| File: | src/gnu/usr.bin/cvs/lib/regex.c |
| Warning: | line 5515, column 8 Dereference of null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* Extended regular expression matching and search library, version | |||
| 2 | 0.12. (Implements POSIX draft P10003.2/D11.2, except for | |||
| 3 | internationalization features.) | |||
| 4 | ||||
| 5 | Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc. | |||
| 6 | ||||
| 7 | This program is free software; you can redistribute it and/or modify | |||
| 8 | it under the terms of the GNU General Public License as published by | |||
| 9 | the Free Software Foundation; either version 2, or (at your option) | |||
| 10 | any later version. | |||
| 11 | ||||
| 12 | This program is distributed in the hope that it will be useful, | |||
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |||
| 15 | GNU General Public License for more details. | |||
| 16 | ||||
| 17 | You should have received a copy of the GNU General Public License | |||
| 18 | along with this program; if not, write to the Free Software | |||
| 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, | |||
| 20 | USA. */ | |||
| 21 | ||||
| 22 | /* AIX requires this to be the first thing in the file. */ | |||
| 23 | #if defined (_AIX) && !defined (REGEX_MALLOC1) | |||
| 24 | #pragma alloca | |||
| 25 | #endif | |||
| 26 | ||||
| 27 | #undef _GNU_SOURCE | |||
| 28 | #define _GNU_SOURCE | |||
| 29 | ||||
| 30 | #ifdef emacs | |||
| 31 | /* Converts the pointer to the char to BEG-based offset from the start. */ | |||
| 32 | #define PTR_TO_OFFSET(d)0 \ | |||
| 33 | POS_AS_IN_BUFFER (MATCHING_IN_FIRST_STRING(dend == end_match_1) \ | |||
| 34 | ? (d) - string1 : (d) - (string2 - size1)) | |||
| 35 | #define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object))) | |||
| 36 | #else | |||
| 37 | #define PTR_TO_OFFSET(d)0 0 | |||
| 38 | #endif | |||
| 39 | ||||
| 40 | #ifdef HAVE_CONFIG_H1 | |||
| 41 | #include <config.h> | |||
| 42 | #endif | |||
| 43 | ||||
| 44 | /* We need this for `regex.h', and perhaps for the Emacs include files. */ | |||
| 45 | #include <sys/types.h> | |||
| 46 | ||||
| 47 | /* This is for other GNU distributions with internationalized messages. */ | |||
| 48 | #if HAVE_LIBINTL_H || defined (_LIBC) | |||
| 49 | # include <libintl.h> | |||
| 50 | #else | |||
| 51 | # define gettext(msgid)(msgid) (msgid) | |||
| 52 | #endif | |||
| 53 | ||||
| 54 | #ifndef gettext_noop | |||
| 55 | /* This define is so xgettext can find the internationalizable | |||
| 56 | strings. */ | |||
| 57 | #define gettext_noop(String)String String | |||
| 58 | #endif | |||
| 59 | ||||
| 60 | /* The `emacs' switch turns on certain matching commands | |||
| 61 | that make sense only in Emacs. */ | |||
| 62 | #ifdef emacs | |||
| 63 | ||||
| 64 | #include "lisp.h" | |||
| 65 | #include "buffer.h" | |||
| 66 | ||||
| 67 | /* Make syntax table lookup grant data in gl_state. */ | |||
| 68 | #define SYNTAX_ENTRY_VIA_PROPERTY | |||
| 69 | ||||
| 70 | #include "syntax.h" | |||
| 71 | #include "charset.h" | |||
| 72 | #include "category.h" | |||
| 73 | ||||
| 74 | #define malloc xmalloc | |||
| 75 | #define realloc xrealloc | |||
| 76 | #define free xfree | |||
| 77 | ||||
| 78 | #else /* not emacs */ | |||
| 79 | ||||
| 80 | /* If we are not linking with Emacs proper, | |||
| 81 | we can't use the relocating allocator | |||
| 82 | even if config.h says that we can. */ | |||
| 83 | #undef REL_ALLOC | |||
| 84 | ||||
| 85 | #if defined (STDC_HEADERS1) || defined (_LIBC) | |||
| 86 | #include <stdlib.h> | |||
| 87 | #else | |||
| 88 | char *malloc (); | |||
| 89 | char *realloc (); | |||
| 90 | #endif | |||
| 91 | ||||
| 92 | /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. | |||
| 93 | If nothing else has been done, use the method below. */ | |||
| 94 | #ifdef INHIBIT_STRING_HEADER | |||
| 95 | #if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) | |||
| 96 | #if !defined (bzero) && !defined (bcopy) | |||
| 97 | #undef INHIBIT_STRING_HEADER | |||
| 98 | #endif | |||
| 99 | #endif | |||
| 100 | #endif | |||
| 101 | ||||
| 102 | /* This is the normal way of making sure we have a bcopy and a bzero. | |||
| 103 | This is used in most programs--a few other programs avoid this | |||
| 104 | by defining INHIBIT_STRING_HEADER. */ | |||
| 105 | #ifndef INHIBIT_STRING_HEADER | |||
| 106 | #if defined (HAVE_STRING_H1) || defined (STDC_HEADERS1) || defined (_LIBC) | |||
| 107 | #include <string.h> | |||
| 108 | #ifndef bcmp | |||
| 109 | #define bcmp(s1, s2, n)memcmp ((s1), (s2), (n)) memcmp ((s1), (s2), (n)) | |||
| 110 | #endif | |||
| 111 | #ifndef bcopy | |||
| 112 | #define bcopy(s, d, n)memcpy ((d), (s), (n)) memcpy ((d), (s), (n)) | |||
| 113 | #endif | |||
| 114 | #ifndef bzero | |||
| 115 | #define bzero(s, n)memset ((s), 0, (n)) memset ((s), 0, (n)) | |||
| 116 | #endif | |||
| 117 | #else | |||
| 118 | #include <strings.h> | |||
| 119 | #endif | |||
| 120 | #endif | |||
| 121 | ||||
| 122 | /* Define the syntax stuff for \<, \>, etc. */ | |||
| 123 | ||||
| 124 | /* This must be nonzero for the wordchar and notwordchar pattern | |||
| 125 | commands in re_match_2. */ | |||
| 126 | #ifndef Sword1 | |||
| 127 | #define Sword1 1 | |||
| 128 | #endif | |||
| 129 | ||||
| 130 | #ifdef SWITCH_ENUM_BUG | |||
| 131 | #define SWITCH_ENUM_CAST(x)(x) ((int)(x)) | |||
| 132 | #else | |||
| 133 | #define SWITCH_ENUM_CAST(x)(x) (x) | |||
| 134 | #endif | |||
| 135 | ||||
| 136 | #ifdef SYNTAX_TABLE | |||
| 137 | ||||
| 138 | extern char *re_syntax_table; | |||
| 139 | ||||
| 140 | #else /* not SYNTAX_TABLE */ | |||
| 141 | ||||
| 142 | /* How many characters in the character set. */ | |||
| 143 | #define CHAR_SET_SIZE256 256 | |||
| 144 | ||||
| 145 | static char re_syntax_table[CHAR_SET_SIZE256]; | |||
| 146 | ||||
| 147 | static void | |||
| 148 | init_syntax_once () | |||
| 149 | { | |||
| 150 | register int c; | |||
| 151 | static int done = 0; | |||
| 152 | ||||
| 153 | if (done) | |||
| 154 | return; | |||
| 155 | ||||
| 156 | bzero (re_syntax_table, sizeof re_syntax_table)memset ((re_syntax_table), 0, (sizeof re_syntax_table)); | |||
| 157 | ||||
| 158 | for (c = 'a'; c <= 'z'; c++) | |||
| 159 | re_syntax_table[c] = Sword1; | |||
| 160 | ||||
| 161 | for (c = 'A'; c <= 'Z'; c++) | |||
| 162 | re_syntax_table[c] = Sword1; | |||
| 163 | ||||
| 164 | for (c = '0'; c <= '9'; c++) | |||
| 165 | re_syntax_table[c] = Sword1; | |||
| 166 | ||||
| 167 | re_syntax_table['_'] = Sword1; | |||
| 168 | ||||
| 169 | done = 1; | |||
| 170 | } | |||
| 171 | ||||
| 172 | #endif /* not SYNTAX_TABLE */ | |||
| 173 | ||||
| 174 | #define SYNTAX(c)re_syntax_table[c] re_syntax_table[c] | |||
| 175 | ||||
| 176 | /* Dummy macros for non-Emacs environments. */ | |||
| 177 | #define BASE_LEADING_CODE_P(c)(0) (0) | |||
| 178 | #define WORD_BOUNDARY_P(c1, c2)(0) (0) | |||
| 179 | #define CHAR_HEAD_P(p)(1) (1) | |||
| 180 | #define SINGLE_BYTE_CHAR_P(c)(1) (1) | |||
| 181 | #define SAME_CHARSET_P(c1, c2)(1) (1) | |||
| 182 | #define MULTIBYTE_FORM_LENGTH(p, s)(1) (1) | |||
| 183 | #define STRING_CHAR(p, s)(*(p)) (*(p)) | |||
| 184 | #define STRING_CHAR_AND_LENGTH(p, s, actual_len)((actual_len) = 1, *(p)) ((actual_len) = 1, *(p)) | |||
| 185 | #define GET_CHAR_AFTER_2(c, p, str1, end1, str2, end2)(c = ((p) == (end1) ? *(str2) : *(p))) \ | |||
| 186 | (c = ((p) == (end1) ? *(str2) : *(p))) | |||
| 187 | #define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2)(c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1))) \ | |||
| 188 | (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1))) | |||
| 189 | #endif /* not emacs */ | |||
| 190 | ||||
| 191 | /* Get the interface, including the syntax bits. */ | |||
| 192 | #include "regex.h" | |||
| 193 | ||||
| 194 | /* isalpha etc. are used for the character classes. */ | |||
| 195 | #include <ctype.h> | |||
| 196 | ||||
| 197 | /* Jim Meyering writes: | |||
| 198 | ||||
| 199 | "... Some ctype macros are valid only for character codes that | |||
| 200 | isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when | |||
| 201 | using /bin/cc or gcc but without giving an ansi option). So, all | |||
| 202 | ctype uses should be through macros like ISPRINT... If | |||
| 203 | STDC_HEADERS is defined, then autoconf has verified that the ctype | |||
| 204 | macros don't need to be guarded with references to isascii. ... | |||
| 205 | Defining isascii to 1 should let any compiler worth its salt | |||
| 206 | eliminate the && through constant folding." */ | |||
| 207 | ||||
| 208 | #if defined (STDC_HEADERS1) || (!defined (isascii) && !defined (HAVE_ISASCII)) | |||
| 209 | #define ISASCII(c)1 1 | |||
| 210 | #else | |||
| 211 | #define ISASCII(c)1 isascii(c) | |||
| 212 | #endif | |||
| 213 | ||||
| 214 | #ifdef isblank | |||
| 215 | #define ISBLANK(c)((c) == ' ' || (c) == '\t') (ISASCII (c)1 && isblank (c)) | |||
| 216 | #else | |||
| 217 | #define ISBLANK(c)((c) == ' ' || (c) == '\t') ((c) == ' ' || (c) == '\t') | |||
| 218 | #endif | |||
| 219 | #ifdef isgraph | |||
| 220 | #define ISGRAPH(c)(1 && isprint (c) && !isspace (c)) (ISASCII (c)1 && isgraph (c)) | |||
| 221 | #else | |||
| 222 | #define ISGRAPH(c)(1 && isprint (c) && !isspace (c)) (ISASCII (c)1 && isprint (c) && !isspace (c)) | |||
| 223 | #endif | |||
| 224 | ||||
| 225 | #define ISPRINT(c)(1 && isprint (c)) (ISASCII (c)1 && isprint (c)) | |||
| 226 | #define ISDIGIT(c)(1 && isdigit (c)) (ISASCII (c)1 && isdigit (c)) | |||
| 227 | #define ISALNUM(c)(1 && isalnum (c)) (ISASCII (c)1 && isalnum (c)) | |||
| 228 | #define ISALPHA(c)(1 && isalpha (c)) (ISASCII (c)1 && isalpha (c)) | |||
| 229 | #define ISCNTRL(c)(1 && iscntrl (c)) (ISASCII (c)1 && iscntrl (c)) | |||
| 230 | #define ISLOWER(c)(1 && islower (c)) (ISASCII (c)1 && islower (c)) | |||
| 231 | #define ISPUNCT(c)(1 && ispunct (c)) (ISASCII (c)1 && ispunct (c)) | |||
| 232 | #define ISSPACE(c)(1 && isspace (c)) (ISASCII (c)1 && isspace (c)) | |||
| 233 | #define ISUPPER(c)(1 && isupper (c)) (ISASCII (c)1 && isupper (c)) | |||
| 234 | #define ISXDIGIT(c)(1 && isxdigit (c)) (ISASCII (c)1 && isxdigit (c)) | |||
| 235 | ||||
| 236 | #ifndef NULL((void *)0) | |||
| 237 | #define NULL((void *)0) (void *)0 | |||
| 238 | #endif | |||
| 239 | ||||
| 240 | /* We remove any previous definition of `SIGN_EXTEND_CHAR', | |||
| 241 | since ours (we hope) works properly with all combinations of | |||
| 242 | machines, compilers, `char' and `unsigned char' argument types. | |||
| 243 | (Per Bothner suggested the basic approach.) */ | |||
| 244 | #undef SIGN_EXTEND_CHAR | |||
| 245 | #if __STDC__1 | |||
| 246 | #define SIGN_EXTEND_CHAR(c)((signed char) (c)) ((signed char) (c)) | |||
| 247 | #else /* not __STDC__ */ | |||
| 248 | /* As in Harbison and Steele. */ | |||
| 249 | #define SIGN_EXTEND_CHAR(c)((signed char) (c)) ((((unsigned char) (c)) ^ 128) - 128) | |||
| 250 | #endif | |||
| 251 | ||||
| 252 | /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we | |||
| 253 | use `alloca' instead of `malloc'. This is because using malloc in | |||
| 254 | re_search* or re_match* could cause memory leaks when C-g is used in | |||
| 255 | Emacs; also, malloc is slower and causes storage fragmentation. On | |||
| 256 | the other hand, malloc is more portable, and easier to debug. | |||
| 257 | ||||
| 258 | Because we sometimes use alloca, some routines have to be macros, | |||
| 259 | not functions -- `alloca'-allocated space disappears at the end of the | |||
| 260 | function it is called in. */ | |||
| 261 | ||||
| 262 | #ifdef REGEX_MALLOC1 | |||
| 263 | ||||
| 264 | #define REGEX_ALLOCATEmalloc malloc | |||
| 265 | #define REGEX_REALLOCATE(source, osize, nsize)realloc (source, nsize) realloc (source, nsize) | |||
| 266 | #define REGEX_FREEfree free | |||
| 267 | ||||
| 268 | #else /* not REGEX_MALLOC */ | |||
| 269 | ||||
| 270 | /* Emacs already defines alloca, sometimes. */ | |||
| 271 | #ifndef alloca | |||
| 272 | ||||
| 273 | /* Make alloca work the best possible way. */ | |||
| 274 | #ifdef __GNUC__4 | |||
| 275 | #define alloca __builtin_alloca | |||
| 276 | #else /* not __GNUC__ */ | |||
| 277 | #if HAVE_ALLOCA_H | |||
| 278 | #include <alloca.h> | |||
| 279 | #else /* not __GNUC__ or HAVE_ALLOCA_H */ | |||
| 280 | #if 0 /* It is a bad idea to declare alloca. We always cast the result. */ | |||
| 281 | #ifndef _AIX /* Already did AIX, up at the top. */ | |||
| 282 | char *alloca ()__builtin_alloca(); | |||
| 283 | #endif /* not _AIX */ | |||
| 284 | #endif | |||
| 285 | #endif /* not HAVE_ALLOCA_H */ | |||
| 286 | #endif /* not __GNUC__ */ | |||
| 287 | ||||
| 288 | #endif /* not alloca */ | |||
| 289 | ||||
| 290 | #define REGEX_ALLOCATEmalloc alloca | |||
| 291 | ||||
| 292 | /* Assumes a `char *destination' variable. */ | |||
| 293 | #define REGEX_REALLOCATE(source, osize, nsize)realloc (source, nsize) \ | |||
| 294 | (destination = (char *) alloca (nsize)__builtin_alloca(nsize), \ | |||
| 295 | bcopy (source, destination, osize)memcpy ((destination), (source), (osize)), \ | |||
| 296 | destination) | |||
| 297 | ||||
| 298 | /* No need to do anything to free, after alloca. */ | |||
| 299 | #define REGEX_FREEfree(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ | |||
| 300 | ||||
| 301 | #endif /* not REGEX_MALLOC */ | |||
| 302 | ||||
| 303 | /* Define how to allocate the failure stack. */ | |||
| 304 | ||||
| 305 | #if defined (REL_ALLOC) && defined (REGEX_MALLOC1) | |||
| 306 | ||||
| 307 | #define REGEX_ALLOCATE_STACKmalloc(size) \ | |||
| 308 | r_alloc (&failure_stack_ptr, (size)) | |||
| 309 | #define REGEX_REALLOCATE_STACK(source, osize, nsize)realloc (source, nsize) \ | |||
| 310 | r_re_alloc (&failure_stack_ptr, (nsize)) | |||
| 311 | #define REGEX_FREE_STACKfree(ptr) \ | |||
| 312 | r_alloc_free (&failure_stack_ptr) | |||
| 313 | ||||
| 314 | #else /* not using relocating allocator */ | |||
| 315 | ||||
| 316 | #ifdef REGEX_MALLOC1 | |||
| 317 | ||||
| 318 | #define REGEX_ALLOCATE_STACKmalloc malloc | |||
| 319 | #define REGEX_REALLOCATE_STACK(source, osize, nsize)realloc (source, nsize) realloc (source, nsize) | |||
| 320 | #define REGEX_FREE_STACKfree free | |||
| 321 | ||||
| 322 | #else /* not REGEX_MALLOC */ | |||
| 323 | ||||
| 324 | #define REGEX_ALLOCATE_STACKmalloc alloca | |||
| 325 | ||||
| 326 | #define REGEX_REALLOCATE_STACK(source, osize, nsize)realloc (source, nsize) \ | |||
| 327 | REGEX_REALLOCATE (source, osize, nsize)realloc (source, nsize) | |||
| 328 | /* No need to explicitly free anything. */ | |||
| 329 | #define REGEX_FREE_STACKfree(arg) | |||
| 330 | ||||
| 331 | #endif /* not REGEX_MALLOC */ | |||
| 332 | #endif /* not using relocating allocator */ | |||
| 333 | ||||
| 334 | ||||
| 335 | /* True if `size1' is non-NULL and PTR is pointing anywhere inside | |||
| 336 | `string1' or just past its end. This works if PTR is NULL, which is | |||
| 337 | a good thing. */ | |||
| 338 | #define FIRST_STRING_P(ptr)(size1 && string1 <= (ptr) && (ptr) <= string1 + size1) \ | |||
| 339 | (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) | |||
| 340 | ||||
| 341 | /* (Re)Allocate N items of type T using malloc, or fail. */ | |||
| 342 | #define TALLOC(n, t)((t *) malloc ((n) * sizeof (t))) ((t *) malloc ((n) * sizeof (t))) | |||
| 343 | #define RETALLOC(addr, n, t)((addr) = (t *) realloc (addr, (n) * sizeof (t))) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) | |||
| 344 | #define RETALLOC_IF(addr, n, t)if (addr) (((addr)) = (t *) realloc ((addr), ((n)) * sizeof ( t))); else (addr) = ((t *) malloc (((n)) * sizeof (t))) \ | |||
| 345 | if (addr) RETALLOC((addr), (n), t)(((addr)) = (t *) realloc ((addr), ((n)) * sizeof (t))); else (addr) = TALLOC ((n), t)((t *) malloc (((n)) * sizeof (t))) | |||
| 346 | #define REGEX_TALLOC(n, t)((t *) malloc ((n) * sizeof (t))) ((t *) REGEX_ALLOCATEmalloc ((n) * sizeof (t))) | |||
| 347 | ||||
| 348 | #define BYTEWIDTH8 8 /* In bits. */ | |||
| 349 | ||||
| 350 | #define STREQ(s1, s2)((strcmp (s1, s2) == 0)) ((strcmp (s1, s2) == 0)) | |||
| 351 | ||||
| 352 | #undef MAX | |||
| 353 | #undef MIN | |||
| 354 | #define MAX(a, b)((a) > (b) ? (a) : (b)) ((a) > (b) ? (a) : (b)) | |||
| 355 | #define MIN(a, b)((a) < (b) ? (a) : (b)) ((a) < (b) ? (a) : (b)) | |||
| 356 | ||||
| 357 | typedef char boolean; | |||
| 358 | #define false0 0 | |||
| 359 | #define true1 1 | |||
| 360 | ||||
| 361 | static int re_match_2_internal (); | |||
| 362 | ||||
| 363 | /* These are the command codes that appear in compiled regular | |||
| 364 | expressions. Some opcodes are followed by argument bytes. A | |||
| 365 | command code can specify any interpretation whatsoever for its | |||
| 366 | arguments. Zero bytes may appear in the compiled regular expression. */ | |||
| 367 | ||||
| 368 | typedef enum | |||
| 369 | { | |||
| 370 | no_op = 0, | |||
| 371 | ||||
| 372 | /* Succeed right away--no more backtracking. */ | |||
| 373 | succeed, | |||
| 374 | ||||
| 375 | /* Followed by one byte giving n, then by n literal bytes. */ | |||
| 376 | exactn, | |||
| 377 | ||||
| 378 | /* Matches any (more or less) character. */ | |||
| 379 | anychar, | |||
| 380 | ||||
| 381 | /* Matches any one char belonging to specified set. First | |||
| 382 | following byte is number of bitmap bytes. Then come bytes | |||
| 383 | for a bitmap saying which chars are in. Bits in each byte | |||
| 384 | are ordered low-bit-first. A character is in the set if its | |||
| 385 | bit is 1. A character too large to have a bit in the map is | |||
| 386 | automatically not in the set. */ | |||
| 387 | charset, | |||
| 388 | ||||
| 389 | /* Same parameters as charset, but match any character that is | |||
| 390 | not one of those specified. */ | |||
| 391 | charset_not, | |||
| 392 | ||||
| 393 | /* Start remembering the text that is matched, for storing in a | |||
| 394 | register. Followed by one byte with the register number, in | |||
| 395 | the range 0 to one less than the pattern buffer's re_nsub | |||
| 396 | field. Then followed by one byte with the number of groups | |||
| 397 | inner to this one. (This last has to be part of the | |||
| 398 | start_memory only because we need it in the on_failure_jump | |||
| 399 | of re_match_2.) */ | |||
| 400 | start_memory, | |||
| 401 | ||||
| 402 | /* Stop remembering the text that is matched and store it in a | |||
| 403 | memory register. Followed by one byte with the register | |||
| 404 | number, in the range 0 to one less than `re_nsub' in the | |||
| 405 | pattern buffer, and one byte with the number of inner groups, | |||
| 406 | just like `start_memory'. (We need the number of inner | |||
| 407 | groups here because we don't have any easy way of finding the | |||
| 408 | corresponding start_memory when we're at a stop_memory.) */ | |||
| 409 | stop_memory, | |||
| 410 | ||||
| 411 | /* Match a duplicate of something remembered. Followed by one | |||
| 412 | byte containing the register number. */ | |||
| 413 | duplicate, | |||
| 414 | ||||
| 415 | /* Fail unless at beginning of line. */ | |||
| 416 | begline, | |||
| 417 | ||||
| 418 | /* Fail unless at end of line. */ | |||
| 419 | endline, | |||
| 420 | ||||
| 421 | /* Succeeds if at beginning of buffer (if emacs) or at beginning | |||
| 422 | of string to be matched (if not). */ | |||
| 423 | begbuf, | |||
| 424 | ||||
| 425 | /* Analogously, for end of buffer/string. */ | |||
| 426 | endbuf, | |||
| 427 | ||||
| 428 | /* Followed by two byte relative address to which to jump. */ | |||
| 429 | jump, | |||
| 430 | ||||
| 431 | /* Same as jump, but marks the end of an alternative. */ | |||
| 432 | jump_past_alt, | |||
| 433 | ||||
| 434 | /* Followed by two-byte relative address of place to resume at | |||
| 435 | in case of failure. */ | |||
| 436 | on_failure_jump, | |||
| 437 | ||||
| 438 | /* Like on_failure_jump, but pushes a placeholder instead of the | |||
| 439 | current string position when executed. */ | |||
| 440 | on_failure_keep_string_jump, | |||
| 441 | ||||
| 442 | /* Throw away latest failure point and then jump to following | |||
| 443 | two-byte relative address. */ | |||
| 444 | pop_failure_jump, | |||
| 445 | ||||
| 446 | /* Change to pop_failure_jump if know won't have to backtrack to | |||
| 447 | match; otherwise change to jump. This is used to jump | |||
| 448 | back to the beginning of a repeat. If what follows this jump | |||
| 449 | clearly won't match what the repeat does, such that we can be | |||
| 450 | sure that there is no use backtracking out of repetitions | |||
| 451 | already matched, then we change it to a pop_failure_jump. | |||
| 452 | Followed by two-byte address. */ | |||
| 453 | maybe_pop_jump, | |||
| 454 | ||||
| 455 | /* Jump to following two-byte address, and push a dummy failure | |||
| 456 | point. This failure point will be thrown away if an attempt | |||
| 457 | is made to use it for a failure. A `+' construct makes this | |||
| 458 | before the first repeat. Also used as an intermediary kind | |||
| 459 | of jump when compiling an alternative. */ | |||
| 460 | dummy_failure_jump, | |||
| 461 | ||||
| 462 | /* Push a dummy failure point and continue. Used at the end of | |||
