File: | src/lib/libcrypto/bn/bn_exp.c |
Warning: | line 966, column 7 Although the value stored to 'd' is used in the enclosing expression, the value is never actually read from 'd' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: bn_exp.c,v 1.31 2017/05/02 03:59:44 deraadt Exp $ */ |
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | * All rights reserved. |
4 | * |
5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * |
9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. |
22 | * |
23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions |
25 | * are met: |
26 | * 1. Redistributions of source code must retain the copyright |
27 | * notice, this list of conditions and the following disclaimer. |
28 | * 2. Redistributions in binary form must reproduce the above copyright |
29 | * notice, this list of conditions and the following disclaimer in the |
30 | * documentation and/or other materials provided with the distribution. |
31 | * 3. All advertising materials mentioning features or use of this software |
32 | * must display the following acknowledgement: |
33 | * "This product includes cryptographic software written by |
34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. |
52 | * |
53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence |
56 | * [including the GNU Public Licence.] |
57 | */ |
58 | /* ==================================================================== |
59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
60 | * |
61 | * Redistribution and use in source and binary forms, with or without |
62 | * modification, are permitted provided that the following conditions |
63 | * are met: |
64 | * |
65 | * 1. Redistributions of source code must retain the above copyright |
66 | * notice, this list of conditions and the following disclaimer. |
67 | * |
68 | * 2. Redistributions in binary form must reproduce the above copyright |
69 | * notice, this list of conditions and the following disclaimer in |
70 | * the documentation and/or other materials provided with the |
71 | * distribution. |
72 | * |
73 | * 3. All advertising materials mentioning features or use of this |
74 | * software must display the following acknowledgment: |
75 | * "This product includes software developed by the OpenSSL Project |
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
77 | * |
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
79 | * endorse or promote products derived from this software without |
80 | * prior written permission. For written permission, please contact |
81 | * openssl-core@openssl.org. |
82 | * |
83 | * 5. Products derived from this software may not be called "OpenSSL" |
84 | * nor may "OpenSSL" appear in their names without prior written |
85 | * permission of the OpenSSL Project. |
86 | * |
87 | * 6. Redistributions of any form whatsoever must retain the following |
88 | * acknowledgment: |
89 | * "This product includes software developed by the OpenSSL Project |
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
91 | * |
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
104 | * ==================================================================== |
105 | * |
106 | * This product includes cryptographic software written by Eric Young |
107 | * (eay@cryptsoft.com). This product includes software written by Tim |
108 | * Hudson (tjh@cryptsoft.com). |
109 | * |
110 | */ |
111 | |
112 | #include <stdlib.h> |
113 | #include <string.h> |
114 | |
115 | #include <openssl/err.h> |
116 | |
117 | #include "bn_lcl.h" |
118 | #include "constant_time_locl.h" |
119 | |
120 | /* maximum precomputation table size for *variable* sliding windows */ |
121 | #define TABLE_SIZE32 32 |
122 | |
123 | /* this one works - simple but works */ |
124 | int |
125 | BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
126 | { |
127 | int i, bits, ret = 0; |
128 | BIGNUM *v, *rr; |
129 | |
130 | if (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0) { |
131 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
132 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED)ERR_put_error(3,(0xfff),((2|64)),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,132); |
133 | return -1; |
134 | } |
135 | |
136 | BN_CTX_start(ctx); |
137 | if ((r == a) || (r == p)) |
138 | rr = BN_CTX_get(ctx); |
139 | else |
140 | rr = r; |
141 | v = BN_CTX_get(ctx); |
142 | if (rr == NULL((void *)0) || v == NULL((void *)0)) |
143 | goto err; |
144 | |
145 | if (BN_copy(v, a) == NULL((void *)0)) |
146 | goto err; |
147 | bits = BN_num_bits(p); |
148 | |
149 | if (BN_is_odd(p)) { |
150 | if (BN_copy(rr, a) == NULL((void *)0)) |
151 | goto err; |
152 | } else { |
153 | if (!BN_one(rr)BN_set_word((rr), 1)) |
154 | goto err; |
155 | } |
156 | |
157 | for (i = 1; i < bits; i++) { |
158 | if (!BN_sqr(v, v, ctx)) |
159 | goto err; |
160 | if (BN_is_bit_set(p, i)) { |
161 | if (!BN_mul(rr, rr, v, ctx)) |
162 | goto err; |
163 | } |
164 | } |
