false;
469 SourceLocation PragmaLocation;
470 };
471
472 PragmaClangSection PragmaClangBSSSection;
473 PragmaClangSection PragmaClangDataSection;
474 PragmaClangSection PragmaClangRodataSection;
475 PragmaClangSection PragmaClangRelroSection;
476 PragmaClangSection PragmaClangTextSection;
477
478 enum PragmaMsStackAction {
479 PSK_Reset = 0x0, // #pragma ()
480 PSK_Set = 0x1, // #pragma (value)
481 PSK_Push = 0x2, // #pragma (push[, id])
482 PSK_Pop = 0x4, // #pragma (pop[, id])
483 PSK_Show = 0x8, // #pragma (show) -- only for "pack"!
484 PSK_Push_Set = PSK_Push | PSK_Set, // #pragma (push[, id], value)
485 PSK_Pop_Set = PSK_Pop | PSK_Set, // #pragma (pop[, id], value)
486 };
487
488 // #pragma pack and align.
489 class AlignPackInfo {
490 public:
491 // `Native` represents default align mode, which may vary based on the
492 // platform.
493 enum Mode : unsigned char { Native, Natural, Packed, Mac68k };
494
495 // #pragma pack info constructor
496 AlignPackInfo(AlignPackInfo::Mode M, unsigned Num, bool IsXL)
497 : PackAttr(true), AlignMode(M), PackNumber(Num), XLStack(IsXL) {
498 assert(Num == PackNumber && "The pack number has been truncated.")((void)0);
499 }
500
501 // #pragma align info constructor
502 AlignPackInfo(AlignPackInfo::Mode M, bool IsXL)
503 : PackAttr(false), AlignMode(M),
504 PackNumber(M == Packed ? 1 : UninitPackVal), XLStack(IsXL) {}
505
506 explicit AlignPackInfo(bool IsXL) : AlignPackInfo(Native, IsXL) {}
507
508 AlignPackInfo() : AlignPackInfo(Native, false) {}
509
510 // When a AlignPackInfo itself cannot be used, this returns an 32-bit
511 // integer encoding for it. This should only be passed to
512 // AlignPackInfo::getFromRawEncoding, it should not be inspected directly.
513 static uint32_t getRawEncoding(const AlignPackInfo &Info) {
514 std::uint32_t Encoding{};
515 if (Info.IsXLStack())
516 Encoding |= IsXLMask;
517
518 Encoding |= static_cast<uint32_t>(Info.getAlignMode()) << 1;
519
520 if (Info.IsPackAttr())
521 Encoding |= PackAttrMask;
522
523 Encoding |= static_cast<uint32_t>(Info.getPackNumber()) << 4;
524
525 return Encoding;
526 }
527
528 static AlignPackInfo getFromRawEncoding(unsigned Encoding) {
529 bool IsXL = static_cast<bool>(Encoding & IsXLMask);
530 AlignPackInfo::Mode M =
531 static_cast<AlignPackInfo::Mode>((Encoding & AlignModeMask) >> 1);
532 int PackNumber = (Encoding & PackNumMask) >> 4;
533
534 if (Encoding & PackAttrMask)
535 return AlignPackInfo(M, PackNumber, IsXL);
536
537 return AlignPackInfo(M, IsXL);
538 }
539
540 bool IsPackAttr() const { return PackAttr; }
541
542 bool IsAlignAttr() const { return !PackAttr; }
543
544 Mode getAlignMode() const { return AlignMode; }
545
546 unsigned getPackNumber() const { return PackNumber; }
547
548 bool IsPackSet() const {
549 // #pragma align, #pragma pack(), and #pragma pack(0) do not set the pack
550 // attriute on a decl.
551 return PackNumber != UninitPackVal && PackNumber != 0;
552 }
553
554 bool IsXLStack() const { return XLStack; }
555
556 bool operator==(const AlignPackInfo &Info) const {
557 return std::tie(AlignMode, PackNumber, PackAttr, XLStack) ==
558 std::tie(Info.AlignMode, Info.PackNumber, Info.PackAttr,
559 Info.XLStack);
560 }
561
562 bool operator!=(const AlignPackInfo &Info) const {
563 return !(*this == Info);
564 }
565
566 private:
567 /// \brief True if this is a pragma pack attribute,
568 /// not a pragma align attribute.
569 bool PackAttr;
570
571 /// \brief The alignment mode that is in effect.
572 Mode AlignMode;
573
574 /// \brief The pack number of the stack.
575 unsigned char PackNumber;
576
577 /// \brief True if it is a XL #pragma align/pack stack.
578 bool XLStack;
579
580 /// \brief Uninitialized pack value.
581 static constexpr unsigned char UninitPackVal = -1;
582
583 // Masks to encode and decode an AlignPackInfo.
584 static constexpr uint32_t IsXLMask{0x0000'0001};
585 static constexpr uint32_t AlignModeMask{0x0000'0006};
586 static constexpr uint32_t PackAttrMask{0x00000'0008};
587 static constexpr uint32_t PackNumMask{0x0000'01F0};
588 };
589
590 template<typename ValueType>
591 struct PragmaStack {
592 struct Slot {
593 llvm::StringRef StackSlotLabel;
594 ValueType Value;
595 SourceLocation PragmaLocation;
596 SourceLocation PragmaPushLocation;
597 Slot(llvm::StringRef StackSlotLabel, ValueType Value,
598 SourceLocation PragmaLocation, SourceLocation PragmaPushLocation)
599 : StackSlotLabel(StackSlotLabel), Value(Value),
600 PragmaLocation(PragmaLocation),
601 PragmaPushLocation(PragmaPushLocation) {}
602 };
603
604 void Act(SourceLocation PragmaLocation, PragmaMsStackAction Action,
605 llvm::StringRef StackSlotLabel, ValueType Value) {
606 if (Action == PSK_Reset) {
607 CurrentValue = DefaultValue;
608 CurrentPragmaLocation = PragmaLocation;
609 return;
610 }
611 if (Action & PSK_Push)
612 Stack.emplace_back(StackSlotLabel, CurrentValue, CurrentPragmaLocation,
613 PragmaLocation);
614 else if (Action & PSK_Pop) {
615 if (!StackSlotLabel.empty()) {
616 // If we've got a label, try to find it and jump there.
617 auto I = llvm::find_if(llvm::reverse(Stack), [&](const Slot &x) {
618 return x.StackSlotLabel == StackSlotLabel;
619 });
620 // If we found the label so pop from there.
621 if (I != Stack.rend()) {
622 CurrentValue = I->Value;
623 CurrentPragmaLocation = I->PragmaLocation;
624 Stack.erase(std::prev(I.base()), Stack.end());
625 }
626 } else if (!Stack.empty()) {
627 // We do not have a label, just pop the last entry.
628 CurrentValue = Stack.back().Value;
629 CurrentPragmaLocation = Stack.back().PragmaLocation;
630 Stack.pop_back();
631 }
632 }
633 if (Action & PSK_Set) {
634 CurrentValue = Value;
635 CurrentPragmaLocation = PragmaLocation;
636 }
637 }
638
639 // MSVC seems to add artificial slots to #pragma stacks on entering a C++
640 // method body to restore the stacks on exit, so it works like this:
641 //
642 // struct S {
643 // #pragma <name>(push, InternalPragmaSlot, <current_pragma_value>)
644 // void Method {}
645 // #pragma <name>(pop, InternalPragmaSlot)
646 // };
647 //
648 // It works even with #pragma vtordisp, although MSVC doesn't support
649 // #pragma vtordisp(push [, id], n)
650 // syntax.
651 //
652 // Push / pop a named sentinel slot.
653 void SentinelAction(PragmaMsStackAction Action, StringRef Label) {
654 assert((Action == PSK_Push || Action == PSK_Pop) &&((void)0)
655 "Can only push / pop #pragma stack sentinels!")((void)0);
656 Act(CurrentPragmaLocation, Action, Label, CurrentValue);
657 }
658
659 // Constructors.
660 explicit PragmaStack(const ValueType &Default)
661 : DefaultValue(Default), CurrentValue(Default) {}
662
663 bool hasValue() const { return CurrentValue != DefaultValue; }
664
665 SmallVector<Slot, 2> Stack;
666 ValueType DefaultValue; // Value used for PSK_Reset action.
667 ValueType CurrentValue;
668 SourceLocation CurrentPragmaLocation;
669 };
670 // FIXME: We should serialize / deserialize these if they occur in a PCH (but
671 // we shouldn't do so if they're in a module).
672
673 /// Whether to insert vtordisps prior to virtual bases in the Microsoft
674 /// C++ ABI. Possible values are 0, 1, and 2, which mean:
675 ///
676 /// 0: Suppress all vtordisps
677 /// 1: Insert vtordisps in the presence of vbase overrides and non-trivial
678 /// structors
679 /// 2: Always insert vtordisps to support RTTI on partially constructed
680 /// objects
681 PragmaStack<MSVtorDispMode> VtorDispStack;
682 PragmaStack<AlignPackInfo> AlignPackStack;
683 // The current #pragma align/pack values and locations at each #include.
684 struct AlignPackIncludeState {
685 AlignPackInfo CurrentValue;
686 SourceLocation CurrentPragmaLocation;
687 bool HasNonDefaultValue, ShouldWarnOnInclude;
688 };
689 SmallVector<AlignPackIncludeState, 8> AlignPackIncludeStack;
690 // Segment #pragmas.
691 PragmaStack<StringLiteral *> DataSegStack;
692 PragmaStack<StringLiteral *> BSSSegStack;
693 PragmaStack<StringLiteral *> ConstSegStack;
694 PragmaStack<StringLiteral *> CodeSegStack;
695
696 // This stack tracks the current state of Sema.CurFPFeatures.
697 PragmaStack<FPOptionsOverride> FpPragmaStack;
698 FPOptionsOverride CurFPFeatureOverrides() {
699 FPOptionsOverride result;
700 if (!FpPragmaStack.hasValue()) {
701 result = FPOptionsOverride();
702 } else {
703 result = FpPragmaStack.CurrentValue;
704 }
705 return result;
706 }
707
708 // RAII object to push / pop sentinel slots for all MS #pragma stacks.
709 // Actions should be performed only if we enter / exit a C++ method body.
710 class PragmaStackSentinelRAII {
711 public:
712 PragmaStackSentinelRAII(Sema &S, StringRef SlotLabel, bool ShouldAct);
713 ~PragmaStackSentinelRAII();
714
715 private:
716 Sema &S;
717 StringRef SlotLabel;
718 bool ShouldAct;
719 };
720
721 /// A mapping that describes the nullability we've seen in each header file.
722 FileNullabilityMap NullabilityMap;
723
724 /// Last section used with #pragma init_seg.
725 StringLiteral *CurInitSeg;
726 SourceLocation CurInitSegLoc;
727
728 /// VisContext - Manages the stack for \#pragma GCC visibility.
729 void *VisContext; // Really a "PragmaVisStack*"
730
731 /// This an attribute introduced by \#pragma clang attribute.
732 struct PragmaAttributeEntry {
733 SourceLocation Loc;
734 ParsedAttr *Attribute;
735 SmallVector<attr::SubjectMatchRule, 4> MatchRules;
736 bool IsUsed;
737 };
738
739 /// A push'd group of PragmaAttributeEntries.
740 struct PragmaAttributeGroup {
741 /// The location of the push attribute.
742 SourceLocation Loc;
743 /// The namespace of this push group.
744 const IdentifierInfo *Namespace;
745 SmallVector<PragmaAttributeEntry, 2> Entries;
746 };
747
748 SmallVector<PragmaAttributeGroup, 2> PragmaAttributeStack;
749
750 /// The declaration that is currently receiving an attribute from the
751 /// #pragma attribute stack.
752 const Decl *PragmaAttributeCurrentTargetDecl;
753
754 /// This represents the last location of a "#pragma clang optimize off"
755 /// directive if such a directive has not been closed by an "on" yet. If
756 /// optimizations are currently "on", this is set to an invalid location.
757 SourceLocation OptimizeOffPragmaLocation;
758
759 /// Flag indicating if Sema is building a recovery call expression.
760 ///
761 /// This flag is used to avoid building recovery call expressions
762 /// if Sema is already doing so, which would cause infinite recursions.
763 bool IsBuildingRecoveryCallExpr;
764
765 /// Used to control the generation of ExprWithCleanups.
766 CleanupInfo Cleanup;
767
768 /// ExprCleanupObjects - This is the stack of objects requiring
769 /// cleanup that are created by the current full expression.
770 SmallVector<ExprWithCleanups::CleanupObject, 8> ExprCleanupObjects;
771
772 /// Store a set of either DeclRefExprs or MemberExprs that contain a reference
773 /// to a variable (constant) that may or may not be odr-used in this Expr, and
774 /// we won't know until all lvalue-to-rvalue and discarded value conversions
775 /// have been applied to all subexpressions of the enclosing full expression.
776 /// This is cleared at the end of each full expression.
777 using MaybeODRUseExprSet = llvm::SetVector<Expr *, SmallVector<Expr *, 4>,
778 llvm::SmallPtrSet<Expr *, 4>>;
779 MaybeODRUseExprSet MaybeODRUseExprs;
780
781 std::unique_ptr<sema::FunctionScopeInfo> CachedFunctionScope;
782
783 /// Stack containing information about each of the nested
784 /// function, block, and method scopes that are currently active.
785 SmallVector<sema::FunctionScopeInfo *, 4> FunctionScopes;
786
787 /// The index of the first FunctionScope that corresponds to the current
788 /// context.
789 unsigned FunctionScopesStart = 0;
790
791 ArrayRef<sema::FunctionScopeInfo*> getFunctionScopes() const {
792 return llvm::makeArrayRef(FunctionScopes.begin() + FunctionScopesStart,
793 FunctionScopes.end());
794 }
795
796 /// Stack containing information needed when in C++2a an 'auto' is encountered
797 /// in a function declaration parameter type specifier in order to invent a
798 /// corresponding template parameter in the enclosing abbreviated function
799 /// template. This information is also present in LambdaScopeInfo, stored in
800 /// the FunctionScopes stack.
801 SmallVector<InventedTemplateParameterInfo, 4> InventedParameterInfos;
802
803 /// The index of the first InventedParameterInfo that refers to the current
804 /// context.
805 unsigned InventedParameterInfosStart = 0;
806
807 ArrayRef<InventedTemplateParameterInfo> getInventedParameterInfos() const {
808 return llvm::makeArrayRef(InventedParameterInfos.begin() +
809 InventedParameterInfosStart,
810 InventedParameterInfos.end());
811 }
812
813 typedef LazyVector<TypedefNameDecl *, ExternalSemaSource,
814 &ExternalSemaSource::ReadExtVectorDecls, 2, 2>
815 ExtVectorDeclsType;
816
817 /// ExtVectorDecls - This is a list all the extended vector types. This allows
818 /// us to associate a raw vector type with one of the ext_vector type names.
819 /// This is only necessary for issuing pretty diagnostics.
820 ExtVectorDeclsType ExtVectorDecls;
821
822 /// FieldCollector - Collects CXXFieldDecls during parsing of C++ classes.
823 std::unique_ptr<CXXFieldCollector> FieldCollector;
824
825 typedef llvm::SmallSetVector<NamedDecl *, 16> NamedDeclSetType;
826
827 /// Set containing all declared private fields that are not used.
828 NamedDeclSetType UnusedPrivateFields;
829
830 /// Set containing all typedefs that are likely unused.
831 llvm::SmallSetVector<const TypedefNameDecl *, 4>
832 UnusedLocalTypedefNameCandidates;
833
834 /// Delete-expressions to be analyzed at the end of translation unit
835 ///
836 /// This list contains class members, and locations of delete-expressions
837 /// that could not be proven as to whether they mismatch with new-expression
838 /// used in initializer of the field.
839 typedef std::pair<SourceLocation, bool> DeleteExprLoc;
840 typedef llvm::SmallVector<DeleteExprLoc, 4> DeleteLocs;
841 llvm::MapVector<FieldDecl *, DeleteLocs> DeleteExprs;
842
843 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 8> RecordDeclSetTy;
844
845 /// PureVirtualClassDiagSet - a set of class declarations which we have
846 /// emitted a list of pure virtual functions. Used to prevent emitting the
847 /// same list more than once.
848 std::unique_ptr<RecordDeclSetTy> PureVirtualClassDiagSet;
849
850 /// ParsingInitForAutoVars - a set of declarations with auto types for which
851 /// we are currently parsing the initializer.
852 llvm::SmallPtrSet<const Decl*, 4> ParsingInitForAutoVars;
853
854 /// Look for a locally scoped extern "C" declaration by the given name.
855 NamedDecl *findLocallyScopedExternCDecl(DeclarationName Name);
856
857 typedef LazyVector<VarDecl *, ExternalSemaSource,
858 &ExternalSemaSource::ReadTentativeDefinitions, 2, 2>
859 TentativeDefinitionsType;
860
861 /// All the tentative definitions encountered in the TU.
862 TentativeDefinitionsType TentativeDefinitions;
863
864 /// All the external declarations encoutered and used in the TU.
865 SmallVector<VarDecl *, 4> ExternalDeclarations;
866
867 typedef LazyVector<const DeclaratorDecl *, ExternalSemaSource,
868 &ExternalSemaSource::ReadUnusedFileScopedDecls, 2, 2>
869 UnusedFileScopedDeclsType;
870
871 /// The set of file scoped decls seen so far that have not been used
872 /// and must warn if not used. Only contains the first declaration.
873 UnusedFileScopedDeclsType UnusedFileScopedDecls;
874
875 typedef LazyVector<CXXConstructorDecl *, ExternalSemaSource,
876 &ExternalSemaSource::ReadDelegatingConstructors, 2, 2>
877 DelegatingCtorDeclsType;
878
879 /// All the delegating constructors seen so far in the file, used for
880 /// cycle detection at the end of the TU.
881 DelegatingCtorDeclsType DelegatingCtorDecls;
882
883 /// All the overriding functions seen during a class definition
884 /// that had their exception spec checks delayed, plus the overridden
885 /// function.
886 SmallVector<std::pair<const CXXMethodDecl*, const CXXMethodDecl*>, 2>
887 DelayedOverridingExceptionSpecChecks;
888
889 /// All the function redeclarations seen during a class definition that had
890 /// their exception spec checks delayed, plus the prior declaration they
891 /// should be checked against. Except during error recovery, the new decl
892 /// should always be a friend declaration, as that's the only valid way to
893 /// redeclare a special member before its class is complete.
894 SmallVector<std::pair<FunctionDecl*, FunctionDecl*>, 2>
895 DelayedEquivalentExceptionSpecChecks;
896
897 typedef llvm::MapVector<const FunctionDecl *,
898 std::unique_ptr<LateParsedTemplate>>
899 LateParsedTemplateMapT;
900 LateParsedTemplateMapT LateParsedTemplateMap;
901
902 /// Callback to the parser to parse templated functions when needed.
903 typedef void LateTemplateParserCB(void *P, LateParsedTemplate &LPT);
904 typedef void LateTemplateParserCleanupCB(void *P);
905 LateTemplateParserCB *LateTemplateParser;
906 LateTemplateParserCleanupCB *LateTemplateParserCleanup;
907 void *OpaqueParser;
908
909 void SetLateTemplateParser(LateTemplateParserCB *LTP,
910 LateTemplateParserCleanupCB *LTPCleanup,
911 void *P) {
912 LateTemplateParser = LTP;
913 LateTemplateParserCleanup = LTPCleanup;
914 OpaqueParser = P;
915 }
916
917 // Does the work necessary to deal with a SYCL kernel lambda. At the moment,
918 // this just marks the list of lambdas required to name the kernel.
919 void AddSYCLKernelLambda(const FunctionDecl *FD);
920
921 class DelayedDiagnostics;
922
923 class DelayedDiagnosticsState {
924 sema::DelayedDiagnosticPool *SavedPool;
925 friend class Sema::DelayedDiagnostics;
926 };
927 typedef DelayedDiagnosticsState ParsingDeclState;
928 typedef DelayedDiagnosticsState ProcessingContextState;
929
930 /// A class which encapsulates the logic for delaying diagnostics
931 /// during parsing and other processing.
932 class DelayedDiagnostics {
933 /// The current pool of diagnostics into which delayed
934 /// diagnostics should go.
935 sema::DelayedDiagnosticPool *CurPool;
936
937 public:
938 DelayedDiagnostics() : CurPool(nullptr) {}
939
940 /// Adds a delayed diagnostic.
941 void add(const sema::DelayedDiagnostic &diag); // in DelayedDiagnostic.h
942
943 /// Determines whether diagnostics should be delayed.
944 bool shouldDelayDiagnostics() { return CurPool != nullptr; }
945
946 /// Returns the current delayed-diagnostics pool.
947 sema::DelayedDiagnosticPool *getCurrentPool() const {
948 return CurPool;
949 }
950
951 /// Enter a new scope. Access and deprecation diagnostics will be
952 /// collected in this pool.
953 DelayedDiagnosticsState push(sema::DelayedDiagnosticPool &pool) {
954 DelayedDiagnosticsState state;
955 state.SavedPool = CurPool;
956 CurPool = &pool;
957 return state;
958 }
959
960 /// Leave a delayed-diagnostic state that was previously pushed.
961 /// Do not emit any of the diagnostics. This is performed as part
962 /// of the bookkeeping of popping a pool "properly".
963 void popWithoutEmitting(DelayedDiagnosticsState state) {
964 CurPool = state.SavedPool;
965 }
966
967 /// Enter a new scope where access and deprecation diagnostics are
968 /// not delayed.
969 DelayedDiagnosticsState pushUndelayed() {
970 DelayedDiagnosticsState state;
971 state.SavedPool = CurPool;
972 CurPool = nullptr;
973 return state;
974 }
975
976 /// Undo a previous pushUndelayed().
977 void popUndelayed(DelayedDiagnosticsState state) {
978 assert(CurPool == nullptr)((void)0);
979 CurPool = state.SavedPool;
980 }
981 } DelayedDiagnostics;
982
983 /// A RAII object to temporarily push a declaration context.
984 class ContextRAII {
985 private:
986 Sema &S;
987 DeclContext *SavedContext;
988 ProcessingContextState SavedContextState;
989 QualType SavedCXXThisTypeOverride;
990 unsigned SavedFunctionScopesStart;
991 unsigned SavedInventedParameterInfosStart;
992
993 public:
994 ContextRAII(Sema &S, DeclContext *ContextToPush, bool NewThisContext = true)
995 : S(S), SavedContext(S.CurContext),
996 SavedContextState(S.DelayedDiagnostics.pushUndelayed()),
997 SavedCXXThisTypeOverride(S.CXXThisTypeOverride),
998 SavedFunctionScopesStart(S.FunctionScopesStart),
999 SavedInventedParameterInfosStart(S.InventedParameterInfosStart)
1000 {
1001 assert(ContextToPush && "pushing null context")((void)0);
1002 S.CurContext = ContextToPush;
1003 if (NewThisContext)
1004 S.CXXThisTypeOverride = QualType();
1005 // Any saved FunctionScopes do not refer to this context.
1006 S.FunctionScopesStart = S.FunctionScopes.size();
1007 S.InventedParameterInfosStart = S.InventedParameterInfos.size();
1008 }
1009
1010 void pop() {
1011 if (!SavedContext) return;
1012 S.CurContext = SavedContext;
1013 S.DelayedDiagnostics.popUndelayed(SavedContextState);
1014 S.CXXThisTypeOverride = SavedCXXThisTypeOverride;
1015 S.FunctionScopesStart = SavedFunctionScopesStart;
1016 S.InventedParameterInfosStart = SavedInventedParameterInfosStart;
1017 SavedContext = nullptr;
1018 }
1019
1020 ~ContextRAII() {
1021 pop();
1022 }
1023 };
1024
1025 /// Whether the AST is currently being rebuilt to correct immediate
1026 /// invocations. Immediate invocation candidates and references to consteval
1027 /// functions aren't tracked when this is set.
1028 bool RebuildingImmediateInvocation = false;
1029
1030 /// Used to change context to isConstantEvaluated without pushing a heavy
1031 /// ExpressionEvaluationContextRecord object.
1032 bool isConstantEvaluatedOverride;
1033
1034 bool isConstantEvaluated() {
1035 return ExprEvalContexts.back().isConstantEvaluated() ||
1036 isConstantEvaluatedOverride;
1037 }
1038
1039 /// RAII object to handle the state changes required to synthesize
1040 /// a function body.
1041 class SynthesizedFunctionScope {
1042 Sema &S;
1043 Sema::ContextRAII SavedContext;
1044 bool PushedCodeSynthesisContext = false;
1045
1046 public:
1047 SynthesizedFunctionScope(Sema &S, DeclContext *DC)
1048 : S(S), SavedContext(S, DC) {
1049 S.PushFunctionScope();
1050 S.PushExpressionEvaluationContext(
1051 Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1052 if (auto *FD = dyn_cast<FunctionDecl>(DC))
1053 FD->setWillHaveBody(true);
1054 else
1055 assert(isa<ObjCMethodDecl>(DC))((void)0);
1056 }
1057
1058 void addContextNote(SourceLocation UseLoc) {
1059 assert(!PushedCodeSynthesisContext)((void)0);
1060
1061 Sema::CodeSynthesisContext Ctx;
1062 Ctx.Kind = Sema::CodeSynthesisContext::DefiningSynthesizedFunction;
1063 Ctx.PointOfInstantiation = UseLoc;
1064 Ctx.Entity = cast<Decl>(S.CurContext);
1065 S.pushCodeSynthesisContext(Ctx);
1066
1067 PushedCodeSynthesisContext = true;
1068 }
1069
1070 ~SynthesizedFunctionScope() {
1071 if (PushedCodeSynthesisContext)
1072 S.popCodeSynthesisContext();
1073 if (auto *FD = dyn_cast<FunctionDecl>(S.CurContext))
1074 FD->setWillHaveBody(false);
1075 S.PopExpressionEvaluationContext();
1076 S.PopFunctionScopeInfo();
1077 }
1078 };
1079
1080 /// WeakUndeclaredIdentifiers - Identifiers contained in
1081 /// \#pragma weak before declared. rare. may alias another
1082 /// identifier, declared or undeclared
1083 llvm::MapVector<IdentifierInfo *, WeakInfo> WeakUndeclaredIdentifiers;
1084
1085 /// ExtnameUndeclaredIdentifiers - Identifiers contained in
1086 /// \#pragma redefine_extname before declared. Used in Solaris system headers
1087 /// to define functions that occur in multiple standards to call the version
1088 /// in the currently selected standard.
1089 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*> ExtnameUndeclaredIdentifiers;
1090
1091
1092 /// Load weak undeclared identifiers from the external source.
1093 void LoadExternalWeakUndeclaredIdentifiers();
1094
1095 /// WeakTopLevelDecl - Translation-unit scoped declarations generated by
1096 /// \#pragma weak during processing of other Decls.
1097 /// I couldn't figure out a clean way to generate these in-line, so
1098 /// we store them here and handle separately -- which is a hack.
1099 /// It would be best to refactor this.
1100 SmallVector<Decl*,2> WeakTopLevelDecl;
1101
1102 IdentifierResolver IdResolver;
1103
1104 /// Translation Unit Scope - useful to Objective-C actions that need
1105 /// to lookup file scope declarations in the "ordinary" C decl namespace.
1106 /// For example, user-defined classes, built-in "id" type, etc.
1107 Scope *TUScope;
1108
1109 /// The C++ "std" namespace, where the standard library resides.
1110 LazyDeclPtr StdNamespace;
1111
1112 /// The C++ "std::bad_alloc" class, which is defined by the C++
1113 /// standard library.
1114 LazyDeclPtr StdBadAlloc;
1115
1116 /// The C++ "std::align_val_t" enum class, which is defined by the C++
1117 /// standard library.
1118 LazyDeclPtr StdAlignValT;
1119
1120 /// The C++ "std::experimental" namespace, where the experimental parts
1121 /// of the standard library resides.
1122 NamespaceDecl *StdExperimentalNamespaceCache;
1123
1124 /// The C++ "std::initializer_list" template, which is defined in
1125 /// \<initializer_list>.
1126 ClassTemplateDecl *StdInitializerList;
1127
1128 /// The C++ "std::coroutine_traits" template, which is defined in
1129 /// \<coroutine_traits>
1130 ClassTemplateDecl *StdCoroutineTraitsCache;
1131
1132 /// The C++ "type_info" declaration, which is defined in \<typeinfo>.
1133 RecordDecl *CXXTypeInfoDecl;
1134
1135 /// The MSVC "_GUID" struct, which is defined in MSVC header files.
1136 RecordDecl *MSVCGuidDecl;
1137
1138 /// Caches identifiers/selectors for NSFoundation APIs.
1139 std::unique_ptr<NSAPI> NSAPIObj;
1140
1141 /// The declaration of the Objective-C NSNumber class.
1142 ObjCInterfaceDecl *NSNumberDecl;
1143
1144 /// The declaration of the Objective-C NSValue class.
1145 ObjCInterfaceDecl *NSValueDecl;
1146
1147 /// Pointer to NSNumber type (NSNumber *).
1148 QualType NSNumberPointer;
1149
1150 /// Pointer to NSValue type (NSValue *).
1151 QualType NSValuePointer;
1152
1153 /// The Objective-C NSNumber methods used to create NSNumber literals.
1154 ObjCMethodDecl *NSNumberLiteralMethods[NSAPI::NumNSNumberLiteralMethods];
1155
1156 /// The declaration of the Objective-C NSString class.
1157 ObjCInterfaceDecl *NSStringDecl;
1158
1159 /// Pointer to NSString type (NSString *).
1160 QualType NSStringPointer;
1161
1162 /// The declaration of the stringWithUTF8String: method.
1163 ObjCMethodDecl *StringWithUTF8StringMethod;
1164
1165 /// The declaration of the valueWithBytes:objCType: method.
1166 ObjCMethodDecl *ValueWithBytesObjCTypeMethod;
1167
1168 /// The declaration of the Objective-C NSArray class.
1169 ObjCInterfaceDecl *NSArrayDecl;
1170
1171 /// The declaration of the arrayWithObjects:count: method.
1172 ObjCMethodDecl *ArrayWithObjectsMethod;
1173
1174 /// The declaration of the Objective-C NSDictionary class.
1175 ObjCInterfaceDecl *NSDictionaryDecl;
1176
1177 /// The declaration of the dictionaryWithObjects:forKeys:count: method.
1178 ObjCMethodDecl *DictionaryWithObjectsMethod;
1179
1180 /// id<NSCopying> type.
1181 QualType QIDNSCopying;
1182
1183 /// will hold 'respondsToSelector:'
1184 Selector RespondsToSelectorSel;
1185
1186 /// A flag to remember whether the implicit forms of operator new and delete
1187 /// have been declared.
1188 bool GlobalNewDeleteDeclared;
1189
1190 /// Describes how the expressions currently being parsed are
1191 /// evaluated at run-time, if at all.
1192 enum class ExpressionEvaluationContext {
1193 /// The current expression and its subexpressions occur within an
1194 /// unevaluated operand (C++11 [expr]p7), such as the subexpression of
1195 /// \c sizeof, where the type of the expression may be significant but
1196 /// no code will be generated to evaluate the value of the expression at
1197 /// run time.
1198 Unevaluated,
1199
1200 /// The current expression occurs within a braced-init-list within
1201 /// an unevaluated operand. This is mostly like a regular unevaluated
1202 /// context, except that we still instantiate constexpr functions that are
1203 /// referenced here so that we can perform narrowing checks correctly.
1204 UnevaluatedList,
1205
1206 /// The current expression occurs within a discarded statement.
1207 /// This behaves largely similarly to an unevaluated operand in preventing
1208 /// definitions from being required, but not in other ways.
1209 DiscardedStatement,
1210
1211 /// The current expression occurs within an unevaluated
1212 /// operand that unconditionally permits abstract references to
1213 /// fields, such as a SIZE operator in MS-style inline assembly.
1214 UnevaluatedAbstract,
1215
1216 /// The current context is "potentially evaluated" in C++11 terms,
1217 /// but the expression is evaluated at compile-time (like the values of
1218 /// cases in a switch statement).
1219 ConstantEvaluated,
1220
1221 /// The current expression is potentially evaluated at run time,
1222 /// which means that code may be generated to evaluate the value of the
1223 /// expression at run time.
1224 PotentiallyEvaluated,
1225
1226 /// The current expression is potentially evaluated, but any
1227 /// declarations referenced inside that expression are only used if
1228 /// in fact the current expression is used.
1229 ///
1230 /// This value is used when parsing default function arguments, for which
1231 /// we would like to provide diagnostics (e.g., passing non-POD arguments
1232 /// through varargs) but do not want to mark declarations as "referenced"
1233 /// until the default argument is used.
1234 PotentiallyEvaluatedIfUsed
1235 };
1236
1237 using ImmediateInvocationCandidate = llvm::PointerIntPair<ConstantExpr *, 1>;
1238
1239 /// Data structure used to record current or nested
1240 /// expression evaluation contexts.
1241 struct ExpressionEvaluationContextRecord {
1242 /// The expression evaluation context.
1243 ExpressionEvaluationContext Context;
1244
1245 /// Whether the enclosing context needed a cleanup.
1246 CleanupInfo ParentCleanup;
1247
1248 /// The number of active cleanup objects when we entered
1249 /// this expression evaluation context.
1250 unsigned NumCleanupObjects;
1251
1252 /// The number of typos encountered during this expression evaluation
1253 /// context (i.e. the number of TypoExprs created).
1254 unsigned NumTypos;
1255
1256 MaybeODRUseExprSet SavedMaybeODRUseExprs;
1257
1258 /// The lambdas that are present within this context, if it
1259 /// is indeed an unevaluated context.
1260 SmallVector<LambdaExpr *, 2> Lambdas;
1261
1262 /// The declaration that provides context for lambda expressions
1263 /// and block literals if the normal declaration context does not
1264 /// suffice, e.g., in a default function argument.
1265 Decl *ManglingContextDecl;
1266
1267 /// If we are processing a decltype type, a set of call expressions
1268 /// for which we have deferred checking the completeness of the return type.
1269 SmallVector<CallExpr *, 8> DelayedDecltypeCalls;
1270
1271 /// If we are processing a decltype type, a set of temporary binding
1272 /// expressions for which we have deferred checking the destructor.
1273 SmallVector<CXXBindTemporaryExpr *, 8> DelayedDecltypeBinds;
1274
1275 llvm::SmallPtrSet<const Expr *, 8> PossibleDerefs;
1276
1277 /// Expressions appearing as the LHS of a volatile assignment in this
1278 /// context. We produce a warning for these when popping the context if
1279 /// they are not discarded-value expressions nor unevaluated operands.
1280 SmallVector<Expr*, 2> VolatileAssignmentLHSs;
1281
1282 /// Set of candidates for starting an immediate invocation.
1283 llvm::SmallVector<ImmediateInvocationCandidate, 4> ImmediateInvocationCandidates;
1284
1285 /// Set of DeclRefExprs referencing a consteval function when used in a
1286 /// context not already known to be immediately invoked.
1287 llvm::SmallPtrSet<DeclRefExpr *, 4> ReferenceToConsteval;
1288
1289 /// \brief Describes whether we are in an expression constext which we have
1290 /// to handle differently.
1291 enum ExpressionKind {
1292 EK_Decltype, EK_TemplateArgument, EK_Other
1293 } ExprContext;
1294
1295 ExpressionEvaluationContextRecord(ExpressionEvaluationContext Context,
1296 unsigned NumCleanupObjects,
1297 CleanupInfo ParentCleanup,
1298 Decl *ManglingContextDecl,
1299 ExpressionKind ExprContext)
1300 : Context(Context), ParentCleanup(ParentCleanup),
1301 NumCleanupObjects(NumCleanupObjects), NumTypos(0),
1302 ManglingContextDecl(ManglingContextDecl), ExprContext(ExprContext) {}
1303
1304 bool isUnevaluated() const {
1305 return Context == ExpressionEvaluationContext::Unevaluated ||
1306 Context == ExpressionEvaluationContext::UnevaluatedAbstract ||
1307 Context == ExpressionEvaluationContext::UnevaluatedList;
1308 }
1309 bool isConstantEvaluated() const {
1310 return Context == ExpressionEvaluationContext::ConstantEvaluated;
1311 }
1312 };
1313
1314 /// A stack of expression evaluation contexts.
1315 SmallVector<ExpressionEvaluationContextRecord, 8> ExprEvalContexts;
1316
1317 /// Emit a warning for all pending noderef expressions that we recorded.
1318 void WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec);
1319
1320 /// Compute the mangling number context for a lambda expression or
1321 /// block literal. Also return the extra mangling decl if any.
1322 ///
1323 /// \param DC - The DeclContext containing the lambda expression or
1324 /// block literal.
1325 std::tuple<MangleNumberingContext *, Decl *>
1326 getCurrentMangleNumberContext(const DeclContext *DC);
1327
1328
1329 /// SpecialMemberOverloadResult - The overloading result for a special member
1330 /// function.
1331 ///
1332 /// This is basically a wrapper around PointerIntPair. The lowest bits of the
1333 /// integer are used to determine whether overload resolution succeeded.
1334 class SpecialMemberOverloadResult {
1335 public:
1336 enum Kind {
1337 NoMemberOrDeleted,
1338 Ambiguous,
1339 Success
1340 };
1341
1342 private:
1343 llvm::PointerIntPair<CXXMethodDecl*, 2> Pair;
1344
1345 public:
1346 SpecialMemberOverloadResult() : Pair() {}
1347 SpecialMemberOverloadResult(CXXMethodDecl *MD)
1348 : Pair(MD, MD->isDeleted() ? NoMemberOrDeleted : Success) {}
1349
1350 CXXMethodDecl *getMethod() const { return Pair.getPointer(); }
1351 void setMethod(CXXMethodDecl *MD) { Pair.setPointer(MD); }
1352
1353 Kind getKind() const { return static_cast<Kind>(Pair.getInt()); }
1354 void setKind(Kind K) { Pair.setInt(K); }
1355 };
1356
1357 class SpecialMemberOverloadResultEntry
1358 : public llvm::FastFoldingSetNode,
1359 public SpecialMemberOverloadResult {
1360 public:
1361 SpecialMemberOverloadResultEntry(const llvm::FoldingSetNodeID &ID)
1362 : FastFoldingSetNode(ID)
1363 {}
1364 };
1365
1366 /// A cache of special member function overload resolution results
1367 /// for C++ records.
1368 llvm::FoldingSet<SpecialMemberOverloadResultEntry> SpecialMemberCache;
1369
1370 /// A cache of the flags available in enumerations with the flag_bits
1371 /// attribute.
1372 mutable llvm::DenseMap<const EnumDecl*, llvm::APInt> FlagBitsCache;
1373
1374 /// The kind of translation unit we are processing.
1375 ///
1376 /// When we're processing a complete translation unit, Sema will perform
1377 /// end-of-translation-unit semantic tasks (such as creating
1378 /// initializers for tentative definitions in C) once parsing has
1379 /// completed. Modules and precompiled headers perform different kinds of
1380 /// checks.
1381 const TranslationUnitKind TUKind;
1382
1383 llvm::BumpPtrAllocator BumpAlloc;
1384
1385 /// The number of SFINAE diagnostics that have been trapped.
1386 unsigned NumSFINAEErrors;
1387
1388 typedef llvm::DenseMap<ParmVarDecl *, llvm::TinyPtrVector<ParmVarDecl *>>
1389 UnparsedDefaultArgInstantiationsMap;
1390
1391 /// A mapping from parameters with unparsed default arguments to the
1392 /// set of instantiations of each parameter.
1393 ///
1394 /// This mapping is a temporary data structure used when parsing
1395 /// nested class templates or nested classes of class templates,
1396 /// where we might end up instantiating an inner class before the
1397 /// default arguments of its methods have been parsed.
1398 UnparsedDefaultArgInstantiationsMap UnparsedDefaultArgInstantiations;
1399
1400 // Contains the locations of the beginning of unparsed default
1401 // argument locations.
1402 llvm::DenseMap<ParmVarDecl *, SourceLocation> UnparsedDefaultArgLocs;
1403
1404 /// UndefinedInternals - all the used, undefined objects which require a
1405 /// definition in this translation unit.
1406 llvm::MapVector<NamedDecl *, SourceLocation> UndefinedButUsed;
1407
1408 /// Determine if VD, which must be a variable or function, is an external
1409 /// symbol that nonetheless can't be referenced from outside this translation
1410 /// unit because its type has no linkage and it's not extern "C".
1411 bool isExternalWithNoLinkageType(ValueDecl *VD);
1412
1413 /// Obtain a sorted list of functions that are undefined but ODR-used.
1414 void getUndefinedButUsed(
1415 SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined);
1416
1417 /// Retrieves list of suspicious delete-expressions that will be checked at
1418 /// the end of translation unit.
1419 const llvm::MapVector<FieldDecl *, DeleteLocs> &
1420 getMismatchingDeleteExpressions() const;
1421
1422 typedef std::pair<ObjCMethodList, ObjCMethodList> GlobalMethods;
1423 typedef llvm::DenseMap<Selector, GlobalMethods> GlobalMethodPool;
1424
1425 /// Method Pool - allows efficient lookup when typechecking messages to "id".
1426 /// We need to maintain a list, since selectors can have differing signatures
1427 /// across classes. In Cocoa, this happens to be extremely uncommon (only 1%
1428 /// of selectors are "overloaded").
1429 /// At the head of the list it is recorded whether there were 0, 1, or >= 2
1430 /// methods inside categories with a particular selector.
1431 GlobalMethodPool MethodPool;
1432
1433 /// Method selectors used in a \@selector expression. Used for implementation
1434 /// of -Wselector.
1435 llvm::MapVector<Selector, SourceLocation> ReferencedSelectors;
1436
1437 /// List of SourceLocations where 'self' is implicitly retained inside a
1438 /// block.
1439 llvm::SmallVector<std::pair<SourceLocation, const BlockDecl *>, 1>
1440 ImplicitlyRetainedSelfLocs;
1441
1442 /// Kinds of C++ special members.
1443 enum CXXSpecialMember {
1444 CXXDefaultConstructor,
1445 CXXCopyConstructor,
1446 CXXMoveConstructor,
1447 CXXCopyAssignment,
1448 CXXMoveAssignment,
1449 CXXDestructor,
1450 CXXInvalid
1451 };
1452
1453 typedef llvm::PointerIntPair<CXXRecordDecl *, 3, CXXSpecialMember>
1454 SpecialMemberDecl;
1455
1456 /// The C++ special members which we are currently in the process of
1457 /// declaring. If this process recursively triggers the declaration of the
1458 /// same special member, we should act as if it is not yet declared.
1459 llvm::SmallPtrSet<SpecialMemberDecl, 4> SpecialMembersBeingDeclared;
1460
1461 /// Kinds of defaulted comparison operator functions.
1462 enum class DefaultedComparisonKind : unsigned char {
1463 /// This is not a defaultable comparison operator.
1464 None,
1465 /// This is an operator== that should be implemented as a series of
1466 /// subobject comparisons.
1467 Equal,
1468 /// This is an operator<=> that should be implemented as a series of
1469 /// subobject comparisons.
1470 ThreeWay,
1471 /// This is an operator!= that should be implemented as a rewrite in terms
1472 /// of a == comparison.
1473 NotEqual,
1474 /// This is an <, <=, >, or >= that should be implemented as a rewrite in
1475 /// terms of a <=> comparison.
1476 Relational,
1477 };
1478
1479 /// The function definitions which were renamed as part of typo-correction
1480 /// to match their respective declarations. We want to keep track of them
1481 /// to ensure that we don't emit a "redefinition" error if we encounter a
1482 /// correctly named definition after the renamed definition.
1483 llvm::SmallPtrSet<const NamedDecl *, 4> TypoCorrectedFunctionDefinitions;
1484
1485 /// Stack of types that correspond to the parameter entities that are
1486 /// currently being copy-initialized. Can be empty.
1487 llvm::SmallVector<QualType, 4> CurrentParameterCopyTypes;
1488
1489 void ReadMethodPool(Selector Sel);
1490 void updateOutOfDateSelector(Selector Sel);
1491
1492 /// Private Helper predicate to check for 'self'.
1493 bool isSelfExpr(Expr *RExpr);
1494 bool isSelfExpr(Expr *RExpr, const ObjCMethodDecl *Method);
1495
1496 /// Cause the active diagnostic on the DiagosticsEngine to be
1497 /// emitted. This is closely coupled to the SemaDiagnosticBuilder class and
1498 /// should not be used elsewhere.
1499 void EmitCurrentDiagnostic(unsigned DiagID);
1500
1501 /// Records and restores the CurFPFeatures state on entry/exit of compound
1502 /// statements.
1503 class FPFeaturesStateRAII {
1504 public:
1505 FPFeaturesStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.CurFPFeatures) {
1506 OldOverrides = S.FpPragmaStack.CurrentValue;
1507 }
1508 ~FPFeaturesStateRAII() {
1509 S.CurFPFeatures = OldFPFeaturesState;
1510 S.FpPragmaStack.CurrentValue = OldOverrides;
1511 }
1512 FPOptionsOverride getOverrides() { return OldOverrides; }
1513
1514 private:
1515 Sema& S;
1516 FPOptions OldFPFeaturesState;
1517 FPOptionsOverride OldOverrides;
1518 };
1519
1520 void addImplicitTypedef(StringRef Name, QualType T);
1521
1522 bool WarnedStackExhausted = false;
1523
1524 /// Increment when we find a reference; decrement when we find an ignored
1525 /// assignment. Ultimately the value is 0 if every reference is an ignored
1526 /// assignment.
1527 llvm::DenseMap<const VarDecl *, int> RefsMinusAssignments;
1528
1529 Optional<std::unique_ptr<DarwinSDKInfo>> CachedDarwinSDKInfo;
1530
1531public:
1532 Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer,
1533 TranslationUnitKind TUKind = TU_Complete,
1534 CodeCompleteConsumer *CompletionConsumer = nullptr);
1535 ~Sema();
1536
1537 /// Perform initialization that occurs after the parser has been
1538 /// initialized but before it parses anything.
1539 void Initialize();
1540
1541 /// This virtual key function only exists to limit the emission of debug info
1542 /// describing the Sema class. GCC and Clang only emit debug info for a class
1543 /// with a vtable when the vtable is emitted. Sema is final and not
1544 /// polymorphic, but the debug info size savings are so significant that it is
1545 /// worth adding a vtable just to take advantage of this optimization.
1546 virtual void anchor();
1547
1548 const LangOptions &getLangOpts() const { return LangOpts; }
1549 OpenCLOptions &getOpenCLOptions() { return OpenCLFeatures; }
1550 FPOptions &getCurFPFeatures() { return CurFPFeatures; }
1551
1552 DiagnosticsEngine &getDiagnostics() const { return Diags; }
1553 SourceManager &getSourceManager() const { return SourceMgr; }
1554 Preprocessor &getPreprocessor() const { return PP; }
1555 ASTContext &getASTContext() const { return Context; }
1556 ASTConsumer &getASTConsumer() const { return Consumer; }
1557 ASTMutationListener *getASTMutationListener() const;
1558 ExternalSemaSource* getExternalSource() const { return ExternalSource; }
1559 DarwinSDKInfo *getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc,
1560 StringRef Platform);
1561
1562 ///Registers an external source. If an external source already exists,
1563 /// creates a multiplex external source and appends to it.
1564 ///
1565 ///\param[in] E - A non-null external sema source.
1566 ///
1567 void addExternalSource(ExternalSemaSource *E);
1568
1569 void PrintStats() const;
1570
1571 /// Warn that the stack is nearly exhausted.
1572 void warnStackExhausted(SourceLocation Loc);
1573
1574 /// Run some code with "sufficient" stack space. (Currently, at least 256K is
1575 /// guaranteed). Produces a warning if we're low on stack space and allocates
1576 /// more in that case. Use this in code that may recurse deeply (for example,
1577 /// in template instantiation) to avoid stack overflow.
1578 void runWithSufficientStackSpace(SourceLocation Loc,
1579 llvm::function_ref<void()> Fn);
1580
1581 /// Helper class that creates diagnostics with optional
1582 /// template instantiation stacks.
1583 ///
1584 /// This class provides a wrapper around the basic DiagnosticBuilder
1585 /// class that emits diagnostics. ImmediateDiagBuilder is
1586 /// responsible for emitting the diagnostic (as DiagnosticBuilder
1587 /// does) and, if the diagnostic comes from inside a template
1588 /// instantiation, printing the template instantiation stack as
1589 /// well.
1590 class ImmediateDiagBuilder : public DiagnosticBuilder {
1591 Sema &SemaRef;
1592 unsigned DiagID;
1593
1594 public:
1595 ImmediateDiagBuilder(DiagnosticBuilder &DB, Sema &SemaRef, unsigned DiagID)
1596 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1597 ImmediateDiagBuilder(DiagnosticBuilder &&DB, Sema &SemaRef, unsigned DiagID)
1598 : DiagnosticBuilder(DB), SemaRef(SemaRef), DiagID(DiagID) {}
1599
1600 // This is a cunning lie. DiagnosticBuilder actually performs move
1601 // construction in its copy constructor (but due to varied uses, it's not
1602 // possible to conveniently express this as actual move construction). So
1603 // the default copy ctor here is fine, because the base class disables the
1604 // source anyway, so the user-defined ~ImmediateDiagBuilder is a safe no-op
1605 // in that case anwyay.
1606 ImmediateDiagBuilder(const ImmediateDiagBuilder &) = default;
1607
1608 ~ImmediateDiagBuilder() {
1609 // If we aren't active, there is nothing to do.
1610 if (!isActive()) return;
1611
1612 // Otherwise, we need to emit the diagnostic. First clear the diagnostic
1613 // builder itself so it won't emit the diagnostic in its own destructor.
1614 //
1615 // This seems wasteful, in that as written the DiagnosticBuilder dtor will
1616 // do its own needless checks to see if the diagnostic needs to be
1617 // emitted. However, because we take care to ensure that the builder
1618 // objects never escape, a sufficiently smart compiler will be able to
1619 // eliminate that code.
1620 Clear();
1621
1622 // Dispatch to Sema to emit the diagnostic.
1623 SemaRef.EmitCurrentDiagnostic(DiagID);
1624 }
1625
1626 /// Teach operator<< to produce an object of the correct type.
1627 template <typename T>
1628 friend const ImmediateDiagBuilder &
1629 operator<<(const ImmediateDiagBuilder &Diag, const T &Value) {
1630 const DiagnosticBuilder &BaseDiag = Diag;
1631 BaseDiag << Value;
1632 return Diag;
1633 }
1634
1635 // It is necessary to limit this to rvalue reference to avoid calling this
1636 // function with a bitfield lvalue argument since non-const reference to
1637 // bitfield is not allowed.
1638 template <typename T, typename = typename std::enable_if<
1639 !std::is_lvalue_reference<T>::value>::type>
1640 const ImmediateDiagBuilder &operator<<(T &&V) const {
1641 const DiagnosticBuilder &BaseDiag = *this;
1642 BaseDiag << std::move(V);
1643 return *this;
1644 }
1645 };
1646
1647 /// A generic diagnostic builder for errors which may or may not be deferred.
1648 ///
1649 /// In CUDA, there exist constructs (e.g. variable-length arrays, try/catch)
1650 /// which are not allowed to appear inside __device__ functions and are
1651 /// allowed to appear in __host__ __device__ functions only if the host+device
1652 /// function is never codegen'ed.
1653 ///
1654 /// To handle this, we use the notion of "deferred diagnostics", where we
1655 /// attach a diagnostic to a FunctionDecl that's emitted iff it's codegen'ed.
1656 ///
1657 /// This class lets you emit either a regular diagnostic, a deferred
1658 /// diagnostic, or no diagnostic at all, according to an argument you pass to
1659 /// its constructor, thus simplifying the process of creating these "maybe
1660 /// deferred" diagnostics.
1661 class SemaDiagnosticBuilder {
1662 public:
1663 enum Kind {
1664 /// Emit no diagnostics.
1665 K_Nop,
1666 /// Emit the diagnostic immediately (i.e., behave like Sema::Diag()).
1667 K_Immediate,
1668 /// Emit the diagnostic immediately, and, if it's a warning or error, also
1669 /// emit a call stack showing how this function can be reached by an a
1670 /// priori known-emitted function.
1671 K_ImmediateWithCallStack,
1672 /// Create a deferred diagnostic, which is emitted only if the function
1673 /// it's attached to is codegen'ed. Also emit a call stack as with
1674 /// K_ImmediateWithCallStack.
1675 K_Deferred
1676 };
1677
1678 SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID,
1679 FunctionDecl *Fn, Sema &S);
1680 SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D);
1681 SemaDiagnosticBuilder(const SemaDiagnosticBuilder &) = default;
1682 ~SemaDiagnosticBuilder();
1683
1684 bool isImmediate() const { return ImmediateDiag.hasValue(); }
1685
1686 /// Convertible to bool: True if we immediately emitted an error, false if
1687 /// we didn't emit an error or we created a deferred error.
1688 ///
1689 /// Example usage:
1690 ///
1691 /// if (SemaDiagnosticBuilder(...) << foo << bar)
1692 /// return ExprError();
1693 ///
1694 /// But see CUDADiagIfDeviceCode() and CUDADiagIfHostCode() -- you probably
1695 /// want to use these instead of creating a SemaDiagnosticBuilder yourself.
1696 operator bool() const { return isImmediate(); }
1697
1698 template <typename T>
1699 friend const SemaDiagnosticBuilder &
1700 operator<<(const SemaDiagnosticBuilder &Diag, const T &Value) {
1701 if (Diag.ImmediateDiag.hasValue())
1702 *Diag.ImmediateDiag << Value;
1703 else if (Diag.PartialDiagId.hasValue())
1704 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second
1705 << Value;
1706 return Diag;
1707 }
1708
1709 // It is necessary to limit this to rvalue reference to avoid calling this
1710 // function with a bitfield lvalue argument since non-const reference to
1711 // bitfield is not allowed.
1712 template <typename T, typename = typename std::enable_if<
1713 !std::is_lvalue_reference<T>::value>::type>
1714 const SemaDiagnosticBuilder &operator<<(T &&V) const {
1715 if (ImmediateDiag.hasValue())
1716 *ImmediateDiag << std::move(V);
1717 else if (PartialDiagId.hasValue())
1718 S.DeviceDeferredDiags[Fn][*PartialDiagId].second << std::move(V);
1719 return *this;
1720 }
1721
1722 friend const SemaDiagnosticBuilder &
1723 operator<<(const SemaDiagnosticBuilder &Diag, const PartialDiagnostic &PD) {
1724 if (Diag.ImmediateDiag.hasValue())
1725 PD.Emit(*Diag.ImmediateDiag);
1726 else if (Diag.PartialDiagId.hasValue())
1727 Diag.S.DeviceDeferredDiags[Diag.Fn][*Diag.PartialDiagId].second = PD;
1728 return Diag;
1729 }
1730
1731 void AddFixItHint(const FixItHint &Hint) const {
1732 if (ImmediateDiag.hasValue())
1733 ImmediateDiag->AddFixItHint(Hint);
1734 else if (PartialDiagId.hasValue())
1735 S.DeviceDeferredDiags[Fn][*PartialDiagId].second.AddFixItHint(Hint);
1736 }
1737
1738 friend ExprResult ExprError(const SemaDiagnosticBuilder &) {
1739 return ExprError();
1740 }
1741 friend StmtResult StmtError(const SemaDiagnosticBuilder &) {
1742 return StmtError();
1743 }
1744 operator ExprResult() const { return ExprError(); }
1745 operator StmtResult() const { return StmtError(); }
1746 operator TypeResult() const { return TypeError(); }
1747 operator DeclResult() const { return DeclResult(true); }
1748 operator MemInitResult() const { return MemInitResult(true); }
1749
1750 private:
1751 Sema &S;
1752 SourceLocation Loc;
1753 unsigned DiagID;
1754 FunctionDecl *Fn;
1755 bool ShowCallStack;
1756
1757 // Invariant: At most one of these Optionals has a value.
1758 // FIXME: Switch these to a Variant once that exists.
1759 llvm::Optional<ImmediateDiagBuilder> ImmediateDiag;
1760 llvm::Optional<unsigned> PartialDiagId;
1761 };
1762
1763 /// Is the last error level diagnostic immediate. This is used to determined
1764 /// whether the next info diagnostic should be immediate.
1765 bool IsLastErrorImmediate = true;
1766
1767 /// Emit a diagnostic.
1768 SemaDiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID,
1769 bool DeferHint = false);
1770
1771 /// Emit a partial diagnostic.
1772 SemaDiagnosticBuilder Diag(SourceLocation Loc, const PartialDiagnostic &PD,
1773 bool DeferHint = false);
1774
1775 /// Build a partial diagnostic.
1776 PartialDiagnostic PDiag(unsigned DiagID = 0); // in SemaInternal.h
1777
1778 /// Whether deferrable diagnostics should be deferred.
1779 bool DeferDiags = false;
1780
1781 /// RAII class to control scope of DeferDiags.
1782 class DeferDiagsRAII {
1783 Sema &S;
1784 bool SavedDeferDiags = false;
1785
1786 public:
1787 DeferDiagsRAII(Sema &S, bool DeferDiags)
1788 : S(S), SavedDeferDiags(S.DeferDiags) {
1789 S.DeferDiags = DeferDiags;
1790 }
1791 ~DeferDiagsRAII() { S.DeferDiags = SavedDeferDiags; }
1792 };
1793
1794 /// Whether uncompilable error has occurred. This includes error happens
1795 /// in deferred diagnostics.
1796 bool hasUncompilableErrorOccurred() const;
1797
1798 bool findMacroSpelling(SourceLocation &loc, StringRef name);
1799
1800 /// Get a string to suggest for zero-initialization of a type.
1801 std::string
1802 getFixItZeroInitializerForType(QualType T, SourceLocation Loc) const;
1803 std::string getFixItZeroLiteralForType(QualType T, SourceLocation Loc) const;
1804
1805 /// Calls \c Lexer::getLocForEndOfToken()
1806 SourceLocation getLocForEndOfToken(SourceLocation Loc, unsigned Offset = 0);
1807
1808 /// Retrieve the module loader associated with the preprocessor.
1809 ModuleLoader &getModuleLoader() const;
1810
1811 /// Invent a new identifier for parameters of abbreviated templates.
1812 IdentifierInfo *
1813 InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName,
1814 unsigned Index);
1815
1816 void emitAndClearUnusedLocalTypedefWarnings();
1817
1818 private:
1819 /// Function or variable declarations to be checked for whether the deferred
1820 /// diagnostics should be emitted.
1821 llvm::SmallSetVector<Decl *, 4> DeclsToCheckForDeferredDiags;
1822
1823 public:
1824 // Emit all deferred diagnostics.
1825 void emitDeferredDiags();
1826
1827 enum TUFragmentKind {
1828 /// The global module fragment, between 'module;' and a module-declaration.
1829 Global,
1830 /// A normal translation unit fragment. For a non-module unit, this is the
1831 /// entire translation unit. Otherwise, it runs from the module-declaration
1832 /// to the private-module-fragment (if any) or the end of the TU (if not).
1833 Normal,
1834 /// The private module fragment, between 'module :private;' and the end of
1835 /// the translation unit.
1836 Private
1837 };
1838
1839 void ActOnStartOfTranslationUnit();
1840 void ActOnEndOfTranslationUnit();
1841 void ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind);
1842
1843 void CheckDelegatingCtorCycles();
1844
1845 Scope *getScopeForContext(DeclContext *Ctx);
1846
1847 void PushFunctionScope();
1848 void PushBlockScope(Scope *BlockScope, BlockDecl *Block);
1849 sema::LambdaScopeInfo *PushLambdaScope();
1850
1851 /// This is used to inform Sema what the current TemplateParameterDepth
1852 /// is during Parsing. Currently it is used to pass on the depth
1853 /// when parsing generic lambda 'auto' parameters.
1854 void RecordParsingTemplateParameterDepth(unsigned Depth);
1855
1856 void PushCapturedRegionScope(Scope *RegionScope, CapturedDecl *CD,
1857 RecordDecl *RD, CapturedRegionKind K,
1858 unsigned OpenMPCaptureLevel = 0);
1859
1860 /// Custom deleter to allow FunctionScopeInfos to be kept alive for a short
1861 /// time after they've been popped.
1862 class PoppedFunctionScopeDeleter {
1863 Sema *Self;
1864
1865 public:
1866 explicit PoppedFunctionScopeDeleter(Sema *Self) : Self(Self) {}
1867 void operator()(sema::FunctionScopeInfo *Scope) const;
1868 };
1869
1870 using PoppedFunctionScopePtr =
1871 std::unique_ptr<sema::FunctionScopeInfo, PoppedFunctionScopeDeleter>;
1872
1873 PoppedFunctionScopePtr
1874 PopFunctionScopeInfo(const sema::AnalysisBasedWarnings::Policy *WP = nullptr,
1875 const Decl *D = nullptr,
1876 QualType BlockType = QualType());
1877
1878 sema::FunctionScopeInfo *getCurFunction() const {
1879 return FunctionScopes.empty() ? nullptr : FunctionScopes.back();
1880 }
1881
1882 sema::FunctionScopeInfo *getEnclosingFunction() const;
1883
1884 void setFunctionHasBranchIntoScope();
1885 void setFunctionHasBranchProtectedScope();
1886 void setFunctionHasIndirectGoto();
1887 void setFunctionHasMustTail();
1888
1889 void PushCompoundScope(bool IsStmtExpr);
1890 void PopCompoundScope();
1891
1892 sema::CompoundScopeInfo &getCurCompoundScope() const;
1893
1894 bool hasAnyUnrecoverableErrorsInThisFunction() const;
1895
1896 /// Retrieve the current block, if any.
1897 sema::BlockScopeInfo *getCurBlock();
1898
1899 /// Get the innermost lambda enclosing the current location, if any. This
1900 /// looks through intervening non-lambda scopes such as local functions and
1901 /// blocks.
1902 sema::LambdaScopeInfo *getEnclosingLambda() const;
1903
1904 /// Retrieve the current lambda scope info, if any.
1905 /// \param IgnoreNonLambdaCapturingScope true if should find the top-most
1906 /// lambda scope info ignoring all inner capturing scopes that are not
1907 /// lambda scopes.
1908 sema::LambdaScopeInfo *
1909 getCurLambda(bool IgnoreNonLambdaCapturingScope = false);
1910
1911 /// Retrieve the current generic lambda info, if any.
1912 sema::LambdaScopeInfo *getCurGenericLambda();
1913
1914 /// Retrieve the current captured region, if any.
1915 sema::CapturedRegionScopeInfo *getCurCapturedRegion();
1916
1917 /// Retrieve the current function, if any, that should be analyzed for
1918 /// potential availability violations.
1919 sema::FunctionScopeInfo *getCurFunctionAvailabilityContext();
1920
1921 /// WeakTopLevelDeclDecls - access to \#pragma weak-generated Decls
1922 SmallVectorImpl<Decl *> &WeakTopLevelDecls() { return WeakTopLevelDecl; }
1923
1924 /// Called before parsing a function declarator belonging to a function
1925 /// declaration.
1926 void ActOnStartFunctionDeclarationDeclarator(Declarator &D,
1927 unsigned TemplateParameterDepth);
1928
1929 /// Called after parsing a function declarator belonging to a function
1930 /// declaration.
1931 void ActOnFinishFunctionDeclarationDeclarator(Declarator &D);
1932
1933 void ActOnComment(SourceRange Comment);
1934
1935 //===--------------------------------------------------------------------===//
1936 // Type Analysis / Processing: SemaType.cpp.
1937 //
1938
1939 QualType BuildQualifiedType(QualType T, SourceLocation Loc, Qualifiers Qs,
1940 const DeclSpec *DS = nullptr);
1941 QualType BuildQualifiedType(QualType T, SourceLocation Loc, unsigned CVRA,
1942 const DeclSpec *DS = nullptr);
1943 QualType BuildPointerType(QualType T,
1944 SourceLocation Loc, DeclarationName Entity);
1945 QualType BuildReferenceType(QualType T, bool LValueRef,
1946 SourceLocation Loc, DeclarationName Entity);
1947 QualType BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1948 Expr *ArraySize, unsigned Quals,
1949 SourceRange Brackets, DeclarationName Entity);
1950 QualType BuildVectorType(QualType T, Expr *VecSize, SourceLocation AttrLoc);
1951 QualType BuildExtVectorType(QualType T, Expr *ArraySize,
1952 SourceLocation AttrLoc);
1953 QualType BuildMatrixType(QualType T, Expr *NumRows, Expr *NumColumns,
1954 SourceLocation AttrLoc);
1955
1956 QualType BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
1957 SourceLocation AttrLoc);
1958
1959 /// Same as above, but constructs the AddressSpace index if not provided.
1960 QualType BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
1961 SourceLocation AttrLoc);
1962
1963 bool CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc);
1964
1965 bool CheckFunctionReturnType(QualType T, SourceLocation Loc);
1966
1967 /// Build a function type.
1968 ///
1969 /// This routine checks the function type according to C++ rules and
1970 /// under the assumption that the result type and parameter types have
1971 /// just been instantiated from a template. It therefore duplicates
1972 /// some of the behavior of GetTypeForDeclarator, but in a much
1973 /// simpler form that is only suitable for this narrow use case.
1974 ///
1975 /// \param T The return type of the function.
1976 ///
1977 /// \param ParamTypes The parameter types of the function. This array
1978 /// will be modified to account for adjustments to the types of the
1979 /// function parameters.
1980 ///
1981 /// \param Loc The location of the entity whose type involves this
1982 /// function type or, if there is no such entity, the location of the
1983 /// type that will have function type.
1984 ///
1985 /// \param Entity The name of the entity that involves the function
1986 /// type, if known.
1987 ///
1988 /// \param EPI Extra information about the function type. Usually this will
1989 /// be taken from an existing function with the same prototype.
1990 ///
1991 /// \returns A suitable function type, if there are no errors. The
1992 /// unqualified type will always be a FunctionProtoType.
1993 /// Otherwise, returns a NULL type.
1994 QualType BuildFunctionType(QualType T,
1995 MutableArrayRef<QualType> ParamTypes,
1996 SourceLocation Loc, DeclarationName Entity,
1997 const FunctionProtoType::ExtProtoInfo &EPI);
1998
1999 QualType BuildMemberPointerType(QualType T, QualType Class,
2000 SourceLocation Loc,
2001 DeclarationName Entity);
2002 QualType BuildBlockPointerType(QualType T,
2003 SourceLocation Loc, DeclarationName Entity);
2004 QualType BuildParenType(QualType T);
2005 QualType BuildAtomicType(QualType T, SourceLocation Loc);
2006 QualType BuildReadPipeType(QualType T,
2007 SourceLocation Loc);
2008 QualType BuildWritePipeType(QualType T,
2009 SourceLocation Loc);
2010 QualType BuildExtIntType(bool IsUnsigned, Expr *BitWidth, SourceLocation Loc);
2011
2012 TypeSourceInfo *GetTypeForDeclarator(Declarator &D, Scope *S);
2013 TypeSourceInfo *GetTypeForDeclaratorCast(Declarator &D, QualType FromTy);
2014
2015 /// Package the given type and TSI into a ParsedType.
2016 ParsedType CreateParsedType(QualType T, TypeSourceInfo *TInfo);
2017 DeclarationNameInfo GetNameForDeclarator(Declarator &D);
2018 DeclarationNameInfo GetNameFromUnqualifiedId(const UnqualifiedId &Name);
2019 static QualType GetTypeFromParser(ParsedType Ty,
2020 TypeSourceInfo **TInfo = nullptr);
2021 CanThrowResult canThrow(const Stmt *E);
2022 /// Determine whether the callee of a particular function call can throw.
2023 /// E, D and Loc are all optional.
2024 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
2025 SourceLocation Loc = SourceLocation());
2026 const FunctionProtoType *ResolveExceptionSpec(SourceLocation Loc,
2027 const FunctionProtoType *FPT);
2028 void UpdateExceptionSpec(FunctionDecl *FD,
2029 const FunctionProtoType::ExceptionSpecInfo &ESI);
2030 bool CheckSpecifiedExceptionType(QualType &T, SourceRange Range);
2031 bool CheckDistantExceptionSpec(QualType T);
2032 bool CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New);
2033 bool CheckEquivalentExceptionSpec(
2034 const FunctionProtoType *Old, SourceLocation OldLoc,
2035 const FunctionProtoType *New, SourceLocation NewLoc);
2036 bool CheckEquivalentExceptionSpec(
2037 const PartialDiagnostic &DiagID, const PartialDiagnostic & NoteID,
2038 const FunctionProtoType *Old, SourceLocation OldLoc,
2039 const FunctionProtoType *New, SourceLocation NewLoc);
2040 bool handlerCanCatch(QualType HandlerType, QualType ExceptionType);
2041 bool CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
2042 const PartialDiagnostic &NestedDiagID,
2043 const PartialDiagnostic &NoteID,
2044 const PartialDiagnostic &NoThrowDiagID,
2045 const FunctionProtoType *Superset,
2046 SourceLocation SuperLoc,
2047 const FunctionProtoType *Subset,
2048 SourceLocation SubLoc);
2049 bool CheckParamExceptionSpec(const PartialDiagnostic &NestedDiagID,
2050 const PartialDiagnostic &NoteID,
2051 const FunctionProtoType *Target,
2052 SourceLocation TargetLoc,
2053 const FunctionProtoType *Source,
2054 SourceLocation SourceLoc);
2055
2056 TypeResult ActOnTypeName(Scope *S, Declarator &D);
2057
2058 /// The parser has parsed the context-sensitive type 'instancetype'
2059 /// in an Objective-C message declaration. Return the appropriate type.