| 463 | alternatives. */ | |||
| 464 | push_dummy_failure, | |||
| 465 | ||||
| 466 | /* Followed by two-byte relative address and two-byte number n. | |||
| 467 | After matching N times, jump to the address upon failure. */ | |||
| 468 | succeed_n, | |||
| 469 | ||||
| 470 | /* Followed by two-byte relative address, and two-byte number n. | |||
| 471 | Jump to the address N times, then fail. */ | |||
| 472 | jump_n, | |||
| 473 | ||||
| 474 | /* Set the following two-byte relative address to the | |||
| 475 | subsequent two-byte number. The address *includes* the two | |||
| 476 | bytes of number. */ | |||
| 477 | set_number_at, | |||
| 478 | ||||
| 479 | wordchar, /* Matches any word-constituent character. */ | |||
| 480 | notwordchar, /* Matches any char that is not a word-constituent. */ | |||
| 481 | ||||
| 482 | wordbeg, /* Succeeds if at word beginning. */ | |||
| 483 | wordend, /* Succeeds if at word end. */ | |||
| 484 | ||||
| 485 | wordbound, /* Succeeds if at a word boundary. */ | |||
| 486 | notwordbound /* Succeeds if not at a word boundary. */ | |||
| 487 | ||||
| 488 | #ifdef emacs | |||
| 489 | ,before_dot, /* Succeeds if before point. */ | |||
| 490 | at_dot, /* Succeeds if at point. */ | |||
| 491 | after_dot, /* Succeeds if after point. */ | |||
| 492 | ||||
| 493 | /* Matches any character whose syntax is specified. Followed by | |||
| 494 | a byte which contains a syntax code, e.g., Sword. */ | |||
| 495 | syntaxspec, | |||
| 496 | ||||
| 497 | /* Matches any character whose syntax is not that specified. */ | |||
| 498 | notsyntaxspec, | |||
| 499 | ||||
| 500 | /* Matches any character whose category-set contains the specified | |||
| 501 | category. The operator is followed by a byte which contains a | |||
| 502 | category code (mnemonic ASCII character). */ | |||
| 503 | categoryspec, | |||
| 504 | ||||
| 505 | /* Matches any character whose category-set does not contain the | |||
| 506 | specified category. The operator is followed by a byte which | |||
| 507 | contains the category code (mnemonic ASCII character). */ | |||
| 508 | notcategoryspec | |||
| 509 | #endif /* emacs */ | |||
| 510 | } re_opcode_t; | |||
| 511 | ||||
| 512 | /* Common operations on the compiled pattern. */ | |||
| 513 | ||||
| 514 | /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ | |||
| 515 | ||||
| 516 | #define STORE_NUMBER(destination, number)do { (destination)[0] = (number) & 0377; (destination)[1] = (number) >> 8; } while (0) \ | |||
| 517 | do { \ | |||
| 518 | (destination)[0] = (number) & 0377; \ | |||
| 519 | (destination)[1] = (number) >> 8; \ | |||
| 520 | } while (0) | |||
| 521 | ||||
| 522 | /* Same as STORE_NUMBER, except increment DESTINATION to | |||
| 523 | the byte after where the number is stored. Therefore, DESTINATION | |||
| 524 | must be an lvalue. */ | |||
| 525 | ||||
| 526 | #define STORE_NUMBER_AND_INCR(destination, number)do { do { (destination)[0] = (number) & 0377; (destination )[1] = (number) >> 8; } while (0); (destination) += 2; } while (0) \ | |||
| 527 | do { \ | |||
| 528 | STORE_NUMBER (destination, number)do { (destination)[0] = (number) & 0377; (destination)[1] = (number) >> 8; } while (0); \ | |||
| 529 | (destination) += 2; \ | |||
| 530 | } while (0) | |||
| 531 | ||||
| 532 | /* Put into DESTINATION a number stored in two contiguous bytes starting | |||
| 533 | at SOURCE. */ | |||
| 534 | ||||
| 535 | #define EXTRACT_NUMBER(destination, source)do { (destination) = *(source) & 0377; (destination) += ( (signed char) (*((source) + 1))) << 8; } while (0) \ | |||
| 536 | do { \ | |||
| 537 | (destination) = *(source) & 0377; \ | |||
| 538 | (destination) += SIGN_EXTEND_CHAR (*((source) + 1))((signed char) (*((source) + 1))) << 8; \ | |||
| 539 | } while (0) | |||
| 540 | ||||
| 541 | #ifdef DEBUG | |||
| 542 | static void | |||
| 543 | extract_number (dest, source) | |||
| 544 | int *dest; | |||
| 545 | unsigned char *source; | |||
| 546 | { | |||
| 547 | int temp = SIGN_EXTEND_CHAR (*(source + 1))((signed char) (*(source + 1))); | |||
| 548 | *dest = *source & 0377; | |||
| 549 | *dest += temp << 8; | |||
| 550 | } | |||
| 551 | ||||
| 552 | #ifndef EXTRACT_MACROS /* To debug the macros. */ | |||
| 553 | #undef EXTRACT_NUMBER | |||
| 554 | #define EXTRACT_NUMBER(dest, src)do { (dest) = *(src) & 0377; (dest) += ((signed char) (*( (src) + 1))) << 8; } while (0) extract_number (&dest, src) | |||
| 555 | #endif /* not EXTRACT_MACROS */ | |||
| 556 | ||||
| 557 | #endif /* DEBUG */ | |||
| 558 | ||||
| 559 | /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. | |||
| 560 | SOURCE must be an lvalue. */ | |||
| 561 | ||||
| 562 | #define EXTRACT_NUMBER_AND_INCR(destination, source)do { do { (destination) = *(source) & 0377; (destination) += ((signed char) (*((source) + 1))) << 8; } while (0) ; (source) += 2; } while (0) \ | |||
| 563 | do { \ | |||
| 564 | EXTRACT_NUMBER (destination, source)do { (destination) = *(source) & 0377; (destination) += ( (signed char) (*((source) + 1))) << 8; } while (0); \ | |||
| 565 | (source) += 2; \ | |||
| 566 | } while (0) | |||
| 567 | ||||
| 568 | #ifdef DEBUG | |||
| 569 | static void | |||
| 570 | extract_number_and_incr (destination, source) | |||
| 571 | int *destination; | |||
| 572 | unsigned char **source; | |||
| 573 | { | |||
| 574 | extract_number (destination, *source); | |||
| 575 | *source += 2; | |||
| 576 | } | |||
| 577 | ||||
| 578 | #ifndef EXTRACT_MACROS | |||
| 579 | #undef EXTRACT_NUMBER_AND_INCR | |||
| 580 | #define EXTRACT_NUMBER_AND_INCR(dest, src)do { do { (dest) = *(src) & 0377; (dest) += ((signed char ) (*((src) + 1))) << 8; } while (0); (src) += 2; } while (0) \ | |||
| 581 | extract_number_and_incr (&dest, &src) | |||
| 582 | #endif /* not EXTRACT_MACROS */ | |||
| 583 | ||||
| 584 | #endif /* DEBUG */ | |||
| 585 | ||||
| 586 | /* Store a multibyte character in three contiguous bytes starting | |||
| 587 | DESTINATION, and increment DESTINATION to the byte after where the | |||
| 588 | character is stored. Therefore, DESTINATION must be an lvalue. */ | |||
| 589 | ||||
| 590 | #define STORE_CHARACTER_AND_INCR(destination, character)do { (destination)[0] = (character) & 0377; (destination) [1] = ((character) >> 8) & 0377; (destination)[2] = (character) >> 16; (destination) += 3; } while (0) \ | |||
| 591 | do { \ | |||
| 592 | (destination)[0] = (character) & 0377; \ | |||
| 593 | (destination)[1] = ((character) >> 8) & 0377; \ | |||
| 594 | (destination)[2] = (character) >> 16; \ | |||
| 595 | (destination) += 3; \ | |||
| 596 | } while (0) | |||
| 597 | ||||
| 598 | /* Put into DESTINATION a character stored in three contiguous bytes | |||
| 599 | starting at SOURCE. */ | |||
| 600 | ||||
| 601 | #define EXTRACT_CHARACTER(destination, source)do { (destination) = ((source)[0] | ((source)[1] << 8) | ((source)[2] << 16)); } while (0) \ | |||
| 602 | do { \ | |||
| 603 | (destination) = ((source)[0] \ | |||
| 604 | | ((source)[1] << 8) \ | |||
| 605 | | ((source)[2] << 16)); \ | |||
| 606 | } while (0) | |||
| 607 | ||||
| 608 | ||||
| 609 | /* Macros for charset. */ | |||
| 610 | ||||
| 611 | /* Size of bitmap of charset P in bytes. P is a start of charset, | |||
| 612 | i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */ | |||
| 613 | #define CHARSET_BITMAP_SIZE(p)((p)[1] & 0x7F) ((p)[1] & 0x7F) | |||
| 614 | ||||
| 615 | /* Nonzero if charset P has range table. */ | |||
| 616 | #define CHARSET_RANGE_TABLE_EXISTS_P(p)((p)[1] & 0x80) ((p)[1] & 0x80) | |||
| 617 | ||||
| 618 | /* Return the address of range table of charset P. But not the start | |||
| 619 | of table itself, but the before where the number of ranges is | |||
| 620 | stored. `2 +' means to skip re_opcode_t and size of bitmap. */ | |||
| 621 | #define CHARSET_RANGE_TABLE(p)(&(p)[2 + ((p)[1] & 0x7F)]) (&(p)[2 + CHARSET_BITMAP_SIZE (p)((p)[1] & 0x7F)]) | |||
| 622 | ||||
| 623 | /* Test if C is listed in the bitmap of charset P. */ | |||
| 624 | #define CHARSET_LOOKUP_BITMAP(p, c)((c) < ((p)[1] & 0x7F) * 8 && (p)[2 + (c) / 8] & (1 << ((c) % 8))) \ | |||
| 625 | ((c) < CHARSET_BITMAP_SIZE (p)((p)[1] & 0x7F) * BYTEWIDTH8 \ | |||
| 626 | && (p)[2 + (c) / BYTEWIDTH8] & (1 << ((c) % BYTEWIDTH8))) | |||
| 627 | ||||
| 628 | /* Return the address of end of RANGE_TABLE. COUNT is number of | |||
| 629 | ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2' | |||
| 630 | is start of range and end of range. `* 3' is size of each start | |||
| 631 | and end. */ | |||
| 632 | #define CHARSET_RANGE_TABLE_END(range_table, count)((range_table) + (count) * 2 * 3) \ | |||
| 633 | ((range_table) + (count) * 2 * 3) | |||
| 634 | ||||
| 635 | /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in. | |||
| 636 | COUNT is number of ranges in RANGE_TABLE. */ | |||
| 637 | #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count)do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3) [1] << 8) | ((p + 3)[2] << 16)); } while (0); if ( range_start <= (c) && (c) <= range_end) { (not) = !(not); break; } } } while (0) \ | |||
| 638 | do \ | |||
| 639 | { \ | |||
| 640 | int range_start, range_end; \ | |||
| 641 | unsigned char *p; \ | |||
| 642 | unsigned char *range_table_end \ | |||
| 643 | = CHARSET_RANGE_TABLE_END ((range_table), (count))(((range_table)) + ((count)) * 2 * 3); \ | |||
| 644 | \ | |||
| 645 | for (p = (range_table); p < range_table_end; p += 2 * 3) \ | |||
| 646 | { \ | |||
| 647 | EXTRACT_CHARACTER (range_start, p)do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); \ | |||
| 648 | EXTRACT_CHARACTER (range_end, p + 3)do { (range_end) = ((p + 3)[0] | ((p + 3)[1] << 8) | (( p + 3)[2] << 16)); } while (0); \ | |||
| 649 | \ | |||
| 650 | if (range_start <= (c) && (c) <= range_end) \ | |||
| 651 | { \ | |||
| 652 | (not) = !(not); \ | |||
| 653 | break; \ | |||
| 654 | } \ | |||
| 655 | } \ | |||
| 656 | } \ | |||
| 657 | while (0) | |||
| 658 | ||||
| 659 | /* Test if C is in range table of CHARSET. The flag NOT is negated if | |||
| 660 | C is listed in it. */ | |||
| 661 | #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset)do { int count; unsigned char *range_table = (&(charset)[ 2 + ((charset)[1] & 0x7F)]); do { do { (count) = *(range_table ) & 0377; (count) += ((signed char) (*((range_table) + 1) )) << 8; } while (0); (range_table) += 2; } while (0); do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3) [1] << 8) | ((p + 3)[2] << 16)); } while (0); if ( range_start <= ((c)) && ((c)) <= range_end) { ( (not)) = !((not)); break; } } } while (0); } while (0) \ | |||
| 662 | do \ | |||
| 663 | { \ | |||
| 664 | /* Number of ranges in range table. */ \ | |||
| 665 | int count; \ | |||
| 666 | unsigned char *range_table = CHARSET_RANGE_TABLE (charset)(&(charset)[2 + ((charset)[1] & 0x7F)]); \ | |||
| 667 | \ | |||
| 668 | EXTRACT_NUMBER_AND_INCR (count, range_table)do { do { (count) = *(range_table) & 0377; (count) += ((signed char) (*((range_table) + 1))) << 8; } while (0); (range_table ) += 2; } while (0); \ | |||
| 669 | CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count)do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3) [1] << 8) | ((p + 3)[2] << 16)); } while (0); if ( range_start <= ((c)) && ((c)) <= range_end) { ( (not)) = !((not)); break; } } } while (0); \ | |||
| 670 | } \ | |||
| 671 | while (0) | |||
| 672 | ||||
| 673 | /* If DEBUG is defined, Regex prints many voluminous messages about what | |||
| 674 | it is doing (if the variable `debug' is nonzero). If linked with the | |||
| 675 | main program in `iregex.c', you can enter patterns and strings | |||
| 676 | interactively. And if linked with the main program in `main.c' and | |||
| 677 | the other test files, you can run the already-written tests. */ | |||
| 678 | ||||
| 679 | #ifdef DEBUG | |||
| 680 | ||||
| 681 | /* We use standard I/O for debugging. */ | |||
| 682 | #include <stdio.h> | |||
| 683 | ||||
| 684 | /* It is useful to test things that ``must'' be true when debugging. */ | |||
| 685 | #include <assert.h> | |||
| 686 | ||||
| 687 | static int debug = 0; | |||
| 688 | ||||
| 689 | #define DEBUG_STATEMENT(e) e | |||
| 690 | #define DEBUG_PRINT1(x) if (debug) printf (x) | |||
| 691 | #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) | |||
| 692 | #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) | |||
| 693 | #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) | |||
| 694 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ | |||
| 695 | if (debug) print_partial_compiled_pattern (s, e) | |||
| 696 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ | |||
| 697 | if (debug) print_double_string (w, s1, sz1, s2, sz2) | |||
| 698 | ||||
| 699 | ||||
| 700 | /* Print the fastmap in human-readable form. */ | |||
| 701 | ||||
| 702 | void | |||
| 703 | print_fastmap (fastmap) | |||
| 704 | char *fastmap; | |||
| 705 | { | |||
| 706 | unsigned was_a_range = 0; | |||
| 707 | unsigned i = 0; | |||
| 708 | ||||
| 709 | while (i < (1 << BYTEWIDTH8)) | |||
| 710 | { | |||
| 711 | if (fastmap[i++]) | |||
| 712 | { | |||
| 713 | was_a_range = 0; | |||
| 714 | putchar (i - 1); | |||
| 715 | while (i < (1 << BYTEWIDTH8) && fastmap[i]) | |||
| 716 | { | |||
| 717 | was_a_range = 1; | |||
| 718 | i++; | |||
| 719 | } | |||
| 720 | if (was_a_range) | |||
| 721 | { | |||
| 722 | printf ("-"); | |||
| 723 | putchar (i - 1); | |||
| 724 | } | |||
| 725 | } | |||
| 726 | } | |||
| 727 | putchar ('\n'); | |||
| 728 | } | |||
| 729 | ||||
| 730 | ||||
| 731 | /* Print a compiled pattern string in human-readable form, starting at | |||
| 732 | the START pointer into it and ending just before the pointer END. */ | |||
| 733 | ||||
| 734 | void | |||
| 735 | print_partial_compiled_pattern (start, end) | |||
| 736 | unsigned char *start; | |||
| 737 | unsigned char *end; | |||
| 738 | { | |||
| 739 | int mcnt, mcnt2; | |||
| 740 | unsigned char *p = start; | |||
| 741 | unsigned char *pend = end; | |||
| 742 | ||||
| 743 | if (start == NULL((void *)0)) | |||
| 744 | { | |||
| 745 | printf ("(null)\n"); | |||
| 746 | return; | |||
| 747 | } | |||
| 748 | ||||
| 749 | /* Loop over pattern commands. */ | |||
| 750 | while (p < pend) | |||
| 751 | { | |||
| 752 | printf ("%d:\t", p - start); | |||
| 753 | ||||
| 754 | switch ((re_opcode_t) *p++) | |||
| 755 | { | |||
| 756 | case no_op: | |||
| 757 | printf ("/no_op"); | |||
| 758 | break; | |||
| 759 | ||||
| 760 | case exactn: | |||
| 761 | mcnt = *p++; | |||
| 762 | printf ("/exactn/%d", mcnt); | |||
| 763 | do | |||
| 764 | { | |||
| 765 | putchar ('/'); | |||
| 766 | putchar (*p++); | |||
| 767 | } | |||
| 768 | while (--mcnt); | |||
| 769 | break; | |||
| 770 | ||||
| 771 | case start_memory: | |||
| 772 | mcnt = *p++; | |||
| 773 | printf ("/start_memory/%d/%d", mcnt, *p++); | |||
| 774 | break; | |||
| 775 | ||||
| 776 | case stop_memory: | |||
| 777 | mcnt = *p++; | |||
| 778 | printf ("/stop_memory/%d/%d", mcnt, *p++); | |||
| 779 | break; | |||
| 780 | ||||
| 781 | case duplicate: | |||
| 782 | printf ("/duplicate/%d", *p++); | |||
| 783 | break; | |||
| 784 | ||||
| 785 | case anychar: | |||
| 786 | printf ("/anychar"); | |||
| 787 | break; | |||
| 788 | ||||
| 789 | case charset: | |||
| 790 | case charset_not: | |||
| 791 | { | |||
| 792 | register int c, last = -100; | |||
| 793 | register int in_range = 0; | |||
| 794 | ||||
| 795 | printf ("/charset [%s", | |||
| 796 | (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); | |||
| 797 | ||||
| 798 | assert (p + *p < pend); | |||
| 799 | ||||
| 800 | for (c = 0; c < 256; c++) | |||
| 801 | if (c / 8 < *p | |||
| 802 | && (p[1 + (c/8)] & (1 << (c % 8)))) | |||
| 803 | { | |||
| 804 | /* Are we starting a range? */ | |||
| 805 | if (last + 1 == c && ! in_range) | |||
| 806 | { | |||
| 807 | putchar ('-'); | |||
| 808 | in_range = 1; | |||
| 809 | } | |||
| 810 | /* Have we broken a range? */ | |||
| 811 | else if (last + 1 != c && in_range) | |||
| 812 | { | |||
| 813 | putchar (last); | |||
| 814 | in_range = 0; | |||
| 815 | } | |||
| 816 | ||||
| 817 | if (! in_range) | |||
| 818 | putchar (c); | |||
| 819 | ||||
| 820 | last = c; | |||
| 821 | } | |||
| 822 | ||||
| 823 | if (in_range) | |||
| 824 | putchar (last); | |||
| 825 | ||||
| 826 | putchar (']'); | |||
| 827 | ||||
| 828 | p += 1 + *p; | |||
| 829 | } | |||
| 830 | break; | |||
| 831 | ||||
| 832 | case begline: | |||
| 833 | printf ("/begline"); | |||
| 834 | break; | |||
| 835 | ||||
| 836 | case endline: | |||
| 837 | printf ("/endline"); | |||
| 838 | break; | |||
| 839 | ||||
| 840 | case on_failure_jump: | |||
| 841 | extract_number_and_incr (&mcnt, &p); | |||
| 842 | printf ("/on_failure_jump to %d", p + mcnt - start); | |||
| 843 | break; | |||
| 844 | ||||
| 845 | case on_failure_keep_string_jump: | |||
| 846 | extract_number_and_incr (&mcnt, &p); | |||
| 847 | printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); | |||
| 848 | break; | |||
| 849 | ||||
| 850 | case dummy_failure_jump: | |||
| 851 | extract_number_and_incr (&mcnt, &p); | |||
| 852 | printf ("/dummy_failure_jump to %d", p + mcnt - start); | |||
| 853 | break; | |||
| 854 | ||||
| 855 | case push_dummy_failure: | |||
| 856 | printf ("/push_dummy_failure"); | |||
| 857 | break; | |||
| 858 | ||||
| 859 | case maybe_pop_jump: | |||
| 860 | extract_number_and_incr (&mcnt, &p); | |||
| 861 | printf ("/maybe_pop_jump to %d", p + mcnt - start); | |||
| 862 | break; | |||
| 863 | ||||
| 864 | case pop_failure_jump: | |||
| 865 | extract_number_and_incr (&mcnt, &p); | |||
| 866 | printf ("/pop_failure_jump to %d", p + mcnt - start); | |||
| 867 | break; | |||
| 868 | ||||
| 869 | case jump_past_alt: | |||
| 870 | extract_number_and_incr (&mcnt, &p); | |||
| 871 | printf ("/jump_past_alt to %d", p + mcnt - start); | |||
| 872 | break; | |||
| 873 | ||||
| 874 | case jump: | |||
| 875 | extract_number_and_incr (&mcnt, &p); | |||
| 876 | printf ("/jump to %d", p + mcnt - start); | |||
| 877 | break; | |||
| 878 | ||||
| 879 | case succeed_n: | |||
| 880 | extract_number_and_incr (&mcnt, &p); | |||
| 881 | extract_number_and_incr (&mcnt2, &p); | |||
| 882 | printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2); | |||
| 883 | break; | |||
| 884 | ||||
| 885 | case jump_n: | |||
| 886 | extract_number_and_incr (&mcnt, &p); | |||
| 887 | extract_number_and_incr (&mcnt2, &p); | |||
| 888 | printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2); | |||
| 889 | break; | |||
| 890 | ||||
| 891 | case set_number_at: | |||
| 892 | extract_number_and_incr (&mcnt, &p); | |||
| 893 | extract_number_and_incr (&mcnt2, &p); | |||
| 894 | printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2); | |||
| 895 | break; | |||
| 896 | ||||
| 897 | case wordbound: | |||
| 898 | printf ("/wordbound"); | |||
| 899 | break; | |||
| 900 | ||||
| 901 | case notwordbound: | |||
| 902 | printf ("/notwordbound"); | |||
| 903 | break; | |||
| 904 | ||||
| 905 | case wordbeg: | |||
| 906 | printf ("/wordbeg"); | |||
| 907 | break; | |||
| 908 | ||||
| 909 | case wordend: | |||
| 910 | printf ("/wordend"); | |||
| 911 | ||||
| 912 | #ifdef emacs | |||
| 913 | case before_dot: | |||
| 914 | printf ("/before_dot"); | |||
| 915 | break; | |||
| 916 | ||||
| 917 | case at_dot: | |||
| 918 | printf ("/at_dot"); | |||
| 919 | break; | |||
| 920 | ||||
| 921 | case after_dot: | |||
| 922 | printf ("/after_dot"); | |||
| 923 | break; | |||
| 924 | ||||
| 925 | case syntaxspec: | |||
| 926 | printf ("/syntaxspec"); | |||
| 927 | mcnt = *p++; | |||
| 928 | printf ("/%d", mcnt); | |||
| 929 | break; | |||
| 930 | ||||
| 931 | case notsyntaxspec: | |||
| 932 | printf ("/notsyntaxspec"); | |||
| 933 | mcnt = *p++; | |||
| 934 | printf ("/%d", mcnt); | |||
| 935 | break; | |||
| 936 | #endif /* emacs */ | |||
| 937 | ||||
| 938 | case wordchar: | |||
| 939 | printf ("/wordchar"); | |||
| 940 | break; | |||
| 941 | ||||
| 942 | case notwordchar: | |||
| 943 | printf ("/notwordchar"); | |||
| 944 | break; | |||
| 945 | ||||
| 946 | case begbuf: | |||
| 947 | printf ("/begbuf"); | |||
| 948 | break; | |||
| 949 | ||||
| 950 | case endbuf: | |||
| 951 | printf ("/endbuf"); | |||
| 952 | break; | |||
| 953 | ||||
| 954 | default: | |||
| 955 | printf ("?%d", *(p-1)); | |||
| 956 | } | |||
| 957 | ||||
| 958 | putchar ('\n'); | |||
| 959 | } | |||
| 960 | ||||
| 961 | printf ("%d:\tend of pattern.\n", p - start); | |||
| 962 | } | |||
| 963 | ||||
| 964 | ||||
| 965 | void | |||
| 966 | print_compiled_pattern (bufp) | |||
| 967 | struct re_pattern_buffer *bufp; | |||
| 968 | { | |||
| 969 | unsigned char *buffer = bufp->buffer; | |||
| 970 | ||||
| 971 | print_partial_compiled_pattern (buffer, buffer + bufp->used); | |||
| 972 | printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated); | |||
| 973 | ||||
| 974 | if (bufp->fastmap_accurate && bufp->fastmap) | |||
| 975 | { | |||
| 976 | printf ("fastmap: "); | |||
| 977 | print_fastmap (bufp->fastmap); | |||
| 978 | } | |||
| 979 | ||||
| 980 | printf ("re_nsub: %d\t", bufp->re_nsub); | |||
| 981 | printf ("regs_alloc: %d\t", bufp->regs_allocated); | |||
| 982 | printf ("can_be_null: %d\t", bufp->can_be_null); | |||