165 | ret = 1; |
166 | |
167 | err: |
168 | if (r != rr && rr != NULL((void *)0)) |
169 | BN_copy(r, rr); |
170 | BN_CTX_end(ctx); |
171 | bn_check_top(r); |
172 | return (ret); |
173 | } |
174 | |
175 | static int |
176 | BN_mod_exp_internal(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
177 | BN_CTX *ctx, int ct) |
178 | { |
179 | int ret; |
180 | |
181 | bn_check_top(a); |
182 | bn_check_top(p); |
183 | bn_check_top(m); |
184 | |
185 | /* For even modulus m = 2^k*m_odd, it might make sense to compute |
186 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery |
187 | * exponentiation for the odd part), using appropriate exponent |
188 | * reductions, and combine the results using the CRT. |
189 | * |
190 | * For now, we use Montgomery only if the modulus is odd; otherwise, |
191 | * exponentiation using the reciprocal-based quick remaindering |
192 | * algorithm is used. |
193 | * |
194 | * (Timing obtained with expspeed.c [computations a^p mod m |
195 | * where a, p, m are of the same length: 256, 512, 1024, 2048, |
196 | * 4096, 8192 bits], compared to the running time of the |
197 | * standard algorithm: |
198 | * |
199 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] |
200 | * 55 .. 77 % [UltraSparc processor, but |
201 | * debug-solaris-sparcv8-gcc conf.] |
202 | * |
203 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] |
204 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] |
205 | * |
206 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont |
207 | * at 2048 and more bits, but at 512 and 1024 bits, it was |
208 | * slower even than the standard algorithm! |
209 | * |
210 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] |
211 | * should be obtained when the new Montgomery reduction code |
212 | * has been integrated into OpenSSL.) |
213 | */ |
214 | |
215 | if (BN_is_odd(m)) { |
216 | if (a->top == 1 && !a->neg && !ct) { |
217 | BN_ULONGunsigned long A = a->d[0]; |
218 | ret = BN_mod_exp_mont_word(r, A,p, m,ctx, NULL((void *)0)); |
219 | } else |
220 | ret = BN_mod_exp_mont_ct(r, a,p, m,ctx, NULL((void *)0)); |
221 | } else { |
222 | ret = BN_mod_exp_recp(r, a,p, m, ctx); |
223 | } |
224 | |
225 | bn_check_top(r); |
226 | return (ret); |
227 | } |
228 | |
229 | int |
230 | BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
231 | BN_CTX *ctx) |
232 | { |
233 | return BN_mod_exp_internal(r, a, p, m, ctx, |
234 | (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0)); |
235 | } |
236 | |
237 | int |
238 | BN_mod_exp_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
239 | BN_CTX *ctx) |
240 | { |
241 | return BN_mod_exp_internal(r, a, p, m, ctx, 1); |
242 | } |
243 | |
244 | |
245 | int |
246 | BN_mod_exp_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
247 | BN_CTX *ctx) |
248 | { |
249 | return BN_mod_exp_internal(r, a, p, m, ctx, 0); |
250 | } |
251 | |
252 | |
253 | int |
254 | BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
255 | BN_CTX *ctx) |
256 | { |
257 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
258 | int start = 1; |
259 | BIGNUM *aa; |
260 | /* Table of variables obtained from 'ctx' */ |
261 | BIGNUM *val[TABLE_SIZE32]; |
262 | BN_RECP_CTX recp; |
263 | |
264 | if (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0) { |
265 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
266 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED)ERR_put_error(3,(0xfff),((2|64)),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,266); |
267 | return -1; |
268 | } |
269 | |
270 | bits = BN_num_bits(p); |
271 | if (bits == 0) { |
272 | /* x**0 mod 1 is still zero. */ |
273 | if (BN_is_one(m)) { |
274 | ret = 1; |
275 | BN_zero(r)(BN_set_word((r),0)); |
276 | } else |
277 | ret = BN_one(r)BN_set_word((r), 1); |
278 | return ret; |
279 | } |
280 | |
281 | BN_CTX_start(ctx); |
282 | if ((aa = BN_CTX_get(ctx)) == NULL((void *)0)) |
283 | goto err; |
284 | if ((val[0] = BN_CTX_get(ctx)) == NULL((void *)0)) |
285 | goto err; |
286 | |
287 | BN_RECP_CTX_init(&recp); |
288 | if (m->neg) { |
289 | /* ignore sign of 'm' */ |
290 | if (!BN_copy(aa, m)) |
291 | goto err; |
292 | aa->neg = 0; |
293 | if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) |
294 | goto err; |
295 | } else { |
296 | if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) |
297 | goto err; |
298 | } |
299 | |
300 | if (!BN_nnmod(val[0], a, m, ctx)) |
301 | goto err; /* 1 */ |
302 | if (BN_is_zero(val[0])) { |
303 | BN_zero(r)(BN_set_word((r),0)); |
304 | ret = 1; |
305 | goto err; |
306 | } |
307 | |
308 | window = BN_window_bits_for_exponent_size(bits)((bits) > 671 ? 6 : (bits) > 239 ? 5 : (bits) > 79 ? 4 : (bits) > 23 ? 3 : 1); |
309 | if (window > 1) { |
310 | if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) |
311 | goto err; /* 2 */ |
312 | j = 1 << (window - 1); |
313 | for (i = 1; i < j; i++) { |
314 | if (((val[i] = BN_CTX_get(ctx)) == NULL((void *)0)) || |