2060 ParsedType ActOnObjCInstanceType(SourceLocation Loc);
2061
2062 /// Abstract class used to diagnose incomplete types.
2063 struct TypeDiagnoser {
2064 TypeDiagnoser() {}
2065
2066 virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) = 0;
2067 virtual ~TypeDiagnoser() {}
2068 };
2069
2070 static int getPrintable(int I) { return I; }
2071 static unsigned getPrintable(unsigned I) { return I; }
2072 static bool getPrintable(bool B) { return B; }
2073 static const char * getPrintable(const char *S) { return S; }
2074 static StringRef getPrintable(StringRef S) { return S; }
2075 static const std::string &getPrintable(const std::string &S) { return S; }
2076 static const IdentifierInfo *getPrintable(const IdentifierInfo *II) {
2077 return II;
2078 }
2079 static DeclarationName getPrintable(DeclarationName N) { return N; }
2080 static QualType getPrintable(QualType T) { return T; }
2081 static SourceRange getPrintable(SourceRange R) { return R; }
2082 static SourceRange getPrintable(SourceLocation L) { return L; }
2083 static SourceRange getPrintable(const Expr *E) { return E->getSourceRange(); }
2084 static SourceRange getPrintable(TypeLoc TL) { return TL.getSourceRange();}
2085
2086 template <typename... Ts> class BoundTypeDiagnoser : public TypeDiagnoser {
2087 protected:
2088 unsigned DiagID;
2089 std::tuple<const Ts &...> Args;
2090
2091 template <std::size_t... Is>
2092 void emit(const SemaDiagnosticBuilder &DB,
2093 std::index_sequence<Is...>) const {
2094 // Apply all tuple elements to the builder in order.
2095 bool Dummy[] = {false, (DB << getPrintable(std::get<Is>(Args)))...};
2096 (void)Dummy;
2097 }
2098
2099 public:
2100 BoundTypeDiagnoser(unsigned DiagID, const Ts &...Args)
2101 : TypeDiagnoser(), DiagID(DiagID), Args(Args...) {
2102 assert(DiagID != 0 && "no diagnostic for type diagnoser")((void)0);
2103 }
2104
2105 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2106 const SemaDiagnosticBuilder &DB = S.Diag(Loc, DiagID);
2107 emit(DB, std::index_sequence_for<Ts...>());
2108 DB << T;
2109 }
2110 };
2111
2112 /// Do a check to make sure \p Name looks like a legal argument for the
2113 /// swift_name attribute applied to decl \p D. Raise a diagnostic if the name
2114 /// is invalid for the given declaration.
2115 ///
2116 /// \p AL is used to provide caret diagnostics in case of a malformed name.
2117 ///
2118 /// \returns true if the name is a valid swift name for \p D, false otherwise.
2119 bool DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc,
2120 const ParsedAttr &AL, bool IsAsync);
2121
2122 /// A derivative of BoundTypeDiagnoser for which the diagnostic's type
2123 /// parameter is preceded by a 0/1 enum that is 1 if the type is sizeless.
2124 /// For example, a diagnostic with no other parameters would generally have
2125 /// the form "...%select{incomplete|sizeless}0 type %1...".
2126 template <typename... Ts>
2127 class SizelessTypeDiagnoser : public BoundTypeDiagnoser<Ts...> {
2128 public:
2129 SizelessTypeDiagnoser(unsigned DiagID, const Ts &... Args)
2130 : BoundTypeDiagnoser<Ts...>(DiagID, Args...) {}
2131
2132 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
2133 const SemaDiagnosticBuilder &DB = S.Diag(Loc, this->DiagID);
2134 this->emit(DB, std::index_sequence_for<Ts...>());
2135 DB << T->isSizelessType() << T;
2136 }
2137 };
2138
2139 enum class CompleteTypeKind {
2140 /// Apply the normal rules for complete types. In particular,
2141 /// treat all sizeless types as incomplete.
2142 Normal,
2143
2144 /// Relax the normal rules for complete types so that they include
2145 /// sizeless built-in types.
2146 AcceptSizeless,
2147
2148 // FIXME: Eventually we should flip the default to Normal and opt in
2149 // to AcceptSizeless rather than opt out of it.
2150 Default = AcceptSizeless
2151 };
2152
2153private:
2154 /// Methods for marking which expressions involve dereferencing a pointer
2155 /// marked with the 'noderef' attribute. Expressions are checked bottom up as
2156 /// they are parsed, meaning that a noderef pointer may not be accessed. For
2157 /// example, in `&*p` where `p` is a noderef pointer, we will first parse the
2158 /// `*p`, but need to check that `address of` is called on it. This requires
2159 /// keeping a container of all pending expressions and checking if the address
2160 /// of them are eventually taken.
2161 void CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E);
2162 void CheckAddressOfNoDeref(const Expr *E);
2163 void CheckMemberAccessOfNoDeref(const MemberExpr *E);
2164
2165 bool RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
2166 CompleteTypeKind Kind, TypeDiagnoser *Diagnoser);
2167
2168 struct ModuleScope {
2169 SourceLocation BeginLoc;
2170 clang::Module *Module = nullptr;
2171 bool ModuleInterface = false;
2172 bool ImplicitGlobalModuleFragment = false;
2173 VisibleModuleSet OuterVisibleModules;
2174 };
2175 /// The modules we're currently parsing.
2176 llvm::SmallVector<ModuleScope, 16> ModuleScopes;
2177
2178 /// Namespace definitions that we will export when they finish.
2179 llvm::SmallPtrSet<const NamespaceDecl*, 8> DeferredExportedNamespaces;
2180
2181 /// Get the module whose scope we are currently within.
2182 Module *getCurrentModule() const {
2183 return ModuleScopes.empty() ? nullptr : ModuleScopes.back().Module;
2184 }
2185
2186 VisibleModuleSet VisibleModules;
2187
2188public:
2189 /// Get the module owning an entity.
2190 Module *getOwningModule(const Decl *Entity) {
2191 return Entity->getOwningModule();
2192 }
2193
2194 /// Make a merged definition of an existing hidden definition \p ND
2195 /// visible at the specified location.
2196 void makeMergedDefinitionVisible(NamedDecl *ND);
2197
2198 bool isModuleVisible(const Module *M, bool ModulePrivate = false);
2199
2200 // When loading a non-modular PCH files, this is used to restore module
2201 // visibility.
2202 void makeModuleVisible(Module *Mod, SourceLocation ImportLoc) {
2203 VisibleModules.setVisible(Mod, ImportLoc);
2204 }
2205
2206 /// Determine whether a declaration is visible to name lookup.
2207 bool isVisible(const NamedDecl *D) {
2208 return D->isUnconditionallyVisible() || isVisibleSlow(D);
2209 }
2210
2211 /// Determine whether any declaration of an entity is visible.
2212 bool
2213 hasVisibleDeclaration(const NamedDecl *D,
2214 llvm::SmallVectorImpl<Module *> *Modules = nullptr) {
2215 return isVisible(D) || hasVisibleDeclarationSlow(D, Modules);
2216 }
2217 bool hasVisibleDeclarationSlow(const NamedDecl *D,
2218 llvm::SmallVectorImpl<Module *> *Modules);
2219
2220 bool hasVisibleMergedDefinition(NamedDecl *Def);
2221 bool hasMergedDefinitionInCurrentModule(NamedDecl *Def);
2222
2223 /// Determine if \p D and \p Suggested have a structurally compatible
2224 /// layout as described in C11 6.2.7/1.
2225 bool hasStructuralCompatLayout(Decl *D, Decl *Suggested);
2226
2227 /// Determine if \p D has a visible definition. If not, suggest a declaration
2228 /// that should be made visible to expose the definition.
2229 bool hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
2230 bool OnlyNeedComplete = false);
2231 bool hasVisibleDefinition(const NamedDecl *D) {
2232 NamedDecl *Hidden;
2233 return hasVisibleDefinition(const_cast<NamedDecl*>(D), &Hidden);
2234 }
2235
2236 /// Determine if the template parameter \p D has a visible default argument.
2237 bool
2238 hasVisibleDefaultArgument(const NamedDecl *D,
2239 llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2240
2241 /// Determine if there is a visible declaration of \p D that is an explicit
2242 /// specialization declaration for a specialization of a template. (For a
2243 /// member specialization, use hasVisibleMemberSpecialization.)
2244 bool hasVisibleExplicitSpecialization(
2245 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2246
2247 /// Determine if there is a visible declaration of \p D that is a member
2248 /// specialization declaration (as opposed to an instantiated declaration).
2249 bool hasVisibleMemberSpecialization(
2250 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules = nullptr);
2251
2252 /// Determine if \p A and \p B are equivalent internal linkage declarations
2253 /// from different modules, and thus an ambiguity error can be downgraded to
2254 /// an extension warning.
2255 bool isEquivalentInternalLinkageDeclaration(const NamedDecl *A,
2256 const NamedDecl *B);
2257 void diagnoseEquivalentInternalLinkageDeclarations(
2258 SourceLocation Loc, const NamedDecl *D,
2259 ArrayRef<const NamedDecl *> Equiv);
2260
2261 bool isUsualDeallocationFunction(const CXXMethodDecl *FD);
2262
2263 bool isCompleteType(SourceLocation Loc, QualType T,
2264 CompleteTypeKind Kind = CompleteTypeKind::Default) {
2265 return !RequireCompleteTypeImpl(Loc, T, Kind, nullptr);
23
Assuming the condition is true
24
Returning the value 1, which participates in a condition later
2266 }
2267 bool RequireCompleteType(SourceLocation Loc, QualType T,
2268 CompleteTypeKind Kind, TypeDiagnoser &Diagnoser);
2269 bool RequireCompleteType(SourceLocation Loc, QualType T,
2270 CompleteTypeKind Kind, unsigned DiagID);
2271
2272 bool RequireCompleteType(SourceLocation Loc, QualType T,
2273 TypeDiagnoser &Diagnoser) {
2274 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, Diagnoser);
2275 }
2276 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID) {
2277 return RequireCompleteType(Loc, T, CompleteTypeKind::Default, DiagID);
2278 }
2279
2280 template <typename... Ts>
2281 bool RequireCompleteType(SourceLocation Loc, QualType T, unsigned DiagID,
2282 const Ts &...Args) {
2283 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2284 return RequireCompleteType(Loc, T, Diagnoser);
2285 }
2286
2287 template <typename... Ts>
2288 bool RequireCompleteSizedType(SourceLocation Loc, QualType T, unsigned DiagID,
2289 const Ts &... Args) {
2290 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2291 return RequireCompleteType(Loc, T, CompleteTypeKind::Normal, Diagnoser);
2292 }
2293
2294 /// Get the type of expression E, triggering instantiation to complete the
2295 /// type if necessary -- that is, if the expression refers to a templated
2296 /// static data member of incomplete array type.
2297 ///
2298 /// May still return an incomplete type if instantiation was not possible or
2299 /// if the type is incomplete for a different reason. Use
2300 /// RequireCompleteExprType instead if a diagnostic is expected for an
2301 /// incomplete expression type.
2302 QualType getCompletedType(Expr *E);
2303
2304 void completeExprArrayBound(Expr *E);
2305 bool RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
2306 TypeDiagnoser &Diagnoser);
2307 bool RequireCompleteExprType(Expr *E, unsigned DiagID);
2308
2309 template <typename... Ts>
2310 bool RequireCompleteExprType(Expr *E, unsigned DiagID, const Ts &...Args) {
2311 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2312 return RequireCompleteExprType(E, CompleteTypeKind::Default, Diagnoser);
2313 }
2314
2315 template <typename... Ts>
2316 bool RequireCompleteSizedExprType(Expr *E, unsigned DiagID,
2317 const Ts &... Args) {
2318 SizelessTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2319 return RequireCompleteExprType(E, CompleteTypeKind::Normal, Diagnoser);
2320 }
2321
2322 bool RequireLiteralType(SourceLocation Loc, QualType T,
2323 TypeDiagnoser &Diagnoser);
2324 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID);
2325
2326 template <typename... Ts>
2327 bool RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID,
2328 const Ts &...Args) {
2329 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
2330 return RequireLiteralType(Loc, T, Diagnoser);
2331 }
2332
2333 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
2334 const CXXScopeSpec &SS, QualType T,
2335 TagDecl *OwnedTagDecl = nullptr);
2336
2337 QualType getDecltypeForParenthesizedExpr(Expr *E);
2338 QualType BuildTypeofExprType(Expr *E, SourceLocation Loc);
2339 /// If AsUnevaluated is false, E is treated as though it were an evaluated
2340 /// context, such as when building a type for decltype(auto).
2341 QualType BuildDecltypeType(Expr *E, SourceLocation Loc,
2342 bool AsUnevaluated = true);
2343 QualType BuildUnaryTransformType(QualType BaseType,
2344 UnaryTransformType::UTTKind UKind,
2345 SourceLocation Loc);
2346
2347 //===--------------------------------------------------------------------===//
2348 // Symbol table / Decl tracking callbacks: SemaDecl.cpp.
2349 //
2350
2351 struct SkipBodyInfo {
2352 SkipBodyInfo()
2353 : ShouldSkip(false), CheckSameAsPrevious(false), Previous(nullptr),
2354 New(nullptr) {}
2355 bool ShouldSkip;
2356 bool CheckSameAsPrevious;
2357 NamedDecl *Previous;
2358 NamedDecl *New;
2359 };
2360
2361 DeclGroupPtrTy ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType = nullptr);
2362
2363 void DiagnoseUseOfUnimplementedSelectors();
2364
2365 bool isSimpleTypeSpecifier(tok::TokenKind Kind) const;
2366
2367 ParsedType getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
2368 Scope *S, CXXScopeSpec *SS = nullptr,
2369 bool isClassName = false, bool HasTrailingDot = false,
2370 ParsedType ObjectType = nullptr,
2371 bool IsCtorOrDtorName = false,
2372 bool WantNontrivialTypeSourceInfo = false,
2373 bool IsClassTemplateDeductionContext = true,
2374 IdentifierInfo **CorrectedII = nullptr);
2375 TypeSpecifierType isTagName(IdentifierInfo &II, Scope *S);
2376 bool isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S);
2377 void DiagnoseUnknownTypeName(IdentifierInfo *&II,
2378 SourceLocation IILoc,
2379 Scope *S,
2380 CXXScopeSpec *SS,
2381 ParsedType &SuggestedType,
2382 bool IsTemplateName = false);
2383
2384 /// Attempt to behave like MSVC in situations where lookup of an unqualified
2385 /// type name has failed in a dependent context. In these situations, we
2386 /// automatically form a DependentTypeName that will retry lookup in a related
2387 /// scope during instantiation.
2388 ParsedType ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
2389 SourceLocation NameLoc,
2390 bool IsTemplateTypeArg);
2391
2392 /// Describes the result of the name lookup and resolution performed
2393 /// by \c ClassifyName().
2394 enum NameClassificationKind {
2395 /// This name is not a type or template in this context, but might be
2396 /// something else.
2397 NC_Unknown,
2398 /// Classification failed; an error has been produced.
2399 NC_Error,
2400 /// The name has been typo-corrected to a keyword.
2401 NC_Keyword,
2402 /// The name was classified as a type.
2403 NC_Type,
2404 /// The name was classified as a specific non-type, non-template
2405 /// declaration. ActOnNameClassifiedAsNonType should be called to
2406 /// convert the declaration to an expression.
2407 NC_NonType,
2408 /// The name was classified as an ADL-only function name.
2409 /// ActOnNameClassifiedAsUndeclaredNonType should be called to convert the
2410 /// result to an expression.
2411 NC_UndeclaredNonType,
2412 /// The name denotes a member of a dependent type that could not be
2413 /// resolved. ActOnNameClassifiedAsDependentNonType should be called to
2414 /// convert the result to an expression.
2415 NC_DependentNonType,
2416 /// The name was classified as an overload set, and an expression
2417 /// representing that overload set has been formed.
2418 /// ActOnNameClassifiedAsOverloadSet should be called to form a suitable
2419 /// expression referencing the overload set.
2420 NC_OverloadSet,
2421 /// The name was classified as a template whose specializations are types.
2422 NC_TypeTemplate,
2423 /// The name was classified as a variable template name.
2424 NC_VarTemplate,
2425 /// The name was classified as a function template name.
2426 NC_FunctionTemplate,
2427 /// The name was classified as an ADL-only function template name.
2428 NC_UndeclaredTemplate,
2429 /// The name was classified as a concept name.
2430 NC_Concept,
2431 };
2432
2433 class NameClassification {
2434 NameClassificationKind Kind;
2435 union {
2436 ExprResult Expr;
2437 NamedDecl *NonTypeDecl;
2438 TemplateName Template;
2439 ParsedType Type;
2440 };
2441
2442 explicit NameClassification(NameClassificationKind Kind) : Kind(Kind) {}
2443
2444 public:
2445 NameClassification(ParsedType Type) : Kind(NC_Type), Type(Type) {}
2446
2447 NameClassification(const IdentifierInfo *Keyword) : Kind(NC_Keyword) {}
2448
2449 static NameClassification Error() {
2450 return NameClassification(NC_Error);
2451 }
2452
2453 static NameClassification Unknown() {
2454 return NameClassification(NC_Unknown);
2455 }
2456
2457 static NameClassification OverloadSet(ExprResult E) {
2458 NameClassification Result(NC_OverloadSet);
2459 Result.Expr = E;
2460 return Result;
2461 }
2462
2463 static NameClassification NonType(NamedDecl *D) {
2464 NameClassification Result(NC_NonType);
2465 Result.NonTypeDecl = D;
2466 return Result;
2467 }
2468
2469 static NameClassification UndeclaredNonType() {
2470 return NameClassification(NC_UndeclaredNonType);
2471 }
2472
2473 static NameClassification DependentNonType() {
2474 return NameClassification(NC_DependentNonType);
2475 }
2476
2477 static NameClassification TypeTemplate(TemplateName Name) {
2478 NameClassification Result(NC_TypeTemplate);
2479 Result.Template = Name;
2480 return Result;
2481 }
2482
2483 static NameClassification VarTemplate(TemplateName Name) {
2484 NameClassification Result(NC_VarTemplate);
2485 Result.Template = Name;
2486 return Result;
2487 }
2488
2489 static NameClassification FunctionTemplate(TemplateName Name) {
2490 NameClassification Result(NC_FunctionTemplate);
2491 Result.Template = Name;
2492 return Result;
2493 }
2494
2495 static NameClassification Concept(TemplateName Name) {
2496 NameClassification Result(NC_Concept);
2497 Result.Template = Name;
2498 return Result;
2499 }
2500
2501 static NameClassification UndeclaredTemplate(TemplateName Name) {
2502 NameClassification Result(NC_UndeclaredTemplate);
2503 Result.Template = Name;
2504 return Result;
2505 }
2506
2507 NameClassificationKind getKind() const { return Kind; }
2508
2509 ExprResult getExpression() const {
2510 assert(Kind == NC_OverloadSet)((void)0);
2511 return Expr;
2512 }
2513
2514 ParsedType getType() const {
2515 assert(Kind == NC_Type)((void)0);
2516 return Type;
2517 }
2518
2519 NamedDecl *getNonTypeDecl() const {
2520 assert(Kind == NC_NonType)((void)0);
2521 return NonTypeDecl;
2522 }
2523
2524 TemplateName getTemplateName() const {
2525 assert(Kind == NC_TypeTemplate || Kind == NC_FunctionTemplate ||((void)0)
2526 Kind == NC_VarTemplate || Kind == NC_Concept ||((void)0)
2527 Kind == NC_UndeclaredTemplate)((void)0);
2528 return Template;
2529 }
2530
2531 TemplateNameKind getTemplateNameKind() const {
2532 switch (Kind) {
2533 case NC_TypeTemplate:
2534 return TNK_Type_template;
2535 case NC_FunctionTemplate:
2536 return TNK_Function_template;
2537 case NC_VarTemplate:
2538 return TNK_Var_template;
2539 case NC_Concept:
2540 return TNK_Concept_template;
2541 case NC_UndeclaredTemplate:
2542 return TNK_Undeclared_template;
2543 default:
2544 llvm_unreachable("unsupported name classification.")__builtin_unreachable();
2545 }
2546 }
2547 };
2548
2549 /// Perform name lookup on the given name, classifying it based on
2550 /// the results of name lookup and the following token.
2551 ///
2552 /// This routine is used by the parser to resolve identifiers and help direct
2553 /// parsing. When the identifier cannot be found, this routine will attempt
2554 /// to correct the typo and classify based on the resulting name.
2555 ///
2556 /// \param S The scope in which we're performing name lookup.
2557 ///
2558 /// \param SS The nested-name-specifier that precedes the name.
2559 ///
2560 /// \param Name The identifier. If typo correction finds an alternative name,
2561 /// this pointer parameter will be updated accordingly.
2562 ///
2563 /// \param NameLoc The location of the identifier.
2564 ///
2565 /// \param NextToken The token following the identifier. Used to help
2566 /// disambiguate the name.
2567 ///
2568 /// \param CCC The correction callback, if typo correction is desired.
2569 NameClassification ClassifyName(Scope *S, CXXScopeSpec &SS,
2570 IdentifierInfo *&Name, SourceLocation NameLoc,
2571 const Token &NextToken,
2572 CorrectionCandidateCallback *CCC = nullptr);
2573
2574 /// Act on the result of classifying a name as an undeclared (ADL-only)
2575 /// non-type declaration.
2576 ExprResult ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
2577 SourceLocation NameLoc);
2578 /// Act on the result of classifying a name as an undeclared member of a
2579 /// dependent base class.
2580 ExprResult ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
2581 IdentifierInfo *Name,
2582 SourceLocation NameLoc,
2583 bool IsAddressOfOperand);
2584 /// Act on the result of classifying a name as a specific non-type
2585 /// declaration.
2586 ExprResult ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
2587 NamedDecl *Found,
2588 SourceLocation NameLoc,
2589 const Token &NextToken);
2590 /// Act on the result of classifying a name as an overload set.
2591 ExprResult ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *OverloadSet);
2592
2593 /// Describes the detailed kind of a template name. Used in diagnostics.
2594 enum class TemplateNameKindForDiagnostics {
2595 ClassTemplate,
2596 FunctionTemplate,
2597 VarTemplate,
2598 AliasTemplate,
2599 TemplateTemplateParam,
2600 Concept,
2601 DependentTemplate
2602 };
2603 TemplateNameKindForDiagnostics
2604 getTemplateNameKindForDiagnostics(TemplateName Name);
2605
2606 /// Determine whether it's plausible that E was intended to be a
2607 /// template-name.
2608 bool mightBeIntendedToBeTemplateName(ExprResult E, bool &Dependent) {
2609 if (!getLangOpts().CPlusPlus || E.isInvalid())
2610 return false;
2611 Dependent = false;
2612 if (auto *DRE = dyn_cast<DeclRefExpr>(E.get()))
2613 return !DRE->hasExplicitTemplateArgs();
2614 if (auto *ME = dyn_cast<MemberExpr>(E.get()))
2615 return !ME->hasExplicitTemplateArgs();
2616 Dependent = true;
2617 if (auto *DSDRE = dyn_cast<DependentScopeDeclRefExpr>(E.get()))
2618 return !DSDRE->hasExplicitTemplateArgs();
2619 if (auto *DSME = dyn_cast<CXXDependentScopeMemberExpr>(E.get()))
2620 return !DSME->hasExplicitTemplateArgs();
2621 // Any additional cases recognized here should also be handled by
2622 // diagnoseExprIntendedAsTemplateName.
2623 return false;
2624 }
2625 void diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
2626 SourceLocation Less,
2627 SourceLocation Greater);
2628
2629 void warnOnReservedIdentifier(const NamedDecl *D);
2630
2631 Decl *ActOnDeclarator(Scope *S, Declarator &D);
2632
2633 NamedDecl *HandleDeclarator(Scope *S, Declarator &D,
2634 MultiTemplateParamsArg TemplateParameterLists);
2635 bool tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
2636 QualType &T, SourceLocation Loc,
2637 unsigned FailedFoldDiagID);
2638 void RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S);
2639 bool DiagnoseClassNameShadow(DeclContext *DC, DeclarationNameInfo Info);
2640 bool diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
2641 DeclarationName Name, SourceLocation Loc,
2642 bool IsTemplateId);
2643 void
2644 diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2645 SourceLocation FallbackLoc,
2646 SourceLocation ConstQualLoc = SourceLocation(),
2647 SourceLocation VolatileQualLoc = SourceLocation(),
2648 SourceLocation RestrictQualLoc = SourceLocation(),
2649 SourceLocation AtomicQualLoc = SourceLocation(),
2650 SourceLocation UnalignedQualLoc = SourceLocation());
2651
2652 static bool adjustContextForLocalExternDecl(DeclContext *&DC);
2653 void DiagnoseFunctionSpecifiers(const DeclSpec &DS);
2654 NamedDecl *getShadowedDeclaration(const TypedefNameDecl *D,
2655 const LookupResult &R);
2656 NamedDecl *getShadowedDeclaration(const VarDecl *D, const LookupResult &R);
2657 NamedDecl *getShadowedDeclaration(const BindingDecl *D,
2658 const LookupResult &R);
2659 void CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
2660 const LookupResult &R);
2661 void CheckShadow(Scope *S, VarDecl *D);
2662
2663 /// Warn if 'E', which is an expression that is about to be modified, refers
2664 /// to a shadowing declaration.
2665 void CheckShadowingDeclModification(Expr *E, SourceLocation Loc);
2666
2667 void DiagnoseShadowingLambdaDecls(const sema::LambdaScopeInfo *LSI);
2668
2669private:
2670 /// Map of current shadowing declarations to shadowed declarations. Warn if
2671 /// it looks like the user is trying to modify the shadowing declaration.
2672 llvm::DenseMap<const NamedDecl *, const NamedDecl *> ShadowingDecls;
2673
2674public:
2675 void CheckCastAlign(Expr *Op, QualType T, SourceRange TRange);
2676 void handleTagNumbering(const TagDecl *Tag, Scope *TagScope);
2677 void setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
2678 TypedefNameDecl *NewTD);
2679 void CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *D);
2680 NamedDecl* ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2681 TypeSourceInfo *TInfo,
2682 LookupResult &Previous);
2683 NamedDecl* ActOnTypedefNameDecl(Scope* S, DeclContext* DC, TypedefNameDecl *D,
2684 LookupResult &Previous, bool &Redeclaration);
2685 NamedDecl *ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2686 TypeSourceInfo *TInfo,
2687 LookupResult &Previous,
2688 MultiTemplateParamsArg TemplateParamLists,
2689 bool &AddToScope,
2690 ArrayRef<BindingDecl *> Bindings = None);
2691 NamedDecl *
2692 ActOnDecompositionDeclarator(Scope *S, Declarator &D,
2693 MultiTemplateParamsArg TemplateParamLists);
2694 // Returns true if the variable declaration is a redeclaration
2695 bool CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous);
2696 void CheckVariableDeclarationType(VarDecl *NewVD);
2697 bool DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
2698 Expr *Init);
2699 void CheckCompleteVariableDeclaration(VarDecl *VD);
2700 void CheckCompleteDecompositionDeclaration(DecompositionDecl *DD);
2701 void MaybeSuggestAddingStaticToDecl(const FunctionDecl *D);
2702
2703 NamedDecl* ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2704 TypeSourceInfo *TInfo,
2705 LookupResult &Previous,
2706 MultiTemplateParamsArg TemplateParamLists,
2707 bool &AddToScope);
2708 bool AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD);
2709
2710 enum class CheckConstexprKind {
2711 /// Diagnose issues that are non-constant or that are extensions.
2712 Diagnose,
2713 /// Identify whether this function satisfies the formal rules for constexpr
2714 /// functions in the current lanugage mode (with no extensions).
2715 CheckValid
2716 };
2717
2718 bool CheckConstexprFunctionDefinition(const FunctionDecl *FD,
2719 CheckConstexprKind Kind);
2720
2721 void DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD);
2722 void FindHiddenVirtualMethods(CXXMethodDecl *MD,
2723 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2724 void NoteHiddenVirtualMethods(CXXMethodDecl *MD,
2725 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods);
2726 // Returns true if the function declaration is a redeclaration
2727 bool CheckFunctionDeclaration(Scope *S,
2728 FunctionDecl *NewFD, LookupResult &Previous,
2729 bool IsMemberSpecialization);
2730 bool shouldLinkDependentDeclWithPrevious(Decl *D, Decl *OldDecl);
2731 bool canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
2732 QualType NewT, QualType OldT);
2733 void CheckMain(FunctionDecl *FD, const DeclSpec &D);
2734 void CheckMSVCRTEntryPoint(FunctionDecl *FD);
2735 Attr *getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
2736 bool IsDefinition);
2737 void CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D);
2738 Decl *ActOnParamDeclarator(Scope *S, Declarator &D);
2739 ParmVarDecl *BuildParmVarDeclForTypedef(DeclContext *DC,
2740 SourceLocation Loc,
2741 QualType T);
2742 ParmVarDecl *CheckParameter(DeclContext *DC, SourceLocation StartLoc,
2743 SourceLocation NameLoc, IdentifierInfo *Name,
2744 QualType T, TypeSourceInfo *TSInfo,
2745 StorageClass SC);
2746 void ActOnParamDefaultArgument(Decl *param,
2747 SourceLocation EqualLoc,
2748 Expr *defarg);
2749 void ActOnParamUnparsedDefaultArgument(Decl *param, SourceLocation EqualLoc,
2750 SourceLocation ArgLoc);
2751 void ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc);
2752 ExprResult ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2753 SourceLocation EqualLoc);
2754 void SetParamDefaultArgument(ParmVarDecl *Param, Expr *DefaultArg,
2755 SourceLocation EqualLoc);
2756
2757 // Contexts where using non-trivial C union types can be disallowed. This is
2758 // passed to err_non_trivial_c_union_in_invalid_context.
2759 enum NonTrivialCUnionContext {
2760 // Function parameter.
2761 NTCUC_FunctionParam,
2762 // Function return.
2763 NTCUC_FunctionReturn,
2764 // Default-initialized object.
2765 NTCUC_DefaultInitializedObject,
2766 // Variable with automatic storage duration.
2767 NTCUC_AutoVar,
2768 // Initializer expression that might copy from another object.
2769 NTCUC_CopyInit,
2770 // Assignment.
2771 NTCUC_Assignment,
2772 // Compound literal.
2773 NTCUC_CompoundLiteral,
2774 // Block capture.
2775 NTCUC_BlockCapture,
2776 // lvalue-to-rvalue conversion of volatile type.
2777 NTCUC_LValueToRValueVolatile,
2778 };
2779
2780 /// Emit diagnostics if the initializer or any of its explicit or
2781 /// implicitly-generated subexpressions require copying or
2782 /// default-initializing a type that is or contains a C union type that is
2783 /// non-trivial to copy or default-initialize.
2784 void checkNonTrivialCUnionInInitializer(const Expr *Init, SourceLocation Loc);
2785
2786 // These flags are passed to checkNonTrivialCUnion.
2787 enum NonTrivialCUnionKind {
2788 NTCUK_Init = 0x1,
2789 NTCUK_Destruct = 0x2,
2790 NTCUK_Copy = 0x4,
2791 };
2792
2793 /// Emit diagnostics if a non-trivial C union type or a struct that contains
2794 /// a non-trivial C union is used in an invalid context.
2795 void checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
2796 NonTrivialCUnionContext UseContext,
2797 unsigned NonTrivialKind);
2798
2799 void AddInitializerToDecl(Decl *dcl, Expr *init, bool DirectInit);
2800 void ActOnUninitializedDecl(Decl *dcl);
2801 void ActOnInitializerError(Decl *Dcl);
2802
2803 void ActOnPureSpecifier(Decl *D, SourceLocation PureSpecLoc);
2804 void ActOnCXXForRangeDecl(Decl *D);
2805 StmtResult ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
2806 IdentifierInfo *Ident,
2807 ParsedAttributes &Attrs,
2808 SourceLocation AttrEnd);
2809 void SetDeclDeleted(Decl *dcl, SourceLocation DelLoc);
2810 void SetDeclDefaulted(Decl *dcl, SourceLocation DefaultLoc);
2811 void CheckStaticLocalForDllExport(VarDecl *VD);
2812 void FinalizeDeclaration(Decl *D);
2813 DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2814 ArrayRef<Decl *> Group);
2815 DeclGroupPtrTy BuildDeclaratorGroup(MutableArrayRef<Decl *> Group);
2816
2817 /// Should be called on all declarations that might have attached
2818 /// documentation comments.
2819 void ActOnDocumentableDecl(Decl *D);
2820 void ActOnDocumentableDecls(ArrayRef<Decl *> Group);
2821
2822 void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2823 SourceLocation LocAfterDecls);
2824 void CheckForFunctionRedefinition(
2825 FunctionDecl *FD, const FunctionDecl *EffectiveDefinition = nullptr,
2826 SkipBodyInfo *SkipBody = nullptr);
2827 Decl *ActOnStartOfFunctionDef(Scope *S, Declarator &D,
2828 MultiTemplateParamsArg TemplateParamLists,
2829 SkipBodyInfo *SkipBody = nullptr);
2830 Decl *ActOnStartOfFunctionDef(Scope *S, Decl *D,
2831 SkipBodyInfo *SkipBody = nullptr);
2832 void ActOnStartTrailingRequiresClause(Scope *S, Declarator &D);
2833 ExprResult ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr);
2834 ExprResult ActOnRequiresClause(ExprResult ConstraintExpr);
2835 void ActOnStartOfObjCMethodDef(Scope *S, Decl *D);
2836 bool isObjCMethodDecl(Decl *D) {
2837 return D && isa<ObjCMethodDecl>(D);
2838 }
2839
2840 /// Determine whether we can delay parsing the body of a function or
2841 /// function template until it is used, assuming we don't care about emitting
2842 /// code for that function.
2843 ///
2844 /// This will be \c false if we may need the body of the function in the
2845 /// middle of parsing an expression (where it's impractical to switch to
2846 /// parsing a different function), for instance, if it's constexpr in C++11
2847 /// or has an 'auto' return type in C++14. These cases are essentially bugs.
2848 bool canDelayFunctionBody(const Declarator &D);
2849
2850 /// Determine whether we can skip parsing the body of a function
2851 /// definition, assuming we don't care about analyzing its body or emitting
2852 /// code for that function.
2853 ///
2854 /// This will be \c false only if we may need the body of the function in
2855 /// order to parse the rest of the program (for instance, if it is
2856 /// \c constexpr in C++11 or has an 'auto' return type in C++14).
2857 bool canSkipFunctionBody(Decl *D);
2858
2859 void computeNRVO(Stmt *Body, sema::FunctionScopeInfo *Scope);
2860 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body);
2861 Decl *ActOnFinishFunctionBody(Decl *Decl, Stmt *Body, bool IsInstantiation);
2862 Decl *ActOnSkippedFunctionBody(Decl *Decl);
2863 void ActOnFinishInlineFunctionDef(FunctionDecl *D);
2864
2865 /// ActOnFinishDelayedAttribute - Invoked when we have finished parsing an
2866 /// attribute for which parsing is delayed.
2867 void ActOnFinishDelayedAttribute(Scope *S, Decl *D, ParsedAttributes &Attrs);
2868
2869 /// Diagnose any unused parameters in the given sequence of
2870 /// ParmVarDecl pointers.
2871 void DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters);
2872
2873 /// Diagnose whether the size of parameters or return value of a
2874 /// function or obj-c method definition is pass-by-value and larger than a
2875 /// specified threshold.
2876 void
2877 DiagnoseSizeOfParametersAndReturnValue(ArrayRef<ParmVarDecl *> Parameters,
2878 QualType ReturnTy, NamedDecl *D);
2879
2880 void DiagnoseInvalidJumps(Stmt *Body);
2881 Decl *ActOnFileScopeAsmDecl(Expr *expr,
2882 SourceLocation AsmLoc,
2883 SourceLocation RParenLoc);
2884
2885 /// Handle a C++11 empty-declaration and attribute-declaration.
2886 Decl *ActOnEmptyDeclaration(Scope *S, const ParsedAttributesView &AttrList,
2887 SourceLocation SemiLoc);
2888
2889 enum class ModuleDeclKind {
2890 Interface, ///< 'export module X;'
2891 Implementation, ///< 'module X;'
2892 };
2893
2894 /// The parser has processed a module-declaration that begins the definition
2895 /// of a module interface or implementation.
2896 DeclGroupPtrTy ActOnModuleDecl(SourceLocation StartLoc,
2897 SourceLocation ModuleLoc, ModuleDeclKind MDK,
2898 ModuleIdPath Path, bool IsFirstDecl);
2899
2900 /// The parser has processed a global-module-fragment declaration that begins
2901 /// the definition of the global module fragment of the current module unit.
2902 /// \param ModuleLoc The location of the 'module' keyword.
2903 DeclGroupPtrTy ActOnGlobalModuleFragmentDecl(SourceLocation ModuleLoc);
2904
2905 /// The parser has processed a private-module-fragment declaration that begins
2906 /// the definition of the private module fragment of the current module unit.
2907 /// \param ModuleLoc The location of the 'module' keyword.
2908 /// \param PrivateLoc The location of the 'private' keyword.
2909 DeclGroupPtrTy ActOnPrivateModuleFragmentDecl(SourceLocation ModuleLoc,
2910 SourceLocation PrivateLoc);
2911
2912 /// The parser has processed a module import declaration.
2913 ///
2914 /// \param StartLoc The location of the first token in the declaration. This
2915 /// could be the location of an '@', 'export', or 'import'.
2916 /// \param ExportLoc The location of the 'export' keyword, if any.
2917 /// \param ImportLoc The location of the 'import' keyword.
2918 /// \param Path The module access path.
2919 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2920 SourceLocation ExportLoc,
2921 SourceLocation ImportLoc, ModuleIdPath Path);
2922 DeclResult ActOnModuleImport(SourceLocation StartLoc,
2923 SourceLocation ExportLoc,
2924 SourceLocation ImportLoc, Module *M,
2925 ModuleIdPath Path = {});
2926
2927 /// The parser has processed a module import translated from a
2928 /// #include or similar preprocessing directive.
2929 void ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2930 void BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod);
2931
2932 /// The parsed has entered a submodule.
2933 void ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod);
2934 /// The parser has left a submodule.
2935 void ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod);
2936
2937 /// Create an implicit import of the given module at the given
2938 /// source location, for error recovery, if possible.
2939 ///
2940 /// This routine is typically used when an entity found by name lookup
2941 /// is actually hidden within a module that we know about but the user
2942 /// has forgotten to import.
2943 void createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
2944 Module *Mod);
2945
2946 /// Kinds of missing import. Note, the values of these enumerators correspond
2947 /// to %select values in diagnostics.
2948 enum class MissingImportKind {
2949 Declaration,
2950 Definition,
2951 DefaultArgument,
2952 ExplicitSpecialization,
2953 PartialSpecialization
2954 };
2955
2956 /// Diagnose that the specified declaration needs to be visible but
2957 /// isn't, and suggest a module import that would resolve the problem.
2958 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2959 MissingImportKind MIK, bool Recover = true);
2960 void diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
2961 SourceLocation DeclLoc, ArrayRef<Module *> Modules,
2962 MissingImportKind MIK, bool Recover);
2963
2964 Decl *ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
2965 SourceLocation LBraceLoc);
2966 Decl *ActOnFinishExportDecl(Scope *S, Decl *ExportDecl,
2967 SourceLocation RBraceLoc);
2968
2969 /// We've found a use of a templated declaration that would trigger an
2970 /// implicit instantiation. Check that any relevant explicit specializations
2971 /// and partial specializations are visible, and diagnose if not.
2972 void checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec);
2973
2974 /// Retrieve a suitable printing policy for diagnostics.
2975 PrintingPolicy getPrintingPolicy() const {
2976 return getPrintingPolicy(Context, PP);
2977 }
2978
2979 /// Retrieve a suitable printing policy for diagnostics.
2980 static PrintingPolicy getPrintingPolicy(const ASTContext &Ctx,
2981 const Preprocessor &PP);
2982
2983 /// Scope actions.
2984 void ActOnPopScope(SourceLocation Loc, Scope *S);
2985 void ActOnTranslationUnitScope(Scope *S);
2986
2987 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2988 RecordDecl *&AnonRecord);
2989 Decl *ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
2990 MultiTemplateParamsArg TemplateParams,
2991 bool IsExplicitInstantiation,
2992 RecordDecl *&AnonRecord);
2993
2994 Decl *BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2995 AccessSpecifier AS,
2996 RecordDecl *Record,
2997 const PrintingPolicy &Policy);
2998
2999 Decl *BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3000 RecordDecl *Record);
3001
3002 /// Common ways to introduce type names without a tag for use in diagnostics.
3003 /// Keep in sync with err_tag_reference_non_tag.
3004 enum NonTagKind {
3005 NTK_NonStruct,
3006 NTK_NonClass,
3007 NTK_NonUnion,
3008 NTK_NonEnum,
3009 NTK_Typedef,
3010 NTK_TypeAlias,
3011 NTK_Template,
3012 NTK_TypeAliasTemplate,
3013 NTK_TemplateTemplateArgument,
3014 };
3015
3016 /// Given a non-tag type declaration, returns an enum useful for indicating
3017 /// what kind of non-tag type this is.
3018 NonTagKind getNonTagTypeDeclKind(const Decl *D, TagTypeKind TTK);
3019
3020 bool isAcceptableTagRedeclaration(const TagDecl *Previous,
3021 TagTypeKind NewTag, bool isDefinition,
3022 SourceLocation NewTagLoc,
3023 const IdentifierInfo *Name);
3024
3025 enum TagUseKind {
3026 TUK_Reference, // Reference to a tag: 'struct foo *X;'
3027 TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
3028 TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
3029 TUK_Friend // Friend declaration: 'friend struct foo;'
3030 };
3031
3032 Decl *ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3033 SourceLocation KWLoc, CXXScopeSpec &SS, IdentifierInfo *Name,
3034 SourceLocation NameLoc, const ParsedAttributesView &Attr,
3035 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
3036 MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
3037 bool &IsDependent, SourceLocation ScopedEnumKWLoc,
3038 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
3039 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
3040 SkipBodyInfo *SkipBody = nullptr);
3041
3042 Decl *ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
3043 unsigned TagSpec, SourceLocation TagLoc,
3044 CXXScopeSpec &SS, IdentifierInfo *Name,
3045 SourceLocation NameLoc,
3046 const ParsedAttributesView &Attr,
3047 MultiTemplateParamsArg TempParamLists);
3048
3049 TypeResult ActOnDependentTag(Scope *S,
3050 unsigned TagSpec,
3051 TagUseKind TUK,
3052 const CXXScopeSpec &SS,
3053 IdentifierInfo *Name,
3054 SourceLocation TagLoc,
3055 SourceLocation NameLoc);
3056
3057 void ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3058 IdentifierInfo *ClassName,
3059 SmallVectorImpl<Decl *> &Decls);
3060 Decl *ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
3061 Declarator &D, Expr *BitfieldWidth);
3062
3063 FieldDecl *HandleField(Scope *S, RecordDecl *TagD, SourceLocation DeclStart,
3064 Declarator &D, Expr *BitfieldWidth,
3065 InClassInitStyle InitStyle,
3066 AccessSpecifier AS);
3067 MSPropertyDecl *HandleMSProperty(Scope *S, RecordDecl *TagD,
3068 SourceLocation DeclStart, Declarator &D,
3069 Expr *BitfieldWidth,
3070 InClassInitStyle InitStyle,
3071 AccessSpecifier AS,
3072 const ParsedAttr &MSPropertyAttr);
3073
3074 FieldDecl *CheckFieldDecl(DeclarationName Name, QualType T,
3075 TypeSourceInfo *TInfo,
3076 RecordDecl *Record, SourceLocation Loc,
3077 bool Mutable, Expr *BitfieldWidth,
3078 InClassInitStyle InitStyle,
3079 SourceLocation TSSL,
3080 AccessSpecifier AS, NamedDecl *PrevDecl,
3081 Declarator *D = nullptr);
3082
3083 bool CheckNontrivialField(FieldDecl *FD);
3084 void DiagnoseNontrivial(const CXXRecordDecl *Record, CXXSpecialMember CSM);
3085
3086 enum TrivialABIHandling {
3087 /// The triviality of a method unaffected by "trivial_abi".
3088 TAH_IgnoreTrivialABI,
3089
3090 /// The triviality of a method affected by "trivial_abi".
3091 TAH_ConsiderTrivialABI
3092 };
3093
3094 bool SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
3095 TrivialABIHandling TAH = TAH_IgnoreTrivialABI,
3096 bool Diagnose = false);
3097
3098 /// For a defaulted function, the kind of defaulted function that it is.
3099 class DefaultedFunctionKind {
3100 CXXSpecialMember SpecialMember : 8;
3101 DefaultedComparisonKind Comparison : 8;
3102
3103 public:
3104 DefaultedFunctionKind()
3105 : SpecialMember(CXXInvalid), Comparison(DefaultedComparisonKind::None) {
3106 }
3107 DefaultedFunctionKind(CXXSpecialMember CSM)
3108 : SpecialMember(CSM), Comparison(DefaultedComparisonKind::None) {}
3109 DefaultedFunctionKind(DefaultedComparisonKind Comp)
3110 : SpecialMember(CXXInvalid), Comparison(Comp) {}
3111
3112 bool isSpecialMember() const { return SpecialMember != CXXInvalid; }
3113 bool isComparison() const {
3114 return Comparison != DefaultedComparisonKind::None;
3115 }
3116
3117 explicit operator bool() const {
3118 return isSpecialMember() || isComparison();
3119 }
3120
3121 CXXSpecialMember asSpecialMember() const { return SpecialMember; }
3122 DefaultedComparisonKind asComparison() const { return Comparison; }
3123
3124 /// Get the index of this function kind for use in diagnostics.
3125 unsigned getDiagnosticIndex() const {
3126 static_assert(CXXInvalid > CXXDestructor,
3127 "invalid should have highest index");
3128 static_assert((unsigned)DefaultedComparisonKind::None == 0,
3129 "none should be equal to zero");
3130 return SpecialMember + (unsigned)Comparison;
3131 }
3132 };
3133
3134 DefaultedFunctionKind getDefaultedFunctionKind(const FunctionDecl *FD);
3135
3136 CXXSpecialMember getSpecialMember(const CXXMethodDecl *MD) {
3137 return getDefaultedFunctionKind(MD).asSpecialMember();
3138 }
3139 DefaultedComparisonKind getDefaultedComparisonKind(const FunctionDecl *FD) {
3140 return getDefaultedFunctionKind(FD).asComparison();
3141 }
3142
3143 void ActOnLastBitfield(SourceLocation DeclStart,
3144 SmallVectorImpl<Decl *> &AllIvarDecls);
3145 Decl *ActOnIvar(Scope *S, SourceLocation DeclStart,
3146 Declarator &D, Expr *BitfieldWidth,
3147 tok::ObjCKeywordKind visibility);
3148
3149 // This is used for both record definitions and ObjC interface declarations.
3150 void ActOnFields(Scope *S, SourceLocation RecLoc, Decl *TagDecl,
3151 ArrayRef<Decl *> Fields, SourceLocation LBrac,
3152 SourceLocation RBrac, const ParsedAttributesView &AttrList);
3153
3154 /// ActOnTagStartDefinition - Invoked when we have entered the
3155 /// scope of a tag's definition (e.g., for an enumeration, class,
3156 /// struct, or union).
3157 void ActOnTagStartDefinition(Scope *S, Decl *TagDecl);
3158
3159 /// Perform ODR-like check for C/ObjC when merging tag types from modules.
3160 /// Differently from C++, actually parse the body and reject / error out
3161 /// in case of a structural mismatch.
3162 bool ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
3163 SkipBodyInfo &SkipBody);
3164
3165 typedef void *SkippedDefinitionContext;
3166
3167 /// Invoked when we enter a tag definition that we're skipping.
3168 SkippedDefinitionContext ActOnTagStartSkippedDefinition(Scope *S, Decl *TD);
3169
3170 Decl *ActOnObjCContainerStartDefinition(Decl *IDecl);
3171
3172 /// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
3173 /// C++ record definition's base-specifiers clause and are starting its
3174 /// member declarations.
3175 void ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagDecl,
3176 SourceLocation FinalLoc,
3177 bool IsFinalSpelledSealed,
3178 bool IsAbstract,
3179 SourceLocation LBraceLoc);
3180
3181 /// ActOnTagFinishDefinition - Invoked once we have finished parsing
3182 /// the definition of a tag (enumeration, class, struct, or union).
3183 void ActOnTagFinishDefinition(Scope *S, Decl *TagDecl,
3184 SourceRange BraceRange);
3185
3186 void ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context);
3187
3188 void ActOnObjCContainerFinishDefinition();
3189
3190 /// Invoked when we must temporarily exit the objective-c container
3191 /// scope for parsing/looking-up C constructs.
3192 ///
3193 /// Must be followed by a call to \see ActOnObjCReenterContainerContext
3194 void ActOnObjCTemporaryExitContainerContext(DeclContext *DC);
3195 void ActOnObjCReenterContainerContext(DeclContext *DC);
3196
3197 /// ActOnTagDefinitionError - Invoked when there was an unrecoverable
3198 /// error parsing the definition of a tag.
3199 void ActOnTagDefinitionError(Scope *S, Decl *TagDecl);
3200
3201 EnumConstantDecl *CheckEnumConstant(EnumDecl *Enum,
3202 EnumConstantDecl *LastEnumConst,
3203 SourceLocation IdLoc,
3204 IdentifierInfo *Id,
3205 Expr *val);
3206 bool CheckEnumUnderlyingType(TypeSourceInfo *TI);
3207 bool CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
3208 QualType EnumUnderlyingTy, bool IsFixed,
3209 const EnumDecl *Prev);
3210
3211 /// Determine whether the body of an anonymous enumeration should be skipped.
3212 /// \param II The name of the first enumerator.
3213 SkipBodyInfo shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
3214 SourceLocation IILoc);
3215
3216 Decl *ActOnEnumConstant(Scope *S, Decl *EnumDecl, Decl *LastEnumConstant,
3217 SourceLocation IdLoc, IdentifierInfo *Id,
3218 const ParsedAttributesView &Attrs,
3219 SourceLocation EqualLoc, Expr *Val);
3220 void ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
3221 Decl *EnumDecl, ArrayRef<Decl *> Elements, Scope *S,
3222 const ParsedAttributesView &Attr);
3223
3224 /// Set the current declaration context until it gets popped.
3225 void PushDeclContext(Scope *S, DeclContext *DC);
3226 void PopDeclContext();
3227
3228 /// EnterDeclaratorContext - Used when we must lookup names in the context
3229 /// of a declarator's nested name specifier.
3230 void EnterDeclaratorContext(Scope *S, DeclContext *DC);
3231 void ExitDeclaratorContext(Scope *S);
3232
3233 /// Enter a template parameter scope, after it's been associated with a particular
3234 /// DeclContext. Causes lookup within the scope to chain through enclosing contexts
3235 /// in the correct order.
3236 void EnterTemplatedContext(Scope *S, DeclContext *DC);
3237
3238 /// Push the parameters of D, which must be a function, into scope.
3239 void ActOnReenterFunctionContext(Scope* S, Decl* D);
3240 void ActOnExitFunctionContext();
3241
3242 DeclContext *getFunctionLevelDeclContext();
3243
3244 /// getCurFunctionDecl - If inside of a function body, this returns a pointer
3245 /// to the function decl for the function being parsed. If we're currently
3246 /// in a 'block', this returns the containing context.
3247 FunctionDecl *getCurFunctionDecl();
3248
3249 /// getCurMethodDecl - If inside of a method body, this returns a pointer to
3250 /// the method decl for the method being parsed. If we're currently
3251 /// in a 'block', this returns the containing context.
3252 ObjCMethodDecl *getCurMethodDecl();
3253
3254 /// getCurFunctionOrMethodDecl - Return the Decl for the current ObjC method
3255 /// or C function we're in, otherwise return null. If we're currently
3256 /// in a 'block', this returns the containing context.
3257 NamedDecl *getCurFunctionOrMethodDecl();
3258
3259 /// Add this decl to the scope shadowed decl chains.
3260 void PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext = true);
3261
3262 /// isDeclInScope - If 'Ctx' is a function/method, isDeclInScope returns true
3263 /// if 'D' is in Scope 'S', otherwise 'S' is ignored and isDeclInScope returns
3264 /// true if 'D' belongs to the given declaration context.
3265 ///
3266 /// \param AllowInlineNamespace If \c true, allow the declaration to be in the
3267 /// enclosing namespace set of the context, rather than contained
3268 /// directly within it.
3269 bool isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S = nullptr,
3270 bool AllowInlineNamespace = false);
3271
3272 /// Finds the scope corresponding to the given decl context, if it
3273 /// happens to be an enclosing scope. Otherwise return NULL.
3274 static Scope *getScopeForDeclContext(Scope *S, DeclContext *DC);
3275
3276 /// Subroutines of ActOnDeclarator().
3277 TypedefDecl *ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3278 TypeSourceInfo *TInfo);
3279 bool isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New);
3280
3281 /// Describes the kind of merge to perform for availability
3282 /// attributes (including "deprecated", "unavailable", and "availability").
3283 enum AvailabilityMergeKind {
3284 /// Don't merge availability attributes at all.
3285 AMK_None,
3286 /// Merge availability attributes for a redeclaration, which requires
3287 /// an exact match.
3288 AMK_Redeclaration,
3289 /// Merge availability attributes for an override, which requires
3290 /// an exact match or a weakening of constraints.
3291 AMK_Override,
3292 /// Merge availability attributes for an implementation of
3293 /// a protocol requirement.
3294 AMK_ProtocolImplementation,
3295 /// Merge availability attributes for an implementation of
3296 /// an optional protocol requirement.
3297 AMK_OptionalProtocolImplementation
3298 };
3299
3300 /// Describes the kind of priority given to an availability attribute.
3301 ///
3302 /// The sum of priorities deteremines the final priority of the attribute.
3303 /// The final priority determines how the attribute will be merged.
3304 /// An attribute with a lower priority will always remove higher priority
3305 /// attributes for the specified platform when it is being applied. An
3306 /// attribute with a higher priority will not be applied if the declaration
3307 /// already has an availability attribute with a lower priority for the
3308 /// specified platform. The final prirority values are not expected to match
3309 /// the values in this enumeration, but instead should be treated as a plain
3310 /// integer value. This enumeration just names the priority weights that are
3311 /// used to calculate that final vaue.
3312 enum AvailabilityPriority : int {
3313 /// The availability attribute was specified explicitly next to the
3314 /// declaration.
3315 AP_Explicit = 0,
3316
3317 /// The availability attribute was applied using '#pragma clang attribute'.
3318 AP_PragmaClangAttribute = 1,
3319
3320 /// The availability attribute for a specific platform was inferred from
3321 /// an availability attribute for another platform.
3322 AP_InferredFromOtherPlatform = 2
3323 };
3324
3325 /// Attribute merging methods. Return true if a new attribute was added.
3326 AvailabilityAttr *
3327 mergeAvailabilityAttr(NamedDecl *D, const AttributeCommonInfo &CI,
3328 IdentifierInfo *Platform, bool Implicit,
3329 VersionTuple Introduced, VersionTuple Deprecated,
3330 VersionTuple Obsoleted, bool IsUnavailable,
3331 StringRef Message, bool IsStrict, StringRef Replacement,
3332 AvailabilityMergeKind AMK, int Priority);
3333 TypeVisibilityAttr *
3334 mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3335 TypeVisibilityAttr::VisibilityType Vis);
3336 VisibilityAttr *mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI,
3337 VisibilityAttr::VisibilityType Vis);
3338 UuidAttr *mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI,
3339 StringRef UuidAsWritten, MSGuidDecl *GuidDecl);
3340 DLLImportAttr *mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI);
3341 DLLExportAttr *mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI);
3342 MSInheritanceAttr *mergeMSInheritanceAttr(Decl *D,
3343 const AttributeCommonInfo &CI,
3344 bool BestCase,
3345 MSInheritanceModel Model);
3346 FormatAttr *mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI,
3347 IdentifierInfo *Format, int FormatIdx,
3348 int FirstArg);
3349 SectionAttr *mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI,
3350 StringRef Name);
3351 CodeSegAttr *mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI,
3352 StringRef Name);
3353 AlwaysInlineAttr *mergeAlwaysInlineAttr(Decl *D,
3354 const AttributeCommonInfo &CI,
3355 const IdentifierInfo *Ident);
3356 MinSizeAttr *mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI);
3357 SwiftNameAttr *mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA,
3358 StringRef Name);
3359 OptimizeNoneAttr *mergeOptimizeNoneAttr(Decl *D,
3360 const AttributeCommonInfo &CI);
3361 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL);
3362 InternalLinkageAttr *mergeInternalLinkageAttr(Decl *D,
3363 const InternalLinkageAttr &AL);
3364 WebAssemblyImportNameAttr *mergeImportNameAttr(
3365 Decl *D, const WebAssemblyImportNameAttr &AL);
3366 WebAssemblyImportModuleAttr *mergeImportModuleAttr(
3367 Decl *D, const WebAssemblyImportModuleAttr &AL);
3368 EnforceTCBAttr *mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL);
3369 EnforceTCBLeafAttr *mergeEnforceTCBLeafAttr(Decl *D,
3370 const EnforceTCBLeafAttr &AL);
3371
3372 void mergeDeclAttributes(NamedDecl *New, Decl *Old,
3373 AvailabilityMergeKind AMK = AMK_Redeclaration);
3374 void MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
3375 LookupResult &OldDecls);
3376 bool MergeFunctionDecl(FunctionDecl *New, NamedDecl *&Old, Scope *S,
3377 bool MergeTypeWithOld);
3378 bool MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3379 Scope *S, bool MergeTypeWithOld);
3380 void mergeObjCMethodDecls(ObjCMethodDecl *New, ObjCMethodDecl *Old);
3381 void MergeVarDecl(VarDecl *New, LookupResult &Previous);
3382 void MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool MergeTypeWithOld);
3383 void MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old);
3384 bool checkVarDeclRedefinition(VarDecl *OldDefn, VarDecl *NewDefn);
3385 void notePreviousDefinition(const NamedDecl *Old, SourceLocation New);
3386 bool MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, Scope *S);
3387
3388 // AssignmentAction - This is used by all the assignment diagnostic functions
3389 // to represent what is actually causing the operation
3390 enum AssignmentAction {
3391 AA_Assigning,
3392 AA_Passing,
3393 AA_Returning,
3394 AA_Converting,
3395 AA_Initializing,
3396 AA_Sending,
3397 AA_Casting,
3398 AA_Passing_CFAudited
3399 };
3400
3401 /// C++ Overloading.
3402 enum OverloadKind {
3403 /// This is a legitimate overload: the existing declarations are
3404 /// functions or function templates with different signatures.
3405 Ovl_Overload,
3406
3407 /// This is not an overload because the signature exactly matches
3408 /// an existing declaration.
3409 Ovl_Match,
3410
3411 /// This is not an overload because the lookup results contain a
3412 /// non-function.
3413 Ovl_NonFunction
3414 };
3415 OverloadKind CheckOverload(Scope *S,
3416 FunctionDecl *New,
3417 const LookupResult &OldDecls,
3418 NamedDecl *&OldDecl,
3419 bool IsForUsingDecl);
3420 bool IsOverload(FunctionDecl *New, FunctionDecl *Old, bool IsForUsingDecl,
3421 bool ConsiderCudaAttrs = true,
3422 bool ConsiderRequiresClauses = true);
3423
3424 enum class AllowedExplicit {
3425 /// Allow no explicit functions to be used.
3426 None,
3427 /// Allow explicit conversion functions but not explicit constructors.
3428 Conversions,
3429 /// Allow both explicit conversion functions and explicit constructors.
3430 All
3431 };
3432
3433 ImplicitConversionSequence
3434 TryImplicitConversion(Expr *From, QualType ToType,
3435 bool SuppressUserConversions,
3436 AllowedExplicit AllowExplicit,
3437 bool InOverloadResolution,
3438 bool CStyle,
3439 bool AllowObjCWritebackConversion);
3440
3441 bool IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType);
3442 bool IsFloatingPointPromotion(QualType FromType, QualType ToType);
3443 bool IsComplexPromotion(QualType FromType, QualType ToType);
3444 bool IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
3445 bool InOverloadResolution,
3446 QualType& ConvertedType, bool &IncompatibleObjC);
3447 bool isObjCPointerConversion(QualType FromType, QualType ToType,
3448 QualType& ConvertedType, bool &IncompatibleObjC);
3449 bool isObjCWritebackConversion(QualType FromType, QualType ToType,
3450 QualType &ConvertedType);
3451 bool IsBlockPointerConversion(QualType FromType, QualType ToType,
3452 QualType& ConvertedType);
3453 bool FunctionParamTypesAreEqual(const FunctionProtoType *OldType,
3454 const FunctionProtoType *NewType,
3455 unsigned *ArgPos = nullptr);
3456 void HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
3457 QualType FromType, QualType ToType);
3458
3459 void maybeExtendBlockObject(ExprResult &E);
3460 CastKind PrepareCastToObjCObjectPointer(ExprResult &E);
3461 bool CheckPointerConversion(Expr *From, QualType ToType,
3462 CastKind &Kind,
3463 CXXCastPath& BasePath,
3464 bool IgnoreBaseAccess,
3465 bool Diagnose = true);
3466 bool IsMemberPointerConversion(Expr *From, QualType FromType, QualType ToType,
3467 bool InOverloadResolution,
3468 QualType &ConvertedType);
3469 bool CheckMemberPointerConversion(Expr *From, QualType ToType,
3470 CastKind &Kind,
3471 CXXCastPath &BasePath,
3472 bool IgnoreBaseAccess);
3473 bool IsQualificationConversion(QualType FromType, QualType ToType,
3474 bool CStyle, bool &ObjCLifetimeConversion);
3475 bool IsFunctionConversion(QualType FromType, QualType ToType,
3476 QualType &ResultTy);
3477 bool DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType);
3478 bool isSameOrCompatibleFunctionType(CanQualType Param, CanQualType Arg);
3479
3480 bool CanPerformAggregateInitializationForOverloadResolution(
3481 const InitializedEntity &Entity, InitListExpr *From);
3482
3483 bool IsStringInit(Expr *Init, const ArrayType *AT);
3484
3485 bool CanPerformCopyInitialization(const InitializedEntity &Entity,
3486 ExprResult Init);
3487 ExprResult PerformCopyInitialization(const InitializedEntity &Entity,
3488 SourceLocation EqualLoc,
3489 ExprResult Init,
3490 bool TopLevelOfInitList = false,
3491 bool AllowExplicit = false);
3492 ExprResult PerformObjectArgumentInitialization(Expr *From,
3493 NestedNameSpecifier *Qualifier,
3494 NamedDecl *FoundDecl,
3495 CXXMethodDecl *Method);
3496
3497 /// Check that the lifetime of the initializer (and its subobjects) is
3498 /// sufficient for initializing the entity, and perform lifetime extension
3499 /// (when permitted) if not.
3500 void checkInitializerLifetime(const InitializedEntity &Entity, Expr *Init);
3501
3502 ExprResult PerformContextuallyConvertToBool(Expr *From);
3503 ExprResult PerformContextuallyConvertToObjCPointer(Expr *From);
3504
3505 /// Contexts in which a converted constant expression is required.
3506 enum CCEKind {
3507 CCEK_CaseValue, ///< Expression in a case label.
3508 CCEK_Enumerator, ///< Enumerator value with fixed underlying type.
3509 CCEK_TemplateArg, ///< Value of a non-type template parameter.
3510 CCEK_ArrayBound, ///< Array bound in array declarator or new-expression.
3511 CCEK_ExplicitBool ///< Condition in an explicit(bool) specifier.
3512 };
3513 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3514 llvm::APSInt &Value, CCEKind CCE);
3515 ExprResult CheckConvertedConstantExpression(Expr *From, QualType T,
3516 APValue &Value, CCEKind CCE,
3517 NamedDecl *Dest = nullptr);
3518
3519 /// Abstract base class used to perform a contextual implicit
3520 /// conversion from an expression to any type passing a filter.
3521 class ContextualImplicitConverter {
3522 public:
3523 bool Suppress;
3524 bool SuppressConversion;
3525
3526 ContextualImplicitConverter(bool Suppress = false,
3527 bool SuppressConversion = false)
3528 : Suppress(Suppress), SuppressConversion(SuppressConversion) {}
3529
3530 /// Determine whether the specified type is a valid destination type
3531 /// for this conversion.
3532 virtual bool match(QualType T) = 0;
3533
3534 /// Emits a diagnostic complaining that the expression does not have
3535 /// integral or enumeration type.
3536 virtual SemaDiagnosticBuilder
3537 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) = 0;
3538
3539 /// Emits a diagnostic when the expression has incomplete class type.
3540 virtual SemaDiagnosticBuilder
3541 diagnoseIncomplete(Sema &S, SourceLocation Loc, QualType T) = 0;
3542
3543 /// Emits a diagnostic when the only matching conversion function
3544 /// is explicit.
3545 virtual SemaDiagnosticBuilder diagnoseExplicitConv(
3546 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3547
3548 /// Emits a note for the explicit conversion function.
3549 virtual SemaDiagnosticBuilder
3550 noteExplicitConv(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3551
3552 /// Emits a diagnostic when there are multiple possible conversion
3553 /// functions.
3554 virtual SemaDiagnosticBuilder
3555 diagnoseAmbiguous(Sema &S, SourceLocation Loc, QualType T) = 0;
3556
3557 /// Emits a note for one of the candidate conversions.
3558 virtual SemaDiagnosticBuilder
3559 noteAmbiguous(Sema &S, CXXConversionDecl *Conv, QualType ConvTy) = 0;
3560
3561 /// Emits a diagnostic when we picked a conversion function
3562 /// (for cases when we are not allowed to pick a conversion function).
3563 virtual SemaDiagnosticBuilder diagnoseConversion(
3564 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) = 0;
3565
3566 virtual ~ContextualImplicitConverter() {}
3567 };
3568
3569 class ICEConvertDiagnoser : public ContextualImplicitConverter {
3570 bool AllowScopedEnumerations;
3571
3572 public:
3573 ICEConvertDiagnoser(bool AllowScopedEnumerations,
3574 bool Suppress, bool SuppressConversion)
3575 : ContextualImplicitConverter(Suppress, SuppressConversion),
3576 AllowScopedEnumerations(AllowScopedEnumerations) {}
3577
3578 /// Match an integral or (possibly scoped) enumeration type.
3579 bool match(QualType T) override;
3580
3581 SemaDiagnosticBuilder
3582 diagnoseNoMatch(Sema &S, SourceLocation Loc, QualType T) override {
3583 return diagnoseNotInt(S, Loc, T);
3584 }
3585
3586 /// Emits a diagnostic complaining that the expression does not have
3587 /// integral or enumeration type.
3588 virtual SemaDiagnosticBuilder
3589 diagnoseNotInt(Sema &S, SourceLocation Loc, QualType T) = 0;
3590 };
3591
3592 /// Perform a contextual implicit conversion.
3593 ExprResult PerformContextualImplicitConversion(
3594 SourceLocation Loc, Expr *FromE, ContextualImplicitConverter &Converter);
3595
3596
3597 enum ObjCSubscriptKind {
3598 OS_Array,
3599 OS_Dictionary,
3600 OS_Error
3601 };
3602 ObjCSubscriptKind CheckSubscriptingKind(Expr *FromE);
3603
3604 // Note that LK_String is intentionally after the other literals, as
3605 // this is used for diagnostics logic.
3606 enum ObjCLiteralKind {
3607 LK_Array,
3608 LK_Dictionary,
3609 LK_Numeric,
3610 LK_Boxed,
3611 LK_String,
3612 LK_Block,
3613 LK_None
3614 };
3615 ObjCLiteralKind CheckLiteralKind(Expr *FromE);
3616
3617 ExprResult PerformObjectMemberConversion(Expr *From,
3618 NestedNameSpecifier *Qualifier,
3619 NamedDecl *FoundDecl,
3620 NamedDecl *Member);
3621
3622 // Members have to be NamespaceDecl* or TranslationUnitDecl*.
3623 // TODO: make this is a typesafe union.