| 983 | printf ("newline_anchor: %d\n", bufp->newline_anchor); | |||
| 984 | printf ("no_sub: %d\t", bufp->no_sub); | |||
| 985 | printf ("not_bol: %d\t", bufp->not_bol); | |||
| 986 | printf ("not_eol: %d\t", bufp->not_eol); | |||
| 987 | printf ("syntax: %d\n", bufp->syntax); | |||
| 988 | /* Perhaps we should print the translate table? */ | |||
| 989 | } | |||
| 990 | ||||
| 991 | ||||
| 992 | void | |||
| 993 | print_double_string (where, string1, size1, string2, size2) | |||
| 994 | const char *where; | |||
| 995 | const char *string1; | |||
| 996 | const char *string2; | |||
| 997 | int size1; | |||
| 998 | int size2; | |||
| 999 | { | |||
| 1000 | unsigned this_char; | |||
| 1001 | ||||
| 1002 | if (where == NULL((void *)0)) | |||
| 1003 | printf ("(null)"); | |||
| 1004 | else | |||
| 1005 | { | |||
| 1006 | if (FIRST_STRING_P (where)(size1 && string1 <= (where) && (where) <= string1 + size1)) | |||
| 1007 | { | |||
| 1008 | for (this_char = where - string1; this_char < size1; this_char++) | |||
| 1009 | putchar (string1[this_char]); | |||
| 1010 | ||||
| 1011 | where = string2; | |||
| 1012 | } | |||
| 1013 | ||||
| 1014 | for (this_char = where - string2; this_char < size2; this_char++) | |||
| 1015 | putchar (string2[this_char]); | |||
| 1016 | } | |||
| 1017 | } | |||
| 1018 | ||||
| 1019 | #else /* not DEBUG */ | |||
| 1020 | ||||
| 1021 | #undef assert | |||
| 1022 | #define assert(e) | |||
| 1023 | ||||
| 1024 | #define DEBUG_STATEMENT(e) | |||
| 1025 | #define DEBUG_PRINT1(x) | |||
| 1026 | #define DEBUG_PRINT2(x1, x2) | |||
| 1027 | #define DEBUG_PRINT3(x1, x2, x3) | |||
| 1028 | #define DEBUG_PRINT4(x1, x2, x3, x4) | |||
| 1029 | #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) | |||
| 1030 | #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) | |||
| 1031 | ||||
| 1032 | #endif /* not DEBUG */ | |||
| 1033 | ||||
| 1034 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | |||
| 1035 | also be assigned to arbitrarily: each pattern buffer stores its own | |||
| 1036 | syntax, so it can be changed between regex compilations. */ | |||
| 1037 | /* This has no initializer because initialized variables in Emacs | |||
| 1038 | become read-only after dumping. */ | |||
| 1039 | reg_syntax_t re_syntax_options; | |||
| 1040 | ||||
| 1041 | ||||
| 1042 | /* Specify the precise syntax of regexps for compilation. This provides | |||
| 1043 | for compatibility for various utilities which historically have | |||
| 1044 | different, incompatible syntaxes. | |||
| 1045 | ||||
| 1046 | The argument SYNTAX is a bit mask comprised of the various bits | |||
| 1047 | defined in regex.h. We return the old syntax. */ | |||
| 1048 | ||||
| 1049 | reg_syntax_t | |||
| 1050 | re_set_syntax (syntax) | |||
| 1051 | reg_syntax_t syntax; | |||
| 1052 | { | |||
| 1053 | reg_syntax_t ret = re_syntax_options; | |||
| 1054 | ||||
| 1055 | re_syntax_options = syntax; | |||
| 1056 | return ret; | |||
| 1057 | } | |||
| 1058 | ||||
| 1059 | /* This table gives an error message for each of the error codes listed | |||
| 1060 | in regex.h. Obviously the order here has to be same as there. | |||
| 1061 | POSIX doesn't require that we do anything for REG_NOERROR, | |||
| 1062 | but why not be nice? */ | |||
| 1063 | ||||
| 1064 | static const char *re_error_msgid[] = | |||
| 1065 | { | |||
| 1066 | gettext_noop ("Success")"Success", /* REG_NOERROR */ | |||
| 1067 | gettext_noop ("No match")"No match", /* REG_NOMATCH */ | |||
| 1068 | gettext_noop ("Invalid regular expression")"Invalid regular expression", /* REG_BADPAT */ | |||
| 1069 | gettext_noop ("Invalid collation character")"Invalid collation character", /* REG_ECOLLATE */ | |||
| 1070 | gettext_noop ("Invalid character class name")"Invalid character class name", /* REG_ECTYPE */ | |||
| 1071 | gettext_noop ("Trailing backslash")"Trailing backslash", /* REG_EESCAPE */ | |||
| 1072 | gettext_noop ("Invalid back reference")"Invalid back reference", /* REG_ESUBREG */ | |||
| 1073 | gettext_noop ("Unmatched [ or [^")"Unmatched [ or [^", /* REG_EBRACK */ | |||
| 1074 | gettext_noop ("Unmatched ( or \\(")"Unmatched ( or \\(", /* REG_EPAREN */ | |||
| 1075 | gettext_noop ("Unmatched \\{")"Unmatched \\{", /* REG_EBRACE */ | |||
| 1076 | gettext_noop ("Invalid content of \\{\\}")"Invalid content of \\{\\}", /* REG_BADBR */ | |||
| 1077 | gettext_noop ("Invalid range end")"Invalid range end", /* REG_ERANGE */ | |||
| 1078 | gettext_noop ("Memory exhausted")"Memory exhausted", /* REG_ESPACE */ | |||
| 1079 | gettext_noop ("Invalid preceding regular expression")"Invalid preceding regular expression", /* REG_BADRPT */ | |||
| 1080 | gettext_noop ("Premature end of regular expression")"Premature end of regular expression", /* REG_EEND */ | |||
| 1081 | gettext_noop ("Regular expression too big")"Regular expression too big", /* REG_ESIZE */ | |||
| 1082 | gettext_noop ("Unmatched ) or \\)")"Unmatched ) or \\)", /* REG_ERPAREN */ | |||
| 1083 | }; | |||
| 1084 | ||||
| 1085 | /* Avoiding alloca during matching, to placate r_alloc. */ | |||
| 1086 | ||||
| 1087 | /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the | |||
| 1088 | searching and matching functions should not call alloca. On some | |||
| 1089 | systems, alloca is implemented in terms of malloc, and if we're | |||
| 1090 | using the relocating allocator routines, then malloc could cause a | |||
| 1091 | relocation, which might (if the strings being searched are in the | |||
| 1092 | ralloc heap) shift the data out from underneath the regexp | |||
| 1093 | routines. | |||
| 1094 | ||||
| 1095 | Here's another reason to avoid allocation: Emacs | |||
| 1096 | processes input from X in a signal handler; processing X input may | |||
| 1097 | call malloc; if input arrives while a matching routine is calling | |||
| 1098 | malloc, then we're scrod. But Emacs can't just block input while | |||
| 1099 | calling matching routines; then we don't notice interrupts when | |||
| 1100 | they come in. So, Emacs blocks input around all regexp calls | |||
| 1101 | except the matching calls, which it leaves unprotected, in the | |||
| 1102 | faith that they will not malloc. */ | |||
| 1103 | ||||
| 1104 | /* Normally, this is fine. */ | |||
| 1105 | #define MATCH_MAY_ALLOCATE | |||
| 1106 | ||||
| 1107 | /* When using GNU C, we are not REALLY using the C alloca, no matter | |||
| 1108 | what config.h may say. So don't take precautions for it. */ | |||
| 1109 | #ifdef __GNUC__4 | |||
| 1110 | #undef C_ALLOCA | |||
| 1111 | #endif | |||
| 1112 | ||||
| 1113 | /* The match routines may not allocate if (1) they would do it with malloc | |||
| 1114 | and (2) it's not safe for them to use malloc. | |||
| 1115 | Note that if REL_ALLOC is defined, matching would not use malloc for the | |||
| 1116 | failure stack, but we would still use it for the register vectors; | |||
| 1117 | so REL_ALLOC should not affect this. */ | |||
| 1118 | #if (defined (C_ALLOCA) || defined (REGEX_MALLOC1)) && defined (emacs) | |||
| 1119 | #undef MATCH_MAY_ALLOCATE | |||
| 1120 | #endif | |||
| 1121 | ||||
| 1122 | ||||
| 1123 | /* Failure stack declarations and macros; both re_compile_fastmap and | |||
| 1124 | re_match_2 use a failure stack. These have to be macros because of | |||
| 1125 | REGEX_ALLOCATE_STACK. */ | |||
| 1126 | ||||
| 1127 | ||||
| 1128 | /* Approximate number of failure points for which to initially allocate space | |||
| 1129 | when matching. If this number is exceeded, we allocate more | |||
| 1130 | space, so it is not a hard limit. */ | |||
| 1131 | #ifndef INIT_FAILURE_ALLOC20 | |||
| 1132 | #define INIT_FAILURE_ALLOC20 20 | |||
| 1133 | #endif | |||
| 1134 | ||||
| 1135 | /* Roughly the maximum number of failure points on the stack. Would be | |||
| 1136 | exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed. | |||
| 1137 | This is a variable only so users of regex can assign to it; we never | |||
| 1138 | change it ourselves. */ | |||
| 1139 | #if defined (MATCH_MAY_ALLOCATE) | |||
| 1140 | /* Note that 4400 is enough to cause a crash on Alpha OSF/1, | |||
| 1141 | whose default stack limit is 2mb. In order for a larger | |||
| 1142 | value to work reliably, you have to try to make it accord | |||
| 1143 | with the process stack limit. */ | |||
| 1144 | int re_max_failures = 40000; | |||
| 1145 | #else | |||
| 1146 | int re_max_failures = 4000; | |||
| 1147 | #endif | |||
| 1148 | ||||
| 1149 | union fail_stack_elt | |||
| 1150 | { | |||
| 1151 | unsigned char *pointer; | |||
| 1152 | int integer; | |||
| 1153 | }; | |||
| 1154 | ||||
| 1155 | typedef union fail_stack_elt fail_stack_elt_t; | |||
| 1156 | ||||
| 1157 | typedef struct | |||
| 1158 | { | |||
| 1159 | fail_stack_elt_t *stack; | |||
| 1160 | unsigned size; | |||
| 1161 | unsigned avail; /* Offset of next open position. */ | |||
| 1162 | } fail_stack_type; | |||
| 1163 | ||||
| 1164 | #define FAIL_STACK_EMPTY()(fail_stack.avail == 0) (fail_stack.avail == 0) | |||
| 1165 | #define FAIL_STACK_PTR_EMPTY()(fail_stack_ptr->avail == 0) (fail_stack_ptr->avail == 0) | |||
| 1166 | #define FAIL_STACK_FULL()(fail_stack.avail == fail_stack.size) (fail_stack.avail == fail_stack.size) | |||
| 1167 | ||||
| 1168 | ||||
| 1169 | /* Define macros to initialize and free the failure stack. | |||
| 1170 | Do `return -2' if the alloc fails. */ | |||
| 1171 | ||||
| 1172 | #ifdef MATCH_MAY_ALLOCATE | |||
| 1173 | #define INIT_FAIL_STACK()do { fail_stack.stack = (fail_stack_elt_t *) malloc (20 * 20 * sizeof (fail_stack_elt_t)); if (fail_stack.stack == ((void * )0)) return -2; fail_stack.size = 20; fail_stack.avail = 0; } while (0) \ | |||
| 1174 | do { \ | |||
| 1175 | fail_stack.stack = (fail_stack_elt_t *) \ | |||
| 1176 | REGEX_ALLOCATE_STACKmalloc (INIT_FAILURE_ALLOC20 * TYPICAL_FAILURE_SIZE20 \ | |||
| 1177 | * sizeof (fail_stack_elt_t)); \ | |||
| 1178 | \ | |||
| 1179 | if (fail_stack.stack == NULL((void *)0)) \ | |||
| 1180 | return -2; \ | |||
| 1181 | \ | |||
| 1182 | fail_stack.size = INIT_FAILURE_ALLOC20; \ | |||
| 1183 | fail_stack.avail = 0; \ | |||
| 1184 | } while (0) | |||
| 1185 | ||||
| 1186 | #define RESET_FAIL_STACK()free (fail_stack.stack) REGEX_FREE_STACKfree (fail_stack.stack) | |||
| 1187 | #else | |||
| 1188 | #define INIT_FAIL_STACK()do { fail_stack.stack = (fail_stack_elt_t *) malloc (20 * 20 * sizeof (fail_stack_elt_t)); if (fail_stack.stack == ((void * )0)) return -2; fail_stack.size = 20; fail_stack.avail = 0; } while (0) \ | |||
| 1189 | do { \ | |||
| 1190 | fail_stack.avail = 0; \ | |||
| 1191 | } while (0) | |||
| 1192 | ||||
| 1193 | #define RESET_FAIL_STACK()free (fail_stack.stack) | |||
| 1194 | #endif | |||
| 1195 | ||||
| 1196 | ||||
| 1197 | /* Double the size of FAIL_STACK, up to a limit | |||
| 1198 | which allows approximately `re_max_failures' items. | |||
| 1199 | ||||
| 1200 | Return 1 if succeeds, and 0 if either ran out of memory | |||
| 1201 | allocating space for it or it was already too large. | |||
| 1202 | ||||
| 1203 | REGEX_REALLOCATE_STACK requires `destination' be declared. */ | |||
| 1204 | ||||
| 1205 | /* Factor to increase the failure stack size by | |||
| 1206 | when we increase it. | |||
| 1207 | This used to be 2, but 2 was too wasteful | |||
| 1208 | because the old discarded stacks added up to as much space | |||
| 1209 | were as ultimate, maximum-size stack. */ | |||
| 1210 | #define FAIL_STACK_GROWTH_FACTOR4 4 | |||
| 1211 | ||||
| 1212 | #define GROW_FAIL_STACK(fail_stack)(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack).stack, ((re_max_failures * 20) < (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) ), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1))) \ | |||
| 1213 | (((fail_stack).size * sizeof (fail_stack_elt_t) \ | |||
| 1214 | >= re_max_failures * TYPICAL_FAILURE_SIZE20) \ | |||
| 1215 | ? 0 \ | |||
| 1216 | : ((fail_stack).stack \ | |||
| 1217 | = (fail_stack_elt_t *) \ | |||
| 1218 | REGEX_REALLOCATE_STACK ((fail_stack).stack, \realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))) | |||
| 1219 | (fail_stack).size * sizeof (fail_stack_elt_t), \realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))) | |||
| 1220 | MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))) | |||
| 1221 | ((fail_stack).size * sizeof (fail_stack_elt_t) \realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))) | |||
| 1222 | * FAIL_STACK_GROWTH_FACTOR)))realloc ((fail_stack).stack, ((re_max_failures * 20) < ((( fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4) ))), \ | |||
| 1223 | \ | |||
| 1224 | (fail_stack).stack == NULL((void *)0) \ | |||
| 1225 | ? 0 \ | |||
| 1226 | : ((fail_stack).size \ | |||
| 1227 | = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t ) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) | |||
| 1228 | ((fail_stack).size * sizeof (fail_stack_elt_t) \((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t ) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) | |||
| 1229 | * FAIL_STACK_GROWTH_FACTOR))((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t ) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) \ | |||
| 1230 | / sizeof (fail_stack_elt_t)), \ | |||
| 1231 | 1))) | |||
| 1232 | ||||
| 1233 | ||||
| 1234 | /* Push pointer POINTER on FAIL_STACK. | |||
| 1235 | Return 1 if was able to do so and 0 if ran out of memory allocating | |||
| 1236 | space to do so. */ | |||
| 1237 | #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)(((fail_stack.avail == fail_stack.size) && !(((FAIL_STACK ).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20 ) ? 0 : ((FAIL_STACK).stack = (fail_stack_elt_t *) realloc (( FAIL_STACK).stack, ((re_max_failures * 20) < (((FAIL_STACK ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((FAIL_STACK).size * sizeof (fail_stack_elt_t) * 4))) ), (FAIL_STACK).stack == ((void *)0) ? 0 : ((FAIL_STACK).size = (((re_max_failures * 20) < (((FAIL_STACK).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((FAIL_STACK ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1)))) ? 0 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, 1)) \ | |||
| 1238 | ((FAIL_STACK_FULL ()(fail_stack.avail == fail_stack.size) \ | |||
| 1239 | && !GROW_FAIL_STACK (FAIL_STACK)(((FAIL_STACK).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((FAIL_STACK).stack = (fail_stack_elt_t *) realloc ((FAIL_STACK).stack, ((re_max_failures * 20) < (((FAIL_STACK ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((FAIL_STACK).size * sizeof (fail_stack_elt_t) * 4))) ), (FAIL_STACK).stack == ((void *)0) ? 0 : ((FAIL_STACK).size = (((re_max_failures * 20) < (((FAIL_STACK).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((FAIL_STACK ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1)))) \ | |||
| 1240 | ? 0 \ | |||
| 1241 | : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ | |||
| 1242 | 1)) | |||
| 1243 | ||||
| 1244 | /* Push a pointer value onto the failure stack. | |||
| 1245 | Assumes the variable `fail_stack'. Probably should only | |||
| 1246 | be called from within `PUSH_FAILURE_POINT'. */ | |||
| 1247 | #define PUSH_FAILURE_POINTER(item)fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) \ | |||
| 1248 | fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) | |||
| 1249 | ||||
| 1250 | /* This pushes an integer-valued item onto the failure stack. | |||
| 1251 | Assumes the variable `fail_stack'. Probably should only | |||
| 1252 | be called from within `PUSH_FAILURE_POINT'. */ | |||
| 1253 | #define PUSH_FAILURE_INT(item)fail_stack.stack[fail_stack.avail++].integer = (item) \ | |||
| 1254 | fail_stack.stack[fail_stack.avail++].integer = (item) | |||
| 1255 | ||||
| 1256 | /* Push a fail_stack_elt_t value onto the failure stack. | |||
| 1257 | Assumes the variable `fail_stack'. Probably should only | |||
| 1258 | be called from within `PUSH_FAILURE_POINT'. */ | |||
| 1259 | #define PUSH_FAILURE_ELT(item)fail_stack.stack[fail_stack.avail++] = (item) \ | |||
| 1260 | fail_stack.stack[fail_stack.avail++] = (item) | |||
| 1261 | ||||
| 1262 | /* These three POP... operations complement the three PUSH... operations. | |||
| 1263 | All assume that `fail_stack' is nonempty. */ | |||
| 1264 | #define POP_FAILURE_POINTER()fail_stack.stack[--fail_stack.avail].pointer fail_stack.stack[--fail_stack.avail].pointer | |||
| 1265 | #define POP_FAILURE_INT()fail_stack.stack[--fail_stack.avail].integer fail_stack.stack[--fail_stack.avail].integer | |||
| 1266 | #define POP_FAILURE_ELT()fail_stack.stack[--fail_stack.avail] fail_stack.stack[--fail_stack.avail] | |||
| 1267 | ||||
| 1268 | /* Used to omit pushing failure point id's when we're not debugging. */ | |||
| 1269 | #ifdef DEBUG | |||
| 1270 | #define DEBUG_PUSH PUSH_FAILURE_INT | |||
| 1271 | #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()fail_stack.stack[--fail_stack.avail].integer | |||
| 1272 | #else | |||
| 1273 | #define DEBUG_PUSH(item) | |||
| 1274 | #define DEBUG_POP(item_addr) | |||
| 1275 | #endif | |||
| 1276 | ||||
| 1277 | ||||
| 1278 | /* Push the information about the state we will need | |||
| 1279 | if we ever fail back to it. | |||
| 1280 | ||||
| 1281 | Requires variables fail_stack, regstart, regend, reg_info, and | |||
| 1282 | num_regs be declared. GROW_FAIL_STACK requires `destination' be | |||
| 1283 | declared. | |||
| 1284 | ||||
| 1285 | Does `return FAILURE_CODE' if runs out of memory. */ | |||
| 1286 | ||||
| 1287 | #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return failure_code; ; ; } ; if (1) for (this_reg = lowest_active_reg ; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack .stack[fail_stack.avail++].pointer = (unsigned char *) (regstart [this_reg]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack .stack[fail_stack.avail++] = (reg_info[this_reg].word); } ; fail_stack .stack[fail_stack.avail++].integer = (lowest_active_reg); ; fail_stack .stack[fail_stack.avail++].integer = (highest_active_reg); ; ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (pattern_place); ; ; ; fail_stack.stack[fail_stack.avail++ ].pointer = (unsigned char *) (string_place); ; ; } while (0) \ | |||
| 1288 | do { \ | |||
| 1289 | char *destination; \ | |||
| 1290 | /* Must be int, so when we don't save any registers, the arithmetic \ | |||
| 1291 | of 0 + -1 isn't done as unsigned. */ \ | |||
| 1292 | int this_reg; \ | |||
| 1293 | \ | |||
| 1294 | DEBUG_STATEMENT (failure_id++); \ | |||
| 1295 | DEBUG_STATEMENT (nfailure_points_pushed++); \ | |||
| 1296 | DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ | |||
| 1297 | DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ | |||
| 1298 | DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ | |||
| 1299 | \ | |||
| 1300 | DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \ | |||
| 1301 | DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ | |||
| 1302 | \ | |||
| 1303 | /* Ensure we have enough space allocated for what we will push. */ \ | |||
| 1304 | while (REMAINING_AVAIL_SLOTS((fail_stack).size - (fail_stack).avail) < NUM_FAILURE_ITEMS(((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) \ | |||
| 1305 | { \ | |||
| 1306 | if (!GROW_FAIL_STACK (fail_stack)(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack).stack, ((re_max_failures * 20) < (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) ), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1)))) \ | |||
| 1307 | return failure_code; \ | |||
| 1308 | \ | |||
| 1309 | DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ | |||
| 1310 | (fail_stack).size); \ | |||
| 1311 | DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ | |||
| 1312 | } \ | |||
| 1313 | \ | |||
| 1314 | /* Push the info, starting with the registers. */ \ | |||
| 1315 | DEBUG_PRINT1 ("\n"); \ | |||
| 1316 | \ | |||
| 1317 | if (1) \ | |||
| 1318 | for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ | |||
| 1319 | this_reg++) \ | |||
| 1320 | { \ | |||
| 1321 | DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \ | |||
| 1322 | DEBUG_STATEMENT (num_regs_pushed++); \ | |||
| 1323 | \ | |||
| 1324 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | |||
| 1325 | PUSH_FAILURE_POINTER (regstart[this_reg])fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg]); \ | |||
| 1326 | \ | |||
| 1327 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | |||
| 1328 | PUSH_FAILURE_POINTER (regend[this_reg])fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); \ | |||
| 1329 | \ | |||
| 1330 | DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \ | |||
| 1331 | DEBUG_PRINT2 (" match_null=%d", \ | |||
| 1332 | REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ | |||
| 1333 | DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ | |||
| 1334 | DEBUG_PRINT2 (" matched_something=%d", \ | |||
| 1335 | MATCHED_SOMETHING (reg_info[this_reg])); \ | |||
| 1336 | DEBUG_PRINT2 (" ever_matched=%d", \ | |||
| 1337 | EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ | |||
| 1338 | DEBUG_PRINT1 ("\n"); \ | |||
| 1339 | PUSH_FAILURE_ELT (reg_info[this_reg].word)fail_stack.stack[fail_stack.avail++] = (reg_info[this_reg].word ); \ | |||
| 1340 | } \ | |||
| 1341 | \ | |||
| 1342 | DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\ | |||