315 | !BN_mod_mul_reciprocal(val[i], val[i - 1], |
316 | aa, &recp, ctx)) |
317 | goto err; |
318 | } |
319 | } |
320 | |
321 | start = 1; /* This is used to avoid multiplication etc |
322 | * when there is only the value '1' in the |
323 | * buffer. */ |
324 | wvalue = 0; /* The 'value' of the window */ |
325 | wstart = bits - 1; /* The top bit of the window */ |
326 | wend = 0; /* The bottom bit of the window */ |
327 | |
328 | if (!BN_one(r)BN_set_word((r), 1)) |
329 | goto err; |
330 | |
331 | for (;;) { |
332 | if (BN_is_bit_set(p, wstart) == 0) { |
333 | if (!start) |
334 | if (!BN_mod_mul_reciprocal(r, r,r, &recp, ctx)) |
335 | goto err; |
336 | if (wstart == 0) |
337 | break; |
338 | wstart--; |
339 | continue; |
340 | } |
341 | /* We now have wstart on a 'set' bit, we now need to work out |
342 | * how bit a window to do. To do this we need to scan |
343 | * forward until the last set bit before the end of the |
344 | * window */ |
345 | j = wstart; |
346 | wvalue = 1; |
347 | wend = 0; |
348 | for (i = 1; i < window; i++) { |
349 | if (wstart - i < 0) |
350 | break; |
351 | if (BN_is_bit_set(p, wstart - i)) { |
352 | wvalue <<= (i - wend); |
353 | wvalue |= 1; |
354 | wend = i; |
355 | } |
356 | } |
357 | |
358 | /* wend is the size of the current window */ |
359 | j = wend + 1; |
360 | /* add the 'bytes above' */ |
361 | if (!start) |
362 | for (i = 0; i < j; i++) { |
363 | if (!BN_mod_mul_reciprocal(r, r,r, &recp, ctx)) |
364 | goto err; |
365 | } |
366 | |
367 | /* wvalue will be an odd number < 2^window */ |
368 | if (!BN_mod_mul_reciprocal(r, r,val[wvalue >> 1], &recp, ctx)) |
369 | goto err; |
370 | |
371 | /* move the 'window' down further */ |
372 | wstart -= wend + 1; |
373 | wvalue = 0; |
374 | start = 0; |
375 | if (wstart < 0) |
376 | break; |
377 | } |
378 | ret = 1; |
379 | |
380 | err: |
381 | BN_CTX_end(ctx); |
382 | BN_RECP_CTX_free(&recp); |
383 | bn_check_top(r); |
384 | return (ret); |
385 | } |
386 | |
387 | static int |
388 | BN_mod_exp_mont_internal(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
389 | BN_CTX *ctx, BN_MONT_CTX *in_mont, int ct) |
390 | { |
391 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
392 | int start = 1; |
393 | BIGNUM *d, *r; |
394 | const BIGNUM *aa; |
395 | /* Table of variables obtained from 'ctx' */ |
396 | BIGNUM *val[TABLE_SIZE32]; |
397 | BN_MONT_CTX *mont = NULL((void *)0); |
398 | |
399 | if (ct) { |
400 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); |
401 | } |
402 | |
403 | bn_check_top(a); |
404 | bn_check_top(p); |
405 | bn_check_top(m); |
406 | |
407 | if (!BN_is_odd(m)) { |
408 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS)ERR_put_error(3,(0xfff),(102),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,408); |
409 | return (0); |
410 | } |
411 | |
412 | bits = BN_num_bits(p); |
413 | if (bits == 0) { |
414 | /* x**0 mod 1 is still zero. */ |
415 | if (BN_is_one(m)) { |
416 | ret = 1; |
417 | BN_zero(rr)(BN_set_word((rr),0)); |
418 | } else |
419 | ret = BN_one(rr)BN_set_word((rr), 1); |
420 | return ret; |
421 | } |
422 | |
423 | BN_CTX_start(ctx); |
424 | if ((d = BN_CTX_get(ctx)) == NULL((void *)0)) |
425 | goto err; |
426 | if ((r = BN_CTX_get(ctx)) == NULL((void *)0)) |
427 | goto err; |
428 | if ((val[0] = BN_CTX_get(ctx)) == NULL((void *)0)) |
429 | goto err; |
430 | |
431 | /* If this is not done, things will break in the montgomery |
432 | * part */ |
433 | |
434 | if (in_mont != NULL((void *)0)) |
435 | mont = in_mont; |
436 | else { |
437 | if ((mont = BN_MONT_CTX_new()) == NULL((void *)0)) |
438 | goto err; |
439 | if (!BN_MONT_CTX_set(mont, m, ctx)) |
440 | goto err; |
441 | } |
442 | |
443 | if (a->neg || BN_ucmp(a, m) >= 0) { |
444 | if (!BN_nnmod(val[0], a,m, ctx)) |
445 | goto err; |
446 | aa = val[0]; |
447 | } else |
448 | aa = a; |
449 | if (BN_is_zero(aa)) { |
450 | BN_zero(rr)(BN_set_word((rr),0)); |
451 | ret = 1; |
452 | goto err; |
453 | } |
454 | if (!BN_to_montgomery(val[0], aa, mont, ctx)) |
455 | goto err; /* 1 */ |
456 | |
457 | window = BN_window_bits_for_exponent_size(bits)((bits) > 671 ? 6 : (bits) > 239 ? 5 : (bits) > 79 ? 4 : (bits) > 23 ? 3 : 1); |
458 | if (window > 1) { |
459 | if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) |
460 | goto err; /* 2 */ |
461 | j = 1 << (window - 1); |
462 | for (i = 1; i < j; i++) { |
463 | if (((val[i] = BN_CTX_get(ctx)) == NULL((void *)0)) || |
464 | !BN_mod_mul_montgomery(val[i], val[i - 1], |
465 | d, mont, ctx)) |
466 | goto err; |
467 | } |
468 | } |
469 | |
470 | start = 1; /* This is used to avoid multiplication etc |
471 | * when there is only the value '1' in the |
472 | * buffer. */ |
473 | wvalue = 0; /* The 'value' of the window */ |
474 | wstart = bits - 1; /* The top bit of the window */ |
475 | wend = 0; /* The bottom bit of the window */ |
476 | |
477 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) |
478 | goto err; |
479 | for (;;) { |