3624 typedef llvm::SmallSetVector<DeclContext *, 16> AssociatedNamespaceSet;
3625 typedef llvm::SmallSetVector<CXXRecordDecl *, 16> AssociatedClassSet;
3626
3627 using ADLCallKind = CallExpr::ADLCallKind;
3628
3629 void AddOverloadCandidate(FunctionDecl *Function, DeclAccessPair FoundDecl,
3630 ArrayRef<Expr *> Args,
3631 OverloadCandidateSet &CandidateSet,
3632 bool SuppressUserConversions = false,
3633 bool PartialOverloading = false,
3634 bool AllowExplicit = true,
3635 bool AllowExplicitConversion = false,
3636 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3637 ConversionSequenceList EarlyConversions = None,
3638 OverloadCandidateParamOrder PO = {});
3639 void AddFunctionCandidates(const UnresolvedSetImpl &Functions,
3640 ArrayRef<Expr *> Args,
3641 OverloadCandidateSet &CandidateSet,
3642 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
3643 bool SuppressUserConversions = false,
3644 bool PartialOverloading = false,
3645 bool FirstArgumentIsBase = false);
3646 void AddMethodCandidate(DeclAccessPair FoundDecl,
3647 QualType ObjectType,
3648 Expr::Classification ObjectClassification,
3649 ArrayRef<Expr *> Args,
3650 OverloadCandidateSet& CandidateSet,
3651 bool SuppressUserConversion = false,
3652 OverloadCandidateParamOrder PO = {});
3653 void AddMethodCandidate(CXXMethodDecl *Method,
3654 DeclAccessPair FoundDecl,
3655 CXXRecordDecl *ActingContext, QualType ObjectType,
3656 Expr::Classification ObjectClassification,
3657 ArrayRef<Expr *> Args,
3658 OverloadCandidateSet& CandidateSet,
3659 bool SuppressUserConversions = false,
3660 bool PartialOverloading = false,
3661 ConversionSequenceList EarlyConversions = None,
3662 OverloadCandidateParamOrder PO = {});
3663 void AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
3664 DeclAccessPair FoundDecl,
3665 CXXRecordDecl *ActingContext,
3666 TemplateArgumentListInfo *ExplicitTemplateArgs,
3667 QualType ObjectType,
3668 Expr::Classification ObjectClassification,
3669 ArrayRef<Expr *> Args,
3670 OverloadCandidateSet& CandidateSet,
3671 bool SuppressUserConversions = false,
3672 bool PartialOverloading = false,
3673 OverloadCandidateParamOrder PO = {});
3674 void AddTemplateOverloadCandidate(
3675 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3676 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
3677 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions = false,
3678 bool PartialOverloading = false, bool AllowExplicit = true,
3679 ADLCallKind IsADLCandidate = ADLCallKind::NotADL,
3680 OverloadCandidateParamOrder PO = {});
3681 bool CheckNonDependentConversions(
3682 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes,
3683 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet,
3684 ConversionSequenceList &Conversions, bool SuppressUserConversions,
3685 CXXRecordDecl *ActingContext = nullptr, QualType ObjectType = QualType(),
3686 Expr::Classification ObjectClassification = {},
3687 OverloadCandidateParamOrder PO = {});
3688 void AddConversionCandidate(
3689 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl,
3690 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3691 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3692 bool AllowExplicit, bool AllowResultConversion = true);
3693 void AddTemplateConversionCandidate(
3694 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl,
3695 CXXRecordDecl *ActingContext, Expr *From, QualType ToType,
3696 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit,
3697 bool AllowExplicit, bool AllowResultConversion = true);
3698 void AddSurrogateCandidate(CXXConversionDecl *Conversion,
3699 DeclAccessPair FoundDecl,
3700 CXXRecordDecl *ActingContext,
3701 const FunctionProtoType *Proto,
3702 Expr *Object, ArrayRef<Expr *> Args,
3703 OverloadCandidateSet& CandidateSet);
3704 void AddNonMemberOperatorCandidates(
3705 const UnresolvedSetImpl &Functions, ArrayRef<Expr *> Args,
3706 OverloadCandidateSet &CandidateSet,
3707 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
3708 void AddMemberOperatorCandidates(OverloadedOperatorKind Op,
3709 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3710 OverloadCandidateSet &CandidateSet,
3711 OverloadCandidateParamOrder PO = {});
3712 void AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args,
3713 OverloadCandidateSet& CandidateSet,
3714 bool IsAssignmentOperator = false,
3715 unsigned NumContextualBoolArguments = 0);
3716 void AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
3717 SourceLocation OpLoc, ArrayRef<Expr *> Args,
3718 OverloadCandidateSet& CandidateSet);
3719 void AddArgumentDependentLookupCandidates(DeclarationName Name,
3720 SourceLocation Loc,
3721 ArrayRef<Expr *> Args,
3722 TemplateArgumentListInfo *ExplicitTemplateArgs,
3723 OverloadCandidateSet& CandidateSet,
3724 bool PartialOverloading = false);
3725
3726 // Emit as a 'note' the specific overload candidate
3727 void NoteOverloadCandidate(
3728 NamedDecl *Found, FunctionDecl *Fn,
3729 OverloadCandidateRewriteKind RewriteKind = OverloadCandidateRewriteKind(),
3730 QualType DestType = QualType(), bool TakingAddress = false);
3731
3732 // Emit as a series of 'note's all template and non-templates identified by
3733 // the expression Expr
3734 void NoteAllOverloadCandidates(Expr *E, QualType DestType = QualType(),
3735 bool TakingAddress = false);
3736
3737 /// Check the enable_if expressions on the given function. Returns the first
3738 /// failing attribute, or NULL if they were all successful.
3739 EnableIfAttr *CheckEnableIf(FunctionDecl *Function, SourceLocation CallLoc,
3740 ArrayRef<Expr *> Args,
3741 bool MissingImplicitThis = false);
3742
3743 /// Find the failed Boolean condition within a given Boolean
3744 /// constant expression, and describe it with a string.
3745 std::pair<Expr *, std::string> findFailedBooleanCondition(Expr *Cond);
3746
3747 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3748 /// non-ArgDependent DiagnoseIfAttrs.
3749 ///
3750 /// Argument-dependent diagnose_if attributes should be checked each time a
3751 /// function is used as a direct callee of a function call.
3752 ///
3753 /// Returns true if any errors were emitted.
3754 bool diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function,
3755 const Expr *ThisArg,
3756 ArrayRef<const Expr *> Args,
3757 SourceLocation Loc);
3758
3759 /// Emit diagnostics for the diagnose_if attributes on Function, ignoring any
3760 /// ArgDependent DiagnoseIfAttrs.
3761 ///
3762 /// Argument-independent diagnose_if attributes should be checked on every use
3763 /// of a function.
3764 ///
3765 /// Returns true if any errors were emitted.
3766 bool diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND,
3767 SourceLocation Loc);
3768
3769 /// Returns whether the given function's address can be taken or not,
3770 /// optionally emitting a diagnostic if the address can't be taken.
3771 ///
3772 /// Returns false if taking the address of the function is illegal.
3773 bool checkAddressOfFunctionIsAvailable(const FunctionDecl *Function,
3774 bool Complain = false,
3775 SourceLocation Loc = SourceLocation());
3776
3777 // [PossiblyAFunctionType] --> [Return]
3778 // NonFunctionType --> NonFunctionType
3779 // R (A) --> R(A)
3780 // R (*)(A) --> R (A)
3781 // R (&)(A) --> R (A)
3782 // R (S::*)(A) --> R (A)
3783 QualType ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType);
3784
3785 FunctionDecl *
3786 ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
3787 QualType TargetType,
3788 bool Complain,
3789 DeclAccessPair &Found,
3790 bool *pHadMultipleCandidates = nullptr);
3791
3792 FunctionDecl *
3793 resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &FoundResult);
3794
3795 bool resolveAndFixAddressOfSingleOverloadCandidate(
3796 ExprResult &SrcExpr, bool DoFunctionPointerConversion = false);
3797
3798 FunctionDecl *
3799 ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl,
3800 bool Complain = false,
3801 DeclAccessPair *Found = nullptr);
3802
3803 bool ResolveAndFixSingleFunctionTemplateSpecialization(
3804 ExprResult &SrcExpr,
3805 bool DoFunctionPointerConverion = false,
3806 bool Complain = false,
3807 SourceRange OpRangeForComplaining = SourceRange(),
3808 QualType DestTypeForComplaining = QualType(),
3809 unsigned DiagIDForComplaining = 0);
3810
3811
3812 Expr *FixOverloadedFunctionReference(Expr *E,
3813 DeclAccessPair FoundDecl,
3814 FunctionDecl *Fn);
3815 ExprResult FixOverloadedFunctionReference(ExprResult,
3816 DeclAccessPair FoundDecl,
3817 FunctionDecl *Fn);
3818
3819 void AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
3820 ArrayRef<Expr *> Args,
3821 OverloadCandidateSet &CandidateSet,
3822 bool PartialOverloading = false);
3823 void AddOverloadedCallCandidates(
3824 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs,
3825 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet);
3826
3827 // An enum used to represent the different possible results of building a
3828 // range-based for loop.
3829 enum ForRangeStatus {
3830 FRS_Success,
3831 FRS_NoViableFunction,
3832 FRS_DiagnosticIssued
3833 };
3834
3835 ForRangeStatus BuildForRangeBeginEndCall(SourceLocation Loc,
3836 SourceLocation RangeLoc,
3837 const DeclarationNameInfo &NameInfo,
3838 LookupResult &MemberLookup,
3839 OverloadCandidateSet *CandidateSet,
3840 Expr *Range, ExprResult *CallExpr);
3841
3842 ExprResult BuildOverloadedCallExpr(Scope *S, Expr *Fn,
3843 UnresolvedLookupExpr *ULE,
3844 SourceLocation LParenLoc,
3845 MultiExprArg Args,
3846 SourceLocation RParenLoc,
3847 Expr *ExecConfig,
3848 bool AllowTypoCorrection=true,
3849 bool CalleesAddressIsTaken=false);
3850
3851 bool buildOverloadedCallSet(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
3852 MultiExprArg Args, SourceLocation RParenLoc,
3853 OverloadCandidateSet *CandidateSet,
3854 ExprResult *Result);
3855
3856 ExprResult CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass,
3857 NestedNameSpecifierLoc NNSLoc,
3858 DeclarationNameInfo DNI,
3859 const UnresolvedSetImpl &Fns,
3860 bool PerformADL = true);
3861
3862 ExprResult CreateOverloadedUnaryOp(SourceLocation OpLoc,
3863 UnaryOperatorKind Opc,
3864 const UnresolvedSetImpl &Fns,
3865 Expr *input, bool RequiresADL = true);
3866
3867 void LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet,
3868 OverloadedOperatorKind Op,
3869 const UnresolvedSetImpl &Fns,
3870 ArrayRef<Expr *> Args, bool RequiresADL = true);
3871 ExprResult CreateOverloadedBinOp(SourceLocation OpLoc,
3872 BinaryOperatorKind Opc,
3873 const UnresolvedSetImpl &Fns,
3874 Expr *LHS, Expr *RHS,
3875 bool RequiresADL = true,
3876 bool AllowRewrittenCandidates = true,
3877 FunctionDecl *DefaultedFn = nullptr);
3878 ExprResult BuildSynthesizedThreeWayComparison(SourceLocation OpLoc,
3879 const UnresolvedSetImpl &Fns,
3880 Expr *LHS, Expr *RHS,
3881 FunctionDecl *DefaultedFn);
3882
3883 ExprResult CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
3884 SourceLocation RLoc,
3885 Expr *Base,Expr *Idx);
3886
3887 ExprResult BuildCallToMemberFunction(Scope *S, Expr *MemExpr,
3888 SourceLocation LParenLoc,
3889 MultiExprArg Args,
3890 SourceLocation RParenLoc,
3891 bool AllowRecovery = false);
3892 ExprResult
3893 BuildCallToObjectOfClassType(Scope *S, Expr *Object, SourceLocation LParenLoc,
3894 MultiExprArg Args,
3895 SourceLocation RParenLoc);
3896
3897 ExprResult BuildOverloadedArrowExpr(Scope *S, Expr *Base,
3898 SourceLocation OpLoc,
3899 bool *NoArrowOperatorFound = nullptr);
3900
3901 /// CheckCallReturnType - Checks that a call expression's return type is
3902 /// complete. Returns true on failure. The location passed in is the location
3903 /// that best represents the call.
3904 bool CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
3905 CallExpr *CE, FunctionDecl *FD);
3906
3907 /// Helpers for dealing with blocks and functions.
3908 bool CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
3909 bool CheckParameterNames);
3910 void CheckCXXDefaultArguments(FunctionDecl *FD);
3911 void CheckExtraCXXDefaultArguments(Declarator &D);
3912 Scope *getNonFieldDeclScope(Scope *S);
3913
3914 /// \name Name lookup
3915 ///
3916 /// These routines provide name lookup that is used during semantic
3917 /// analysis to resolve the various kinds of names (identifiers,
3918 /// overloaded operator names, constructor names, etc.) into zero or
3919 /// more declarations within a particular scope. The major entry
3920 /// points are LookupName, which performs unqualified name lookup,
3921 /// and LookupQualifiedName, which performs qualified name lookup.
3922 ///
3923 /// All name lookup is performed based on some specific criteria,
3924 /// which specify what names will be visible to name lookup and how
3925 /// far name lookup should work. These criteria are important both
3926 /// for capturing language semantics (certain lookups will ignore
3927 /// certain names, for example) and for performance, since name
3928 /// lookup is often a bottleneck in the compilation of C++. Name
3929 /// lookup criteria is specified via the LookupCriteria enumeration.
3930 ///
3931 /// The results of name lookup can vary based on the kind of name
3932 /// lookup performed, the current language, and the translation
3933 /// unit. In C, for example, name lookup will either return nothing
3934 /// (no entity found) or a single declaration. In C++, name lookup
3935 /// can additionally refer to a set of overloaded functions or
3936 /// result in an ambiguity. All of the possible results of name
3937 /// lookup are captured by the LookupResult class, which provides
3938 /// the ability to distinguish among them.
3939 //@{
3940
3941 /// Describes the kind of name lookup to perform.
3942 enum LookupNameKind {
3943 /// Ordinary name lookup, which finds ordinary names (functions,
3944 /// variables, typedefs, etc.) in C and most kinds of names
3945 /// (functions, variables, members, types, etc.) in C++.
3946 LookupOrdinaryName = 0,
3947 /// Tag name lookup, which finds the names of enums, classes,
3948 /// structs, and unions.
3949 LookupTagName,
3950 /// Label name lookup.
3951 LookupLabel,
3952 /// Member name lookup, which finds the names of
3953 /// class/struct/union members.
3954 LookupMemberName,
3955 /// Look up of an operator name (e.g., operator+) for use with
3956 /// operator overloading. This lookup is similar to ordinary name
3957 /// lookup, but will ignore any declarations that are class members.
3958 LookupOperatorName,
3959 /// Look up a name following ~ in a destructor name. This is an ordinary
3960 /// lookup, but prefers tags to typedefs.
3961 LookupDestructorName,
3962 /// Look up of a name that precedes the '::' scope resolution
3963 /// operator in C++. This lookup completely ignores operator, object,
3964 /// function, and enumerator names (C++ [basic.lookup.qual]p1).
3965 LookupNestedNameSpecifierName,
3966 /// Look up a namespace name within a C++ using directive or
3967 /// namespace alias definition, ignoring non-namespace names (C++
3968 /// [basic.lookup.udir]p1).
3969 LookupNamespaceName,
3970 /// Look up all declarations in a scope with the given name,
3971 /// including resolved using declarations. This is appropriate
3972 /// for checking redeclarations for a using declaration.
3973 LookupUsingDeclName,
3974 /// Look up an ordinary name that is going to be redeclared as a
3975 /// name with linkage. This lookup ignores any declarations that
3976 /// are outside of the current scope unless they have linkage. See
3977 /// C99 6.2.2p4-5 and C++ [basic.link]p6.
3978 LookupRedeclarationWithLinkage,
3979 /// Look up a friend of a local class. This lookup does not look
3980 /// outside the innermost non-class scope. See C++11 [class.friend]p11.
3981 LookupLocalFriendName,
3982 /// Look up the name of an Objective-C protocol.
3983 LookupObjCProtocolName,
3984 /// Look up implicit 'self' parameter of an objective-c method.
3985 LookupObjCImplicitSelfParam,
3986 /// Look up the name of an OpenMP user-defined reduction operation.
3987 LookupOMPReductionName,
3988 /// Look up the name of an OpenMP user-defined mapper.
3989 LookupOMPMapperName,
3990 /// Look up any declaration with any name.
3991 LookupAnyName
3992 };
3993
3994 /// Specifies whether (or how) name lookup is being performed for a
3995 /// redeclaration (vs. a reference).
3996 enum RedeclarationKind {
3997 /// The lookup is a reference to this name that is not for the
3998 /// purpose of redeclaring the name.
3999 NotForRedeclaration = 0,
4000 /// The lookup results will be used for redeclaration of a name,
4001 /// if an entity by that name already exists and is visible.
4002 ForVisibleRedeclaration,
4003 /// The lookup results will be used for redeclaration of a name
4004 /// with external linkage; non-visible lookup results with external linkage
4005 /// may also be found.
4006 ForExternalRedeclaration
4007 };
4008
4009 RedeclarationKind forRedeclarationInCurContext() {
4010 // A declaration with an owning module for linkage can never link against
4011 // anything that is not visible. We don't need to check linkage here; if
4012 // the context has internal linkage, redeclaration lookup won't find things
4013 // from other TUs, and we can't safely compute linkage yet in general.
4014 if (cast<Decl>(CurContext)
4015 ->getOwningModuleForLinkage(/*IgnoreLinkage*/true))
4016 return ForVisibleRedeclaration;
4017 return ForExternalRedeclaration;
4018 }
4019
4020 /// The possible outcomes of name lookup for a literal operator.
4021 enum LiteralOperatorLookupResult {
4022 /// The lookup resulted in an error.
4023 LOLR_Error,
4024 /// The lookup found no match but no diagnostic was issued.
4025 LOLR_ErrorNoDiagnostic,
4026 /// The lookup found a single 'cooked' literal operator, which
4027 /// expects a normal literal to be built and passed to it.
4028 LOLR_Cooked,
4029 /// The lookup found a single 'raw' literal operator, which expects
4030 /// a string literal containing the spelling of the literal token.
4031 LOLR_Raw,
4032 /// The lookup found an overload set of literal operator templates,
4033 /// which expect the characters of the spelling of the literal token to be
4034 /// passed as a non-type template argument pack.
4035 LOLR_Template,
4036 /// The lookup found an overload set of literal operator templates,
4037 /// which expect the character type and characters of the spelling of the
4038 /// string literal token to be passed as template arguments.
4039 LOLR_StringTemplatePack,
4040 };
4041
4042 SpecialMemberOverloadResult LookupSpecialMember(CXXRecordDecl *D,
4043 CXXSpecialMember SM,
4044 bool ConstArg,
4045 bool VolatileArg,
4046 bool RValueThis,
4047 bool ConstThis,
4048 bool VolatileThis);
4049
4050 typedef std::function<void(const TypoCorrection &)> TypoDiagnosticGenerator;
4051 typedef std::function<ExprResult(Sema &, TypoExpr *, TypoCorrection)>
4052 TypoRecoveryCallback;
4053
4054private:
4055 bool CppLookupName(LookupResult &R, Scope *S);
4056
4057 struct TypoExprState {
4058 std::unique_ptr<TypoCorrectionConsumer> Consumer;
4059 TypoDiagnosticGenerator DiagHandler;
4060 TypoRecoveryCallback RecoveryHandler;
4061 TypoExprState();
4062 TypoExprState(TypoExprState &&other) noexcept;
4063 TypoExprState &operator=(TypoExprState &&other) noexcept;
4064 };
4065
4066 /// The set of unhandled TypoExprs and their associated state.
4067 llvm::MapVector<TypoExpr *, TypoExprState> DelayedTypos;
4068
4069 /// Creates a new TypoExpr AST node.
4070 TypoExpr *createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
4071 TypoDiagnosticGenerator TDG,
4072 TypoRecoveryCallback TRC, SourceLocation TypoLoc);
4073
4074 // The set of known/encountered (unique, canonicalized) NamespaceDecls.
4075 //
4076 // The boolean value will be true to indicate that the namespace was loaded
4077 // from an AST/PCH file, or false otherwise.
4078 llvm::MapVector<NamespaceDecl*, bool> KnownNamespaces;
4079
4080 /// Whether we have already loaded known namespaces from an extenal
4081 /// source.
4082 bool LoadedExternalKnownNamespaces;
4083
4084 /// Helper for CorrectTypo and CorrectTypoDelayed used to create and
4085 /// populate a new TypoCorrectionConsumer. Returns nullptr if typo correction
4086 /// should be skipped entirely.
4087 std::unique_ptr<TypoCorrectionConsumer>
4088 makeTypoCorrectionConsumer(const DeclarationNameInfo &Typo,
4089 Sema::LookupNameKind LookupKind, Scope *S,
4090 CXXScopeSpec *SS,
4091 CorrectionCandidateCallback &CCC,
4092 DeclContext *MemberContext, bool EnteringContext,
4093 const ObjCObjectPointerType *OPT,
4094 bool ErrorRecovery);
4095
4096public:
4097 const TypoExprState &getTypoExprState(TypoExpr *TE) const;
4098
4099 /// Clears the state of the given TypoExpr.
4100 void clearDelayedTypo(TypoExpr *TE);
4101
4102 /// Look up a name, looking for a single declaration. Return
4103 /// null if the results were absent, ambiguous, or overloaded.
4104 ///
4105 /// It is preferable to use the elaborated form and explicitly handle
4106 /// ambiguity and overloaded.
4107 NamedDecl *LookupSingleName(Scope *S, DeclarationName Name,
4108 SourceLocation Loc,
4109 LookupNameKind NameKind,
4110 RedeclarationKind Redecl
4111 = NotForRedeclaration);
4112 bool LookupBuiltin(LookupResult &R);
4113 void LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID);
4114 bool LookupName(LookupResult &R, Scope *S,
4115 bool AllowBuiltinCreation = false);
4116 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4117 bool InUnqualifiedLookup = false);
4118 bool LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
4119 CXXScopeSpec &SS);
4120 bool LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
4121 bool AllowBuiltinCreation = false,
4122 bool EnteringContext = false);
4123 ObjCProtocolDecl *LookupProtocol(IdentifierInfo *II, SourceLocation IdLoc,
4124 RedeclarationKind Redecl
4125 = NotForRedeclaration);
4126 bool LookupInSuper(LookupResult &R, CXXRecordDecl *Class);
4127
4128 void LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
4129 UnresolvedSetImpl &Functions);
4130
4131 LabelDecl *LookupOrCreateLabel(IdentifierInfo *II, SourceLocation IdentLoc,
4132 SourceLocation GnuLabelLoc = SourceLocation());
4133
4134 DeclContextLookupResult LookupConstructors(CXXRecordDecl *Class);
4135 CXXConstructorDecl *LookupDefaultConstructor(CXXRecordDecl *Class);
4136 CXXConstructorDecl *LookupCopyingConstructor(CXXRecordDecl *Class,
4137 unsigned Quals);
4138 CXXMethodDecl *LookupCopyingAssignment(CXXRecordDecl *Class, unsigned Quals,
4139 bool RValueThis, unsigned ThisQuals);
4140 CXXConstructorDecl *LookupMovingConstructor(CXXRecordDecl *Class,
4141 unsigned Quals);
4142 CXXMethodDecl *LookupMovingAssignment(CXXRecordDecl *Class, unsigned Quals,
4143 bool RValueThis, unsigned ThisQuals);
4144 CXXDestructorDecl *LookupDestructor(CXXRecordDecl *Class);
4145
4146 bool checkLiteralOperatorId(const CXXScopeSpec &SS, const UnqualifiedId &Id,
4147 bool IsUDSuffix);
4148 LiteralOperatorLookupResult
4149 LookupLiteralOperator(Scope *S, LookupResult &R, ArrayRef<QualType> ArgTys,
4150 bool AllowRaw, bool AllowTemplate,
4151 bool AllowStringTemplate, bool DiagnoseMissing,
4152 StringLiteral *StringLit = nullptr);
4153 bool isKnownName(StringRef name);
4154
4155 /// Status of the function emission on the CUDA/HIP/OpenMP host/device attrs.
4156 enum class FunctionEmissionStatus {
4157 Emitted,
4158 CUDADiscarded, // Discarded due to CUDA/HIP hostness
4159 OMPDiscarded, // Discarded due to OpenMP hostness
4160 TemplateDiscarded, // Discarded due to uninstantiated templates
4161 Unknown,
4162 };
4163 FunctionEmissionStatus getEmissionStatus(FunctionDecl *Decl,
4164 bool Final = false);
4165
4166 // Whether the callee should be ignored in CUDA/HIP/OpenMP host/device check.
4167 bool shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee);
4168
4169 void ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
4170 ArrayRef<Expr *> Args, ADLResult &Functions);
4171
4172 void LookupVisibleDecls(Scope *S, LookupNameKind Kind,
4173 VisibleDeclConsumer &Consumer,
4174 bool IncludeGlobalScope = true,
4175 bool LoadExternal = true);
4176 void LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
4177 VisibleDeclConsumer &Consumer,
4178 bool IncludeGlobalScope = true,
4179 bool IncludeDependentBases = false,
4180 bool LoadExternal = true);
4181
4182 enum CorrectTypoKind {
4183 CTK_NonError, // CorrectTypo used in a non error recovery situation.
4184 CTK_ErrorRecovery // CorrectTypo used in normal error recovery.
4185 };
4186
4187 TypoCorrection CorrectTypo(const DeclarationNameInfo &Typo,
4188 Sema::LookupNameKind LookupKind,
4189 Scope *S, CXXScopeSpec *SS,
4190 CorrectionCandidateCallback &CCC,
4191 CorrectTypoKind Mode,
4192 DeclContext *MemberContext = nullptr,
4193 bool EnteringContext = false,
4194 const ObjCObjectPointerType *OPT = nullptr,
4195 bool RecordFailure = true);
4196
4197 TypoExpr *CorrectTypoDelayed(const DeclarationNameInfo &Typo,
4198 Sema::LookupNameKind LookupKind, Scope *S,
4199 CXXScopeSpec *SS,
4200 CorrectionCandidateCallback &CCC,
4201 TypoDiagnosticGenerator TDG,
4202 TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4203 DeclContext *MemberContext = nullptr,
4204 bool EnteringContext = false,
4205 const ObjCObjectPointerType *OPT = nullptr);
4206
4207 /// Process any TypoExprs in the given Expr and its children,
4208 /// generating diagnostics as appropriate and returning a new Expr if there
4209 /// were typos that were all successfully corrected and ExprError if one or
4210 /// more typos could not be corrected.
4211 ///
4212 /// \param E The Expr to check for TypoExprs.
4213 ///
4214 /// \param InitDecl A VarDecl to avoid because the Expr being corrected is its
4215 /// initializer.
4216 ///
4217 /// \param RecoverUncorrectedTypos If true, when typo correction fails, it
4218 /// will rebuild the given Expr with all TypoExprs degraded to RecoveryExprs.
4219 ///
4220 /// \param Filter A function applied to a newly rebuilt Expr to determine if
4221 /// it is an acceptable/usable result from a single combination of typo
4222 /// corrections. As long as the filter returns ExprError, different
4223 /// combinations of corrections will be tried until all are exhausted.
4224 ExprResult CorrectDelayedTyposInExpr(
4225 Expr *E, VarDecl *InitDecl = nullptr,
4226 bool RecoverUncorrectedTypos = false,
4227 llvm::function_ref<ExprResult(Expr *)> Filter =
4228 [](Expr *E) -> ExprResult { return E; });
4229
4230 ExprResult CorrectDelayedTyposInExpr(
4231 ExprResult ER, VarDecl *InitDecl = nullptr,
4232 bool RecoverUncorrectedTypos = false,
4233 llvm::function_ref<ExprResult(Expr *)> Filter =
4234 [](Expr *E) -> ExprResult { return E; }) {
4235 return ER.isInvalid()
4236 ? ER
4237 : CorrectDelayedTyposInExpr(ER.get(), InitDecl,
4238 RecoverUncorrectedTypos, Filter);
4239 }
4240
4241 void diagnoseTypo(const TypoCorrection &Correction,
4242 const PartialDiagnostic &TypoDiag,
4243 bool ErrorRecovery = true);
4244
4245 void diagnoseTypo(const TypoCorrection &Correction,
4246 const PartialDiagnostic &TypoDiag,
4247 const PartialDiagnostic &PrevNote,
4248 bool ErrorRecovery = true);
4249
4250 void MarkTypoCorrectedFunctionDefinition(const NamedDecl *F);
4251
4252 void FindAssociatedClassesAndNamespaces(SourceLocation InstantiationLoc,
4253 ArrayRef<Expr *> Args,
4254 AssociatedNamespaceSet &AssociatedNamespaces,
4255 AssociatedClassSet &AssociatedClasses);
4256
4257 void FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
4258 bool ConsiderLinkage, bool AllowInlineNamespace);
4259
4260 bool CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old);
4261
4262 void DiagnoseAmbiguousLookup(LookupResult &Result);
4263 //@}
4264
4265 /// Attempts to produce a RecoveryExpr after some AST node cannot be created.
4266 ExprResult CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
4267 ArrayRef<Expr *> SubExprs,
4268 QualType T = QualType());
4269
4270 ObjCInterfaceDecl *getObjCInterfaceDecl(IdentifierInfo *&Id,
4271 SourceLocation IdLoc,
4272 bool TypoCorrection = false);
4273 FunctionDecl *CreateBuiltin(IdentifierInfo *II, QualType Type, unsigned ID,
4274 SourceLocation Loc);
4275 NamedDecl *LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
4276 Scope *S, bool ForRedeclaration,
4277 SourceLocation Loc);
4278 NamedDecl *ImplicitlyDefineFunction(SourceLocation Loc, IdentifierInfo &II,
4279 Scope *S);
4280 void AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
4281 FunctionDecl *FD);
4282 void AddKnownFunctionAttributes(FunctionDecl *FD);
4283
4284 // More parsing and symbol table subroutines.
4285
4286 void ProcessPragmaWeak(Scope *S, Decl *D);
4287 // Decl attributes - this routine is the top level dispatcher.
4288 void ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD);
4289 // Helper for delayed processing of attributes.
4290 void ProcessDeclAttributeDelayed(Decl *D,
4291 const ParsedAttributesView &AttrList);
4292 void ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AL,
4293 bool IncludeCXX11Attributes = true);
4294 bool ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
4295 const ParsedAttributesView &AttrList);
4296
4297 void checkUnusedDeclAttributes(Declarator &D);
4298
4299 /// Handles semantic checking for features that are common to all attributes,
4300 /// such as checking whether a parameter was properly specified, or the
4301 /// correct number of arguments were passed, etc. Returns true if the
4302 /// attribute has been diagnosed.
4303 bool checkCommonAttributeFeatures(const Decl *D, const ParsedAttr &A);
4304 bool checkCommonAttributeFeatures(const Stmt *S, const ParsedAttr &A);
4305
4306 /// Determine if type T is a valid subject for a nonnull and similar
4307 /// attributes. By default, we look through references (the behavior used by
4308 /// nonnull), but if the second parameter is true, then we treat a reference
4309 /// type as valid.
4310 bool isValidPointerAttrType(QualType T, bool RefOkay = false);
4311
4312 bool CheckRegparmAttr(const ParsedAttr &attr, unsigned &value);
4313 bool CheckCallingConvAttr(const ParsedAttr &attr, CallingConv &CC,
4314 const FunctionDecl *FD = nullptr);
4315 bool CheckAttrTarget(const ParsedAttr &CurrAttr);
4316 bool CheckAttrNoArgs(const ParsedAttr &CurrAttr);
4317 bool checkStringLiteralArgumentAttr(const ParsedAttr &Attr, unsigned ArgNum,
4318 StringRef &Str,
4319 SourceLocation *ArgLocation = nullptr);
4320 llvm::Error isValidSectionSpecifier(StringRef Str);
4321 bool checkSectionName(SourceLocation LiteralLoc, StringRef Str);
4322 bool checkTargetAttr(SourceLocation LiteralLoc, StringRef Str);
4323 bool checkMSInheritanceAttrOnDefinition(
4324 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
4325 MSInheritanceModel SemanticSpelling);
4326
4327 void CheckAlignasUnderalignment(Decl *D);
4328
4329 /// Adjust the calling convention of a method to be the ABI default if it
4330 /// wasn't specified explicitly. This handles method types formed from
4331 /// function type typedefs and typename template arguments.
4332 void adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
4333 SourceLocation Loc);
4334
4335 // Check if there is an explicit attribute, but only look through parens.
4336 // The intent is to look for an attribute on the current declarator, but not
4337 // one that came from a typedef.
4338 bool hasExplicitCallingConv(QualType T);
4339
4340 /// Get the outermost AttributedType node that sets a calling convention.
4341 /// Valid types should not have multiple attributes with different CCs.
4342 const AttributedType *getCallingConvAttributedType(QualType T) const;
4343
4344 /// Process the attributes before creating an attributed statement. Returns
4345 /// the semantic attributes that have been processed.
4346 void ProcessStmtAttributes(Stmt *Stmt,
4347 const ParsedAttributesWithRange &InAttrs,
4348 SmallVectorImpl<const Attr *> &OutAttrs);
4349
4350 void WarnConflictingTypedMethods(ObjCMethodDecl *Method,
4351 ObjCMethodDecl *MethodDecl,
4352 bool IsProtocolMethodDecl);
4353
4354 void CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
4355 ObjCMethodDecl *Overridden,
4356 bool IsProtocolMethodDecl);
4357
4358 /// WarnExactTypedMethods - This routine issues a warning if method
4359 /// implementation declaration matches exactly that of its declaration.
4360 void WarnExactTypedMethods(ObjCMethodDecl *Method,
4361 ObjCMethodDecl *MethodDecl,
4362 bool IsProtocolMethodDecl);
4363
4364 typedef llvm::SmallPtrSet<Selector, 8> SelectorSet;
4365
4366 /// CheckImplementationIvars - This routine checks if the instance variables
4367 /// listed in the implelementation match those listed in the interface.
4368 void CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
4369 ObjCIvarDecl **Fields, unsigned nIvars,
4370 SourceLocation Loc);
4371
4372 /// ImplMethodsVsClassMethods - This is main routine to warn if any method
4373 /// remains unimplemented in the class or category \@implementation.
4374 void ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
4375 ObjCContainerDecl* IDecl,
4376 bool IncompleteImpl = false);
4377
4378 /// DiagnoseUnimplementedProperties - This routine warns on those properties
4379 /// which must be implemented by this implementation.
4380 void DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
4381 ObjCContainerDecl *CDecl,
4382 bool SynthesizeProperties);
4383
4384 /// Diagnose any null-resettable synthesized setters.
4385 void diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl);
4386
4387 /// DefaultSynthesizeProperties - This routine default synthesizes all
4388 /// properties which must be synthesized in the class's \@implementation.
4389 void DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
4390 ObjCInterfaceDecl *IDecl,
4391 SourceLocation AtEnd);
4392 void DefaultSynthesizeProperties(Scope *S, Decl *D, SourceLocation AtEnd);
4393
4394 /// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
4395 /// an ivar synthesized for 'Method' and 'Method' is a property accessor
4396 /// declared in class 'IFace'.
4397 bool IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
4398 ObjCMethodDecl *Method, ObjCIvarDecl *IV);
4399
4400 /// DiagnoseUnusedBackingIvarInAccessor - Issue an 'unused' warning if ivar which
4401 /// backs the property is not used in the property's accessor.
4402 void DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4403 const ObjCImplementationDecl *ImplD);
4404
4405 /// GetIvarBackingPropertyAccessor - If method is a property setter/getter and
4406 /// it property has a backing ivar, returns this ivar; otherwise, returns NULL.
4407 /// It also returns ivar's property on success.
4408 ObjCIvarDecl *GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4409 const ObjCPropertyDecl *&PDecl) const;
4410
4411 /// Called by ActOnProperty to handle \@property declarations in
4412 /// class extensions.
4413 ObjCPropertyDecl *HandlePropertyInClassExtension(Scope *S,
4414 SourceLocation AtLoc,
4415 SourceLocation LParenLoc,
4416 FieldDeclarator &FD,
4417 Selector GetterSel,
4418 SourceLocation GetterNameLoc,
4419 Selector SetterSel,
4420 SourceLocation SetterNameLoc,
4421 const bool isReadWrite,
4422 unsigned &Attributes,
4423 const unsigned AttributesAsWritten,
4424 QualType T,
4425 TypeSourceInfo *TSI,
4426 tok::ObjCKeywordKind MethodImplKind);
4427
4428 /// Called by ActOnProperty and HandlePropertyInClassExtension to
4429 /// handle creating the ObjcPropertyDecl for a category or \@interface.
4430 ObjCPropertyDecl *CreatePropertyDecl(Scope *S,
4431 ObjCContainerDecl *CDecl,
4432 SourceLocation AtLoc,
4433 SourceLocation LParenLoc,
4434 FieldDeclarator &FD,
4435 Selector GetterSel,
4436 SourceLocation GetterNameLoc,
4437 Selector SetterSel,
4438 SourceLocation SetterNameLoc,
4439 const bool isReadWrite,
4440 const unsigned Attributes,
4441 const unsigned AttributesAsWritten,
4442 QualType T,
4443 TypeSourceInfo *TSI,
4444 tok::ObjCKeywordKind MethodImplKind,
4445 DeclContext *lexicalDC = nullptr);
4446
4447 /// AtomicPropertySetterGetterRules - This routine enforces the rule (via
4448 /// warning) when atomic property has one but not the other user-declared
4449 /// setter or getter.
4450 void AtomicPropertySetterGetterRules(ObjCImplDecl* IMPDecl,
4451 ObjCInterfaceDecl* IDecl);
4452
4453 void DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D);
4454
4455 void DiagnoseMissingDesignatedInitOverrides(
4456 const ObjCImplementationDecl *ImplD,
4457 const ObjCInterfaceDecl *IFD);
4458
4459 void DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, ObjCInterfaceDecl *SID);
4460
4461 enum MethodMatchStrategy {
4462 MMS_loose,
4463 MMS_strict
4464 };
4465
4466 /// MatchTwoMethodDeclarations - Checks if two methods' type match and returns
4467 /// true, or false, accordingly.
4468 bool MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
4469 const ObjCMethodDecl *PrevMethod,
4470 MethodMatchStrategy strategy = MMS_strict);
4471
4472 /// MatchAllMethodDeclarations - Check methods declaraed in interface or
4473 /// or protocol against those declared in their implementations.
4474 void MatchAllMethodDeclarations(const SelectorSet &InsMap,
4475 const SelectorSet &ClsMap,
4476 SelectorSet &InsMapSeen,
4477 SelectorSet &ClsMapSeen,
4478 ObjCImplDecl* IMPDecl,
4479 ObjCContainerDecl* IDecl,
4480 bool &IncompleteImpl,
4481 bool ImmediateClass,
4482 bool WarnCategoryMethodImpl=false);
4483
4484 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
4485 /// category matches with those implemented in its primary class and
4486 /// warns each time an exact match is found.
4487 void CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl *CatIMP);
4488
4489 /// Add the given method to the list of globally-known methods.
4490 void addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method);
4491
4492 /// Returns default addr space for method qualifiers.
4493 LangAS getDefaultCXXMethodAddrSpace() const;
4494
4495private:
4496 /// AddMethodToGlobalPool - Add an instance or factory method to the global
4497 /// pool. See descriptoin of AddInstanceMethodToGlobalPool.
4498 void AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, bool instance);
4499
4500 /// LookupMethodInGlobalPool - Returns the instance or factory method and
4501 /// optionally warns if there are multiple signatures.
4502 ObjCMethodDecl *LookupMethodInGlobalPool(Selector Sel, SourceRange R,
4503 bool receiverIdOrClass,
4504 bool instance);
4505
4506public:
4507 /// - Returns instance or factory methods in global method pool for
4508 /// given selector. It checks the desired kind first, if none is found, and
4509 /// parameter checkTheOther is set, it then checks the other kind. If no such
4510 /// method or only one method is found, function returns false; otherwise, it
4511 /// returns true.
4512 bool
4513 CollectMultipleMethodsInGlobalPool(Selector Sel,
4514 SmallVectorImpl<ObjCMethodDecl*>& Methods,
4515 bool InstanceFirst, bool CheckTheOther,
4516 const ObjCObjectType *TypeBound = nullptr);
4517
4518 bool
4519 AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
4520 SourceRange R, bool receiverIdOrClass,
4521 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4522
4523 void
4524 DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
4525 Selector Sel, SourceRange R,
4526 bool receiverIdOrClass);
4527
4528private:
4529 /// - Returns a selector which best matches given argument list or
4530 /// nullptr if none could be found
4531 ObjCMethodDecl *SelectBestMethod(Selector Sel, MultiExprArg Args,
4532 bool IsInstance,
4533 SmallVectorImpl<ObjCMethodDecl*>& Methods);
4534
4535
4536 /// Record the typo correction failure and return an empty correction.
4537 TypoCorrection FailedCorrection(IdentifierInfo *Typo, SourceLocation TypoLoc,
4538 bool RecordFailure = true) {
4539 if (RecordFailure)
4540 TypoCorrectionFailures[Typo].insert(TypoLoc);
4541 return TypoCorrection();
4542 }
4543
4544public:
4545 /// AddInstanceMethodToGlobalPool - All instance methods in a translation
4546 /// unit are added to a global pool. This allows us to efficiently associate
4547 /// a selector with a method declaraation for purposes of typechecking
4548 /// messages sent to "id" (where the class of the object is unknown).
4549 void AddInstanceMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4550 AddMethodToGlobalPool(Method, impl, /*instance*/true);
4551 }
4552
4553 /// AddFactoryMethodToGlobalPool - Same as above, but for factory methods.
4554 void AddFactoryMethodToGlobalPool(ObjCMethodDecl *Method, bool impl=false) {
4555 AddMethodToGlobalPool(Method, impl, /*instance*/false);
4556 }
4557
4558 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
4559 /// pool.
4560 void AddAnyMethodToGlobalPool(Decl *D);
4561
4562 /// LookupInstanceMethodInGlobalPool - Returns the method and warns if
4563 /// there are multiple signatures.
4564 ObjCMethodDecl *LookupInstanceMethodInGlobalPool(Selector Sel, SourceRange R,
4565 bool receiverIdOrClass=false) {
4566 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4567 /*instance*/true);
4568 }
4569
4570 /// LookupFactoryMethodInGlobalPool - Returns the method and warns if
4571 /// there are multiple signatures.
4572 ObjCMethodDecl *LookupFactoryMethodInGlobalPool(Selector Sel, SourceRange R,
4573 bool receiverIdOrClass=false) {
4574 return LookupMethodInGlobalPool(Sel, R, receiverIdOrClass,
4575 /*instance*/false);
4576 }
4577
4578 const ObjCMethodDecl *SelectorsForTypoCorrection(Selector Sel,
4579 QualType ObjectType=QualType());
4580 /// LookupImplementedMethodInGlobalPool - Returns the method which has an
4581 /// implementation.
4582 ObjCMethodDecl *LookupImplementedMethodInGlobalPool(Selector Sel);
4583
4584 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4585 /// initialization.
4586 void CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4587 SmallVectorImpl<ObjCIvarDecl*> &Ivars);
4588
4589 //===--------------------------------------------------------------------===//
4590 // Statement Parsing Callbacks: SemaStmt.cpp.
4591public:
4592 class FullExprArg {
4593 public:
4594 FullExprArg() : E(nullptr) { }
4595 FullExprArg(Sema &actions) : E(nullptr) { }
4596
4597 ExprResult release() {
4598 return E;
4599 }
4600
4601 Expr *get() const { return E; }
4602
4603 Expr *operator->() {
4604 return E;
4605 }
4606
4607 private:
4608 // FIXME: No need to make the entire Sema class a friend when it's just
4609 // Sema::MakeFullExpr that needs access to the constructor below.
4610 friend class Sema;
4611
4612 explicit FullExprArg(Expr *expr) : E(expr) {}
4613
4614 Expr *E;
4615 };
4616
4617 FullExprArg MakeFullExpr(Expr *Arg) {
4618 return MakeFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation());
4619 }
4620 FullExprArg MakeFullExpr(Expr *Arg, SourceLocation CC) {
4621 return FullExprArg(
4622 ActOnFinishFullExpr(Arg, CC, /*DiscardedValue*/ false).get());
4623 }
4624 FullExprArg MakeFullDiscardedValueExpr(Expr *Arg) {
4625 ExprResult FE =
4626 ActOnFinishFullExpr(Arg, Arg ? Arg->getExprLoc() : SourceLocation(),
4627 /*DiscardedValue*/ true);
4628 return FullExprArg(FE.get());
4629 }
4630
4631 StmtResult ActOnExprStmt(ExprResult Arg, bool DiscardedValue = true);
4632 StmtResult ActOnExprStmtError();
4633
4634 StmtResult ActOnNullStmt(SourceLocation SemiLoc,
4635 bool HasLeadingEmptyMacro = false);
4636
4637 void ActOnStartOfCompoundStmt(bool IsStmtExpr);
4638 void ActOnAfterCompoundStatementLeadingPragmas();
4639 void ActOnFinishOfCompoundStmt();
4640 StmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
4641 ArrayRef<Stmt *> Elts, bool isStmtExpr);
4642
4643 /// A RAII object to enter scope of a compound statement.
4644 class CompoundScopeRAII {
4645 public:
4646 CompoundScopeRAII(Sema &S, bool IsStmtExpr = false) : S(S) {
4647 S.ActOnStartOfCompoundStmt(IsStmtExpr);
4648 }
4649
4650 ~CompoundScopeRAII() {
4651 S.ActOnFinishOfCompoundStmt();
4652 }
4653
4654 private:
4655 Sema &S;
4656 };
4657
4658 /// An RAII helper that pops function a function scope on exit.
4659 struct FunctionScopeRAII {
4660 Sema &S;
4661 bool Active;
4662 FunctionScopeRAII(Sema &S) : S(S), Active(true) {}
4663 ~FunctionScopeRAII() {
4664 if (Active)
4665 S.PopFunctionScopeInfo();
4666 }
4667 void disable() { Active = false; }
4668 };
4669
4670 StmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
4671 SourceLocation StartLoc,
4672 SourceLocation EndLoc);
4673 void ActOnForEachDeclStmt(DeclGroupPtrTy Decl);
4674 StmtResult ActOnForEachLValueExpr(Expr *E);
4675 ExprResult ActOnCaseExpr(SourceLocation CaseLoc, ExprResult Val);
4676 StmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprResult LHS,
4677 SourceLocation DotDotDotLoc, ExprResult RHS,
4678 SourceLocation ColonLoc);
4679 void ActOnCaseStmtBody(Stmt *CaseStmt, Stmt *SubStmt);
4680
4681 StmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
4682 SourceLocation ColonLoc,
4683 Stmt *SubStmt, Scope *CurScope);
4684 StmtResult ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
4685 SourceLocation ColonLoc, Stmt *SubStmt);
4686
4687 StmtResult BuildAttributedStmt(SourceLocation AttrsLoc,
4688 ArrayRef<const Attr *> Attrs, Stmt *SubStmt);
4689 StmtResult ActOnAttributedStmt(const ParsedAttributesWithRange &AttrList,
4690 Stmt *SubStmt);
4691
4692 class ConditionResult;
4693 StmtResult ActOnIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4694 SourceLocation LParenLoc, Stmt *InitStmt,
4695 ConditionResult Cond, SourceLocation RParenLoc,
4696 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4697 StmtResult BuildIfStmt(SourceLocation IfLoc, bool IsConstexpr,
4698 SourceLocation LParenLoc, Stmt *InitStmt,
4699 ConditionResult Cond, SourceLocation RParenLoc,
4700 Stmt *ThenVal, SourceLocation ElseLoc, Stmt *ElseVal);
4701 StmtResult ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,
4702 SourceLocation LParenLoc, Stmt *InitStmt,
4703 ConditionResult Cond,
4704 SourceLocation RParenLoc);
4705 StmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
4706 Stmt *Switch, Stmt *Body);
4707 StmtResult ActOnWhileStmt(SourceLocation WhileLoc, SourceLocation LParenLoc,
4708 ConditionResult Cond, SourceLocation RParenLoc,
4709 Stmt *Body);
4710 StmtResult ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
4711 SourceLocation WhileLoc, SourceLocation CondLParen,
4712 Expr *Cond, SourceLocation CondRParen);
4713
4714 StmtResult ActOnForStmt(SourceLocation ForLoc,
4715 SourceLocation LParenLoc,
4716 Stmt *First,
4717 ConditionResult Second,
4718 FullExprArg Third,
4719 SourceLocation RParenLoc,
4720 Stmt *Body);
4721 ExprResult CheckObjCForCollectionOperand(SourceLocation forLoc,
4722 Expr *collection);
4723 StmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
4724 Stmt *First, Expr *collection,
4725 SourceLocation RParenLoc);
4726 StmtResult FinishObjCForCollectionStmt(Stmt *ForCollection, Stmt *Body);
4727
4728 enum BuildForRangeKind {
4729 /// Initial building of a for-range statement.
4730 BFRK_Build,
4731 /// Instantiation or recovery rebuild of a for-range statement. Don't
4732 /// attempt any typo-correction.
4733 BFRK_Rebuild,
4734 /// Determining whether a for-range statement could be built. Avoid any
4735 /// unnecessary or irreversible actions.
4736 BFRK_Check
4737 };
4738
4739 StmtResult ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
4740 SourceLocation CoawaitLoc,
4741 Stmt *InitStmt,
4742 Stmt *LoopVar,
4743 SourceLocation ColonLoc, Expr *Collection,
4744 SourceLocation RParenLoc,
4745 BuildForRangeKind Kind);
4746 StmtResult BuildCXXForRangeStmt(SourceLocation ForLoc,
4747 SourceLocation CoawaitLoc,
4748 Stmt *InitStmt,
4749 SourceLocation ColonLoc,
4750 Stmt *RangeDecl, Stmt *Begin, Stmt *End,
4751 Expr *Cond, Expr *Inc,
4752 Stmt *LoopVarDecl,
4753 SourceLocation RParenLoc,
4754 BuildForRangeKind Kind);
4755 StmtResult FinishCXXForRangeStmt(Stmt *ForRange, Stmt *Body);
4756
4757 StmtResult ActOnGotoStmt(SourceLocation GotoLoc,
4758 SourceLocation LabelLoc,
4759 LabelDecl *TheDecl);
4760 StmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
4761 SourceLocation StarLoc,
4762 Expr *DestExp);
4763 StmtResult ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope);
4764 StmtResult ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope);
4765
4766 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4767 CapturedRegionKind Kind, unsigned NumParams);
4768 typedef std::pair<StringRef, QualType> CapturedParamNameType;
4769 void ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
4770 CapturedRegionKind Kind,
4771 ArrayRef<CapturedParamNameType> Params,
4772 unsigned OpenMPCaptureLevel = 0);
4773 StmtResult ActOnCapturedRegionEnd(Stmt *S);
4774 void ActOnCapturedRegionError();
4775 RecordDecl *CreateCapturedStmtRecordDecl(CapturedDecl *&CD,
4776 SourceLocation Loc,
4777 unsigned NumParams);
4778
4779 struct NamedReturnInfo {
4780 const VarDecl *Candidate;
4781
4782 enum Status : uint8_t { None, MoveEligible, MoveEligibleAndCopyElidable };
4783 Status S;
4784
4785 bool isMoveEligible() const { return S != None; };
4786 bool isCopyElidable() const { return S == MoveEligibleAndCopyElidable; }
4787 };
4788 enum class SimplerImplicitMoveMode { ForceOff, Normal, ForceOn };
4789 NamedReturnInfo getNamedReturnInfo(
4790 Expr *&E, SimplerImplicitMoveMode Mode = SimplerImplicitMoveMode::Normal);
4791 NamedReturnInfo getNamedReturnInfo(const VarDecl *VD);
4792 const VarDecl *getCopyElisionCandidate(NamedReturnInfo &Info,
4793 QualType ReturnType);
4794
4795 ExprResult
4796 PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
4797 const NamedReturnInfo &NRInfo, Expr *Value,
4798 bool SupressSimplerImplicitMoves = false);
4799
4800 StmtResult ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4801 Scope *CurScope);
4802 StmtResult BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp);
4803 StmtResult ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
4804 NamedReturnInfo &NRInfo,
4805 bool SupressSimplerImplicitMoves);
4806
4807 StmtResult ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
4808 bool IsVolatile, unsigned NumOutputs,
4809 unsigned NumInputs, IdentifierInfo **Names,
4810 MultiExprArg Constraints, MultiExprArg Exprs,
4811 Expr *AsmString, MultiExprArg Clobbers,
4812 unsigned NumLabels,
4813 SourceLocation RParenLoc);
4814
4815 void FillInlineAsmIdentifierInfo(Expr *Res,
4816 llvm::InlineAsmIdentifierInfo &Info);
4817 ExprResult LookupInlineAsmIdentifier(CXXScopeSpec &SS,
4818 SourceLocation TemplateKWLoc,
4819 UnqualifiedId &Id,
4820 bool IsUnevaluatedContext);
4821 bool LookupInlineAsmField(StringRef Base, StringRef Member,
4822 unsigned &Offset, SourceLocation AsmLoc);
4823 ExprResult LookupInlineAsmVarDeclField(Expr *RefExpr, StringRef Member,
4824 SourceLocation AsmLoc);
4825 StmtResult ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
4826 ArrayRef<Token> AsmToks,
4827 StringRef AsmString,
4828 unsigned NumOutputs, unsigned NumInputs,
4829 ArrayRef<StringRef> Constraints,
4830 ArrayRef<StringRef> Clobbers,
4831 ArrayRef<Expr*> Exprs,
4832 SourceLocation EndLoc);
4833 LabelDecl *GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
4834 SourceLocation Location,
4835 bool AlwaysCreate);
4836
4837 VarDecl *BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType ExceptionType,
4838 SourceLocation StartLoc,
4839 SourceLocation IdLoc, IdentifierInfo *Id,
4840 bool Invalid = false);
4841
4842 Decl *ActOnObjCExceptionDecl(Scope *S, Declarator &D);
4843
4844 StmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc, SourceLocation RParen,
4845 Decl *Parm, Stmt *Body);
4846
4847 StmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body);
4848
4849 StmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
4850 MultiStmtArg Catch, Stmt *Finally);
4851
4852 StmtResult BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw);
4853 StmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
4854 Scope *CurScope);
4855 ExprResult ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,
4856 Expr *operand);
4857 StmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
4858 Expr *SynchExpr,
4859 Stmt *SynchBody);
4860
4861 StmtResult ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body);
4862
4863 VarDecl *BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
4864 SourceLocation StartLoc,
4865 SourceLocation IdLoc,
4866 IdentifierInfo *Id);
4867
4868 Decl *ActOnExceptionDeclarator(Scope *S, Declarator &D);
4869
4870 StmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
4871 Decl *ExDecl, Stmt *HandlerBlock);
4872 StmtResult ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
4873 ArrayRef<Stmt *> Handlers);
4874
4875 StmtResult ActOnSEHTryBlock(bool IsCXXTry, // try (true) or __try (false) ?
4876 SourceLocation TryLoc, Stmt *TryBlock,
4877 Stmt *Handler);
4878 StmtResult ActOnSEHExceptBlock(SourceLocation Loc,
4879 Expr *FilterExpr,
4880 Stmt *Block);
4881 void ActOnStartSEHFinallyBlock();
4882 void ActOnAbortSEHFinallyBlock();
4883 StmtResult ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block);
4884 StmtResult ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope);
4885
4886 void DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock);
4887
4888 bool ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const;
4889
4890 /// If it's a file scoped decl that must warn if not used, keep track
4891 /// of it.
4892 void MarkUnusedFileScopedDecl(const DeclaratorDecl *D);
4893
4894 /// DiagnoseUnusedExprResult - If the statement passed in is an expression
4895 /// whose result is unused, warn.
4896 void DiagnoseUnusedExprResult(const Stmt *S);
4897 void DiagnoseUnusedNestedTypedefs(const RecordDecl *D);
4898 void DiagnoseUnusedDecl(const NamedDecl *ND);
4899
4900 /// If VD is set but not otherwise used, diagnose, for a parameter or a
4901 /// variable.
4902 void DiagnoseUnusedButSetDecl(const VarDecl *VD);
4903
4904 /// Emit \p DiagID if statement located on \p StmtLoc has a suspicious null
4905 /// statement as a \p Body, and it is located on the same line.
4906 ///
4907 /// This helps prevent bugs due to typos, such as:
4908 /// if (condition);
4909 /// do_stuff();
4910 void DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
4911 const Stmt *Body,
4912 unsigned DiagID);
4913
4914 /// Warn if a for/while loop statement \p S, which is followed by
4915 /// \p PossibleBody, has a suspicious null statement as a body.
4916 void DiagnoseEmptyLoopBody(const Stmt *S,
4917 const Stmt *PossibleBody);
4918
4919 /// Warn if a value is moved to itself.
4920 void DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
4921 SourceLocation OpLoc);
4922
4923 /// Warn if we're implicitly casting from a _Nullable pointer type to a
4924 /// _Nonnull one.
4925 void diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType,
4926 SourceLocation Loc);
4927
4928 /// Warn when implicitly casting 0 to nullptr.
4929 void diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E);
4930
4931 ParsingDeclState PushParsingDeclaration(sema::DelayedDiagnosticPool &pool) {
4932 return DelayedDiagnostics.push(pool);
4933 }
4934 void PopParsingDeclaration(ParsingDeclState state, Decl *decl);
4935
4936 typedef ProcessingContextState ParsingClassState;
4937 ParsingClassState PushParsingClass() {
4938 ParsingClassDepth++;
4939 return DelayedDiagnostics.pushUndelayed();
4940 }
4941 void PopParsingClass(ParsingClassState state) {
4942 ParsingClassDepth--;
4943 DelayedDiagnostics.popUndelayed(state);
4944 }
4945
4946 void redelayDiagnostics(sema::DelayedDiagnosticPool &pool);
4947
4948 void DiagnoseAvailabilityOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4949 const ObjCInterfaceDecl *UnknownObjCClass,
4950 bool ObjCPropertyAccess,
4951 bool AvoidPartialAvailabilityChecks = false,
4952 ObjCInterfaceDecl *ClassReceiver = nullptr);
4953
4954 bool makeUnavailableInSystemHeader(SourceLocation loc,
4955 UnavailableAttr::ImplicitReason reason);
4956
4957 /// Issue any -Wunguarded-availability warnings in \c FD
4958 void DiagnoseUnguardedAvailabilityViolations(Decl *FD);
4959
4960 void handleDelayedAvailabilityCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
4961
4962 //===--------------------------------------------------------------------===//
4963 // Expression Parsing Callbacks: SemaExpr.cpp.
4964
4965 bool CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid);
4966 bool DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
4967 const ObjCInterfaceDecl *UnknownObjCClass = nullptr,
4968 bool ObjCPropertyAccess = false,
4969 bool AvoidPartialAvailabilityChecks = false,
4970 ObjCInterfaceDecl *ClassReciever = nullptr);
4971 void NoteDeletedFunction(FunctionDecl *FD);
4972 void NoteDeletedInheritingConstructor(CXXConstructorDecl *CD);
4973 bool DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *PD,
4974 ObjCMethodDecl *Getter,
4975 SourceLocation Loc);
4976 void DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
4977 ArrayRef<Expr *> Args);
4978
4979 void PushExpressionEvaluationContext(
4980 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl = nullptr,
4981 ExpressionEvaluationContextRecord::ExpressionKind Type =
4982 ExpressionEvaluationContextRecord::EK_Other);
4983 enum ReuseLambdaContextDecl_t { ReuseLambdaContextDecl };
4984 void PushExpressionEvaluationContext(
4985 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
4986 ExpressionEvaluationContextRecord::ExpressionKind Type =
4987 ExpressionEvaluationContextRecord::EK_Other);
4988 void PopExpressionEvaluationContext();
4989
4990 void DiscardCleanupsInEvaluationContext();
4991
4992 ExprResult TransformToPotentiallyEvaluated(Expr *E);
4993 ExprResult HandleExprEvaluationContextForTypeof(Expr *E);
4994
4995 ExprResult CheckUnevaluatedOperand(Expr *E);
4996 void CheckUnusedVolatileAssignment(Expr *E);
4997
4998 ExprResult ActOnConstantExpression(ExprResult Res);
4999
5000 // Functions for marking a declaration referenced. These functions also
5001 // contain the relevant logic for marking if a reference to a function or
5002 // variable is an odr-use (in the C++11 sense). There are separate variants
5003 // for expressions referring to a decl; these exist because odr-use marking
5004 // needs to be delayed for some constant variables when we build one of the
5005 // named expressions.
5006 //
5007 // MightBeOdrUse indicates whether the use could possibly be an odr-use, and
5008 // should usually be true. This only needs to be set to false if the lack of
5009 // odr-use cannot be determined from the current context (for instance,
5010 // because the name denotes a virtual function and was written without an
5011 // explicit nested-name-specifier).
5012 void MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool MightBeOdrUse);
5013 void MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
5014 bool MightBeOdrUse = true);
5015 void MarkVariableReferenced(SourceLocation Loc, VarDecl *Var);
5016 void MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base = nullptr);
5017 void MarkMemberReferenced(MemberExpr *E);
5018 void MarkFunctionParmPackReferenced(FunctionParmPackExpr *E);
5019 void MarkCaptureUsedInEnclosingContext(VarDecl *Capture, SourceLocation Loc,
5020 unsigned CapturingScopeIndex);
5021
5022 ExprResult CheckLValueToRValueConversionOperand(Expr *E);
5023 void CleanupVarDeclMarking();
5024
5025 enum TryCaptureKind {
5026 TryCapture_Implicit, TryCapture_ExplicitByVal, TryCapture_ExplicitByRef
5027 };
5028
5029 /// Try to capture the given variable.
5030 ///
5031 /// \param Var The variable to capture.
5032 ///
5033 /// \param Loc The location at which the capture occurs.
5034 ///
5035 /// \param Kind The kind of capture, which may be implicit (for either a
5036 /// block or a lambda), or explicit by-value or by-reference (for a lambda).
5037 ///
5038 /// \param EllipsisLoc The location of the ellipsis, if one is provided in
5039 /// an explicit lambda capture.
5040 ///
5041 /// \param BuildAndDiagnose Whether we are actually supposed to add the
5042 /// captures or diagnose errors. If false, this routine merely check whether
5043 /// the capture can occur without performing the capture itself or complaining
5044 /// if the variable cannot be captured.
5045 ///
5046 /// \param CaptureType Will be set to the type of the field used to capture
5047 /// this variable in the innermost block or lambda. Only valid when the
5048 /// variable can be captured.
5049 ///
5050 /// \param DeclRefType Will be set to the type of a reference to the capture
5051 /// from within the current scope. Only valid when the variable can be
5052 /// captured.
5053 ///
5054 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
5055 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
5056 /// This is useful when enclosing lambdas must speculatively capture
5057 /// variables that may or may not be used in certain specializations of
5058 /// a nested generic lambda.
5059 ///
5060 /// \returns true if an error occurred (i.e., the variable cannot be
5061 /// captured) and false if the capture succeeded.
5062 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc, TryCaptureKind Kind,
5063 SourceLocation EllipsisLoc, bool BuildAndDiagnose,
5064 QualType &CaptureType,
5065 QualType &DeclRefType,
5066 const unsigned *const FunctionScopeIndexToStopAt);
5067
5068 /// Try to capture the given variable.
5069 bool tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
5070 TryCaptureKind Kind = TryCapture_Implicit,
5071 SourceLocation EllipsisLoc = SourceLocation());
5072
5073 /// Checks if the variable must be captured.
5074 bool NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc);
5075
5076 /// Given a variable, determine the type that a reference to that
5077 /// variable will have in the given scope.
5078 QualType getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc);
5079
5080 /// Mark all of the declarations referenced within a particular AST node as
5081 /// referenced. Used when template instantiation instantiates a non-dependent
5082 /// type -- entities referenced by the type are now referenced.
5083 void MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T);
5084 void MarkDeclarationsReferencedInExpr(Expr *E,
5085 bool SkipLocalVariables = false);
5086
5087 /// Try to recover by turning the given expression into a
5088 /// call. Returns true if recovery was attempted or an error was
5089 /// emitted; this may also leave the ExprResult invalid.
5090 bool tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD,
5091 bool ForceComplain = false,
5092 bool (*IsPlausibleResult)(QualType) = nullptr);
5093
5094 /// Figure out if an expression could be turned into a call.
5095 bool tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy,
5096 UnresolvedSetImpl &NonTemplateOverloads);
5097
5098 /// Try to convert an expression \p E to type \p Ty. Returns the result of the
5099 /// conversion.
5100 ExprResult tryConvertExprToType(Expr *E, QualType Ty);
5101
5102 /// Conditionally issue a diagnostic based on the current
5103 /// evaluation context.
5104 ///
5105 /// \param Statement If Statement is non-null, delay reporting the
5106 /// diagnostic until the function body is parsed, and then do a basic
5107 /// reachability analysis to determine if the statement is reachable.
5108 /// If it is unreachable, the diagnostic will not be emitted.
5109 bool DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
5110 const PartialDiagnostic &PD);
5111 /// Similar, but diagnostic is only produced if all the specified statements
5112 /// are reachable.
5113 bool DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
5114 const PartialDiagnostic &PD);
5115
5116 // Primary Expressions.
5117 SourceRange getExprRange(Expr *E) const;
5118
5119 ExprResult ActOnIdExpression(
5120 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5121 UnqualifiedId &Id, bool HasTrailingLParen, bool IsAddressOfOperand,
5122 CorrectionCandidateCallback *CCC = nullptr,
5123 bool IsInlineAsmIdentifier = false, Token *KeywordReplacement = nullptr);
5124
5125 void DecomposeUnqualifiedId(const UnqualifiedId &Id,
5126 TemplateArgumentListInfo &Buffer,
5127 DeclarationNameInfo &NameInfo,
5128 const TemplateArgumentListInfo *&TemplateArgs);
5129
5130 bool DiagnoseDependentMemberLookup(LookupResult &R);
5131
5132 bool
5133 DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
5134 CorrectionCandidateCallback &CCC,
5135 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr,
5136 ArrayRef<Expr *> Args = None, TypoExpr **Out = nullptr);
5137
5138 DeclResult LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
5139 IdentifierInfo *II);
5140 ExprResult BuildIvarRefExpr(Scope *S, SourceLocation Loc, ObjCIvarDecl *IV);
5141
5142 ExprResult LookupInObjCMethod(LookupResult &LookUp, Scope *S,
5143 IdentifierInfo *II,
5144 bool AllowBuiltinCreation=false);
5145
5146 ExprResult ActOnDependentIdExpression(const CXXScopeSpec &SS,
5147 SourceLocation TemplateKWLoc,
5148 const DeclarationNameInfo &NameInfo,
5149 bool isAddressOfOperand,
5150 const TemplateArgumentListInfo *TemplateArgs);
5151
5152 /// If \p D cannot be odr-used in the current expression evaluation context,
5153 /// return a reason explaining why. Otherwise, return NOUR_None.
5154 NonOdrUseReason getNonOdrUseReasonInCurrentContext(ValueDecl *D);
5155
5156 DeclRefExpr *BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5157 SourceLocation Loc,
5158 const CXXScopeSpec *SS = nullptr);
5159 DeclRefExpr *
5160 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5161 const DeclarationNameInfo &NameInfo,
5162 const CXXScopeSpec *SS = nullptr,
5163 NamedDecl *FoundD = nullptr,
5164 SourceLocation TemplateKWLoc = SourceLocation(),
5165 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5166 DeclRefExpr *
5167 BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
5168 const DeclarationNameInfo &NameInfo,
5169 NestedNameSpecifierLoc NNS,
5170 NamedDecl *FoundD = nullptr,
5171 SourceLocation TemplateKWLoc = SourceLocation(),
5172 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5173
5174 ExprResult
5175 BuildAnonymousStructUnionMemberReference(
5176 const CXXScopeSpec &SS,
5177 SourceLocation nameLoc,
5178 IndirectFieldDecl *indirectField,
5179 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_none),
5180 Expr *baseObjectExpr = nullptr,
5181 SourceLocation opLoc = SourceLocation());
5182
5183 ExprResult BuildPossibleImplicitMemberExpr(
5184 const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
5185 const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
5186 UnresolvedLookupExpr *AsULE = nullptr);
5187 ExprResult BuildImplicitMemberExpr(const CXXScopeSpec &SS,
5188 SourceLocation TemplateKWLoc,
5189 LookupResult &R,
5190 const TemplateArgumentListInfo *TemplateArgs,
5191 bool IsDefiniteInstance,
5192 const Scope *S);
5193 bool UseArgumentDependentLookup(const CXXScopeSpec &SS,
5194 const LookupResult &R,
5195 bool HasTrailingLParen);
5196
5197 ExprResult
5198 BuildQualifiedDeclarationNameExpr(CXXScopeSpec &SS,
5199 const DeclarationNameInfo &NameInfo,
5200 bool IsAddressOfOperand, const Scope *S,
5201 TypeSourceInfo **RecoveryTSI = nullptr);
5202
5203 ExprResult BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
5204 SourceLocation TemplateKWLoc,
5205 const DeclarationNameInfo &NameInfo,
5206 const TemplateArgumentListInfo *TemplateArgs);
5207
5208 ExprResult BuildDeclarationNameExpr(const CXXScopeSpec &SS,
5209 LookupResult &R,
5210 bool NeedsADL,
5211 bool AcceptInvalidDecl = false);
5212 ExprResult BuildDeclarationNameExpr(
5213 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
5214 NamedDecl *FoundD = nullptr,
5215 const TemplateArgumentListInfo *TemplateArgs = nullptr,
5216 bool AcceptInvalidDecl = false);
5217
5218 ExprResult BuildLiteralOperatorCall(LookupResult &R,
5219 DeclarationNameInfo &SuffixInfo,
5220 ArrayRef<Expr *> Args,
5221 SourceLocation LitEndLoc,
5222 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr);
5223
5224 ExprResult BuildPredefinedExpr(SourceLocation Loc,
5225 PredefinedExpr::IdentKind IK);
5226 ExprResult ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind);
5227 ExprResult ActOnIntegerConstant(SourceLocation Loc, uint64_t Val);
5228
5229 ExprResult BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5230 SourceLocation LParen,
5231 SourceLocation RParen,
5232 TypeSourceInfo *TSI);
5233 ExprResult ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
5234 SourceLocation LParen,
5235 SourceLocation RParen,
5236 ParsedType ParsedTy);
5237
5238 bool CheckLoopHintExpr(Expr *E, SourceLocation Loc);
5239
5240 ExprResult ActOnNumericConstant(const Token &Tok, Scope *UDLScope = nullptr);
5241 ExprResult ActOnCharacterConstant(const Token &Tok,
5242 Scope *UDLScope = nullptr);
5243 ExprResult ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E);
5244 ExprResult ActOnParenListExpr(SourceLocation L,
5245 SourceLocation R,
5246 MultiExprArg Val);
5247
5248 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
5249 /// fragments (e.g. "foo" "bar" L"baz").