| 1343 | PUSH_FAILURE_INT (lowest_active_reg)fail_stack.stack[fail_stack.avail++].integer = (lowest_active_reg ); \ | |||
| 1344 | \ | |||
| 1345 | DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\ | |||
| 1346 | PUSH_FAILURE_INT (highest_active_reg)fail_stack.stack[fail_stack.avail++].integer = (highest_active_reg ); \ | |||
| 1347 | \ | |||
| 1348 | DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \ | |||
| 1349 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ | |||
| 1350 | PUSH_FAILURE_POINTER (pattern_place)fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (pattern_place); \ | |||
| 1351 | \ | |||
| 1352 | DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \ | |||
| 1353 | DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ | |||
| 1354 | size2); \ | |||
| 1355 | DEBUG_PRINT1 ("'\n"); \ | |||
| 1356 | PUSH_FAILURE_POINTER (string_place)fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (string_place); \ | |||
| 1357 | \ | |||
| 1358 | DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ | |||
| 1359 | DEBUG_PUSH (failure_id); \ | |||
| 1360 | } while (0) | |||
| 1361 | ||||
| 1362 | /* This is the number of items that are pushed and popped on the stack | |||
| 1363 | for each register. */ | |||
| 1364 | #define NUM_REG_ITEMS3 3 | |||
| 1365 | ||||
| 1366 | /* Individual items aside from the registers. */ | |||
| 1367 | #ifdef DEBUG | |||
| 1368 | #define NUM_NONREG_ITEMS4 5 /* Includes failure point id. */ | |||
| 1369 | #else | |||
| 1370 | #define NUM_NONREG_ITEMS4 4 | |||
| 1371 | #endif | |||
| 1372 | ||||
| 1373 | /* Estimate the size of data pushed by a typical failure stack entry. | |||
| 1374 | An estimate is all we need, because all we use this for | |||
| 1375 | is to choose a limit for how big to make the failure stack. */ | |||
| 1376 | ||||
| 1377 | #define TYPICAL_FAILURE_SIZE20 20 | |||
| 1378 | ||||
| 1379 | /* This is how many items we actually use for a failure point. | |||
| 1380 | It depends on the regexp. */ | |||
| 1381 | #define NUM_FAILURE_ITEMS(((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4) \ | |||
| 1382 | (((0 \ | |||
| 1383 | ? 0 : highest_active_reg - lowest_active_reg + 1) \ | |||
| 1384 | * NUM_REG_ITEMS3) \ | |||
| 1385 | + NUM_NONREG_ITEMS4) | |||
| 1386 | ||||
| 1387 | /* How many items can still be added to the stack without overflowing it. */ | |||
| 1388 | #define REMAINING_AVAIL_SLOTS((fail_stack).size - (fail_stack).avail) ((fail_stack).size - (fail_stack).avail) | |||
| 1389 | ||||
| 1390 | ||||
| 1391 | /* Pops what PUSH_FAIL_STACK pushes. | |||
| 1392 | ||||
| 1393 | We restore into the parameters, all of which should be lvalues: | |||
| 1394 | STR -- the saved data position. | |||
| 1395 | PAT -- the saved pattern position. | |||
| 1396 | LOW_REG, HIGH_REG -- the highest and lowest active registers. | |||
| 1397 | REGSTART, REGEND -- arrays of string positions. | |||
| 1398 | REG_INFO -- array of information about each subexpression. | |||
| 1399 | ||||
| 1400 | Also assumes the variables `fail_stack' and (if debugging), `bufp', | |||
| 1401 | `pend', `string1', `size1', `string2', and `size2'. */ | |||
| 1402 | ||||
| 1403 | #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info){ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) str = (const char *) string_temp ; ; ; ; pat = (unsigned char *) fail_stack.stack[--fail_stack .avail].pointer; ; ; high_reg = (unsigned) fail_stack.stack[-- fail_stack.avail].integer; ; low_reg = (unsigned) fail_stack. stack[--fail_stack.avail].integer; ; if (1) for (this_reg = high_reg ; this_reg >= low_reg; this_reg--) { ; reg_info[this_reg]. word = fail_stack.stack[--fail_stack.avail]; ; regend[this_reg ] = (const char *) fail_stack.stack[--fail_stack.avail].pointer ; ; regstart[this_reg] = (const char *) fail_stack.stack[--fail_stack .avail].pointer; ; } else { for (this_reg = highest_active_reg ; this_reg > high_reg; this_reg--) { reg_info[this_reg].word .integer = 0; regend[this_reg] = 0; regstart[this_reg] = 0; } highest_active_reg = high_reg; } set_regs_matched_done = 0; ; }\ | |||
| 1404 | { \ | |||
| 1405 | DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \ | |||
| 1406 | int this_reg; \ | |||
| 1407 | const unsigned char *string_temp; \ | |||
| 1408 | \ | |||
| 1409 | assert (!FAIL_STACK_EMPTY ()); \ | |||
| 1410 | \ | |||
| 1411 | /* Remove failure points and point to how many regs pushed. */ \ | |||
| 1412 | DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ | |||
| 1413 | DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ | |||
| 1414 | DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ | |||
| 1415 | \ | |||
| 1416 | assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ | |||
| 1417 | \ | |||
| 1418 | DEBUG_POP (&failure_id); \ | |||
| 1419 | DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ | |||
| 1420 | \ | |||
| 1421 | /* If the saved string location is NULL, it came from an \ | |||
| 1422 | on_failure_keep_string_jump opcode, and we want to throw away the \ | |||
| 1423 | saved NULL, thus retaining our current position in the string. */ \ | |||
| 1424 | string_temp = POP_FAILURE_POINTER ()fail_stack.stack[--fail_stack.avail].pointer; \ | |||
| 1425 | if (string_temp != NULL((void *)0)) \ | |||
| 1426 | str = (const char *) string_temp; \ | |||
| 1427 | \ | |||
| 1428 | DEBUG_PRINT2 (" Popping string 0x%x: `", str); \ | |||
| 1429 | DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ | |||
| 1430 | DEBUG_PRINT1 ("'\n"); \ | |||
| 1431 | \ | |||
| 1432 | pat = (unsigned char *) POP_FAILURE_POINTER ()fail_stack.stack[--fail_stack.avail].pointer; \ | |||
| 1433 | DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \ | |||
| 1434 | DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ | |||
| 1435 | \ | |||
| 1436 | /* Restore register info. */ \ | |||
| 1437 | high_reg = (unsigned) POP_FAILURE_INT ()fail_stack.stack[--fail_stack.avail].integer; \ | |||
| 1438 | DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \ | |||
| 1439 | \ | |||
| 1440 | low_reg = (unsigned) POP_FAILURE_INT ()fail_stack.stack[--fail_stack.avail].integer; \ | |||
| 1441 | DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \ | |||
| 1442 | \ | |||
| 1443 | if (1) \ | |||
| 1444 | for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ | |||
| 1445 | { \ | |||
| 1446 | DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \ | |||
| 1447 | \ | |||
| 1448 | reg_info[this_reg].word = POP_FAILURE_ELT ()fail_stack.stack[--fail_stack.avail]; \ | |||
| 1449 | DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \ | |||
| 1450 | \ | |||
| 1451 | regend[this_reg] = (const char *) POP_FAILURE_POINTER ()fail_stack.stack[--fail_stack.avail].pointer; \ | |||
| 1452 | DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \ | |||
| 1453 | \ | |||
| 1454 | regstart[this_reg] = (const char *) POP_FAILURE_POINTER ()fail_stack.stack[--fail_stack.avail].pointer; \ | |||
| 1455 | DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \ | |||
| 1456 | } \ | |||
| 1457 | else \ | |||
| 1458 | { \ | |||
| 1459 | for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ | |||
| 1460 | { \ | |||
| 1461 | reg_info[this_reg].word.integer = 0; \ | |||
| 1462 | regend[this_reg] = 0; \ | |||
| 1463 | regstart[this_reg] = 0; \ | |||
| 1464 | } \ | |||
| 1465 | highest_active_reg = high_reg; \ | |||
| 1466 | } \ | |||
| 1467 | \ | |||
| 1468 | set_regs_matched_done = 0; \ | |||
| 1469 | DEBUG_STATEMENT (nfailure_points_popped++); \ | |||
| 1470 | } /* POP_FAILURE_POINT */ | |||
| 1471 | ||||
| 1472 | ||||
| 1473 | ||||
| 1474 | /* Structure for per-register (a.k.a. per-group) information. | |||
| 1475 | Other register information, such as the | |||
| 1476 | starting and ending positions (which are addresses), and the list of | |||
| 1477 | inner groups (which is a bits list) are maintained in separate | |||
| 1478 | variables. | |||
| 1479 | ||||
| 1480 | We are making a (strictly speaking) nonportable assumption here: that | |||
| 1481 | the compiler will pack our bit fields into something that fits into | |||
| 1482 | the type of `word', i.e., is something that fits into one item on the | |||
| 1483 | failure stack. */ | |||
| 1484 | ||||
| 1485 | typedef union | |||
| 1486 | { | |||
| 1487 | fail_stack_elt_t word; | |||
| 1488 | struct | |||
| 1489 | { | |||
| 1490 | /* This field is one if this group can match the empty string, | |||
| 1491 | zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ | |||
| 1492 | #define MATCH_NULL_UNSET_VALUE3 3 | |||
| 1493 | unsigned match_null_string_p : 2; | |||
| 1494 | unsigned is_active : 1; | |||
| 1495 | unsigned matched_something : 1; | |||
| 1496 | unsigned ever_matched_something : 1; | |||
| 1497 | } bits; | |||
| 1498 | } register_info_type; | |||
| 1499 | ||||
| 1500 | #define REG_MATCH_NULL_STRING_P(R)((R).bits.match_null_string_p) ((R).bits.match_null_string_p) | |||
| 1501 | #define IS_ACTIVE(R)((R).bits.is_active) ((R).bits.is_active) | |||
| 1502 | #define MATCHED_SOMETHING(R)((R).bits.matched_something) ((R).bits.matched_something) | |||
| 1503 | #define EVER_MATCHED_SOMETHING(R)((R).bits.ever_matched_something) ((R).bits.ever_matched_something) | |||
| 1504 | ||||
| 1505 | ||||
| 1506 | /* Call this when have matched a real character; it sets `matched' flags | |||
| 1507 | for the subexpressions which we are currently inside. Also records | |||
| 1508 | that those subexprs have matched. */ | |||
| 1509 | #define SET_REGS_MATCHED()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0) \ | |||
| 1510 | do \ | |||
| 1511 | { \ | |||
| 1512 | if (!set_regs_matched_done) \ | |||
| 1513 | { \ | |||
| 1514 | unsigned r; \ | |||
| 1515 | set_regs_matched_done = 1; \ | |||
| 1516 | for (r = lowest_active_reg; r <= highest_active_reg; r++) \ | |||
| 1517 | { \ | |||
| 1518 | MATCHED_SOMETHING (reg_info[r])((reg_info[r]).bits.matched_something) \ | |||
| 1519 | = EVER_MATCHED_SOMETHING (reg_info[r])((reg_info[r]).bits.ever_matched_something) \ | |||
| 1520 | = 1; \ | |||
| 1521 | } \ | |||
| 1522 | } \ | |||
| 1523 | } \ | |||
| 1524 | while (0) | |||
| 1525 | ||||
| 1526 | /* Registers are set to a sentinel when they haven't yet matched. */ | |||
| 1527 | static char reg_unset_dummy; | |||
| 1528 | #define REG_UNSET_VALUE(®_unset_dummy) (®_unset_dummy) | |||
| 1529 | #define REG_UNSET(e)((e) == (®_unset_dummy)) ((e) == REG_UNSET_VALUE(®_unset_dummy)) | |||
| 1530 | ||||
| 1531 | /* Subroutine declarations and macros for regex_compile. */ | |||
| 1532 | ||||
| 1533 | static void store_op1 (), store_op2 (); | |||
| 1534 | static void insert_op1 (), insert_op2 (); | |||
| 1535 | static boolean at_begline_loc_p (), at_endline_loc_p (); | |||
| 1536 | static boolean group_in_compile_stack (); | |||
| 1537 | static reg_errcode_t compile_range (); | |||
| 1538 | ||||
| 1539 | /* Fetch the next character in the uncompiled pattern---translating it | |||
| 1540 | if necessary. Also cast from a signed character in the constant | |||
| 1541 | string passed to us by the user to an unsigned char that we can use | |||
| 1542 | as an array index (in, e.g., `translate'). */ | |||
| 1543 | #ifndef PATFETCH | |||
| 1544 | #define PATFETCH(c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0) \ | |||
| 1545 | do {if (p == pend) return REG_EEND; \ | |||
| 1546 | c = (unsigned char) *p++; \ | |||
| 1547 | if (RE_TRANSLATE_P (translate)(translate)) c = RE_TRANSLATE (translate, c)((translate)[c]); \ | |||
| 1548 | } while (0) | |||
| 1549 | #endif | |||
| 1550 | ||||
| 1551 | /* Fetch the next character in the uncompiled pattern, with no | |||
| 1552 | translation. */ | |||
| 1553 | #define PATFETCH_RAW(c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; } while (0) \ | |||
| 1554 | do {if (p == pend) return REG_EEND; \ | |||
| 1555 | c = (unsigned char) *p++; \ | |||
| 1556 | } while (0) | |||
| 1557 | ||||
| 1558 | /* Go backwards one character in the pattern. */ | |||
| 1559 | #define PATUNFETCHp-- p-- | |||
| 1560 | ||||
| 1561 | ||||
| 1562 | /* If `translate' is non-null, return translate[D], else just D. We | |||
| 1563 | cast the subscript to translate because some data is declared as | |||
| 1564 | `char *', to avoid warnings when a string constant is passed. But | |||
| 1565 | when we use a character as a subscript we must make it unsigned. */ | |||
| 1566 | #ifndef TRANSLATE | |||
| 1567 | #define TRANSLATE(d)((translate) ? (unsigned) ((translate)[(unsigned) (d)]) : (d) ) \ | |||
| 1568 | (RE_TRANSLATE_P (translate)(translate) \ | |||
| 1569 | ? (unsigned) RE_TRANSLATE (translate, (unsigned) (d))((translate)[(unsigned) (d)]) : (d)) | |||
| 1570 | #endif | |||
| 1571 | ||||
| 1572 | ||||
| 1573 | /* Macros for outputting the compiled pattern into `buffer'. */ | |||
| 1574 | ||||
| 1575 | /* If the buffer isn't allocated when it comes in, use this. */ | |||
| 1576 | #define INIT_BUF_SIZE32 32 | |||
| 1577 | ||||
| 1578 | /* Make sure we have at least N more bytes of space in buffer. */ | |||
| 1579 | #define GET_BUFFER_SPACE(n)while (b - bufp->buffer + (n) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0) \ | |||
| 1580 | while (b - bufp->buffer + (n) > bufp->allocated) \ | |||
| 1581 | EXTEND_BUFFER ()do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0) | |||
| 1582 | ||||
| 1583 | /* Make sure we have one more byte of buffer space and then add C to it. */ | |||
| 1584 | #define BUF_PUSH(c)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (c ); } while (0) \ | |||
| 1585 | do { \ | |||
| 1586 | GET_BUFFER_SPACE (1)while (b - bufp->buffer + (1) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); \ | |||
| 1587 | *b++ = (unsigned char) (c); \ | |||
| 1588 | } while (0) | |||
| 1589 | ||||
| 1590 | ||||
| 1591 | /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ | |||
| 1592 | #define BUF_PUSH_2(c1, c2)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (c1 ); *b++ = (unsigned char) (c2); } while (0) \ | |||
| 1593 | do { \ | |||
| 1594 | GET_BUFFER_SPACE (2)while (b - bufp->buffer + (2) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); \ | |||
| 1595 | *b++ = (unsigned char) (c1); \ | |||
| 1596 | *b++ = (unsigned char) (c2); \ | |||
| 1597 | } while (0) | |||
| 1598 | ||||
| 1599 | ||||
| 1600 | /* As with BUF_PUSH_2, except for three bytes. */ | |||
| 1601 | #define BUF_PUSH_3(c1, c2, c3)do { while (b - bufp->buffer + (3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (c1 ); *b++ = (unsigned char) (c2); *b++ = (unsigned char) (c3); } while (0) \ | |||
| 1602 | do { \ | |||
| 1603 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); \ | |||
| 1604 | *b++ = (unsigned char) (c1); \ | |||
| 1605 | *b++ = (unsigned char) (c2); \ | |||
| 1606 | *b++ = (unsigned char) (c3); \ | |||
| 1607 | } while (0) | |||
| 1608 | ||||
| 1609 | ||||
| 1610 | /* Store a jump with opcode OP at LOC to location TO. We store a | |||
| 1611 | relative address offset by the three bytes the jump itself occupies. */ | |||
| 1612 | #define STORE_JUMP(op, loc, to)store_op1 (op, loc, (to) - (loc) - 3) \ | |||
| 1613 | store_op1 (op, loc, (to) - (loc) - 3) | |||
| 1614 | ||||
| 1615 | /* Likewise, for a two-argument jump. */ | |||
| 1616 | #define STORE_JUMP2(op, loc, to, arg)store_op2 (op, loc, (to) - (loc) - 3, arg) \ | |||
| 1617 | store_op2 (op, loc, (to) - (loc) - 3, arg) | |||
| 1618 | ||||
| 1619 | /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ | |||
| 1620 | #define INSERT_JUMP(op, loc, to)insert_op1 (op, loc, (to) - (loc) - 3, b) \ | |||
| 1621 | insert_op1 (op, loc, (to) - (loc) - 3, b) | |||
| 1622 | ||||
| 1623 | /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ | |||
| 1624 | #define INSERT_JUMP2(op, loc, to, arg)insert_op2 (op, loc, (to) - (loc) - 3, arg, b) \ | |||
| 1625 | insert_op2 (op, loc, (to) - (loc) - 3, arg, b) | |||
| 1626 | ||||
| 1627 | ||||
| 1628 | /* This is not an arbitrary limit: the arguments which represent offsets | |||
| 1629 | into the pattern are two bytes long. So if 2^16 bytes turns out to | |||
| 1630 | be too small, many things would have to change. */ | |||
| 1631 | #define MAX_BUF_SIZE(1L << 16) (1L << 16) | |||
| 1632 | ||||
| 1633 | ||||
| 1634 | /* Extend the buffer by twice its current size via realloc and | |||
| 1635 | reset the pointers that pointed into the old block to point to the | |||
| 1636 | correct places in the new one. If extending the buffer results in it | |||
| 1637 | being larger than MAX_BUF_SIZE, then flag memory exhausted. */ | |||
| 1638 | #define EXTEND_BUFFER()do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0) \ | |||
| 1639 | do { \ | |||
| 1640 | unsigned char *old_buffer = bufp->buffer; \ | |||
| 1641 | if (bufp->allocated == MAX_BUF_SIZE(1L << 16)) \ | |||
| 1642 | return REG_ESIZE; \ | |||
| 1643 | bufp->allocated <<= 1; \ | |||
| 1644 | if (bufp->allocated > MAX_BUF_SIZE(1L << 16)) \ | |||
| 1645 | bufp->allocated = MAX_BUF_SIZE(1L << 16); \ | |||
| 1646 | bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ | |||
| 1647 | if (bufp->buffer == NULL((void *)0)) \ | |||
| 1648 | return REG_ESPACE; \ | |||
| 1649 | /* If the buffer moved, move all the pointers into it. */ \ | |||
| 1650 | if (old_buffer != bufp->buffer) \ | |||
| 1651 | { \ | |||
| 1652 | b = (b - old_buffer) + bufp->buffer; \ | |||
| 1653 | begalt = (begalt - old_buffer) + bufp->buffer; \ | |||
| 1654 | if (fixup_alt_jump) \ | |||
| 1655 | fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ | |||
| 1656 | if (laststart) \ | |||
| 1657 | laststart = (laststart - old_buffer) + bufp->buffer; \ | |||
| 1658 | if (pending_exact) \ | |||
| 1659 | pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ | |||
| 1660 | } \ | |||
| 1661 | } while (0) | |||
| 1662 | ||||
| 1663 | ||||
| 1664 | /* Since we have one byte reserved for the register number argument to | |||
| 1665 | {start,stop}_memory, the maximum number of groups we can report | |||
| 1666 | things about is what fits in that byte. */ | |||
| 1667 | #define MAX_REGNUM255 255 | |||
| 1668 | ||||
| 1669 | /* But patterns can have more than `MAX_REGNUM' registers. We just | |||
| 1670 | ignore the excess. */ | |||
| 1671 | typedef unsigned regnum_t; | |||
| 1672 | ||||
| 1673 | ||||
| 1674 | /* Macros for the compile stack. */ | |||
| 1675 | ||||
| 1676 | /* Since offsets can go either forwards or backwards, this type needs to | |||
| 1677 | be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ | |||
| 1678 | typedef int pattern_offset_t; | |||
| 1679 | ||||
| 1680 | typedef struct | |||
| 1681 | { | |||
| 1682 | pattern_offset_t begalt_offset; | |||
| 1683 | pattern_offset_t fixup_alt_jump; | |||
| 1684 | pattern_offset_t inner_group_offset; | |||
| 1685 | pattern_offset_t laststart_offset; | |||
| 1686 | regnum_t regnum; | |||
| 1687 | } compile_stack_elt_t; | |||
| 1688 | ||||
| 1689 | ||||
| 1690 | typedef struct | |||
| 1691 | { | |||
| 1692 | compile_stack_elt_t *stack; | |||
| 1693 | unsigned size; | |||
| 1694 | unsigned avail; /* Offset of next open position. */ | |||
| 1695 | } compile_stack_type; | |||
| 1696 | ||||
| 1697 | ||||
| 1698 | #define INIT_COMPILE_STACK_SIZE32 32 | |||
| 1699 | ||||
| 1700 | #define COMPILE_STACK_EMPTY(compile_stack.avail == 0) (compile_stack.avail == 0) | |||
| 1701 | #define COMPILE_STACK_FULL(compile_stack.avail == compile_stack.size) (compile_stack.avail == compile_stack.size) | |||
| 1702 | ||||
| 1703 | /* The next available element. */ | |||
| 1704 | #define COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]) (compile_stack.stack[compile_stack.avail]) | |||
| 1705 | ||||
| 1706 | ||||
| 1707 | /* Structure to manage work area for range table. */ | |||
| 1708 | struct range_table_work_area | |||
| 1709 | { | |||
| 1710 | int *table; /* actual work area. */ | |||
| 1711 | int allocated; /* allocated size for work area in bytes. */ | |||
| 1712 | int used; /* actually used size in words. */ | |||
| 1713 | }; | |||
| 1714 | ||||
| 1715 | /* Make sure that WORK_AREA can hold more N multibyte characters. */ | |||
| 1716 | #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n)do { if (((work_area).used + (n)) * sizeof (int) > (work_area ).allocated) { (work_area).allocated += 16 * sizeof (int); if ((work_area).table) (work_area).table = (int *) realloc ((work_area ).table, (work_area).allocated); else (work_area).table = (int *) malloc ((work_area).allocated); if ((work_area).table == 0 ) do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ESPACE ; } while (0); } } while (0) \ | |||
| 1717 | do { \ | |||
| 1718 | if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \ | |||
| 1719 | { \ | |||
| 1720 | (work_area).allocated += 16 * sizeof (int); \ | |||
| 1721 | if ((work_area).table) \ | |||
| 1722 | (work_area).table \ | |||
| 1723 | = (int *) realloc ((work_area).table, (work_area).allocated); \ | |||
| 1724 | else \ | |||
| 1725 | (work_area).table \ | |||
| 1726 | = (int *) malloc ((work_area).allocated); \ | |||
| 1727 | if ((work_area).table == 0) \ | |||
| 1728 | FREE_STACK_RETURN (REG_ESPACE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ESPACE ; } while (0); \ | |||
| 1729 | } \ | |||
| 1730 | } while (0) | |||