480 | if (BN_is_bit_set(p, wstart) == 0) { |
481 | if (!start) { |
482 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
483 | goto err; |
484 | } |
485 | if (wstart == 0) |
486 | break; |
487 | wstart--; |
488 | continue; |
489 | } |
490 | /* We now have wstart on a 'set' bit, we now need to work out |
491 | * how bit a window to do. To do this we need to scan |
492 | * forward until the last set bit before the end of the |
493 | * window */ |
494 | j = wstart; |
495 | wvalue = 1; |
496 | wend = 0; |
497 | for (i = 1; i < window; i++) { |
498 | if (wstart - i < 0) |
499 | break; |
500 | if (BN_is_bit_set(p, wstart - i)) { |
501 | wvalue <<= (i - wend); |
502 | wvalue |= 1; |
503 | wend = i; |
504 | } |
505 | } |
506 | |
507 | /* wend is the size of the current window */ |
508 | j = wend + 1; |
509 | /* add the 'bytes above' */ |
510 | if (!start) |
511 | for (i = 0; i < j; i++) { |
512 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
513 | goto err; |
514 | } |
515 | |
516 | /* wvalue will be an odd number < 2^window */ |
517 | if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) |
518 | goto err; |
519 | |
520 | /* move the 'window' down further */ |
521 | wstart -= wend + 1; |
522 | wvalue = 0; |
523 | start = 0; |
524 | if (wstart < 0) |
525 | break; |
526 | } |
527 | if (!BN_from_montgomery(rr, r,mont, ctx)) |
528 | goto err; |
529 | ret = 1; |
530 | |
531 | err: |
532 | if ((in_mont == NULL((void *)0)) && (mont != NULL((void *)0))) |
533 | BN_MONT_CTX_free(mont); |
534 | BN_CTX_end(ctx); |
535 | bn_check_top(rr); |
536 | return (ret); |
537 | } |
538 | |
539 | int |
540 | BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
541 | BN_CTX *ctx, BN_MONT_CTX *in_mont) |
542 | { |
543 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, |
544 | (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0)); |
545 | } |
546 | |
547 | int |
548 | BN_mod_exp_mont_ct(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
549 | BN_CTX *ctx, BN_MONT_CTX *in_mont) |
550 | { |
551 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, 1); |
552 | } |
553 | |
554 | int |
555 | BN_mod_exp_mont_nonct(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
556 | BN_CTX *ctx, BN_MONT_CTX *in_mont) |
557 | { |
558 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, 0); |
559 | } |
560 | |
561 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout |
562 | * so that accessing any of these table values shows the same access pattern as far |
563 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM |
564 | * from/to that table. */ |
565 | |
566 | static int |
567 | MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, |
568 | int idx, int window) |
569 | { |
570 | int i, j; |
571 | int width = 1 << window; |
572 | BN_ULONGunsigned long *table = (BN_ULONGunsigned long *)buf; |
573 | |
574 | if (top > b->top) |
575 | top = b->top; /* this works because 'buf' is explicitly zeroed */ |
576 | |
577 | for (i = 0, j = idx; i < top; i++, j += width) { |
578 | table[j] = b->d[i]; |
579 | } |
580 | |
581 | return 1; |
582 | } |
583 | |
584 | static int |
585 | MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, |
586 | int window) |
587 | { |
588 | int i, j; |
589 | int width = 1 << window; |
590 | volatile BN_ULONGunsigned long *table = (volatile BN_ULONGunsigned long *)buf; |
591 | |
592 | if (bn_wexpand(b, top)(((top) <= (b)->dmax)?(b):bn_expand2((b),(top))) == NULL((void *)0)) |
593 | return 0; |
594 | |
595 | if (window <= 3) { |
596 | for (i = 0; i < top; i++, table += width) { |
597 | BN_ULONGunsigned long acc = 0; |
598 | |
599 | for (j = 0; j < width; j++) { |
600 | acc |= table[j] & |
601 | ((BN_ULONGunsigned long)0 - (constant_time_eq_int(j,idx)&1)); |
602 | } |
603 | |
604 | b->d[i] = acc; |
605 | } |
606 | } else { |
607 | int xstride = 1 << (window - 2); |
608 | BN_ULONGunsigned long y0, y1, y2, y3; |
609 | |
610 | i = idx >> (window - 2); /* equivalent of idx / xstride */ |
611 | idx &= xstride - 1; /* equivalent of idx % xstride */ |
612 | |
613 | y0 = (BN_ULONGunsigned long)0 - (constant_time_eq_int(i,0)&1); |
614 | y1 = (BN_ULONGunsigned long)0 - (constant_time_eq_int(i,1)&1); |
615 | y2 = (BN_ULONGunsigned long)0 - (constant_time_eq_int(i,2)&1); |
616 | y3 = (BN_ULONGunsigned long)0 - (constant_time_eq_int(i,3)&1); |
617 | |
618 | for (i = 0; i < top; i++, table += width) { |
619 | BN_ULONGunsigned long acc = 0; |
620 | |
621 | for (j = 0; j < xstride; j++) { |
622 | acc |= ( (table[j + 0 * xstride] & y0) | |
623 | (table[j + 1 * xstride] & y1) | |
624 | (table[j + 2 * xstride] & y2) | |
625 | (table[j + 3 * xstride] & y3) ) |
626 | & ((BN_ULONGunsigned long)0 - (constant_time_eq_int(j,idx)&1)); |
627 | } |
628 | |
629 | b->d[i] = acc; |
630 | } |
631 | } |
632 | b->top = top; |
633 | bn_correct_top(b){ unsigned long *ftl; int tmp_top = (b)->top; if (tmp_top > 0) { for (ftl= &((b)->d[tmp_top-1]); tmp_top > 0; tmp_top --) if (*(ftl--)) break; (b)->top = tmp_top; } ; }; |