5250 ExprResult ActOnStringLiteral(ArrayRef<Token> StringToks,
5251 Scope *UDLScope = nullptr);
5252
5253 ExprResult ActOnGenericSelectionExpr(SourceLocation KeyLoc,
5254 SourceLocation DefaultLoc,
5255 SourceLocation RParenLoc,
5256 Expr *ControllingExpr,
5257 ArrayRef<ParsedType> ArgTypes,
5258 ArrayRef<Expr *> ArgExprs);
5259 ExprResult CreateGenericSelectionExpr(SourceLocation KeyLoc,
5260 SourceLocation DefaultLoc,
5261 SourceLocation RParenLoc,
5262 Expr *ControllingExpr,
5263 ArrayRef<TypeSourceInfo *> Types,
5264 ArrayRef<Expr *> Exprs);
5265
5266 // Binary/Unary Operators. 'Tok' is the token for the operator.
5267 ExprResult CreateBuiltinUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc,
5268 Expr *InputExpr);
5269 ExprResult BuildUnaryOp(Scope *S, SourceLocation OpLoc,
5270 UnaryOperatorKind Opc, Expr *Input);
5271 ExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
5272 tok::TokenKind Op, Expr *Input);
5273
5274 bool isQualifiedMemberAccess(Expr *E);
5275 QualType CheckAddressOfOperand(ExprResult &Operand, SourceLocation OpLoc);
5276
5277 ExprResult CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
5278 SourceLocation OpLoc,
5279 UnaryExprOrTypeTrait ExprKind,
5280 SourceRange R);
5281 ExprResult CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
5282 UnaryExprOrTypeTrait ExprKind);
5283 ExprResult
5284 ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
5285 UnaryExprOrTypeTrait ExprKind,
5286 bool IsType, void *TyOrEx,
5287 SourceRange ArgRange);
5288
5289 ExprResult CheckPlaceholderExpr(Expr *E);
5290 bool CheckVecStepExpr(Expr *E);
5291
5292 bool CheckUnaryExprOrTypeTraitOperand(Expr *E, UnaryExprOrTypeTrait ExprKind);
5293 bool CheckUnaryExprOrTypeTraitOperand(QualType ExprType, SourceLocation OpLoc,
5294 SourceRange ExprRange,
5295 UnaryExprOrTypeTrait ExprKind);
5296 ExprResult ActOnSizeofParameterPackExpr(Scope *S,
5297 SourceLocation OpLoc,
5298 IdentifierInfo &Name,
5299 SourceLocation NameLoc,
5300 SourceLocation RParenLoc);
5301 ExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
5302 tok::TokenKind Kind, Expr *Input);
5303
5304 ExprResult ActOnArraySubscriptExpr(Scope *S, Expr *Base, SourceLocation LLoc,
5305 Expr *Idx, SourceLocation RLoc);
5306 ExprResult CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5307 Expr *Idx, SourceLocation RLoc);
5308
5309 ExprResult CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5310 Expr *ColumnIdx,
5311 SourceLocation RBLoc);
5312
5313 ExprResult ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5314 Expr *LowerBound,
5315 SourceLocation ColonLocFirst,
5316 SourceLocation ColonLocSecond,
5317 Expr *Length, Expr *Stride,
5318 SourceLocation RBLoc);
5319 ExprResult ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5320 SourceLocation RParenLoc,
5321 ArrayRef<Expr *> Dims,
5322 ArrayRef<SourceRange> Brackets);
5323
5324 /// Data structure for iterator expression.
5325 struct OMPIteratorData {
5326 IdentifierInfo *DeclIdent = nullptr;
5327 SourceLocation DeclIdentLoc;
5328 ParsedType Type;
5329 OMPIteratorExpr::IteratorRange Range;
5330 SourceLocation AssignLoc;
5331 SourceLocation ColonLoc;
5332 SourceLocation SecColonLoc;
5333 };
5334
5335 ExprResult ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5336 SourceLocation LLoc, SourceLocation RLoc,
5337 ArrayRef<OMPIteratorData> Data);
5338
5339 // This struct is for use by ActOnMemberAccess to allow
5340 // BuildMemberReferenceExpr to be able to reinvoke ActOnMemberAccess after
5341 // changing the access operator from a '.' to a '->' (to see if that is the
5342 // change needed to fix an error about an unknown member, e.g. when the class
5343 // defines a custom operator->).
5344 struct ActOnMemberAccessExtraArgs {
5345 Scope *S;
5346 UnqualifiedId &Id;
5347 Decl *ObjCImpDecl;
5348 };
5349
5350 ExprResult BuildMemberReferenceExpr(
5351 Expr *Base, QualType BaseType, SourceLocation OpLoc, bool IsArrow,
5352 CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
5353 NamedDecl *FirstQualifierInScope, const DeclarationNameInfo &NameInfo,
5354 const TemplateArgumentListInfo *TemplateArgs,
5355 const Scope *S,
5356 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5357
5358 ExprResult
5359 BuildMemberReferenceExpr(Expr *Base, QualType BaseType, SourceLocation OpLoc,
5360 bool IsArrow, const CXXScopeSpec &SS,
5361 SourceLocation TemplateKWLoc,
5362 NamedDecl *FirstQualifierInScope, LookupResult &R,
5363 const TemplateArgumentListInfo *TemplateArgs,
5364 const Scope *S,
5365 bool SuppressQualifierCheck = false,
5366 ActOnMemberAccessExtraArgs *ExtraArgs = nullptr);
5367
5368 ExprResult BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
5369 SourceLocation OpLoc,
5370 const CXXScopeSpec &SS, FieldDecl *Field,
5371 DeclAccessPair FoundDecl,
5372 const DeclarationNameInfo &MemberNameInfo);
5373
5374 ExprResult PerformMemberExprBaseConversion(Expr *Base, bool IsArrow);
5375
5376 bool CheckQualifiedMemberReference(Expr *BaseExpr, QualType BaseType,
5377 const CXXScopeSpec &SS,
5378 const LookupResult &R);
5379
5380 ExprResult ActOnDependentMemberExpr(Expr *Base, QualType BaseType,
5381 bool IsArrow, SourceLocation OpLoc,
5382 const CXXScopeSpec &SS,
5383 SourceLocation TemplateKWLoc,
5384 NamedDecl *FirstQualifierInScope,
5385 const DeclarationNameInfo &NameInfo,
5386 const TemplateArgumentListInfo *TemplateArgs);
5387
5388 ExprResult ActOnMemberAccessExpr(Scope *S, Expr *Base,
5389 SourceLocation OpLoc,
5390 tok::TokenKind OpKind,
5391 CXXScopeSpec &SS,
5392 SourceLocation TemplateKWLoc,
5393 UnqualifiedId &Member,
5394 Decl *ObjCImpDecl);
5395
5396 MemberExpr *
5397 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5398 const CXXScopeSpec *SS, SourceLocation TemplateKWLoc,
5399 ValueDecl *Member, DeclAccessPair FoundDecl,
5400 bool HadMultipleCandidates,
5401 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5402 ExprValueKind VK, ExprObjectKind OK,
5403 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5404 MemberExpr *
5405 BuildMemberExpr(Expr *Base, bool IsArrow, SourceLocation OpLoc,
5406 NestedNameSpecifierLoc NNS, SourceLocation TemplateKWLoc,
5407 ValueDecl *Member, DeclAccessPair FoundDecl,
5408 bool HadMultipleCandidates,
5409 const DeclarationNameInfo &MemberNameInfo, QualType Ty,
5410 ExprValueKind VK, ExprObjectKind OK,
5411 const TemplateArgumentListInfo *TemplateArgs = nullptr);
5412
5413 void ActOnDefaultCtorInitializers(Decl *CDtorDecl);
5414 bool ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5415 FunctionDecl *FDecl,
5416 const FunctionProtoType *Proto,
5417 ArrayRef<Expr *> Args,
5418 SourceLocation RParenLoc,
5419 bool ExecConfig = false);
5420 void CheckStaticArrayArgument(SourceLocation CallLoc,
5421 ParmVarDecl *Param,
5422 const Expr *ArgExpr);
5423
5424 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
5425 /// This provides the location of the left/right parens and a list of comma
5426 /// locations.
5427 ExprResult ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5428 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5429 Expr *ExecConfig = nullptr);
5430 ExprResult BuildCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
5431 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5432 Expr *ExecConfig = nullptr,
5433 bool IsExecConfig = false,
5434 bool AllowRecovery = false);
5435 Expr *BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
5436 MultiExprArg CallArgs);
5437 enum class AtomicArgumentOrder { API, AST };
5438 ExprResult
5439 BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
5440 SourceLocation RParenLoc, MultiExprArg Args,
5441 AtomicExpr::AtomicOp Op,
5442 AtomicArgumentOrder ArgOrder = AtomicArgumentOrder::API);
5443 ExprResult
5444 BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, SourceLocation LParenLoc,
5445 ArrayRef<Expr *> Arg, SourceLocation RParenLoc,
5446 Expr *Config = nullptr, bool IsExecConfig = false,
5447 ADLCallKind UsesADL = ADLCallKind::NotADL);
5448
5449 ExprResult ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
5450 MultiExprArg ExecConfig,
5451 SourceLocation GGGLoc);
5452
5453 ExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
5454 Declarator &D, ParsedType &Ty,
5455 SourceLocation RParenLoc, Expr *CastExpr);
5456 ExprResult BuildCStyleCastExpr(SourceLocation LParenLoc,
5457 TypeSourceInfo *Ty,
5458 SourceLocation RParenLoc,
5459 Expr *Op);
5460 CastKind PrepareScalarCast(ExprResult &src, QualType destType);
5461
5462 /// Build an altivec or OpenCL literal.
5463 ExprResult BuildVectorLiteral(SourceLocation LParenLoc,
5464 SourceLocation RParenLoc, Expr *E,
5465 TypeSourceInfo *TInfo);
5466
5467 ExprResult MaybeConvertParenListExprToParenExpr(Scope *S, Expr *ME);
5468
5469 ExprResult ActOnCompoundLiteral(SourceLocation LParenLoc,
5470 ParsedType Ty,
5471 SourceLocation RParenLoc,
5472 Expr *InitExpr);
5473
5474 ExprResult BuildCompoundLiteralExpr(SourceLocation LParenLoc,
5475 TypeSourceInfo *TInfo,
5476 SourceLocation RParenLoc,
5477 Expr *LiteralExpr);
5478
5479 ExprResult ActOnInitList(SourceLocation LBraceLoc,
5480 MultiExprArg InitArgList,
5481 SourceLocation RBraceLoc);
5482
5483 ExprResult BuildInitList(SourceLocation LBraceLoc,
5484 MultiExprArg InitArgList,
5485 SourceLocation RBraceLoc);
5486
5487 ExprResult ActOnDesignatedInitializer(Designation &Desig,
5488 SourceLocation EqualOrColonLoc,
5489 bool GNUSyntax,
5490 ExprResult Init);
5491
5492private:
5493 static BinaryOperatorKind ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind);
5494
5495public:
5496 ExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
5497 tok::TokenKind Kind, Expr *LHSExpr, Expr *RHSExpr);
5498 ExprResult BuildBinOp(Scope *S, SourceLocation OpLoc,
5499 BinaryOperatorKind Opc, Expr *LHSExpr, Expr *RHSExpr);
5500 ExprResult CreateBuiltinBinOp(SourceLocation OpLoc, BinaryOperatorKind Opc,
5501 Expr *LHSExpr, Expr *RHSExpr);
5502 void LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
5503 UnresolvedSetImpl &Functions);
5504
5505 void DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc);
5506
5507 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
5508 /// in the case of a the GNU conditional expr extension.
5509 ExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
5510 SourceLocation ColonLoc,
5511 Expr *CondExpr, Expr *LHSExpr, Expr *RHSExpr);
5512
5513 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
5514 ExprResult ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
5515 LabelDecl *TheDecl);
5516
5517 void ActOnStartStmtExpr();
5518 ExprResult ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
5519 SourceLocation RPLoc);
5520 ExprResult BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
5521 SourceLocation RPLoc, unsigned TemplateDepth);
5522 // Handle the final expression in a statement expression.
5523 ExprResult ActOnStmtExprResult(ExprResult E);
5524 void ActOnStmtExprError();
5525
5526 // __builtin_offsetof(type, identifier(.identifier|[expr])*)
5527 struct OffsetOfComponent {
5528 SourceLocation LocStart, LocEnd;
5529 bool isBrackets; // true if [expr], false if .ident
5530 union {
5531 IdentifierInfo *IdentInfo;
5532 Expr *E;
5533 } U;
5534 };
5535
5536 /// __builtin_offsetof(type, a.b[123][456].c)
5537 ExprResult BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
5538 TypeSourceInfo *TInfo,
5539 ArrayRef<OffsetOfComponent> Components,
5540 SourceLocation RParenLoc);
5541 ExprResult ActOnBuiltinOffsetOf(Scope *S,
5542 SourceLocation BuiltinLoc,
5543 SourceLocation TypeLoc,
5544 ParsedType ParsedArgTy,
5545 ArrayRef<OffsetOfComponent> Components,
5546 SourceLocation RParenLoc);
5547
5548 // __builtin_choose_expr(constExpr, expr1, expr2)
5549 ExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
5550 Expr *CondExpr, Expr *LHSExpr,
5551 Expr *RHSExpr, SourceLocation RPLoc);
5552
5553 // __builtin_va_arg(expr, type)
5554 ExprResult ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
5555 SourceLocation RPLoc);
5556 ExprResult BuildVAArgExpr(SourceLocation BuiltinLoc, Expr *E,
5557 TypeSourceInfo *TInfo, SourceLocation RPLoc);
5558
5559 // __builtin_LINE(), __builtin_FUNCTION(), __builtin_FILE(),
5560 // __builtin_COLUMN()
5561 ExprResult ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
5562 SourceLocation BuiltinLoc,
5563 SourceLocation RPLoc);
5564
5565 // Build a potentially resolved SourceLocExpr.
5566 ExprResult BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
5567 SourceLocation BuiltinLoc, SourceLocation RPLoc,
5568 DeclContext *ParentContext);
5569
5570 // __null
5571 ExprResult ActOnGNUNullExpr(SourceLocation TokenLoc);
5572
5573 bool CheckCaseExpression(Expr *E);
5574
5575 /// Describes the result of an "if-exists" condition check.
5576 enum IfExistsResult {
5577 /// The symbol exists.
5578 IER_Exists,
5579
5580 /// The symbol does not exist.
5581 IER_DoesNotExist,
5582
5583 /// The name is a dependent name, so the results will differ
5584 /// from one instantiation to the next.
5585 IER_Dependent,
5586
5587 /// An error occurred.
5588 IER_Error
5589 };
5590
5591 IfExistsResult
5592 CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS,
5593 const DeclarationNameInfo &TargetNameInfo);
5594
5595 IfExistsResult
5596 CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5597 bool IsIfExists, CXXScopeSpec &SS,
5598 UnqualifiedId &Name);
5599
5600 StmtResult BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
5601 bool IsIfExists,
5602 NestedNameSpecifierLoc QualifierLoc,
5603 DeclarationNameInfo NameInfo,
5604 Stmt *Nested);
5605 StmtResult ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
5606 bool IsIfExists,
5607 CXXScopeSpec &SS, UnqualifiedId &Name,
5608 Stmt *Nested);
5609
5610 //===------------------------- "Block" Extension ------------------------===//
5611
5612 /// ActOnBlockStart - This callback is invoked when a block literal is
5613 /// started.
5614 void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope);
5615
5616 /// ActOnBlockArguments - This callback allows processing of block arguments.
5617 /// If there are no arguments, this is still invoked.
5618 void ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
5619 Scope *CurScope);
5620
5621 /// ActOnBlockError - If there is an error parsing a block, this callback
5622 /// is invoked to pop the information about the block from the action impl.
5623 void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope);
5624
5625 /// ActOnBlockStmtExpr - This is called when the body of a block statement
5626 /// literal was successfully completed. ^(int x){...}
5627 ExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc, Stmt *Body,
5628 Scope *CurScope);
5629
5630 //===---------------------------- Clang Extensions ----------------------===//
5631
5632 /// __builtin_convertvector(...)
5633 ExprResult ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5634 SourceLocation BuiltinLoc,
5635 SourceLocation RParenLoc);
5636
5637 //===---------------------------- OpenCL Features -----------------------===//
5638
5639 /// __builtin_astype(...)
5640 ExprResult ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5641 SourceLocation BuiltinLoc,
5642 SourceLocation RParenLoc);
5643 ExprResult BuildAsTypeExpr(Expr *E, QualType DestTy,
5644 SourceLocation BuiltinLoc,
5645 SourceLocation RParenLoc);
5646
5647 //===---------------------------- C++ Features --------------------------===//
5648
5649 // Act on C++ namespaces
5650 Decl *ActOnStartNamespaceDef(Scope *S, SourceLocation InlineLoc,
5651 SourceLocation NamespaceLoc,
5652 SourceLocation IdentLoc, IdentifierInfo *Ident,
5653 SourceLocation LBrace,
5654 const ParsedAttributesView &AttrList,
5655 UsingDirectiveDecl *&UsingDecl);
5656 void ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace);
5657
5658 NamespaceDecl *getStdNamespace() const;
5659 NamespaceDecl *getOrCreateStdNamespace();
5660
5661 NamespaceDecl *lookupStdExperimentalNamespace();
5662
5663 CXXRecordDecl *getStdBadAlloc() const;
5664 EnumDecl *getStdAlignValT() const;
5665
5666private:
5667 // A cache representing if we've fully checked the various comparison category
5668 // types stored in ASTContext. The bit-index corresponds to the integer value
5669 // of a ComparisonCategoryType enumerator.
5670 llvm::SmallBitVector FullyCheckedComparisonCategories;
5671
5672 ValueDecl *tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
5673 CXXScopeSpec &SS,
5674 ParsedType TemplateTypeTy,
5675 IdentifierInfo *MemberOrBase);
5676
5677public:
5678 enum class ComparisonCategoryUsage {
5679 /// The '<=>' operator was used in an expression and a builtin operator
5680 /// was selected.
5681 OperatorInExpression,
5682 /// A defaulted 'operator<=>' needed the comparison category. This
5683 /// typically only applies to 'std::strong_ordering', due to the implicit
5684 /// fallback return value.
5685 DefaultedOperator,
5686 };
5687
5688 /// Lookup the specified comparison category types in the standard
5689 /// library, an check the VarDecls possibly returned by the operator<=>
5690 /// builtins for that type.
5691 ///
5692 /// \return The type of the comparison category type corresponding to the
5693 /// specified Kind, or a null type if an error occurs
5694 QualType CheckComparisonCategoryType(ComparisonCategoryType Kind,
5695 SourceLocation Loc,
5696 ComparisonCategoryUsage Usage);
5697
5698 /// Tests whether Ty is an instance of std::initializer_list and, if
5699 /// it is and Element is not NULL, assigns the element type to Element.
5700 bool isStdInitializerList(QualType Ty, QualType *Element);
5701
5702 /// Looks for the std::initializer_list template and instantiates it
5703 /// with Element, or emits an error if it's not found.
5704 ///
5705 /// \returns The instantiated template, or null on error.
5706 QualType BuildStdInitializerList(QualType Element, SourceLocation Loc);
5707
5708 /// Determine whether Ctor is an initializer-list constructor, as
5709 /// defined in [dcl.init.list]p2.
5710 bool isInitListConstructor(const FunctionDecl *Ctor);
5711
5712 Decl *ActOnUsingDirective(Scope *CurScope, SourceLocation UsingLoc,
5713 SourceLocation NamespcLoc, CXXScopeSpec &SS,
5714 SourceLocation IdentLoc,
5715 IdentifierInfo *NamespcName,
5716 const ParsedAttributesView &AttrList);
5717
5718 void PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir);
5719
5720 Decl *ActOnNamespaceAliasDef(Scope *CurScope,
5721 SourceLocation NamespaceLoc,
5722 SourceLocation AliasLoc,
5723 IdentifierInfo *Alias,
5724 CXXScopeSpec &SS,
5725 SourceLocation IdentLoc,
5726 IdentifierInfo *Ident);
5727
5728 void FilterUsingLookup(Scope *S, LookupResult &lookup);
5729 void HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow);
5730 bool CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Target,
5731 const LookupResult &PreviousDecls,
5732 UsingShadowDecl *&PrevShadow);
5733 UsingShadowDecl *BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
5734 NamedDecl *Target,
5735 UsingShadowDecl *PrevDecl);
5736
5737 bool CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5738 bool HasTypenameKeyword,
5739 const CXXScopeSpec &SS,
5740 SourceLocation NameLoc,
5741 const LookupResult &Previous);
5742 bool CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
5743 const CXXScopeSpec &SS,
5744 const DeclarationNameInfo &NameInfo,
5745 SourceLocation NameLoc,
5746 const LookupResult *R = nullptr,
5747 const UsingDecl *UD = nullptr);
5748
5749 NamedDecl *BuildUsingDeclaration(
5750 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
5751 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
5752 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
5753 const ParsedAttributesView &AttrList, bool IsInstantiation,
5754 bool IsUsingIfExists);
5755 NamedDecl *BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
5756 SourceLocation UsingLoc,
5757 SourceLocation EnumLoc,
5758 SourceLocation NameLoc, EnumDecl *ED);
5759 NamedDecl *BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
5760 ArrayRef<NamedDecl *> Expansions);
5761
5762 bool CheckInheritingConstructorUsingDecl(UsingDecl *UD);
5763
5764 /// Given a derived-class using shadow declaration for a constructor and the
5765 /// correspnding base class constructor, find or create the implicit
5766 /// synthesized derived class constructor to use for this initialization.
5767 CXXConstructorDecl *
5768 findInheritingConstructor(SourceLocation Loc, CXXConstructorDecl *BaseCtor,
5769 ConstructorUsingShadowDecl *DerivedShadow);
5770
5771 Decl *ActOnUsingDeclaration(Scope *CurScope, AccessSpecifier AS,
5772 SourceLocation UsingLoc,
5773 SourceLocation TypenameLoc, CXXScopeSpec &SS,
5774 UnqualifiedId &Name, SourceLocation EllipsisLoc,
5775 const ParsedAttributesView &AttrList);
5776 Decl *ActOnUsingEnumDeclaration(Scope *CurScope, AccessSpecifier AS,
5777 SourceLocation UsingLoc,
5778 SourceLocation EnumLoc, const DeclSpec &);
5779 Decl *ActOnAliasDeclaration(Scope *CurScope, AccessSpecifier AS,
5780 MultiTemplateParamsArg TemplateParams,
5781 SourceLocation UsingLoc, UnqualifiedId &Name,
5782 const ParsedAttributesView &AttrList,
5783 TypeResult Type, Decl *DeclFromDeclSpec);
5784
5785 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
5786 /// including handling of its default argument expressions.
5787 ///
5788 /// \param ConstructKind - a CXXConstructExpr::ConstructionKind
5789 ExprResult
5790 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5791 NamedDecl *FoundDecl,
5792 CXXConstructorDecl *Constructor, MultiExprArg Exprs,
5793 bool HadMultipleCandidates, bool IsListInitialization,
5794 bool IsStdInitListInitialization,
5795 bool RequiresZeroInit, unsigned ConstructKind,
5796 SourceRange ParenRange);
5797
5798 /// Build a CXXConstructExpr whose constructor has already been resolved if
5799 /// it denotes an inherited constructor.
5800 ExprResult
5801 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5802 CXXConstructorDecl *Constructor, bool Elidable,
5803 MultiExprArg Exprs,
5804 bool HadMultipleCandidates, bool IsListInitialization,
5805 bool IsStdInitListInitialization,
5806 bool RequiresZeroInit, unsigned ConstructKind,
5807 SourceRange ParenRange);
5808
5809 // FIXME: Can we remove this and have the above BuildCXXConstructExpr check if
5810 // the constructor can be elidable?
5811 ExprResult
5812 BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5813 NamedDecl *FoundDecl,
5814 CXXConstructorDecl *Constructor, bool Elidable,
5815 MultiExprArg Exprs, bool HadMultipleCandidates,
5816 bool IsListInitialization,
5817 bool IsStdInitListInitialization, bool RequiresZeroInit,
5818 unsigned ConstructKind, SourceRange ParenRange);
5819
5820 ExprResult BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field);
5821
5822
5823 /// Instantiate or parse a C++ default argument expression as necessary.
5824 /// Return true on error.
5825 bool CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5826 ParmVarDecl *Param);
5827
5828 /// BuildCXXDefaultArgExpr - Creates a CXXDefaultArgExpr, instantiating
5829 /// the default expr if needed.
5830 ExprResult BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5831 FunctionDecl *FD,
5832 ParmVarDecl *Param);
5833
5834 /// FinalizeVarWithDestructor - Prepare for calling destructor on the
5835 /// constructed variable.
5836 void FinalizeVarWithDestructor(VarDecl *VD, const RecordType *DeclInitType);
5837
5838 /// Helper class that collects exception specifications for
5839 /// implicitly-declared special member functions.
5840 class ImplicitExceptionSpecification {
5841 // Pointer to allow copying
5842 Sema *Self;
5843 // We order exception specifications thus:
5844 // noexcept is the most restrictive, but is only used in C++11.
5845 // throw() comes next.
5846 // Then a throw(collected exceptions)
5847 // Finally no specification, which is expressed as noexcept(false).
5848 // throw(...) is used instead if any called function uses it.
5849 ExceptionSpecificationType ComputedEST;
5850 llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
5851 SmallVector<QualType, 4> Exceptions;
5852
5853 void ClearExceptions() {
5854 ExceptionsSeen.clear();
5855 Exceptions.clear();
5856 }
5857
5858 public:
5859 explicit ImplicitExceptionSpecification(Sema &Self)
5860 : Self(&Self), ComputedEST(EST_BasicNoexcept) {
5861 if (!Self.getLangOpts().CPlusPlus11)
5862 ComputedEST = EST_DynamicNone;
5863 }
5864
5865 /// Get the computed exception specification type.
5866 ExceptionSpecificationType getExceptionSpecType() const {
5867 assert(!isComputedNoexcept(ComputedEST) &&((void)0)
5868 "noexcept(expr) should not be a possible result")((void)0);
5869 return ComputedEST;
5870 }
5871
5872 /// The number of exceptions in the exception specification.
5873 unsigned size() const { return Exceptions.size(); }
5874
5875 /// The set of exceptions in the exception specification.
5876 const QualType *data() const { return Exceptions.data(); }
5877
5878 /// Integrate another called method into the collected data.
5879 void CalledDecl(SourceLocation CallLoc, const CXXMethodDecl *Method);
5880
5881 /// Integrate an invoked expression into the collected data.
5882 void CalledExpr(Expr *E) { CalledStmt(E); }
5883
5884 /// Integrate an invoked statement into the collected data.
5885 void CalledStmt(Stmt *S);
5886
5887 /// Overwrite an EPI's exception specification with this
5888 /// computed exception specification.
5889 FunctionProtoType::ExceptionSpecInfo getExceptionSpec() const {
5890 FunctionProtoType::ExceptionSpecInfo ESI;
5891 ESI.Type = getExceptionSpecType();
5892 if (ESI.Type == EST_Dynamic) {
5893 ESI.Exceptions = Exceptions;
5894 } else if (ESI.Type == EST_None) {
5895 /// C++11 [except.spec]p14:
5896 /// The exception-specification is noexcept(false) if the set of
5897 /// potential exceptions of the special member function contains "any"
5898 ESI.Type = EST_NoexceptFalse;
5899 ESI.NoexceptExpr = Self->ActOnCXXBoolLiteral(SourceLocation(),
5900 tok::kw_false).get();
5901 }
5902 return ESI;
5903 }
5904 };
5905
5906 /// Evaluate the implicit exception specification for a defaulted
5907 /// special member function.
5908 void EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD);
5909
5910 /// Check the given noexcept-specifier, convert its expression, and compute
5911 /// the appropriate ExceptionSpecificationType.
5912 ExprResult ActOnNoexceptSpec(SourceLocation NoexceptLoc, Expr *NoexceptExpr,
5913 ExceptionSpecificationType &EST);
5914
5915 /// Check the given exception-specification and update the
5916 /// exception specification information with the results.
5917 void checkExceptionSpecification(bool IsTopLevel,
5918 ExceptionSpecificationType EST,
5919 ArrayRef<ParsedType> DynamicExceptions,
5920 ArrayRef<SourceRange> DynamicExceptionRanges,
5921 Expr *NoexceptExpr,
5922 SmallVectorImpl<QualType> &Exceptions,
5923 FunctionProtoType::ExceptionSpecInfo &ESI);
5924
5925 /// Determine if we're in a case where we need to (incorrectly) eagerly
5926 /// parse an exception specification to work around a libstdc++ bug.
5927 bool isLibstdcxxEagerExceptionSpecHack(const Declarator &D);
5928
5929 /// Add an exception-specification to the given member function
5930 /// (or member function template). The exception-specification was parsed
5931 /// after the method itself was declared.
5932 void actOnDelayedExceptionSpecification(Decl *Method,
5933 ExceptionSpecificationType EST,
5934 SourceRange SpecificationRange,
5935 ArrayRef<ParsedType> DynamicExceptions,
5936 ArrayRef<SourceRange> DynamicExceptionRanges,
5937 Expr *NoexceptExpr);
5938
5939 class InheritedConstructorInfo;
5940
5941 /// Determine if a special member function should have a deleted
5942 /// definition when it is defaulted.
5943 bool ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5944 InheritedConstructorInfo *ICI = nullptr,
5945 bool Diagnose = false);
5946
5947 /// Produce notes explaining why a defaulted function was defined as deleted.
5948 void DiagnoseDeletedDefaultedFunction(FunctionDecl *FD);
5949
5950 /// Declare the implicit default constructor for the given class.
5951 ///
5952 /// \param ClassDecl The class declaration into which the implicit
5953 /// default constructor will be added.
5954 ///
5955 /// \returns The implicitly-declared default constructor.
5956 CXXConstructorDecl *DeclareImplicitDefaultConstructor(
5957 CXXRecordDecl *ClassDecl);
5958
5959 /// DefineImplicitDefaultConstructor - Checks for feasibility of
5960 /// defining this constructor as the default constructor.
5961 void DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5962 CXXConstructorDecl *Constructor);
5963
5964 /// Declare the implicit destructor for the given class.
5965 ///
5966 /// \param ClassDecl The class declaration into which the implicit
5967 /// destructor will be added.
5968 ///
5969 /// \returns The implicitly-declared destructor.
5970 CXXDestructorDecl *DeclareImplicitDestructor(CXXRecordDecl *ClassDecl);
5971
5972 /// DefineImplicitDestructor - Checks for feasibility of
5973 /// defining this destructor as the default destructor.
5974 void DefineImplicitDestructor(SourceLocation CurrentLocation,
5975 CXXDestructorDecl *Destructor);
5976
5977 /// Build an exception spec for destructors that don't have one.
5978 ///
5979 /// C++11 says that user-defined destructors with no exception spec get one
5980 /// that looks as if the destructor was implicitly declared.
5981 void AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor);
5982
5983 /// Define the specified inheriting constructor.
5984 void DefineInheritingConstructor(SourceLocation UseLoc,
5985 CXXConstructorDecl *Constructor);
5986
5987 /// Declare the implicit copy constructor for the given class.
5988 ///
5989 /// \param ClassDecl The class declaration into which the implicit
5990 /// copy constructor will be added.
5991 ///
5992 /// \returns The implicitly-declared copy constructor.
5993 CXXConstructorDecl *DeclareImplicitCopyConstructor(CXXRecordDecl *ClassDecl);
5994
5995 /// DefineImplicitCopyConstructor - Checks for feasibility of
5996 /// defining this constructor as the copy constructor.
5997 void DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5998 CXXConstructorDecl *Constructor);
5999
6000 /// Declare the implicit move constructor for the given class.
6001 ///
6002 /// \param ClassDecl The Class declaration into which the implicit
6003 /// move constructor will be added.
6004 ///
6005 /// \returns The implicitly-declared move constructor, or NULL if it wasn't
6006 /// declared.
6007 CXXConstructorDecl *DeclareImplicitMoveConstructor(CXXRecordDecl *ClassDecl);
6008
6009 /// DefineImplicitMoveConstructor - Checks for feasibility of
6010 /// defining this constructor as the move constructor.
6011 void DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
6012 CXXConstructorDecl *Constructor);
6013
6014 /// Declare the implicit copy assignment operator for the given class.
6015 ///
6016 /// \param ClassDecl The class declaration into which the implicit
6017 /// copy assignment operator will be added.
6018 ///
6019 /// \returns The implicitly-declared copy assignment operator.
6020 CXXMethodDecl *DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl);
6021
6022 /// Defines an implicitly-declared copy assignment operator.
6023 void DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6024 CXXMethodDecl *MethodDecl);
6025
6026 /// Declare the implicit move assignment operator for the given class.
6027 ///
6028 /// \param ClassDecl The Class declaration into which the implicit
6029 /// move assignment operator will be added.
6030 ///
6031 /// \returns The implicitly-declared move assignment operator, or NULL if it
6032 /// wasn't declared.
6033 CXXMethodDecl *DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl);
6034
6035 /// Defines an implicitly-declared move assignment operator.
6036 void DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
6037 CXXMethodDecl *MethodDecl);
6038
6039 /// Force the declaration of any implicitly-declared members of this
6040 /// class.
6041 void ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class);
6042
6043 /// Check a completed declaration of an implicit special member.
6044 void CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD);
6045
6046 /// Determine whether the given function is an implicitly-deleted
6047 /// special member function.
6048 bool isImplicitlyDeleted(FunctionDecl *FD);
6049
6050 /// Check whether 'this' shows up in the type of a static member
6051 /// function after the (naturally empty) cv-qualifier-seq would be.
6052 ///
6053 /// \returns true if an error occurred.
6054 bool checkThisInStaticMemberFunctionType(CXXMethodDecl *Method);
6055
6056 /// Whether this' shows up in the exception specification of a static
6057 /// member function.
6058 bool checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method);
6059
6060 /// Check whether 'this' shows up in the attributes of the given
6061 /// static member function.
6062 ///
6063 /// \returns true if an error occurred.
6064 bool checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method);
6065
6066 /// MaybeBindToTemporary - If the passed in expression has a record type with
6067 /// a non-trivial destructor, this will return CXXBindTemporaryExpr. Otherwise
6068 /// it simply returns the passed in expression.
6069 ExprResult MaybeBindToTemporary(Expr *E);
6070
6071 /// Wrap the expression in a ConstantExpr if it is a potential immediate
6072 /// invocation.
6073 ExprResult CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl);
6074
6075 bool CompleteConstructorCall(CXXConstructorDecl *Constructor,
6076 QualType DeclInitType, MultiExprArg ArgsPtr,
6077 SourceLocation Loc,
6078 SmallVectorImpl<Expr *> &ConvertedArgs,
6079 bool AllowExplicit = false,
6080 bool IsListInitialization = false);
6081
6082 ParsedType getInheritingConstructorName(CXXScopeSpec &SS,
6083 SourceLocation NameLoc,
6084 IdentifierInfo &Name);
6085
6086 ParsedType getConstructorName(IdentifierInfo &II, SourceLocation NameLoc,
6087 Scope *S, CXXScopeSpec &SS,
6088 bool EnteringContext);
6089 ParsedType getDestructorName(SourceLocation TildeLoc,
6090 IdentifierInfo &II, SourceLocation NameLoc,
6091 Scope *S, CXXScopeSpec &SS,
6092 ParsedType ObjectType,
6093 bool EnteringContext);
6094
6095 ParsedType getDestructorTypeForDecltype(const DeclSpec &DS,
6096 ParsedType ObjectType);
6097
6098 // Checks that reinterpret casts don't have undefined behavior.
6099 void CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
6100 bool IsDereference, SourceRange Range);
6101
6102 // Checks that the vector type should be initialized from a scalar
6103 // by splatting the value rather than populating a single element.
6104 // This is the case for AltiVecVector types as well as with
6105 // AltiVecPixel and AltiVecBool when -faltivec-src-compat=xl is specified.
6106 bool ShouldSplatAltivecScalarInCast(const VectorType *VecTy);
6107
6108 /// ActOnCXXNamedCast - Parse
6109 /// {dynamic,static,reinterpret,const,addrspace}_cast's.
6110 ExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
6111 tok::TokenKind Kind,
6112 SourceLocation LAngleBracketLoc,
6113 Declarator &D,
6114 SourceLocation RAngleBracketLoc,
6115 SourceLocation LParenLoc,
6116 Expr *E,
6117 SourceLocation RParenLoc);
6118
6119 ExprResult BuildCXXNamedCast(SourceLocation OpLoc,
6120 tok::TokenKind Kind,
6121 TypeSourceInfo *Ty,
6122 Expr *E,
6123 SourceRange AngleBrackets,
6124 SourceRange Parens);
6125
6126 ExprResult ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &Dcl,
6127 ExprResult Operand,
6128 SourceLocation RParenLoc);
6129
6130 ExprResult BuildBuiltinBitCastExpr(SourceLocation KWLoc, TypeSourceInfo *TSI,
6131 Expr *Operand, SourceLocation RParenLoc);
6132
6133 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6134 SourceLocation TypeidLoc,
6135 TypeSourceInfo *Operand,
6136 SourceLocation RParenLoc);
6137 ExprResult BuildCXXTypeId(QualType TypeInfoType,
6138 SourceLocation TypeidLoc,
6139 Expr *Operand,
6140 SourceLocation RParenLoc);
6141
6142 /// ActOnCXXTypeid - Parse typeid( something ).
6143 ExprResult ActOnCXXTypeid(SourceLocation OpLoc,
6144 SourceLocation LParenLoc, bool isType,
6145 void *TyOrExpr,
6146 SourceLocation RParenLoc);
6147
6148 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6149 SourceLocation TypeidLoc,
6150 TypeSourceInfo *Operand,
6151 SourceLocation RParenLoc);
6152 ExprResult BuildCXXUuidof(QualType TypeInfoType,
6153 SourceLocation TypeidLoc,
6154 Expr *Operand,
6155 SourceLocation RParenLoc);
6156
6157 /// ActOnCXXUuidof - Parse __uuidof( something ).
6158 ExprResult ActOnCXXUuidof(SourceLocation OpLoc,
6159 SourceLocation LParenLoc, bool isType,
6160 void *TyOrExpr,
6161 SourceLocation RParenLoc);
6162
6163 /// Handle a C++1z fold-expression: ( expr op ... op expr ).
6164 ExprResult ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
6165 tok::TokenKind Operator,
6166 SourceLocation EllipsisLoc, Expr *RHS,
6167 SourceLocation RParenLoc);
6168 ExprResult BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
6169 SourceLocation LParenLoc, Expr *LHS,
6170 BinaryOperatorKind Operator,
6171 SourceLocation EllipsisLoc, Expr *RHS,
6172 SourceLocation RParenLoc,
6173 Optional<unsigned> NumExpansions);
6174 ExprResult BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
6175 BinaryOperatorKind Operator);
6176
6177 //// ActOnCXXThis - Parse 'this' pointer.
6178 ExprResult ActOnCXXThis(SourceLocation loc);
6179
6180 /// Build a CXXThisExpr and mark it referenced in the current context.
6181 Expr *BuildCXXThisExpr(SourceLocation Loc, QualType Type, bool IsImplicit);
6182 void MarkThisReferenced(CXXThisExpr *This);
6183
6184 /// Try to retrieve the type of the 'this' pointer.
6185 ///
6186 /// \returns The type of 'this', if possible. Otherwise, returns a NULL type.
6187 QualType getCurrentThisType();
6188
6189 /// When non-NULL, the C++ 'this' expression is allowed despite the
6190 /// current context not being a non-static member function. In such cases,
6191 /// this provides the type used for 'this'.
6192 QualType CXXThisTypeOverride;
6193
6194 /// RAII object used to temporarily allow the C++ 'this' expression
6195 /// to be used, with the given qualifiers on the current class type.
6196 class CXXThisScopeRAII {
6197 Sema &S;
6198 QualType OldCXXThisTypeOverride;
6199 bool Enabled;
6200
6201 public:
6202 /// Introduce a new scope where 'this' may be allowed (when enabled),
6203 /// using the given declaration (which is either a class template or a
6204 /// class) along with the given qualifiers.
6205 /// along with the qualifiers placed on '*this'.
6206 CXXThisScopeRAII(Sema &S, Decl *ContextDecl, Qualifiers CXXThisTypeQuals,
6207 bool Enabled = true);
6208
6209 ~CXXThisScopeRAII();
6210 };
6211
6212 /// Make sure the value of 'this' is actually available in the current
6213 /// context, if it is a potentially evaluated context.
6214 ///
6215 /// \param Loc The location at which the capture of 'this' occurs.
6216 ///
6217 /// \param Explicit Whether 'this' is explicitly captured in a lambda
6218 /// capture list.
6219 ///
6220 /// \param FunctionScopeIndexToStopAt If non-null, it points to the index
6221 /// of the FunctionScopeInfo stack beyond which we do not attempt to capture.
6222 /// This is useful when enclosing lambdas must speculatively capture
6223 /// 'this' that may or may not be used in certain specializations of
6224 /// a nested generic lambda (depending on whether the name resolves to
6225 /// a non-static member function or a static function).
6226 /// \return returns 'true' if failed, 'false' if success.
6227 bool CheckCXXThisCapture(SourceLocation Loc, bool Explicit = false,
6228 bool BuildAndDiagnose = true,
6229 const unsigned *const FunctionScopeIndexToStopAt = nullptr,
6230 bool ByCopy = false);
6231
6232 /// Determine whether the given type is the type of *this that is used
6233 /// outside of the body of a member function for a type that is currently
6234 /// being defined.
6235 bool isThisOutsideMemberFunctionBody(QualType BaseType);
6236
6237 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
6238 ExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6239
6240
6241 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
6242 ExprResult ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind);
6243
6244 ExprResult
6245 ActOnObjCAvailabilityCheckExpr(llvm::ArrayRef<AvailabilitySpec> AvailSpecs,
6246 SourceLocation AtLoc, SourceLocation RParen);
6247
6248 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
6249 ExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc);
6250
6251 //// ActOnCXXThrow - Parse throw expressions.
6252 ExprResult ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *expr);
6253 ExprResult BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
6254 bool IsThrownVarInScope);
6255 bool CheckCXXThrowOperand(SourceLocation ThrowLoc, QualType ThrowTy, Expr *E);
6256
6257 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
6258 /// Can be interpreted either as function-style casting ("int(x)")
6259 /// or class type construction ("ClassType(x,y,z)")
6260 /// or creation of a value-initialized type ("int()").
6261 ExprResult ActOnCXXTypeConstructExpr(ParsedType TypeRep,
6262 SourceLocation LParenOrBraceLoc,
6263 MultiExprArg Exprs,
6264 SourceLocation RParenOrBraceLoc,
6265 bool ListInitialization);
6266
6267 ExprResult BuildCXXTypeConstructExpr(TypeSourceInfo *Type,
6268 SourceLocation LParenLoc,
6269 MultiExprArg Exprs,
6270 SourceLocation RParenLoc,
6271 bool ListInitialization);
6272
6273 /// ActOnCXXNew - Parsed a C++ 'new' expression.
6274 ExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
6275 SourceLocation PlacementLParen,
6276 MultiExprArg PlacementArgs,
6277 SourceLocation PlacementRParen,
6278 SourceRange TypeIdParens, Declarator &D,
6279 Expr *Initializer);
6280 ExprResult BuildCXXNew(SourceRange Range, bool UseGlobal,
6281 SourceLocation PlacementLParen,
6282 MultiExprArg PlacementArgs,
6283 SourceLocation PlacementRParen,
6284 SourceRange TypeIdParens,
6285 QualType AllocType,
6286 TypeSourceInfo *AllocTypeInfo,
6287 Optional<Expr *> ArraySize,
6288 SourceRange DirectInitRange,
6289 Expr *Initializer);
6290
6291 /// Determine whether \p FD is an aligned allocation or deallocation
6292 /// function that is unavailable.
6293 bool isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const;
6294
6295 /// Produce diagnostics if \p FD is an aligned allocation or deallocation
6296 /// function that is unavailable.
6297 void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
6298 SourceLocation Loc);
6299
6300 bool CheckAllocatedType(QualType AllocType, SourceLocation Loc,
6301 SourceRange R);
6302
6303 /// The scope in which to find allocation functions.
6304 enum AllocationFunctionScope {
6305 /// Only look for allocation functions in the global scope.
6306 AFS_Global,
6307 /// Only look for allocation functions in the scope of the
6308 /// allocated class.
6309 AFS_Class,
6310 /// Look for allocation functions in both the global scope
6311 /// and in the scope of the allocated class.
6312 AFS_Both
6313 };
6314
6315 /// Finds the overloads of operator new and delete that are appropriate
6316 /// for the allocation.
6317 bool FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
6318 AllocationFunctionScope NewScope,
6319 AllocationFunctionScope DeleteScope,
6320 QualType AllocType, bool IsArray,
6321 bool &PassAlignment, MultiExprArg PlaceArgs,
6322 FunctionDecl *&OperatorNew,
6323 FunctionDecl *&OperatorDelete,
6324 bool Diagnose = true);
6325 void DeclareGlobalNewDelete();
6326 void DeclareGlobalAllocationFunction(DeclarationName Name, QualType Return,
6327 ArrayRef<QualType> Params);
6328
6329 bool FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
6330 DeclarationName Name, FunctionDecl* &Operator,
6331 bool Diagnose = true);
6332 FunctionDecl *FindUsualDeallocationFunction(SourceLocation StartLoc,
6333 bool CanProvideSize,
6334 bool Overaligned,
6335 DeclarationName Name);
6336 FunctionDecl *FindDeallocationFunctionForDestructor(SourceLocation StartLoc,
6337 CXXRecordDecl *RD);
6338
6339 /// ActOnCXXDelete - Parsed a C++ 'delete' expression
6340 ExprResult ActOnCXXDelete(SourceLocation StartLoc,
6341 bool UseGlobal, bool ArrayForm,
6342 Expr *Operand);
6343 void CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
6344 bool IsDelete, bool CallCanBeVirtual,
6345 bool WarnOnNonAbstractTypes,
6346 SourceLocation DtorLoc);
6347
6348 ExprResult ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation LParen,
6349 Expr *Operand, SourceLocation RParen);
6350 ExprResult BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6351 SourceLocation RParen);
6352
6353 /// Parsed one of the type trait support pseudo-functions.
6354 ExprResult ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6355 ArrayRef<ParsedType> Args,
6356 SourceLocation RParenLoc);
6357 ExprResult BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
6358 ArrayRef<TypeSourceInfo *> Args,
6359 SourceLocation RParenLoc);
6360
6361 /// ActOnArrayTypeTrait - Parsed one of the binary type trait support
6362 /// pseudo-functions.
6363 ExprResult ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6364 SourceLocation KWLoc,
6365 ParsedType LhsTy,
6366 Expr *DimExpr,
6367 SourceLocation RParen);
6368
6369 ExprResult BuildArrayTypeTrait(ArrayTypeTrait ATT,
6370 SourceLocation KWLoc,
6371 TypeSourceInfo *TSInfo,
6372 Expr *DimExpr,
6373 SourceLocation RParen);
6374
6375 /// ActOnExpressionTrait - Parsed one of the unary type trait support
6376 /// pseudo-functions.
6377 ExprResult ActOnExpressionTrait(ExpressionTrait OET,
6378 SourceLocation KWLoc,
6379 Expr *Queried,
6380 SourceLocation RParen);
6381
6382 ExprResult BuildExpressionTrait(ExpressionTrait OET,
6383 SourceLocation KWLoc,
6384 Expr *Queried,
6385 SourceLocation RParen);
6386
6387 ExprResult ActOnStartCXXMemberReference(Scope *S,
6388 Expr *Base,
6389 SourceLocation OpLoc,
6390 tok::TokenKind OpKind,
6391 ParsedType &ObjectType,
6392 bool &MayBePseudoDestructor);
6393
6394 ExprResult BuildPseudoDestructorExpr(Expr *Base,
6395 SourceLocation OpLoc,
6396 tok::TokenKind OpKind,
6397 const CXXScopeSpec &SS,
6398 TypeSourceInfo *ScopeType,
6399 SourceLocation CCLoc,
6400 SourceLocation TildeLoc,
6401 PseudoDestructorTypeStorage DestroyedType);
6402
6403 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6404 SourceLocation OpLoc,
6405 tok::TokenKind OpKind,
6406 CXXScopeSpec &SS,
6407 UnqualifiedId &FirstTypeName,
6408 SourceLocation CCLoc,
6409 SourceLocation TildeLoc,
6410 UnqualifiedId &SecondTypeName);
6411
6412 ExprResult ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6413 SourceLocation OpLoc,
6414 tok::TokenKind OpKind,
6415 SourceLocation TildeLoc,
6416 const DeclSpec& DS);
6417
6418 /// MaybeCreateExprWithCleanups - If the current full-expression
6419 /// requires any cleanups, surround it with a ExprWithCleanups node.
6420 /// Otherwise, just returns the passed-in expression.
6421 Expr *MaybeCreateExprWithCleanups(Expr *SubExpr);
6422 Stmt *MaybeCreateStmtWithCleanups(Stmt *SubStmt);
6423 ExprResult MaybeCreateExprWithCleanups(ExprResult SubExpr);
6424
6425 MaterializeTemporaryExpr *
6426 CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6427 bool BoundToLvalueReference);
6428
6429 ExprResult ActOnFinishFullExpr(Expr *Expr, bool DiscardedValue) {
6430 return ActOnFinishFullExpr(
6431 Expr, Expr ? Expr->getExprLoc() : SourceLocation(), DiscardedValue);
6432 }
6433 ExprResult ActOnFinishFullExpr(Expr *Expr, SourceLocation CC,
6434 bool DiscardedValue, bool IsConstexpr = false);
6435 StmtResult ActOnFinishFullStmt(Stmt *Stmt);
6436
6437 // Marks SS invalid if it represents an incomplete type.
6438 bool RequireCompleteDeclContext(CXXScopeSpec &SS, DeclContext *DC);
6439 // Complete an enum decl, maybe without a scope spec.
6440 bool RequireCompleteEnumDecl(EnumDecl *D, SourceLocation L,
6441 CXXScopeSpec *SS = nullptr);
6442
6443 DeclContext *computeDeclContext(QualType T);
6444 DeclContext *computeDeclContext(const CXXScopeSpec &SS,
6445 bool EnteringContext = false);
6446 bool isDependentScopeSpecifier(const CXXScopeSpec &SS);
6447 CXXRecordDecl *getCurrentInstantiationOf(NestedNameSpecifier *NNS);
6448
6449 /// The parser has parsed a global nested-name-specifier '::'.
6450 ///
6451 /// \param CCLoc The location of the '::'.
6452 ///
6453 /// \param SS The nested-name-specifier, which will be updated in-place
6454 /// to reflect the parsed nested-name-specifier.
6455 ///
6456 /// \returns true if an error occurred, false otherwise.
6457 bool ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc, CXXScopeSpec &SS);
6458
6459 /// The parser has parsed a '__super' nested-name-specifier.
6460 ///
6461 /// \param SuperLoc The location of the '__super' keyword.
6462 ///
6463 /// \param ColonColonLoc The location of the '::'.
6464 ///
6465 /// \param SS The nested-name-specifier, which will be updated in-place
6466 /// to reflect the parsed nested-name-specifier.
6467 ///
6468 /// \returns true if an error occurred, false otherwise.
6469 bool ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
6470 SourceLocation ColonColonLoc, CXXScopeSpec &SS);
6471
6472 bool isAcceptableNestedNameSpecifier(const NamedDecl *SD,
6473 bool *CanCorrect = nullptr);
6474 NamedDecl *FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS);
6475
6476 /// Keeps information about an identifier in a nested-name-spec.
6477 ///
6478 struct NestedNameSpecInfo {
6479 /// The type of the object, if we're parsing nested-name-specifier in
6480 /// a member access expression.
6481 ParsedType ObjectType;
6482
6483 /// The identifier preceding the '::'.
6484 IdentifierInfo *Identifier;
6485
6486 /// The location of the identifier.
6487 SourceLocation IdentifierLoc;
6488
6489 /// The location of the '::'.
6490 SourceLocation CCLoc;
6491
6492 /// Creates info object for the most typical case.
6493 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6494 SourceLocation ColonColonLoc, ParsedType ObjectType = ParsedType())
6495 : ObjectType(ObjectType), Identifier(II), IdentifierLoc(IdLoc),
6496 CCLoc(ColonColonLoc) {
6497 }
6498
6499 NestedNameSpecInfo(IdentifierInfo *II, SourceLocation IdLoc,
6500 SourceLocation ColonColonLoc, QualType ObjectType)
6501 : ObjectType(ParsedType::make(ObjectType)), Identifier(II),
6502 IdentifierLoc(IdLoc), CCLoc(ColonColonLoc) {
6503 }
6504 };
6505
6506 bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
6507 NestedNameSpecInfo &IdInfo);
6508
6509 bool BuildCXXNestedNameSpecifier(Scope *S,
6510 NestedNameSpecInfo &IdInfo,
6511 bool EnteringContext,
6512 CXXScopeSpec &SS,
6513 NamedDecl *ScopeLookupResult,
6514 bool ErrorRecoveryLookup,
6515 bool *IsCorrectedToColon = nullptr,
6516 bool OnlyNamespace = false);
6517
6518 /// The parser has parsed a nested-name-specifier 'identifier::'.
6519 ///
6520 /// \param S The scope in which this nested-name-specifier occurs.
6521 ///
6522 /// \param IdInfo Parser information about an identifier in the
6523 /// nested-name-spec.
6524 ///
6525 /// \param EnteringContext Whether we're entering the context nominated by
6526 /// this nested-name-specifier.
6527 ///
6528 /// \param SS The nested-name-specifier, which is both an input
6529 /// parameter (the nested-name-specifier before this type) and an
6530 /// output parameter (containing the full nested-name-specifier,
6531 /// including this new type).
6532 ///
6533 /// \param ErrorRecoveryLookup If true, then this method is called to improve
6534 /// error recovery. In this case do not emit error message.
6535 ///
6536 /// \param IsCorrectedToColon If not null, suggestions to replace '::' -> ':'
6537 /// are allowed. The bool value pointed by this parameter is set to 'true'
6538 /// if the identifier is treated as if it was followed by ':', not '::'.
6539 ///
6540 /// \param OnlyNamespace If true, only considers namespaces in lookup.
6541 ///
6542 /// \returns true if an error occurred, false otherwise.
6543 bool ActOnCXXNestedNameSpecifier(Scope *S,
6544 NestedNameSpecInfo &IdInfo,
6545 bool EnteringContext,
6546 CXXScopeSpec &SS,
6547 bool ErrorRecoveryLookup = false,
6548 bool *IsCorrectedToColon = nullptr,
6549 bool OnlyNamespace = false);
6550
6551 ExprResult ActOnDecltypeExpression(Expr *E);
6552
6553 bool ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
6554 const DeclSpec &DS,
6555 SourceLocation ColonColonLoc);
6556
6557 bool IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
6558 NestedNameSpecInfo &IdInfo,
6559 bool EnteringContext);
6560
6561 /// The parser has parsed a nested-name-specifier
6562 /// 'template[opt] template-name < template-args >::'.
6563 ///
6564 /// \param S The scope in which this nested-name-specifier occurs.
6565 ///
6566 /// \param SS The nested-name-specifier, which is both an input
6567 /// parameter (the nested-name-specifier before this type) and an
6568 /// output parameter (containing the full nested-name-specifier,
6569 /// including this new type).
6570 ///
6571 /// \param TemplateKWLoc the location of the 'template' keyword, if any.
6572 /// \param TemplateName the template name.
6573 /// \param TemplateNameLoc The location of the template name.
6574 /// \param LAngleLoc The location of the opening angle bracket ('<').
6575 /// \param TemplateArgs The template arguments.
6576 /// \param RAngleLoc The location of the closing angle bracket ('>').
6577 /// \param CCLoc The location of the '::'.
6578 ///
6579 /// \param EnteringContext Whether we're entering the context of the
6580 /// nested-name-specifier.
6581 ///
6582 ///
6583 /// \returns true if an error occurred, false otherwise.
6584 bool ActOnCXXNestedNameSpecifier(Scope *S,
6585 CXXScopeSpec &SS,
6586 SourceLocation TemplateKWLoc,
6587 TemplateTy TemplateName,
6588 SourceLocation TemplateNameLoc,
6589 SourceLocation LAngleLoc,
6590 ASTTemplateArgsPtr TemplateArgs,
6591 SourceLocation RAngleLoc,
6592 SourceLocation CCLoc,
6593 bool EnteringContext);
6594
6595 /// Given a C++ nested-name-specifier, produce an annotation value
6596 /// that the parser can use later to reconstruct the given
6597 /// nested-name-specifier.
6598 ///
6599 /// \param SS A nested-name-specifier.
6600 ///
6601 /// \returns A pointer containing all of the information in the
6602 /// nested-name-specifier \p SS.
6603 void *SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS);
6604
6605 /// Given an annotation pointer for a nested-name-specifier, restore
6606 /// the nested-name-specifier structure.
6607 ///
6608 /// \param Annotation The annotation pointer, produced by
6609 /// \c SaveNestedNameSpecifierAnnotation().
6610 ///
6611 /// \param AnnotationRange The source range corresponding to the annotation.
6612 ///
6613 /// \param SS The nested-name-specifier that will be updated with the contents
6614 /// of the annotation pointer.
6615 void RestoreNestedNameSpecifierAnnotation(void *Annotation,
6616 SourceRange AnnotationRange,
6617 CXXScopeSpec &SS);
6618
6619 bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6620
6621 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
6622 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
6623 /// After this method is called, according to [C++ 3.4.3p3], names should be
6624 /// looked up in the declarator-id's scope, until the declarator is parsed and
6625 /// ActOnCXXExitDeclaratorScope is called.
6626 /// The 'SS' should be a non-empty valid CXXScopeSpec.
6627 bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS);
6628
6629 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
6630 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
6631 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
6632 /// Used to indicate that names should revert to being looked up in the
6633 /// defining scope.
6634 void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS);
6635
6636 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
6637 /// initializer for the declaration 'Dcl'.
6638 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6639 /// static data member of class X, names should be looked up in the scope of
6640 /// class X.
6641 void ActOnCXXEnterDeclInitializer(Scope *S, Decl *Dcl);
6642
6643 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6644 /// initializer for the declaration 'Dcl'.
6645 void ActOnCXXExitDeclInitializer(Scope *S, Decl *Dcl);
6646
6647 /// Create a new lambda closure type.
6648 CXXRecordDecl *createLambdaClosureType(SourceRange IntroducerRange,
6649 TypeSourceInfo *Info,
6650 bool KnownDependent,
6651 LambdaCaptureDefault CaptureDefault);
6652
6653 /// Start the definition of a lambda expression.
6654 CXXMethodDecl *startLambdaDefinition(CXXRecordDecl *Class,
6655 SourceRange IntroducerRange,
6656 TypeSourceInfo *MethodType,
6657 SourceLocation EndLoc,
6658 ArrayRef<ParmVarDecl *> Params,
6659 ConstexprSpecKind ConstexprKind,
6660 Expr *TrailingRequiresClause);
6661
6662 /// Number lambda for linkage purposes if necessary.
6663 void handleLambdaNumbering(
6664 CXXRecordDecl *Class, CXXMethodDecl *Method,
6665 Optional<std::tuple<bool, unsigned, unsigned, Decl *>> Mangling = None);
6666
6667 /// Endow the lambda scope info with the relevant properties.
6668 void buildLambdaScope(sema::LambdaScopeInfo *LSI,
6669 CXXMethodDecl *CallOperator,
6670 SourceRange IntroducerRange,
6671 LambdaCaptureDefault CaptureDefault,
6672 SourceLocation CaptureDefaultLoc,
6673 bool ExplicitParams,
6674 bool ExplicitResultType,
6675 bool Mutable);
6676
6677 /// Perform initialization analysis of the init-capture and perform
6678 /// any implicit conversions such as an lvalue-to-rvalue conversion if
6679 /// not being used to initialize a reference.
6680 ParsedType actOnLambdaInitCaptureInitialization(
6681 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6682 IdentifierInfo *Id, LambdaCaptureInitKind InitKind, Expr *&Init) {
6683 return ParsedType::make(buildLambdaInitCaptureInitialization(
6684 Loc, ByRef, EllipsisLoc, None, Id,
6685 InitKind != LambdaCaptureInitKind::CopyInit, Init));
6686 }
6687 QualType buildLambdaInitCaptureInitialization(
6688 SourceLocation Loc, bool ByRef, SourceLocation EllipsisLoc,
6689 Optional<unsigned> NumExpansions, IdentifierInfo *Id, bool DirectInit,
6690 Expr *&Init);
6691
6692 /// Create a dummy variable within the declcontext of the lambda's
6693 /// call operator, for name lookup purposes for a lambda init capture.
6694 ///
6695 /// CodeGen handles emission of lambda captures, ignoring these dummy
6696 /// variables appropriately.
6697 VarDecl *createLambdaInitCaptureVarDecl(SourceLocation Loc,
6698 QualType InitCaptureType,
6699 SourceLocation EllipsisLoc,
6700 IdentifierInfo *Id,
6701 unsigned InitStyle, Expr *Init);
6702
6703 /// Add an init-capture to a lambda scope.
6704 void addInitCapture(sema::LambdaScopeInfo *LSI, VarDecl *Var);
6705
6706 /// Note that we have finished the explicit captures for the
6707 /// given lambda.
6708 void finishLambdaExplicitCaptures(sema::LambdaScopeInfo *LSI);
6709
6710 /// \brief This is called after parsing the explicit template parameter list
6711 /// on a lambda (if it exists) in C++2a.
6712 void ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc,
6713 ArrayRef<NamedDecl *> TParams,
6714 SourceLocation RAngleLoc,
6715 ExprResult RequiresClause);
6716
6717 /// Introduce the lambda parameters into scope.
6718 void addLambdaParameters(
6719 ArrayRef<LambdaIntroducer::LambdaCapture> Captures,
6720 CXXMethodDecl *CallOperator, Scope *CurScope);
6721
6722 /// Deduce a block or lambda's return type based on the return
6723 /// statements present in the body.
6724 void deduceClosureReturnType(sema::CapturingScopeInfo &CSI);
6725
6726 /// ActOnStartOfLambdaDefinition - This is called just before we start
6727 /// parsing the body of a lambda; it analyzes the explicit captures and
6728 /// arguments, and sets up various data-structures for the body of the
6729 /// lambda.
6730 void ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
6731 Declarator &ParamInfo, Scope *CurScope);
6732
6733 /// ActOnLambdaError - If there is an error parsing a lambda, this callback
6734 /// is invoked to pop the information about the lambda.
6735 void ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
6736 bool IsInstantiation = false);
6737
6738 /// ActOnLambdaExpr - This is called when the body of a lambda expression
6739 /// was successfully completed.
6740 ExprResult ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
6741 Scope *CurScope);
6742
6743 /// Does copying/destroying the captured variable have side effects?
6744 bool CaptureHasSideEffects(const sema::Capture &From);
6745
6746 /// Diagnose if an explicit lambda capture is unused. Returns true if a
6747 /// diagnostic is emitted.
6748 bool DiagnoseUnusedLambdaCapture(SourceRange CaptureRange,
6749 const sema::Capture &From);
6750
6751 /// Build a FieldDecl suitable to hold the given capture.
6752 FieldDecl *BuildCaptureField(RecordDecl *RD, const sema::Capture &Capture);
6753
6754 /// Initialize the given capture with a suitable expression.
6755 ExprResult BuildCaptureInit(const sema::Capture &Capture,
6756 SourceLocation ImplicitCaptureLoc,
6757 bool IsOpenMPMapping = false);
6758
6759 /// Complete a lambda-expression having processed and attached the
6760 /// lambda body.
6761 ExprResult BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
6762 sema::LambdaScopeInfo *LSI);
6763
6764 /// Get the return type to use for a lambda's conversion function(s) to
6765 /// function pointer type, given the type of the call operator.
6766 QualType
6767 getLambdaConversionFunctionResultType(const FunctionProtoType *CallOpType,
6768 CallingConv CC);
6769
6770 /// Define the "body" of the conversion from a lambda object to a
6771 /// function pointer.
6772 ///
6773 /// This routine doesn't actually define a sensible body; rather, it fills
6774 /// in the initialization expression needed to copy the lambda object into
6775 /// the block, and IR generation actually generates the real body of the
6776 /// block pointer conversion.
6777 void DefineImplicitLambdaToFunctionPointerConversion(
6778 SourceLocation CurrentLoc, CXXConversionDecl *Conv);
6779
6780 /// Define the "body" of the conversion from a lambda object to a
6781 /// block pointer.
6782 ///
6783 /// This routine doesn't actually define a sensible body; rather, it fills
6784 /// in the initialization expression needed to copy the lambda object into
6785 /// the block, and IR generation actually generates the real body of the
6786 /// block pointer conversion.
6787 void DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLoc,
6788 CXXConversionDecl *Conv);
6789
6790 ExprResult BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
6791 SourceLocation ConvLocation,
6792 CXXConversionDecl *Conv,
6793 Expr *Src);
6794
6795 /// Check whether the given expression is a valid constraint expression.
6796 /// A diagnostic is emitted if it is not, false is returned, and
6797 /// PossibleNonPrimary will be set to true if the failure might be due to a
6798 /// non-primary expression being used as an atomic constraint.
6799 bool CheckConstraintExpression(const Expr *CE, Token NextToken = Token(),
6800 bool *PossibleNonPrimary = nullptr,
6801 bool IsTrailingRequiresClause = false);
6802
6803private:
6804 /// Caches pairs of template-like decls whose associated constraints were
6805 /// checked for subsumption and whether or not the first's constraints did in
6806 /// fact subsume the second's.
6807 llvm::DenseMap<std::pair<NamedDecl *, NamedDecl *>, bool> SubsumptionCache;
6808 /// Caches the normalized associated constraints of declarations (concepts or
6809 /// constrained declarations). If an error occurred while normalizing the
6810 /// associated constraints of the template or concept, nullptr will be cached
6811 /// here.
6812 llvm::DenseMap<NamedDecl *, NormalizedConstraint *>
6813 NormalizationCache;
6814
6815 llvm::ContextualFoldingSet<ConstraintSatisfaction, const ASTContext &>
6816 SatisfactionCache;
6817
6818public:
6819 const NormalizedConstraint *
6820 getNormalizedAssociatedConstraints(
6821 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints);
6822
6823 /// \brief Check whether the given declaration's associated constraints are
6824 /// at least as constrained than another declaration's according to the
6825 /// partial ordering of constraints.
6826 ///
6827 /// \param Result If no error occurred, receives the result of true if D1 is
6828 /// at least constrained than D2, and false otherwise.
6829 ///
6830 /// \returns true if an error occurred, false otherwise.
6831 bool IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
6832 NamedDecl *D2, ArrayRef<const Expr *> AC2,
6833 bool &Result);
6834
6835 /// If D1 was not at least as constrained as D2, but would've been if a pair
6836 /// of atomic constraints involved had been declared in a concept and not
6837 /// repeated in two separate places in code.
6838 /// \returns true if such a diagnostic was emitted, false otherwise.
6839 bool MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
6840 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2);
6841
6842 /// \brief Check whether the given list of constraint expressions are
6843 /// satisfied (as if in a 'conjunction') given template arguments.
6844 /// \param Template the template-like entity that triggered the constraints
6845 /// check (either a concept or a constrained entity).
6846 /// \param ConstraintExprs a list of constraint expressions, treated as if
6847 /// they were 'AND'ed together.
6848 /// \param TemplateArgs the list of template arguments to substitute into the
6849 /// constraint expression.
6850 /// \param TemplateIDRange The source range of the template id that
6851 /// caused the constraints check.