| 1731 | ||||
| 1732 | /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */ | |||
| 1733 | #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end)do { do { if ((((work_area)).used + (2)) * sizeof (int) > ( (work_area)).allocated) { ((work_area)).allocated += 16 * sizeof (int); if (((work_area)).table) ((work_area)).table = (int * ) realloc (((work_area)).table, ((work_area)).allocated); else ((work_area)).table = (int *) malloc (((work_area)).allocated ); if (((work_area)).table == 0) do { do { if ((range_table_work ).table) free ((range_table_work).table); } while (0); free ( compile_stack.stack); return REG_ESPACE; } while (0); } } while (0); (work_area).table[(work_area).used++] = (range_start); ( work_area).table[(work_area).used++] = (range_end); } while ( 0) \ | |||
| 1734 | do { \ | |||
| 1735 | EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2)do { if ((((work_area)).used + (2)) * sizeof (int) > ((work_area )).allocated) { ((work_area)).allocated += 16 * sizeof (int); if (((work_area)).table) ((work_area)).table = (int *) realloc (((work_area)).table, ((work_area)).allocated); else ((work_area )).table = (int *) malloc (((work_area)).allocated); if (((work_area )).table == 0) do { do { if ((range_table_work).table) free ( (range_table_work).table); } while (0); free (compile_stack.stack ); return REG_ESPACE; } while (0); } } while (0); \ | |||
| 1736 | (work_area).table[(work_area).used++] = (range_start); \ | |||
| 1737 | (work_area).table[(work_area).used++] = (range_end); \ | |||
| 1738 | } while (0) | |||
| 1739 | ||||
| 1740 | /* Free allocated memory for WORK_AREA. */ | |||
| 1741 | #define FREE_RANGE_TABLE_WORK_AREA(work_area)do { if ((work_area).table) free ((work_area).table); } while (0) \ | |||
| 1742 | do { \ | |||
| 1743 | if ((work_area).table) \ | |||
| 1744 | free ((work_area).table); \ | |||
| 1745 | } while (0) | |||
| 1746 | ||||
| 1747 | #define CLEAR_RANGE_TABLE_WORK_USED(work_area)((work_area).used = 0) ((work_area).used = 0) | |||
| 1748 | #define RANGE_TABLE_WORK_USED(work_area)((work_area).used) ((work_area).used) | |||
| 1749 | #define RANGE_TABLE_WORK_ELT(work_area, i)((work_area).table[i]) ((work_area).table[i]) | |||
| 1750 | ||||
| 1751 | ||||
| 1752 | /* Set the bit for character C in a list. */ | |||
| 1753 | #define SET_LIST_BIT(c)(b[((unsigned char) (c)) / 8] |= 1 << (((unsigned char) c) % 8)) \ | |||
| 1754 | (b[((unsigned char) (c)) / BYTEWIDTH8] \ | |||
| 1755 | |= 1 << (((unsigned char) c) % BYTEWIDTH8)) | |||
| 1756 | ||||
| 1757 | ||||
| 1758 | /* Get the next unsigned number in the uncompiled pattern. */ | |||
| 1759 | #define GET_UNSIGNED_NUMBER(num){ if (p != pend) { do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while ( 0); while ((1 && isdigit (c))) { if (num < 0) num = 0; num = num * 10 + c - '0'; if (p == pend) break; do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate )) c = ((translate)[c]); } while (0); } } } \ | |||
| 1760 | { if (p != pend) \ | |||
| 1761 | { \ | |||
| 1762 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); \ | |||
| 1763 | while (ISDIGIT (c)(1 && isdigit (c))) \ | |||
| 1764 | { \ | |||
| 1765 | if (num < 0) \ | |||
| 1766 | num = 0; \ | |||
| 1767 | num = num * 10 + c - '0'; \ | |||
| 1768 | if (p == pend) \ | |||
| 1769 | break; \ | |||
| 1770 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); \ | |||
| 1771 | } \ | |||
| 1772 | } \ | |||
| 1773 | } | |||
| 1774 | ||||
| 1775 | #define CHAR_CLASS_MAX_LENGTH6 6 /* Namely, `xdigit'. */ | |||
| 1776 | ||||
| 1777 | #define IS_CHAR_CLASS(string)(((strcmp (string, "alpha") == 0)) || ((strcmp (string, "upper" ) == 0)) || ((strcmp (string, "lower") == 0)) || ((strcmp (string , "digit") == 0)) || ((strcmp (string, "alnum") == 0)) || ((strcmp (string, "xdigit") == 0)) || ((strcmp (string, "space") == 0 )) || ((strcmp (string, "print") == 0)) || ((strcmp (string, "punct" ) == 0)) || ((strcmp (string, "graph") == 0)) || ((strcmp (string , "cntrl") == 0)) || ((strcmp (string, "blank") == 0))) \ | |||
| 1778 | (STREQ (string, "alpha")((strcmp (string, "alpha") == 0)) || STREQ (string, "upper")((strcmp (string, "upper") == 0)) \ | |||
| 1779 | || STREQ (string, "lower")((strcmp (string, "lower") == 0)) || STREQ (string, "digit")((strcmp (string, "digit") == 0)) \ | |||
| 1780 | || STREQ (string, "alnum")((strcmp (string, "alnum") == 0)) || STREQ (string, "xdigit")((strcmp (string, "xdigit") == 0)) \ | |||
| 1781 | || STREQ (string, "space")((strcmp (string, "space") == 0)) || STREQ (string, "print")((strcmp (string, "print") == 0)) \ | |||
| 1782 | || STREQ (string, "punct")((strcmp (string, "punct") == 0)) || STREQ (string, "graph")((strcmp (string, "graph") == 0)) \ | |||
| 1783 | || STREQ (string, "cntrl")((strcmp (string, "cntrl") == 0)) || STREQ (string, "blank")((strcmp (string, "blank") == 0))) | |||
| 1784 | ||||
| 1785 | #ifndef MATCH_MAY_ALLOCATE | |||
| 1786 | ||||
| 1787 | /* If we cannot allocate large objects within re_match_2_internal, | |||
| 1788 | we make the fail stack and register vectors global. | |||
| 1789 | The fail stack, we grow to the maximum size when a regexp | |||
| 1790 | is compiled. | |||
| 1791 | The register vectors, we adjust in size each time we | |||
| 1792 | compile a regexp, according to the number of registers it needs. */ | |||
| 1793 | ||||
| 1794 | static fail_stack_type fail_stack; | |||
| 1795 | ||||
| 1796 | /* Size with which the following vectors are currently allocated. | |||
| 1797 | That is so we can make them bigger as needed, | |||
| 1798 | but never make them smaller. */ | |||
| 1799 | static int regs_allocated_size; | |||
| 1800 | ||||
| 1801 | static const char ** regstart, ** regend; | |||
| 1802 | static const char ** old_regstart, ** old_regend; | |||
| 1803 | static const char **best_regstart, **best_regend; | |||
| 1804 | static register_info_type *reg_info; | |||
| 1805 | static const char **reg_dummy; | |||
| 1806 | static register_info_type *reg_info_dummy; | |||
| 1807 | ||||
| 1808 | /* Make the register vectors big enough for NUM_REGS registers, | |||
| 1809 | but don't make them smaller. */ | |||
| 1810 | ||||
| 1811 | static | |||
| 1812 | regex_grow_registers (num_regs) | |||
| 1813 | int num_regs; | |||
| 1814 | { | |||
| 1815 | if (num_regs > regs_allocated_size) | |||
| 1816 | { | |||
| 1817 | RETALLOC_IF (regstart, num_regs, const char *)if (regstart) (((regstart)) = (const char * *) realloc ((regstart ), ((num_regs)) * sizeof (const char *))); else (regstart) = ( (const char * *) malloc (((num_regs)) * sizeof (const char *) )); | |||
| 1818 | RETALLOC_IF (regend, num_regs, const char *)if (regend) (((regend)) = (const char * *) realloc ((regend), ((num_regs)) * sizeof (const char *))); else (regend) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
| 1819 | RETALLOC_IF (old_regstart, num_regs, const char *)if (old_regstart) (((old_regstart)) = (const char * *) realloc ((old_regstart), ((num_regs)) * sizeof (const char *))); else (old_regstart) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
| 1820 | RETALLOC_IF (old_regend, num_regs, const char *)if (old_regend) (((old_regend)) = (const char * *) realloc (( old_regend), ((num_regs)) * sizeof (const char *))); else (old_regend ) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
| 1821 | RETALLOC_IF (best_regstart, num_regs, const char *)if (best_regstart) (((best_regstart)) = (const char * *) realloc ((best_regstart), ((num_regs)) * sizeof (const char *))); else (best_regstart) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
| 1822 | RETALLOC_IF (best_regend, num_regs, const char *)if (best_regend) (((best_regend)) = (const char * *) realloc ( (best_regend), ((num_regs)) * sizeof (const char *))); else ( best_regend) = ((const char * *) malloc (((num_regs)) * sizeof (const char *))); | |||
| 1823 | RETALLOC_IF (reg_info, num_regs, register_info_type)if (reg_info) (((reg_info)) = (register_info_type *) realloc ( (reg_info), ((num_regs)) * sizeof (register_info_type))); else (reg_info) = ((register_info_type *) malloc (((num_regs)) * sizeof (register_info_type))); | |||
| 1824 | RETALLOC_IF (reg_dummy, num_regs, const char *)if (reg_dummy) (((reg_dummy)) = (const char * *) realloc ((reg_dummy ), ((num_regs)) * sizeof (const char *))); else (reg_dummy) = ((const char * *) malloc (((num_regs)) * sizeof (const char * ))); | |||
| 1825 | RETALLOC_IF (reg_info_dummy, num_regs, register_info_type)if (reg_info_dummy) (((reg_info_dummy)) = (register_info_type *) realloc ((reg_info_dummy), ((num_regs)) * sizeof (register_info_type ))); else (reg_info_dummy) = ((register_info_type *) malloc ( ((num_regs)) * sizeof (register_info_type))); | |||
| 1826 | ||||
| 1827 | regs_allocated_size = num_regs; | |||
| 1828 | } | |||
| 1829 | } | |||
| 1830 | ||||
| 1831 | #endif /* not MATCH_MAY_ALLOCATE */ | |||
| 1832 | ||||
| 1833 | /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. | |||
| 1834 | Returns one of error codes defined in `regex.h', or zero for success. | |||
| 1835 | ||||
| 1836 | Assumes the `allocated' (and perhaps `buffer') and `translate' | |||
| 1837 | fields are set in BUFP on entry. | |||
| 1838 | ||||
| 1839 | If it succeeds, results are put in BUFP (if it returns an error, the | |||
| 1840 | contents of BUFP are undefined): | |||
| 1841 | `buffer' is the compiled pattern; | |||
| 1842 | `syntax' is set to SYNTAX; | |||
| 1843 | `used' is set to the length of the compiled pattern; | |||
| 1844 | `fastmap_accurate' is zero; | |||
| 1845 | `re_nsub' is the number of subexpressions in PATTERN; | |||
| 1846 | `not_bol' and `not_eol' are zero; | |||
| 1847 | ||||
| 1848 | The `fastmap' and `newline_anchor' fields are neither | |||
| 1849 | examined nor set. */ | |||
| 1850 | ||||
| 1851 | /* Return, freeing storage we allocated. */ | |||
| 1852 | #define FREE_STACK_RETURN(value)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return value ; } while (0) \ | |||
| 1853 | do { \ | |||
| 1854 | FREE_RANGE_TABLE_WORK_AREA (range_table_work)do { if ((range_table_work).table) free ((range_table_work).table ); } while (0); \ | |||
| 1855 | free (compile_stack.stack); \ | |||
| 1856 | return value; \ | |||
| 1857 | } while (0) | |||
| 1858 | ||||
| 1859 | static reg_errcode_t | |||
| 1860 | regex_compile (pattern, size, syntax, bufp) | |||
| 1861 | const char *pattern; | |||
| 1862 | int size; | |||
| 1863 | reg_syntax_t syntax; | |||
| 1864 | struct re_pattern_buffer *bufp; | |||
| 1865 | { | |||
| 1866 | /* We fetch characters from PATTERN here. Even though PATTERN is | |||
| 1867 | `char *' (i.e., signed), we declare these variables as unsigned, so | |||
| 1868 | they can be reliably used as array indices. */ | |||
| 1869 | register unsigned int c, c1; | |||
| 1870 | ||||
| 1871 | /* A random temporary spot in PATTERN. */ | |||
| 1872 | const char *p1; | |||
| 1873 | ||||
| 1874 | /* Points to the end of the buffer, where we should append. */ | |||
| 1875 | register unsigned char *b; | |||
| 1876 | ||||
| 1877 | /* Keeps track of unclosed groups. */ | |||
| 1878 | compile_stack_type compile_stack; | |||
| 1879 | ||||
| 1880 | /* Points to the current (ending) position in the pattern. */ | |||
| 1881 | #ifdef AIX | |||
| 1882 | /* `const' makes AIX compiler fail. */ | |||
| 1883 | char *p = pattern; | |||
| 1884 | #else | |||
| 1885 | const char *p = pattern; | |||
| 1886 | #endif | |||
| 1887 | const char *pend = pattern + size; | |||
| 1888 | ||||
| 1889 | /* How to translate the characters in the pattern. */ | |||
| 1890 | RE_TRANSLATE_TYPEchar * translate = bufp->translate; | |||
| 1891 | ||||
| 1892 | /* Address of the count-byte of the most recently inserted `exactn' | |||
| 1893 | command. This makes it possible to tell if a new exact-match | |||
| 1894 | character can be added to that command or if the character requires | |||
| 1895 | a new `exactn' command. */ | |||
| 1896 | unsigned char *pending_exact = 0; | |||
| 1897 | ||||
| 1898 | /* Address of start of the most recently finished expression. | |||
| 1899 | This tells, e.g., postfix * where to find the start of its | |||
| 1900 | operand. Reset at the beginning of groups and alternatives. */ | |||
| 1901 | unsigned char *laststart = 0; | |||
| 1902 | ||||
| 1903 | /* Address of beginning of regexp, or inside of last group. */ | |||
| 1904 | unsigned char *begalt; | |||
| 1905 | ||||
| 1906 | /* Place in the uncompiled pattern (i.e., the {) to | |||
| 1907 | which to go back if the interval is invalid. */ | |||
| 1908 | const char *beg_interval; | |||
| 1909 | ||||
| 1910 | /* Address of the place where a forward jump should go to the end of | |||
| 1911 | the containing expression. Each alternative of an `or' -- except the | |||
| 1912 | last -- ends with a forward jump of this sort. */ | |||
| 1913 | unsigned char *fixup_alt_jump = 0; | |||
| 1914 | ||||
| 1915 | /* Counts open-groups as they are encountered. Remembered for the | |||
| 1916 | matching close-group on the compile stack, so the same register | |||
| 1917 | number is put in the stop_memory as the start_memory. */ | |||
| 1918 | regnum_t regnum = 0; | |||
| 1919 | ||||
| 1920 | /* Work area for range table of charset. */ | |||
| 1921 | struct range_table_work_area range_table_work; | |||
| 1922 | ||||
| 1923 | #ifdef DEBUG | |||
| 1924 | DEBUG_PRINT1 ("\nCompiling pattern: "); | |||
| 1925 | if (debug) | |||
| 1926 | { | |||
| 1927 | unsigned debug_count; | |||
| 1928 | ||||
| 1929 | for (debug_count = 0; debug_count < size; debug_count++) | |||
| 1930 | putchar (pattern[debug_count]); | |||
| 1931 | putchar ('\n'); | |||
| 1932 | } | |||
| 1933 | #endif /* DEBUG */ | |||
| 1934 | ||||
| 1935 | /* Initialize the compile stack. */ | |||
| 1936 | compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t)((compile_stack_elt_t *) malloc ((32) * sizeof (compile_stack_elt_t ))); | |||
| 1937 | if (compile_stack.stack == NULL((void *)0)) | |||
| 1938 | return REG_ESPACE; | |||
| 1939 | ||||
| 1940 | compile_stack.size = INIT_COMPILE_STACK_SIZE32; | |||
| 1941 | compile_stack.avail = 0; | |||
| 1942 | ||||
| 1943 | range_table_work.table = 0; | |||
| 1944 | range_table_work.allocated = 0; | |||
| 1945 | ||||
| 1946 | /* Initialize the pattern buffer. */ | |||
| 1947 | bufp->syntax = syntax; | |||
| 1948 | bufp->fastmap_accurate = 0; | |||
| 1949 | bufp->not_bol = bufp->not_eol = 0; | |||
| 1950 | ||||
| 1951 | /* Set `used' to zero, so that if we return an error, the pattern | |||
| 1952 | printer (for debugging) will think there's no pattern. We reset it | |||
| 1953 | at the end. */ | |||
| 1954 | bufp->used = 0; | |||
| 1955 | ||||
| 1956 | /* Always count groups, whether or not bufp->no_sub is set. */ | |||
| 1957 | bufp->re_nsub = 0; | |||
| 1958 | ||||
| 1959 | #ifdef emacs | |||
| 1960 | /* bufp->multibyte is set before regex_compile is called, so don't alter | |||
| 1961 | it. */ | |||
| 1962 | #else /* not emacs */ | |||
| 1963 | /* Nothing is recognized as a multibyte character. */ | |||
| 1964 | bufp->multibyte = 0; | |||
| 1965 | #endif | |||
| 1966 | ||||
| 1967 | #if !defined (emacs) && !defined (SYNTAX_TABLE) | |||
| 1968 | /* Initialize the syntax table. */ | |||
| 1969 | init_syntax_once (); | |||
| 1970 | #endif | |||
| 1971 | ||||
| 1972 | if (bufp->allocated == 0) | |||
| 1973 | { | |||
| 1974 | if (bufp->buffer) | |||
| 1975 | { /* If zero allocated, but buffer is non-null, try to realloc | |||
| 1976 | enough space. This loses if buffer's address is bogus, but | |||
| 1977 | that is the user's responsibility. */ | |||
| 1978 | RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char)((bufp->buffer) = (unsigned char *) realloc (bufp->buffer , (32) * sizeof (unsigned char))); | |||
| 1979 | } | |||
| 1980 | else | |||
| 1981 | { /* Caller did not allocate a buffer. Do it for them. */ | |||
| 1982 | bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char)((unsigned char *) malloc ((32) * sizeof (unsigned char))); | |||
| 1983 | } | |||
| 1984 | if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ESPACE ; } while (0); | |||
| 1985 | ||||
| 1986 | bufp->allocated = INIT_BUF_SIZE32; | |||
| 1987 | } | |||
| 1988 | ||||
| 1989 | begalt = b = bufp->buffer; | |||
| 1990 | ||||
| 1991 | /* Loop through the uncompiled pattern until we're at the end. */ | |||
| 1992 | while (p != pend) | |||
| 1993 | { | |||
| 1994 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 1995 | ||||
| 1996 | switch (c) | |||
| 1997 | { | |||
| 1998 | case '^': | |||
| 1999 | { | |||
| 2000 | if ( /* If at start of pattern, it's an operator. */ | |||
| 2001 | p == pattern + 1 | |||
| 2002 | /* If context independent, it's an operator. */ | |||
| 2003 | || syntax & RE_CONTEXT_INDEP_ANCHORS((((1) << 1) << 1) << 1) | |||
| 2004 | /* Otherwise, depends on what's come before. */ | |||
| 2005 | || at_begline_loc_p (pattern, p, syntax)) | |||
| 2006 | BUF_PUSH (begline)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (begline ); } while (0); | |||
| 2007 | else | |||
| 2008 | goto normal_char; | |||
| 2009 | } | |||
| 2010 | break; | |||
| 2011 | ||||
| 2012 | ||||
| 2013 | case '$': | |||
| 2014 | { | |||
| 2015 | if ( /* If at end of pattern, it's an operator. */ | |||
| 2016 | p == pend | |||
| 2017 | /* If context independent, it's an operator. */ | |||
| 2018 | || syntax & RE_CONTEXT_INDEP_ANCHORS((((1) << 1) << 1) << 1) | |||
| 2019 | /* Otherwise, depends on what's next. */ | |||
| 2020 | || at_endline_loc_p (p, pend, syntax)) | |||
| 2021 | BUF_PUSH (endline)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (endline ); } while (0); | |||
| 2022 | else | |||
| 2023 | goto normal_char; | |||
| 2024 | } | |||
| 2025 | break; | |||
| 2026 | ||||
| 2027 | ||||
| 2028 | case '+': | |||
| 2029 | case '?': | |||
| 2030 | if ((syntax & RE_BK_PLUS_QM((1) << 1)) | |||
| 2031 | || (syntax & RE_LIMITED_OPS(((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
| 2032 | goto normal_char; | |||
| 2033 | handle_plus: | |||
| 2034 | case '*': | |||
| 2035 | /* If there is no previous pattern... */ | |||
| 2036 | if (!laststart) | |||
| 2037 | { | |||
| 2038 | if (syntax & RE_CONTEXT_INVALID_OPS((((((1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2039 | FREE_STACK_RETURN (REG_BADRPT)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_BADRPT ; } while (0); | |||
| 2040 | else if (!(syntax & RE_CONTEXT_INDEP_OPS(((((1) << 1) << 1) << 1) << 1))) | |||
| 2041 | goto normal_char; | |||
| 2042 | } | |||
| 2043 | ||||
| 2044 | { | |||
| 2045 | /* Are we optimizing this jump? */ | |||
| 2046 | boolean keep_string_p = false0; | |||
| 2047 | ||||
| 2048 | /* 1 means zero (many) matches is allowed. */ | |||
| 2049 | char zero_times_ok = 0, many_times_ok = 0; | |||
| 2050 | ||||
| 2051 | /* If there is a sequence of repetition chars, collapse it | |||
| 2052 | down to just one (the right one). We can't combine | |||
| 2053 | interval operators with these because of, e.g., `a{2}*', | |||
| 2054 | which should only match an even number of `a's. */ | |||
| 2055 | ||||
| 2056 | for (;;) | |||
| 2057 | { | |||
| 2058 | zero_times_ok |= c != '+'; | |||
| 2059 | many_times_ok |= c != '?'; | |||
| 2060 | ||||
| 2061 | if (p == pend) | |||
| 2062 | break; | |||
| 2063 | ||||
| 2064 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2065 | ||||
| 2066 | if (c == '*' | |||
| 2067 | || (!(syntax & RE_BK_PLUS_QM((1) << 1)) && (c == '+' || c == '?'))) | |||
| 2068 | ; | |||
| 2069 | ||||
| 2070 | else if (syntax & RE_BK_PLUS_QM((1) << 1) && c == '\\') | |||
| 2071 | { | |||
| 2072 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EESCAPE ; } while (0); | |||
| 2073 | ||||
| 2074 | PATFETCH (c1)do {if (p == pend) return REG_EEND; c1 = (unsigned char) *p++ ; if ((translate)) c1 = ((translate)[c1]); } while (0); | |||
| 2075 | if (!(c1 == '+' || c1 == '?')) | |||
| 2076 | { | |||
| 2077 | PATUNFETCHp--; | |||
| 2078 | PATUNFETCHp--; | |||
| 2079 | break; | |||
| 2080 | } | |||
| 2081 | ||||
| 2082 | c = c1; | |||
| 2083 | } | |||
| 2084 | else | |||
| 2085 | { | |||
| 2086 | PATUNFETCHp--; | |||
| 2087 | break; | |||
| 2088 | } | |||
| 2089 | ||||
| 2090 | /* If we get here, we found another repeat character. */ | |||
| 2091 | } | |||
| 2092 | ||||
| 2093 | /* Star, etc. applied to an empty pattern is equivalent | |||
| 2094 | to an empty pattern. */ | |||
| 2095 | if (!laststart) | |||
| 2096 | break; | |||
| 2097 | ||||
| 2098 | /* Now we know whether or not zero matches is allowed | |||
| 2099 | and also whether or not two or more matches is allowed. */ | |||
| 2100 | if (many_times_ok) | |||
| 2101 | { /* More than one repetition is allowed, so put in at the | |||
| 2102 | end a backward relative jump from `b' to before the next | |||
| 2103 | jump we're going to put in below (which jumps from | |||
| 2104 | laststart to after this jump). | |||
| 2105 | ||||
| 2106 | But if we are at the `*' in the exact sequence `.*\n', | |||
| 2107 | insert an unconditional jump backwards to the ., | |||
| 2108 | instead of the beginning of the loop. This way we only | |||
| 2109 | push a failure point once, instead of every time | |||
| 2110 | through the loop. */ | |||
| 2111 | assert (p - 1 > pattern); | |||