634 | return 1; |
635 | } |
636 | |
637 | /* Given a pointer value, compute the next address that is a cache line multiple. */ |
638 | #define MOD_EXP_CTIME_ALIGN(x_)((unsigned char*)(x_) + (( 64 ) - (((size_t)(x_)) & ((( 64 ) - 1))))) \ |
639 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH( 64 ) - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK(( 64 ) - 1))))) |
640 | |
641 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special |
642 | * precomputation memory layout to limit data-dependency to a minimum |
643 | * to protect secret exponents (cf. the hyper-threading timing attacks |
644 | * pointed out by Colin Percival, |
645 | * http://www.daemonology.net/hyperthreading-considered-harmful/) |
646 | */ |
647 | int |
648 | BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
649 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
650 | { |
651 | int i, bits, ret = 0, window, wvalue; |
652 | int top; |
653 | BN_MONT_CTX *mont = NULL((void *)0); |
654 | int numPowers; |
655 | unsigned char *powerbufFree = NULL((void *)0); |
656 | int powerbufLen = 0; |
657 | unsigned char *powerbuf = NULL((void *)0); |
658 | BIGNUM tmp, am; |
659 | |
660 | bn_check_top(a); |
661 | bn_check_top(p); |
662 | bn_check_top(m); |
663 | |
664 | if (!BN_is_odd(m)) { |
665 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS)ERR_put_error(3,(0xfff),(102),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,665); |
666 | return (0); |
667 | } |
668 | |
669 | top = m->top; |
670 | |
671 | bits = BN_num_bits(p); |
672 | if (bits == 0) { |
673 | /* x**0 mod 1 is still zero. */ |
674 | if (BN_is_one(m)) { |
675 | ret = 1; |
676 | BN_zero(rr)(BN_set_word((rr),0)); |
677 | } else |
678 | ret = BN_one(rr)BN_set_word((rr), 1); |
679 | return ret; |
680 | } |
681 | |
682 | BN_CTX_start(ctx); |
683 | |
684 | /* Allocate a montgomery context if it was not supplied by the caller. |
685 | * If this is not done, things will break in the montgomery part. |
686 | */ |
687 | if (in_mont != NULL((void *)0)) |
688 | mont = in_mont; |
689 | else { |
690 | if ((mont = BN_MONT_CTX_new()) == NULL((void *)0)) |
691 | goto err; |
692 | if (!BN_MONT_CTX_set(mont, m, ctx)) |
693 | goto err; |
694 | } |
695 | |
696 | /* Get the window size to use with size of p. */ |
697 | window = BN_window_bits_for_ctime_exponent_size(bits)((bits) > 937 ? 6 : (bits) > 306 ? 5 : (bits) > 89 ? 4 : (bits) > 22 ? 3 : 1); |
698 | #if defined(OPENSSL_BN_ASM_MONT51) |
699 | if (window == 6 && bits <= 1024) |
700 | window = 5; /* ~5% improvement of 2048-bit RSA sign */ |
701 | #endif |
702 | |
703 | /* Allocate a buffer large enough to hold all of the pre-computed |
704 | * powers of am, am itself and tmp. |
705 | */ |
706 | numPowers = 1 << window; |
707 | powerbufLen = sizeof(m->d[0]) * (top * numPowers + |
708 | ((2*top) > numPowers ? (2*top) : numPowers)); |
709 | if ((powerbufFree = calloc(powerbufLen + |
710 | MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH( 64 ), 1)) == NULL((void *)0)) |
711 | goto err; |
712 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree)((unsigned char*)(powerbufFree) + (( 64 ) - (((size_t)(powerbufFree )) & ((( 64 ) - 1))))); |
713 | |
714 | /* lay down tmp and am right after powers table */ |
715 | tmp.d = (BN_ULONGunsigned long *)(powerbuf + sizeof(m->d[0]) * top * numPowers); |
716 | am.d = tmp.d + top; |
717 | tmp.top = am.top = 0; |
718 | tmp.dmax = am.dmax = top; |
719 | tmp.neg = am.neg = 0; |
720 | tmp.flags = am.flags = BN_FLG_STATIC_DATA0x02; |
721 | |
722 | /* prepare a^0 in Montgomery domain */ |
723 | #if 1 |
724 | if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) |
725 | goto err; |
726 | #else |
727 | tmp.d[0] = (0 - m - >d[0]) & BN_MASK2(0xffffffffffffffffL); /* 2^(top*BN_BITS2) - m */ |
728 | for (i = 1; i < top; i++) |
729 | tmp.d[i] = (~m->d[i]) & BN_MASK2(0xffffffffffffffffL); |
730 | tmp.top = top; |
731 | #endif |
732 | |
733 | /* prepare a^1 in Montgomery domain */ |
734 | if (a->neg || BN_ucmp(a, m) >= 0) { |
735 | if (!BN_mod_ct(&am, a,m, ctx)BN_div_ct(((void *)0),(&am),(a),(m),(ctx))) |
736 | goto err; |
737 | if (!BN_to_montgomery(&am, &am, mont, ctx)) |
738 | goto err; |
739 | } else if (!BN_to_montgomery(&am, a,mont, ctx)) |
740 | goto err; |
741 | |
742 | #if defined(OPENSSL_BN_ASM_MONT51) |
743 | /* This optimization uses ideas from http://eprint.iacr.org/2011/239, |
744 | * specifically optimization of cache-timing attack countermeasures |
745 | * and pre-computation optimization. */ |
746 | |
747 | /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as |
748 | * 512-bit RSA is hardly relevant, we omit it to spare size... */ |
749 | if (window == 5 && top > 1) { |
750 | void bn_mul_mont_gather5(BN_ULONGunsigned long *rp, const BN_ULONGunsigned long *ap, |
751 | const void *table, const BN_ULONGunsigned long *np, |
752 | const BN_ULONGunsigned long *n0, int num, int power); |