6852 /// \param Satisfaction if true is returned, will contain details of the
6853 /// satisfaction, with enough information to diagnose an unsatisfied
6854 /// expression.
6855 /// \returns true if an error occurred and satisfaction could not be checked,
6856 /// false otherwise.
6857 bool CheckConstraintSatisfaction(
6858 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
6859 ArrayRef<TemplateArgument> TemplateArgs,
6860 SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction);
6861
6862 /// \brief Check whether the given non-dependent constraint expression is
6863 /// satisfied. Returns false and updates Satisfaction with the satisfaction
6864 /// verdict if successful, emits a diagnostic and returns true if an error
6865 /// occured and satisfaction could not be determined.
6866 ///
6867 /// \returns true if an error occurred, false otherwise.
6868 bool CheckConstraintSatisfaction(const Expr *ConstraintExpr,
6869 ConstraintSatisfaction &Satisfaction);
6870
6871 /// Check whether the given function decl's trailing requires clause is
6872 /// satisfied, if any. Returns false and updates Satisfaction with the
6873 /// satisfaction verdict if successful, emits a diagnostic and returns true if
6874 /// an error occured and satisfaction could not be determined.
6875 ///
6876 /// \returns true if an error occurred, false otherwise.
6877 bool CheckFunctionConstraints(const FunctionDecl *FD,
6878 ConstraintSatisfaction &Satisfaction,
6879 SourceLocation UsageLoc = SourceLocation());
6880
6881
6882 /// \brief Ensure that the given template arguments satisfy the constraints
6883 /// associated with the given template, emitting a diagnostic if they do not.
6884 ///
6885 /// \param Template The template to which the template arguments are being
6886 /// provided.
6887 ///
6888 /// \param TemplateArgs The converted, canonicalized template arguments.
6889 ///
6890 /// \param TemplateIDRange The source range of the template id that
6891 /// caused the constraints check.
6892 ///
6893 /// \returns true if the constrains are not satisfied or could not be checked
6894 /// for satisfaction, false if the constraints are satisfied.
6895 bool EnsureTemplateArgumentListConstraints(TemplateDecl *Template,
6896 ArrayRef<TemplateArgument> TemplateArgs,
6897 SourceRange TemplateIDRange);
6898
6899 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6900 /// unsatisfied.
6901 /// \param First whether this is the first time an unsatisfied constraint is
6902 /// diagnosed for this error.
6903 void
6904 DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction &Satisfaction,
6905 bool First = true);
6906
6907 /// \brief Emit diagnostics explaining why a constraint expression was deemed
6908 /// unsatisfied.
6909 void
6910 DiagnoseUnsatisfiedConstraint(const ASTConstraintSatisfaction &Satisfaction,
6911 bool First = true);
6912
6913 // ParseObjCStringLiteral - Parse Objective-C string literals.
6914 ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
6915 ArrayRef<Expr *> Strings);
6916
6917 ExprResult BuildObjCStringLiteral(SourceLocation AtLoc, StringLiteral *S);
6918
6919 /// BuildObjCNumericLiteral - builds an ObjCBoxedExpr AST node for the
6920 /// numeric literal expression. Type of the expression will be "NSNumber *"
6921 /// or "id" if NSNumber is unavailable.
6922 ExprResult BuildObjCNumericLiteral(SourceLocation AtLoc, Expr *Number);
6923 ExprResult ActOnObjCBoolLiteral(SourceLocation AtLoc, SourceLocation ValueLoc,
6924 bool Value);
6925 ExprResult BuildObjCArrayLiteral(SourceRange SR, MultiExprArg Elements);
6926
6927 /// BuildObjCBoxedExpr - builds an ObjCBoxedExpr AST node for the
6928 /// '@' prefixed parenthesized expression. The type of the expression will
6929 /// either be "NSNumber *", "NSString *" or "NSValue *" depending on the type
6930 /// of ValueType, which is allowed to be a built-in numeric type, "char *",
6931 /// "const char *" or C structure with attribute 'objc_boxable'.
6932 ExprResult BuildObjCBoxedExpr(SourceRange SR, Expr *ValueExpr);
6933
6934 ExprResult BuildObjCSubscriptExpression(SourceLocation RB, Expr *BaseExpr,
6935 Expr *IndexExpr,
6936 ObjCMethodDecl *getterMethod,
6937 ObjCMethodDecl *setterMethod);
6938
6939 ExprResult BuildObjCDictionaryLiteral(SourceRange SR,
6940 MutableArrayRef<ObjCDictionaryElement> Elements);
6941
6942 ExprResult BuildObjCEncodeExpression(SourceLocation AtLoc,
6943 TypeSourceInfo *EncodedTypeInfo,
6944 SourceLocation RParenLoc);
6945 ExprResult BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
6946 CXXConversionDecl *Method,
6947 bool HadMultipleCandidates);
6948
6949 ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
6950 SourceLocation EncodeLoc,
6951 SourceLocation LParenLoc,
6952 ParsedType Ty,
6953 SourceLocation RParenLoc);
6954
6955 /// ParseObjCSelectorExpression - Build selector expression for \@selector
6956 ExprResult ParseObjCSelectorExpression(Selector Sel,
6957 SourceLocation AtLoc,
6958 SourceLocation SelLoc,
6959 SourceLocation LParenLoc,
6960 SourceLocation RParenLoc,
6961 bool WarnMultipleSelectors);
6962
6963 /// ParseObjCProtocolExpression - Build protocol expression for \@protocol
6964 ExprResult ParseObjCProtocolExpression(IdentifierInfo * ProtocolName,
6965 SourceLocation AtLoc,
6966 SourceLocation ProtoLoc,
6967 SourceLocation LParenLoc,
6968 SourceLocation ProtoIdLoc,
6969 SourceLocation RParenLoc);
6970
6971 //===--------------------------------------------------------------------===//
6972 // C++ Declarations
6973 //
6974 Decl *ActOnStartLinkageSpecification(Scope *S,
6975 SourceLocation ExternLoc,
6976 Expr *LangStr,
6977 SourceLocation LBraceLoc);
6978 Decl *ActOnFinishLinkageSpecification(Scope *S,
6979 Decl *LinkageSpec,
6980 SourceLocation RBraceLoc);
6981
6982
6983 //===--------------------------------------------------------------------===//
6984 // C++ Classes
6985 //
6986 CXXRecordDecl *getCurrentClass(Scope *S, const CXXScopeSpec *SS);
6987 bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
6988 const CXXScopeSpec *SS = nullptr);
6989 bool isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS);
6990
6991 bool ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
6992 SourceLocation ColonLoc,
6993 const ParsedAttributesView &Attrs);
6994
6995 NamedDecl *ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
6996 Declarator &D,
6997 MultiTemplateParamsArg TemplateParameterLists,
6998 Expr *BitfieldWidth, const VirtSpecifiers &VS,
6999 InClassInitStyle InitStyle);
7000
7001 void ActOnStartCXXInClassMemberInitializer();
7002 void ActOnFinishCXXInClassMemberInitializer(Decl *VarDecl,
7003 SourceLocation EqualLoc,
7004 Expr *Init);
7005
7006 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7007 Scope *S,
7008 CXXScopeSpec &SS,
7009 IdentifierInfo *MemberOrBase,
7010 ParsedType TemplateTypeTy,
7011 const DeclSpec &DS,
7012 SourceLocation IdLoc,
7013 SourceLocation LParenLoc,
7014 ArrayRef<Expr *> Args,
7015 SourceLocation RParenLoc,
7016 SourceLocation EllipsisLoc);
7017
7018 MemInitResult ActOnMemInitializer(Decl *ConstructorD,
7019 Scope *S,
7020 CXXScopeSpec &SS,
7021 IdentifierInfo *MemberOrBase,
7022 ParsedType TemplateTypeTy,
7023 const DeclSpec &DS,
7024 SourceLocation IdLoc,
7025 Expr *InitList,
7026 SourceLocation EllipsisLoc);
7027
7028 MemInitResult BuildMemInitializer(Decl *ConstructorD,
7029 Scope *S,
7030 CXXScopeSpec &SS,
7031 IdentifierInfo *MemberOrBase,
7032 ParsedType TemplateTypeTy,
7033 const DeclSpec &DS,
7034 SourceLocation IdLoc,
7035 Expr *Init,
7036 SourceLocation EllipsisLoc);
7037
7038 MemInitResult BuildMemberInitializer(ValueDecl *Member,
7039 Expr *Init,
7040 SourceLocation IdLoc);
7041
7042 MemInitResult BuildBaseInitializer(QualType BaseType,
7043 TypeSourceInfo *BaseTInfo,
7044 Expr *Init,
7045 CXXRecordDecl *ClassDecl,
7046 SourceLocation EllipsisLoc);
7047
7048 MemInitResult BuildDelegatingInitializer(TypeSourceInfo *TInfo,
7049 Expr *Init,
7050 CXXRecordDecl *ClassDecl);
7051
7052 bool SetDelegatingInitializer(CXXConstructorDecl *Constructor,
7053 CXXCtorInitializer *Initializer);
7054
7055 bool SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
7056 ArrayRef<CXXCtorInitializer *> Initializers = None);
7057
7058 void SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation);
7059
7060
7061 /// MarkBaseAndMemberDestructorsReferenced - Given a record decl,
7062 /// mark all the non-trivial destructors of its members and bases as
7063 /// referenced.
7064 void MarkBaseAndMemberDestructorsReferenced(SourceLocation Loc,
7065 CXXRecordDecl *Record);
7066
7067 /// Mark destructors of virtual bases of this class referenced. In the Itanium
7068 /// C++ ABI, this is done when emitting a destructor for any non-abstract
7069 /// class. In the Microsoft C++ ABI, this is done any time a class's
7070 /// destructor is referenced.
7071 void MarkVirtualBaseDestructorsReferenced(
7072 SourceLocation Location, CXXRecordDecl *ClassDecl,
7073 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases = nullptr);
7074
7075 /// Do semantic checks to allow the complete destructor variant to be emitted
7076 /// when the destructor is defined in another translation unit. In the Itanium
7077 /// C++ ABI, destructor variants are emitted together. In the MS C++ ABI, they
7078 /// can be emitted in separate TUs. To emit the complete variant, run a subset
7079 /// of the checks performed when emitting a regular destructor.
7080 void CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
7081 CXXDestructorDecl *Dtor);
7082
7083 /// The list of classes whose vtables have been used within
7084 /// this translation unit, and the source locations at which the
7085 /// first use occurred.
7086 typedef std::pair<CXXRecordDecl*, SourceLocation> VTableUse;
7087
7088 /// The list of vtables that are required but have not yet been
7089 /// materialized.
7090 SmallVector<VTableUse, 16> VTableUses;
7091
7092 /// The set of classes whose vtables have been used within
7093 /// this translation unit, and a bit that will be true if the vtable is
7094 /// required to be emitted (otherwise, it should be emitted only if needed
7095 /// by code generation).
7096 llvm::DenseMap<CXXRecordDecl *, bool> VTablesUsed;
7097
7098 /// Load any externally-stored vtable uses.
7099 void LoadExternalVTableUses();
7100
7101 /// Note that the vtable for the given class was used at the
7102 /// given location.
7103 void MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7104 bool DefinitionRequired = false);
7105
7106 /// Mark the exception specifications of all virtual member functions
7107 /// in the given class as needed.
7108 void MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
7109 const CXXRecordDecl *RD);
7110
7111 /// MarkVirtualMembersReferenced - Will mark all members of the given
7112 /// CXXRecordDecl referenced.
7113 void MarkVirtualMembersReferenced(SourceLocation Loc, const CXXRecordDecl *RD,
7114 bool ConstexprOnly = false);
7115
7116 /// Define all of the vtables that have been used in this
7117 /// translation unit and reference any virtual members used by those
7118 /// vtables.
7119 ///
7120 /// \returns true if any work was done, false otherwise.
7121 bool DefineUsedVTables();
7122
7123 void AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl);
7124
7125 void ActOnMemInitializers(Decl *ConstructorDecl,
7126 SourceLocation ColonLoc,
7127 ArrayRef<CXXCtorInitializer*> MemInits,
7128 bool AnyErrors);
7129
7130 /// Check class-level dllimport/dllexport attribute. The caller must
7131 /// ensure that referenceDLLExportedClassMethods is called some point later
7132 /// when all outer classes of Class are complete.
7133 void checkClassLevelDLLAttribute(CXXRecordDecl *Class);
7134 void checkClassLevelCodeSegAttribute(CXXRecordDecl *Class);
7135
7136 void referenceDLLExportedClassMethods();
7137
7138 void propagateDLLAttrToBaseClassTemplate(
7139 CXXRecordDecl *Class, Attr *ClassAttr,
7140 ClassTemplateSpecializationDecl *BaseTemplateSpec,
7141 SourceLocation BaseLoc);
7142
7143 /// Add gsl::Pointer attribute to std::container::iterator
7144 /// \param ND The declaration that introduces the name
7145 /// std::container::iterator. \param UnderlyingRecord The record named by ND.
7146 void inferGslPointerAttribute(NamedDecl *ND, CXXRecordDecl *UnderlyingRecord);
7147
7148 /// Add [[gsl::Owner]] and [[gsl::Pointer]] attributes for std:: types.
7149 void inferGslOwnerPointerAttribute(CXXRecordDecl *Record);
7150
7151 /// Add [[gsl::Pointer]] attributes for std:: types.
7152 void inferGslPointerAttribute(TypedefNameDecl *TD);
7153
7154 void CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record);
7155
7156 /// Check that the C++ class annoated with "trivial_abi" satisfies all the
7157 /// conditions that are needed for the attribute to have an effect.
7158 void checkIllFormedTrivialABIStruct(CXXRecordDecl &RD);
7159
7160 void ActOnFinishCXXMemberSpecification(Scope *S, SourceLocation RLoc,
7161 Decl *TagDecl, SourceLocation LBrac,
7162 SourceLocation RBrac,
7163 const ParsedAttributesView &AttrList);
7164 void ActOnFinishCXXMemberDecls();
7165 void ActOnFinishCXXNonNestedClass();
7166
7167 void ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param);
7168 unsigned ActOnReenterTemplateScope(Decl *Template,
7169 llvm::function_ref<Scope *()> EnterScope);
7170 void ActOnStartDelayedMemberDeclarations(Scope *S, Decl *Record);
7171 void ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7172 void ActOnDelayedCXXMethodParameter(Scope *S, Decl *Param);
7173 void ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *Record);
7174 void ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *Method);
7175 void ActOnFinishDelayedMemberInitializers(Decl *Record);
7176 void MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
7177 CachedTokens &Toks);
7178 void UnmarkAsLateParsedTemplate(FunctionDecl *FD);
7179 bool IsInsideALocalClassWithinATemplateFunction();
7180
7181 Decl *ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7182 Expr *AssertExpr,
7183 Expr *AssertMessageExpr,
7184 SourceLocation RParenLoc);
7185 Decl *BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
7186 Expr *AssertExpr,
7187 StringLiteral *AssertMessageExpr,
7188 SourceLocation RParenLoc,
7189 bool Failed);
7190
7191 FriendDecl *CheckFriendTypeDecl(SourceLocation LocStart,
7192 SourceLocation FriendLoc,
7193 TypeSourceInfo *TSInfo);
7194 Decl *ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
7195 MultiTemplateParamsArg TemplateParams);
7196 NamedDecl *ActOnFriendFunctionDecl(Scope *S, Declarator &D,
7197 MultiTemplateParamsArg TemplateParams);
7198
7199 QualType CheckConstructorDeclarator(Declarator &D, QualType R,
7200 StorageClass& SC);
7201 void CheckConstructor(CXXConstructorDecl *Constructor);
7202 QualType CheckDestructorDeclarator(Declarator &D, QualType R,
7203 StorageClass& SC);
7204 bool CheckDestructor(CXXDestructorDecl *Destructor);
7205 void CheckConversionDeclarator(Declarator &D, QualType &R,
7206 StorageClass& SC);
7207 Decl *ActOnConversionDeclarator(CXXConversionDecl *Conversion);
7208 void CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
7209 StorageClass &SC);
7210 void CheckDeductionGuideTemplate(FunctionTemplateDecl *TD);
7211
7212 void CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *MD);
7213
7214 bool CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7215 CXXSpecialMember CSM);
7216 void CheckDelayedMemberExceptionSpecs();
7217
7218 bool CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *MD,
7219 DefaultedComparisonKind DCK);
7220 void DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
7221 FunctionDecl *Spaceship);
7222 void DefineDefaultedComparison(SourceLocation Loc, FunctionDecl *FD,
7223 DefaultedComparisonKind DCK);
7224
7225 //===--------------------------------------------------------------------===//
7226 // C++ Derived Classes
7227 //
7228
7229 /// ActOnBaseSpecifier - Parsed a base specifier
7230 CXXBaseSpecifier *CheckBaseSpecifier(CXXRecordDecl *Class,
7231 SourceRange SpecifierRange,
7232 bool Virtual, AccessSpecifier Access,
7233 TypeSourceInfo *TInfo,
7234 SourceLocation EllipsisLoc);
7235
7236 BaseResult ActOnBaseSpecifier(Decl *classdecl,
7237 SourceRange SpecifierRange,
7238 ParsedAttributes &Attrs,
7239 bool Virtual, AccessSpecifier Access,
7240 ParsedType basetype,
7241 SourceLocation BaseLoc,
7242 SourceLocation EllipsisLoc);
7243
7244 bool AttachBaseSpecifiers(CXXRecordDecl *Class,
7245 MutableArrayRef<CXXBaseSpecifier *> Bases);
7246 void ActOnBaseSpecifiers(Decl *ClassDecl,
7247 MutableArrayRef<CXXBaseSpecifier *> Bases);
7248
7249 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base);
7250 bool IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
7251 CXXBasePaths &Paths);
7252
7253 // FIXME: I don't like this name.
7254 void BuildBasePathArray(const CXXBasePaths &Paths, CXXCastPath &BasePath);
7255
7256 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7257 SourceLocation Loc, SourceRange Range,
7258 CXXCastPath *BasePath = nullptr,
7259 bool IgnoreAccess = false);
7260 bool CheckDerivedToBaseConversion(QualType Derived, QualType Base,
7261 unsigned InaccessibleBaseID,
7262 unsigned AmbiguousBaseConvID,
7263 SourceLocation Loc, SourceRange Range,
7264 DeclarationName Name,
7265 CXXCastPath *BasePath,
7266 bool IgnoreAccess = false);
7267
7268 std::string getAmbiguousPathsDisplayString(CXXBasePaths &Paths);
7269
7270 bool CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
7271 const CXXMethodDecl *Old);
7272
7273 /// CheckOverridingFunctionReturnType - Checks whether the return types are
7274 /// covariant, according to C++ [class.virtual]p5.
7275 bool CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7276 const CXXMethodDecl *Old);
7277
7278 /// CheckOverridingFunctionExceptionSpec - Checks whether the exception
7279 /// spec is a subset of base spec.
7280 bool CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
7281 const CXXMethodDecl *Old);
7282
7283 bool CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange);
7284
7285 /// CheckOverrideControl - Check C++11 override control semantics.
7286 void CheckOverrideControl(NamedDecl *D);
7287
7288 /// DiagnoseAbsenceOfOverrideControl - Diagnose if 'override' keyword was
7289 /// not used in the declaration of an overriding method.
7290 void DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent);
7291
7292 /// CheckForFunctionMarkedFinal - Checks whether a virtual member function
7293 /// overrides a virtual member function marked 'final', according to
7294 /// C++11 [class.virtual]p4.
7295 bool CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
7296 const CXXMethodDecl *Old);
7297
7298
7299 //===--------------------------------------------------------------------===//
7300 // C++ Access Control
7301 //
7302
7303 enum AccessResult {
7304 AR_accessible,
7305 AR_inaccessible,
7306 AR_dependent,
7307 AR_delayed
7308 };
7309
7310 bool SetMemberAccessSpecifier(NamedDecl *MemberDecl,
7311 NamedDecl *PrevMemberDecl,
7312 AccessSpecifier LexicalAS);
7313
7314 AccessResult CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
7315 DeclAccessPair FoundDecl);
7316 AccessResult CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
7317 DeclAccessPair FoundDecl);
7318 AccessResult CheckAllocationAccess(SourceLocation OperatorLoc,
7319 SourceRange PlacementRange,
7320 CXXRecordDecl *NamingClass,
7321 DeclAccessPair FoundDecl,
7322 bool Diagnose = true);
7323 AccessResult CheckConstructorAccess(SourceLocation Loc,
7324 CXXConstructorDecl *D,
7325 DeclAccessPair FoundDecl,
7326 const InitializedEntity &Entity,
7327 bool IsCopyBindingRefToTemp = false);
7328 AccessResult CheckConstructorAccess(SourceLocation Loc,
7329 CXXConstructorDecl *D,
7330 DeclAccessPair FoundDecl,
7331 const InitializedEntity &Entity,
7332 const PartialDiagnostic &PDiag);
7333 AccessResult CheckDestructorAccess(SourceLocation Loc,
7334 CXXDestructorDecl *Dtor,
7335 const PartialDiagnostic &PDiag,
7336 QualType objectType = QualType());
7337 AccessResult CheckFriendAccess(NamedDecl *D);
7338 AccessResult CheckMemberAccess(SourceLocation UseLoc,
7339 CXXRecordDecl *NamingClass,
7340 DeclAccessPair Found);
7341 AccessResult
7342 CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
7343 CXXRecordDecl *DecomposedClass,
7344 DeclAccessPair Field);
7345 AccessResult CheckMemberOperatorAccess(SourceLocation Loc,
7346 Expr *ObjectExpr,
7347 Expr *ArgExpr,
7348 DeclAccessPair FoundDecl);
7349 AccessResult CheckAddressOfMemberAccess(Expr *OvlExpr,
7350 DeclAccessPair FoundDecl);
7351 AccessResult CheckBaseClassAccess(SourceLocation AccessLoc,
7352 QualType Base, QualType Derived,
7353 const CXXBasePath &Path,
7354 unsigned DiagID,
7355 bool ForceCheck = false,
7356 bool ForceUnprivileged = false);
7357 void CheckLookupAccess(const LookupResult &R);
7358 bool IsSimplyAccessible(NamedDecl *Decl, CXXRecordDecl *NamingClass,
7359 QualType BaseType);
7360 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7361 DeclAccessPair Found, QualType ObjectType,
7362 SourceLocation Loc,
7363 const PartialDiagnostic &Diag);
7364 bool isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
7365 DeclAccessPair Found,
7366 QualType ObjectType) {
7367 return isMemberAccessibleForDeletion(NamingClass, Found, ObjectType,
7368 SourceLocation(), PDiag());
7369 }
7370
7371 void HandleDependentAccessCheck(const DependentDiagnostic &DD,
7372 const MultiLevelTemplateArgumentList &TemplateArgs);
7373 void PerformDependentDiagnostics(const DeclContext *Pattern,
7374 const MultiLevelTemplateArgumentList &TemplateArgs);
7375
7376 void HandleDelayedAccessCheck(sema::DelayedDiagnostic &DD, Decl *Ctx);
7377
7378 /// When true, access checking violations are treated as SFINAE
7379 /// failures rather than hard errors.
7380 bool AccessCheckingSFINAE;
7381
7382 enum AbstractDiagSelID {
7383 AbstractNone = -1,
7384 AbstractReturnType,
7385 AbstractParamType,
7386 AbstractVariableType,
7387 AbstractFieldType,
7388 AbstractIvarType,
7389 AbstractSynthesizedIvarType,
7390 AbstractArrayType
7391 };
7392
7393 bool isAbstractType(SourceLocation Loc, QualType T);
7394 bool RequireNonAbstractType(SourceLocation Loc, QualType T,
7395 TypeDiagnoser &Diagnoser);
7396 template <typename... Ts>
7397 bool RequireNonAbstractType(SourceLocation Loc, QualType T, unsigned DiagID,
7398 const Ts &...Args) {
7399 BoundTypeDiagnoser<Ts...> Diagnoser(DiagID, Args...);
7400 return RequireNonAbstractType(Loc, T, Diagnoser);
7401 }
7402
7403 void DiagnoseAbstractType(const CXXRecordDecl *RD);
7404
7405 //===--------------------------------------------------------------------===//
7406 // C++ Overloaded Operators [C++ 13.5]
7407 //
7408
7409 bool CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl);
7410
7411 bool CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl);
7412
7413 //===--------------------------------------------------------------------===//
7414 // C++ Templates [C++ 14]
7415 //
7416 void FilterAcceptableTemplateNames(LookupResult &R,
7417 bool AllowFunctionTemplates = true,
7418 bool AllowDependent = true);
7419 bool hasAnyAcceptableTemplateNames(LookupResult &R,
7420 bool AllowFunctionTemplates = true,
7421 bool AllowDependent = true,
7422 bool AllowNonTemplateFunctions = false);
7423 /// Try to interpret the lookup result D as a template-name.
7424 ///
7425 /// \param D A declaration found by name lookup.
7426 /// \param AllowFunctionTemplates Whether function templates should be
7427 /// considered valid results.
7428 /// \param AllowDependent Whether unresolved using declarations (that might
7429 /// name templates) should be considered valid results.
7430 static NamedDecl *getAsTemplateNameDecl(NamedDecl *D,
7431 bool AllowFunctionTemplates = true,
7432 bool AllowDependent = true);
7433
7434 enum TemplateNameIsRequiredTag { TemplateNameIsRequired };
7435 /// Whether and why a template name is required in this lookup.
7436 class RequiredTemplateKind {
7437 public:
7438 /// Template name is required if TemplateKWLoc is valid.
7439 RequiredTemplateKind(SourceLocation TemplateKWLoc = SourceLocation())
7440 : TemplateKW(TemplateKWLoc) {}
7441 /// Template name is unconditionally required.
7442 RequiredTemplateKind(TemplateNameIsRequiredTag) : TemplateKW() {}
7443
7444 SourceLocation getTemplateKeywordLoc() const {
7445 return TemplateKW.getValueOr(SourceLocation());
7446 }
7447 bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
7448 bool isRequired() const { return TemplateKW != SourceLocation(); }
7449 explicit operator bool() const { return isRequired(); }
7450
7451 private:
7452 llvm::Optional<SourceLocation> TemplateKW;
7453 };
7454
7455 enum class AssumedTemplateKind {
7456 /// This is not assumed to be a template name.
7457 None,
7458 /// This is assumed to be a template name because lookup found nothing.
7459 FoundNothing,
7460 /// This is assumed to be a template name because lookup found one or more
7461 /// functions (but no function templates).
7462 FoundFunctions,
7463 };
7464 bool LookupTemplateName(
7465 LookupResult &R, Scope *S, CXXScopeSpec &SS, QualType ObjectType,
7466 bool EnteringContext, bool &MemberOfUnknownSpecialization,
7467 RequiredTemplateKind RequiredTemplate = SourceLocation(),
7468 AssumedTemplateKind *ATK = nullptr, bool AllowTypoCorrection = true);
7469
7470 TemplateNameKind isTemplateName(Scope *S,
7471 CXXScopeSpec &SS,
7472 bool hasTemplateKeyword,
7473 const UnqualifiedId &Name,
7474 ParsedType ObjectType,
7475 bool EnteringContext,
7476 TemplateTy &Template,
7477 bool &MemberOfUnknownSpecialization,
7478 bool Disambiguation = false);
7479
7480 /// Try to resolve an undeclared template name as a type template.
7481 ///
7482 /// Sets II to the identifier corresponding to the template name, and updates
7483 /// Name to a corresponding (typo-corrected) type template name and TNK to
7484 /// the corresponding kind, if possible.
7485 void ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &Name,
7486 TemplateNameKind &TNK,
7487 SourceLocation NameLoc,
7488 IdentifierInfo *&II);
7489
7490 bool resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
7491 SourceLocation NameLoc,
7492 bool Diagnose = true);
7493
7494 /// Determine whether a particular identifier might be the name in a C++1z
7495 /// deduction-guide declaration.
7496 bool isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
7497 SourceLocation NameLoc,
7498 ParsedTemplateTy *Template = nullptr);
7499
7500 bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
7501 SourceLocation IILoc,
7502 Scope *S,
7503 const CXXScopeSpec *SS,
7504 TemplateTy &SuggestedTemplate,
7505 TemplateNameKind &SuggestedKind);
7506
7507 bool DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
7508 NamedDecl *Instantiation,
7509 bool InstantiatedFromMember,
7510 const NamedDecl *Pattern,
7511 const NamedDecl *PatternDef,
7512 TemplateSpecializationKind TSK,
7513 bool Complain = true);
7514
7515 void DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl);
7516 TemplateDecl *AdjustDeclIfTemplate(Decl *&Decl);
7517
7518 NamedDecl *ActOnTypeParameter(Scope *S, bool Typename,
7519 SourceLocation EllipsisLoc,
7520 SourceLocation KeyLoc,
7521 IdentifierInfo *ParamName,
7522 SourceLocation ParamNameLoc,
7523 unsigned Depth, unsigned Position,
7524 SourceLocation EqualLoc,
7525 ParsedType DefaultArg, bool HasTypeConstraint);
7526
7527 bool ActOnTypeConstraint(const CXXScopeSpec &SS,
7528 TemplateIdAnnotation *TypeConstraint,
7529 TemplateTypeParmDecl *ConstrainedParameter,
7530 SourceLocation EllipsisLoc);
7531 bool BuildTypeConstraint(const CXXScopeSpec &SS,
7532 TemplateIdAnnotation *TypeConstraint,
7533 TemplateTypeParmDecl *ConstrainedParameter,
7534 SourceLocation EllipsisLoc,
7535 bool AllowUnexpandedPack);
7536
7537 bool AttachTypeConstraint(NestedNameSpecifierLoc NS,
7538 DeclarationNameInfo NameInfo,
7539 ConceptDecl *NamedConcept,
7540 const TemplateArgumentListInfo *TemplateArgs,
7541 TemplateTypeParmDecl *ConstrainedParameter,
7542 SourceLocation EllipsisLoc);
7543
7544 bool AttachTypeConstraint(AutoTypeLoc TL,
7545 NonTypeTemplateParmDecl *ConstrainedParameter,
7546 SourceLocation EllipsisLoc);
7547
7548 bool RequireStructuralType(QualType T, SourceLocation Loc);
7549
7550 QualType CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
7551 SourceLocation Loc);
7552 QualType CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc);
7553
7554 NamedDecl *ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
7555 unsigned Depth,
7556 unsigned Position,
7557 SourceLocation EqualLoc,
7558 Expr *DefaultArg);
7559 NamedDecl *ActOnTemplateTemplateParameter(Scope *S,
7560 SourceLocation TmpLoc,
7561 TemplateParameterList *Params,
7562 SourceLocation EllipsisLoc,
7563 IdentifierInfo *ParamName,
7564 SourceLocation ParamNameLoc,
7565 unsigned Depth,
7566 unsigned Position,
7567 SourceLocation EqualLoc,
7568 ParsedTemplateArgument DefaultArg);
7569
7570 TemplateParameterList *
7571 ActOnTemplateParameterList(unsigned Depth,
7572 SourceLocation ExportLoc,
7573 SourceLocation TemplateLoc,
7574 SourceLocation LAngleLoc,
7575 ArrayRef<NamedDecl *> Params,
7576 SourceLocation RAngleLoc,
7577 Expr *RequiresClause);
7578
7579 /// The context in which we are checking a template parameter list.
7580 enum TemplateParamListContext {
7581 TPC_ClassTemplate,
7582 TPC_VarTemplate,
7583 TPC_FunctionTemplate,
7584 TPC_ClassTemplateMember,
7585 TPC_FriendClassTemplate,
7586 TPC_FriendFunctionTemplate,
7587 TPC_FriendFunctionTemplateDefinition,
7588 TPC_TypeAliasTemplate
7589 };
7590
7591 bool CheckTemplateParameterList(TemplateParameterList *NewParams,
7592 TemplateParameterList *OldParams,
7593 TemplateParamListContext TPC,
7594 SkipBodyInfo *SkipBody = nullptr);
7595 TemplateParameterList *MatchTemplateParametersToScopeSpecifier(
7596 SourceLocation DeclStartLoc, SourceLocation DeclLoc,
7597 const CXXScopeSpec &SS, TemplateIdAnnotation *TemplateId,
7598 ArrayRef<TemplateParameterList *> ParamLists,
7599 bool IsFriend, bool &IsMemberSpecialization, bool &Invalid,
7600 bool SuppressDiagnostic = false);
7601
7602 DeclResult CheckClassTemplate(
7603 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7604 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
7605 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
7606 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
7607 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
7608 TemplateParameterList **OuterTemplateParamLists,
7609 SkipBodyInfo *SkipBody = nullptr);
7610
7611 TemplateArgumentLoc getTrivialTemplateArgumentLoc(const TemplateArgument &Arg,
7612 QualType NTTPType,
7613 SourceLocation Loc);
7614
7615 /// Get a template argument mapping the given template parameter to itself,
7616 /// e.g. for X in \c template<int X>, this would return an expression template
7617 /// argument referencing X.
7618 TemplateArgumentLoc getIdentityTemplateArgumentLoc(NamedDecl *Param,
7619 SourceLocation Location);
7620
7621 void translateTemplateArguments(const ASTTemplateArgsPtr &In,
7622 TemplateArgumentListInfo &Out);
7623
7624 ParsedTemplateArgument ActOnTemplateTypeArgument(TypeResult ParsedType);
7625
7626 void NoteAllFoundTemplates(TemplateName Name);
7627
7628 QualType CheckTemplateIdType(TemplateName Template,
7629 SourceLocation TemplateLoc,
7630 TemplateArgumentListInfo &TemplateArgs);
7631
7632 TypeResult
7633 ActOnTemplateIdType(Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7634 TemplateTy Template, IdentifierInfo *TemplateII,
7635 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
7636 ASTTemplateArgsPtr TemplateArgs, SourceLocation RAngleLoc,
7637 bool IsCtorOrDtorName = false, bool IsClassName = false);
7638
7639 /// Parsed an elaborated-type-specifier that refers to a template-id,
7640 /// such as \c class T::template apply<U>.
7641 TypeResult ActOnTagTemplateIdType(TagUseKind TUK,
7642 TypeSpecifierType TagSpec,
7643 SourceLocation TagLoc,
7644 CXXScopeSpec &SS,
7645 SourceLocation TemplateKWLoc,
7646 TemplateTy TemplateD,
7647 SourceLocation TemplateLoc,
7648 SourceLocation LAngleLoc,
7649 ASTTemplateArgsPtr TemplateArgsIn,
7650 SourceLocation RAngleLoc);
7651
7652 DeclResult ActOnVarTemplateSpecialization(
7653 Scope *S, Declarator &D, TypeSourceInfo *DI,
7654 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
7655 StorageClass SC, bool IsPartialSpecialization);
7656
7657 /// Get the specialization of the given variable template corresponding to
7658 /// the specified argument list, or a null-but-valid result if the arguments
7659 /// are dependent.
7660 DeclResult CheckVarTemplateId(VarTemplateDecl *Template,
7661 SourceLocation TemplateLoc,
7662 SourceLocation TemplateNameLoc,
7663 const TemplateArgumentListInfo &TemplateArgs);
7664
7665 /// Form a reference to the specialization of the given variable template
7666 /// corresponding to the specified argument list, or a null-but-valid result
7667 /// if the arguments are dependent.
7668 ExprResult CheckVarTemplateId(const CXXScopeSpec &SS,
7669 const DeclarationNameInfo &NameInfo,
7670 VarTemplateDecl *Template,
7671 SourceLocation TemplateLoc,
7672 const TemplateArgumentListInfo *TemplateArgs);
7673
7674 ExprResult
7675 CheckConceptTemplateId(const CXXScopeSpec &SS,
7676 SourceLocation TemplateKWLoc,
7677 const DeclarationNameInfo &ConceptNameInfo,
7678 NamedDecl *FoundDecl, ConceptDecl *NamedConcept,
7679 const TemplateArgumentListInfo *TemplateArgs);
7680
7681 void diagnoseMissingTemplateArguments(TemplateName Name, SourceLocation Loc);
7682
7683 ExprResult BuildTemplateIdExpr(const CXXScopeSpec &SS,
7684 SourceLocation TemplateKWLoc,
7685 LookupResult &R,
7686 bool RequiresADL,
7687 const TemplateArgumentListInfo *TemplateArgs);
7688
7689 ExprResult BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
7690 SourceLocation TemplateKWLoc,
7691 const DeclarationNameInfo &NameInfo,
7692 const TemplateArgumentListInfo *TemplateArgs);
7693
7694 TemplateNameKind ActOnTemplateName(
7695 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
7696 const UnqualifiedId &Name, ParsedType ObjectType, bool EnteringContext,
7697 TemplateTy &Template, bool AllowInjectedClassName = false);
7698
7699 DeclResult ActOnClassTemplateSpecialization(
7700 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
7701 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
7702 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
7703 MultiTemplateParamsArg TemplateParameterLists,
7704 SkipBodyInfo *SkipBody = nullptr);
7705
7706 bool CheckTemplatePartialSpecializationArgs(SourceLocation Loc,
7707 TemplateDecl *PrimaryTemplate,
7708 unsigned NumExplicitArgs,
7709 ArrayRef<TemplateArgument> Args);
7710 void CheckTemplatePartialSpecialization(
7711 ClassTemplatePartialSpecializationDecl *Partial);
7712 void CheckTemplatePartialSpecialization(
7713 VarTemplatePartialSpecializationDecl *Partial);
7714
7715 Decl *ActOnTemplateDeclarator(Scope *S,
7716 MultiTemplateParamsArg TemplateParameterLists,
7717 Declarator &D);
7718
7719 bool
7720 CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
7721 TemplateSpecializationKind NewTSK,
7722 NamedDecl *PrevDecl,
7723 TemplateSpecializationKind PrevTSK,
7724 SourceLocation PrevPtOfInstantiation,
7725 bool &SuppressNew);
7726
7727 bool CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
7728 const TemplateArgumentListInfo &ExplicitTemplateArgs,
7729 LookupResult &Previous);
7730
7731 bool CheckFunctionTemplateSpecialization(
7732 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
7733 LookupResult &Previous, bool QualifiedFriend = false);
7734 bool CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7735 void CompleteMemberSpecialization(NamedDecl *Member, LookupResult &Previous);
7736
7737 DeclResult ActOnExplicitInstantiation(
7738 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
7739 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
7740 TemplateTy Template, SourceLocation TemplateNameLoc,
7741 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgs,
7742 SourceLocation RAngleLoc, const ParsedAttributesView &Attr);
7743
7744 DeclResult ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
7745 SourceLocation TemplateLoc,
7746 unsigned TagSpec, SourceLocation KWLoc,
7747 CXXScopeSpec &SS, IdentifierInfo *Name,
7748 SourceLocation NameLoc,
7749 const ParsedAttributesView &Attr);
7750
7751 DeclResult ActOnExplicitInstantiation(Scope *S,
7752 SourceLocation ExternLoc,
7753 SourceLocation TemplateLoc,
7754 Declarator &D);
7755
7756 TemplateArgumentLoc
7757 SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
7758 SourceLocation TemplateLoc,
7759 SourceLocation RAngleLoc,
7760 Decl *Param,
7761 SmallVectorImpl<TemplateArgument>
7762 &Converted,
7763 bool &HasDefaultArg);
7764
7765 /// Specifies the context in which a particular template
7766 /// argument is being checked.
7767 enum CheckTemplateArgumentKind {
7768 /// The template argument was specified in the code or was
7769 /// instantiated with some deduced template arguments.
7770 CTAK_Specified,
7771
7772 /// The template argument was deduced via template argument
7773 /// deduction.
7774 CTAK_Deduced,
7775
7776 /// The template argument was deduced from an array bound
7777 /// via template argument deduction.
7778 CTAK_DeducedFromArrayBound
7779 };
7780
7781 bool CheckTemplateArgument(NamedDecl *Param,
7782 TemplateArgumentLoc &Arg,
7783 NamedDecl *Template,
7784 SourceLocation TemplateLoc,
7785 SourceLocation RAngleLoc,
7786 unsigned ArgumentPackIndex,
7787 SmallVectorImpl<TemplateArgument> &Converted,
7788 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7789
7790 /// Check that the given template arguments can be be provided to
7791 /// the given template, converting the arguments along the way.
7792 ///
7793 /// \param Template The template to which the template arguments are being
7794 /// provided.
7795 ///
7796 /// \param TemplateLoc The location of the template name in the source.
7797 ///
7798 /// \param TemplateArgs The list of template arguments. If the template is
7799 /// a template template parameter, this function may extend the set of
7800 /// template arguments to also include substituted, defaulted template
7801 /// arguments.
7802 ///
7803 /// \param PartialTemplateArgs True if the list of template arguments is
7804 /// intentionally partial, e.g., because we're checking just the initial
7805 /// set of template arguments.
7806 ///
7807 /// \param Converted Will receive the converted, canonicalized template
7808 /// arguments.
7809 ///
7810 /// \param UpdateArgsWithConversions If \c true, update \p TemplateArgs to
7811 /// contain the converted forms of the template arguments as written.
7812 /// Otherwise, \p TemplateArgs will not be modified.
7813 ///
7814 /// \param ConstraintsNotSatisfied If provided, and an error occured, will
7815 /// receive true if the cause for the error is the associated constraints of
7816 /// the template not being satisfied by the template arguments.
7817 ///
7818 /// \returns true if an error occurred, false otherwise.
7819 bool CheckTemplateArgumentList(TemplateDecl *Template,
7820 SourceLocation TemplateLoc,
7821 TemplateArgumentListInfo &TemplateArgs,
7822 bool PartialTemplateArgs,
7823 SmallVectorImpl<TemplateArgument> &Converted,
7824 bool UpdateArgsWithConversions = true,
7825 bool *ConstraintsNotSatisfied = nullptr);
7826
7827 bool CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
7828 TemplateArgumentLoc &Arg,
7829 SmallVectorImpl<TemplateArgument> &Converted);
7830
7831 bool CheckTemplateArgument(TypeSourceInfo *Arg);
7832 ExprResult CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7833 QualType InstantiatedParamType, Expr *Arg,
7834 TemplateArgument &Converted,
7835 CheckTemplateArgumentKind CTAK = CTAK_Specified);
7836 bool CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7837 TemplateParameterList *Params,
7838 TemplateArgumentLoc &Arg);
7839
7840 ExprResult
7841 BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7842 QualType ParamType,
7843 SourceLocation Loc);
7844 ExprResult
7845 BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
7846 SourceLocation Loc);
7847
7848 /// Enumeration describing how template parameter lists are compared
7849 /// for equality.
7850 enum TemplateParameterListEqualKind {
7851 /// We are matching the template parameter lists of two templates
7852 /// that might be redeclarations.
7853 ///
7854 /// \code
7855 /// template<typename T> struct X;
7856 /// template<typename T> struct X;
7857 /// \endcode
7858 TPL_TemplateMatch,
7859
7860 /// We are matching the template parameter lists of two template
7861 /// template parameters as part of matching the template parameter lists
7862 /// of two templates that might be redeclarations.
7863 ///
7864 /// \code
7865 /// template<template<int I> class TT> struct X;
7866 /// template<template<int Value> class Other> struct X;
7867 /// \endcode
7868 TPL_TemplateTemplateParmMatch,
7869
7870 /// We are matching the template parameter lists of a template
7871 /// template argument against the template parameter lists of a template
7872 /// template parameter.
7873 ///
7874 /// \code
7875 /// template<template<int Value> class Metafun> struct X;
7876 /// template<int Value> struct integer_c;
7877 /// X<integer_c> xic;
7878 /// \endcode
7879 TPL_TemplateTemplateArgumentMatch
7880 };
7881
7882 bool TemplateParameterListsAreEqual(TemplateParameterList *New,
7883 TemplateParameterList *Old,
7884 bool Complain,
7885 TemplateParameterListEqualKind Kind,
7886 SourceLocation TemplateArgLoc
7887 = SourceLocation());
7888
7889 bool CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams);
7890
7891 /// Called when the parser has parsed a C++ typename
7892 /// specifier, e.g., "typename T::type".
7893 ///
7894 /// \param S The scope in which this typename type occurs.
7895 /// \param TypenameLoc the location of the 'typename' keyword
7896 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7897 /// \param II the identifier we're retrieving (e.g., 'type' in the example).
7898 /// \param IdLoc the location of the identifier.
7899 TypeResult
7900 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7901 const CXXScopeSpec &SS, const IdentifierInfo &II,
7902 SourceLocation IdLoc);
7903
7904 /// Called when the parser has parsed a C++ typename
7905 /// specifier that ends in a template-id, e.g.,
7906 /// "typename MetaFun::template apply<T1, T2>".
7907 ///
7908 /// \param S The scope in which this typename type occurs.
7909 /// \param TypenameLoc the location of the 'typename' keyword
7910 /// \param SS the nested-name-specifier following the typename (e.g., 'T::').
7911 /// \param TemplateLoc the location of the 'template' keyword, if any.
7912 /// \param TemplateName The template name.
7913 /// \param TemplateII The identifier used to name the template.
7914 /// \param TemplateIILoc The location of the template name.
7915 /// \param LAngleLoc The location of the opening angle bracket ('<').
7916 /// \param TemplateArgs The template arguments.
7917 /// \param RAngleLoc The location of the closing angle bracket ('>').
7918 TypeResult
7919 ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
7920 const CXXScopeSpec &SS,
7921 SourceLocation TemplateLoc,
7922 TemplateTy TemplateName,
7923 IdentifierInfo *TemplateII,
7924 SourceLocation TemplateIILoc,
7925 SourceLocation LAngleLoc,
7926 ASTTemplateArgsPtr TemplateArgs,
7927 SourceLocation RAngleLoc);
7928
7929 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7930 SourceLocation KeywordLoc,
7931 NestedNameSpecifierLoc QualifierLoc,
7932 const IdentifierInfo &II,
7933 SourceLocation IILoc,
7934 TypeSourceInfo **TSI,
7935 bool DeducedTSTContext);
7936
7937 QualType CheckTypenameType(ElaboratedTypeKeyword Keyword,
7938 SourceLocation KeywordLoc,
7939 NestedNameSpecifierLoc QualifierLoc,
7940 const IdentifierInfo &II,
7941 SourceLocation IILoc,
7942 bool DeducedTSTContext = true);
7943
7944
7945 TypeSourceInfo *RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
7946 SourceLocation Loc,
7947 DeclarationName Name);
7948 bool RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS);
7949
7950 ExprResult RebuildExprInCurrentInstantiation(Expr *E);
7951 bool RebuildTemplateParamsInCurrentInstantiation(
7952 TemplateParameterList *Params);
7953
7954 std::string
7955 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7956 const TemplateArgumentList &Args);
7957
7958 std::string
7959 getTemplateArgumentBindingsText(const TemplateParameterList *Params,
7960 const TemplateArgument *Args,
7961 unsigned NumArgs);
7962
7963 //===--------------------------------------------------------------------===//
7964 // C++ Concepts
7965 //===--------------------------------------------------------------------===//
7966 Decl *ActOnConceptDefinition(
7967 Scope *S, MultiTemplateParamsArg TemplateParameterLists,
7968 IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr);
7969
7970 RequiresExprBodyDecl *
7971 ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
7972 ArrayRef<ParmVarDecl *> LocalParameters,
7973 Scope *BodyScope);
7974 void ActOnFinishRequiresExpr();
7975 concepts::Requirement *ActOnSimpleRequirement(Expr *E);
7976 concepts::Requirement *ActOnTypeRequirement(
7977 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
7978 IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId);
7979 concepts::Requirement *ActOnCompoundRequirement(Expr *E,
7980 SourceLocation NoexceptLoc);
7981 concepts::Requirement *
7982 ActOnCompoundRequirement(
7983 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
7984 TemplateIdAnnotation *TypeConstraint, unsigned Depth);
7985 concepts::Requirement *ActOnNestedRequirement(Expr *Constraint);
7986 concepts::ExprRequirement *
7987 BuildExprRequirement(
7988 Expr *E, bool IsSatisfied, SourceLocation NoexceptLoc,
7989 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7990 concepts::ExprRequirement *
7991 BuildExprRequirement(
7992 concepts::Requirement::SubstitutionDiagnostic *ExprSubstDiag,
7993 bool IsSatisfied, SourceLocation NoexceptLoc,
7994 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement);
7995 concepts::TypeRequirement *BuildTypeRequirement(TypeSourceInfo *Type);
7996 concepts::TypeRequirement *
7997 BuildTypeRequirement(
7998 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
7999 concepts::NestedRequirement *BuildNestedRequirement(Expr *E);
8000 concepts::NestedRequirement *
8001 BuildNestedRequirement(
8002 concepts::Requirement::SubstitutionDiagnostic *SubstDiag);
8003 ExprResult ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8004 RequiresExprBodyDecl *Body,
8005 ArrayRef<ParmVarDecl *> LocalParameters,
8006 ArrayRef<concepts::Requirement *> Requirements,
8007 SourceLocation ClosingBraceLoc);
8008
8009 //===--------------------------------------------------------------------===//
8010 // C++ Variadic Templates (C++0x [temp.variadic])
8011 //===--------------------------------------------------------------------===//
8012
8013 /// Determine whether an unexpanded parameter pack might be permitted in this
8014 /// location. Useful for error recovery.
8015 bool isUnexpandedParameterPackPermitted();
8016
8017 /// The context in which an unexpanded parameter pack is
8018 /// being diagnosed.
8019 ///
8020 /// Note that the values of this enumeration line up with the first
8021 /// argument to the \c err_unexpanded_parameter_pack diagnostic.
8022 enum UnexpandedParameterPackContext {
8023 /// An arbitrary expression.
8024 UPPC_Expression = 0,
8025
8026 /// The base type of a class type.
8027 UPPC_BaseType,
8028
8029 /// The type of an arbitrary declaration.
8030 UPPC_DeclarationType,
8031
8032 /// The type of a data member.
8033 UPPC_DataMemberType,
8034
8035 /// The size of a bit-field.
8036 UPPC_BitFieldWidth,
8037
8038 /// The expression in a static assertion.
8039 UPPC_StaticAssertExpression,
8040
8041 /// The fixed underlying type of an enumeration.
8042 UPPC_FixedUnderlyingType,
8043
8044 /// The enumerator value.
8045 UPPC_EnumeratorValue,
8046
8047 /// A using declaration.
8048 UPPC_UsingDeclaration,
8049
8050 /// A friend declaration.
8051 UPPC_FriendDeclaration,
8052
8053 /// A declaration qualifier.
8054 UPPC_DeclarationQualifier,
8055
8056 /// An initializer.
8057 UPPC_Initializer,
8058
8059 /// A default argument.
8060 UPPC_DefaultArgument,
8061
8062 /// The type of a non-type template parameter.
8063 UPPC_NonTypeTemplateParameterType,
8064
8065 /// The type of an exception.
8066 UPPC_ExceptionType,
8067
8068 /// Partial specialization.
8069 UPPC_PartialSpecialization,
8070
8071 /// Microsoft __if_exists.
8072 UPPC_IfExists,
8073
8074 /// Microsoft __if_not_exists.
8075 UPPC_IfNotExists,
8076
8077 /// Lambda expression.
8078 UPPC_Lambda,
8079
8080 /// Block expression.
8081 UPPC_Block,
8082
8083 /// A type constraint.
8084 UPPC_TypeConstraint,
8085
8086 // A requirement in a requires-expression.
8087 UPPC_Requirement,
8088
8089 // A requires-clause.
8090 UPPC_RequiresClause,
8091 };
8092
8093 /// Diagnose unexpanded parameter packs.
8094 ///
8095 /// \param Loc The location at which we should emit the diagnostic.
8096 ///
8097 /// \param UPPC The context in which we are diagnosing unexpanded
8098 /// parameter packs.
8099 ///
8100 /// \param Unexpanded the set of unexpanded parameter packs.
8101 ///
8102 /// \returns true if an error occurred, false otherwise.
8103 bool DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
8104 UnexpandedParameterPackContext UPPC,
8105 ArrayRef<UnexpandedParameterPack> Unexpanded);
8106
8107 /// If the given type contains an unexpanded parameter pack,
8108 /// diagnose the error.
8109 ///
8110 /// \param Loc The source location where a diagnostc should be emitted.
8111 ///
8112 /// \param T The type that is being checked for unexpanded parameter
8113 /// packs.
8114 ///
8115 /// \returns true if an error occurred, false otherwise.
8116 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc, TypeSourceInfo *T,
8117 UnexpandedParameterPackContext UPPC);
8118
8119 /// If the given expression contains an unexpanded parameter
8120 /// pack, diagnose the error.
8121 ///
8122 /// \param E The expression that is being checked for unexpanded
8123 /// parameter packs.
8124 ///
8125 /// \returns true if an error occurred, false otherwise.
8126 bool DiagnoseUnexpandedParameterPack(Expr *E,
8127 UnexpandedParameterPackContext UPPC = UPPC_Expression);
8128
8129 /// If the given requirees-expression contains an unexpanded reference to one
8130 /// of its own parameter packs, diagnose the error.
8131 ///
8132 /// \param RE The requiress-expression that is being checked for unexpanded
8133 /// parameter packs.
8134 ///
8135 /// \returns true if an error occurred, false otherwise.
8136 bool DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE);
8137
8138 /// If the given nested-name-specifier contains an unexpanded
8139 /// parameter pack, diagnose the error.
8140 ///
8141 /// \param SS The nested-name-specifier that is being checked for
8142 /// unexpanded parameter packs.
8143 ///
8144 /// \returns true if an error occurred, false otherwise.
8145 bool DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
8146 UnexpandedParameterPackContext UPPC);
8147
8148 /// If the given name contains an unexpanded parameter pack,
8149 /// diagnose the error.
8150 ///
8151 /// \param NameInfo The name (with source location information) that
8152 /// is being checked for unexpanded parameter packs.
8153 ///
8154 /// \returns true if an error occurred, false otherwise.
8155 bool DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
8156 UnexpandedParameterPackContext UPPC);
8157
8158 /// If the given template name contains an unexpanded parameter pack,
8159 /// diagnose the error.
8160 ///
8161 /// \param Loc The location of the template name.
8162 ///
8163 /// \param Template The template name that is being checked for unexpanded
8164 /// parameter packs.
8165 ///
8166 /// \returns true if an error occurred, false otherwise.
8167 bool DiagnoseUnexpandedParameterPack(SourceLocation Loc,
8168 TemplateName Template,
8169 UnexpandedParameterPackContext UPPC);
8170
8171 /// If the given template argument contains an unexpanded parameter
8172 /// pack, diagnose the error.
8173 ///
8174 /// \param Arg The template argument that is being checked for unexpanded
8175 /// parameter packs.
8176 ///
8177 /// \returns true if an error occurred, false otherwise.
8178 bool DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
8179 UnexpandedParameterPackContext UPPC);
8180
8181 /// Collect the set of unexpanded parameter packs within the given
8182 /// template argument.
8183 ///
8184 /// \param Arg The template argument that will be traversed to find
8185 /// unexpanded parameter packs.
8186 void collectUnexpandedParameterPacks(TemplateArgument Arg,
8187 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8188
8189 /// Collect the set of unexpanded parameter packs within the given
8190 /// template argument.
8191 ///
8192 /// \param Arg The template argument that will be traversed to find
8193 /// unexpanded parameter packs.
8194 void collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
8195 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8196
8197 /// Collect the set of unexpanded parameter packs within the given
8198 /// type.
8199 ///
8200 /// \param T The type that will be traversed to find
8201 /// unexpanded parameter packs.
8202 void collectUnexpandedParameterPacks(QualType T,
8203 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8204
8205 /// Collect the set of unexpanded parameter packs within the given
8206 /// type.
8207 ///
8208 /// \param TL The type that will be traversed to find
8209 /// unexpanded parameter packs.
8210 void collectUnexpandedParameterPacks(TypeLoc TL,
8211 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8212
8213 /// Collect the set of unexpanded parameter packs within the given
8214 /// nested-name-specifier.
8215 ///
8216 /// \param NNS The nested-name-specifier that will be traversed to find
8217 /// unexpanded parameter packs.
8218 void collectUnexpandedParameterPacks(NestedNameSpecifierLoc NNS,
8219 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8220
8221 /// Collect the set of unexpanded parameter packs within the given
8222 /// name.
8223 ///
8224 /// \param NameInfo The name that will be traversed to find
8225 /// unexpanded parameter packs.
8226 void collectUnexpandedParameterPacks(const DeclarationNameInfo &NameInfo,
8227 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded);
8228
8229 /// Invoked when parsing a template argument followed by an
8230 /// ellipsis, which creates a pack expansion.
8231 ///
8232 /// \param Arg The template argument preceding the ellipsis, which
8233 /// may already be invalid.
8234 ///
8235 /// \param EllipsisLoc The location of the ellipsis.
8236 ParsedTemplateArgument ActOnPackExpansion(const ParsedTemplateArgument &Arg,
8237 SourceLocation EllipsisLoc);
8238
8239 /// Invoked when parsing a type followed by an ellipsis, which
8240 /// creates a pack expansion.
8241 ///
8242 /// \param Type The type preceding the ellipsis, which will become
8243 /// the pattern of the pack expansion.
8244 ///
8245 /// \param EllipsisLoc The location of the ellipsis.
8246 TypeResult ActOnPackExpansion(ParsedType Type, SourceLocation EllipsisLoc);
8247
8248 /// Construct a pack expansion type from the pattern of the pack
8249 /// expansion.
8250 TypeSourceInfo *CheckPackExpansion(TypeSourceInfo *Pattern,
8251 SourceLocation EllipsisLoc,
8252 Optional<unsigned> NumExpansions);
8253
8254 /// Construct a pack expansion type from the pattern of the pack
8255 /// expansion.
8256 QualType CheckPackExpansion(QualType Pattern,
8257 SourceRange PatternRange,
8258 SourceLocation EllipsisLoc,
8259 Optional<unsigned> NumExpansions);
8260
8261 /// Invoked when parsing an expression followed by an ellipsis, which
8262 /// creates a pack expansion.
8263 ///
8264 /// \param Pattern The expression preceding the ellipsis, which will become
8265 /// the pattern of the pack expansion.
8266 ///
8267 /// \param EllipsisLoc The location of the ellipsis.
8268 ExprResult ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc);
8269
8270 /// Invoked when parsing an expression followed by an ellipsis, which
8271 /// creates a pack expansion.
8272 ///
8273 /// \param Pattern The expression preceding the ellipsis, which will become
8274 /// the pattern of the pack expansion.
8275 ///
8276 /// \param EllipsisLoc The location of the ellipsis.
8277 ExprResult CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
8278 Optional<unsigned> NumExpansions);
8279
8280 /// Determine whether we could expand a pack expansion with the
8281 /// given set of parameter packs into separate arguments by repeatedly
8282 /// transforming the pattern.
8283 ///
8284 /// \param EllipsisLoc The location of the ellipsis that identifies the
8285 /// pack expansion.
8286 ///
8287 /// \param PatternRange The source range that covers the entire pattern of
8288 /// the pack expansion.
8289 ///
8290 /// \param Unexpanded The set of unexpanded parameter packs within the
8291 /// pattern.
8292 ///
8293 /// \param ShouldExpand Will be set to \c true if the transformer should
8294 /// expand the corresponding pack expansions into separate arguments. When
8295 /// set, \c NumExpansions must also be set.
8296 ///
8297 /// \param RetainExpansion Whether the caller should add an unexpanded
8298 /// pack expansion after all of the expanded arguments. This is used
8299 /// when extending explicitly-specified template argument packs per
8300 /// C++0x [temp.arg.explicit]p9.
8301 ///
8302 /// \param NumExpansions The number of separate arguments that will be in
8303 /// the expanded form of the corresponding pack expansion. This is both an
8304 /// input and an output parameter, which can be set by the caller if the
8305 /// number of expansions is known a priori (e.g., due to a prior substitution)
8306 /// and will be set by the callee when the number of expansions is known.
8307 /// The callee must set this value when \c ShouldExpand is \c true; it may
8308 /// set this value in other cases.
8309 ///
8310 /// \returns true if an error occurred (e.g., because the parameter packs
8311 /// are to be instantiated with arguments of different lengths), false
8312 /// otherwise. If false, \c ShouldExpand (and possibly \c NumExpansions)
8313 /// must be set.
8314 bool CheckParameterPacksForExpansion(SourceLocation EllipsisLoc,
8315 SourceRange PatternRange,
8316 ArrayRef<UnexpandedParameterPack> Unexpanded,
8317 const MultiLevelTemplateArgumentList &TemplateArgs,
8318 bool &ShouldExpand,
8319 bool &RetainExpansion,
8320 Optional<unsigned> &NumExpansions);
8321
8322 /// Determine the number of arguments in the given pack expansion
8323 /// type.
8324 ///
8325 /// This routine assumes that the number of arguments in the expansion is
8326 /// consistent across all of the unexpanded parameter packs in its pattern.
8327 ///
8328 /// Returns an empty Optional if the type can't be expanded.
8329 Optional<unsigned> getNumArgumentsInExpansion(QualType T,
8330 const MultiLevelTemplateArgumentList &TemplateArgs);
8331
8332 /// Determine whether the given declarator contains any unexpanded
8333 /// parameter packs.
8334 ///
8335 /// This routine is used by the parser to disambiguate function declarators
8336 /// with an ellipsis prior to the ')', e.g.,
8337 ///
8338 /// \code
8339 /// void f(T...);
8340 /// \endcode
8341 ///
8342 /// To determine whether we have an (unnamed) function parameter pack or
8343 /// a variadic function.
8344 ///
8345 /// \returns true if the declarator contains any unexpanded parameter packs,
8346 /// false otherwise.
8347 bool containsUnexpandedParameterPacks(Declarator &D);
8348
8349 /// Returns the pattern of the pack expansion for a template argument.
8350 ///
8351 /// \param OrigLoc The template argument to expand.
8352 ///
8353 /// \param Ellipsis Will be set to the location of the ellipsis.
8354 ///
8355 /// \param NumExpansions Will be set to the number of expansions that will
8356 /// be generated from this pack expansion, if known a priori.
8357 TemplateArgumentLoc getTemplateArgumentPackExpansionPattern(
8358 TemplateArgumentLoc OrigLoc,
8359 SourceLocation &Ellipsis,
8360 Optional<unsigned> &NumExpansions) const;
8361
8362 /// Given a template argument that contains an unexpanded parameter pack, but
8363 /// which has already been substituted, attempt to determine the number of
8364 /// elements that will be produced once this argument is fully-expanded.
8365 ///
8366 /// This is intended for use when transforming 'sizeof...(Arg)' in order to
8367 /// avoid actually expanding the pack where possible.
8368 Optional<unsigned> getFullyPackExpandedSize(TemplateArgument Arg);
8369
8370 //===--------------------------------------------------------------------===//
8371 // C++ Template Argument Deduction (C++ [temp.deduct])
8372 //===--------------------------------------------------------------------===//
8373
8374 /// Adjust the type \p ArgFunctionType to match the calling convention,
8375 /// noreturn, and optionally the exception specification of \p FunctionType.
8376 /// Deduction often wants to ignore these properties when matching function
8377 /// types.
8378 QualType adjustCCAndNoReturn(QualType ArgFunctionType, QualType FunctionType,
8379 bool AdjustExceptionSpec = false);
8380
8381 /// Describes the result of template argument deduction.
8382 ///
8383 /// The TemplateDeductionResult enumeration describes the result of
8384 /// template argument deduction, as returned from
8385 /// DeduceTemplateArguments(). The separate TemplateDeductionInfo
8386 /// structure provides additional information about the results of
8387 /// template argument deduction, e.g., the deduced template argument
8388 /// list (if successful) or the specific template parameters or
8389 /// deduced arguments that were involved in the failure.
8390 enum TemplateDeductionResult {
8391 /// Template argument deduction was successful.
8392 TDK_Success = 0,
8393 /// The declaration was invalid; do nothing.
8394 TDK_Invalid,
8395 /// Template argument deduction exceeded the maximum template
8396 /// instantiation depth (which has already been diagnosed).
8397 TDK_InstantiationDepth,
8398 /// Template argument deduction did not deduce a value
8399 /// for every template parameter.
8400 TDK_Incomplete,
8401 /// Template argument deduction did not deduce a value for every
8402 /// expansion of an expanded template parameter pack.
8403 TDK_IncompletePack,
8404 /// Template argument deduction produced inconsistent
8405 /// deduced values for the given template parameter.
8406 TDK_Inconsistent,
8407 /// Template argument deduction failed due to inconsistent
8408 /// cv-qualifiers on a template parameter type that would
8409 /// otherwise be deduced, e.g., we tried to deduce T in "const T"
8410 /// but were given a non-const "X".
8411 TDK_Underqualified,
8412 /// Substitution of the deduced template argument values
8413 /// resulted in an error.
8414 TDK_SubstitutionFailure,
8415 /// After substituting deduced template arguments, a dependent
8416 /// parameter type did not match the corresponding argument.
8417 TDK_DeducedMismatch,
8418 /// After substituting deduced template arguments, an element of
8419 /// a dependent parameter type did not match the corresponding element
8420 /// of the corresponding argument (when deducing from an initializer list).
8421 TDK_DeducedMismatchNested,
8422 /// A non-depnedent component of the parameter did not match the
8423 /// corresponding component of the argument.
8424 TDK_NonDeducedMismatch,
8425 /// When performing template argument deduction for a function
8426 /// template, there were too many call arguments.
8427 TDK_TooManyArguments,
8428 /// When performing template argument deduction for a function
8429 /// template, there were too few call arguments.
8430 TDK_TooFewArguments,
8431 /// The explicitly-specified template arguments were not valid
8432 /// template arguments for the given template.
8433 TDK_InvalidExplicitArguments,
8434 /// Checking non-dependent argument conversions failed.
8435 TDK_NonDependentConversionFailure,
8436 /// The deduced arguments did not satisfy the constraints associated
8437 /// with the template.
8438 TDK_ConstraintsNotSatisfied,
8439 /// Deduction failed; that's all we know.
8440 TDK_MiscellaneousDeductionFailure,
8441 /// CUDA Target attributes do not match.
8442 TDK_CUDATargetMismatch
8443 };
8444
8445 TemplateDeductionResult
8446 DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
8447 const TemplateArgumentList &TemplateArgs,
8448 sema::TemplateDeductionInfo &Info);
8449
8450 TemplateDeductionResult
8451 DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
8452 const TemplateArgumentList &TemplateArgs,
8453 sema::TemplateDeductionInfo &Info);
8454
8455 TemplateDeductionResult SubstituteExplicitTemplateArguments(
8456 FunctionTemplateDecl *FunctionTemplate,
8457 TemplateArgumentListInfo &ExplicitTemplateArgs,
8458 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8459 SmallVectorImpl<QualType> &ParamTypes, QualType *FunctionType,
8460 sema::TemplateDeductionInfo &Info);
8461
8462 /// brief A function argument from which we performed template argument
8463 // deduction for a call.
8464 struct OriginalCallArg {
8465 OriginalCallArg(QualType OriginalParamType, bool DecomposedParam,
8466 unsigned ArgIdx, QualType OriginalArgType)
8467 : OriginalParamType(OriginalParamType),
8468 DecomposedParam(DecomposedParam), ArgIdx(ArgIdx),
8469 OriginalArgType(OriginalArgType) {}
8470
8471 QualType OriginalParamType;
8472 bool DecomposedParam;
8473 unsigned ArgIdx;
8474 QualType OriginalArgType;
8475 };
8476
8477 TemplateDeductionResult FinishTemplateArgumentDeduction(
8478 FunctionTemplateDecl *FunctionTemplate,
8479 SmallVectorImpl<DeducedTemplateArgument> &Deduced,
8480 unsigned NumExplicitlySpecified, FunctionDecl *&Specialization,
8481 sema::TemplateDeductionInfo &Info,
8482 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs = nullptr,
8483 bool PartialOverloading = false,
8484 llvm::function_ref<bool()> CheckNonDependent = []{ return false; });
8485
8486 TemplateDeductionResult DeduceTemplateArguments(
8487 FunctionTemplateDecl *FunctionTemplate,
8488 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
8489 FunctionDecl *&Specialization, sema::TemplateDeductionInfo &Info,
8490 bool PartialOverloading,
8491 llvm::function_ref<bool(ArrayRef<QualType>)> CheckNonDependent);
8492
8493 TemplateDeductionResult
8494 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8495 TemplateArgumentListInfo *ExplicitTemplateArgs,
8496 QualType ArgFunctionType,
8497 FunctionDecl *&Specialization,
8498 sema::TemplateDeductionInfo &Info,
8499 bool IsAddressOfFunction = false);
8500
8501 TemplateDeductionResult
8502 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8503 QualType ToType,
8504 CXXConversionDecl *&Specialization,
8505 sema::TemplateDeductionInfo &Info);
8506
8507 TemplateDeductionResult
8508 DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
8509 TemplateArgumentListInfo *ExplicitTemplateArgs,
8510 FunctionDecl *&Specialization,
8511 sema::TemplateDeductionInfo &Info,
8512 bool IsAddressOfFunction = false);
8513
8514 /// Substitute Replacement for \p auto in \p TypeWithAuto
8515 QualType SubstAutoType(QualType TypeWithAuto, QualType Replacement);
8516 /// Substitute Replacement for auto in TypeWithAuto
8517 TypeSourceInfo* SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8518 QualType Replacement);
8519 /// Completely replace the \c auto in \p TypeWithAuto by
8520 /// \p Replacement. This does not retain any \c auto type sugar.