| 2112 | ||||
| 2113 | /* Allocate the space for the jump. */ | |||
| 2114 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
| 2115 | ||||
| 2116 | /* We know we are not at the first character of the pattern, | |||
| 2117 | because laststart was nonzero. And we've already | |||
| 2118 | incremented `p', by the way, to be the character after | |||
| 2119 | the `*'. Do we have to do something analogous here | |||
| 2120 | for null bytes, because of RE_DOT_NOT_NULL? */ | |||
| 2121 | if (TRANSLATE ((unsigned char)*(p - 2))((translate) ? (unsigned) ((translate)[(unsigned) ((unsigned char )*(p - 2))]) : ((unsigned char)*(p - 2))) == TRANSLATE ('.')((translate) ? (unsigned) ((translate)[(unsigned) ('.')]) : ( '.')) | |||
| 2122 | && zero_times_ok | |||
| 2123 | && p < pend | |||
| 2124 | && TRANSLATE ((unsigned char)*p)((translate) ? (unsigned) ((translate)[(unsigned) ((unsigned char )*p)]) : ((unsigned char)*p)) == TRANSLATE ('\n')((translate) ? (unsigned) ((translate)[(unsigned) ('\n')]) : ( '\n')) | |||
| 2125 | && !(syntax & RE_DOT_NEWLINE(((((((1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
| 2126 | { /* We have .*\n. */ | |||
| 2127 | STORE_JUMP (jump, b, laststart)store_op1 (jump, b, (laststart) - (b) - 3); | |||
| 2128 | keep_string_p = true1; | |||
| 2129 | } | |||
| 2130 | else | |||
| 2131 | /* Anything else. */ | |||
| 2132 | STORE_JUMP (maybe_pop_jump, b, laststart - 3)store_op1 (maybe_pop_jump, b, (laststart - 3) - (b) - 3); | |||
| 2133 | ||||
| 2134 | /* We've added more stuff to the buffer. */ | |||
| 2135 | b += 3; | |||
| 2136 | } | |||
| 2137 | ||||
| 2138 | /* On failure, jump from laststart to b + 3, which will be the | |||
| 2139 | end of the buffer after this jump is inserted. */ | |||
| 2140 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
| 2141 | INSERT_JUMP (keep_string_p ? on_failure_keep_string_jumpinsert_op1 (keep_string_p ? on_failure_keep_string_jump : on_failure_jump , laststart, (b + 3) - (laststart) - 3, b) | |||
| 2142 | : on_failure_jump,insert_op1 (keep_string_p ? on_failure_keep_string_jump : on_failure_jump , laststart, (b + 3) - (laststart) - 3, b) | |||
| 2143 | laststart, b + 3)insert_op1 (keep_string_p ? on_failure_keep_string_jump : on_failure_jump , laststart, (b + 3) - (laststart) - 3, b); | |||
| 2144 | pending_exact = 0; | |||
| 2145 | b += 3; | |||
| 2146 | ||||
| 2147 | if (!zero_times_ok) | |||
| 2148 | { | |||
| 2149 | /* At least one repetition is required, so insert a | |||
| 2150 | `dummy_failure_jump' before the initial | |||
| 2151 | `on_failure_jump' instruction of the loop. This | |||
| 2152 | effects a skip over that instruction the first time | |||
| 2153 | we hit that loop. */ | |||
| 2154 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
| 2155 | INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6)insert_op1 (dummy_failure_jump, laststart, (laststart + 6) - ( laststart) - 3, b); | |||
| 2156 | b += 3; | |||
| 2157 | } | |||
| 2158 | } | |||
| 2159 | break; | |||
| 2160 | ||||
| 2161 | ||||
| 2162 | case '.': | |||
| 2163 | laststart = b; | |||
| 2164 | BUF_PUSH (anychar)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (anychar ); } while (0); | |||
| 2165 | break; | |||
| 2166 | ||||
| 2167 | ||||
| 2168 | case '[': | |||
| 2169 | { | |||
| 2170 | CLEAR_RANGE_TABLE_WORK_USED (range_table_work)((range_table_work).used = 0); | |||
| 2171 | ||||
| 2172 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACK ; } while (0); | |||
| 2173 | ||||
| 2174 | /* Ensure that we have enough space to push a charset: the | |||
| 2175 | opcode, the length count, and the bitset; 34 bytes in all. */ | |||
| 2176 | GET_BUFFER_SPACE (34)while (b - bufp->buffer + (34) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); | |||
| 2177 | ||||
| 2178 | laststart = b; | |||
| 2179 | ||||
| 2180 | /* We test `*p == '^' twice, instead of using an if | |||
| 2181 | statement, so we only need one BUF_PUSH. */ | |||
| 2182 | BUF_PUSH (*p == '^' ? charset_not : charset)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (* p == '^' ? charset_not : charset); } while (0); | |||
| 2183 | if (*p == '^') | |||
| 2184 | p++; | |||
| 2185 | ||||
| 2186 | /* Remember the first position in the bracket expression. */ | |||
| 2187 | p1 = p; | |||
| 2188 | ||||
| 2189 | /* Push the number of bytes in the bitmap. */ | |||
| 2190 | BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (( 1 << 8) / 8); } while (0); | |||
| 2191 | ||||
| 2192 | /* Clear the whole map. */ | |||
| 2193 | bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH)memset ((b), 0, ((1 << 8) / 8)); | |||
| 2194 | ||||
| 2195 | /* charset_not matches newline according to a syntax bit. */ | |||
| 2196 | if ((re_opcode_t) b[-2] == charset_not | |||
| 2197 | && (syntax & RE_HAT_LISTS_NOT_NEWLINE(((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
| 2198 | SET_LIST_BIT ('\n')(b[((unsigned char) ('\n')) / 8] |= 1 << (((unsigned char ) '\n') % 8)); | |||
| 2199 | ||||
| 2200 | /* Read in characters and ranges, setting map bits. */ | |||
| 2201 | for (;;) | |||
| 2202 | { | |||
| 2203 | int len; | |||
| 2204 | boolean escaped_char = false0; | |||
| 2205 | ||||
| 2206 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACK ; } while (0); | |||
| 2207 | ||||
| 2208 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2209 | ||||
| 2210 | /* \ might escape characters inside [...] and [^...]. */ | |||
| 2211 | if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS(1)) && c == '\\') | |||
| 2212 | { | |||
| 2213 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EESCAPE ; } while (0); | |||
| 2214 | ||||
| 2215 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2216 | escaped_char = true1; | |||
| 2217 | } | |||
| 2218 | else | |||
| 2219 | { | |||
| 2220 | /* Could be the end of the bracket expression. If it's | |||
| 2221 | not (i.e., when the bracket expression is `[]' so | |||
| 2222 | far), the ']' character bit gets set way below. */ | |||
| 2223 | if (c == ']' && p != p1 + 1) | |||
| 2224 | break; | |||
| 2225 | } | |||
| 2226 | ||||
| 2227 | /* If C indicates start of multibyte char, get the | |||
| 2228 | actual character code in C, and set the pattern | |||
| 2229 | pointer P to the next character boundary. */ | |||
| 2230 | if (bufp->multibyte && BASE_LEADING_CODE_P (c)(0)) | |||
| 2231 | { | |||
| 2232 | PATUNFETCHp--; | |||
| 2233 | c = STRING_CHAR_AND_LENGTH (p, pend - p, len)((len) = 1, *(p)); | |||
| 2234 | p += len; | |||
| 2235 | } | |||
| 2236 | /* What should we do for the character which is | |||
| 2237 | greater than 0x7F, but not BASE_LEADING_CODE_P? | |||
| 2238 | XXX */ | |||
| 2239 | ||||
| 2240 | /* See if we're at the beginning of a possible character | |||
| 2241 | class. */ | |||
| 2242 | ||||
| 2243 | else if (!escaped_char && | |||
| 2244 | syntax & RE_CHAR_CLASSES(((1) << 1) << 1) && c == '[' && *p == ':') | |||
| 2245 | { | |||
| 2246 | /* Leave room for the null. */ | |||
| 2247 | char str[CHAR_CLASS_MAX_LENGTH6 + 1]; | |||
| 2248 | ||||
| 2249 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2250 | c1 = 0; | |||
| 2251 | ||||
| 2252 | /* If pattern is `[[:'. */ | |||
| 2253 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACK ; } while (0); | |||
| 2254 | ||||
| 2255 | for (;;) | |||
| 2256 | { | |||
| 2257 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2258 | if (c == ':' || c == ']' || p == pend | |||
| 2259 | || c1 == CHAR_CLASS_MAX_LENGTH6) | |||
| 2260 | break; | |||
| 2261 | str[c1++] = c; | |||
| 2262 | } | |||
| 2263 | str[c1] = '\0'; | |||
| 2264 | ||||
| 2265 | /* If isn't a word bracketed by `[:' and `:]': | |||
| 2266 | undo the ending character, the letters, and | |||
| 2267 | leave the leading `:' and `[' (but set bits for | |||
| 2268 | them). */ | |||
| 2269 | if (c == ':' && *p == ']') | |||
| 2270 | { | |||
| 2271 | int ch; | |||
| 2272 | boolean is_alnum = STREQ (str, "alnum")((strcmp (str, "alnum") == 0)); | |||
| 2273 | boolean is_alpha = STREQ (str, "alpha")((strcmp (str, "alpha") == 0)); | |||
| 2274 | boolean is_blank = STREQ (str, "blank")((strcmp (str, "blank") == 0)); | |||
| 2275 | boolean is_cntrl = STREQ (str, "cntrl")((strcmp (str, "cntrl") == 0)); | |||
| 2276 | boolean is_digit = STREQ (str, "digit")((strcmp (str, "digit") == 0)); | |||
| 2277 | boolean is_graph = STREQ (str, "graph")((strcmp (str, "graph") == 0)); | |||
| 2278 | boolean is_lower = STREQ (str, "lower")((strcmp (str, "lower") == 0)); | |||
| 2279 | boolean is_print = STREQ (str, "print")((strcmp (str, "print") == 0)); | |||
| 2280 | boolean is_punct = STREQ (str, "punct")((strcmp (str, "punct") == 0)); | |||
| 2281 | boolean is_space = STREQ (str, "space")((strcmp (str, "space") == 0)); | |||
| 2282 | boolean is_upper = STREQ (str, "upper")((strcmp (str, "upper") == 0)); | |||
| 2283 | boolean is_xdigit = STREQ (str, "xdigit")((strcmp (str, "xdigit") == 0)); | |||
| 2284 | ||||
| 2285 | if (!IS_CHAR_CLASS (str)(((strcmp (str, "alpha") == 0)) || ((strcmp (str, "upper") == 0)) || ((strcmp (str, "lower") == 0)) || ((strcmp (str, "digit" ) == 0)) || ((strcmp (str, "alnum") == 0)) || ((strcmp (str, "xdigit" ) == 0)) || ((strcmp (str, "space") == 0)) || ((strcmp (str, "print" ) == 0)) || ((strcmp (str, "punct") == 0)) || ((strcmp (str, "graph" ) == 0)) || ((strcmp (str, "cntrl") == 0)) || ((strcmp (str, "blank" ) == 0)))) | |||
| 2286 | FREE_STACK_RETURN (REG_ECTYPE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ECTYPE ; } while (0); | |||
| 2287 | ||||
| 2288 | /* Throw away the ] at the end of the character | |||
| 2289 | class. */ | |||
| 2290 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2291 | ||||
| 2292 | if (p == pend) FREE_STACK_RETURN (REG_EBRACK)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACK ; } while (0); | |||
| 2293 | ||||
| 2294 | for (ch = 0; ch < 1 << BYTEWIDTH8; ch++) | |||
| 2295 | { | |||
| 2296 | int translated = TRANSLATE (ch)((translate) ? (unsigned) ((translate)[(unsigned) (ch)]) : (ch )); | |||
| 2297 | /* This was split into 3 if's to | |||
| 2298 | avoid an arbitrary limit in some compiler. */ | |||
| 2299 | if ( (is_alnum && ISALNUM (ch)(1 && isalnum (ch))) | |||
| 2300 | || (is_alpha && ISALPHA (ch)(1 && isalpha (ch))) | |||
| 2301 | || (is_blank && ISBLANK (ch)((ch) == ' ' || (ch) == '\t')) | |||
| 2302 | || (is_cntrl && ISCNTRL (ch)(1 && iscntrl (ch)))) | |||
| 2303 | SET_LIST_BIT (translated)(b[((unsigned char) (translated)) / 8] |= 1 << (((unsigned char) translated) % 8)); | |||
| 2304 | if ( (is_digit && ISDIGIT (ch)(1 && isdigit (ch))) | |||
| 2305 | || (is_graph && ISGRAPH (ch)(1 && isprint (ch) && !isspace (ch))) | |||
| 2306 | || (is_lower && ISLOWER (ch)(1 && islower (ch))) | |||
| 2307 | || (is_print && ISPRINT (ch)(1 && isprint (ch)))) | |||
| 2308 | SET_LIST_BIT (translated)(b[((unsigned char) (translated)) / 8] |= 1 << (((unsigned char) translated) % 8)); | |||
| 2309 | if ( (is_punct && ISPUNCT (ch)(1 && ispunct (ch))) | |||
| 2310 | || (is_space && ISSPACE (ch)(1 && isspace (ch))) | |||
| 2311 | || (is_upper && ISUPPER (ch)(1 && isupper (ch))) | |||
| 2312 | || (is_xdigit && ISXDIGIT (ch)(1 && isxdigit (ch)))) | |||
| 2313 | SET_LIST_BIT (translated)(b[((unsigned char) (translated)) / 8] |= 1 << (((unsigned char) translated) % 8)); | |||
| 2314 | } | |||
| 2315 | ||||
| 2316 | /* Repeat the loop. */ | |||
| 2317 | continue; | |||
| 2318 | } | |||
| 2319 | else | |||
| 2320 | { | |||
| 2321 | c1++; | |||
| 2322 | while (c1--) | |||
| 2323 | PATUNFETCHp--; | |||
| 2324 | SET_LIST_BIT ('[')(b[((unsigned char) ('[')) / 8] |= 1 << (((unsigned char ) '[') % 8)); | |||
| 2325 | ||||
| 2326 | /* Because the `:' may starts the range, we | |||
| 2327 | can't simply set bit and repeat the loop. | |||
| 2328 | Instead, just set it to C and handle below. */ | |||
| 2329 | c = ':'; | |||
| 2330 | } | |||
| 2331 | } | |||
| 2332 | ||||
| 2333 | if (p < pend && p[0] == '-' && p[1] != ']') | |||
| 2334 | { | |||
| 2335 | ||||
| 2336 | /* Discard the `-'. */ | |||
| 2337 | PATFETCH (c1)do {if (p == pend) return REG_EEND; c1 = (unsigned char) *p++ ; if ((translate)) c1 = ((translate)[c1]); } while (0); | |||
| 2338 | ||||
| 2339 | /* Fetch the character which ends the range. */ | |||
| 2340 | PATFETCH (c1)do {if (p == pend) return REG_EEND; c1 = (unsigned char) *p++ ; if ((translate)) c1 = ((translate)[c1]); } while (0); | |||
| 2341 | if (bufp->multibyte && BASE_LEADING_CODE_P (c1)(0)) | |||
| 2342 | { | |||
| 2343 | PATUNFETCHp--; | |||
| 2344 | c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len)((len) = 1, *(p)); | |||
| 2345 | p += len; | |||
| 2346 | } | |||
| 2347 | ||||
| 2348 | if (SINGLE_BYTE_CHAR_P (c)(1) | |||
| 2349 | && ! SINGLE_BYTE_CHAR_P (c1)(1)) | |||
| 2350 | { | |||
| 2351 | /* Handle a range such as \177-\377 in multibyte mode. | |||
| 2352 | Split that into two ranges,, | |||
| 2353 | the low one ending at 0237, and the high one | |||
| 2354 | starting at ...040. */ | |||
| 2355 | int c1_base = (c1 & ~0177) | 040; | |||
| 2356 | SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1)do { do { if ((((range_table_work)).used + (2)) * sizeof (int ) > ((range_table_work)).allocated) { ((range_table_work)) .allocated += 16 * sizeof (int); if (((range_table_work)).table ) ((range_table_work)).table = (int *) realloc (((range_table_work )).table, ((range_table_work)).allocated); else ((range_table_work )).table = (int *) malloc (((range_table_work)).allocated); if (((range_table_work)).table == 0) do { do { if ((range_table_work ).table) free ((range_table_work).table); } while (0); free ( compile_stack.stack); return REG_ESPACE; } while (0); } } while (0); (range_table_work).table[(range_table_work).used++] = ( c); (range_table_work).table[(range_table_work).used++] = (c1 ); } while (0); | |||
| 2357 | c1 = 0237; | |||
| 2358 | } | |||
| 2359 | else if (!SAME_CHARSET_P (c, c1)(1)) | |||
| 2360 | FREE_STACK_RETURN (REG_ERANGE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ERANGE ; } while (0); | |||
| 2361 | } | |||
| 2362 | else | |||
| 2363 | /* Range from C to C. */ | |||
| 2364 | c1 = c; | |||
| 2365 | ||||
| 2366 | /* Set the range ... */ | |||
| 2367 | if (SINGLE_BYTE_CHAR_P (c)(1)) | |||
| 2368 | /* ... into bitmap. */ | |||
| 2369 | { | |||
| 2370 | unsigned this_char; | |||
| 2371 | int range_start = c, range_end = c1; | |||
| 2372 | ||||
| 2373 | /* If the start is after the end, the range is empty. */ | |||
| 2374 | if (range_start > range_end) | |||
| 2375 | { | |||
| 2376 | if (syntax & RE_NO_EMPTY_RANGES(((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2377 | FREE_STACK_RETURN (REG_ERANGE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ERANGE ; } while (0); | |||
| 2378 | /* Else, repeat the loop. */ | |||
| 2379 | } | |||
| 2380 | else | |||
| 2381 | { | |||
| 2382 | for (this_char = range_start; this_char <= range_end; | |||
| 2383 | this_char++) | |||
| 2384 | SET_LIST_BIT (TRANSLATE (this_char))(b[((unsigned char) (((translate) ? (unsigned) ((translate)[( unsigned) (this_char)]) : (this_char)))) / 8] |= 1 << ( ((unsigned char) ((translate) ? (unsigned) ((translate)[(unsigned ) (this_char)]) : (this_char))) % 8)); | |||
| 2385 | } | |||
| 2386 | } | |||
| 2387 | else | |||
| 2388 | /* ... into range table. */ | |||
| 2389 | SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1)do { do { if ((((range_table_work)).used + (2)) * sizeof (int ) > ((range_table_work)).allocated) { ((range_table_work)) .allocated += 16 * sizeof (int); if (((range_table_work)).table ) ((range_table_work)).table = (int *) realloc (((range_table_work )).table, ((range_table_work)).allocated); else ((range_table_work )).table = (int *) malloc (((range_table_work)).allocated); if (((range_table_work)).table == 0) do { do { if ((range_table_work ).table) free ((range_table_work).table); } while (0); free ( compile_stack.stack); return REG_ESPACE; } while (0); } } while (0); (range_table_work).table[(range_table_work).used++] = ( c); (range_table_work).table[(range_table_work).used++] = (c1 ); } while (0); | |||
| 2390 | } | |||
| 2391 | ||||
| 2392 | /* Discard any (non)matching list bytes that are all 0 at the | |||
| 2393 | end of the map. Decrease the map-length byte too. */ | |||
| 2394 | while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) | |||
| 2395 | b[-1]--; | |||
| 2396 | b += b[-1]; | |||
| 2397 | ||||
| 2398 | /* Build real range table from work area. */ | |||
| 2399 | if (RANGE_TABLE_WORK_USED (range_table_work)((range_table_work).used)) | |||
| 2400 | { | |||
| 2401 | int i; | |||
| 2402 | int used = RANGE_TABLE_WORK_USED (range_table_work)((range_table_work).used); | |||
| 2403 | ||||
| 2404 | /* Allocate space for COUNT + RANGE_TABLE. Needs two | |||
| 2405 | bytes for COUNT and three bytes for each character. */ | |||
| 2406 | GET_BUFFER_SPACE (2 + used * 3)while (b - bufp->buffer + (2 + used * 3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); | |||
| 2407 | ||||
| 2408 | /* Indicate the existence of range table. */ | |||
| 2409 | laststart[1] |= 0x80; | |||
| 2410 | ||||
| 2411 | STORE_NUMBER_AND_INCR (b, used / 2)do { do { (b)[0] = (used / 2) & 0377; (b)[1] = (used / 2) >> 8; } while (0); (b) += 2; } while (0); | |||
| 2412 | for (i = 0; i < used; i++) | |||
| 2413 | STORE_CHARACTER_AND_INCRdo { (b)[0] = (((range_table_work).table[i])) & 0377; (b) [1] = ((((range_table_work).table[i])) >> 8) & 0377 ; (b)[2] = (((range_table_work).table[i])) >> 16; (b) += 3; } while (0) | |||
| 2414 | (b, RANGE_TABLE_WORK_ELT (range_table_work, i))do { (b)[0] = (((range_table_work).table[i])) & 0377; (b) [1] = ((((range_table_work).table[i])) >> 8) & 0377 ; (b)[2] = (((range_table_work).table[i])) >> 16; (b) += 3; } while (0); | |||
| 2415 | } | |||
| 2416 | } | |||
| 2417 | break; | |||
| 2418 | ||||
| 2419 | ||||
| 2420 | case '(': | |||
| 2421 | if (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1)) | |||
| 2422 | goto handle_open; | |||
| 2423 | else | |||
| 2424 | goto normal_char; | |||
| 2425 | ||||
| 2426 | ||||
| 2427 | case ')': | |||
| 2428 | if (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1)) | |||
| 2429 | goto handle_close; | |||
| 2430 | else | |||
| 2431 | goto normal_char; | |||
| 2432 | ||||
| 2433 | ||||
| 2434 | case '\n': | |||
| 2435 | if (syntax & RE_NEWLINE_ALT((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2436 | goto handle_alt; | |||
| 2437 | else | |||
| 2438 | goto normal_char; | |||
| 2439 | ||||
| 2440 | ||||
| 2441 | case '|': | |||
| 2442 | if (syntax & RE_NO_BK_VBAR((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2443 | goto handle_alt; | |||
| 2444 | else | |||
| 2445 | goto normal_char; | |||
| 2446 | ||||
| 2447 | ||||
| 2448 | case '{': | |||
| 2449 | if (syntax & RE_INTERVALS((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) && syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2450 | goto handle_interval; | |||
| 2451 | else | |||
| 2452 | goto normal_char; | |||
| 2453 | ||||
| 2454 | ||||
| 2455 | case '\\': | |||
| 2456 | if (p == pend) FREE_STACK_RETURN (REG_EESCAPE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EESCAPE ; } while (0); | |||
| 2457 | ||||
| 2458 | /* Do not translate the character after the \, so that we can | |||
| 2459 | distinguish, e.g., \B from \b, even if we normally would | |||
| 2460 | translate, e.g., B to b. */ | |||
| 2461 | PATFETCH_RAW (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; } while (0); | |||
| 2462 | ||||
| 2463 | switch (c) | |||
| 2464 | { | |||
| 2465 | case '(': | |||
| 2466 | if (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1)) | |||
| 2467 | goto normal_backslash; | |||
| 2468 | ||||
| 2469 | handle_open: | |||
| 2470 | bufp->re_nsub++; | |||
| 2471 | regnum++; | |||
| 2472 | ||||
| 2473 | if (COMPILE_STACK_FULL(compile_stack.avail == compile_stack.size)) | |||
| 2474 | { | |||
| 2475 | RETALLOC (compile_stack.stack, compile_stack.size << 1,((compile_stack.stack) = (compile_stack_elt_t *) realloc (compile_stack .stack, (compile_stack.size << 1) * sizeof (compile_stack_elt_t ))) | |||
| 2476 | compile_stack_elt_t)((compile_stack.stack) = (compile_stack_elt_t *) realloc (compile_stack .stack, (compile_stack.size << 1) * sizeof (compile_stack_elt_t ))); | |||
| 2477 | if (compile_stack.stack == NULL((void *)0)) return REG_ESPACE; | |||
| 2478 | ||||
| 2479 | compile_stack.size <<= 1; | |||
| 2480 | } | |||
| 2481 | ||||
| 2482 | /* These are the values to restore when we hit end of this | |||
| 2483 | group. They are all relative offsets, so that if the | |||
| 2484 | whole pattern moves because of realloc, they will still | |||
| 2485 | be valid. */ | |||
| 2486 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).begalt_offset = begalt - bufp->buffer; | |||
| 2487 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump | |||
| 2488 | = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; | |||
| 2489 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).laststart_offset = b - bufp->buffer; | |||
| 2490 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).regnum = regnum; | |||
| 2491 | ||||
| 2492 | /* We will eventually replace the 0 with the number of | |||