753 | void bn_scatter5(const BN_ULONGunsigned long *inp, size_t num, |
754 | void *table, size_t power); |
755 | void bn_gather5(BN_ULONGunsigned long *out, size_t num, |
756 | void *table, size_t power); |
757 | |
758 | BN_ULONGunsigned long *np = mont->N.d, *n0 = mont->n0; |
759 | |
760 | /* BN_to_montgomery can contaminate words above .top |
761 | * [in BN_DEBUG[_DEBUG] build]... */ |
762 | for (i = am.top; i < top; i++) |
763 | am.d[i] = 0; |
764 | for (i = tmp.top; i < top; i++) |
765 | tmp.d[i] = 0; |
766 | |
767 | bn_scatter5(tmp.d, top, powerbuf, 0); |
768 | bn_scatter5(am.d, am.top, powerbuf, 1); |
769 | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); |
770 | bn_scatter5(tmp.d, top, powerbuf, 2); |
771 | |
772 | #if 0 |
773 | for (i = 3; i < 32; i++) { |
774 | /* Calculate a^i = a^(i-1) * a */ |
775 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, |
776 | n0, top, i - 1); |
777 | bn_scatter5(tmp.d, top, powerbuf, i); |
778 | } |
779 | #else |
780 | /* same as above, but uses squaring for 1/2 of operations */ |
781 | for (i = 4; i < 32; i*=2) { |
782 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
783 | bn_scatter5(tmp.d, top, powerbuf, i); |
784 | } |
785 | for (i = 3; i < 8; i += 2) { |
786 | int j; |
787 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, |
788 | n0, top, i - 1); |
789 | bn_scatter5(tmp.d, top, powerbuf, i); |
790 | for (j = 2 * i; j < 32; j *= 2) { |
791 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
792 | bn_scatter5(tmp.d, top, powerbuf, j); |
793 | } |
794 | } |
795 | for (; i < 16; i += 2) { |
796 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, |
797 | n0, top, i - 1); |
798 | bn_scatter5(tmp.d, top, powerbuf, i); |
799 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
800 | bn_scatter5(tmp.d, top, powerbuf, 2*i); |
801 | } |
802 | for (; i < 32; i += 2) { |
803 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, |
804 | n0, top, i - 1); |
805 | bn_scatter5(tmp.d, top, powerbuf, i); |
806 | } |
807 | #endif |
808 | bits--; |
809 | for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) |
810 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
811 | bn_gather5(tmp.d, top, powerbuf, wvalue); |
812 | |
813 | /* Scan the exponent one window at a time starting from the most |
814 | * significant bits. |
815 | */ |
816 | while (bits >= 0) { |
817 | for (wvalue = 0, i = 0; i < 5; i++, bits--) |
818 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
819 | |
820 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
821 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
822 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
823 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
824 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
825 | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
826 | } |
827 | |
828 | tmp.top = top; |
829 | bn_correct_top(&tmp){ unsigned long *ftl; int tmp_top = (&tmp)->top; if (tmp_top > 0) { for (ftl= &((&tmp)->d[tmp_top-1]); tmp_top > 0; tmp_top--) if (*(ftl--)) break; (&tmp)->top = tmp_top; } ; }; |
830 | } else |
831 | #endif |
832 | { |
833 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, |
834 | window)) |
835 | goto err; |
836 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, |
837 | window)) |
838 | goto err; |
839 | |
840 | /* If the window size is greater than 1, then calculate |
841 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) |
842 | * (even powers could instead be computed as (a^(i/2))^2 |
843 | * to use the slight performance advantage of sqr over mul). |
844 | */ |
845 | if (window > 1) { |
846 | if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) |
847 | goto err; |
848 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, |
849 | 2, window)) |
850 | goto err; |
851 | for (i = 3; i < numPowers; i++) { |
852 | /* Calculate a^i = a^(i-1) * a */ |
853 | if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, |
854 | mont, ctx)) |
855 | goto err; |
856 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, |
857 | powerbuf, i, window)) |
858 | goto err; |
859 | } |
860 | } |
861 | |
862 | bits--; |
863 | for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) |
864 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
865 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, |
866 | wvalue, window)) |
867 | goto err; |
868 | |
869 | /* Scan the exponent one window at a time starting from the most |
870 | * significant bits. |
871 | */ |
872 | while (bits >= 0) { |
873 | wvalue = 0; /* The 'value' of the window */ |
874 | |
875 | /* Scan the window, squaring the result as we go */ |
876 | for (i = 0; i < window; i++, bits--) { |
877 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, |
878 | mont, ctx)) |
879 | goto err; |
880 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
881 | } |
882 | |
883 | /* Fetch the appropriate pre-computed value from the pre-buf */ |