8521 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement);
8522 TypeSourceInfo *ReplaceAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
8523 QualType Replacement);
8524
8525 /// Result type of DeduceAutoType.
8526 enum DeduceAutoResult {
8527 DAR_Succeeded,
8528 DAR_Failed,
8529 DAR_FailedAlreadyDiagnosed
8530 };
8531
8532 DeduceAutoResult
8533 DeduceAutoType(TypeSourceInfo *AutoType, Expr *&Initializer, QualType &Result,
8534 Optional<unsigned> DependentDeductionDepth = None,
8535 bool IgnoreConstraints = false);
8536 DeduceAutoResult
8537 DeduceAutoType(TypeLoc AutoTypeLoc, Expr *&Initializer, QualType &Result,
8538 Optional<unsigned> DependentDeductionDepth = None,
8539 bool IgnoreConstraints = false);
8540 void DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init);
8541 bool DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
8542 bool Diagnose = true);
8543
8544 /// Declare implicit deduction guides for a class template if we've
8545 /// not already done so.
8546 void DeclareImplicitDeductionGuides(TemplateDecl *Template,
8547 SourceLocation Loc);
8548
8549 QualType DeduceTemplateSpecializationFromInitializer(
8550 TypeSourceInfo *TInfo, const InitializedEntity &Entity,
8551 const InitializationKind &Kind, MultiExprArg Init);
8552
8553 QualType deduceVarTypeFromInitializer(VarDecl *VDecl, DeclarationName Name,
8554 QualType Type, TypeSourceInfo *TSI,
8555 SourceRange Range, bool DirectInit,
8556 Expr *Init);
8557
8558 TypeLoc getReturnTypeLoc(FunctionDecl *FD) const;
8559
8560 bool DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
8561 SourceLocation ReturnLoc,
8562 Expr *&RetExpr, AutoType *AT);
8563
8564 FunctionTemplateDecl *getMoreSpecializedTemplate(
8565 FunctionTemplateDecl *FT1, FunctionTemplateDecl *FT2, SourceLocation Loc,
8566 TemplatePartialOrderingContext TPOC, unsigned NumCallArguments1,
8567 unsigned NumCallArguments2, bool Reversed = false);
8568 UnresolvedSetIterator
8569 getMostSpecialized(UnresolvedSetIterator SBegin, UnresolvedSetIterator SEnd,
8570 TemplateSpecCandidateSet &FailedCandidates,
8571 SourceLocation Loc,
8572 const PartialDiagnostic &NoneDiag,
8573 const PartialDiagnostic &AmbigDiag,
8574 const PartialDiagnostic &CandidateDiag,
8575 bool Complain = true, QualType TargetType = QualType());
8576
8577 ClassTemplatePartialSpecializationDecl *
8578 getMoreSpecializedPartialSpecialization(
8579 ClassTemplatePartialSpecializationDecl *PS1,
8580 ClassTemplatePartialSpecializationDecl *PS2,
8581 SourceLocation Loc);
8582
8583 bool isMoreSpecializedThanPrimary(ClassTemplatePartialSpecializationDecl *T,
8584 sema::TemplateDeductionInfo &Info);
8585
8586 VarTemplatePartialSpecializationDecl *getMoreSpecializedPartialSpecialization(
8587 VarTemplatePartialSpecializationDecl *PS1,
8588 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc);
8589
8590 bool isMoreSpecializedThanPrimary(VarTemplatePartialSpecializationDecl *T,
8591 sema::TemplateDeductionInfo &Info);
8592
8593 bool isTemplateTemplateParameterAtLeastAsSpecializedAs(
8594 TemplateParameterList *PParam, TemplateDecl *AArg, SourceLocation Loc);
8595
8596 void MarkUsedTemplateParameters(const Expr *E, bool OnlyDeduced,
8597 unsigned Depth, llvm::SmallBitVector &Used);
8598
8599 void MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
8600 bool OnlyDeduced,
8601 unsigned Depth,
8602 llvm::SmallBitVector &Used);
8603 void MarkDeducedTemplateParameters(
8604 const FunctionTemplateDecl *FunctionTemplate,
8605 llvm::SmallBitVector &Deduced) {
8606 return MarkDeducedTemplateParameters(Context, FunctionTemplate, Deduced);
8607 }
8608 static void MarkDeducedTemplateParameters(ASTContext &Ctx,
8609 const FunctionTemplateDecl *FunctionTemplate,
8610 llvm::SmallBitVector &Deduced);
8611
8612 //===--------------------------------------------------------------------===//
8613 // C++ Template Instantiation
8614 //
8615
8616 MultiLevelTemplateArgumentList
8617 getTemplateInstantiationArgs(NamedDecl *D,
8618 const TemplateArgumentList *Innermost = nullptr,
8619 bool RelativeToPrimary = false,
8620 const FunctionDecl *Pattern = nullptr);
8621
8622 /// A context in which code is being synthesized (where a source location
8623 /// alone is not sufficient to identify the context). This covers template
8624 /// instantiation and various forms of implicitly-generated functions.
8625 struct CodeSynthesisContext {
8626 /// The kind of template instantiation we are performing
8627 enum SynthesisKind {
8628 /// We are instantiating a template declaration. The entity is
8629 /// the declaration we're instantiating (e.g., a CXXRecordDecl).
8630 TemplateInstantiation,
8631
8632 /// We are instantiating a default argument for a template
8633 /// parameter. The Entity is the template parameter whose argument is
8634 /// being instantiated, the Template is the template, and the
8635 /// TemplateArgs/NumTemplateArguments provide the template arguments as
8636 /// specified.
8637 DefaultTemplateArgumentInstantiation,
8638
8639 /// We are instantiating a default argument for a function.
8640 /// The Entity is the ParmVarDecl, and TemplateArgs/NumTemplateArgs
8641 /// provides the template arguments as specified.
8642 DefaultFunctionArgumentInstantiation,
8643
8644 /// We are substituting explicit template arguments provided for
8645 /// a function template. The entity is a FunctionTemplateDecl.
8646 ExplicitTemplateArgumentSubstitution,
8647
8648 /// We are substituting template argument determined as part of
8649 /// template argument deduction for either a class template
8650 /// partial specialization or a function template. The
8651 /// Entity is either a {Class|Var}TemplatePartialSpecializationDecl or
8652 /// a TemplateDecl.
8653 DeducedTemplateArgumentSubstitution,
8654
8655 /// We are substituting prior template arguments into a new
8656 /// template parameter. The template parameter itself is either a
8657 /// NonTypeTemplateParmDecl or a TemplateTemplateParmDecl.
8658 PriorTemplateArgumentSubstitution,
8659
8660 /// We are checking the validity of a default template argument that
8661 /// has been used when naming a template-id.
8662 DefaultTemplateArgumentChecking,
8663
8664 /// We are computing the exception specification for a defaulted special
8665 /// member function.
8666 ExceptionSpecEvaluation,
8667
8668 /// We are instantiating the exception specification for a function
8669 /// template which was deferred until it was needed.
8670 ExceptionSpecInstantiation,
8671
8672 /// We are instantiating a requirement of a requires expression.
8673 RequirementInstantiation,
8674
8675 /// We are checking the satisfaction of a nested requirement of a requires
8676 /// expression.
8677 NestedRequirementConstraintsCheck,
8678
8679 /// We are declaring an implicit special member function.
8680 DeclaringSpecialMember,
8681
8682 /// We are declaring an implicit 'operator==' for a defaulted
8683 /// 'operator<=>'.
8684 DeclaringImplicitEqualityComparison,
8685
8686 /// We are defining a synthesized function (such as a defaulted special
8687 /// member).
8688 DefiningSynthesizedFunction,
8689
8690 // We are checking the constraints associated with a constrained entity or
8691 // the constraint expression of a concept. This includes the checks that
8692 // atomic constraints have the type 'bool' and that they can be constant
8693 // evaluated.
8694 ConstraintsCheck,
8695
8696 // We are substituting template arguments into a constraint expression.
8697 ConstraintSubstitution,
8698
8699 // We are normalizing a constraint expression.
8700 ConstraintNormalization,
8701
8702 // We are substituting into the parameter mapping of an atomic constraint
8703 // during normalization.
8704 ParameterMappingSubstitution,
8705
8706 /// We are rewriting a comparison operator in terms of an operator<=>.
8707 RewritingOperatorAsSpaceship,
8708
8709 /// We are initializing a structured binding.
8710 InitializingStructuredBinding,
8711
8712 /// We are marking a class as __dllexport.
8713 MarkingClassDllexported,
8714
8715 /// Added for Template instantiation observation.
8716 /// Memoization means we are _not_ instantiating a template because
8717 /// it is already instantiated (but we entered a context where we
8718 /// would have had to if it was not already instantiated).
8719 Memoization
8720 } Kind;
8721
8722 /// Was the enclosing context a non-instantiation SFINAE context?
8723 bool SavedInNonInstantiationSFINAEContext;
8724
8725 /// The point of instantiation or synthesis within the source code.
8726 SourceLocation PointOfInstantiation;
8727
8728 /// The entity that is being synthesized.
8729 Decl *Entity;
8730
8731 /// The template (or partial specialization) in which we are
8732 /// performing the instantiation, for substitutions of prior template
8733 /// arguments.
8734 NamedDecl *Template;
8735
8736 /// The list of template arguments we are substituting, if they
8737 /// are not part of the entity.
8738 const TemplateArgument *TemplateArgs;
8739
8740 // FIXME: Wrap this union around more members, or perhaps store the
8741 // kind-specific members in the RAII object owning the context.
8742 union {
8743 /// The number of template arguments in TemplateArgs.
8744 unsigned NumTemplateArgs;
8745
8746 /// The special member being declared or defined.
8747 CXXSpecialMember SpecialMember;
8748 };
8749
8750 ArrayRef<TemplateArgument> template_arguments() const {
8751 assert(Kind != DeclaringSpecialMember)((void)0);
8752 return {TemplateArgs, NumTemplateArgs};
8753 }
8754
8755 /// The template deduction info object associated with the
8756 /// substitution or checking of explicit or deduced template arguments.
8757 sema::TemplateDeductionInfo *DeductionInfo;
8758
8759 /// The source range that covers the construct that cause
8760 /// the instantiation, e.g., the template-id that causes a class
8761 /// template instantiation.
8762 SourceRange InstantiationRange;
8763
8764 CodeSynthesisContext()
8765 : Kind(TemplateInstantiation),
8766 SavedInNonInstantiationSFINAEContext(false), Entity(nullptr),
8767 Template(nullptr), TemplateArgs(nullptr), NumTemplateArgs(0),
8768 DeductionInfo(nullptr) {}
8769
8770 /// Determines whether this template is an actual instantiation
8771 /// that should be counted toward the maximum instantiation depth.
8772 bool isInstantiationRecord() const;
8773 };
8774
8775 /// List of active code synthesis contexts.
8776 ///
8777 /// This vector is treated as a stack. As synthesis of one entity requires
8778 /// synthesis of another, additional contexts are pushed onto the stack.
8779 SmallVector<CodeSynthesisContext, 16> CodeSynthesisContexts;
8780
8781 /// Specializations whose definitions are currently being instantiated.
8782 llvm::DenseSet<std::pair<Decl *, unsigned>> InstantiatingSpecializations;
8783
8784 /// Non-dependent types used in templates that have already been instantiated
8785 /// by some template instantiation.
8786 llvm::DenseSet<QualType> InstantiatedNonDependentTypes;
8787
8788 /// Extra modules inspected when performing a lookup during a template
8789 /// instantiation. Computed lazily.
8790 SmallVector<Module*, 16> CodeSynthesisContextLookupModules;
8791
8792 /// Cache of additional modules that should be used for name lookup
8793 /// within the current template instantiation. Computed lazily; use
8794 /// getLookupModules() to get a complete set.
8795 llvm::DenseSet<Module*> LookupModulesCache;
8796
8797 /// Get the set of additional modules that should be checked during
8798 /// name lookup. A module and its imports become visible when instanting a
8799 /// template defined within it.
8800 llvm::DenseSet<Module*> &getLookupModules();
8801
8802 /// Map from the most recent declaration of a namespace to the most
8803 /// recent visible declaration of that namespace.
8804 llvm::DenseMap<NamedDecl*, NamedDecl*> VisibleNamespaceCache;
8805
8806 /// Whether we are in a SFINAE context that is not associated with
8807 /// template instantiation.
8808 ///
8809 /// This is used when setting up a SFINAE trap (\c see SFINAETrap) outside
8810 /// of a template instantiation or template argument deduction.
8811 bool InNonInstantiationSFINAEContext;
8812
8813 /// The number of \p CodeSynthesisContexts that are not template
8814 /// instantiations and, therefore, should not be counted as part of the
8815 /// instantiation depth.
8816 ///
8817 /// When the instantiation depth reaches the user-configurable limit
8818 /// \p LangOptions::InstantiationDepth we will abort instantiation.
8819 // FIXME: Should we have a similar limit for other forms of synthesis?
8820 unsigned NonInstantiationEntries;
8821
8822 /// The depth of the context stack at the point when the most recent
8823 /// error or warning was produced.
8824 ///
8825 /// This value is used to suppress printing of redundant context stacks
8826 /// when there are multiple errors or warnings in the same instantiation.
8827 // FIXME: Does this belong in Sema? It's tough to implement it anywhere else.
8828 unsigned LastEmittedCodeSynthesisContextDepth = 0;
8829
8830 /// The template instantiation callbacks to trace or track
8831 /// instantiations (objects can be chained).
8832 ///
8833 /// This callbacks is used to print, trace or track template
8834 /// instantiations as they are being constructed.
8835 std::vector<std::unique_ptr<TemplateInstantiationCallback>>
8836 TemplateInstCallbacks;
8837
8838 /// The current index into pack expansion arguments that will be
8839 /// used for substitution of parameter packs.
8840 ///
8841 /// The pack expansion index will be -1 to indicate that parameter packs
8842 /// should be instantiated as themselves. Otherwise, the index specifies
8843 /// which argument within the parameter pack will be used for substitution.
8844 int ArgumentPackSubstitutionIndex;
8845
8846 /// RAII object used to change the argument pack substitution index
8847 /// within a \c Sema object.
8848 ///
8849 /// See \c ArgumentPackSubstitutionIndex for more information.
8850 class ArgumentPackSubstitutionIndexRAII {
8851 Sema &Self;
8852 int OldSubstitutionIndex;
8853
8854 public:
8855 ArgumentPackSubstitutionIndexRAII(Sema &Self, int NewSubstitutionIndex)
8856 : Self(Self), OldSubstitutionIndex(Self.ArgumentPackSubstitutionIndex) {
8857 Self.ArgumentPackSubstitutionIndex = NewSubstitutionIndex;
8858 }
8859
8860 ~ArgumentPackSubstitutionIndexRAII() {
8861 Self.ArgumentPackSubstitutionIndex = OldSubstitutionIndex;
8862 }
8863 };
8864
8865 friend class ArgumentPackSubstitutionRAII;
8866
8867 /// For each declaration that involved template argument deduction, the
8868 /// set of diagnostics that were suppressed during that template argument
8869 /// deduction.
8870 ///
8871 /// FIXME: Serialize this structure to the AST file.
8872 typedef llvm::DenseMap<Decl *, SmallVector<PartialDiagnosticAt, 1> >
8873 SuppressedDiagnosticsMap;
8874 SuppressedDiagnosticsMap SuppressedDiagnostics;
8875
8876 /// A stack object to be created when performing template
8877 /// instantiation.
8878 ///
8879 /// Construction of an object of type \c InstantiatingTemplate
8880 /// pushes the current instantiation onto the stack of active
8881 /// instantiations. If the size of this stack exceeds the maximum
8882 /// number of recursive template instantiations, construction
8883 /// produces an error and evaluates true.
8884 ///
8885 /// Destruction of this object will pop the named instantiation off
8886 /// the stack.
8887 struct InstantiatingTemplate {
8888 /// Note that we are instantiating a class template,
8889 /// function template, variable template, alias template,
8890 /// or a member thereof.
8891 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8892 Decl *Entity,
8893 SourceRange InstantiationRange = SourceRange());
8894
8895 struct ExceptionSpecification {};
8896 /// Note that we are instantiating an exception specification
8897 /// of a function template.
8898 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8899 FunctionDecl *Entity, ExceptionSpecification,
8900 SourceRange InstantiationRange = SourceRange());
8901
8902 /// Note that we are instantiating a default argument in a
8903 /// template-id.
8904 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8905 TemplateParameter Param, TemplateDecl *Template,
8906 ArrayRef<TemplateArgument> TemplateArgs,
8907 SourceRange InstantiationRange = SourceRange());
8908
8909 /// Note that we are substituting either explicitly-specified or
8910 /// deduced template arguments during function template argument deduction.
8911 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8912 FunctionTemplateDecl *FunctionTemplate,
8913 ArrayRef<TemplateArgument> TemplateArgs,
8914 CodeSynthesisContext::SynthesisKind Kind,
8915 sema::TemplateDeductionInfo &DeductionInfo,
8916 SourceRange InstantiationRange = SourceRange());
8917
8918 /// Note that we are instantiating as part of template
8919 /// argument deduction for a class template declaration.
8920 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8921 TemplateDecl *Template,
8922 ArrayRef<TemplateArgument> TemplateArgs,
8923 sema::TemplateDeductionInfo &DeductionInfo,
8924 SourceRange InstantiationRange = SourceRange());
8925
8926 /// Note that we are instantiating as part of template
8927 /// argument deduction for a class template partial
8928 /// specialization.
8929 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8930 ClassTemplatePartialSpecializationDecl *PartialSpec,
8931 ArrayRef<TemplateArgument> TemplateArgs,
8932 sema::TemplateDeductionInfo &DeductionInfo,
8933 SourceRange InstantiationRange = SourceRange());
8934
8935 /// Note that we are instantiating as part of template
8936 /// argument deduction for a variable template partial
8937 /// specialization.
8938 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8939 VarTemplatePartialSpecializationDecl *PartialSpec,
8940 ArrayRef<TemplateArgument> TemplateArgs,
8941 sema::TemplateDeductionInfo &DeductionInfo,
8942 SourceRange InstantiationRange = SourceRange());
8943
8944 /// Note that we are instantiating a default argument for a function
8945 /// parameter.
8946 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8947 ParmVarDecl *Param,
8948 ArrayRef<TemplateArgument> TemplateArgs,
8949 SourceRange InstantiationRange = SourceRange());
8950
8951 /// Note that we are substituting prior template arguments into a
8952 /// non-type parameter.
8953 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8954 NamedDecl *Template,
8955 NonTypeTemplateParmDecl *Param,
8956 ArrayRef<TemplateArgument> TemplateArgs,
8957 SourceRange InstantiationRange);
8958
8959 /// Note that we are substituting prior template arguments into a
8960 /// template template parameter.
8961 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8962 NamedDecl *Template,
8963 TemplateTemplateParmDecl *Param,
8964 ArrayRef<TemplateArgument> TemplateArgs,
8965 SourceRange InstantiationRange);
8966
8967 /// Note that we are checking the default template argument
8968 /// against the template parameter for a given template-id.
8969 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8970 TemplateDecl *Template,
8971 NamedDecl *Param,
8972 ArrayRef<TemplateArgument> TemplateArgs,
8973 SourceRange InstantiationRange);
8974
8975 struct ConstraintsCheck {};
8976 /// \brief Note that we are checking the constraints associated with some
8977 /// constrained entity (a concept declaration or a template with associated
8978 /// constraints).
8979 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8980 ConstraintsCheck, NamedDecl *Template,
8981 ArrayRef<TemplateArgument> TemplateArgs,
8982 SourceRange InstantiationRange);
8983
8984 struct ConstraintSubstitution {};
8985 /// \brief Note that we are checking a constraint expression associated
8986 /// with a template declaration or as part of the satisfaction check of a
8987 /// concept.
8988 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8989 ConstraintSubstitution, NamedDecl *Template,
8990 sema::TemplateDeductionInfo &DeductionInfo,
8991 SourceRange InstantiationRange);
8992
8993 struct ConstraintNormalization {};
8994 /// \brief Note that we are normalizing a constraint expression.
8995 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
8996 ConstraintNormalization, NamedDecl *Template,
8997 SourceRange InstantiationRange);
8998
8999 struct ParameterMappingSubstitution {};
9000 /// \brief Note that we are subtituting into the parameter mapping of an
9001 /// atomic constraint during constraint normalization.
9002 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9003 ParameterMappingSubstitution, NamedDecl *Template,
9004 SourceRange InstantiationRange);
9005
9006 /// \brief Note that we are substituting template arguments into a part of
9007 /// a requirement of a requires expression.
9008 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9009 concepts::Requirement *Req,
9010 sema::TemplateDeductionInfo &DeductionInfo,
9011 SourceRange InstantiationRange = SourceRange());
9012
9013 /// \brief Note that we are checking the satisfaction of the constraint
9014 /// expression inside of a nested requirement.
9015 InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation,
9016 concepts::NestedRequirement *Req, ConstraintsCheck,
9017 SourceRange InstantiationRange = SourceRange());
9018
9019 /// Note that we have finished instantiating this template.
9020 void Clear();
9021
9022 ~InstantiatingTemplate() { Clear(); }
9023
9024 /// Determines whether we have exceeded the maximum
9025 /// recursive template instantiations.
9026 bool isInvalid() const { return Invalid; }
9027
9028 /// Determine whether we are already instantiating this
9029 /// specialization in some surrounding active instantiation.
9030 bool isAlreadyInstantiating() const { return AlreadyInstantiating; }
9031
9032 private:
9033 Sema &SemaRef;
9034 bool Invalid;
9035 bool AlreadyInstantiating;
9036 bool CheckInstantiationDepth(SourceLocation PointOfInstantiation,
9037 SourceRange InstantiationRange);
9038
9039 InstantiatingTemplate(
9040 Sema &SemaRef, CodeSynthesisContext::SynthesisKind Kind,
9041 SourceLocation PointOfInstantiation, SourceRange InstantiationRange,
9042 Decl *Entity, NamedDecl *Template = nullptr,
9043 ArrayRef<TemplateArgument> TemplateArgs = None,
9044 sema::TemplateDeductionInfo *DeductionInfo = nullptr);
9045
9046 InstantiatingTemplate(const InstantiatingTemplate&) = delete;
9047
9048 InstantiatingTemplate&
9049 operator=(const InstantiatingTemplate&) = delete;
9050 };
9051
9052 void pushCodeSynthesisContext(CodeSynthesisContext Ctx);
9053 void popCodeSynthesisContext();
9054
9055 /// Determine whether we are currently performing template instantiation.
9056 bool inTemplateInstantiation() const {
9057 return CodeSynthesisContexts.size() > NonInstantiationEntries;
9058 }
9059
9060 void PrintContextStack() {
9061 if (!CodeSynthesisContexts.empty() &&
9062 CodeSynthesisContexts.size() != LastEmittedCodeSynthesisContextDepth) {
9063 PrintInstantiationStack();
9064 LastEmittedCodeSynthesisContextDepth = CodeSynthesisContexts.size();
9065 }
9066 if (PragmaAttributeCurrentTargetDecl)
9067 PrintPragmaAttributeInstantiationPoint();
9068 }
9069 void PrintInstantiationStack();
9070
9071 void PrintPragmaAttributeInstantiationPoint();
9072
9073 /// Determines whether we are currently in a context where
9074 /// template argument substitution failures are not considered
9075 /// errors.
9076 ///
9077 /// \returns An empty \c Optional if we're not in a SFINAE context.
9078 /// Otherwise, contains a pointer that, if non-NULL, contains the nearest
9079 /// template-deduction context object, which can be used to capture
9080 /// diagnostics that will be suppressed.
9081 Optional<sema::TemplateDeductionInfo *> isSFINAEContext() const;
9082
9083 /// Determines whether we are currently in a context that
9084 /// is not evaluated as per C++ [expr] p5.
9085 bool isUnevaluatedContext() const {
9086 assert(!ExprEvalContexts.empty() &&((void)0)
9087 "Must be in an expression evaluation context")((void)0);
9088 return ExprEvalContexts.back().isUnevaluated();
9089 }
9090
9091 /// RAII class used to determine whether SFINAE has
9092 /// trapped any errors that occur during template argument
9093 /// deduction.
9094 class SFINAETrap {
9095 Sema &SemaRef;
9096 unsigned PrevSFINAEErrors;
9097 bool PrevInNonInstantiationSFINAEContext;
9098 bool PrevAccessCheckingSFINAE;
9099 bool PrevLastDiagnosticIgnored;
9100
9101 public:
9102 explicit SFINAETrap(Sema &SemaRef, bool AccessCheckingSFINAE = false)
9103 : SemaRef(SemaRef), PrevSFINAEErrors(SemaRef.NumSFINAEErrors),
9104 PrevInNonInstantiationSFINAEContext(
9105 SemaRef.InNonInstantiationSFINAEContext),
9106 PrevAccessCheckingSFINAE(SemaRef.AccessCheckingSFINAE),
9107 PrevLastDiagnosticIgnored(
9108 SemaRef.getDiagnostics().isLastDiagnosticIgnored())
9109 {
9110 if (!SemaRef.isSFINAEContext())
9111 SemaRef.InNonInstantiationSFINAEContext = true;
9112 SemaRef.AccessCheckingSFINAE = AccessCheckingSFINAE;
9113 }
9114
9115 ~SFINAETrap() {
9116 SemaRef.NumSFINAEErrors = PrevSFINAEErrors;
9117 SemaRef.InNonInstantiationSFINAEContext
9118 = PrevInNonInstantiationSFINAEContext;
9119 SemaRef.AccessCheckingSFINAE = PrevAccessCheckingSFINAE;
9120 SemaRef.getDiagnostics().setLastDiagnosticIgnored(
9121 PrevLastDiagnosticIgnored);
9122 }
9123
9124 /// Determine whether any SFINAE errors have been trapped.
9125 bool hasErrorOccurred() const {
9126 return SemaRef.NumSFINAEErrors > PrevSFINAEErrors;
9127 }
9128 };
9129
9130 /// RAII class used to indicate that we are performing provisional
9131 /// semantic analysis to determine the validity of a construct, so
9132 /// typo-correction and diagnostics in the immediate context (not within
9133 /// implicitly-instantiated templates) should be suppressed.
9134 class TentativeAnalysisScope {
9135 Sema &SemaRef;
9136 // FIXME: Using a SFINAETrap for this is a hack.
9137 SFINAETrap Trap;
9138 bool PrevDisableTypoCorrection;
9139 public:
9140 explicit TentativeAnalysisScope(Sema &SemaRef)
9141 : SemaRef(SemaRef), Trap(SemaRef, true),
9142 PrevDisableTypoCorrection(SemaRef.DisableTypoCorrection) {
9143 SemaRef.DisableTypoCorrection = true;
9144 }
9145 ~TentativeAnalysisScope() {
9146 SemaRef.DisableTypoCorrection = PrevDisableTypoCorrection;
9147 }
9148 };
9149
9150 /// The current instantiation scope used to store local
9151 /// variables.
9152 LocalInstantiationScope *CurrentInstantiationScope;
9153
9154 /// Tracks whether we are in a context where typo correction is
9155 /// disabled.
9156 bool DisableTypoCorrection;
9157
9158 /// The number of typos corrected by CorrectTypo.
9159 unsigned TyposCorrected;
9160
9161 typedef llvm::SmallSet<SourceLocation, 2> SrcLocSet;
9162 typedef llvm::DenseMap<IdentifierInfo *, SrcLocSet> IdentifierSourceLocations;
9163
9164 /// A cache containing identifiers for which typo correction failed and
9165 /// their locations, so that repeated attempts to correct an identifier in a
9166 /// given location are ignored if typo correction already failed for it.
9167 IdentifierSourceLocations TypoCorrectionFailures;
9168
9169 /// Worker object for performing CFG-based warnings.
9170 sema::AnalysisBasedWarnings AnalysisWarnings;
9171 threadSafety::BeforeSet *ThreadSafetyDeclCache;
9172
9173 /// An entity for which implicit template instantiation is required.
9174 ///
9175 /// The source location associated with the declaration is the first place in
9176 /// the source code where the declaration was "used". It is not necessarily
9177 /// the point of instantiation (which will be either before or after the
9178 /// namespace-scope declaration that triggered this implicit instantiation),
9179 /// However, it is the location that diagnostics should generally refer to,
9180 /// because users will need to know what code triggered the instantiation.
9181 typedef std::pair<ValueDecl *, SourceLocation> PendingImplicitInstantiation;
9182
9183 /// The queue of implicit template instantiations that are required
9184 /// but have not yet been performed.
9185 std::deque<PendingImplicitInstantiation> PendingInstantiations;
9186
9187 /// Queue of implicit template instantiations that cannot be performed
9188 /// eagerly.
9189 SmallVector<PendingImplicitInstantiation, 1> LateParsedInstantiations;
9190
9191 class GlobalEagerInstantiationScope {
9192 public:
9193 GlobalEagerInstantiationScope(Sema &S, bool Enabled)
9194 : S(S), Enabled(Enabled) {
9195 if (!Enabled) return;
9196
9197 SavedPendingInstantiations.swap(S.PendingInstantiations);
9198 SavedVTableUses.swap(S.VTableUses);
9199 }
9200
9201 void perform() {
9202 if (Enabled) {
9203 S.DefineUsedVTables();
9204 S.PerformPendingInstantiations();
9205 }
9206 }
9207
9208 ~GlobalEagerInstantiationScope() {
9209 if (!Enabled) return;
9210
9211 // Restore the set of pending vtables.
9212 assert(S.VTableUses.empty() &&((void)0)
9213 "VTableUses should be empty before it is discarded.")((void)0);
9214 S.VTableUses.swap(SavedVTableUses);
9215
9216 // Restore the set of pending implicit instantiations.
9217 if (S.TUKind != TU_Prefix || !S.LangOpts.PCHInstantiateTemplates) {
9218 assert(S.PendingInstantiations.empty() &&((void)0)
9219 "PendingInstantiations should be empty before it is discarded.")((void)0);
9220 S.PendingInstantiations.swap(SavedPendingInstantiations);
9221 } else {
9222 // Template instantiations in the PCH may be delayed until the TU.
9223 S.PendingInstantiations.swap(SavedPendingInstantiations);
9224 S.PendingInstantiations.insert(S.PendingInstantiations.end(),
9225 SavedPendingInstantiations.begin(),
9226 SavedPendingInstantiations.end());
9227 }
9228 }
9229
9230 private:
9231 Sema &S;
9232 SmallVector<VTableUse, 16> SavedVTableUses;
9233 std::deque<PendingImplicitInstantiation> SavedPendingInstantiations;
9234 bool Enabled;
9235 };
9236
9237 /// The queue of implicit template instantiations that are required
9238 /// and must be performed within the current local scope.
9239 ///
9240 /// This queue is only used for member functions of local classes in
9241 /// templates, which must be instantiated in the same scope as their
9242 /// enclosing function, so that they can reference function-local
9243 /// types, static variables, enumerators, etc.
9244 std::deque<PendingImplicitInstantiation> PendingLocalImplicitInstantiations;
9245
9246 class LocalEagerInstantiationScope {
9247 public:
9248 LocalEagerInstantiationScope(Sema &S) : S(S) {
9249 SavedPendingLocalImplicitInstantiations.swap(
9250 S.PendingLocalImplicitInstantiations);
9251 }
9252
9253 void perform() { S.PerformPendingInstantiations(/*LocalOnly=*/true); }
9254
9255 ~LocalEagerInstantiationScope() {
9256 assert(S.PendingLocalImplicitInstantiations.empty() &&((void)0)
9257 "there shouldn't be any pending local implicit instantiations")((void)0);
9258 SavedPendingLocalImplicitInstantiations.swap(
9259 S.PendingLocalImplicitInstantiations);
9260 }
9261
9262 private:
9263 Sema &S;
9264 std::deque<PendingImplicitInstantiation>
9265 SavedPendingLocalImplicitInstantiations;
9266 };
9267
9268 /// A helper class for building up ExtParameterInfos.
9269 class ExtParameterInfoBuilder {
9270 SmallVector<FunctionProtoType::ExtParameterInfo, 16> Infos;
9271 bool HasInteresting = false;
9272
9273 public:
9274 /// Set the ExtParameterInfo for the parameter at the given index,
9275 ///
9276 void set(unsigned index, FunctionProtoType::ExtParameterInfo info) {
9277 assert(Infos.size() <= index)((void)0);
9278 Infos.resize(index);
9279 Infos.push_back(info);
9280
9281 if (!HasInteresting)
9282 HasInteresting = (info != FunctionProtoType::ExtParameterInfo());
9283 }
9284
9285 /// Return a pointer (suitable for setting in an ExtProtoInfo) to the
9286 /// ExtParameterInfo array we've built up.
9287 const FunctionProtoType::ExtParameterInfo *
9288 getPointerOrNull(unsigned numParams) {
9289 if (!HasInteresting) return nullptr;
9290 Infos.resize(numParams);
9291 return Infos.data();
9292 }
9293 };
9294
9295 void PerformPendingInstantiations(bool LocalOnly = false);
9296
9297 TypeSourceInfo *SubstType(TypeSourceInfo *T,
9298 const MultiLevelTemplateArgumentList &TemplateArgs,
9299 SourceLocation Loc, DeclarationName Entity,
9300 bool AllowDeducedTST = false);
9301
9302 QualType SubstType(QualType T,
9303 const MultiLevelTemplateArgumentList &TemplateArgs,
9304 SourceLocation Loc, DeclarationName Entity);
9305
9306 TypeSourceInfo *SubstType(TypeLoc TL,
9307 const MultiLevelTemplateArgumentList &TemplateArgs,
9308 SourceLocation Loc, DeclarationName Entity);
9309
9310 TypeSourceInfo *SubstFunctionDeclType(TypeSourceInfo *T,
9311 const MultiLevelTemplateArgumentList &TemplateArgs,
9312 SourceLocation Loc,
9313 DeclarationName Entity,
9314 CXXRecordDecl *ThisContext,
9315 Qualifiers ThisTypeQuals);
9316 void SubstExceptionSpec(FunctionDecl *New, const FunctionProtoType *Proto,
9317 const MultiLevelTemplateArgumentList &Args);
9318 bool SubstExceptionSpec(SourceLocation Loc,
9319 FunctionProtoType::ExceptionSpecInfo &ESI,
9320 SmallVectorImpl<QualType> &ExceptionStorage,
9321 const MultiLevelTemplateArgumentList &Args);
9322 ParmVarDecl *SubstParmVarDecl(ParmVarDecl *D,
9323 const MultiLevelTemplateArgumentList &TemplateArgs,
9324 int indexAdjustment,
9325 Optional<unsigned> NumExpansions,
9326 bool ExpectParameterPack);
9327 bool SubstParmTypes(SourceLocation Loc, ArrayRef<ParmVarDecl *> Params,
9328 const FunctionProtoType::ExtParameterInfo *ExtParamInfos,
9329 const MultiLevelTemplateArgumentList &TemplateArgs,
9330 SmallVectorImpl<QualType> &ParamTypes,
9331 SmallVectorImpl<ParmVarDecl *> *OutParams,
9332 ExtParameterInfoBuilder &ParamInfos);
9333 ExprResult SubstExpr(Expr *E,
9334 const MultiLevelTemplateArgumentList &TemplateArgs);
9335
9336 /// Substitute the given template arguments into a list of
9337 /// expressions, expanding pack expansions if required.
9338 ///
9339 /// \param Exprs The list of expressions to substitute into.
9340 ///
9341 /// \param IsCall Whether this is some form of call, in which case
9342 /// default arguments will be dropped.
9343 ///
9344 /// \param TemplateArgs The set of template arguments to substitute.
9345 ///
9346 /// \param Outputs Will receive all of the substituted arguments.
9347 ///
9348 /// \returns true if an error occurred, false otherwise.
9349 bool SubstExprs(ArrayRef<Expr *> Exprs, bool IsCall,
9350 const MultiLevelTemplateArgumentList &TemplateArgs,
9351 SmallVectorImpl<Expr *> &Outputs);
9352
9353 StmtResult SubstStmt(Stmt *S,
9354 const MultiLevelTemplateArgumentList &TemplateArgs);
9355
9356 TemplateParameterList *
9357 SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
9358 const MultiLevelTemplateArgumentList &TemplateArgs);
9359
9360 bool
9361 SubstTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
9362 const MultiLevelTemplateArgumentList &TemplateArgs,
9363 TemplateArgumentListInfo &Outputs);
9364
9365
9366 Decl *SubstDecl(Decl *D, DeclContext *Owner,
9367 const MultiLevelTemplateArgumentList &TemplateArgs);
9368
9369 /// Substitute the name and return type of a defaulted 'operator<=>' to form
9370 /// an implicit 'operator=='.
9371 FunctionDecl *SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
9372 FunctionDecl *Spaceship);
9373
9374 ExprResult SubstInitializer(Expr *E,
9375 const MultiLevelTemplateArgumentList &TemplateArgs,
9376 bool CXXDirectInit);
9377
9378 bool
9379 SubstBaseSpecifiers(CXXRecordDecl *Instantiation,
9380 CXXRecordDecl *Pattern,
9381 const MultiLevelTemplateArgumentList &TemplateArgs);
9382
9383 bool
9384 InstantiateClass(SourceLocation PointOfInstantiation,
9385 CXXRecordDecl *Instantiation, CXXRecordDecl *Pattern,
9386 const MultiLevelTemplateArgumentList &TemplateArgs,
9387 TemplateSpecializationKind TSK,
9388 bool Complain = true);
9389
9390 bool InstantiateEnum(SourceLocation PointOfInstantiation,
9391 EnumDecl *Instantiation, EnumDecl *Pattern,
9392 const MultiLevelTemplateArgumentList &TemplateArgs,
9393 TemplateSpecializationKind TSK);
9394
9395 bool InstantiateInClassInitializer(
9396 SourceLocation PointOfInstantiation, FieldDecl *Instantiation,
9397 FieldDecl *Pattern, const MultiLevelTemplateArgumentList &TemplateArgs);
9398
9399 struct LateInstantiatedAttribute {
9400 const Attr *TmplAttr;
9401 LocalInstantiationScope *Scope;
9402 Decl *NewDecl;
9403
9404 LateInstantiatedAttribute(const Attr *A, LocalInstantiationScope *S,
9405 Decl *D)
9406 : TmplAttr(A), Scope(S), NewDecl(D)
9407 { }
9408 };
9409 typedef SmallVector<LateInstantiatedAttribute, 16> LateInstantiatedAttrVec;
9410
9411 void InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
9412 const Decl *Pattern, Decl *Inst,
9413 LateInstantiatedAttrVec *LateAttrs = nullptr,
9414 LocalInstantiationScope *OuterMostScope = nullptr);
9415
9416 void
9417 InstantiateAttrsForDecl(const MultiLevelTemplateArgumentList &TemplateArgs,
9418 const Decl *Pattern, Decl *Inst,
9419 LateInstantiatedAttrVec *LateAttrs = nullptr,
9420 LocalInstantiationScope *OuterMostScope = nullptr);
9421
9422 void InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor);
9423
9424 bool usesPartialOrExplicitSpecialization(
9425 SourceLocation Loc, ClassTemplateSpecializationDecl *ClassTemplateSpec);
9426
9427 bool
9428 InstantiateClassTemplateSpecialization(SourceLocation PointOfInstantiation,
9429 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9430 TemplateSpecializationKind TSK,
9431 bool Complain = true);
9432
9433 void InstantiateClassMembers(SourceLocation PointOfInstantiation,
9434 CXXRecordDecl *Instantiation,
9435 const MultiLevelTemplateArgumentList &TemplateArgs,
9436 TemplateSpecializationKind TSK);
9437
9438 void InstantiateClassTemplateSpecializationMembers(
9439 SourceLocation PointOfInstantiation,
9440 ClassTemplateSpecializationDecl *ClassTemplateSpec,
9441 TemplateSpecializationKind TSK);
9442
9443 NestedNameSpecifierLoc
9444 SubstNestedNameSpecifierLoc(NestedNameSpecifierLoc NNS,
9445 const MultiLevelTemplateArgumentList &TemplateArgs);
9446
9447 DeclarationNameInfo
9448 SubstDeclarationNameInfo(const DeclarationNameInfo &NameInfo,
9449 const MultiLevelTemplateArgumentList &TemplateArgs);
9450 TemplateName
9451 SubstTemplateName(NestedNameSpecifierLoc QualifierLoc, TemplateName Name,
9452 SourceLocation Loc,
9453 const MultiLevelTemplateArgumentList &TemplateArgs);
9454 bool Subst(const TemplateArgumentLoc *Args, unsigned NumArgs,
9455 TemplateArgumentListInfo &Result,
9456 const MultiLevelTemplateArgumentList &TemplateArgs);
9457
9458 bool InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
9459 ParmVarDecl *Param);
9460 void InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
9461 FunctionDecl *Function);
9462 bool CheckInstantiatedFunctionTemplateConstraints(
9463 SourceLocation PointOfInstantiation, FunctionDecl *Decl,
9464 ArrayRef<TemplateArgument> TemplateArgs,
9465 ConstraintSatisfaction &Satisfaction);
9466 FunctionDecl *InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
9467 const TemplateArgumentList *Args,
9468 SourceLocation Loc);
9469 void InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
9470 FunctionDecl *Function,
9471 bool Recursive = false,
9472 bool DefinitionRequired = false,
9473 bool AtEndOfTU = false);
9474 VarTemplateSpecializationDecl *BuildVarTemplateInstantiation(
9475 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
9476 const TemplateArgumentList &TemplateArgList,
9477 const TemplateArgumentListInfo &TemplateArgsInfo,
9478 SmallVectorImpl<TemplateArgument> &Converted,
9479 SourceLocation PointOfInstantiation,
9480 LateInstantiatedAttrVec *LateAttrs = nullptr,
9481 LocalInstantiationScope *StartingScope = nullptr);
9482 VarTemplateSpecializationDecl *CompleteVarTemplateSpecializationDecl(
9483 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
9484 const MultiLevelTemplateArgumentList &TemplateArgs);
9485 void
9486 BuildVariableInstantiation(VarDecl *NewVar, VarDecl *OldVar,
9487 const MultiLevelTemplateArgumentList &TemplateArgs,
9488 LateInstantiatedAttrVec *LateAttrs,
9489 DeclContext *Owner,
9490 LocalInstantiationScope *StartingScope,
9491 bool InstantiatingVarTemplate = false,
9492 VarTemplateSpecializationDecl *PrevVTSD = nullptr);
9493
9494 void InstantiateVariableInitializer(
9495 VarDecl *Var, VarDecl *OldVar,
9496 const MultiLevelTemplateArgumentList &TemplateArgs);
9497 void InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
9498 VarDecl *Var, bool Recursive = false,
9499 bool DefinitionRequired = false,
9500 bool AtEndOfTU = false);
9501
9502 void InstantiateMemInitializers(CXXConstructorDecl *New,
9503 const CXXConstructorDecl *Tmpl,
9504 const MultiLevelTemplateArgumentList &TemplateArgs);
9505
9506 NamedDecl *FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
9507 const MultiLevelTemplateArgumentList &TemplateArgs,
9508 bool FindingInstantiatedContext = false);
9509 DeclContext *FindInstantiatedContext(SourceLocation Loc, DeclContext *DC,
9510 const MultiLevelTemplateArgumentList &TemplateArgs);
9511
9512 // Objective-C declarations.
9513 enum ObjCContainerKind {
9514 OCK_None = -1,
9515 OCK_Interface = 0,
9516 OCK_Protocol,
9517 OCK_Category,
9518 OCK_ClassExtension,
9519 OCK_Implementation,
9520 OCK_CategoryImplementation
9521 };
9522 ObjCContainerKind getObjCContainerKind() const;
9523
9524 DeclResult actOnObjCTypeParam(Scope *S,
9525 ObjCTypeParamVariance variance,
9526 SourceLocation varianceLoc,
9527 unsigned index,
9528 IdentifierInfo *paramName,
9529 SourceLocation paramLoc,
9530 SourceLocation colonLoc,
9531 ParsedType typeBound);
9532
9533 ObjCTypeParamList *actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc,
9534 ArrayRef<Decl *> typeParams,
9535 SourceLocation rAngleLoc);
9536 void popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList);
9537
9538 Decl *ActOnStartClassInterface(
9539 Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9540 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9541 IdentifierInfo *SuperName, SourceLocation SuperLoc,
9542 ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
9543 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9544 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9545 const ParsedAttributesView &AttrList);
9546
9547 void ActOnSuperClassOfClassInterface(Scope *S,
9548 SourceLocation AtInterfaceLoc,
9549 ObjCInterfaceDecl *IDecl,
9550 IdentifierInfo *ClassName,
9551 SourceLocation ClassLoc,
9552 IdentifierInfo *SuperName,
9553 SourceLocation SuperLoc,
9554 ArrayRef<ParsedType> SuperTypeArgs,
9555 SourceRange SuperTypeArgsRange);
9556
9557 void ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
9558 SmallVectorImpl<SourceLocation> &ProtocolLocs,
9559 IdentifierInfo *SuperName,
9560 SourceLocation SuperLoc);
9561
9562 Decl *ActOnCompatibilityAlias(
9563 SourceLocation AtCompatibilityAliasLoc,
9564 IdentifierInfo *AliasName, SourceLocation AliasLocation,
9565 IdentifierInfo *ClassName, SourceLocation ClassLocation);
9566
9567 bool CheckForwardProtocolDeclarationForCircularDependency(
9568 IdentifierInfo *PName,
9569 SourceLocation &PLoc, SourceLocation PrevLoc,
9570 const ObjCList<ObjCProtocolDecl> &PList);
9571
9572 Decl *ActOnStartProtocolInterface(
9573 SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
9574 SourceLocation ProtocolLoc, Decl *const *ProtoRefNames,
9575 unsigned NumProtoRefs, const SourceLocation *ProtoLocs,
9576 SourceLocation EndProtoLoc, const ParsedAttributesView &AttrList);
9577
9578 Decl *ActOnStartCategoryInterface(
9579 SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
9580 SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
9581 IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
9582 Decl *const *ProtoRefs, unsigned NumProtoRefs,
9583 const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
9584 const ParsedAttributesView &AttrList);
9585
9586 Decl *ActOnStartClassImplementation(SourceLocation AtClassImplLoc,
9587 IdentifierInfo *ClassName,
9588 SourceLocation ClassLoc,
9589 IdentifierInfo *SuperClassname,
9590 SourceLocation SuperClassLoc,
9591 const ParsedAttributesView &AttrList);
9592
9593 Decl *ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,
9594 IdentifierInfo *ClassName,
9595 SourceLocation ClassLoc,
9596 IdentifierInfo *CatName,
9597 SourceLocation CatLoc,
9598 const ParsedAttributesView &AttrList);
9599
9600 DeclGroupPtrTy ActOnFinishObjCImplementation(Decl *ObjCImpDecl,
9601 ArrayRef<Decl *> Decls);
9602
9603 DeclGroupPtrTy ActOnForwardClassDeclaration(SourceLocation Loc,
9604 IdentifierInfo **IdentList,
9605 SourceLocation *IdentLocs,
9606 ArrayRef<ObjCTypeParamList *> TypeParamLists,
9607 unsigned NumElts);
9608
9609 DeclGroupPtrTy
9610 ActOnForwardProtocolDeclaration(SourceLocation AtProtoclLoc,
9611 ArrayRef<IdentifierLocPair> IdentList,
9612 const ParsedAttributesView &attrList);
9613
9614 void FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
9615 ArrayRef<IdentifierLocPair> ProtocolId,
9616 SmallVectorImpl<Decl *> &Protocols);
9617
9618 void DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
9619 SourceLocation ProtocolLoc,
9620 IdentifierInfo *TypeArgId,
9621 SourceLocation TypeArgLoc,
9622 bool SelectProtocolFirst = false);
9623
9624 /// Given a list of identifiers (and their locations), resolve the
9625 /// names to either Objective-C protocol qualifiers or type
9626 /// arguments, as appropriate.
9627 void actOnObjCTypeArgsOrProtocolQualifiers(
9628 Scope *S,
9629 ParsedType baseType,
9630 SourceLocation lAngleLoc,
9631 ArrayRef<IdentifierInfo *> identifiers,
9632 ArrayRef<SourceLocation> identifierLocs,
9633 SourceLocation rAngleLoc,
9634 SourceLocation &typeArgsLAngleLoc,
9635 SmallVectorImpl<ParsedType> &typeArgs,
9636 SourceLocation &typeArgsRAngleLoc,
9637 SourceLocation &protocolLAngleLoc,
9638 SmallVectorImpl<Decl *> &protocols,
9639 SourceLocation &protocolRAngleLoc,
9640 bool warnOnIncompleteProtocols);
9641
9642 /// Build a an Objective-C protocol-qualified 'id' type where no
9643 /// base type was specified.
9644 TypeResult actOnObjCProtocolQualifierType(
9645 SourceLocation lAngleLoc,
9646 ArrayRef<Decl *> protocols,
9647 ArrayRef<SourceLocation> protocolLocs,
9648 SourceLocation rAngleLoc);
9649
9650 /// Build a specialized and/or protocol-qualified Objective-C type.
9651 TypeResult actOnObjCTypeArgsAndProtocolQualifiers(
9652 Scope *S,
9653 SourceLocation Loc,
9654 ParsedType BaseType,
9655 SourceLocation TypeArgsLAngleLoc,
9656 ArrayRef<ParsedType> TypeArgs,
9657 SourceLocation TypeArgsRAngleLoc,
9658 SourceLocation ProtocolLAngleLoc,
9659 ArrayRef<Decl *> Protocols,
9660 ArrayRef<SourceLocation> ProtocolLocs,
9661 SourceLocation ProtocolRAngleLoc);
9662
9663 /// Build an Objective-C type parameter type.
9664 QualType BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
9665 SourceLocation ProtocolLAngleLoc,
9666 ArrayRef<ObjCProtocolDecl *> Protocols,
9667 ArrayRef<SourceLocation> ProtocolLocs,
9668 SourceLocation ProtocolRAngleLoc,
9669 bool FailOnError = false);
9670
9671 /// Build an Objective-C object pointer type.
9672 QualType BuildObjCObjectType(QualType BaseType,
9673 SourceLocation Loc,
9674 SourceLocation TypeArgsLAngleLoc,
9675 ArrayRef<TypeSourceInfo *> TypeArgs,
9676 SourceLocation TypeArgsRAngleLoc,
9677 SourceLocation ProtocolLAngleLoc,
9678 ArrayRef<ObjCProtocolDecl *> Protocols,
9679 ArrayRef<SourceLocation> ProtocolLocs,
9680 SourceLocation ProtocolRAngleLoc,
9681 bool FailOnError = false);
9682
9683 /// Ensure attributes are consistent with type.
9684 /// \param [in, out] Attributes The attributes to check; they will
9685 /// be modified to be consistent with \p PropertyTy.
9686 void CheckObjCPropertyAttributes(Decl *PropertyPtrTy,
9687 SourceLocation Loc,
9688 unsigned &Attributes,
9689 bool propertyInPrimaryClass);
9690
9691 /// Process the specified property declaration and create decls for the
9692 /// setters and getters as needed.
9693 /// \param property The property declaration being processed
9694 void ProcessPropertyDecl(ObjCPropertyDecl *property);
9695
9696
9697 void DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
9698 ObjCPropertyDecl *SuperProperty,
9699 const IdentifierInfo *Name,
9700 bool OverridingProtocolProperty);
9701
9702 void DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
9703 ObjCInterfaceDecl *ID);
9704
9705 Decl *ActOnAtEnd(Scope *S, SourceRange AtEnd,
9706 ArrayRef<Decl *> allMethods = None,
9707 ArrayRef<DeclGroupPtrTy> allTUVars = None);
9708
9709 Decl *ActOnProperty(Scope *S, SourceLocation AtLoc,
9710 SourceLocation LParenLoc,
9711 FieldDeclarator &FD, ObjCDeclSpec &ODS,
9712 Selector GetterSel, Selector SetterSel,
9713 tok::ObjCKeywordKind MethodImplKind,
9714 DeclContext *lexicalDC = nullptr);
9715
9716 Decl *ActOnPropertyImplDecl(Scope *S,
9717 SourceLocation AtLoc,
9718 SourceLocation PropertyLoc,
9719 bool ImplKind,
9720 IdentifierInfo *PropertyId,
9721 IdentifierInfo *PropertyIvar,
9722 SourceLocation PropertyIvarLoc,
9723 ObjCPropertyQueryKind QueryKind);
9724
9725 enum ObjCSpecialMethodKind {
9726 OSMK_None,
9727 OSMK_Alloc,
9728 OSMK_New,
9729 OSMK_Copy,
9730 OSMK_RetainingInit,
9731 OSMK_NonRetainingInit
9732 };
9733
9734 struct ObjCArgInfo {
9735 IdentifierInfo *Name;
9736 SourceLocation NameLoc;
9737 // The Type is null if no type was specified, and the DeclSpec is invalid
9738 // in this case.
9739 ParsedType Type;
9740 ObjCDeclSpec DeclSpec;
9741
9742 /// ArgAttrs - Attribute list for this argument.
9743 ParsedAttributesView ArgAttrs;
9744 };
9745
9746 Decl *ActOnMethodDeclaration(
9747 Scope *S,
9748 SourceLocation BeginLoc, // location of the + or -.
9749 SourceLocation EndLoc, // location of the ; or {.
9750 tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
9751 ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
9752 // optional arguments. The number of types/arguments is obtained
9753 // from the Sel.getNumArgs().
9754 ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
9755 unsigned CNumArgs, // c-style args
9756 const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodImplKind,
9757 bool isVariadic, bool MethodDefinition);
9758
9759 ObjCMethodDecl *LookupMethodInQualifiedType(Selector Sel,
9760 const ObjCObjectPointerType *OPT,
9761 bool IsInstance);
9762 ObjCMethodDecl *LookupMethodInObjectType(Selector Sel, QualType Ty,
9763 bool IsInstance);
9764
9765 bool CheckARCMethodDecl(ObjCMethodDecl *method);
9766 bool inferObjCARCLifetime(ValueDecl *decl);
9767
9768 void deduceOpenCLAddressSpace(ValueDecl *decl);
9769
9770 ExprResult
9771 HandleExprPropertyRefExpr(const ObjCObjectPointerType *OPT,
9772 Expr *BaseExpr,
9773 SourceLocation OpLoc,
9774 DeclarationName MemberName,
9775 SourceLocation MemberLoc,
9776 SourceLocation SuperLoc, QualType SuperType,
9777 bool Super);
9778
9779 ExprResult
9780 ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
9781 IdentifierInfo &propertyName,
9782 SourceLocation receiverNameLoc,
9783 SourceLocation propertyNameLoc);
9784
9785 ObjCMethodDecl *tryCaptureObjCSelf(SourceLocation Loc);
9786
9787 /// Describes the kind of message expression indicated by a message
9788 /// send that starts with an identifier.
9789 enum ObjCMessageKind {
9790 /// The message is sent to 'super'.
9791 ObjCSuperMessage,
9792 /// The message is an instance message.
9793 ObjCInstanceMessage,
9794 /// The message is a class message, and the identifier is a type
9795 /// name.
9796 ObjCClassMessage
9797 };
9798
9799 ObjCMessageKind getObjCMessageKind(Scope *S,
9800 IdentifierInfo *Name,
9801 SourceLocation NameLoc,
9802 bool IsSuper,
9803 bool HasTrailingDot,
9804 ParsedType &ReceiverType);
9805
9806 ExprResult ActOnSuperMessage(Scope *S, SourceLocation SuperLoc,
9807 Selector Sel,
9808 SourceLocation LBracLoc,
9809 ArrayRef<SourceLocation> SelectorLocs,
9810 SourceLocation RBracLoc,
9811 MultiExprArg Args);
9812
9813 ExprResult BuildClassMessage(TypeSourceInfo *ReceiverTypeInfo,
9814 QualType ReceiverType,
9815 SourceLocation SuperLoc,
9816 Selector Sel,
9817 ObjCMethodDecl *Method,
9818 SourceLocation LBracLoc,
9819 ArrayRef<SourceLocation> SelectorLocs,
9820 SourceLocation RBracLoc,
9821 MultiExprArg Args,
9822 bool isImplicit = false);
9823
9824 ExprResult BuildClassMessageImplicit(QualType ReceiverType,
9825 bool isSuperReceiver,
9826 SourceLocation Loc,
9827 Selector Sel,
9828 ObjCMethodDecl *Method,
9829 MultiExprArg Args);
9830
9831 ExprResult ActOnClassMessage(Scope *S,
9832 ParsedType Receiver,
9833 Selector Sel,
9834 SourceLocation LBracLoc,
9835 ArrayRef<SourceLocation> SelectorLocs,
9836 SourceLocation RBracLoc,
9837 MultiExprArg Args);
9838
9839 ExprResult BuildInstanceMessage(Expr *Receiver,
9840 QualType ReceiverType,
9841 SourceLocation SuperLoc,
9842 Selector Sel,
9843 ObjCMethodDecl *Method,
9844 SourceLocation LBracLoc,
9845 ArrayRef<SourceLocation> SelectorLocs,
9846 SourceLocation RBracLoc,
9847 MultiExprArg Args,
9848 bool isImplicit = false);
9849
9850 ExprResult BuildInstanceMessageImplicit(Expr *Receiver,
9851 QualType ReceiverType,
9852 SourceLocation Loc,
9853 Selector Sel,
9854 ObjCMethodDecl *Method,
9855 MultiExprArg Args);
9856
9857 ExprResult ActOnInstanceMessage(Scope *S,
9858 Expr *Receiver,
9859 Selector Sel,
9860 SourceLocation LBracLoc,
9861 ArrayRef<SourceLocation> SelectorLocs,
9862 SourceLocation RBracLoc,
9863 MultiExprArg Args);
9864
9865 ExprResult BuildObjCBridgedCast(SourceLocation LParenLoc,
9866 ObjCBridgeCastKind Kind,
9867 SourceLocation BridgeKeywordLoc,
9868 TypeSourceInfo *TSInfo,
9869 Expr *SubExpr);
9870
9871 ExprResult ActOnObjCBridgedCast(Scope *S,
9872 SourceLocation LParenLoc,
9873 ObjCBridgeCastKind Kind,
9874 SourceLocation BridgeKeywordLoc,
9875 ParsedType Type,
9876 SourceLocation RParenLoc,
9877 Expr *SubExpr);
9878
9879 void CheckTollFreeBridgeCast(QualType castType, Expr *castExpr);
9880
9881 void CheckObjCBridgeRelatedCast(QualType castType, Expr *castExpr);
9882
9883 bool CheckTollFreeBridgeStaticCast(QualType castType, Expr *castExpr,
9884 CastKind &Kind);
9885
9886 bool checkObjCBridgeRelatedComponents(SourceLocation Loc,
9887 QualType DestType, QualType SrcType,
9888 ObjCInterfaceDecl *&RelatedClass,
9889 ObjCMethodDecl *&ClassMethod,
9890 ObjCMethodDecl *&InstanceMethod,
9891 TypedefNameDecl *&TDNDecl,
9892 bool CfToNs, bool Diagnose = true);
9893
9894 bool CheckObjCBridgeRelatedConversions(SourceLocation Loc,
9895 QualType DestType, QualType SrcType,
9896 Expr *&SrcExpr, bool Diagnose = true);
9897
9898 bool CheckConversionToObjCLiteral(QualType DstType, Expr *&SrcExpr,
9899 bool Diagnose = true);
9900
9901 bool checkInitMethod(ObjCMethodDecl *method, QualType receiverTypeIfCall);
9902
9903 /// Check whether the given new method is a valid override of the
9904 /// given overridden method, and set any properties that should be inherited.
9905 void CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
9906 const ObjCMethodDecl *Overridden);
9907
9908 /// Describes the compatibility of a result type with its method.
9909 enum ResultTypeCompatibilityKind {
9910 RTC_Compatible,
9911 RTC_Incompatible,
9912 RTC_Unknown
9913 };
9914
9915 void CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
9916 ObjCMethodDecl *overridden);
9917
9918 void CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
9919 ObjCInterfaceDecl *CurrentClass,
9920 ResultTypeCompatibilityKind RTC);
9921
9922 enum PragmaOptionsAlignKind {
9923 POAK_Native, // #pragma options align=native
9924 POAK_Natural, // #pragma options align=natural
9925 POAK_Packed, // #pragma options align=packed
9926 POAK_Power, // #pragma options align=power
9927 POAK_Mac68k, // #pragma options align=mac68k
9928 POAK_Reset // #pragma options align=reset
9929 };
9930
9931 /// ActOnPragmaClangSection - Called on well formed \#pragma clang section
9932 void ActOnPragmaClangSection(SourceLocation PragmaLoc,
9933 PragmaClangSectionAction Action,
9934 PragmaClangSectionKind SecKind, StringRef SecName);
9935
9936 /// ActOnPragmaOptionsAlign - Called on well formed \#pragma options align.
9937 void ActOnPragmaOptionsAlign(PragmaOptionsAlignKind Kind,
9938 SourceLocation PragmaLoc);
9939
9940 /// ActOnPragmaPack - Called on well formed \#pragma pack(...).
9941 void ActOnPragmaPack(SourceLocation PragmaLoc, PragmaMsStackAction Action,
9942 StringRef SlotLabel, Expr *Alignment);
9943
9944 enum class PragmaAlignPackDiagnoseKind {
9945 NonDefaultStateAtInclude,
9946 ChangedStateAtExit
9947 };
9948
9949 void DiagnoseNonDefaultPragmaAlignPack(PragmaAlignPackDiagnoseKind Kind,
9950 SourceLocation IncludeLoc);
9951 void DiagnoseUnterminatedPragmaAlignPack();
9952
9953 /// ActOnPragmaMSStruct - Called on well formed \#pragma ms_struct [on|off].
9954 void ActOnPragmaMSStruct(PragmaMSStructKind Kind);
9955
9956 /// ActOnPragmaMSComment - Called on well formed
9957 /// \#pragma comment(kind, "arg").
9958 void ActOnPragmaMSComment(SourceLocation CommentLoc, PragmaMSCommentKind Kind,
9959 StringRef Arg);
9960
9961 /// ActOnPragmaMSPointersToMembers - called on well formed \#pragma
9962 /// pointers_to_members(representation method[, general purpose
9963 /// representation]).
9964 void ActOnPragmaMSPointersToMembers(
9965 LangOptions::PragmaMSPointersToMembersKind Kind,
9966 SourceLocation PragmaLoc);
9967
9968 /// Called on well formed \#pragma vtordisp().
9969 void ActOnPragmaMSVtorDisp(PragmaMsStackAction Action,
9970 SourceLocation PragmaLoc,
9971 MSVtorDispMode Value);
9972
9973 enum PragmaSectionKind {
9974 PSK_DataSeg,
9975 PSK_BSSSeg,
9976 PSK_ConstSeg,
9977 PSK_CodeSeg,
9978 };
9979
9980 bool UnifySection(StringRef SectionName, int SectionFlags,
9981 NamedDecl *TheDecl);
9982 bool UnifySection(StringRef SectionName,
9983 int SectionFlags,
9984 SourceLocation PragmaSectionLocation);
9985
9986 /// Called on well formed \#pragma bss_seg/data_seg/const_seg/code_seg.
9987 void ActOnPragmaMSSeg(SourceLocation PragmaLocation,
9988 PragmaMsStackAction Action,
9989 llvm::StringRef StackSlotLabel,
9990 StringLiteral *SegmentName,
9991 llvm::StringRef PragmaName);
9992
9993 /// Called on well formed \#pragma section().
9994 void ActOnPragmaMSSection(SourceLocation PragmaLocation,
9995 int SectionFlags, StringLiteral *SegmentName);
9996
9997 /// Called on well-formed \#pragma init_seg().
9998 void ActOnPragmaMSInitSeg(SourceLocation PragmaLocation,
9999 StringLiteral *SegmentName);
10000
10001 /// Called on #pragma clang __debug dump II
10002 void ActOnPragmaDump(Scope *S, SourceLocation Loc, IdentifierInfo *II);
10003
10004 /// ActOnPragmaDetectMismatch - Call on well-formed \#pragma detect_mismatch
10005 void ActOnPragmaDetectMismatch(SourceLocation Loc, StringRef Name,
10006 StringRef Value);
10007
10008 /// Are precise floating point semantics currently enabled?
10009 bool isPreciseFPEnabled() {
10010 return !CurFPFeatures.getAllowFPReassociate() &&
10011 !CurFPFeatures.getNoSignedZero() &&
10012 !CurFPFeatures.getAllowReciprocal() &&
10013 !CurFPFeatures.getAllowApproxFunc();
10014 }
10015
10016 /// ActOnPragmaFloatControl - Call on well-formed \#pragma float_control
10017 void ActOnPragmaFloatControl(SourceLocation Loc, PragmaMsStackAction Action,
10018 PragmaFloatControlKind Value);
10019
10020 /// ActOnPragmaUnused - Called on well-formed '\#pragma unused'.
10021 void ActOnPragmaUnused(const Token &Identifier,
10022 Scope *curScope,
10023 SourceLocation PragmaLoc);
10024
10025 /// ActOnPragmaVisibility - Called on well formed \#pragma GCC visibility... .
10026 void ActOnPragmaVisibility(const IdentifierInfo* VisType,
10027 SourceLocation PragmaLoc);
10028
10029 NamedDecl *DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
10030 SourceLocation Loc);
10031 void DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W);
10032
10033 /// ActOnPragmaWeakID - Called on well formed \#pragma weak ident.
10034 void ActOnPragmaWeakID(IdentifierInfo* WeakName,
10035 SourceLocation PragmaLoc,
10036 SourceLocation WeakNameLoc);
10037
10038 /// ActOnPragmaRedefineExtname - Called on well formed
10039 /// \#pragma redefine_extname oldname newname.
10040 void ActOnPragmaRedefineExtname(IdentifierInfo* WeakName,
10041 IdentifierInfo* AliasName,
10042 SourceLocation PragmaLoc,
10043 SourceLocation WeakNameLoc,
10044 SourceLocation AliasNameLoc);
10045
10046 /// ActOnPragmaWeakAlias - Called on well formed \#pragma weak ident = ident.
10047 void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
10048 IdentifierInfo* AliasName,
10049 SourceLocation PragmaLoc,
10050 SourceLocation WeakNameLoc,
10051 SourceLocation AliasNameLoc);
10052
10053 /// ActOnPragmaFPContract - Called on well formed
10054 /// \#pragma {STDC,OPENCL} FP_CONTRACT and
10055 /// \#pragma clang fp contract
10056 void ActOnPragmaFPContract(SourceLocation Loc, LangOptions::FPModeKind FPC);
10057
10058 /// Called on well formed
10059 /// \#pragma clang fp reassociate
10060 void ActOnPragmaFPReassociate(SourceLocation Loc, bool IsEnabled);
10061
10062 /// ActOnPragmaFenvAccess - Called on well formed
10063 /// \#pragma STDC FENV_ACCESS
10064 void ActOnPragmaFEnvAccess(SourceLocation Loc, bool IsEnabled);
10065
10066 /// Called on well formed '\#pragma clang fp' that has option 'exceptions'.
10067 void ActOnPragmaFPExceptions(SourceLocation Loc,
10068 LangOptions::FPExceptionModeKind);
10069
10070 /// Called to set constant rounding mode for floating point operations.
10071 void setRoundingMode(SourceLocation Loc, llvm::RoundingMode);
10072
10073 /// Called to set exception behavior for floating point operations.
10074 void setExceptionMode(SourceLocation Loc, LangOptions::FPExceptionModeKind);
10075
10076 /// AddAlignmentAttributesForRecord - Adds any needed alignment attributes to
10077 /// a the record decl, to handle '\#pragma pack' and '\#pragma options align'.
10078 void AddAlignmentAttributesForRecord(RecordDecl *RD);
10079
10080 /// AddMsStructLayoutForRecord - Adds ms_struct layout attribute to record.
10081 void AddMsStructLayoutForRecord(RecordDecl *RD);
10082
10083 /// PushNamespaceVisibilityAttr - Note that we've entered a
10084 /// namespace with a visibility attribute.
10085 void PushNamespaceVisibilityAttr(const VisibilityAttr *Attr,
10086 SourceLocation Loc);
10087
10088 /// AddPushedVisibilityAttribute - If '\#pragma GCC visibility' was used,
10089 /// add an appropriate visibility attribute.
10090 void AddPushedVisibilityAttribute(Decl *RD);
10091
10092 /// PopPragmaVisibility - Pop the top element of the visibility stack; used
10093 /// for '\#pragma GCC visibility' and visibility attributes on namespaces.
10094 void PopPragmaVisibility(bool IsNamespaceEnd, SourceLocation EndLoc);
10095
10096 /// FreeVisContext - Deallocate and null out VisContext.
10097 void FreeVisContext();
10098
10099 /// AddCFAuditedAttribute - Check whether we're currently within
10100 /// '\#pragma clang arc_cf_code_audited' and, if so, consider adding
10101 /// the appropriate attribute.
10102 void AddCFAuditedAttribute(Decl *D);
10103
10104 void ActOnPragmaAttributeAttribute(ParsedAttr &Attribute,
10105 SourceLocation PragmaLoc,
10106 attr::ParsedSubjectMatchRuleSet Rules);
10107 void ActOnPragmaAttributeEmptyPush(SourceLocation PragmaLoc,
10108 const IdentifierInfo *Namespace);
10109
10110 /// Called on well-formed '\#pragma clang attribute pop'.