| 2493 | groups inner to this one. But do not push a | |||
| 2494 | start_memory for groups beyond the last one we can | |||
| 2495 | represent in the compiled pattern. */ | |||
| 2496 | if (regnum <= MAX_REGNUM255) | |||
| 2497 | { | |||
| 2498 | COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).inner_group_offset = b - bufp->buffer + 2; | |||
| 2499 | BUF_PUSH_3 (start_memory, regnum, 0)do { while (b - bufp->buffer + (3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (start_memory ); *b++ = (unsigned char) (regnum); *b++ = (unsigned char) (0 ); } while (0); | |||
| 2500 | } | |||
| 2501 | ||||
| 2502 | compile_stack.avail++; | |||
| 2503 | ||||
| 2504 | fixup_alt_jump = 0; | |||
| 2505 | laststart = 0; | |||
| 2506 | begalt = b; | |||
| 2507 | /* If we've reached MAX_REGNUM groups, then this open | |||
| 2508 | won't actually generate any code, so we'll have to | |||
| 2509 | clear pending_exact explicitly. */ | |||
| 2510 | pending_exact = 0; | |||
| 2511 | break; | |||
| 2512 | ||||
| 2513 | ||||
| 2514 | case ')': | |||
| 2515 | if (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1)) goto normal_backslash; | |||
| 2516 | ||||
| 2517 | if (COMPILE_STACK_EMPTY(compile_stack.avail == 0)) { | |||
| 2518 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD((((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2519 | goto normal_backslash; | |||
| 2520 | else | |||
| 2521 | FREE_STACK_RETURN (REG_ERPAREN)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ERPAREN ; } while (0); | |||
| 2522 | } | |||
| 2523 | ||||
| 2524 | handle_close: | |||
| 2525 | if (fixup_alt_jump) | |||
| 2526 | { /* Push a dummy failure point at the end of the | |||
| 2527 | alternative for a possible future | |||
| 2528 | `pop_failure_jump' to pop. See comments at | |||
| 2529 | `push_dummy_failure' in `re_match_2'. */ | |||
| 2530 | BUF_PUSH (push_dummy_failure)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (push_dummy_failure ); } while (0); | |||
| 2531 | ||||
| 2532 | /* We allocated space for this jump when we assigned | |||
| 2533 | to `fixup_alt_jump', in the `handle_alt' case below. */ | |||
| 2534 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1)store_op1 (jump_past_alt, fixup_alt_jump, (b - 1) - (fixup_alt_jump ) - 3); | |||
| 2535 | } | |||
| 2536 | ||||
| 2537 | /* See similar code for backslashed left paren above. */ | |||
| 2538 | if (COMPILE_STACK_EMPTY(compile_stack.avail == 0)) { | |||
| 2539 | if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD((((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2540 | goto normal_char; | |||
| 2541 | else | |||
| 2542 | FREE_STACK_RETURN (REG_ERPAREN)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ERPAREN ; } while (0); | |||
| 2543 | } | |||
| 2544 | ||||
| 2545 | /* Since we just checked for an empty stack above, this | |||
| 2546 | ``can't happen''. */ | |||
| 2547 | assert (compile_stack.avail != 0); | |||
| 2548 | { | |||
| 2549 | /* We don't just want to restore into `regnum', because | |||
| 2550 | later groups should continue to be numbered higher, | |||
| 2551 | as in `(ab)c(de)' -- the second group is #2. */ | |||
| 2552 | regnum_t this_group_regnum; | |||
| 2553 | ||||
| 2554 | compile_stack.avail--; | |||
| 2555 | begalt = bufp->buffer + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).begalt_offset; | |||
| 2556 | fixup_alt_jump | |||
| 2557 | = COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump | |||
| 2558 | ? bufp->buffer + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).fixup_alt_jump - 1 | |||
| 2559 | : 0; | |||
| 2560 | laststart = bufp->buffer + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).laststart_offset; | |||
| 2561 | this_group_regnum = COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).regnum; | |||
| 2562 | /* If we've reached MAX_REGNUM groups, then this open | |||
| 2563 | won't actually generate any code, so we'll have to | |||
| 2564 | clear pending_exact explicitly. */ | |||
| 2565 | pending_exact = 0; | |||
| 2566 | ||||
| 2567 | /* We're at the end of the group, so now we know how many | |||
| 2568 | groups were inside this one. */ | |||
| 2569 | if (this_group_regnum <= MAX_REGNUM255) | |||
| 2570 | { | |||
| 2571 | unsigned char *inner_group_loc | |||
| 2572 | = bufp->buffer + COMPILE_STACK_TOP(compile_stack.stack[compile_stack.avail]).inner_group_offset; | |||
| 2573 | ||||
| 2574 | *inner_group_loc = regnum - this_group_regnum; | |||
| 2575 | BUF_PUSH_3 (stop_memory, this_group_regnum,do { while (b - bufp->buffer + (3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (stop_memory ); *b++ = (unsigned char) (this_group_regnum); *b++ = (unsigned char) (regnum - this_group_regnum); } while (0) | |||
| 2576 | regnum - this_group_regnum)do { while (b - bufp->buffer + (3) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (stop_memory ); *b++ = (unsigned char) (this_group_regnum); *b++ = (unsigned char) (regnum - this_group_regnum); } while (0); | |||
| 2577 | } | |||
| 2578 | } | |||
| 2579 | break; | |||
| 2580 | ||||
| 2581 | ||||
| 2582 | case '|': /* `\|'. */ | |||
| 2583 | if (syntax & RE_LIMITED_OPS(((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) || syntax & RE_NO_BK_VBAR((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2584 | goto normal_backslash; | |||
| 2585 | handle_alt: | |||
| 2586 | if (syntax & RE_LIMITED_OPS(((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2587 | goto normal_char; | |||
| 2588 | ||||
| 2589 | /* Insert before the previous alternative a jump which | |||
| 2590 | jumps to this alternative if the former fails. */ | |||
| 2591 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
| 2592 | INSERT_JUMP (on_failure_jump, begalt, b + 6)insert_op1 (on_failure_jump, begalt, (b + 6) - (begalt) - 3, b ); | |||
| 2593 | pending_exact = 0; | |||
| 2594 | b += 3; | |||
| 2595 | ||||
| 2596 | /* The alternative before this one has a jump after it | |||
| 2597 | which gets executed if it gets matched. Adjust that | |||
| 2598 | jump so it will jump to this alternative's analogous | |||
| 2599 | jump (put in below, which in turn will jump to the next | |||
| 2600 | (if any) alternative's such jump, etc.). The last such | |||
| 2601 | jump jumps to the correct final destination. A picture: | |||
| 2602 | _____ _____ | |||
| 2603 | | | | | | |||
| 2604 | | v | v | |||
| 2605 | a | b | c | |||
| 2606 | ||||
| 2607 | If we are at `b', then fixup_alt_jump right now points to a | |||
| 2608 | three-byte space after `a'. We'll put in the jump, set | |||
| 2609 | fixup_alt_jump to right after `b', and leave behind three | |||
| 2610 | bytes which we'll fill in when we get to after `c'. */ | |||
| 2611 | ||||
| 2612 | if (fixup_alt_jump) | |||
| 2613 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b)store_op1 (jump_past_alt, fixup_alt_jump, (b) - (fixup_alt_jump ) - 3); | |||
| 2614 | ||||
| 2615 | /* Mark and leave space for a jump after this alternative, | |||
| 2616 | to be filled in later either by next alternative or | |||
| 2617 | when know we're at the end of a series of alternatives. */ | |||
| 2618 | fixup_alt_jump = b; | |||
| 2619 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
| 2620 | b += 3; | |||
| 2621 | ||||
| 2622 | laststart = 0; | |||
| 2623 | begalt = b; | |||
| 2624 | break; | |||
| 2625 | ||||
| 2626 | ||||
| 2627 | case '{': | |||
| 2628 | /* If \{ is a literal. */ | |||
| 2629 | if (!(syntax & RE_INTERVALS((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2630 | /* If we're at `\{' and it's not the open-interval | |||
| 2631 | operator. */ | |||
| 2632 | || ((syntax & RE_INTERVALS((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) && (syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
| 2633 | || (p - 2 == pattern && p == pend)) | |||
| 2634 | goto normal_backslash; | |||
| 2635 | ||||
| 2636 | handle_interval: | |||
| 2637 | { | |||
| 2638 | /* If got here, then the syntax allows intervals. */ | |||
| 2639 | ||||
| 2640 | /* At least (most) this many matches must be made. */ | |||
| 2641 | int lower_bound = -1, upper_bound = -1; | |||
| 2642 | ||||
| 2643 | beg_interval = p - 1; | |||
| 2644 | ||||
| 2645 | if (p == pend) | |||
| 2646 | { | |||
| 2647 | if (syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2648 | goto unfetch_interval; | |||
| 2649 | else | |||
| 2650 | FREE_STACK_RETURN (REG_EBRACE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACE ; } while (0); | |||
| 2651 | } | |||
| 2652 | ||||
| 2653 | GET_UNSIGNED_NUMBER (lower_bound){ if (p != pend) { do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while ( 0); while ((1 && isdigit (c))) { if (lower_bound < 0) lower_bound = 0; lower_bound = lower_bound * 10 + c - '0' ; if (p == pend) break; do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c] ); } while (0); } } }; | |||
| 2654 | ||||
| 2655 | if (c == ',') | |||
| 2656 | { | |||
| 2657 | GET_UNSIGNED_NUMBER (upper_bound){ if (p != pend) { do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while ( 0); while ((1 && isdigit (c))) { if (upper_bound < 0) upper_bound = 0; upper_bound = upper_bound * 10 + c - '0' ; if (p == pend) break; do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c] ); } while (0); } } }; | |||
| 2658 | if (upper_bound < 0) upper_bound = RE_DUP_MAX((1 << 15) - 1); | |||
| 2659 | } | |||
| 2660 | else | |||
| 2661 | /* Interval such as `{1}' => match exactly once. */ | |||
| 2662 | upper_bound = lower_bound; | |||
| 2663 | ||||
| 2664 | if (lower_bound < 0 || upper_bound > RE_DUP_MAX((1 << 15) - 1) | |||
| 2665 | || lower_bound > upper_bound) | |||
| 2666 | { | |||
| 2667 | if (syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2668 | goto unfetch_interval; | |||
| 2669 | else | |||
| 2670 | FREE_STACK_RETURN (REG_BADBR)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_BADBR ; } while (0); | |||
| 2671 | } | |||
| 2672 | ||||
| 2673 | if (!(syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
| 2674 | { | |||
| 2675 | if (c != '\\') FREE_STACK_RETURN (REG_EBRACE)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EBRACE ; } while (0); | |||
| 2676 | ||||
| 2677 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2678 | } | |||
| 2679 | ||||
| 2680 | if (c != '}') | |||
| 2681 | { | |||
| 2682 | if (syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2683 | goto unfetch_interval; | |||
| 2684 | else | |||
| 2685 | FREE_STACK_RETURN (REG_BADBR)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_BADBR ; } while (0); | |||
| 2686 | } | |||
| 2687 | ||||
| 2688 | /* We just parsed a valid interval. */ | |||
| 2689 | ||||
| 2690 | /* If it's invalid to have no preceding re. */ | |||
| 2691 | if (!laststart) | |||
| 2692 | { | |||
| 2693 | if (syntax & RE_CONTEXT_INVALID_OPS((((((1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2694 | FREE_STACK_RETURN (REG_BADRPT)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_BADRPT ; } while (0); | |||
| 2695 | else if (syntax & RE_CONTEXT_INDEP_OPS(((((1) << 1) << 1) << 1) << 1)) | |||
| 2696 | laststart = b; | |||
| 2697 | else | |||
| 2698 | goto unfetch_interval; | |||
| 2699 | } | |||
| 2700 | ||||
| 2701 | /* If the upper bound is zero, don't want to succeed at | |||
| 2702 | all; jump from `laststart' to `b + 3', which will be | |||
| 2703 | the end of the buffer after we insert the jump. */ | |||
| 2704 | if (upper_bound == 0) | |||
| 2705 | { | |||
| 2706 | GET_BUFFER_SPACE (3)while (b - bufp->buffer + (3) > bufp->allocated) do { unsigned char *old_buffer = bufp->buffer; if (bufp->allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer ) { b = (b - old_buffer) + bufp->buffer; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer; if (laststart ) laststart = (laststart - old_buffer) + bufp->buffer; if ( pending_exact) pending_exact = (pending_exact - old_buffer) + bufp->buffer; } } while (0); | |||
| 2707 | INSERT_JUMP (jump, laststart, b + 3)insert_op1 (jump, laststart, (b + 3) - (laststart) - 3, b); | |||
| 2708 | b += 3; | |||
| 2709 | } | |||
| 2710 | ||||
| 2711 | /* Otherwise, we have a nontrivial interval. When | |||
| 2712 | we're all done, the pattern will look like: | |||
| 2713 | set_number_at <jump count> <upper bound> | |||
| 2714 | set_number_at <succeed_n count> <lower bound> | |||
| 2715 | succeed_n <after jump addr> <succeed_n count> | |||
| 2716 | <body of loop> | |||
| 2717 | jump_n <succeed_n addr> <jump count> | |||
| 2718 | (The upper bound and `jump_n' are omitted if | |||
| 2719 | `upper_bound' is 1, though.) */ | |||
| 2720 | else | |||
| 2721 | { /* If the upper bound is > 1, we need to insert | |||
| 2722 | more at the end of the loop. */ | |||
| 2723 | unsigned nbytes = 10 + (upper_bound > 1) * 10; | |||
| 2724 | ||||
| 2725 | GET_BUFFER_SPACE (nbytes)while (b - bufp->buffer + (nbytes) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); | |||
| 2726 | ||||
| 2727 | /* Initialize lower bound of the `succeed_n', even | |||
| 2728 | though it will be set during matching by its | |||
| 2729 | attendant `set_number_at' (inserted next), | |||
| 2730 | because `re_compile_fastmap' needs to know. | |||
| 2731 | Jump to the `jump_n' we might insert below. */ | |||
| 2732 | INSERT_JUMP2 (succeed_n, laststart,insert_op2 (succeed_n, laststart, (b + 5 + (upper_bound > 1 ) * 5) - (laststart) - 3, lower_bound, b) | |||
| 2733 | b + 5 + (upper_bound > 1) * 5,insert_op2 (succeed_n, laststart, (b + 5 + (upper_bound > 1 ) * 5) - (laststart) - 3, lower_bound, b) | |||
| 2734 | lower_bound)insert_op2 (succeed_n, laststart, (b + 5 + (upper_bound > 1 ) * 5) - (laststart) - 3, lower_bound, b); | |||
| 2735 | b += 5; | |||
| 2736 | ||||
| 2737 | /* Code to initialize the lower bound. Insert | |||
| 2738 | before the `succeed_n'. The `5' is the last two | |||
| 2739 | bytes of this `set_number_at', plus 3 bytes of | |||
| 2740 | the following `succeed_n'. */ | |||
| 2741 | insert_op2 (set_number_at, laststart, 5, lower_bound, b); | |||
| 2742 | b += 5; | |||
| 2743 | ||||
| 2744 | if (upper_bound > 1) | |||
| 2745 | { /* More than one repetition is allowed, so | |||
| 2746 | append a backward jump to the `succeed_n' | |||
| 2747 | that starts this interval. | |||
| 2748 | ||||
| 2749 | When we've reached this during matching, | |||
| 2750 | we'll have matched the interval once, so | |||
| 2751 | jump back only `upper_bound - 1' times. */ | |||
| 2752 | STORE_JUMP2 (jump_n, b, laststart + 5,store_op2 (jump_n, b, (laststart + 5) - (b) - 3, upper_bound - 1) | |||
| 2753 | upper_bound - 1)store_op2 (jump_n, b, (laststart + 5) - (b) - 3, upper_bound - 1); | |||
| 2754 | b += 5; | |||
| 2755 | ||||
| 2756 | /* The location we want to set is the second | |||
| 2757 | parameter of the `jump_n'; that is `b-2' as | |||
| 2758 | an absolute address. `laststart' will be | |||
| 2759 | the `set_number_at' we're about to insert; | |||
| 2760 | `laststart+3' the number to set, the source | |||
| 2761 | for the relative address. But we are | |||
| 2762 | inserting into the middle of the pattern -- | |||
| 2763 | so everything is getting moved up by 5. | |||
| 2764 | Conclusion: (b - 2) - (laststart + 3) + 5, | |||
| 2765 | i.e., b - laststart. | |||
| 2766 | ||||
| 2767 | We insert this at the beginning of the loop | |||
| 2768 | so that if we fail during matching, we'll | |||
| 2769 | reinitialize the bounds. */ | |||
| 2770 | insert_op2 (set_number_at, laststart, b - laststart, | |||
| 2771 | upper_bound - 1, b); | |||
| 2772 | b += 5; | |||
| 2773 | } | |||
| 2774 | } | |||
| 2775 | pending_exact = 0; | |||
| 2776 | beg_interval = NULL((void *)0); | |||
| 2777 | } | |||
| 2778 | break; | |||
| 2779 | ||||
| 2780 | unfetch_interval: | |||
| 2781 | /* If an invalid interval, match the characters as literals. */ | |||
| 2782 | assert (beg_interval); | |||
| 2783 | p = beg_interval; | |||
| 2784 | beg_interval = NULL((void *)0); | |||
| 2785 | ||||
| 2786 | /* normal_char and normal_backslash need `c'. */ | |||
| 2787 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2788 | ||||
| 2789 | if (!(syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
| 2790 | { | |||
| 2791 | if (p > pattern && p[-1] == '\\') | |||
| 2792 | goto normal_backslash; | |||
| 2793 | } | |||
| 2794 | goto normal_char; | |||
| 2795 | ||||
| 2796 | #ifdef emacs | |||
| 2797 | /* There is no way to specify the before_dot and after_dot | |||
| 2798 | operators. rms says this is ok. --karl */ | |||
| 2799 | case '=': | |||
| 2800 | BUF_PUSH (at_dot)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (at_dot ); } while (0); | |||
| 2801 | break; | |||
| 2802 | ||||
| 2803 | case 's': | |||
| 2804 | laststart = b; | |||
| 2805 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2806 | BUF_PUSH_2 (syntaxspec, syntax_spec_code[c])do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (syntaxspec ); *b++ = (unsigned char) (syntax_spec_code[c]); } while (0); | |||
| 2807 | break; | |||
| 2808 | ||||
| 2809 | case 'S': | |||
| 2810 | laststart = b; | |||
| 2811 | PATFETCH (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; if ((translate)) c = ((translate)[c]); } while (0); | |||
| 2812 | BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c])do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (notsyntaxspec ); *b++ = (unsigned char) (syntax_spec_code[c]); } while (0); | |||
| 2813 | break; | |||
| 2814 | ||||
| 2815 | case 'c': | |||
| 2816 | laststart = b; | |||
| 2817 | PATFETCH_RAW (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; } while (0); | |||
| 2818 | BUF_PUSH_2 (categoryspec, c)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (categoryspec ); *b++ = (unsigned char) (c); } while (0); | |||
| 2819 | break; | |||
| 2820 | ||||
| 2821 | case 'C': | |||
| 2822 | laststart = b; | |||
| 2823 | PATFETCH_RAW (c)do {if (p == pend) return REG_EEND; c = (unsigned char) *p++; } while (0); | |||
| 2824 | BUF_PUSH_2 (notcategoryspec, c)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (notcategoryspec ); *b++ = (unsigned char) (c); } while (0); | |||
| 2825 | break; | |||
| 2826 | #endif /* emacs */ | |||
| 2827 | ||||
| 2828 | ||||
| 2829 | case 'w': | |||
| 2830 | laststart = b; | |||
| 2831 | BUF_PUSH (wordchar)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (wordchar ); } while (0); | |||
| 2832 | break; | |||
| 2833 | ||||
| 2834 | ||||
| 2835 | case 'W': | |||
| 2836 | laststart = b; | |||
| 2837 | BUF_PUSH (notwordchar)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (notwordchar ); } while (0); | |||
| 2838 | break; | |||
| 2839 | ||||
| 2840 | ||||
| 2841 | case '<': | |||
| 2842 | BUF_PUSH (wordbeg)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (wordbeg ); } while (0); | |||
| 2843 | break; | |||
| 2844 | ||||
| 2845 | case '>': | |||
| 2846 | BUF_PUSH (wordend)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (wordend ); } while (0); | |||
| 2847 | break; | |||
| 2848 | ||||
| 2849 | case 'b': | |||
| 2850 | BUF_PUSH (wordbound)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (wordbound ); } while (0); | |||
| 2851 | break; | |||
| 2852 | ||||
| 2853 | case 'B': | |||
| 2854 | BUF_PUSH (notwordbound)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (notwordbound ); } while (0); | |||
| 2855 | break; | |||
| 2856 | ||||
| 2857 | case '`': | |||
| 2858 | BUF_PUSH (begbuf)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (begbuf ); } while (0); | |||
| 2859 | break; | |||
| 2860 | ||||
| 2861 | case '\'': | |||
| 2862 | BUF_PUSH (endbuf)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (endbuf ); } while (0); | |||
| 2863 | break; | |||
| 2864 | ||||
| 2865 | case '1': case '2': case '3': case '4': case '5': | |||
| 2866 | case '6': case '7': case '8': case '9': | |||
| 2867 | if (syntax & RE_NO_BK_REFS(((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1)) | |||
| 2868 | goto normal_char; | |||
| 2869 | ||||
| 2870 | c1 = c - '0'; | |||
| 2871 | ||||
| 2872 | if (c1 > regnum) | |||
| 2873 | FREE_STACK_RETURN (REG_ESUBREG)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_ESUBREG ; } while (0); | |||
| 2874 | ||||
| 2875 | /* Can't back reference to a subexpression if inside of it. */ | |||
| 2876 | if (group_in_compile_stack (compile_stack, c1)) | |||
| 2877 | goto normal_char; | |||
| 2878 | ||||
| 2879 | laststart = b; | |||
| 2880 | BUF_PUSH_2 (duplicate, c1)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (duplicate ); *b++ = (unsigned char) (c1); } while (0); | |||
| 2881 | break; | |||
| 2882 | ||||
| 2883 | ||||
| 2884 | case '+': | |||
| 2885 | case '?': | |||
| 2886 | if (syntax & RE_BK_PLUS_QM((1) << 1)) | |||
| 2887 | goto handle_plus; | |||
| 2888 | else | |||
| 2889 | goto normal_backslash; | |||
| 2890 | ||||
| 2891 | default: | |||
| 2892 | normal_backslash: | |||
| 2893 | /* You might think it would be useful for \ to mean | |||
| 2894 | not to translate; but if we don't translate it | |||
| 2895 | it will never match anything. */ | |||
| 2896 | c = TRANSLATE (c)((translate) ? (unsigned) ((translate)[(unsigned) (c)]) : (c) ); | |||
| 2897 | goto normal_char; | |||
| 2898 | } | |||
| 2899 | break; | |||
| 2900 | ||||
| 2901 | ||||
| 2902 | default: | |||
| 2903 | /* Expects the character in `c'. */ | |||