884 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, |
885 | wvalue, window)) |
886 | goto err; |
887 | |
888 | /* Multiply the result into the intermediate result */ |
889 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) |
890 | goto err; |
891 | } |
892 | } |
893 | |
894 | /* Convert the final result from montgomery to standard format */ |
895 | if (!BN_from_montgomery(rr, &tmp, mont, ctx)) |
896 | goto err; |
897 | ret = 1; |
898 | |
899 | err: |
900 | if ((in_mont == NULL((void *)0)) && (mont != NULL((void *)0))) |
901 | BN_MONT_CTX_free(mont); |
902 | freezero(powerbufFree, powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH( 64 )); |
903 | BN_CTX_end(ctx); |
904 | return (ret); |
905 | } |
906 | |
907 | int |
908 | BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONGunsigned long a, const BIGNUM *p, const BIGNUM *m, |
909 | BN_CTX *ctx, BN_MONT_CTX *in_mont) |
910 | { |
911 | BN_MONT_CTX *mont = NULL((void *)0); |
912 | int b, bits, ret = 0; |
913 | int r_is_one; |
914 | BN_ULONGunsigned long w, next_w; |
915 | BIGNUM *d, *r, *t; |
916 | BIGNUM *swap_tmp; |
917 | |
918 | #define BN_MOD_MUL_WORD(r, w, m)(BN_mul_word(r, (w)) && ( (BN_div_ct(((void *)0),(t), (r),(m),(ctx)) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) \ |
919 | (BN_mul_word(r, (w)) && \ |
920 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ |
921 | (BN_mod_ct(t, r, m, ctx)BN_div_ct(((void *)0),(t),(r),(m),(ctx)) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) |
922 | /* BN_MOD_MUL_WORD is only used with 'w' large, |
923 | * so the BN_ucmp test is probably more overhead |
924 | * than always using BN_mod (which uses BN_copy if |
925 | * a similar test returns true). */ |
926 | /* We can use BN_mod and do not need BN_nnmod because our |
927 | * accumulator is never negative (the result of BN_mod does |
928 | * not depend on the sign of the modulus). |
929 | */ |
930 | #define BN_TO_MONTGOMERY_WORD(r, w, mont)(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont) , ctx)) \ |
931 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) |
932 | |
933 | if (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0) { |
934 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
935 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED)ERR_put_error(3,(0xfff),((2|64)),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,935); |
936 | return -1; |
937 | } |
938 | |
939 | bn_check_top(p); |
940 | bn_check_top(m); |
941 | |
942 | if (!BN_is_odd(m)) { |
943 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS)ERR_put_error(3,(0xfff),(102),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,943); |
944 | return (0); |
945 | } |
946 | if (m->top == 1) |
947 | a %= m->d[0]; /* make sure that 'a' is reduced */ |
948 | |
949 | bits = BN_num_bits(p); |
950 | if (bits == 0) { |
951 | /* x**0 mod 1 is still zero. */ |
952 | if (BN_is_one(m)) { |
953 | ret = 1; |
954 | BN_zero(rr)(BN_set_word((rr),0)); |
955 | } else |
956 | ret = BN_one(rr)BN_set_word((rr), 1); |
957 | return ret; |
958 | } |
959 | if (a == 0) { |
960 | BN_zero(rr)(BN_set_word((rr),0)); |
961 | ret = 1; |
962 | return ret; |
963 | } |
964 | |
965 | BN_CTX_start(ctx); |
966 | if ((d = BN_CTX_get(ctx)) == NULL((void *)0)) |
Although the value stored to 'd' is used in the enclosing expression, the value is never actually read from 'd' | |
967 | goto err; |
968 | if ((r = BN_CTX_get(ctx)) == NULL((void *)0)) |
969 | goto err; |
970 | if ((t = BN_CTX_get(ctx)) == NULL((void *)0)) |
971 | goto err; |
972 | |
973 | if (in_mont != NULL((void *)0)) |
974 | mont = in_mont; |
975 | else { |
976 | if ((mont = BN_MONT_CTX_new()) == NULL((void *)0)) |
977 | goto err; |
978 | if (!BN_MONT_CTX_set(mont, m, ctx)) |
979 | goto err; |
980 | } |
981 | |
982 | r_is_one = 1; /* except for Montgomery factor */ |
983 | |
984 | /* bits-1 >= 0 */ |
985 | |
986 | /* The result is accumulated in the product r*w. */ |
987 | w = a; /* bit 'bits-1' of 'p' is always set */ |
988 | for (b = bits - 2; b >= 0; b--) { |
989 | /* First, square r*w. */ |
990 | next_w = w * w; |
991 | if ((next_w / w) != w) /* overflow */ |
992 | { |
993 | if (r_is_one) { |
994 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont) , ctx))) |
995 | goto err; |
996 | r_is_one = 0; |
997 | } else { |
998 | if (!BN_MOD_MUL_WORD(r, w, m)(BN_mul_word(r, (w)) && ( (BN_div_ct(((void *)0),(t), (r),(m),(ctx)) && (swap_tmp = r, r = t, t = swap_tmp, 1))))) |
999 | goto err; |
1000 | } |
1001 | next_w = 1; |
1002 | } |
1003 | w = next_w; |
1004 | if (!r_is_one) { |
1005 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
1006 | goto err; |
1007 | } |
1008 | |
1009 | /* Second, multiply r*w by 'a' if exponent bit is set. */ |
1010 | if (BN_is_bit_set(p, b)) { |
1011 | next_w = w * a; |
1012 | if ((next_w / a) != w) /* overflow */ |
1013 | { |
1014 | if (r_is_one) { |
1015 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont) , ctx))) |