10111 void ActOnPragmaAttributePop(SourceLocation PragmaLoc,
10112 const IdentifierInfo *Namespace);
10113
10114 /// Adds the attributes that have been specified using the
10115 /// '\#pragma clang attribute push' directives to the given declaration.
10116 void AddPragmaAttributes(Scope *S, Decl *D);
10117
10118 void DiagnoseUnterminatedPragmaAttribute();
10119
10120 /// Called on well formed \#pragma clang optimize.
10121 void ActOnPragmaOptimize(bool On, SourceLocation PragmaLoc);
10122
10123 /// Get the location for the currently active "\#pragma clang optimize
10124 /// off". If this location is invalid, then the state of the pragma is "on".
10125 SourceLocation getOptimizeOffPragmaLocation() const {
10126 return OptimizeOffPragmaLocation;
10127 }
10128
10129 /// Only called on function definitions; if there is a pragma in scope
10130 /// with the effect of a range-based optnone, consider marking the function
10131 /// with attribute optnone.
10132 void AddRangeBasedOptnone(FunctionDecl *FD);
10133
10134 /// Adds the 'optnone' attribute to the function declaration if there
10135 /// are no conflicts; Loc represents the location causing the 'optnone'
10136 /// attribute to be added (usually because of a pragma).
10137 void AddOptnoneAttributeIfNoConflicts(FunctionDecl *FD, SourceLocation Loc);
10138
10139 /// AddAlignedAttr - Adds an aligned attribute to a particular declaration.
10140 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10141 bool IsPackExpansion);
10142 void AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *T,
10143 bool IsPackExpansion);
10144
10145 /// AddAssumeAlignedAttr - Adds an assume_aligned attribute to a particular
10146 /// declaration.
10147 void AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E,
10148 Expr *OE);
10149
10150 /// AddAllocAlignAttr - Adds an alloc_align attribute to a particular
10151 /// declaration.
10152 void AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI,
10153 Expr *ParamExpr);
10154
10155 /// AddAlignValueAttr - Adds an align_value attribute to a particular
10156 /// declaration.
10157 void AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E);
10158
10159 /// AddAnnotationAttr - Adds an annotation Annot with Args arguments to D.
10160 void AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI,
10161 StringRef Annot, MutableArrayRef<Expr *> Args);
10162
10163 /// AddLaunchBoundsAttr - Adds a launch_bounds attribute to a particular
10164 /// declaration.
10165 void AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI,
10166 Expr *MaxThreads, Expr *MinBlocks);
10167
10168 /// AddModeAttr - Adds a mode attribute to a particular declaration.
10169 void AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name,
10170 bool InInstantiation = false);
10171
10172 void AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
10173 ParameterABI ABI);
10174
10175 enum class RetainOwnershipKind {NS, CF, OS};
10176 void AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI,
10177 RetainOwnershipKind K, bool IsTemplateInstantiation);
10178
10179 /// addAMDGPUFlatWorkGroupSizeAttr - Adds an amdgpu_flat_work_group_size
10180 /// attribute to a particular declaration.
10181 void addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI,
10182 Expr *Min, Expr *Max);
10183
10184 /// addAMDGPUWavePersEUAttr - Adds an amdgpu_waves_per_eu attribute to a
10185 /// particular declaration.
10186 void addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI,
10187 Expr *Min, Expr *Max);
10188
10189 bool checkNSReturnsRetainedReturnType(SourceLocation loc, QualType type);
10190
10191 //===--------------------------------------------------------------------===//
10192 // C++ Coroutines TS
10193 //
10194 bool ActOnCoroutineBodyStart(Scope *S, SourceLocation KwLoc,
10195 StringRef Keyword);
10196 ExprResult ActOnCoawaitExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10197 ExprResult ActOnCoyieldExpr(Scope *S, SourceLocation KwLoc, Expr *E);
10198 StmtResult ActOnCoreturnStmt(Scope *S, SourceLocation KwLoc, Expr *E);
10199
10200 ExprResult BuildResolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10201 bool IsImplicit = false);
10202 ExprResult BuildUnresolvedCoawaitExpr(SourceLocation KwLoc, Expr *E,
10203 UnresolvedLookupExpr* Lookup);
10204 ExprResult BuildCoyieldExpr(SourceLocation KwLoc, Expr *E);
10205 StmtResult BuildCoreturnStmt(SourceLocation KwLoc, Expr *E,
10206 bool IsImplicit = false);
10207 StmtResult BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs);
10208 bool buildCoroutineParameterMoves(SourceLocation Loc);
10209 VarDecl *buildCoroutinePromise(SourceLocation Loc);
10210 void CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body);
10211 ClassTemplateDecl *lookupCoroutineTraits(SourceLocation KwLoc,
10212 SourceLocation FuncLoc);
10213 /// Check that the expression co_await promise.final_suspend() shall not be
10214 /// potentially-throwing.
10215 bool checkFinalSuspendNoThrow(const Stmt *FinalSuspend);
10216
10217 //===--------------------------------------------------------------------===//
10218 // OpenMP directives and clauses.
10219 //
10220private:
10221 void *VarDataSharingAttributesStack;
10222
10223 struct DeclareTargetContextInfo {
10224 struct MapInfo {
10225 OMPDeclareTargetDeclAttr::MapTypeTy MT;
10226 SourceLocation Loc;
10227 };
10228 /// Explicitly listed variables and functions in a 'to' or 'link' clause.
10229 llvm::DenseMap<NamedDecl *, MapInfo> ExplicitlyMapped;
10230
10231 /// The 'device_type' as parsed from the clause.
10232 OMPDeclareTargetDeclAttr::DevTypeTy DT = OMPDeclareTargetDeclAttr::DT_Any;
10233
10234 /// The directive kind, `begin declare target` or `declare target`.
10235 OpenMPDirectiveKind Kind;
10236
10237 /// The directive location.
10238 SourceLocation Loc;
10239
10240 DeclareTargetContextInfo(OpenMPDirectiveKind Kind, SourceLocation Loc)
10241 : Kind(Kind), Loc(Loc) {}
10242 };
10243
10244 /// Number of nested '#pragma omp declare target' directives.
10245 SmallVector<DeclareTargetContextInfo, 4> DeclareTargetNesting;
10246
10247 /// Initialization of data-sharing attributes stack.
10248 void InitDataSharingAttributesStack();
10249 void DestroyDataSharingAttributesStack();
10250 ExprResult
10251 VerifyPositiveIntegerConstantInClause(Expr *Op, OpenMPClauseKind CKind,
10252 bool StrictlyPositive = true,
10253 bool SuppressExprDiags = false);
10254 /// Returns OpenMP nesting level for current directive.
10255 unsigned getOpenMPNestingLevel() const;
10256
10257 /// Adjusts the function scopes index for the target-based regions.
10258 void adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex,
10259 unsigned Level) const;
10260
10261 /// Returns the number of scopes associated with the construct on the given
10262 /// OpenMP level.
10263 int getNumberOfConstructScopes(unsigned Level) const;
10264
10265 /// Push new OpenMP function region for non-capturing function.
10266 void pushOpenMPFunctionRegion();
10267
10268 /// Pop OpenMP function region for non-capturing function.
10269 void popOpenMPFunctionRegion(const sema::FunctionScopeInfo *OldFSI);
10270
10271 /// Analyzes and checks a loop nest for use by a loop transformation.
10272 ///
10273 /// \param Kind The loop transformation directive kind.
10274 /// \param NumLoops How many nested loops the directive is expecting.
10275 /// \param AStmt Associated statement of the transformation directive.
10276 /// \param LoopHelpers [out] The loop analysis result.
10277 /// \param Body [out] The body code nested in \p NumLoops loop.
10278 /// \param OriginalInits [out] Collection of statements and declarations that
10279 /// must have been executed/declared before entering the
10280 /// loop.
10281 ///
10282 /// \return Whether there was any error.
10283 bool checkTransformableLoopNest(
10284 OpenMPDirectiveKind Kind, Stmt *AStmt, int NumLoops,
10285 SmallVectorImpl<OMPLoopBasedDirective::HelperExprs> &LoopHelpers,
10286 Stmt *&Body,
10287 SmallVectorImpl<SmallVector<llvm::PointerUnion<Stmt *, Decl *>, 0>>
10288 &OriginalInits);
10289
10290 /// Helper to keep information about the current `omp begin/end declare
10291 /// variant` nesting.
10292 struct OMPDeclareVariantScope {
10293 /// The associated OpenMP context selector.
10294 OMPTraitInfo *TI;
10295
10296 /// The associated OpenMP context selector mangling.
10297 std::string NameSuffix;
10298
10299 OMPDeclareVariantScope(OMPTraitInfo &TI);
10300 };
10301
10302 /// Return the OMPTraitInfo for the surrounding scope, if any.
10303 OMPTraitInfo *getOMPTraitInfoForSurroundingScope() {
10304 return OMPDeclareVariantScopes.empty() ? nullptr
10305 : OMPDeclareVariantScopes.back().TI;
10306 }
10307
10308 /// The current `omp begin/end declare variant` scopes.
10309 SmallVector<OMPDeclareVariantScope, 4> OMPDeclareVariantScopes;
10310
10311 /// The current `omp begin/end assumes` scopes.
10312 SmallVector<AssumptionAttr *, 4> OMPAssumeScoped;
10313
10314 /// All `omp assumes` we encountered so far.
10315 SmallVector<AssumptionAttr *, 4> OMPAssumeGlobal;
10316
10317public:
10318 /// The declarator \p D defines a function in the scope \p S which is nested
10319 /// in an `omp begin/end declare variant` scope. In this method we create a
10320 /// declaration for \p D and rename \p D according to the OpenMP context
10321 /// selector of the surrounding scope. Return all base functions in \p Bases.
10322 void ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
10323 Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParameterLists,
10324 SmallVectorImpl<FunctionDecl *> &Bases);
10325
10326 /// Register \p D as specialization of all base functions in \p Bases in the
10327 /// current `omp begin/end declare variant` scope.
10328 void ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
10329 Decl *D, SmallVectorImpl<FunctionDecl *> &Bases);
10330
10331 /// Act on \p D, a function definition inside of an `omp [begin/end] assumes`.
10332 void ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D);
10333
10334 /// Can we exit an OpenMP declare variant scope at the moment.
10335 bool isInOpenMPDeclareVariantScope() const {
10336 return !OMPDeclareVariantScopes.empty();
10337 }
10338
10339 /// Given the potential call expression \p Call, determine if there is a
10340 /// specialization via the OpenMP declare variant mechanism available. If
10341 /// there is, return the specialized call expression, otherwise return the
10342 /// original \p Call.
10343 ExprResult ActOnOpenMPCall(ExprResult Call, Scope *Scope,
10344 SourceLocation LParenLoc, MultiExprArg ArgExprs,
10345 SourceLocation RParenLoc, Expr *ExecConfig);
10346
10347 /// Handle a `omp begin declare variant`.
10348 void ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, OMPTraitInfo &TI);
10349
10350 /// Handle a `omp end declare variant`.
10351 void ActOnOpenMPEndDeclareVariant();
10352
10353 /// Checks if the variant/multiversion functions are compatible.
10354 bool areMultiversionVariantFunctionsCompatible(
10355 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10356 const PartialDiagnostic &NoProtoDiagID,
10357 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10358 const PartialDiagnosticAt &NoSupportDiagIDAt,
10359 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10360 bool ConstexprSupported, bool CLinkageMayDiffer);
10361
10362 /// Function tries to capture lambda's captured variables in the OpenMP region
10363 /// before the original lambda is captured.
10364 void tryCaptureOpenMPLambdas(ValueDecl *V);
10365
10366 /// Return true if the provided declaration \a VD should be captured by
10367 /// reference.
10368 /// \param Level Relative level of nested OpenMP construct for that the check
10369 /// is performed.
10370 /// \param OpenMPCaptureLevel Capture level within an OpenMP construct.
10371 bool isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level,
10372 unsigned OpenMPCaptureLevel) const;
10373
10374 /// Check if the specified variable is used in one of the private
10375 /// clauses (private, firstprivate, lastprivate, reduction etc.) in OpenMP
10376 /// constructs.
10377 VarDecl *isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo = false,
10378 unsigned StopAt = 0);
10379 ExprResult getOpenMPCapturedExpr(VarDecl *Capture, ExprValueKind VK,
10380 ExprObjectKind OK, SourceLocation Loc);
10381
10382 /// If the current region is a loop-based region, mark the start of the loop
10383 /// construct.
10384 void startOpenMPLoop();
10385
10386 /// If the current region is a range loop-based region, mark the start of the
10387 /// loop construct.
10388 void startOpenMPCXXRangeFor();
10389
10390 /// Check if the specified variable is used in 'private' clause.
10391 /// \param Level Relative level of nested OpenMP construct for that the check
10392 /// is performed.
10393 OpenMPClauseKind isOpenMPPrivateDecl(ValueDecl *D, unsigned Level,
10394 unsigned CapLevel) const;
10395
10396 /// Sets OpenMP capture kind (OMPC_private, OMPC_firstprivate, OMPC_map etc.)
10397 /// for \p FD based on DSA for the provided corresponding captured declaration
10398 /// \p D.
10399 void setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, unsigned Level);
10400
10401 /// Check if the specified variable is captured by 'target' directive.
10402 /// \param Level Relative level of nested OpenMP construct for that the check
10403 /// is performed.
10404 bool isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level,
10405 unsigned CaptureLevel) const;
10406
10407 /// Check if the specified global variable must be captured by outer capture
10408 /// regions.
10409 /// \param Level Relative level of nested OpenMP construct for that
10410 /// the check is performed.
10411 bool isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level,
10412 unsigned CaptureLevel) const;
10413
10414 ExprResult PerformOpenMPImplicitIntegerConversion(SourceLocation OpLoc,
10415 Expr *Op);
10416 /// Called on start of new data sharing attribute block.
10417 void StartOpenMPDSABlock(OpenMPDirectiveKind K,
10418 const DeclarationNameInfo &DirName, Scope *CurScope,
10419 SourceLocation Loc);
10420 /// Start analysis of clauses.
10421 void StartOpenMPClause(OpenMPClauseKind K);
10422 /// End analysis of clauses.
10423 void EndOpenMPClause();
10424 /// Called on end of data sharing attribute block.
10425 void EndOpenMPDSABlock(Stmt *CurDirective);
10426
10427 /// Check if the current region is an OpenMP loop region and if it is,
10428 /// mark loop control variable, used in \p Init for loop initialization, as
10429 /// private by default.
10430 /// \param Init First part of the for loop.
10431 void ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init);
10432
10433 // OpenMP directives and clauses.
10434 /// Called on correct id-expression from the '#pragma omp
10435 /// threadprivate'.
10436 ExprResult ActOnOpenMPIdExpression(Scope *CurScope, CXXScopeSpec &ScopeSpec,
10437 const DeclarationNameInfo &Id,
10438 OpenMPDirectiveKind Kind);
10439 /// Called on well-formed '#pragma omp threadprivate'.
10440 DeclGroupPtrTy ActOnOpenMPThreadprivateDirective(
10441 SourceLocation Loc,
10442 ArrayRef<Expr *> VarList);
10443 /// Builds a new OpenMPThreadPrivateDecl and checks its correctness.
10444 OMPThreadPrivateDecl *CheckOMPThreadPrivateDecl(SourceLocation Loc,
10445 ArrayRef<Expr *> VarList);
10446 /// Called on well-formed '#pragma omp allocate'.
10447 DeclGroupPtrTy ActOnOpenMPAllocateDirective(SourceLocation Loc,
10448 ArrayRef<Expr *> VarList,
10449 ArrayRef<OMPClause *> Clauses,
10450 DeclContext *Owner = nullptr);
10451
10452 /// Called on well-formed '#pragma omp [begin] assume[s]'.
10453 void ActOnOpenMPAssumesDirective(SourceLocation Loc,
10454 OpenMPDirectiveKind DKind,
10455 ArrayRef<StringRef> Assumptions,
10456 bool SkippedClauses);
10457
10458 /// Check if there is an active global `omp begin assumes` directive.
10459 bool isInOpenMPAssumeScope() const { return !OMPAssumeScoped.empty(); }
10460
10461 /// Check if there is an active global `omp assumes` directive.
10462 bool hasGlobalOpenMPAssumes() const { return !OMPAssumeGlobal.empty(); }
10463
10464 /// Called on well-formed '#pragma omp end assumes'.
10465 void ActOnOpenMPEndAssumesDirective();
10466
10467 /// Called on well-formed '#pragma omp requires'.
10468 DeclGroupPtrTy ActOnOpenMPRequiresDirective(SourceLocation Loc,
10469 ArrayRef<OMPClause *> ClauseList);
10470 /// Check restrictions on Requires directive
10471 OMPRequiresDecl *CheckOMPRequiresDecl(SourceLocation Loc,
10472 ArrayRef<OMPClause *> Clauses);
10473 /// Check if the specified type is allowed to be used in 'omp declare
10474 /// reduction' construct.
10475 QualType ActOnOpenMPDeclareReductionType(SourceLocation TyLoc,
10476 TypeResult ParsedType);
10477 /// Called on start of '#pragma omp declare reduction'.
10478 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveStart(
10479 Scope *S, DeclContext *DC, DeclarationName Name,
10480 ArrayRef<std::pair<QualType, SourceLocation>> ReductionTypes,
10481 AccessSpecifier AS, Decl *PrevDeclInScope = nullptr);
10482 /// Initialize declare reduction construct initializer.
10483 void ActOnOpenMPDeclareReductionCombinerStart(Scope *S, Decl *D);
10484 /// Finish current declare reduction construct initializer.
10485 void ActOnOpenMPDeclareReductionCombinerEnd(Decl *D, Expr *Combiner);
10486 /// Initialize declare reduction construct initializer.
10487 /// \return omp_priv variable.
10488 VarDecl *ActOnOpenMPDeclareReductionInitializerStart(Scope *S, Decl *D);
10489 /// Finish current declare reduction construct initializer.
10490 void ActOnOpenMPDeclareReductionInitializerEnd(Decl *D, Expr *Initializer,
10491 VarDecl *OmpPrivParm);
10492 /// Called at the end of '#pragma omp declare reduction'.
10493 DeclGroupPtrTy ActOnOpenMPDeclareReductionDirectiveEnd(
10494 Scope *S, DeclGroupPtrTy DeclReductions, bool IsValid);
10495
10496 /// Check variable declaration in 'omp declare mapper' construct.
10497 TypeResult ActOnOpenMPDeclareMapperVarDecl(Scope *S, Declarator &D);
10498 /// Check if the specified type is allowed to be used in 'omp declare
10499 /// mapper' construct.
10500 QualType ActOnOpenMPDeclareMapperType(SourceLocation TyLoc,
10501 TypeResult ParsedType);
10502 /// Called on start of '#pragma omp declare mapper'.
10503 DeclGroupPtrTy ActOnOpenMPDeclareMapperDirective(
10504 Scope *S, DeclContext *DC, DeclarationName Name, QualType MapperType,
10505 SourceLocation StartLoc, DeclarationName VN, AccessSpecifier AS,
10506 Expr *MapperVarRef, ArrayRef<OMPClause *> Clauses,
10507 Decl *PrevDeclInScope = nullptr);
10508 /// Build the mapper variable of '#pragma omp declare mapper'.
10509 ExprResult ActOnOpenMPDeclareMapperDirectiveVarDecl(Scope *S,
10510 QualType MapperType,
10511 SourceLocation StartLoc,
10512 DeclarationName VN);
10513 bool isOpenMPDeclareMapperVarDeclAllowed(const VarDecl *VD) const;
10514 const ValueDecl *getOpenMPDeclareMapperVarName() const;
10515
10516 /// Called on the start of target region i.e. '#pragma omp declare target'.
10517 bool ActOnStartOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10518
10519 /// Called at the end of target region i.e. '#pragma omp end declare target'.
10520 const DeclareTargetContextInfo ActOnOpenMPEndDeclareTargetDirective();
10521
10522 /// Called once a target context is completed, that can be when a
10523 /// '#pragma omp end declare target' was encountered or when a
10524 /// '#pragma omp declare target' without declaration-definition-seq was
10525 /// encountered.
10526 void ActOnFinishedOpenMPDeclareTargetContext(DeclareTargetContextInfo &DTCI);
10527
10528 /// Searches for the provided declaration name for OpenMP declare target
10529 /// directive.
10530 NamedDecl *lookupOpenMPDeclareTargetName(Scope *CurScope,
10531 CXXScopeSpec &ScopeSpec,
10532 const DeclarationNameInfo &Id);
10533
10534 /// Called on correct id-expression from the '#pragma omp declare target'.
10535 void ActOnOpenMPDeclareTargetName(NamedDecl *ND, SourceLocation Loc,
10536 OMPDeclareTargetDeclAttr::MapTypeTy MT,
10537 OMPDeclareTargetDeclAttr::DevTypeTy DT);
10538
10539 /// Check declaration inside target region.
10540 void
10541 checkDeclIsAllowedInOpenMPTarget(Expr *E, Decl *D,
10542 SourceLocation IdLoc = SourceLocation());
10543 /// Finishes analysis of the deferred functions calls that may be declared as
10544 /// host/nohost during device/host compilation.
10545 void finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller,
10546 const FunctionDecl *Callee,
10547 SourceLocation Loc);
10548 /// Return true inside OpenMP declare target region.
10549 bool isInOpenMPDeclareTargetContext() const {
10550 return !DeclareTargetNesting.empty();
10551 }
10552 /// Return true inside OpenMP target region.
10553 bool isInOpenMPTargetExecutionDirective() const;
10554
10555 /// Return the number of captured regions created for an OpenMP directive.
10556 static int getOpenMPCaptureLevels(OpenMPDirectiveKind Kind);
10557
10558 /// Initialization of captured region for OpenMP region.
10559 void ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope);
10560
10561 /// Called for syntactical loops (ForStmt or CXXForRangeStmt) associated to
10562 /// an OpenMP loop directive.
10563 StmtResult ActOnOpenMPCanonicalLoop(Stmt *AStmt);
10564
10565 /// End of OpenMP region.
10566 ///
10567 /// \param S Statement associated with the current OpenMP region.
10568 /// \param Clauses List of clauses for the current OpenMP region.
10569 ///
10570 /// \returns Statement for finished OpenMP region.
10571 StmtResult ActOnOpenMPRegionEnd(StmtResult S, ArrayRef<OMPClause *> Clauses);
10572 StmtResult ActOnOpenMPExecutableDirective(
10573 OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName,
10574 OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses,
10575 Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc);
10576 /// Called on well-formed '\#pragma omp parallel' after parsing
10577 /// of the associated statement.
10578 StmtResult ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses,
10579 Stmt *AStmt,
10580 SourceLocation StartLoc,
10581 SourceLocation EndLoc);
10582 using VarsWithInheritedDSAType =
10583 llvm::SmallDenseMap<const ValueDecl *, const Expr *, 4>;
10584 /// Called on well-formed '\#pragma omp simd' after parsing
10585 /// of the associated statement.
10586 StmtResult
10587 ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10588 SourceLocation StartLoc, SourceLocation EndLoc,
10589 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10590 /// Called on well-formed '#pragma omp tile' after parsing of its clauses and
10591 /// the associated statement.
10592 StmtResult ActOnOpenMPTileDirective(ArrayRef<OMPClause *> Clauses,
10593 Stmt *AStmt, SourceLocation StartLoc,
10594 SourceLocation EndLoc);
10595 /// Called on well-formed '#pragma omp unroll' after parsing of its clauses
10596 /// and the associated statement.
10597 StmtResult ActOnOpenMPUnrollDirective(ArrayRef<OMPClause *> Clauses,
10598 Stmt *AStmt, SourceLocation StartLoc,
10599 SourceLocation EndLoc);
10600 /// Called on well-formed '\#pragma omp for' after parsing
10601 /// of the associated statement.
10602 StmtResult
10603 ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10604 SourceLocation StartLoc, SourceLocation EndLoc,
10605 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10606 /// Called on well-formed '\#pragma omp for simd' after parsing
10607 /// of the associated statement.
10608 StmtResult
10609 ActOnOpenMPForSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10610 SourceLocation StartLoc, SourceLocation EndLoc,
10611 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10612 /// Called on well-formed '\#pragma omp sections' after parsing
10613 /// of the associated statement.
10614 StmtResult ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses,
10615 Stmt *AStmt, SourceLocation StartLoc,
10616 SourceLocation EndLoc);
10617 /// Called on well-formed '\#pragma omp section' after parsing of the
10618 /// associated statement.
10619 StmtResult ActOnOpenMPSectionDirective(Stmt *AStmt, SourceLocation StartLoc,
10620 SourceLocation EndLoc);
10621 /// Called on well-formed '\#pragma omp single' after parsing of the
10622 /// associated statement.
10623 StmtResult ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses,
10624 Stmt *AStmt, SourceLocation StartLoc,
10625 SourceLocation EndLoc);
10626 /// Called on well-formed '\#pragma omp master' after parsing of the
10627 /// associated statement.
10628 StmtResult ActOnOpenMPMasterDirective(Stmt *AStmt, SourceLocation StartLoc,
10629 SourceLocation EndLoc);
10630 /// Called on well-formed '\#pragma omp critical' after parsing of the
10631 /// associated statement.
10632 StmtResult ActOnOpenMPCriticalDirective(const DeclarationNameInfo &DirName,
10633 ArrayRef<OMPClause *> Clauses,
10634 Stmt *AStmt, SourceLocation StartLoc,
10635 SourceLocation EndLoc);
10636 /// Called on well-formed '\#pragma omp parallel for' after parsing
10637 /// of the associated statement.
10638 StmtResult ActOnOpenMPParallelForDirective(
10639 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10640 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10641 /// Called on well-formed '\#pragma omp parallel for simd' after
10642 /// parsing of the associated statement.
10643 StmtResult ActOnOpenMPParallelForSimdDirective(
10644 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10645 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10646 /// Called on well-formed '\#pragma omp parallel master' after
10647 /// parsing of the associated statement.
10648 StmtResult ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses,
10649 Stmt *AStmt,
10650 SourceLocation StartLoc,
10651 SourceLocation EndLoc);
10652 /// Called on well-formed '\#pragma omp parallel sections' after
10653 /// parsing of the associated statement.
10654 StmtResult ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses,
10655 Stmt *AStmt,
10656 SourceLocation StartLoc,
10657 SourceLocation EndLoc);
10658 /// Called on well-formed '\#pragma omp task' after parsing of the
10659 /// associated statement.
10660 StmtResult ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses,
10661 Stmt *AStmt, SourceLocation StartLoc,
10662 SourceLocation EndLoc);
10663 /// Called on well-formed '\#pragma omp taskyield'.
10664 StmtResult ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc,
10665 SourceLocation EndLoc);
10666 /// Called on well-formed '\#pragma omp barrier'.
10667 StmtResult ActOnOpenMPBarrierDirective(SourceLocation StartLoc,
10668 SourceLocation EndLoc);
10669 /// Called on well-formed '\#pragma omp taskwait'.
10670 StmtResult ActOnOpenMPTaskwaitDirective(SourceLocation StartLoc,
10671 SourceLocation EndLoc);
10672 /// Called on well-formed '\#pragma omp taskgroup'.
10673 StmtResult ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses,
10674 Stmt *AStmt, SourceLocation StartLoc,
10675 SourceLocation EndLoc);
10676 /// Called on well-formed '\#pragma omp flush'.
10677 StmtResult ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses,
10678 SourceLocation StartLoc,
10679 SourceLocation EndLoc);
10680 /// Called on well-formed '\#pragma omp depobj'.
10681 StmtResult ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses,
10682 SourceLocation StartLoc,
10683 SourceLocation EndLoc);
10684 /// Called on well-formed '\#pragma omp scan'.
10685 StmtResult ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses,
10686 SourceLocation StartLoc,
10687 SourceLocation EndLoc);
10688 /// Called on well-formed '\#pragma omp ordered' after parsing of the
10689 /// associated statement.
10690 StmtResult ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses,
10691 Stmt *AStmt, SourceLocation StartLoc,
10692 SourceLocation EndLoc);
10693 /// Called on well-formed '\#pragma omp atomic' after parsing of the
10694 /// associated statement.
10695 StmtResult ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses,
10696 Stmt *AStmt, SourceLocation StartLoc,
10697 SourceLocation EndLoc);
10698 /// Called on well-formed '\#pragma omp target' after parsing of the
10699 /// associated statement.
10700 StmtResult ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses,
10701 Stmt *AStmt, SourceLocation StartLoc,
10702 SourceLocation EndLoc);
10703 /// Called on well-formed '\#pragma omp target data' after parsing of
10704 /// the associated statement.
10705 StmtResult ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses,
10706 Stmt *AStmt, SourceLocation StartLoc,
10707 SourceLocation EndLoc);
10708 /// Called on well-formed '\#pragma omp target enter data' after
10709 /// parsing of the associated statement.
10710 StmtResult ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses,
10711 SourceLocation StartLoc,
10712 SourceLocation EndLoc,
10713 Stmt *AStmt);
10714 /// Called on well-formed '\#pragma omp target exit data' after
10715 /// parsing of the associated statement.
10716 StmtResult ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses,
10717 SourceLocation StartLoc,
10718 SourceLocation EndLoc,
10719 Stmt *AStmt);
10720 /// Called on well-formed '\#pragma omp target parallel' after
10721 /// parsing of the associated statement.
10722 StmtResult ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses,
10723 Stmt *AStmt,
10724 SourceLocation StartLoc,
10725 SourceLocation EndLoc);
10726 /// Called on well-formed '\#pragma omp target parallel for' after
10727 /// parsing of the associated statement.
10728 StmtResult ActOnOpenMPTargetParallelForDirective(
10729 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10730 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10731 /// Called on well-formed '\#pragma omp teams' after parsing of the
10732 /// associated statement.
10733 StmtResult ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses,
10734 Stmt *AStmt, SourceLocation StartLoc,
10735 SourceLocation EndLoc);
10736 /// Called on well-formed '\#pragma omp cancellation point'.
10737 StmtResult
10738 ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc,
10739 SourceLocation EndLoc,
10740 OpenMPDirectiveKind CancelRegion);
10741 /// Called on well-formed '\#pragma omp cancel'.
10742 StmtResult ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses,
10743 SourceLocation StartLoc,
10744 SourceLocation EndLoc,
10745 OpenMPDirectiveKind CancelRegion);
10746 /// Called on well-formed '\#pragma omp taskloop' after parsing of the
10747 /// associated statement.
10748 StmtResult
10749 ActOnOpenMPTaskLoopDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10750 SourceLocation StartLoc, SourceLocation EndLoc,
10751 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10752 /// Called on well-formed '\#pragma omp taskloop simd' after parsing of
10753 /// the associated statement.
10754 StmtResult ActOnOpenMPTaskLoopSimdDirective(
10755 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10756 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10757 /// Called on well-formed '\#pragma omp master taskloop' after parsing of the
10758 /// associated statement.
10759 StmtResult ActOnOpenMPMasterTaskLoopDirective(
10760 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10761 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10762 /// Called on well-formed '\#pragma omp master taskloop simd' after parsing of
10763 /// the associated statement.
10764 StmtResult ActOnOpenMPMasterTaskLoopSimdDirective(
10765 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10766 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10767 /// Called on well-formed '\#pragma omp parallel master taskloop' after
10768 /// parsing of the associated statement.
10769 StmtResult ActOnOpenMPParallelMasterTaskLoopDirective(
10770 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10771 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10772 /// Called on well-formed '\#pragma omp parallel master taskloop simd' after
10773 /// parsing of the associated statement.
10774 StmtResult ActOnOpenMPParallelMasterTaskLoopSimdDirective(
10775 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10776 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10777 /// Called on well-formed '\#pragma omp distribute' after parsing
10778 /// of the associated statement.
10779 StmtResult
10780 ActOnOpenMPDistributeDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10781 SourceLocation StartLoc, SourceLocation EndLoc,
10782 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10783 /// Called on well-formed '\#pragma omp target update'.
10784 StmtResult ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses,
10785 SourceLocation StartLoc,
10786 SourceLocation EndLoc,
10787 Stmt *AStmt);
10788 /// Called on well-formed '\#pragma omp distribute parallel for' after
10789 /// parsing of the associated statement.
10790 StmtResult ActOnOpenMPDistributeParallelForDirective(
10791 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10792 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10793 /// Called on well-formed '\#pragma omp distribute parallel for simd'
10794 /// after parsing of the associated statement.
10795 StmtResult ActOnOpenMPDistributeParallelForSimdDirective(
10796 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10797 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10798 /// Called on well-formed '\#pragma omp distribute simd' after
10799 /// parsing of the associated statement.
10800 StmtResult ActOnOpenMPDistributeSimdDirective(
10801 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10802 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10803 /// Called on well-formed '\#pragma omp target parallel for simd' after
10804 /// parsing of the associated statement.
10805 StmtResult ActOnOpenMPTargetParallelForSimdDirective(
10806 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10807 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10808 /// Called on well-formed '\#pragma omp target simd' after parsing of
10809 /// the associated statement.
10810 StmtResult
10811 ActOnOpenMPTargetSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt,
10812 SourceLocation StartLoc, SourceLocation EndLoc,
10813 VarsWithInheritedDSAType &VarsWithImplicitDSA);
10814 /// Called on well-formed '\#pragma omp teams distribute' after parsing of
10815 /// the associated statement.
10816 StmtResult ActOnOpenMPTeamsDistributeDirective(
10817 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10818 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10819 /// Called on well-formed '\#pragma omp teams distribute simd' after parsing
10820 /// of the associated statement.
10821 StmtResult ActOnOpenMPTeamsDistributeSimdDirective(
10822 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10823 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10824 /// Called on well-formed '\#pragma omp teams distribute parallel for simd'
10825 /// after parsing of the associated statement.
10826 StmtResult ActOnOpenMPTeamsDistributeParallelForSimdDirective(
10827 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10828 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10829 /// Called on well-formed '\#pragma omp teams distribute parallel for'
10830 /// after parsing of the associated statement.
10831 StmtResult ActOnOpenMPTeamsDistributeParallelForDirective(
10832 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10833 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10834 /// Called on well-formed '\#pragma omp target teams' after parsing of the
10835 /// associated statement.
10836 StmtResult ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses,
10837 Stmt *AStmt,
10838 SourceLocation StartLoc,
10839 SourceLocation EndLoc);
10840 /// Called on well-formed '\#pragma omp target teams distribute' after parsing
10841 /// of the associated statement.
10842 StmtResult ActOnOpenMPTargetTeamsDistributeDirective(
10843 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10844 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10845 /// Called on well-formed '\#pragma omp target teams distribute parallel for'
10846 /// after parsing of the associated statement.
10847 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForDirective(
10848 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10849 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10850 /// Called on well-formed '\#pragma omp target teams distribute parallel for
10851 /// simd' after parsing of the associated statement.
10852 StmtResult ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective(
10853 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10854 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10855 /// Called on well-formed '\#pragma omp target teams distribute simd' after
10856 /// parsing of the associated statement.
10857 StmtResult ActOnOpenMPTargetTeamsDistributeSimdDirective(
10858 ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc,
10859 SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA);
10860 /// Called on well-formed '\#pragma omp interop'.
10861 StmtResult ActOnOpenMPInteropDirective(ArrayRef<OMPClause *> Clauses,
10862 SourceLocation StartLoc,
10863 SourceLocation EndLoc);
10864 /// Called on well-formed '\#pragma omp dispatch' after parsing of the
10865 // /associated statement.
10866 StmtResult ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses,
10867 Stmt *AStmt, SourceLocation StartLoc,
10868 SourceLocation EndLoc);
10869 /// Called on well-formed '\#pragma omp masked' after parsing of the
10870 // /associated statement.
10871 StmtResult ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses,
10872 Stmt *AStmt, SourceLocation StartLoc,
10873 SourceLocation EndLoc);
10874
10875 /// Checks correctness of linear modifiers.
10876 bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
10877 SourceLocation LinLoc);
10878 /// Checks that the specified declaration matches requirements for the linear
10879 /// decls.
10880 bool CheckOpenMPLinearDecl(const ValueDecl *D, SourceLocation ELoc,
10881 OpenMPLinearClauseKind LinKind, QualType Type,
10882 bool IsDeclareSimd = false);
10883
10884 /// Called on well-formed '\#pragma omp declare simd' after parsing of
10885 /// the associated method/function.
10886 DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
10887 DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
10888 Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
10889 ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
10890 ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
10891
10892 /// Checks '\#pragma omp declare variant' variant function and original
10893 /// functions after parsing of the associated method/function.
10894 /// \param DG Function declaration to which declare variant directive is
10895 /// applied to.
10896 /// \param VariantRef Expression that references the variant function, which
10897 /// must be used instead of the original one, specified in \p DG.
10898 /// \param TI The trait info object representing the match clause.
10899 /// \returns None, if the function/variant function are not compatible with
10900 /// the pragma, pair of original function/variant ref expression otherwise.
10901 Optional<std::pair<FunctionDecl *, Expr *>>
10902 checkOpenMPDeclareVariantFunction(DeclGroupPtrTy DG, Expr *VariantRef,
10903 OMPTraitInfo &TI, SourceRange SR);
10904
10905 /// Called on well-formed '\#pragma omp declare variant' after parsing of
10906 /// the associated method/function.
10907 /// \param FD Function declaration to which declare variant directive is
10908 /// applied to.
10909 /// \param VariantRef Expression that references the variant function, which
10910 /// must be used instead of the original one, specified in \p DG.
10911 /// \param TI The context traits associated with the function variant.
10912 void ActOnOpenMPDeclareVariantDirective(FunctionDecl *FD, Expr *VariantRef,
10913 OMPTraitInfo &TI, SourceRange SR);
10914
10915 OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
10916 Expr *Expr,
10917 SourceLocation StartLoc,
10918 SourceLocation LParenLoc,
10919 SourceLocation EndLoc);
10920 /// Called on well-formed 'allocator' clause.
10921 OMPClause *ActOnOpenMPAllocatorClause(Expr *Allocator,
10922 SourceLocation StartLoc,
10923 SourceLocation LParenLoc,
10924 SourceLocation EndLoc);
10925 /// Called on well-formed 'if' clause.
10926 OMPClause *ActOnOpenMPIfClause(OpenMPDirectiveKind NameModifier,
10927 Expr *Condition, SourceLocation StartLoc,
10928 SourceLocation LParenLoc,
10929 SourceLocation NameModifierLoc,
10930 SourceLocation ColonLoc,
10931 SourceLocation EndLoc);
10932 /// Called on well-formed 'final' clause.
10933 OMPClause *ActOnOpenMPFinalClause(Expr *Condition, SourceLocation StartLoc,
10934 SourceLocation LParenLoc,
10935 SourceLocation EndLoc);
10936 /// Called on well-formed 'num_threads' clause.
10937 OMPClause *ActOnOpenMPNumThreadsClause(Expr *NumThreads,
10938 SourceLocation StartLoc,
10939 SourceLocation LParenLoc,
10940 SourceLocation EndLoc);
10941 /// Called on well-formed 'safelen' clause.
10942 OMPClause *ActOnOpenMPSafelenClause(Expr *Length,
10943 SourceLocation StartLoc,
10944 SourceLocation LParenLoc,
10945 SourceLocation EndLoc);
10946 /// Called on well-formed 'simdlen' clause.
10947 OMPClause *ActOnOpenMPSimdlenClause(Expr *Length, SourceLocation StartLoc,
10948 SourceLocation LParenLoc,
10949 SourceLocation EndLoc);
10950 /// Called on well-form 'sizes' clause.
10951 OMPClause *ActOnOpenMPSizesClause(ArrayRef<Expr *> SizeExprs,
10952 SourceLocation StartLoc,
10953 SourceLocation LParenLoc,
10954 SourceLocation EndLoc);
10955 /// Called on well-form 'full' clauses.
10956 OMPClause *ActOnOpenMPFullClause(SourceLocation StartLoc,
10957 SourceLocation EndLoc);
10958 /// Called on well-form 'partial' clauses.
10959 OMPClause *ActOnOpenMPPartialClause(Expr *FactorExpr, SourceLocation StartLoc,
10960 SourceLocation LParenLoc,
10961 SourceLocation EndLoc);
10962 /// Called on well-formed 'collapse' clause.
10963 OMPClause *ActOnOpenMPCollapseClause(Expr *NumForLoops,
10964 SourceLocation StartLoc,
10965 SourceLocation LParenLoc,
10966 SourceLocation EndLoc);
10967 /// Called on well-formed 'ordered' clause.
10968 OMPClause *
10969 ActOnOpenMPOrderedClause(SourceLocation StartLoc, SourceLocation EndLoc,
10970 SourceLocation LParenLoc = SourceLocation(),
10971 Expr *NumForLoops = nullptr);
10972 /// Called on well-formed 'grainsize' clause.
10973 OMPClause *ActOnOpenMPGrainsizeClause(Expr *Size, SourceLocation StartLoc,
10974 SourceLocation LParenLoc,
10975 SourceLocation EndLoc);
10976 /// Called on well-formed 'num_tasks' clause.
10977 OMPClause *ActOnOpenMPNumTasksClause(Expr *NumTasks, SourceLocation StartLoc,
10978 SourceLocation LParenLoc,
10979 SourceLocation EndLoc);
10980 /// Called on well-formed 'hint' clause.
10981 OMPClause *ActOnOpenMPHintClause(Expr *Hint, SourceLocation StartLoc,
10982 SourceLocation LParenLoc,
10983 SourceLocation EndLoc);
10984 /// Called on well-formed 'detach' clause.
10985 OMPClause *ActOnOpenMPDetachClause(Expr *Evt, SourceLocation StartLoc,
10986 SourceLocation LParenLoc,
10987 SourceLocation EndLoc);
10988
10989 OMPClause *ActOnOpenMPSimpleClause(OpenMPClauseKind Kind,
10990 unsigned Argument,
10991 SourceLocation ArgumentLoc,
10992 SourceLocation StartLoc,
10993 SourceLocation LParenLoc,
10994 SourceLocation EndLoc);
10995 /// Called on well-formed 'default' clause.
10996 OMPClause *ActOnOpenMPDefaultClause(llvm::omp::DefaultKind Kind,
10997 SourceLocation KindLoc,
10998 SourceLocation StartLoc,
10999 SourceLocation LParenLoc,
11000 SourceLocation EndLoc);
11001 /// Called on well-formed 'proc_bind' clause.
11002 OMPClause *ActOnOpenMPProcBindClause(llvm::omp::ProcBindKind Kind,
11003 SourceLocation KindLoc,
11004 SourceLocation StartLoc,
11005 SourceLocation LParenLoc,
11006 SourceLocation EndLoc);
11007 /// Called on well-formed 'order' clause.
11008 OMPClause *ActOnOpenMPOrderClause(OpenMPOrderClauseKind Kind,
11009 SourceLocation KindLoc,
11010 SourceLocation StartLoc,
11011 SourceLocation LParenLoc,
11012 SourceLocation EndLoc);
11013 /// Called on well-formed 'update' clause.
11014 OMPClause *ActOnOpenMPUpdateClause(OpenMPDependClauseKind Kind,
11015 SourceLocation KindLoc,
11016 SourceLocation StartLoc,
11017 SourceLocation LParenLoc,
11018 SourceLocation EndLoc);
11019
11020 OMPClause *ActOnOpenMPSingleExprWithArgClause(
11021 OpenMPClauseKind Kind, ArrayRef<unsigned> Arguments, Expr *Expr,
11022 SourceLocation StartLoc, SourceLocation LParenLoc,
11023 ArrayRef<SourceLocation> ArgumentsLoc, SourceLocation DelimLoc,
11024 SourceLocation EndLoc);
11025 /// Called on well-formed 'schedule' clause.
11026 OMPClause *ActOnOpenMPScheduleClause(
11027 OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
11028 OpenMPScheduleClauseKind Kind, Expr *ChunkSize, SourceLocation StartLoc,
11029 SourceLocation LParenLoc, SourceLocation M1Loc, SourceLocation M2Loc,
11030 SourceLocation KindLoc, SourceLocation CommaLoc, SourceLocation EndLoc);
11031
11032 OMPClause *ActOnOpenMPClause(OpenMPClauseKind Kind, SourceLocation StartLoc,
11033 SourceLocation EndLoc);
11034 /// Called on well-formed 'nowait' clause.
11035 OMPClause *ActOnOpenMPNowaitClause(SourceLocation StartLoc,
11036 SourceLocation EndLoc);
11037 /// Called on well-formed 'untied' clause.
11038 OMPClause *ActOnOpenMPUntiedClause(SourceLocation StartLoc,
11039 SourceLocation EndLoc);
11040 /// Called on well-formed 'mergeable' clause.
11041 OMPClause *ActOnOpenMPMergeableClause(SourceLocation StartLoc,
11042 SourceLocation EndLoc);
11043 /// Called on well-formed 'read' clause.
11044 OMPClause *ActOnOpenMPReadClause(SourceLocation StartLoc,
11045 SourceLocation EndLoc);
11046 /// Called on well-formed 'write' clause.
11047 OMPClause *ActOnOpenMPWriteClause(SourceLocation StartLoc,
11048 SourceLocation EndLoc);
11049 /// Called on well-formed 'update' clause.
11050 OMPClause *ActOnOpenMPUpdateClause(SourceLocation StartLoc,
11051 SourceLocation EndLoc);
11052 /// Called on well-formed 'capture' clause.
11053 OMPClause *ActOnOpenMPCaptureClause(SourceLocation StartLoc,
11054 SourceLocation EndLoc);
11055 /// Called on well-formed 'seq_cst' clause.
11056 OMPClause *ActOnOpenMPSeqCstClause(SourceLocation StartLoc,
11057 SourceLocation EndLoc);
11058 /// Called on well-formed 'acq_rel' clause.
11059 OMPClause *ActOnOpenMPAcqRelClause(SourceLocation StartLoc,
11060 SourceLocation EndLoc);
11061 /// Called on well-formed 'acquire' clause.
11062 OMPClause *ActOnOpenMPAcquireClause(SourceLocation StartLoc,
11063 SourceLocation EndLoc);
11064 /// Called on well-formed 'release' clause.
11065 OMPClause *ActOnOpenMPReleaseClause(SourceLocation StartLoc,
11066 SourceLocation EndLoc);
11067 /// Called on well-formed 'relaxed' clause.
11068 OMPClause *ActOnOpenMPRelaxedClause(SourceLocation StartLoc,
11069 SourceLocation EndLoc);
11070
11071 /// Called on well-formed 'init' clause.
11072 OMPClause *ActOnOpenMPInitClause(Expr *InteropVar, ArrayRef<Expr *> PrefExprs,
11073 bool IsTarget, bool IsTargetSync,
11074 SourceLocation StartLoc,
11075 SourceLocation LParenLoc,
11076 SourceLocation VarLoc,
11077 SourceLocation EndLoc);
11078
11079 /// Called on well-formed 'use' clause.
11080 OMPClause *ActOnOpenMPUseClause(Expr *InteropVar, SourceLocation StartLoc,
11081 SourceLocation LParenLoc,
11082 SourceLocation VarLoc, SourceLocation EndLoc);
11083
11084 /// Called on well-formed 'destroy' clause.
11085 OMPClause *ActOnOpenMPDestroyClause(Expr *InteropVar, SourceLocation StartLoc,
11086 SourceLocation LParenLoc,
11087 SourceLocation VarLoc,
11088 SourceLocation EndLoc);
11089 /// Called on well-formed 'novariants' clause.
11090 OMPClause *ActOnOpenMPNovariantsClause(Expr *Condition,
11091 SourceLocation StartLoc,
11092 SourceLocation LParenLoc,
11093 SourceLocation EndLoc);
11094 /// Called on well-formed 'nocontext' clause.
11095 OMPClause *ActOnOpenMPNocontextClause(Expr *Condition,
11096 SourceLocation StartLoc,
11097 SourceLocation LParenLoc,
11098 SourceLocation EndLoc);
11099 /// Called on well-formed 'filter' clause.
11100 OMPClause *ActOnOpenMPFilterClause(Expr *ThreadID, SourceLocation StartLoc,
11101 SourceLocation LParenLoc,
11102 SourceLocation EndLoc);
11103 /// Called on well-formed 'threads' clause.
11104 OMPClause *ActOnOpenMPThreadsClause(SourceLocation StartLoc,
11105 SourceLocation EndLoc);
11106 /// Called on well-formed 'simd' clause.
11107 OMPClause *ActOnOpenMPSIMDClause(SourceLocation StartLoc,
11108 SourceLocation EndLoc);
11109 /// Called on well-formed 'nogroup' clause.
11110 OMPClause *ActOnOpenMPNogroupClause(SourceLocation StartLoc,
11111 SourceLocation EndLoc);
11112 /// Called on well-formed 'unified_address' clause.
11113 OMPClause *ActOnOpenMPUnifiedAddressClause(SourceLocation StartLoc,
11114 SourceLocation EndLoc);
11115
11116 /// Called on well-formed 'unified_address' clause.
11117 OMPClause *ActOnOpenMPUnifiedSharedMemoryClause(SourceLocation StartLoc,
11118 SourceLocation EndLoc);
11119
11120 /// Called on well-formed 'reverse_offload' clause.
11121 OMPClause *ActOnOpenMPReverseOffloadClause(SourceLocation StartLoc,
11122 SourceLocation EndLoc);
11123
11124 /// Called on well-formed 'dynamic_allocators' clause.
11125 OMPClause *ActOnOpenMPDynamicAllocatorsClause(SourceLocation StartLoc,
11126 SourceLocation EndLoc);
11127
11128 /// Called on well-formed 'atomic_default_mem_order' clause.
11129 OMPClause *ActOnOpenMPAtomicDefaultMemOrderClause(
11130 OpenMPAtomicDefaultMemOrderClauseKind Kind, SourceLocation KindLoc,
11131 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11132
11133 OMPClause *ActOnOpenMPVarListClause(
11134 OpenMPClauseKind Kind, ArrayRef<Expr *> Vars, Expr *DepModOrTailExpr,
11135 const OMPVarListLocTy &Locs, SourceLocation ColonLoc,
11136 CXXScopeSpec &ReductionOrMapperIdScopeSpec,
11137 DeclarationNameInfo &ReductionOrMapperId, int ExtraModifier,
11138 ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11139 ArrayRef<SourceLocation> MapTypeModifiersLoc, bool IsMapTypeImplicit,
11140 SourceLocation ExtraModifierLoc,
11141 ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11142 ArrayRef<SourceLocation> MotionModifiersLoc);
11143 /// Called on well-formed 'inclusive' clause.
11144 OMPClause *ActOnOpenMPInclusiveClause(ArrayRef<Expr *> VarList,
11145 SourceLocation StartLoc,
11146 SourceLocation LParenLoc,
11147 SourceLocation EndLoc);
11148 /// Called on well-formed 'exclusive' clause.
11149 OMPClause *ActOnOpenMPExclusiveClause(ArrayRef<Expr *> VarList,
11150 SourceLocation StartLoc,
11151 SourceLocation LParenLoc,
11152 SourceLocation EndLoc);
11153 /// Called on well-formed 'allocate' clause.
11154 OMPClause *
11155 ActOnOpenMPAllocateClause(Expr *Allocator, ArrayRef<Expr *> VarList,
11156 SourceLocation StartLoc, SourceLocation ColonLoc,
11157 SourceLocation LParenLoc, SourceLocation EndLoc);
11158 /// Called on well-formed 'private' clause.
11159 OMPClause *ActOnOpenMPPrivateClause(ArrayRef<Expr *> VarList,
11160 SourceLocation StartLoc,
11161 SourceLocation LParenLoc,
11162 SourceLocation EndLoc);
11163 /// Called on well-formed 'firstprivate' clause.
11164 OMPClause *ActOnOpenMPFirstprivateClause(ArrayRef<Expr *> VarList,
11165 SourceLocation StartLoc,
11166 SourceLocation LParenLoc,
11167 SourceLocation EndLoc);
11168 /// Called on well-formed 'lastprivate' clause.
11169 OMPClause *ActOnOpenMPLastprivateClause(
11170 ArrayRef<Expr *> VarList, OpenMPLastprivateModifier LPKind,
11171 SourceLocation LPKindLoc, SourceLocation ColonLoc,
11172 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation EndLoc);
11173 /// Called on well-formed 'shared' clause.
11174 OMPClause *ActOnOpenMPSharedClause(ArrayRef<Expr *> VarList,
11175 SourceLocation StartLoc,
11176 SourceLocation LParenLoc,
11177 SourceLocation EndLoc);
11178 /// Called on well-formed 'reduction' clause.
11179 OMPClause *ActOnOpenMPReductionClause(
11180 ArrayRef<Expr *> VarList, OpenMPReductionClauseModifier Modifier,
11181 SourceLocation StartLoc, SourceLocation LParenLoc,
11182 SourceLocation ModifierLoc, SourceLocation ColonLoc,
11183 SourceLocation EndLoc, CXXScopeSpec &ReductionIdScopeSpec,
11184 const DeclarationNameInfo &ReductionId,
11185 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11186 /// Called on well-formed 'task_reduction' clause.
11187 OMPClause *ActOnOpenMPTaskReductionClause(
11188 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11189 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11190 CXXScopeSpec &ReductionIdScopeSpec,
11191 const DeclarationNameInfo &ReductionId,
11192 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11193 /// Called on well-formed 'in_reduction' clause.
11194 OMPClause *ActOnOpenMPInReductionClause(
11195 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11196 SourceLocation LParenLoc, SourceLocation ColonLoc, SourceLocation EndLoc,
11197 CXXScopeSpec &ReductionIdScopeSpec,
11198 const DeclarationNameInfo &ReductionId,
11199 ArrayRef<Expr *> UnresolvedReductions = llvm::None);
11200 /// Called on well-formed 'linear' clause.
11201 OMPClause *
11202 ActOnOpenMPLinearClause(ArrayRef<Expr *> VarList, Expr *Step,
11203 SourceLocation StartLoc, SourceLocation LParenLoc,
11204 OpenMPLinearClauseKind LinKind, SourceLocation LinLoc,
11205 SourceLocation ColonLoc, SourceLocation EndLoc);
11206 /// Called on well-formed 'aligned' clause.
11207 OMPClause *ActOnOpenMPAlignedClause(ArrayRef<Expr *> VarList,
11208 Expr *Alignment,
11209 SourceLocation StartLoc,
11210 SourceLocation LParenLoc,
11211 SourceLocation ColonLoc,
11212 SourceLocation EndLoc);
11213 /// Called on well-formed 'copyin' clause.
11214 OMPClause *ActOnOpenMPCopyinClause(ArrayRef<Expr *> VarList,
11215 SourceLocation StartLoc,
11216 SourceLocation LParenLoc,
11217 SourceLocation EndLoc);
11218 /// Called on well-formed 'copyprivate' clause.
11219 OMPClause *ActOnOpenMPCopyprivateClause(ArrayRef<Expr *> VarList,
11220 SourceLocation StartLoc,
11221 SourceLocation LParenLoc,
11222 SourceLocation EndLoc);
11223 /// Called on well-formed 'flush' pseudo clause.
11224 OMPClause *ActOnOpenMPFlushClause(ArrayRef<Expr *> VarList,
11225 SourceLocation StartLoc,
11226 SourceLocation LParenLoc,
11227 SourceLocation EndLoc);
11228 /// Called on well-formed 'depobj' pseudo clause.
11229 OMPClause *ActOnOpenMPDepobjClause(Expr *Depobj, SourceLocation StartLoc,
11230 SourceLocation LParenLoc,
11231 SourceLocation EndLoc);
11232 /// Called on well-formed 'depend' clause.
11233 OMPClause *
11234 ActOnOpenMPDependClause(Expr *DepModifier, OpenMPDependClauseKind DepKind,
11235 SourceLocation DepLoc, SourceLocation ColonLoc,
11236 ArrayRef<Expr *> VarList, SourceLocation StartLoc,
11237 SourceLocation LParenLoc, SourceLocation EndLoc);
11238 /// Called on well-formed 'device' clause.
11239 OMPClause *ActOnOpenMPDeviceClause(OpenMPDeviceClauseModifier Modifier,
11240 Expr *Device, SourceLocation StartLoc,
11241 SourceLocation LParenLoc,
11242 SourceLocation ModifierLoc,
11243 SourceLocation EndLoc);
11244 /// Called on well-formed 'map' clause.
11245 OMPClause *
11246 ActOnOpenMPMapClause(ArrayRef<OpenMPMapModifierKind> MapTypeModifiers,
11247 ArrayRef<SourceLocation> MapTypeModifiersLoc,
11248 CXXScopeSpec &MapperIdScopeSpec,
11249 DeclarationNameInfo &MapperId,
11250 OpenMPMapClauseKind MapType, bool IsMapTypeImplicit,
11251 SourceLocation MapLoc, SourceLocation ColonLoc,
11252 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11253 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11254 /// Called on well-formed 'num_teams' clause.
11255 OMPClause *ActOnOpenMPNumTeamsClause(Expr *NumTeams, SourceLocation StartLoc,
11256 SourceLocation LParenLoc,
11257 SourceLocation EndLoc);
11258 /// Called on well-formed 'thread_limit' clause.
11259 OMPClause *ActOnOpenMPThreadLimitClause(Expr *ThreadLimit,
11260 SourceLocation StartLoc,
11261 SourceLocation LParenLoc,
11262 SourceLocation EndLoc);
11263 /// Called on well-formed 'priority' clause.
11264 OMPClause *ActOnOpenMPPriorityClause(Expr *Priority, SourceLocation StartLoc,
11265 SourceLocation LParenLoc,
11266 SourceLocation EndLoc);
11267 /// Called on well-formed 'dist_schedule' clause.
11268 OMPClause *ActOnOpenMPDistScheduleClause(
11269 OpenMPDistScheduleClauseKind Kind, Expr *ChunkSize,
11270 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation KindLoc,
11271 SourceLocation CommaLoc, SourceLocation EndLoc);
11272 /// Called on well-formed 'defaultmap' clause.
11273 OMPClause *ActOnOpenMPDefaultmapClause(
11274 OpenMPDefaultmapClauseModifier M, OpenMPDefaultmapClauseKind Kind,
11275 SourceLocation StartLoc, SourceLocation LParenLoc, SourceLocation MLoc,
11276 SourceLocation KindLoc, SourceLocation EndLoc);
11277 /// Called on well-formed 'to' clause.
11278 OMPClause *
11279 ActOnOpenMPToClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11280 ArrayRef<SourceLocation> MotionModifiersLoc,
11281 CXXScopeSpec &MapperIdScopeSpec,
11282 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11283 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11284 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11285 /// Called on well-formed 'from' clause.
11286 OMPClause *
11287 ActOnOpenMPFromClause(ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
11288 ArrayRef<SourceLocation> MotionModifiersLoc,
11289 CXXScopeSpec &MapperIdScopeSpec,
11290 DeclarationNameInfo &MapperId, SourceLocation ColonLoc,
11291 ArrayRef<Expr *> VarList, const OMPVarListLocTy &Locs,
11292 ArrayRef<Expr *> UnresolvedMappers = llvm::None);
11293 /// Called on well-formed 'use_device_ptr' clause.
11294 OMPClause *ActOnOpenMPUseDevicePtrClause(ArrayRef<Expr *> VarList,
11295 const OMPVarListLocTy &Locs);
11296 /// Called on well-formed 'use_device_addr' clause.
11297 OMPClause *ActOnOpenMPUseDeviceAddrClause(ArrayRef<Expr *> VarList,
11298 const OMPVarListLocTy &Locs);
11299 /// Called on well-formed 'is_device_ptr' clause.
11300 OMPClause *ActOnOpenMPIsDevicePtrClause(ArrayRef<Expr *> VarList,
11301 const OMPVarListLocTy &Locs);
11302 /// Called on well-formed 'nontemporal' clause.
11303 OMPClause *ActOnOpenMPNontemporalClause(ArrayRef<Expr *> VarList,
11304 SourceLocation StartLoc,
11305 SourceLocation LParenLoc,
11306 SourceLocation EndLoc);
11307
11308 /// Data for list of allocators.
11309 struct UsesAllocatorsData {
11310 /// Allocator.
11311 Expr *Allocator = nullptr;
11312 /// Allocator traits.
11313 Expr *AllocatorTraits = nullptr;
11314 /// Locations of '(' and ')' symbols.
11315 SourceLocation LParenLoc, RParenLoc;
11316 };
11317 /// Called on well-formed 'uses_allocators' clause.
11318 OMPClause *ActOnOpenMPUsesAllocatorClause(SourceLocation StartLoc,
11319 SourceLocation LParenLoc,
11320 SourceLocation EndLoc,
11321 ArrayRef<UsesAllocatorsData> Data);
11322 /// Called on well-formed 'affinity' clause.
11323 OMPClause *ActOnOpenMPAffinityClause(SourceLocation StartLoc,
11324 SourceLocation LParenLoc,
11325 SourceLocation ColonLoc,
11326 SourceLocation EndLoc, Expr *Modifier,
11327 ArrayRef<Expr *> Locators);
11328
11329 /// The kind of conversion being performed.
11330 enum CheckedConversionKind {
11331 /// An implicit conversion.
11332 CCK_ImplicitConversion,
11333 /// A C-style cast.
11334 CCK_CStyleCast,
11335 /// A functional-style cast.
11336 CCK_FunctionalCast,
11337 /// A cast other than a C-style cast.
11338 CCK_OtherCast,
11339 /// A conversion for an operand of a builtin overloaded operator.
11340 CCK_ForBuiltinOverloadedOp
11341 };
11342
11343 static bool isCast(CheckedConversionKind CCK) {
11344 return CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast ||
11345 CCK == CCK_OtherCast;
11346 }
11347
11348 /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit
11349 /// cast. If there is already an implicit cast, merge into the existing one.
11350 /// If isLvalue, the result of the cast is an lvalue.
11351 ExprResult
11352 ImpCastExprToType(Expr *E, QualType Type, CastKind CK,
11353 ExprValueKind VK = VK_PRValue,
11354 const CXXCastPath *BasePath = nullptr,
11355 CheckedConversionKind CCK = CCK_ImplicitConversion);
11356
11357 /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding
11358 /// to the conversion from scalar type ScalarTy to the Boolean type.
11359 static CastKind ScalarTypeToBooleanCastKind(QualType ScalarTy);
11360
11361 /// IgnoredValueConversions - Given that an expression's result is
11362 /// syntactically ignored, perform any conversions that are
11363 /// required.
11364 ExprResult IgnoredValueConversions(Expr *E);
11365
11366 // UsualUnaryConversions - promotes integers (C99 6.3.1.1p2) and converts
11367 // functions and arrays to their respective pointers (C99 6.3.2.1).
11368 ExprResult UsualUnaryConversions(Expr *E);
11369
11370 /// CallExprUnaryConversions - a special case of an unary conversion
11371 /// performed on a function designator of a call expression.
11372 ExprResult CallExprUnaryConversions(Expr *E);
11373
11374 // DefaultFunctionArrayConversion - converts functions and arrays
11375 // to their respective pointers (C99 6.3.2.1).
11376 ExprResult DefaultFunctionArrayConversion(Expr *E, bool Diagnose = true);
11377
11378 // DefaultFunctionArrayLvalueConversion - converts functions and
11379 // arrays to their respective pointers and performs the
11380 // lvalue-to-rvalue conversion.
11381 ExprResult DefaultFunctionArrayLvalueConversion(Expr *E,
11382 bool Diagnose = true);
11383
11384 // DefaultLvalueConversion - performs lvalue-to-rvalue conversion on
11385 // the operand. This function is a no-op if the operand has a function type
11386 // or an array type.
11387 ExprResult DefaultLvalueConversion(Expr *E);
11388
11389 // DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
11390 // do not have a prototype. Integer promotions are performed on each
11391 // argument, and arguments that have type float are promoted to double.
11392 ExprResult DefaultArgumentPromotion(Expr *E);
11393
11394 /// If \p E is a prvalue denoting an unmaterialized temporary, materialize
11395 /// it as an xvalue. In C++98, the result will still be a prvalue, because
11396 /// we don't have xvalues there.
11397 ExprResult TemporaryMaterializationConversion(Expr *E);
11398
11399 // Used for emitting the right warning by DefaultVariadicArgumentPromotion
11400 enum VariadicCallType {
11401 VariadicFunction,
11402 VariadicBlock,
11403 VariadicMethod,
11404 VariadicConstructor,
11405 VariadicDoesNotApply
11406 };
11407
11408 VariadicCallType getVariadicCallType(FunctionDecl *FDecl,
11409 const FunctionProtoType *Proto,
11410 Expr *Fn);
11411
11412 // Used for determining in which context a type is allowed to be passed to a
11413 // vararg function.
11414 enum VarArgKind {
11415 VAK_Valid,
11416 VAK_ValidInCXX11,
11417 VAK_Undefined,
11418 VAK_MSVCUndefined,
11419 VAK_Invalid
11420 };
11421
11422 // Determines which VarArgKind fits an expression.
11423 VarArgKind isValidVarArgType(const QualType &Ty);
11424
11425 /// Check to see if the given expression is a valid argument to a variadic
11426 /// function, issuing a diagnostic if not.
11427 void checkVariadicArgument(const Expr *E, VariadicCallType CT);
11428
11429 /// Check whether the given statement can have musttail applied to it,
11430 /// issuing a diagnostic and returning false if not. In the success case,
11431 /// the statement is rewritten to remove implicit nodes from the return
11432 /// value.
11433 bool checkAndRewriteMustTailAttr(Stmt *St, const Attr &MTA);
11434
11435private:
11436 /// Check whether the given statement can have musttail applied to it,
11437 /// issuing a diagnostic and returning false if not.
11438 bool checkMustTailAttr(const Stmt *St, const Attr &MTA);
11439
11440public:
11441 /// Check to see if a given expression could have '.c_str()' called on it.
11442 bool hasCStrMethod(const Expr *E);
11443
11444 /// GatherArgumentsForCall - Collector argument expressions for various
11445 /// form of call prototypes.
11446 bool GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
11447 const FunctionProtoType *Proto,
11448 unsigned FirstParam, ArrayRef<Expr *> Args,
11449 SmallVectorImpl<Expr *> &AllArgs,
11450 VariadicCallType CallType = VariadicDoesNotApply,
11451 bool AllowExplicit = false,
11452 bool IsListInitialization = false);
11453
11454 // DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
11455 // will create a runtime trap if the resulting type is not a POD type.
11456 ExprResult DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
11457 FunctionDecl *FDecl);
11458
11459 /// Context in which we're performing a usual arithmetic conversion.
11460 enum ArithConvKind {
11461 /// An arithmetic operation.
11462 ACK_Arithmetic,
11463 /// A bitwise operation.
11464 ACK_BitwiseOp,
11465 /// A comparison.
11466 ACK_Comparison,
11467 /// A conditional (?:) operator.
11468 ACK_Conditional,
11469 /// A compound assignment expression.
11470 ACK_CompAssign,
11471 };
11472
11473 // UsualArithmeticConversions - performs the UsualUnaryConversions on it's
11474 // operands and then handles various conversions that are common to binary
11475 // operators (C99 6.3.1.8). If both operands aren't arithmetic, this
11476 // routine returns the first non-arithmetic type found. The client is
11477 // responsible for emitting appropriate error diagnostics.
11478 QualType UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
11479 SourceLocation Loc, ArithConvKind ACK);
11480
11481 /// AssignConvertType - All of the 'assignment' semantic checks return this
11482 /// enum to indicate whether the assignment was allowed. These checks are
11483 /// done for simple assignments, as well as initialization, return from
11484 /// function, argument passing, etc. The query is phrased in terms of a
11485 /// source and destination type.
11486 enum AssignConvertType {
11487 /// Compatible - the types are compatible according to the standard.
11488 Compatible,
11489
11490 /// PointerToInt - The assignment converts a pointer to an int, which we
11491 /// accept as an extension.
11492 PointerToInt,
11493
11494 /// IntToPointer - The assignment converts an int to a pointer, which we
11495 /// accept as an extension.
11496 IntToPointer,
11497
11498 /// FunctionVoidPointer - The assignment is between a function pointer and
11499 /// void*, which the standard doesn't allow, but we accept as an extension.
11500 FunctionVoidPointer,
11501
11502 /// IncompatiblePointer - The assignment is between two pointers types that
11503 /// are not compatible, but we accept them as an extension.
11504 IncompatiblePointer,
11505
11506 /// IncompatibleFunctionPointer - The assignment is between two function
11507 /// pointers types that are not compatible, but we accept them as an
11508 /// extension.
11509 IncompatibleFunctionPointer,
11510
11511 /// IncompatiblePointerSign - The assignment is between two pointers types
11512 /// which point to integers which have a different sign, but are otherwise
11513 /// identical. This is a subset of the above, but broken out because it's by
11514 /// far the most common case of incompatible pointers.
11515 IncompatiblePointerSign,
11516
11517 /// CompatiblePointerDiscardsQualifiers - The assignment discards
11518 /// c/v/r qualifiers, which we accept as an extension.
11519 CompatiblePointerDiscardsQualifiers,
11520
11521 /// IncompatiblePointerDiscardsQualifiers - The assignment
11522 /// discards qualifiers that we don't permit to be discarded,
11523 /// like address spaces.
11524 IncompatiblePointerDiscardsQualifiers,
11525
11526 /// IncompatibleNestedPointerAddressSpaceMismatch - The assignment
11527 /// changes address spaces in nested pointer types which is not allowed.
11528 /// For instance, converting __private int ** to __generic int ** is
11529 /// illegal even though __private could be converted to __generic.
11530 IncompatibleNestedPointerAddressSpaceMismatch,
11531
11532 /// IncompatibleNestedPointerQualifiers - The assignment is between two
11533 /// nested pointer types, and the qualifiers other than the first two
11534 /// levels differ e.g. char ** -> const char **, but we accept them as an
11535 /// extension.
11536 IncompatibleNestedPointerQualifiers,
11537
11538 /// IncompatibleVectors - The assignment is between two vector types that
11539 /// have the same size, which we accept as an extension.
11540 IncompatibleVectors,
11541
11542 /// IntToBlockPointer - The assignment converts an int to a block
11543 /// pointer. We disallow this.
11544 IntToBlockPointer,
11545
11546 /// IncompatibleBlockPointer - The assignment is between two block
11547 /// pointers types that are not compatible.
11548 IncompatibleBlockPointer,
11549
11550 /// IncompatibleObjCQualifiedId - The assignment is between a qualified
11551 /// id type and something else (that is incompatible with it). For example,
11552 /// "id <XXX>" = "Foo *", where "Foo *" doesn't implement the XXX protocol.
11553 IncompatibleObjCQualifiedId,
11554
11555 /// IncompatibleObjCWeakRef - Assigning a weak-unavailable object to an
11556 /// object with __weak qualifier.
11557 IncompatibleObjCWeakRef,
11558
11559 /// Incompatible - We reject this conversion outright, it is invalid to
11560 /// represent it in the AST.
11561 Incompatible
11562 };
11563
11564 /// DiagnoseAssignmentResult - Emit a diagnostic, if required, for the
11565 /// assignment conversion type specified by ConvTy. This returns true if the
11566 /// conversion was invalid or false if the conversion was accepted.
11567 bool DiagnoseAssignmentResult(AssignConvertType ConvTy,
11568 SourceLocation Loc,
11569 QualType DstType, QualType SrcType,
11570 Expr *SrcExpr, AssignmentAction Action,
11571 bool *Complained = nullptr);
11572
11573 /// IsValueInFlagEnum - Determine if a value is allowed as part of a flag
11574 /// enum. If AllowMask is true, then we also allow the complement of a valid
11575 /// value, to be used as a mask.
11576 bool IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
11577 bool AllowMask) const;
11578
11579 /// DiagnoseAssignmentEnum - Warn if assignment to enum is a constant
11580 /// integer not in the range of enum values.
11581 void DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
11582 Expr *SrcExpr);
11583
11584 /// CheckAssignmentConstraints - Perform type checking for assignment,
11585 /// argument passing, variable initialization, and function return values.
11586 /// C99 6.5.16.
11587 AssignConvertType CheckAssignmentConstraints(SourceLocation Loc,
11588 QualType LHSType,
11589 QualType RHSType);
11590
11591 /// Check assignment constraints and optionally prepare for a conversion of
11592 /// the RHS to the LHS type. The conversion is prepared for if ConvertRHS
11593 /// is true.
11594 AssignConvertType CheckAssignmentConstraints(QualType LHSType,
11595 ExprResult &RHS,
11596 CastKind &Kind,
11597 bool ConvertRHS = true);
11598
11599 /// Check assignment constraints for an assignment of RHS to LHSType.
11600 ///
11601 /// \param LHSType The destination type for the assignment.
11602 /// \param RHS The source expression for the assignment.
11603 /// \param Diagnose If \c true, diagnostics may be produced when checking
11604 /// for assignability. If a diagnostic is produced, \p RHS will be
11605 /// set to ExprError(). Note that this function may still return
11606 /// without producing a diagnostic, even for an invalid assignment.
11607 /// \param DiagnoseCFAudited If \c true, the target is a function parameter
11608 /// in an audited Core Foundation API and does not need to be checked
11609 /// for ARC retain issues.
11610 /// \param ConvertRHS If \c true, \p RHS will be updated to model the
11611 /// conversions necessary to perform the assignment. If \c false,
11612 /// \p Diagnose must also be \c false.
11613 AssignConvertType CheckSingleAssignmentConstraints(
11614 QualType LHSType, ExprResult &RHS, bool Diagnose = true,
11615 bool DiagnoseCFAudited = false, bool ConvertRHS = true);
11616
11617 // If the lhs type is a transparent union, check whether we
11618 // can initialize the transparent union with the given expression.
11619 AssignConvertType CheckTransparentUnionArgumentConstraints(QualType ArgType,
11620 ExprResult &RHS);
11621
11622 bool IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType);
11623
11624 bool CheckExceptionSpecCompatibility(Expr *From, QualType ToType);
11625
11626 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11627 AssignmentAction Action,
11628 bool AllowExplicit = false);
11629 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11630 const ImplicitConversionSequence& ICS,
11631 AssignmentAction Action,
11632 CheckedConversionKind CCK
11633 = CCK_ImplicitConversion);
11634 ExprResult PerformImplicitConversion(Expr *From, QualType ToType,
11635 const StandardConversionSequence& SCS,
11636 AssignmentAction Action,
11637 CheckedConversionKind CCK);
11638
11639 ExprResult PerformQualificationConversion(
11640 Expr *E, QualType Ty, ExprValueKind VK = VK_PRValue,
11641 CheckedConversionKind CCK = CCK_ImplicitConversion);
11642
11643 /// the following "Check" methods will return a valid/converted QualType
11644 /// or a null QualType (indicating an error diagnostic was issued).
11645
11646 /// type checking binary operators (subroutines of CreateBuiltinBinOp).
11647 QualType InvalidOperands(SourceLocation Loc, ExprResult &LHS,
11648 ExprResult &RHS);
11649 QualType InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
11650 ExprResult &RHS);
11651 QualType CheckPointerToMemberOperands( // C++ 5.5
11652 ExprResult &LHS, ExprResult &RHS, ExprValueKind &VK,
11653 SourceLocation OpLoc, bool isIndirect);
11654 QualType CheckMultiplyDivideOperands( // C99 6.5.5
11655 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign,
11656 bool IsDivide);
11657 QualType CheckRemainderOperands( // C99 6.5.5
11658 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11659 bool IsCompAssign = false);
11660 QualType CheckAdditionOperands( // C99 6.5.6
11661 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11662 BinaryOperatorKind Opc, QualType* CompLHSTy = nullptr);
11663 QualType CheckSubtractionOperands( // C99 6.5.6
11664 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11665 QualType* CompLHSTy = nullptr);
11666 QualType CheckShiftOperands( // C99 6.5.7
11667 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11668 BinaryOperatorKind Opc, bool IsCompAssign = false);
11669 void CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE);
11670 QualType CheckCompareOperands( // C99 6.5.8/9
11671 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11672 BinaryOperatorKind Opc);
11673 QualType CheckBitwiseOperands( // C99 6.5.[10...12]
11674 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11675 BinaryOperatorKind Opc);
11676 QualType CheckLogicalOperands( // C99 6.5.[13,14]
11677 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc,
11678 BinaryOperatorKind Opc);
11679 // CheckAssignmentOperands is used for both simple and compound assignment.
11680 // For simple assignment, pass both expressions and a null converted type.
11681 // For compound assignment, pass both expressions and the converted type.
11682 QualType CheckAssignmentOperands( // C99 6.5.16.[1,2]
11683 Expr *LHSExpr, ExprResult &RHS, SourceLocation Loc, QualType CompoundType);
11684
11685 ExprResult checkPseudoObjectIncDec(Scope *S, SourceLocation OpLoc,
11686 UnaryOperatorKind Opcode, Expr *Op);
11687 ExprResult checkPseudoObjectAssignment(Scope *S, SourceLocation OpLoc,
11688 BinaryOperatorKind Opcode,
11689 Expr *LHS, Expr *RHS);
11690 ExprResult checkPseudoObjectRValue(Expr *E);
11691 Expr *recreateSyntacticForm(PseudoObjectExpr *E);
11692
11693 QualType CheckConditionalOperands( // C99 6.5.15
11694 ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
11695 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation QuestionLoc);
11696 QualType CXXCheckConditionalOperands( // C++ 5.16
11697 ExprResult &cond, ExprResult &lhs, ExprResult &rhs,
11698 ExprValueKind &VK, ExprObjectKind &OK, SourceLocation questionLoc);
11699 QualType CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
11700 ExprResult &RHS,
11701 SourceLocation QuestionLoc);
11702 QualType FindCompositePointerType(SourceLocation Loc, Expr *&E1, Expr *&E2,
11703 bool ConvertArgs = true);
11704 QualType FindCompositePointerType(SourceLocation Loc,
11705 ExprResult &E1, ExprResult &E2,
11706 bool ConvertArgs = true) {
11707 Expr *E1Tmp = E1.get(), *E2Tmp = E2.get();
11708 QualType Composite =
11709 FindCompositePointerType(Loc, E1Tmp, E2Tmp, ConvertArgs);
11710 E1 = E1Tmp;
11711 E2 = E2Tmp;
11712 return Composite;
11713 }
11714
11715 QualType FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
11716 SourceLocation QuestionLoc);
11717
11718 bool DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
11719 SourceLocation QuestionLoc);
11720
11721 void DiagnoseAlwaysNonNullPointer(Expr *E,
11722 Expr::NullPointerConstantKind NullType,
11723 bool IsEqual, SourceRange Range);
11724
11725 /// type checking for vector binary operators.
11726 QualType CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11727 SourceLocation Loc, bool IsCompAssign,
11728 bool AllowBothBool, bool AllowBoolConversion);
11729 QualType GetSignedVectorType(QualType V);
11730 QualType CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11731 SourceLocation Loc,
11732 BinaryOperatorKind Opc);
11733 QualType CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11734 SourceLocation Loc);
11735
11736 /// Type checking for matrix binary operators.
11737 QualType CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
11738 SourceLocation Loc,
11739 bool IsCompAssign);
11740 QualType CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
11741 SourceLocation Loc, bool IsCompAssign);
11742
11743 bool isValidSveBitcast(QualType srcType, QualType destType);
11744
11745 bool areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy);
11746
11747 bool areVectorTypesSameSize(QualType srcType, QualType destType);
11748 bool areLaxCompatibleVectorTypes(QualType srcType, QualType destType);
11749 bool isLaxVectorConversion(QualType srcType, QualType destType);
11750
11751 /// type checking declaration initializers (C99 6.7.8)
11752 bool CheckForConstantInitializer(Expr *e, QualType t);
11753
11754 // type checking C++ declaration initializers (C++ [dcl.init]).
11755
11756 /// ReferenceCompareResult - Expresses the result of comparing two
11757 /// types (cv1 T1 and cv2 T2) to determine their compatibility for the
11758 /// purposes of initialization by reference (C++ [dcl.init.ref]p4).
11759 enum ReferenceCompareResult {
11760 /// Ref_Incompatible - The two types are incompatible, so direct
11761 /// reference binding is not possible.
11762 Ref_Incompatible = 0,
11763 /// Ref_Related - The two types are reference-related, which means
11764 /// that their unqualified forms (T1 and T2) are either the same
11765 /// or T1 is a base class of T2.
11766 Ref_Related,
11767 /// Ref_Compatible - The two types are reference-compatible.
11768 Ref_Compatible
11769 };
11770
11771 // Fake up a scoped enumeration that still contextually converts to bool.
11772 struct ReferenceConversionsScope {
11773 /// The conversions that would be performed on an lvalue of type T2 when
11774 /// binding a reference of type T1 to it, as determined when evaluating
11775 /// whether T1 is reference-compatible with T2.
11776 enum ReferenceConversions {
11777 Qualification = 0x1,
11778 NestedQualification = 0x2,
11779 Function = 0x4,
11780 DerivedToBase = 0x8,
11781 ObjC = 0x10,
11782 ObjCLifetime = 0x20,
11783
11784 LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/ObjCLifetime)LLVM_BITMASK_LARGEST_ENUMERATOR = ObjCLifetime
11785 };
11786 };
11787 using ReferenceConversions = ReferenceConversionsScope::ReferenceConversions;
11788
11789 ReferenceCompareResult
11790 CompareReferenceRelationship(SourceLocation Loc, QualType T1, QualType T2,
11791 ReferenceConversions *Conv = nullptr);
11792
11793 ExprResult checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
11794 Expr *CastExpr, CastKind &CastKind,
11795 ExprValueKind &VK, CXXCastPath &Path);
11796
11797 /// Force an expression with unknown-type to an expression of the
11798 /// given type.
11799 ExprResult forceUnknownAnyToType(Expr *E, QualType ToType);
11800
11801 /// Type-check an expression that's being passed to an
11802 /// __unknown_anytype parameter.
11803 ExprResult checkUnknownAnyArg(SourceLocation callLoc,
11804 Expr *result, QualType &paramType);
11805
11806 // CheckMatrixCast - Check type constraints for matrix casts.
11807 // We allow casting between matrixes of the same dimensions i.e. when they
11808 // have the same number of rows and column. Returns true if the cast is
11809 // invalid.
11810 bool CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
11811 CastKind &Kind);
11812
11813 // CheckVectorCast - check type constraints for vectors.
11814 // Since vectors are an extension, there are no C standard reference for this.
11815 // We allow casting between vectors and integer datatypes of the same size.
11816 // returns true if the cast is invalid
11817 bool CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
11818 CastKind &Kind);
11819
11820 /// Prepare `SplattedExpr` for a vector splat operation, adding
11821 /// implicit casts if necessary.
11822 ExprResult prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr);
11823
11824 // CheckExtVectorCast - check type constraints for extended vectors.
11825 // Since vectors are an extension, there are no C standard reference for this.
11826 // We allow casting between vectors and integer datatypes of the same size,
11827 // or vectors and the element type of that vector.
11828 // returns the cast expr
11829 ExprResult CheckExtVectorCast(SourceRange R, QualType DestTy, Expr *CastExpr,
11830 CastKind &Kind);
11831
11832 ExprResult BuildCXXFunctionalCastExpr(TypeSourceInfo *TInfo, QualType Type,
11833 SourceLocation LParenLoc,
11834 Expr *CastExpr,
11835 SourceLocation RParenLoc);
11836
11837 enum ARCConversionResult { ACR_okay, ACR_unbridged, ACR_error };
11838
11839 /// Checks for invalid conversions and casts between
11840 /// retainable pointers and other pointer kinds for ARC and Weak.
11841 ARCConversionResult CheckObjCConversion(SourceRange castRange,
11842 QualType castType, Expr *&op,
11843 CheckedConversionKind CCK,
11844 bool Diagnose = true,
11845 bool DiagnoseCFAudited = false,
11846 BinaryOperatorKind Opc = BO_PtrMemD
11847 );
11848
11849 Expr *stripARCUnbridgedCast(Expr *e);
11850 void diagnoseARCUnbridgedCast(Expr *e);
11851
11852 bool CheckObjCARCUnavailableWeakConversion(QualType castType,
11853 QualType ExprType);
11854
11855 /// checkRetainCycles - Check whether an Objective-C message send
11856 /// might create an obvious retain cycle.
11857 void checkRetainCycles(ObjCMessageExpr *msg);
11858 void checkRetainCycles(Expr *receiver, Expr *argument);
11859 void checkRetainCycles(VarDecl *Var, Expr *Init);
11860
11861 /// checkUnsafeAssigns - Check whether +1 expr is being assigned
11862 /// to weak/__unsafe_unretained type.
11863 bool checkUnsafeAssigns(SourceLocation Loc, QualType LHS, Expr *RHS);
11864
11865 /// checkUnsafeExprAssigns - Check whether +1 expr is being assigned
11866 /// to weak/__unsafe_unretained expression.
11867 void checkUnsafeExprAssigns(SourceLocation Loc, Expr *LHS, Expr *RHS);
11868
11869 /// CheckMessageArgumentTypes - Check types in an Obj-C message send.
11870 /// \param Method - May be null.
11871 /// \param [out] ReturnType - The return type of the send.
11872 /// \return true iff there were any incompatible types.
11873 bool CheckMessageArgumentTypes(const Expr *Receiver, QualType ReceiverType,
11874 MultiExprArg Args, Selector Sel,
11875 ArrayRef<SourceLocation> SelectorLocs,
11876 ObjCMethodDecl *Method, bool isClassMessage,
11877 bool isSuperMessage, SourceLocation lbrac,
11878 SourceLocation rbrac, SourceRange RecRange,
11879 QualType &ReturnType, ExprValueKind &VK);
11880
11881 /// Determine the result of a message send expression based on
11882 /// the type of the receiver, the method expected to receive the message,
11883 /// and the form of the message send.
11884 QualType getMessageSendResultType(const Expr *Receiver, QualType ReceiverType,
11885 ObjCMethodDecl *Method, bool isClassMessage,
11886 bool isSuperMessage);
11887
11888 /// If the given expression involves a message send to a method
11889 /// with a related result type, emit a note describing what happened.
11890 void EmitRelatedResultTypeNote(const Expr *E);
11891
11892 /// Given that we had incompatible pointer types in a return
11893 /// statement, check whether we're in a method with a related result
11894 /// type, and if so, emit a note describing what happened.
11895 void EmitRelatedResultTypeNoteForReturn(QualType destType);
11896
11897 class ConditionResult {
11898 Decl *ConditionVar;
11899 FullExprArg Condition;
11900 bool Invalid;
11901 bool HasKnownValue;
11902 bool KnownValue;
11903
11904 friend class Sema;
11905 ConditionResult(Sema &S, Decl *ConditionVar, FullExprArg Condition,
11906 bool IsConstexpr)
11907 : ConditionVar(ConditionVar), Condition(Condition), Invalid(false),
11908 HasKnownValue(IsConstexpr && Condition.get() &&
11909 !Condition.get()->isValueDependent()),
11910 KnownValue(HasKnownValue &&
11911 !!Condition.get()->EvaluateKnownConstInt(S.Context)) {}
11912 explicit ConditionResult(bool Invalid)
11913 : ConditionVar(nullptr), Condition(nullptr), Invalid(Invalid),
11914 HasKnownValue(false), KnownValue(false) {}
11915
11916 public:
11917 ConditionResult() : ConditionResult(false) {}
11918 bool isInvalid() const { return Invalid; }
11919 std::pair<VarDecl *, Expr *> get() const {
11920 return std::make_pair(cast_or_null<VarDecl>(ConditionVar),
11921 Condition.get());
11922 }
11923 llvm::Optional<bool> getKnownValue() const {
11924 if (!HasKnownValue)
11925 return None;
11926 return KnownValue;
11927 }
11928 };
11929 static ConditionResult ConditionError() { return ConditionResult(true); }
11930
11931 enum class ConditionKind {
11932 Boolean, ///< A boolean condition, from 'if', 'while', 'for', or 'do'.
11933 ConstexprIf, ///< A constant boolean condition from 'if constexpr'.
11934 Switch ///< An integral condition for a 'switch' statement.
11935 };
11936
11937 ConditionResult ActOnCondition(Scope *S, SourceLocation Loc,
11938 Expr *SubExpr, ConditionKind CK);
11939
11940 ConditionResult ActOnConditionVariable(Decl *ConditionVar,
11941 SourceLocation StmtLoc,
11942 ConditionKind CK);
11943
11944 DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D);
11945
11946 ExprResult CheckConditionVariable(VarDecl *ConditionVar,
11947 SourceLocation StmtLoc,
11948 ConditionKind CK);
11949 ExprResult CheckSwitchCondition(SourceLocation SwitchLoc, Expr *Cond);
11950
11951 /// CheckBooleanCondition - Diagnose problems involving the use of
11952 /// the given expression as a boolean condition (e.g. in an if
11953 /// statement). Also performs the standard function and array
11954 /// decays, possibly changing the input variable.
11955 ///
11956 /// \param Loc - A location associated with the condition, e.g. the
11957 /// 'if' keyword.
11958 /// \return true iff there were any errors
11959 ExprResult CheckBooleanCondition(SourceLocation Loc, Expr *E,
11960 bool IsConstexpr = false);
11961
11962 /// ActOnExplicitBoolSpecifier - Build an ExplicitSpecifier from an expression
11963 /// found in an explicit(bool) specifier.
11964 ExplicitSpecifier ActOnExplicitBoolSpecifier(Expr *E);
11965
11966 /// tryResolveExplicitSpecifier - Attempt to resolve the explict specifier.
11967 /// Returns true if the explicit specifier is now resolved.
11968 bool tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec);
11969
11970 /// DiagnoseAssignmentAsCondition - Given that an expression is
11971 /// being used as a boolean condition, warn if it's an assignment.
11972 void DiagnoseAssignmentAsCondition(Expr *E);
11973
11974 /// Redundant parentheses over an equality comparison can indicate
11975 /// that the user intended an assignment used as condition.
11976 void DiagnoseEqualityWithExtraParens(ParenExpr *ParenE);
11977
11978 /// CheckCXXBooleanCondition - Returns true if conversion to bool is invalid.
11979 ExprResult CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr = false);
11980
11981 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
11982 /// the specified width and sign. If an overflow occurs, detect it and emit
11983 /// the specified diagnostic.
11984 void ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &OldVal,
11985 unsigned NewWidth, bool NewSign,
11986 SourceLocation Loc, unsigned DiagID);
11987
11988 /// Checks that the Objective-C declaration is declared in the global scope.
11989 /// Emits an error and marks the declaration as invalid if it's not declared
11990 /// in the global scope.
11991 bool CheckObjCDeclScope(Decl *D);
11992
11993 /// Abstract base class used for diagnosing integer constant
11994 /// expression violations.
11995 class VerifyICEDiagnoser {
11996 public:
11997 bool Suppress;
11998
11999 VerifyICEDiagnoser(bool Suppress = false) : Suppress(Suppress) { }
12000
12001 virtual SemaDiagnosticBuilder
12002 diagnoseNotICEType(Sema &S, SourceLocation Loc, QualType T);
12003 virtual SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
12004 SourceLocation Loc) = 0;
12005 virtual SemaDiagnosticBuilder diagnoseFold(Sema &S, SourceLocation Loc);
12006 virtual ~VerifyICEDiagnoser() {}
12007 };
12008
12009 enum AllowFoldKind {
12010 NoFold,
12011 AllowFold,
12012 };
12013
12014 /// VerifyIntegerConstantExpression - Verifies that an expression is an ICE,
12015 /// and reports the appropriate diagnostics. Returns false on success.
12016 /// Can optionally return the value of the expression.
12017 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12018 VerifyICEDiagnoser &Diagnoser,
12019 AllowFoldKind CanFold = NoFold);
12020 ExprResult VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
12021 unsigned DiagID,
12022 AllowFoldKind CanFold = NoFold);
12023 ExprResult VerifyIntegerConstantExpression(Expr *E,
12024 llvm::APSInt *Result = nullptr,
12025 AllowFoldKind CanFold = NoFold);
12026 ExprResult VerifyIntegerConstantExpression(Expr *E,
12027 AllowFoldKind CanFold = NoFold) {
12028 return VerifyIntegerConstantExpression(E, nullptr, CanFold);
12029 }
12030
12031 /// VerifyBitField - verifies that a bit field expression is an ICE and has
12032 /// the correct width, and that the field type is valid.
12033 /// Returns false on success.
12034 /// Can optionally return whether the bit-field is of width 0
12035 ExprResult VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
12036 QualType FieldTy, bool IsMsStruct,
12037 Expr *BitWidth, bool *ZeroWidth = nullptr);
12038
12039private:
12040 unsigned ForceCUDAHostDeviceDepth = 0;
12041
12042public:
12043 /// Increments our count of the number of times we've seen a pragma forcing
12044 /// functions to be __host__ __device__. So long as this count is greater
12045 /// than zero, all functions encountered will be __host__ __device__.
12046 void PushForceCUDAHostDevice();
12047
12048 /// Decrements our count of the number of times we've seen a pragma forcing
12049 /// functions to be __host__ __device__. Returns false if the count is 0
12050 /// before incrementing, so you can emit an error.
12051 bool PopForceCUDAHostDevice();
12052
12053 /// Diagnostics that are emitted only if we discover that the given function
12054 /// must be codegen'ed. Because handling these correctly adds overhead to
12055 /// compilation, this is currently only enabled for CUDA compilations.
12056 llvm::DenseMap<CanonicalDeclPtr<FunctionDecl>,
12057 std::vector<PartialDiagnosticAt>>
12058 DeviceDeferredDiags;
12059
12060 /// A pair of a canonical FunctionDecl and a SourceLocation. When used as the
12061 /// key in a hashtable, both the FD and location are hashed.
12062 struct FunctionDeclAndLoc {
12063 CanonicalDeclPtr<FunctionDecl> FD;
12064 SourceLocation Loc;
12065 };
12066
12067 /// FunctionDecls and SourceLocations for which CheckCUDACall has emitted a
12068 /// (maybe deferred) "bad call" diagnostic. We use this to avoid emitting the
12069 /// same deferred diag twice.
12070 llvm::DenseSet<FunctionDeclAndLoc> LocsWithCUDACallDiags;
12071
12072 /// An inverse call graph, mapping known-emitted functions to one of their
12073 /// known-emitted callers (plus the location of the call).
12074 ///
12075 /// Functions that we can tell a priori must be emitted aren't added to this
12076 /// map.
12077 llvm::DenseMap</* Callee = */ CanonicalDeclPtr<FunctionDecl>,
12078 /* Caller = */ FunctionDeclAndLoc>
12079 DeviceKnownEmittedFns;
12080
12081 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12082 /// context is "used as device code".
12083 ///
12084 /// - If CurContext is a __host__ function, does not emit any diagnostics
12085 /// unless \p EmitOnBothSides is true.
12086 /// - If CurContext is a __device__ or __global__ function, emits the
12087 /// diagnostics immediately.
12088 /// - If CurContext is a __host__ __device__ function and we are compiling for
12089 /// the device, creates a diagnostic which is emitted if and when we realize
12090 /// that the function will be codegen'ed.
12091 ///
12092 /// Example usage:
12093 ///
12094 /// // Variable-length arrays are not allowed in CUDA device code.
12095 /// if (CUDADiagIfDeviceCode(Loc, diag::err_cuda_vla) << CurrentCUDATarget())
12096 /// return ExprError();
12097 /// // Otherwise, continue parsing as normal.
12098 SemaDiagnosticBuilder CUDADiagIfDeviceCode(SourceLocation Loc,
12099 unsigned DiagID);
12100
12101 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12102 /// context is "used as host code".
12103 ///
12104 /// Same as CUDADiagIfDeviceCode, with "host" and "device" switched.
12105 SemaDiagnosticBuilder CUDADiagIfHostCode(SourceLocation Loc, unsigned DiagID);
12106
12107 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12108 /// context is "used as device code".
12109 ///
12110 /// - If CurContext is a `declare target` function or it is known that the
12111 /// function is emitted for the device, emits the diagnostics immediately.
12112 /// - If CurContext is a non-`declare target` function and we are compiling
12113 /// for the device, creates a diagnostic which is emitted if and when we
12114 /// realize that the function will be codegen'ed.
12115 ///
12116 /// Example usage:
12117 ///
12118 /// // Variable-length arrays are not allowed in NVPTX device code.
12119 /// if (diagIfOpenMPDeviceCode(Loc, diag::err_vla_unsupported))
12120 /// return ExprError();
12121 /// // Otherwise, continue parsing as normal.
12122 SemaDiagnosticBuilder
12123 diagIfOpenMPDeviceCode(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD);
12124
12125 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12126 /// context is "used as host code".
12127 ///
12128 /// - If CurContext is a `declare target` function or it is known that the
12129 /// function is emitted for the host, emits the diagnostics immediately.
12130 /// - If CurContext is a non-host function, just ignore it.
12131 ///
12132 /// Example usage:
12133 ///
12134 /// // Variable-length arrays are not allowed in NVPTX device code.
12135 /// if (diagIfOpenMPHostode(Loc, diag::err_vla_unsupported))
12136 /// return ExprError();
12137 /// // Otherwise, continue parsing as normal.
12138 SemaDiagnosticBuilder diagIfOpenMPHostCode(SourceLocation Loc,
12139 unsigned DiagID, FunctionDecl *FD);
12140
12141 SemaDiagnosticBuilder targetDiag(SourceLocation Loc, unsigned DiagID,
12142 FunctionDecl *FD = nullptr);
12143 SemaDiagnosticBuilder targetDiag(SourceLocation Loc,
12144 const PartialDiagnostic &PD,
12145 FunctionDecl *FD = nullptr) {
12146 return targetDiag(Loc, PD.getDiagID(), FD) << PD;
12147 }
12148
12149 /// Check if the expression is allowed to be used in expressions for the
12150 /// offloading devices.
12151 void checkDeviceDecl(ValueDecl *D, SourceLocation Loc);
12152
12153 enum CUDAFunctionTarget {
12154 CFT_Device,
12155 CFT_Global,
12156 CFT_Host,
12157 CFT_HostDevice,
12158 CFT_InvalidTarget
12159 };
12160
12161 /// Determines whether the given function is a CUDA device/host/kernel/etc.
12162 /// function.
12163 ///
12164 /// Use this rather than examining the function's attributes yourself -- you
12165 /// will get it wrong. Returns CFT_Host if D is null.
12166 CUDAFunctionTarget IdentifyCUDATarget(const FunctionDecl *D,
12167 bool IgnoreImplicitHDAttr = false);
12168 CUDAFunctionTarget IdentifyCUDATarget(const ParsedAttributesView &Attrs);
12169
12170 enum CUDAVariableTarget {
12171 CVT_Device, /// Emitted on device side with a shadow variable on host side
12172 CVT_Host, /// Emitted on host side only
12173 CVT_Both, /// Emitted on both sides with different addresses
12174 CVT_Unified, /// Emitted as a unified address, e.g. managed variables
12175 };
12176 /// Determines whether the given variable is emitted on host or device side.
12177 CUDAVariableTarget IdentifyCUDATarget(const VarDecl *D);
12178
12179 /// Gets the CUDA target for the current context.
12180 CUDAFunctionTarget CurrentCUDATarget() {
12181 return IdentifyCUDATarget(dyn_cast<FunctionDecl>(CurContext));
12182 }
12183
12184 static bool isCUDAImplicitHostDeviceFunction(const FunctionDecl *D);
12185
12186 // CUDA function call preference. Must be ordered numerically from
12187 // worst to best.
12188 enum CUDAFunctionPreference {
12189 CFP_Never, // Invalid caller/callee combination.
12190 CFP_WrongSide, // Calls from host-device to host or device
12191 // function that do not match current compilation
12192 // mode.
12193 CFP_HostDevice, // Any calls to host/device functions.
12194 CFP_SameSide, // Calls from host-device to host or device
12195 // function matching current compilation mode.
12196 CFP_Native, // host-to-host or device-to-device calls.
12197 };
12198
12199 /// Identifies relative preference of a given Caller/Callee
12200 /// combination, based on their host/device attributes.
12201 /// \param Caller function which needs address of \p Callee.
12202 /// nullptr in case of global context.
12203 /// \param Callee target function
12204 ///
12205 /// \returns preference value for particular Caller/Callee combination.
12206 CUDAFunctionPreference IdentifyCUDAPreference(const FunctionDecl *Caller,
12207 const FunctionDecl *Callee);
12208
12209 /// Determines whether Caller may invoke Callee, based on their CUDA
12210 /// host/device attributes. Returns false if the call is not allowed.
12211 ///
12212 /// Note: Will return true for CFP_WrongSide calls. These may appear in
12213 /// semantically correct CUDA programs, but only if they're never codegen'ed.
12214 bool IsAllowedCUDACall(const FunctionDecl *Caller,
12215 const FunctionDecl *Callee) {
12216 return IdentifyCUDAPreference(Caller, Callee) != CFP_Never;
12217 }
12218
12219 /// May add implicit CUDAHostAttr and CUDADeviceAttr attributes to FD,
12220 /// depending on FD and the current compilation settings.
12221 void maybeAddCUDAHostDeviceAttrs(FunctionDecl *FD,
12222 const LookupResult &Previous);
12223
12224 /// May add implicit CUDAConstantAttr attribute to VD, depending on VD
12225 /// and current compilation settings.
12226 void MaybeAddCUDAConstantAttr(VarDecl *VD);
12227
12228public:
12229 /// Check whether we're allowed to call Callee from the current context.
12230 ///
12231 /// - If the call is never allowed in a semantically-correct program
12232 /// (CFP_Never), emits an error and returns false.
12233 ///
12234 /// - If the call is allowed in semantically-correct programs, but only if
12235 /// it's never codegen'ed (CFP_WrongSide), creates a deferred diagnostic to
12236 /// be emitted if and when the caller is codegen'ed, and returns true.
12237 ///
12238 /// Will only create deferred diagnostics for a given SourceLocation once,
12239 /// so you can safely call this multiple times without generating duplicate
12240 /// deferred errors.
12241 ///
12242 /// - Otherwise, returns true without emitting any diagnostics.
12243 bool CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee);
12244
12245 void CUDACheckLambdaCapture(CXXMethodDecl *D, const sema::Capture &Capture);
12246
12247 /// Set __device__ or __host__ __device__ attributes on the given lambda
12248 /// operator() method.
12249 ///
12250 /// CUDA lambdas by default is host device function unless it has explicit
12251 /// host or device attribute.
12252 void CUDASetLambdaAttrs(CXXMethodDecl *Method);
12253
12254 /// Finds a function in \p Matches with highest calling priority
12255 /// from \p Caller context and erases all functions with lower
12256 /// calling priority.
12257 void EraseUnwantedCUDAMatches(
12258 const FunctionDecl *Caller,
12259 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches);
12260
12261 /// Given a implicit special member, infer its CUDA target from the
12262 /// calls it needs to make to underlying base/field special members.
12263 /// \param ClassDecl the class for which the member is being created.
12264 /// \param CSM the kind of special member.
12265 /// \param MemberDecl the special member itself.
12266 /// \param ConstRHS true if this is a copy operation with a const object on
12267 /// its RHS.
12268 /// \param Diagnose true if this call should emit diagnostics.
12269 /// \return true if there was an error inferring.
12270 /// The result of this call is implicit CUDA target attribute(s) attached to
12271 /// the member declaration.
12272 bool inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
12273 CXXSpecialMember CSM,
12274 CXXMethodDecl *MemberDecl,
12275 bool ConstRHS,
12276 bool Diagnose);
12277
12278 /// \return true if \p CD can be considered empty according to CUDA
12279 /// (E.2.3.1 in CUDA 7.5 Programming guide).
12280 bool isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD);
12281 bool isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *CD);
12282
12283 // \brief Checks that initializers of \p Var satisfy CUDA restrictions. In
12284 // case of error emits appropriate diagnostic and invalidates \p Var.
12285 //
12286 // \details CUDA allows only empty constructors as initializers for global
12287 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
12288 // __shared__ variables whether they are local or not (they all are implicitly
12289 // static in CUDA). One exception is that CUDA allows constant initializers
12290 // for __constant__ and __device__ variables.
12291 void checkAllowedCUDAInitializer(VarDecl *VD);
12292
12293 /// Check whether NewFD is a valid overload for CUDA. Emits
12294 /// diagnostics and invalidates NewFD if not.
12295 void checkCUDATargetOverload(FunctionDecl *NewFD,
12296 const LookupResult &Previous);
12297 /// Copies target attributes from the template TD to the function FD.
12298 void inheritCUDATargetAttrs(FunctionDecl *FD, const FunctionTemplateDecl &TD);
12299
12300 /// Returns the name of the launch configuration function. This is the name
12301 /// of the function that will be called to configure kernel call, with the
12302 /// parameters specified via <<<>>>.
12303 std::string getCudaConfigureFuncName() const;
12304
12305 /// \name Code completion
12306 //@{
12307 /// Describes the context in which code completion occurs.
12308 enum ParserCompletionContext {
12309 /// Code completion occurs at top-level or namespace context.
12310 PCC_Namespace,
12311 /// Code completion occurs within a class, struct, or union.
12312 PCC_Class,
12313 /// Code completion occurs within an Objective-C interface, protocol,
12314 /// or category.
12315 PCC_ObjCInterface,
12316 /// Code completion occurs within an Objective-C implementation or
12317 /// category implementation
12318 PCC_ObjCImplementation,
12319 /// Code completion occurs within the list of instance variables
12320 /// in an Objective-C interface, protocol, category, or implementation.
12321 PCC_ObjCInstanceVariableList,
12322 /// Code completion occurs following one or more template
12323 /// headers.
12324 PCC_Template,
12325 /// Code completion occurs following one or more template
12326 /// headers within a class.
12327 PCC_MemberTemplate,
12328 /// Code completion occurs within an expression.
12329 PCC_Expression,
12330 /// Code completion occurs within a statement, which may
12331 /// also be an expression or a declaration.
12332 PCC_Statement,
12333 /// Code completion occurs at the beginning of the
12334 /// initialization statement (or expression) in a for loop.
12335 PCC_ForInit,
12336 /// Code completion occurs within the condition of an if,
12337 /// while, switch, or for statement.
12338 PCC_Condition,
12339 /// Code completion occurs within the body of a function on a
12340 /// recovery path, where we do not have a specific handle on our position
12341 /// in the grammar.
12342 PCC_RecoveryInFunction,
12343 /// Code completion occurs where only a type is permitted.
12344 PCC_Type,
12345 /// Code completion occurs in a parenthesized expression, which
12346 /// might also be a type cast.
12347 PCC_ParenthesizedExpression,
12348 /// Code completion occurs within a sequence of declaration
12349 /// specifiers within a function, method, or block.
12350 PCC_LocalDeclarationSpecifiers
12351 };
12352
12353 void CodeCompleteModuleImport(SourceLocation ImportLoc, ModuleIdPath Path);
12354 void CodeCompleteOrdinaryName(Scope *S,
12355 ParserCompletionContext CompletionContext);
12356 void CodeCompleteDeclSpec(Scope *S, DeclSpec &DS,
12357 bool AllowNonIdentifiers,
12358 bool AllowNestedNameSpecifiers);
12359
12360 struct CodeCompleteExpressionData;
12361 void CodeCompleteExpression(Scope *S,
12362 const CodeCompleteExpressionData &Data);
12363 void CodeCompleteExpression(Scope *S, QualType PreferredType,
12364 bool IsParenthesized = false);
12365 void CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base, Expr *OtherOpBase,
12366 SourceLocation OpLoc, bool IsArrow,
12367 bool IsBaseExprStatement,
12368 QualType PreferredType);
12369 void CodeCompletePostfixExpression(Scope *S, ExprResult LHS,
12370 QualType PreferredType);
12371 void CodeCompleteTag(Scope *S, unsigned TagSpec);
12372 void CodeCompleteTypeQualifiers(DeclSpec &DS);
12373 void CodeCompleteFunctionQualifiers(DeclSpec &DS, Declarator &D,
12374 const VirtSpecifiers *VS = nullptr);
12375 void CodeCompleteBracketDeclarator(Scope *S);
12376 void CodeCompleteCase(Scope *S);
12377 /// Determines the preferred type of the current function argument, by
12378 /// examining the signatures of all possible overloads.
12379 /// Returns null if unknown or ambiguous, or if code completion is off.
12380 ///
12381 /// If the code completion point has been reached, also reports the function
12382 /// signatures that were considered.
12383 ///
12384 /// FIXME: rename to GuessCallArgumentType to reduce confusion.
12385 QualType ProduceCallSignatureHelp(Scope *S, Expr *Fn, ArrayRef<Expr *> Args,
12386 SourceLocation OpenParLoc);
12387 QualType ProduceConstructorSignatureHelp(Scope *S, QualType Type,
12388 SourceLocation Loc,
12389 ArrayRef<Expr *> Args,
12390 SourceLocation OpenParLoc);
12391 QualType ProduceCtorInitMemberSignatureHelp(Scope *S, Decl *ConstructorDecl,
12392 CXXScopeSpec SS,
12393 ParsedType TemplateTypeTy,
12394 ArrayRef<Expr *> ArgExprs,
12395 IdentifierInfo *II,
12396 SourceLocation OpenParLoc);
12397 void CodeCompleteInitializer(Scope *S, Decl *D);
12398 /// Trigger code completion for a record of \p BaseType. \p InitExprs are
12399 /// expressions in the initializer list seen so far and \p D is the current
12400 /// Designation being parsed.
12401 void CodeCompleteDesignator(const QualType BaseType,
12402 llvm::ArrayRef<Expr *> InitExprs,
12403 const Designation &D);
12404 void CodeCompleteAfterIf(Scope *S, bool IsBracedThen);
12405
12406 void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS, bool EnteringContext,
12407 bool IsUsingDeclaration, QualType BaseType,
12408 QualType PreferredType);
12409 void CodeCompleteUsing(Scope *S);
12410 void CodeCompleteUsingDirective(Scope *S);
12411 void CodeCompleteNamespaceDecl(Scope *S);
12412 void CodeCompleteNamespaceAliasDecl(Scope *S);
12413 void CodeCompleteOperatorName(Scope *S);
12414 void CodeCompleteConstructorInitializer(
12415 Decl *Constructor,
12416 ArrayRef<CXXCtorInitializer *> Initializers);
12417
12418 void CodeCompleteLambdaIntroducer(Scope *S, LambdaIntroducer &Intro,
12419 bool AfterAmpersand);
12420 void CodeCompleteAfterFunctionEquals(Declarator &D);
12421
12422 void CodeCompleteObjCAtDirective(Scope *S);
12423 void CodeCompleteObjCAtVisibility(Scope *S);
12424 void CodeCompleteObjCAtStatement(Scope *S);
12425 void CodeCompleteObjCAtExpression(Scope *S);
12426 void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS);
12427 void CodeCompleteObjCPropertyGetter(Scope *S);
12428 void CodeCompleteObjCPropertySetter(Scope *S);
12429 void CodeCompleteObjCPassingType(Scope *S, ObjCDeclSpec &DS,
12430 bool IsParameter);
12431 void CodeCompleteObjCMessageReceiver(Scope *S);
12432 void CodeCompleteObjCSuperMessage(Scope *S, SourceLocation SuperLoc,
12433 ArrayRef<IdentifierInfo *> SelIdents,
12434 bool AtArgumentExpression);
12435 void CodeCompleteObjCClassMessage(Scope *S, ParsedType Receiver,
12436 ArrayRef<IdentifierInfo *> SelIdents,
12437 bool AtArgumentExpression,
12438 bool IsSuper = false);
12439 void CodeCompleteObjCInstanceMessage(Scope *S, Expr *Receiver,
12440 ArrayRef<IdentifierInfo *> SelIdents,
12441 bool AtArgumentExpression,
12442 ObjCInterfaceDecl *Super = nullptr);
12443 void CodeCompleteObjCForCollection(Scope *S,
12444 DeclGroupPtrTy IterationVar);
12445 void CodeCompleteObjCSelector(Scope *S,
12446 ArrayRef<IdentifierInfo *> SelIdents);
12447 void CodeCompleteObjCProtocolReferences(
12448 ArrayRef<IdentifierLocPair> Protocols);
12449 void CodeCompleteObjCProtocolDecl(Scope *S);
12450 void CodeCompleteObjCInterfaceDecl(Scope *S);
12451 void CodeCompleteObjCSuperclass(Scope *S,
12452 IdentifierInfo *ClassName,
12453 SourceLocation ClassNameLoc);
12454 void CodeCompleteObjCImplementationDecl(Scope *S);
12455 void CodeCompleteObjCInterfaceCategory(Scope *S,
12456 IdentifierInfo *ClassName,
12457 SourceLocation ClassNameLoc);
12458 void CodeCompleteObjCImplementationCategory(Scope *S,
12459 IdentifierInfo *ClassName,
12460 SourceLocation ClassNameLoc);
12461 void CodeCompleteObjCPropertyDefinition(Scope *S);
12462 void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
12463 IdentifierInfo *PropertyName);
12464 void CodeCompleteObjCMethodDecl(Scope *S, Optional<bool> IsInstanceMethod,
12465 ParsedType ReturnType);
12466 void CodeCompleteObjCMethodDeclSelector(Scope *S,
12467 bool IsInstanceMethod,
12468 bool AtParameterName,
12469 ParsedType ReturnType,
12470 ArrayRef<IdentifierInfo *> SelIdents);
12471 void CodeCompleteObjCClassPropertyRefExpr(Scope *S, IdentifierInfo &ClassName,
12472 SourceLocation ClassNameLoc,
12473 bool IsBaseExprStatement);
12474 void CodeCompletePreprocessorDirective(bool InConditional);
12475 void CodeCompleteInPreprocessorConditionalExclusion(Scope *S);
12476 void CodeCompletePreprocessorMacroName(bool IsDefinition);
12477 void CodeCompletePreprocessorExpression();
12478 void CodeCompletePreprocessorMacroArgument(Scope *S,
12479 IdentifierInfo *Macro,
12480 MacroInfo *MacroInfo,
12481 unsigned Argument);
12482 void CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled);
12483 void CodeCompleteNaturalLanguage();
12484 void CodeCompleteAvailabilityPlatformName();
12485 void GatherGlobalCodeCompletions(CodeCompletionAllocator &Allocator,
12486 CodeCompletionTUInfo &CCTUInfo,
12487 SmallVectorImpl<CodeCompletionResult> &Results);
12488 //@}
12489
12490 //===--------------------------------------------------------------------===//
12491 // Extra semantic analysis beyond the C type system
12492
12493public:
12494 SourceLocation getLocationOfStringLiteralByte(const StringLiteral *SL,
12495 unsigned ByteNo) const;
12496
12497private:
12498 void CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
12499 const ArraySubscriptExpr *ASE=nullptr,
12500 bool AllowOnePastEnd=true, bool IndexNegated=false);
12501 void CheckArrayAccess(const Expr *E);
12502 // Used to grab the relevant information from a FormatAttr and a
12503 // FunctionDeclaration.
12504 struct FormatStringInfo {
12505 unsigned FormatIdx;
12506 unsigned FirstDataArg;
12507 bool HasVAListArg;
12508 };
12509
12510 static bool getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
12511 FormatStringInfo *FSI);
12512 bool CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
12513 const FunctionProtoType *Proto);
12514 bool CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation loc,
12515 ArrayRef<const Expr *> Args);
12516 bool CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
12517 const FunctionProtoType *Proto);
12518 bool CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto);
12519 void CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
12520 ArrayRef<const Expr *> Args,
12521 const FunctionProtoType *Proto, SourceLocation Loc);
12522
12523 void CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
12524 StringRef ParamName, QualType ArgTy, QualType ParamTy);
12525
12526 void checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
12527 const Expr *ThisArg, ArrayRef<const Expr *> Args,
12528 bool IsMemberFunction, SourceLocation Loc, SourceRange Range,
12529 VariadicCallType CallType);
12530
12531 bool CheckObjCString(Expr *Arg);
12532 ExprResult CheckOSLogFormatStringArg(Expr *Arg);
12533
12534 ExprResult CheckBuiltinFunctionCall(FunctionDecl *FDecl,
12535 unsigned BuiltinID, CallExpr *TheCall);
12536
12537 bool CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12538 CallExpr *TheCall);
12539
12540 void checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, CallExpr *TheCall);
12541
12542 bool CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
12543 unsigned MaxWidth);
12544 bool CheckNeonBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12545 CallExpr *TheCall);
12546 bool CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12547 bool CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12548 bool CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12549 CallExpr *TheCall);
12550 bool CheckARMCoprocessorImmediate(const TargetInfo &TI, const Expr *CoprocArg,
12551 bool WantCDE);
12552 bool CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12553 CallExpr *TheCall);
12554
12555 bool CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12556 CallExpr *TheCall);
12557 bool CheckBPFBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12558 bool CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12559 bool CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12560 bool CheckMipsBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12561 CallExpr *TheCall);
12562 bool CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
12563 CallExpr *TheCall);
12564 bool CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall);
12565 bool CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12566 bool CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall);
12567 bool CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, CallExpr *TheCall);
12568 bool CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall);
12569 bool CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
12570 ArrayRef<int> ArgNums);
12571 bool CheckX86BuiltinTileDuplicate(CallExpr *TheCall, ArrayRef<int> ArgNums);
12572 bool CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
12573 ArrayRef<int> ArgNums);
12574 bool CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12575 CallExpr *TheCall);
12576 bool CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12577 CallExpr *TheCall);
12578 bool CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall);
12579 bool CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum);
12580 bool CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
12581 CallExpr *TheCall);
12582
12583 bool SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall);
12584 bool SemaBuiltinVAStartARMMicrosoft(CallExpr *Call);
12585 bool SemaBuiltinUnorderedCompare(CallExpr *TheCall);
12586 bool SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs);
12587 bool SemaBuiltinComplex(CallExpr *TheCall);
12588 bool SemaBuiltinVSX(CallExpr *TheCall);
12589 bool SemaBuiltinOSLogFormat(CallExpr *TheCall);
12590 bool SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum);
12591
12592public:
12593 // Used by C++ template instantiation.
12594 ExprResult SemaBuiltinShuffleVector(CallExpr *TheCall);
12595 ExprResult SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
12596 SourceLocation BuiltinLoc,
12597 SourceLocation RParenLoc);
12598
12599private:
12600 bool SemaBuiltinPrefetch(CallExpr *TheCall);
12601 bool SemaBuiltinAllocaWithAlign(CallExpr *TheCall);
12602 bool SemaBuiltinArithmeticFence(CallExpr *TheCall);
12603 bool SemaBuiltinAssume(CallExpr *TheCall);
12604 bool SemaBuiltinAssumeAligned(CallExpr *TheCall);
12605 bool SemaBuiltinLongjmp(CallExpr *TheCall);
12606 bool SemaBuiltinSetjmp(CallExpr *TheCall);
12607 ExprResult SemaBuiltinAtomicOverloaded(ExprResult TheCallResult);
12608 ExprResult SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult);
12609 ExprResult SemaAtomicOpsOverloaded(ExprResult TheCallResult,
12610 AtomicExpr::AtomicOp Op);
12611 ExprResult SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
12612 bool IsDelete);
12613 bool SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
12614 llvm::APSInt &Result);
12615 bool SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
12616 int High, bool RangeIsError = true);
12617 bool SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
12618 unsigned Multiple);
12619 bool SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum);
12620 bool SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
12621 unsigned ArgBits);
12622 bool SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
12623 unsigned ArgBits);
12624 bool SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
12625 int ArgNum, unsigned ExpectedFieldNum,
12626 bool AllowName);
12627 bool SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall);
12628 bool SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeDesc);
12629
12630 bool CheckPPCMMAType(QualType Type, SourceLocation TypeLoc);
12631
12632 // Matrix builtin handling.
12633 ExprResult SemaBuiltinMatrixTranspose(CallExpr *TheCall,
12634 ExprResult CallResult);
12635 ExprResult SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
12636 ExprResult CallResult);
12637 ExprResult SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
12638 ExprResult CallResult);
12639
12640public:
12641 enum FormatStringType {
12642 FST_Scanf,
12643 FST_Printf,
12644 FST_NSString,
12645 FST_Strftime,
12646 FST_Strfmon,
12647 FST_Kprintf,
12648 FST_FreeBSDKPrintf,
12649 FST_OSTrace,
12650 FST_OSLog,
12651 FST_Syslog,
12652 FST_Unknown
12653 };
12654 static FormatStringType GetFormatStringType(const FormatAttr *Format);
12655
12656 bool FormatStringHasSArg(const StringLiteral *FExpr);
12657
12658 static bool GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx);
12659
12660private:
12661 bool CheckFormatArguments(const FormatAttr *Format,
12662 ArrayRef<const Expr *> Args,
12663 bool IsCXXMember,
12664 VariadicCallType CallType,
12665 SourceLocation Loc, SourceRange Range,
12666 llvm::SmallBitVector &CheckedVarArgs);
12667 bool CheckFormatArguments(ArrayRef<const Expr *> Args,
12668 bool HasVAListArg, unsigned format_idx,
12669 unsigned firstDataArg, FormatStringType Type,
12670 VariadicCallType CallType,
12671 SourceLocation Loc, SourceRange range,
12672 llvm::SmallBitVector &CheckedVarArgs);
12673
12674 void CheckAbsoluteValueFunction(const CallExpr *Call,
12675 const FunctionDecl *FDecl);
12676
12677 void CheckMaxUnsignedZero(const CallExpr *Call, const FunctionDecl *FDecl);
12678
12679 void CheckMemaccessArguments(const CallExpr *Call,
12680 unsigned BId,
12681 IdentifierInfo *FnName);
12682
12683 void CheckStrlcpycatArguments(const CallExpr *Call,
12684 IdentifierInfo *FnName);
12685
12686 void CheckStrncatArguments(const CallExpr *Call,
12687 IdentifierInfo *FnName);
12688
12689 void CheckFreeArguments(const CallExpr *E);
12690
12691 void CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
12692 SourceLocation ReturnLoc,
12693 bool isObjCMethod = false,
12694 const AttrVec *Attrs = nullptr,
12695 const FunctionDecl *FD = nullptr);
12696
12697public:
12698 void CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS);
12699
12700private:
12701 void CheckImplicitConversions(Expr *E, SourceLocation CC = SourceLocation());
12702 void CheckBoolLikeConversion(Expr *E, SourceLocation CC);
12703 void CheckForIntOverflow(Expr *E);
12704 void CheckUnsequencedOperations(const Expr *E);
12705
12706 /// Perform semantic checks on a completed expression. This will either
12707 /// be a full-expression or a default argument expression.
12708 void CheckCompletedExpr(Expr *E, SourceLocation CheckLoc = SourceLocation(),
12709 bool IsConstexpr = false);
12710
12711 void CheckBitFieldInitialization(SourceLocation InitLoc, FieldDecl *Field,
12712 Expr *Init);
12713
12714 /// Check if there is a field shadowing.
12715 void CheckShadowInheritedFields(const SourceLocation &Loc,
12716 DeclarationName FieldName,
12717 const CXXRecordDecl *RD,
12718 bool DeclIsField = true);
12719
12720 /// Check if the given expression contains 'break' or 'continue'
12721 /// statement that produces control flow different from GCC.
12722 void CheckBreakContinueBinding(Expr *E);
12723
12724 /// Check whether receiver is mutable ObjC container which
12725 /// attempts to add itself into the container
12726 void CheckObjCCircularContainer(ObjCMessageExpr *Message);
12727
12728 void CheckTCBEnforcement(const CallExpr *TheCall, const FunctionDecl *Callee);
12729
12730 void AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE);
12731 void AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
12732 bool DeleteWasArrayForm);
12733public:
12734 /// Register a magic integral constant to be used as a type tag.
12735 void RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
12736 uint64_t MagicValue, QualType Type,
12737 bool LayoutCompatible, bool MustBeNull);
12738
12739 struct TypeTagData {
12740 TypeTagData() {}
12741
12742 TypeTagData(QualType Type, bool LayoutCompatible, bool MustBeNull) :
12743 Type(Type), LayoutCompatible(LayoutCompatible),
12744 MustBeNull(MustBeNull)
12745 {}
12746
12747 QualType Type;
12748
12749 /// If true, \c Type should be compared with other expression's types for
12750 /// layout-compatibility.
12751 unsigned LayoutCompatible : 1;
12752 unsigned MustBeNull : 1;
12753 };
12754
12755 /// A pair of ArgumentKind identifier and magic value. This uniquely
12756 /// identifies the magic value.
12757 typedef std::pair<const IdentifierInfo *, uint64_t> TypeTagMagicValue;
12758
12759private:
12760 /// A map from magic value to type information.
12761 std::unique_ptr<llvm::DenseMap<TypeTagMagicValue, TypeTagData>>
12762 TypeTagForDatatypeMagicValues;
12763
12764 /// Peform checks on a call of a function with argument_with_type_tag
12765 /// or pointer_with_type_tag attributes.
12766 void CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
12767 const ArrayRef<const Expr *> ExprArgs,
12768 SourceLocation CallSiteLoc);
12769
12770 /// Check if we are taking the address of a packed field
12771 /// as this may be a problem if the pointer value is dereferenced.
12772 void CheckAddressOfPackedMember(Expr *rhs);
12773
12774 /// The parser's current scope.
12775 ///
12776 /// The parser maintains this state here.
12777 Scope *CurScope;
12778
12779 mutable IdentifierInfo *Ident_super;
12780 mutable IdentifierInfo *Ident___float128;
12781
12782 /// Nullability type specifiers.
12783 IdentifierInfo *Ident__Nonnull = nullptr;
12784 IdentifierInfo *Ident__Nullable = nullptr;
12785 IdentifierInfo *Ident__Nullable_result = nullptr;
12786 IdentifierInfo *Ident__Null_unspecified = nullptr;
12787
12788 IdentifierInfo *Ident_NSError = nullptr;
12789
12790 /// The handler for the FileChanged preprocessor events.
12791 ///
12792 /// Used for diagnostics that implement custom semantic analysis for #include
12793 /// directives, like -Wpragma-pack.
12794 sema::SemaPPCallbacks *SemaPPCallbackHandler;
12795
12796protected:
12797 friend class Parser;
12798 friend class InitializationSequence;
12799 friend class ASTReader;
12800 friend class ASTDeclReader;
12801 friend class ASTWriter;
12802
12803public:
12804 /// Retrieve the keyword associated
12805 IdentifierInfo *getNullabilityKeyword(NullabilityKind nullability);
12806
12807 /// The struct behind the CFErrorRef pointer.
12808 RecordDecl *CFError = nullptr;
12809 bool isCFError(RecordDecl *D);
12810
12811 /// Retrieve the identifier "NSError".
12812 IdentifierInfo *getNSErrorIdent();
12813
12814 /// Retrieve the parser's current scope.
12815 ///
12816 /// This routine must only be used when it is certain that semantic analysis
12817 /// and the parser are in precisely the same context, which is not the case
12818 /// when, e.g., we are performing any kind of template instantiation.
12819 /// Therefore, the only safe places to use this scope are in the parser
12820 /// itself and in routines directly invoked from the parser and *never* from
12821 /// template substitution or instantiation.
12822 Scope *getCurScope() const { return CurScope; }
12823
12824 void incrementMSManglingNumber() const {
12825 return CurScope->incrementMSManglingNumber();
12826 }
12827
12828 IdentifierInfo *getSuperIdentifier() const;
12829 IdentifierInfo *getFloat128Identifier() const;
12830
12831 Decl *getObjCDeclContext() const;
12832
12833 DeclContext *getCurLexicalContext() const {
12834 return OriginalLexicalContext ? OriginalLexicalContext : CurContext;
12835 }
12836
12837 const DeclContext *getCurObjCLexicalContext() const {
12838 const DeclContext *DC = getCurLexicalContext();
12839 // A category implicitly has the attribute of the interface.
12840 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(DC))
12841 DC = CatD->getClassInterface();
12842 return DC;
12843 }
12844
12845 /// Determine the number of levels of enclosing template parameters. This is
12846 /// only usable while parsing. Note that this does not include dependent
12847 /// contexts in which no template parameters have yet been declared, such as
12848 /// in a terse function template or generic lambda before the first 'auto' is
12849 /// encountered.
12850 unsigned getTemplateDepth(Scope *S) const;
12851
12852 /// To be used for checking whether the arguments being passed to
12853 /// function exceeds the number of parameters expected for it.
12854 static bool TooManyArguments(size_t NumParams, size_t NumArgs,
12855 bool PartialOverloading = false) {
12856 // We check whether we're just after a comma in code-completion.
12857 if (NumArgs > 0 && PartialOverloading)
12858 return NumArgs + 1 > NumParams; // If so, we view as an extra argument.
12859 return NumArgs > NumParams;
12860 }
12861
12862 // Emitting members of dllexported classes is delayed until the class
12863 // (including field initializers) is fully parsed.
12864 SmallVector<CXXRecordDecl*, 4> DelayedDllExportClasses;
12865 SmallVector<CXXMethodDecl*, 4> DelayedDllExportMemberFunctions;
12866
12867private:
12868 int ParsingClassDepth = 0;
12869
12870 class SavePendingParsedClassStateRAII {
12871 public:
12872 SavePendingParsedClassStateRAII(Sema &S) : S(S) { swapSavedState(); }
12873
12874 ~SavePendingParsedClassStateRAII() {
12875 assert(S.DelayedOverridingExceptionSpecChecks.empty() &&((void)0)
12876 "there shouldn't be any pending delayed exception spec checks")((void)0);
12877 assert(S.DelayedEquivalentExceptionSpecChecks.empty() &&((void)0)
12878 "there shouldn't be any pending delayed exception spec checks")((void)0);
12879 swapSavedState();
12880 }
12881
12882 private:
12883 Sema &S;
12884 decltype(DelayedOverridingExceptionSpecChecks)
12885 SavedOverridingExceptionSpecChecks;
12886 decltype(DelayedEquivalentExceptionSpecChecks)
12887 SavedEquivalentExceptionSpecChecks;
12888
12889 void swapSavedState() {
12890 SavedOverridingExceptionSpecChecks.swap(
12891 S.DelayedOverridingExceptionSpecChecks);
12892 SavedEquivalentExceptionSpecChecks.swap(
12893 S.DelayedEquivalentExceptionSpecChecks);
12894 }
12895 };
12896
12897 /// Helper class that collects misaligned member designations and
12898 /// their location info for delayed diagnostics.
12899 struct MisalignedMember {
12900 Expr *E;
12901 RecordDecl *RD;
12902 ValueDecl *MD;
12903 CharUnits Alignment;
12904
12905 MisalignedMember() : E(), RD(), MD(), Alignment() {}
12906 MisalignedMember(Expr *E, RecordDecl *RD, ValueDecl *MD,
12907 CharUnits Alignment)
12908 : E(E), RD(RD), MD(MD), Alignment(Alignment) {}
12909 explicit MisalignedMember(Expr *E)
12910 : MisalignedMember(E, nullptr, nullptr, CharUnits()) {}
12911
12912 bool operator==(const MisalignedMember &m) { return this->E == m.E; }
12913 };
12914 /// Small set of gathered accesses to potentially misaligned members
12915 /// due to the packed attribute.
12916 SmallVector<MisalignedMember, 4> MisalignedMembers;
12917
12918 /// Adds an expression to the set of gathered misaligned members.
12919 void AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
12920 CharUnits Alignment);
12921
12922public:
12923 /// Diagnoses the current set of gathered accesses. This typically
12924 /// happens at full expression level. The set is cleared after emitting the
12925 /// diagnostics.
12926 void DiagnoseMisalignedMembers();
12927
12928 /// This function checks if the expression is in the sef of potentially
12929 /// misaligned members and it is converted to some pointer type T with lower
12930 /// or equal alignment requirements. If so it removes it. This is used when
12931 /// we do not want to diagnose such misaligned access (e.g. in conversions to
12932 /// void*).
12933 void DiscardMisalignedMemberAddress(const Type *T, Expr *E);
12934
12935 /// This function calls Action when it determines that E designates a
12936 /// misaligned member due to the packed attribute. This is used to emit
12937 /// local diagnostics like in reference binding.
12938 void RefersToMemberWithReducedAlignment(
12939 Expr *E,
12940 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
12941 Action);
12942
12943 /// Describes the reason a calling convention specification was ignored, used
12944 /// for diagnostics.
12945 enum class CallingConventionIgnoredReason {
12946 ForThisTarget = 0,
12947 VariadicFunction,
12948 ConstructorDestructor,
12949 BuiltinFunction
12950 };
12951 /// Creates a SemaDiagnosticBuilder that emits the diagnostic if the current
12952 /// context is "used as device code".
12953 ///
12954 /// - If CurLexicalContext is a kernel function or it is known that the
12955 /// function will be emitted for the device, emits the diagnostics
12956 /// immediately.
12957 /// - If CurLexicalContext is a function and we are compiling
12958 /// for the device, but we don't know that this function will be codegen'ed
12959 /// for devive yet, creates a diagnostic which is emitted if and when we
12960 /// realize that the function will be codegen'ed.
12961 ///
12962 /// Example usage:
12963 ///
12964 /// Diagnose __float128 type usage only from SYCL device code if the current
12965 /// target doesn't support it
12966 /// if (!S.Context.getTargetInfo().hasFloat128Type() &&
12967 /// S.getLangOpts().SYCLIsDevice)
12968 /// SYCLDiagIfDeviceCode(Loc, diag::err_type_unsupported) << "__float128";
12969 SemaDiagnosticBuilder SYCLDiagIfDeviceCode(SourceLocation Loc,
12970 unsigned DiagID);
12971
12972 /// Check whether we're allowed to call Callee from the current context.
12973 ///
12974 /// - If the call is never allowed in a semantically-correct program
12975 /// emits an error and returns false.
12976 ///
12977 /// - If the call is allowed in semantically-correct programs, but only if
12978 /// it's never codegen'ed, creates a deferred diagnostic to be emitted if
12979 /// and when the caller is codegen'ed, and returns true.
12980 ///
12981 /// - Otherwise, returns true without emitting any diagnostics.
12982 ///
12983 /// Adds Callee to DeviceCallGraph if we don't know if its caller will be
12984 /// codegen'ed yet.
12985 bool checkSYCLDeviceFunction(SourceLocation Loc, FunctionDecl *Callee);
12986};
12987
12988/// RAII object that enters a new expression evaluation context.
12989class EnterExpressionEvaluationContext {
12990 Sema &Actions;
12991 bool Entered = true;
12992
12993public:
12994 EnterExpressionEvaluationContext(
12995 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
12996 Decl *LambdaContextDecl = nullptr,
12997 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
12998 Sema::ExpressionEvaluationContextRecord::EK_Other,
12999 bool ShouldEnter = true)
13000 : Actions(Actions), Entered(ShouldEnter) {
13001 if (Entered)
13002 Actions.PushExpressionEvaluationContext(NewContext, LambdaContextDecl,
13003 ExprContext);
13004 }
13005 EnterExpressionEvaluationContext(
13006 Sema &Actions, Sema::ExpressionEvaluationContext NewContext,
13007 Sema::ReuseLambdaContextDecl_t,
13008 Sema::ExpressionEvaluationContextRecord::ExpressionKind ExprContext =
13009 Sema::ExpressionEvaluationContextRecord::EK_Other)
13010 : Actions(Actions) {
13011 Actions.PushExpressionEvaluationContext(
13012 NewContext, Sema::ReuseLambdaContextDecl, ExprContext);
13013 }
13014
13015 enum InitListTag { InitList };
13016 EnterExpressionEvaluationContext(Sema &Actions, InitListTag,
13017 bool ShouldEnter = true)
13018 : Actions(Actions), Entered(false) {
13019 // In C++11 onwards, narrowing checks are performed on the contents of
13020 // braced-init-lists, even when they occur within unevaluated operands.
13021 // Therefore we still need to instantiate constexpr functions used in such
13022 // a context.
13023 if (ShouldEnter && Actions.isUnevaluatedContext() &&
13024 Actions.getLangOpts().CPlusPlus11) {
13025 Actions.PushExpressionEvaluationContext(
13026 Sema::ExpressionEvaluationContext::UnevaluatedList);
13027 Entered = true;
13028 }
13029 }
13030
13031 ~EnterExpressionEvaluationContext() {
13032 if (Entered)
13033 Actions.PopExpressionEvaluationContext();
13034 }
13035};
13036
13037DeductionFailureInfo
13038MakeDeductionFailureInfo(ASTContext &Context, Sema::TemplateDeductionResult TDK,
13039 sema::TemplateDeductionInfo &Info);
13040
13041/// Contains a late templated function.
13042/// Will be parsed at the end of the translation unit, used by Sema & Parser.
13043struct LateParsedTemplate {
13044 CachedTokens Toks;
13045 /// The template function declaration to be late parsed.
13046 Decl *D;
13047};
13048
13049template <>
13050void Sema::PragmaStack<Sema::AlignPackInfo>::Act(SourceLocation PragmaLocation,
13051 PragmaMsStackAction Action,
13052 llvm::StringRef StackSlotLabel,
13053 AlignPackInfo Value);
13054
13055} // end namespace clang
13056
13057namespace llvm {
13058// Hash a FunctionDeclAndLoc by looking at both its FunctionDecl and its
13059// SourceLocation.
13060template <> struct DenseMapInfo<clang::Sema::FunctionDeclAndLoc> {
13061 using FunctionDeclAndLoc = clang::Sema::FunctionDeclAndLoc;
13062 using FDBaseInfo = DenseMapInfo<clang::CanonicalDeclPtr<clang::FunctionDecl>>;
13063
13064 static FunctionDeclAndLoc getEmptyKey() {
13065 return {FDBaseInfo::getEmptyKey(), clang::SourceLocation()};
13066 }
13067
13068 static FunctionDeclAndLoc getTombstoneKey() {
13069 return {FDBaseInfo::getTombstoneKey(), clang::SourceLocation()};
13070 }
13071
13072 static unsigned getHashValue(const FunctionDeclAndLoc &FDL) {
13073 return hash_combine(FDBaseInfo::getHashValue(FDL.FD),
13074 FDL.Loc.getHashValue());
13075 }
13076
13077 static bool isEqual(const FunctionDeclAndLoc &LHS,
13078 const FunctionDeclAndLoc &RHS) {
13079 return LHS.FD == RHS.FD && LHS.Loc == RHS.Loc;
13080 }
13081};
13082} // namespace llvm
13083
13084#endif