1016 | goto err; |
1017 | r_is_one = 0; |
1018 | } else { |
1019 | if (!BN_MOD_MUL_WORD(r, w, m)(BN_mul_word(r, (w)) && ( (BN_div_ct(((void *)0),(t), (r),(m),(ctx)) && (swap_tmp = r, r = t, t = swap_tmp, 1))))) |
1020 | goto err; |
1021 | } |
1022 | next_w = a; |
1023 | } |
1024 | w = next_w; |
1025 | } |
1026 | } |
1027 | |
1028 | /* Finally, set r:=r*w. */ |
1029 | if (w != 1) { |
1030 | if (r_is_one) { |
1031 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont) , ctx))) |
1032 | goto err; |
1033 | r_is_one = 0; |
1034 | } else { |
1035 | if (!BN_MOD_MUL_WORD(r, w, m)(BN_mul_word(r, (w)) && ( (BN_div_ct(((void *)0),(t), (r),(m),(ctx)) && (swap_tmp = r, r = t, t = swap_tmp, 1))))) |
1036 | goto err; |
1037 | } |
1038 | } |
1039 | |
1040 | if (r_is_one) /* can happen only if a == 1*/ |
1041 | { |
1042 | if (!BN_one(rr)BN_set_word((rr), 1)) |
1043 | goto err; |
1044 | } else { |
1045 | if (!BN_from_montgomery(rr, r, mont, ctx)) |
1046 | goto err; |
1047 | } |
1048 | ret = 1; |
1049 | |
1050 | err: |
1051 | if ((in_mont == NULL((void *)0)) && (mont != NULL((void *)0))) |
1052 | BN_MONT_CTX_free(mont); |
1053 | BN_CTX_end(ctx); |
1054 | bn_check_top(rr); |
1055 | return (ret); |
1056 | } |
1057 | |
1058 | |
1059 | /* The old fallback, simple version :-) */ |
1060 | int |
1061 | BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
1062 | BN_CTX *ctx) |
1063 | { |
1064 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
1065 | int start = 1; |
1066 | BIGNUM *d; |
1067 | /* Table of variables obtained from 'ctx' */ |
1068 | BIGNUM *val[TABLE_SIZE32]; |
1069 | |
1070 | if (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0) { |
1071 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
1072 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED)ERR_put_error(3,(0xfff),((2|64)),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,1072); |
1073 | return -1; |
1074 | } |
1075 | |
1076 | bits = BN_num_bits(p); |
1077 | if (bits == 0) { |
1078 | /* x**0 mod 1 is still zero. */ |
1079 | if (BN_is_one(m)) { |
1080 | ret = 1; |
1081 | BN_zero(r)(BN_set_word((r),0)); |
1082 | } else |
1083 | ret = BN_one(r)BN_set_word((r), 1); |
1084 | return ret; |
1085 | } |
1086 | |
1087 | BN_CTX_start(ctx); |
1088 | if ((d = BN_CTX_get(ctx)) == NULL((void *)0)) |
1089 | goto err; |
1090 | if ((val[0] = BN_CTX_get(ctx)) == NULL((void *)0)) |
1091 | goto err; |
1092 | |
1093 | if (!BN_nnmod(val[0],a,m,ctx)) |
1094 | goto err; /* 1 */ |
1095 | if (BN_is_zero(val[0])) { |
1096 | BN_zero(r)(BN_set_word((r),0)); |
1097 | ret = 1; |
1098 | goto err; |
1099 | } |
1100 | |
1101 | window = BN_window_bits_for_exponent_size(bits)((bits) > 671 ? 6 : (bits) > 239 ? 5 : (bits) > 79 ? 4 : (bits) > 23 ? 3 : 1); |
1102 | if (window > 1) { |
1103 | if (!BN_mod_mul(d, val[0], val[0], m, ctx)) |
1104 | goto err; /* 2 */ |
1105 | j = 1 << (window - 1); |
1106 | for (i = 1; i < j; i++) { |
1107 | if (((val[i] = BN_CTX_get(ctx)) == NULL((void *)0)) || |
1108 | !BN_mod_mul(val[i], val[i - 1], d,m, ctx)) |
1109 | goto err; |
1110 | } |
1111 | } |
1112 | |
1113 | start = 1; /* This is used to avoid multiplication etc |
1114 | * when there is only the value '1' in the |
1115 | * buffer. */ |
1116 | wvalue = 0; /* The 'value' of the window */ |
1117 | wstart = bits - 1; /* The top bit of the window */ |
1118 | wend = 0; /* The bottom bit of the window */ |
1119 | |
1120 | if (!BN_one(r)BN_set_word((r), 1)) |
1121 | goto err; |
1122 | |
1123 | for (;;) { |
1124 | if (BN_is_bit_set(p, wstart) == 0) { |
1125 | if (!start) |
1126 | if (!BN_mod_mul(r, r, r, m, ctx)) |
1127 | goto err; |
1128 | if (wstart == 0) |
1129 | break; |
1130 | wstart--; |
1131 | continue; |
1132 | } |
1133 | /* We now have wstart on a 'set' bit, we now need to work out |
1134 | * how bit a window to do. To do this we need to scan |
1135 | * forward until the last set bit before the end of the |
1136 | * window */ |
1137 | j = wstart; |
1138 | wvalue = 1; |
1139 | wend = 0; |
1140 | for (i = 1; i < window; i++) { |
1141 | if (wstart - i < 0) |
1142 | break; |
1143 | if (BN_is_bit_set(p, wstart - i)) { |
1144 | wvalue <<= (i - wend); |
1145 | wvalue |= 1; |
1146 | wend = i; |
1147 | } |
1148 | } |
1149 | |
1150 | /* wend is the size of the current window */ |
1151 | j = wend + 1; |
1152 | /* add the 'bytes above' */ |
1153 | if (!start) |
1154 | for (i = 0; i < j; i++) { |
1155 | if (!BN_mod_mul(r, r, r, m, ctx)) |
1156 | goto err; |
1157 | } |
1158 | |
1159 | /* wvalue will be an odd number < 2^window */ |
1160 | if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) |
1161 | goto err; |
1162 | |
1163 | /* move the 'window' down further */ |
1164 | wstart -= wend + 1; |
1165 | wvalue = 0; |
1166 | start = 0; |
1167 | if (wstart < 0) |
1168 | break; |
1169 | } |
1170 | ret = 1; |
1171 | |
1172 | err: |
1173 | BN_CTX_end(ctx); |
1174 | bn_check_top(r); |
1175 | return (ret); |
1176 | } |