| 2904 | normal_char: | |||
| 2905 | p1 = p - 1; /* P1 points the head of C. */ | |||
| 2906 | #ifdef emacs | |||
| 2907 | if (bufp->multibyte) | |||
| 2908 | { | |||
| 2909 | c = STRING_CHAR (p1, pend - p1)(*(p1)); | |||
| 2910 | c = TRANSLATE (c)((translate) ? (unsigned) ((translate)[(unsigned) (c)]) : (c) ); | |||
| 2911 | /* Set P to the next character boundary. */ | |||
| 2912 | p += MULTIBYTE_FORM_LENGTH (p1, pend - p1)(1) - 1; | |||
| 2913 | } | |||
| 2914 | #endif | |||
| 2915 | /* If no exactn currently being built. */ | |||
| 2916 | if (!pending_exact | |||
| 2917 | ||||
| 2918 | /* If last exactn not at current position. */ | |||
| 2919 | || pending_exact + *pending_exact + 1 != b | |||
| 2920 | ||||
| 2921 | /* We have only one byte following the exactn for the count. */ | |||
| 2922 | || *pending_exact >= (1 << BYTEWIDTH8) - (p - p1) | |||
| 2923 | ||||
| 2924 | /* If followed by a repetition operator. */ | |||
| 2925 | || (p != pend && (*p == '*' || *p == '^')) | |||
| 2926 | || ((syntax & RE_BK_PLUS_QM((1) << 1)) | |||
| 2927 | ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?') | |||
| 2928 | : p != pend && (*p == '+' || *p == '?')) | |||
| 2929 | || ((syntax & RE_INTERVALS((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2930 | && ((syntax & RE_NO_BK_BRACES(((((((((((((1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2931 | ? p != pend && *p == '{' | |||
| 2932 | : p + 1 < pend && p[0] == '\\' && p[1] == '{'))) | |||
| 2933 | { | |||
| 2934 | /* Start building a new exactn. */ | |||
| 2935 | ||||
| 2936 | laststart = b; | |||
| 2937 | ||||
| 2938 | BUF_PUSH_2 (exactn, 0)do { while (b - bufp->buffer + (2) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (exactn ); *b++ = (unsigned char) (0); } while (0); | |||
| 2939 | pending_exact = b - 1; | |||
| 2940 | } | |||
| 2941 | ||||
| 2942 | #ifdef emacs | |||
| 2943 | if (! SINGLE_BYTE_CHAR_P (c)(1)) | |||
| 2944 | { | |||
| 2945 | unsigned char work[4], *str; | |||
| 2946 | int i = CHAR_STRING (c, work, str); | |||
| 2947 | int j; | |||
| 2948 | for (j = 0; j < i; j++) | |||
| 2949 | { | |||
| 2950 | BUF_PUSH (str[j])do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (str [j]); } while (0); | |||
| 2951 | (*pending_exact)++; | |||
| 2952 | } | |||
| 2953 | } | |||
| 2954 | else | |||
| 2955 | #endif | |||
| 2956 | { | |||
| 2957 | BUF_PUSH (c)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (c ); } while (0); | |||
| 2958 | (*pending_exact)++; | |||
| 2959 | } | |||
| 2960 | break; | |||
| 2961 | } /* switch (c) */ | |||
| 2962 | } /* while p != pend */ | |||
| 2963 | ||||
| 2964 | ||||
| 2965 | /* Through the pattern now. */ | |||
| 2966 | ||||
| 2967 | if (fixup_alt_jump) | |||
| 2968 | STORE_JUMP (jump_past_alt, fixup_alt_jump, b)store_op1 (jump_past_alt, fixup_alt_jump, (b) - (fixup_alt_jump ) - 3); | |||
| 2969 | ||||
| 2970 | if (!COMPILE_STACK_EMPTY(compile_stack.avail == 0)) | |||
| 2971 | FREE_STACK_RETURN (REG_EPAREN)do { do { if ((range_table_work).table) free ((range_table_work ).table); } while (0); free (compile_stack.stack); return REG_EPAREN ; } while (0); | |||
| 2972 | ||||
| 2973 | /* If we don't want backtracking, force success | |||
| 2974 | the first time we reach the end of the compiled pattern. */ | |||
| 2975 | if (syntax & RE_NO_POSIX_BACKTRACKING(((((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 2976 | BUF_PUSH (succeed)do { while (b - bufp->buffer + (1) > bufp->allocated ) do { unsigned char *old_buffer = bufp->buffer; if (bufp-> allocated == (1L << 16)) return REG_ESIZE; bufp->allocated <<= 1; if (bufp->allocated > (1L << 16)) bufp ->allocated = (1L << 16); bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated); if (bufp ->buffer == ((void *)0)) return REG_ESPACE; if (old_buffer != bufp->buffer) { b = (b - old_buffer) + bufp->buffer ; begalt = (begalt - old_buffer) + bufp->buffer; if (fixup_alt_jump ) fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer ; if (laststart) laststart = (laststart - old_buffer) + bufp-> buffer; if (pending_exact) pending_exact = (pending_exact - old_buffer ) + bufp->buffer; } } while (0); *b++ = (unsigned char) (succeed ); } while (0); | |||
| 2977 | ||||
| 2978 | free (compile_stack.stack); | |||
| 2979 | ||||
| 2980 | /* We have succeeded; set the length of the buffer. */ | |||
| 2981 | bufp->used = b - bufp->buffer; | |||
| 2982 | ||||
| 2983 | #ifdef DEBUG | |||
| 2984 | if (debug) | |||
| 2985 | { | |||
| 2986 | DEBUG_PRINT1 ("\nCompiled pattern: \n"); | |||
| 2987 | print_compiled_pattern (bufp); | |||
| 2988 | } | |||
| 2989 | #endif /* DEBUG */ | |||
| 2990 | ||||
| 2991 | #ifndef MATCH_MAY_ALLOCATE | |||
| 2992 | /* Initialize the failure stack to the largest possible stack. This | |||
| 2993 | isn't necessary unless we're trying to avoid calling alloca in | |||
| 2994 | the search and match routines. */ | |||
| 2995 | { | |||
| 2996 | int num_regs = bufp->re_nsub + 1; | |||
| 2997 | ||||
| 2998 | if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE20) | |||
| 2999 | { | |||
| 3000 | fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE20; | |||
| 3001 | ||||
| 3002 | #ifdef emacs | |||
| 3003 | if (! fail_stack.stack) | |||
| 3004 | fail_stack.stack | |||
| 3005 | = (fail_stack_elt_t *) xmalloc (fail_stack.size | |||
| 3006 | * sizeof (fail_stack_elt_t)); | |||
| 3007 | else | |||
| 3008 | fail_stack.stack | |||
| 3009 | = (fail_stack_elt_t *) xrealloc (fail_stack.stack, | |||
| 3010 | (fail_stack.size | |||
| 3011 | * sizeof (fail_stack_elt_t))); | |||
| 3012 | #else /* not emacs */ | |||
| 3013 | if (! fail_stack.stack) | |||
| 3014 | fail_stack.stack | |||
| 3015 | = (fail_stack_elt_t *) malloc (fail_stack.size | |||
| 3016 | * sizeof (fail_stack_elt_t)); | |||
| 3017 | else | |||
| 3018 | fail_stack.stack | |||
| 3019 | = (fail_stack_elt_t *) realloc (fail_stack.stack, | |||
| 3020 | (fail_stack.size | |||
| 3021 | * sizeof (fail_stack_elt_t))); | |||
| 3022 | #endif /* not emacs */ | |||
| 3023 | } | |||
| 3024 | ||||
| 3025 | regex_grow_registers (num_regs); | |||
| 3026 | } | |||
| 3027 | #endif /* not MATCH_MAY_ALLOCATE */ | |||
| 3028 | ||||
| 3029 | return REG_NOERROR; | |||
| 3030 | } /* regex_compile */ | |||
| 3031 | ||||
| 3032 | /* Subroutines for `regex_compile'. */ | |||
| 3033 | ||||
| 3034 | /* Store OP at LOC followed by two-byte integer parameter ARG. */ | |||
| 3035 | ||||
| 3036 | static void | |||
| 3037 | store_op1 (op, loc, arg) | |||
| 3038 | re_opcode_t op; | |||
| 3039 | unsigned char *loc; | |||
| 3040 | int arg; | |||
| 3041 | { | |||
| 3042 | *loc = (unsigned char) op; | |||
| 3043 | STORE_NUMBER (loc + 1, arg)do { (loc + 1)[0] = (arg) & 0377; (loc + 1)[1] = (arg) >> 8; } while (0); | |||
| 3044 | } | |||
| 3045 | ||||
| 3046 | ||||
| 3047 | /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ | |||
| 3048 | ||||
| 3049 | static void | |||
| 3050 | store_op2 (op, loc, arg1, arg2) | |||
| 3051 | re_opcode_t op; | |||
| 3052 | unsigned char *loc; | |||
| 3053 | int arg1, arg2; | |||
| 3054 | { | |||
| 3055 | *loc = (unsigned char) op; | |||
| 3056 | STORE_NUMBER (loc + 1, arg1)do { (loc + 1)[0] = (arg1) & 0377; (loc + 1)[1] = (arg1) >> 8; } while (0); | |||
| 3057 | STORE_NUMBER (loc + 3, arg2)do { (loc + 3)[0] = (arg2) & 0377; (loc + 3)[1] = (arg2) >> 8; } while (0); | |||
| 3058 | } | |||
| 3059 | ||||
| 3060 | ||||
| 3061 | /* Copy the bytes from LOC to END to open up three bytes of space at LOC | |||
| 3062 | for OP followed by two-byte integer parameter ARG. */ | |||
| 3063 | ||||
| 3064 | static void | |||
| 3065 | insert_op1 (op, loc, arg, end) | |||
| 3066 | re_opcode_t op; | |||
| 3067 | unsigned char *loc; | |||
| 3068 | int arg; | |||
| 3069 | unsigned char *end; | |||
| 3070 | { | |||
| 3071 | register unsigned char *pfrom = end; | |||
| 3072 | register unsigned char *pto = end + 3; | |||
| 3073 | ||||
| 3074 | while (pfrom != loc) | |||
| 3075 | *--pto = *--pfrom; | |||
| 3076 | ||||
| 3077 | store_op1 (op, loc, arg); | |||
| 3078 | } | |||
| 3079 | ||||
| 3080 | ||||
| 3081 | /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ | |||
| 3082 | ||||
| 3083 | static void | |||
| 3084 | insert_op2 (op, loc, arg1, arg2, end) | |||
| 3085 | re_opcode_t op; | |||
| 3086 | unsigned char *loc; | |||
| 3087 | int arg1, arg2; | |||
| 3088 | unsigned char *end; | |||
| 3089 | { | |||
| 3090 | register unsigned char *pfrom = end; | |||
| 3091 | register unsigned char *pto = end + 5; | |||
| 3092 | ||||
| 3093 | while (pfrom != loc) | |||
| 3094 | *--pto = *--pfrom; | |||
| 3095 | ||||
| 3096 | store_op2 (op, loc, arg1, arg2); | |||
| 3097 | } | |||
| 3098 | ||||
| 3099 | ||||
| 3100 | /* P points to just after a ^ in PATTERN. Return true if that ^ comes | |||
| 3101 | after an alternative or a begin-subexpression. We assume there is at | |||
| 3102 | least one character before the ^. */ | |||
| 3103 | ||||
| 3104 | static boolean | |||
| 3105 | at_begline_loc_p (pattern, p, syntax) | |||
| 3106 | const char *pattern, *p; | |||
| 3107 | reg_syntax_t syntax; | |||
| 3108 | { | |||
| 3109 | const char *prev = p - 2; | |||
| 3110 | boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; | |||
| 3111 | ||||
| 3112 | return | |||
| 3113 | /* After a subexpression? */ | |||
| 3114 | (*prev == '(' && (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) || prev_prev_backslash)) | |||
| 3115 | /* After an alternative? */ | |||
| 3116 | || (*prev == '|' && (syntax & RE_NO_BK_VBAR((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) || prev_prev_backslash)); | |||
| 3117 | } | |||
| 3118 | ||||
| 3119 | ||||
| 3120 | /* The dual of at_begline_loc_p. This one is for $. We assume there is | |||
| 3121 | at least one character after the $, i.e., `P < PEND'. */ | |||
| 3122 | ||||
| 3123 | static boolean | |||
| 3124 | at_endline_loc_p (p, pend, syntax) | |||
| 3125 | const char *p, *pend; | |||
| 3126 | int syntax; | |||
| 3127 | { | |||
| 3128 | const char *next = p; | |||
| 3129 | boolean next_backslash = *next == '\\'; | |||
| 3130 | const char *next_next = p + 1 < pend ? p + 1 : 0; | |||
| 3131 | ||||
| 3132 | return | |||
| 3133 | /* Before a subexpression? */ | |||
| 3134 | (syntax & RE_NO_BK_PARENS((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) ? *next == ')' | |||
| 3135 | : next_backslash && next_next && *next_next == ')') | |||
| 3136 | /* Before an alternative? */ | |||
| 3137 | || (syntax & RE_NO_BK_VBAR((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) ? *next == '|' | |||
| 3138 | : next_backslash && next_next && *next_next == '|'); | |||
| 3139 | } | |||
| 3140 | ||||
| 3141 | ||||
| 3142 | /* Returns true if REGNUM is in one of COMPILE_STACK's elements and | |||
| 3143 | false if it's not. */ | |||
| 3144 | ||||
| 3145 | static boolean | |||
| 3146 | group_in_compile_stack (compile_stack, regnum) | |||
| 3147 | compile_stack_type compile_stack; | |||
| 3148 | regnum_t regnum; | |||
| 3149 | { | |||
| 3150 | int this_element; | |||
| 3151 | ||||
| 3152 | for (this_element = compile_stack.avail - 1; | |||
| 3153 | this_element >= 0; | |||
| 3154 | this_element--) | |||
| 3155 | if (compile_stack.stack[this_element].regnum == regnum) | |||
| 3156 | return true1; | |||
| 3157 | ||||
| 3158 | return false0; | |||
| 3159 | } | |||
| 3160 | ||||
| 3161 | /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in | |||
| 3162 | BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible | |||
| 3163 | characters can start a string that matches the pattern. This fastmap | |||
| 3164 | is used by re_search to skip quickly over impossible starting points. | |||
| 3165 | ||||
| 3166 | The caller must supply the address of a (1 << BYTEWIDTH)-byte data | |||
| 3167 | area as BUFP->fastmap. | |||
| 3168 | ||||
| 3169 | We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in | |||
| 3170 | the pattern buffer. | |||
| 3171 | ||||
| 3172 | Returns 0 if we succeed, -2 if an internal error. */ | |||
| 3173 | ||||
| 3174 | int | |||
| 3175 | re_compile_fastmap (bufp) | |||
| 3176 | struct re_pattern_buffer *bufp; | |||
| 3177 | { | |||
| 3178 | int i, j, k; | |||
| 3179 | #ifdef MATCH_MAY_ALLOCATE | |||
| 3180 | fail_stack_type fail_stack; | |||
| 3181 | #endif | |||
| 3182 | #ifndef REGEX_MALLOC1 | |||
| 3183 | char *destination; | |||
| 3184 | #endif | |||
| 3185 | /* We don't push any register information onto the failure stack. */ | |||
| 3186 | unsigned num_regs = 0; | |||
| 3187 | ||||
| 3188 | register char *fastmap = bufp->fastmap; | |||
| 3189 | unsigned char *pattern = bufp->buffer; | |||
| 3190 | unsigned long size = bufp->used; | |||
| 3191 | unsigned char *p = pattern; | |||
| 3192 | register unsigned char *pend = pattern + size; | |||
| 3193 | ||||
| 3194 | /* This holds the pointer to the failure stack, when | |||
| 3195 | it is allocated relocatably. */ | |||
| 3196 | fail_stack_elt_t *failure_stack_ptr; | |||
| 3197 | ||||
| 3198 | /* Assume that each path through the pattern can be null until | |||
| 3199 | proven otherwise. We set this false at the bottom of switch | |||
| 3200 | statement, to which we get only if a particular path doesn't | |||
| 3201 | match the empty string. */ | |||
| 3202 | boolean path_can_be_null = true1; | |||
| 3203 | ||||
| 3204 | /* We aren't doing a `succeed_n' to begin with. */ | |||
| 3205 | boolean succeed_n_p = false0; | |||
| 3206 | ||||
| 3207 | /* If all elements for base leading-codes in fastmap is set, this | |||
| 3208 | flag is set true. */ | |||
| 3209 | boolean match_any_multibyte_characters = false0; | |||
| 3210 | ||||
| 3211 | /* Maximum code of simple (single byte) character. */ | |||
| 3212 | int simple_char_max; | |||
| 3213 | ||||
| 3214 | assert (fastmap != NULL && p != NULL); | |||
| 3215 | ||||
| 3216 | INIT_FAIL_STACK ()do { fail_stack.stack = (fail_stack_elt_t *) malloc (20 * 20 * sizeof (fail_stack_elt_t)); if (fail_stack.stack == ((void * )0)) return -2; fail_stack.size = 20; fail_stack.avail = 0; } while (0); | |||
| 3217 | bzero (fastmap, 1 << BYTEWIDTH)memset ((fastmap), 0, (1 << 8)); /* Assume nothing's valid. */ | |||
| 3218 | bufp->fastmap_accurate = 1; /* It will be when we're done. */ | |||
| 3219 | bufp->can_be_null = 0; | |||
| 3220 | ||||
| 3221 | while (1) | |||
| 3222 | { | |||
| 3223 | if (p == pend || *p == succeed) | |||
| 3224 | { | |||
| 3225 | /* We have reached the (effective) end of pattern. */ | |||
| 3226 | if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0)) | |||
| 3227 | { | |||
| 3228 | bufp->can_be_null |= path_can_be_null; | |||
| 3229 | ||||
| 3230 | /* Reset for next path. */ | |||
| 3231 | path_can_be_null = true1; | |||
| 3232 | ||||
| 3233 | p = fail_stack.stack[--fail_stack.avail].pointer; | |||
| 3234 | ||||
| 3235 | continue; | |||
| 3236 | } | |||
| 3237 | else | |||
| 3238 | break; | |||
| 3239 | } | |||
| 3240 | ||||
| 3241 | /* We should never be about to go beyond the end of the pattern. */ | |||
| 3242 | assert (p < pend); | |||
| 3243 | ||||
| 3244 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)((re_opcode_t) *p++)) | |||
| 3245 | { | |||
| 3246 | ||||
| 3247 | /* I guess the idea here is to simply not bother with a fastmap | |||
| 3248 | if a backreference is used, since it's too hard to figure out | |||
| 3249 | the fastmap for the corresponding group. Setting | |||
| 3250 | `can_be_null' stops `re_search_2' from using the fastmap, so | |||
| 3251 | that is all we do. */ | |||
| 3252 | case duplicate: | |||
| 3253 | bufp->can_be_null = 1; | |||
| 3254 | goto done; | |||
| 3255 | ||||
| 3256 | ||||
| 3257 | /* Following are the cases which match a character. These end | |||
| 3258 | with `break'. */ | |||
| 3259 | ||||
| 3260 | case exactn: | |||
| 3261 | fastmap[p[1]] = 1; | |||
| 3262 | break; | |||
| 3263 | ||||
| 3264 | ||||
| 3265 | #ifndef emacs | |||
| 3266 | case charset: | |||
| 3267 | for (j = *p++ * BYTEWIDTH8 - 1; j >= 0; j--) | |||
| 3268 | if (p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8))) | |||
| 3269 | fastmap[j] = 1; | |||
| 3270 | break; | |||
| 3271 | ||||
| 3272 | ||||
| 3273 | case charset_not: | |||
| 3274 | /* Chars beyond end of map must be allowed. */ | |||
| 3275 | for (j = *p * BYTEWIDTH8; j < (1 << BYTEWIDTH8); j++) | |||
| 3276 | fastmap[j] = 1; | |||
| 3277 | ||||
| 3278 | for (j = *p++ * BYTEWIDTH8 - 1; j >= 0; j--) | |||
| 3279 | if (!(p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8)))) | |||
| 3280 | fastmap[j] = 1; | |||
| 3281 | break; | |||
| 3282 | ||||
| 3283 | ||||
| 3284 | case wordchar: | |||
| 3285 | for (j = 0; j < (1 << BYTEWIDTH8); j++) | |||
| 3286 | if (SYNTAX (j)re_syntax_table[j] == Sword1) | |||
| 3287 | fastmap[j] = 1; | |||
| 3288 | break; | |||
| 3289 | ||||
| 3290 | ||||
| 3291 | case notwordchar: | |||
| 3292 | for (j = 0; j < (1 << BYTEWIDTH8); j++) | |||
| 3293 | if (SYNTAX (j)re_syntax_table[j] != Sword1) | |||
| 3294 | fastmap[j] = 1; | |||
| 3295 | break; | |||
| 3296 | #else /* emacs */ | |||
| 3297 | case charset: | |||
| 3298 | for (j = CHARSET_BITMAP_SIZE (&p[-1])((&p[-1])[1] & 0x7F) * BYTEWIDTH8 - 1, p++; | |||
| 3299 | j >= 0; j--) | |||
| 3300 | if (p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8))) | |||
| 3301 | fastmap[j] = 1; | |||
| 3302 | ||||
| 3303 | if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])((&p[-2])[1] & 0x80) | |||
| 3304 | && match_any_multibyte_characters == false0) | |||
| 3305 | { | |||
| 3306 | /* Set fastmap[I] 1 where I is a base leading code of each | |||
| 3307 | multibyte character in the range table. */ | |||
| 3308 | int c, count; | |||
| 3309 | ||||
| 3310 | /* Make P points the range table. */ | |||
| 3311 | p += CHARSET_BITMAP_SIZE (&p[-2])((&p[-2])[1] & 0x7F); | |||
| 3312 | ||||
| 3313 | /* Extract the number of ranges in range table into | |||
| 3314 | COUNT. */ | |||
| 3315 | EXTRACT_NUMBER_AND_INCR (count, p)do { do { (count) = *(p) & 0377; (count) += ((signed char ) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0 ); | |||
| 3316 | for (; count > 0; count--, p += 2 * 3) /* XXX */ | |||
| 3317 | { | |||
| 3318 | /* Extract the start of each range. */ | |||
| 3319 | EXTRACT_CHARACTER (c, p)do { (c) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16 )); } while (0); | |||
| 3320 | j = CHAR_CHARSET (c); | |||
| 3321 | fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1; | |||
| 3322 | } | |||
| 3323 | } | |||
| 3324 | break; | |||
| 3325 | ||||
| 3326 | ||||
| 3327 | case charset_not: | |||
| 3328 | /* Chars beyond end of bitmap are possible matches. | |||
| 3329 | All the single-byte codes can occur in multibyte buffers. | |||
| 3330 | So any that are not listed in the charset | |||
| 3331 | are possible matches, even in multibyte buffers. */ | |||
| 3332 | simple_char_max = (1 << BYTEWIDTH8); | |||
| 3333 | for (j = CHARSET_BITMAP_SIZE (&p[-1])((&p[-1])[1] & 0x7F) * BYTEWIDTH8; | |||
| 3334 | j < simple_char_max; j++) | |||
| 3335 | fastmap[j] = 1; | |||
| 3336 | ||||
| 3337 | for (j = CHARSET_BITMAP_SIZE (&p[-1])((&p[-1])[1] & 0x7F) * BYTEWIDTH8 - 1, p++; | |||
| 3338 | j >= 0; j--) | |||
| 3339 | if (!(p[j / BYTEWIDTH8] & (1 << (j % BYTEWIDTH8)))) | |||
| 3340 | fastmap[j] = 1; | |||
| 3341 | ||||
| 3342 | if (bufp->multibyte) | |||
| 3343 | /* Any character set can possibly contain a character | |||
| 3344 | which doesn't match the specified set of characters. */ | |||
| 3345 | { | |||
| 3346 | set_fastmap_for_multibyte_characters: | |||
| 3347 | if (match_any_multibyte_characters == false0) | |||
| 3348 | { | |||
| 3349 | for (j = 0x80; j < 0xA0; j++) /* XXX */ | |||
| 3350 | if (BASE_LEADING_CODE_P (j)(0)) | |||
| 3351 | fastmap[j] = 1; | |||
| 3352 | match_any_multibyte_characters = true1; | |||
| 3353 | } | |||
| 3354 | } | |||
| 3355 | break; | |||
| 3356 | ||||
| 3357 | ||||
| 3358 | case wordchar: | |||
| 3359 | /* All the single-byte codes can occur in multibyte buffers, | |||
| 3360 | and they may have word syntax. So do consider them. */ | |||
| 3361 | simple_char_max = (1 << BYTEWIDTH8); | |||
| 3362 | for (j = 0; j < simple_char_max; j++) | |||
| 3363 | if (SYNTAX (j)re_syntax_table[j] == Sword1) | |||
| 3364 | fastmap[j] = 1; | |||
| 3365 | ||||
| 3366 | if (bufp->multibyte) | |||
| 3367 | /* Any character set can possibly contain a character | |||
| 3368 | whose syntax is `Sword'. */ | |||
| 3369 | goto set_fastmap_for_multibyte_characters; | |||
| 3370 | break; | |||
| 3371 | ||||
| 3372 | ||||
| 3373 | case notwordchar: | |||
| 3374 | /* All the single-byte codes can occur in multibyte buffers, | |||
| 3375 | and they may not have word syntax. So do consider them. */ | |||
| 3376 | simple_char_max = (1 << BYTEWIDTH8); | |||
| 3377 | for (j = 0; j < simple_char_max; j++) | |||
| 3378 | if (SYNTAX (j)re_syntax_table[j] != Sword1) | |||
| 3379 | fastmap[j] = 1; | |||
| 3380 | ||||
| 3381 | if (bufp->multibyte) | |||
| 3382 | /* Any character set can possibly contain a character | |||
| 3383 | whose syntax is not `Sword'. */ | |||
| 3384 | goto set_fastmap_for_multibyte_characters; | |||
| 3385 | break; | |||
| 3386 | #endif | |||
| 3387 | ||||
| 3388 | case anychar: | |||
| 3389 | { | |||
| 3390 | int fastmap_newline = fastmap['\n']; | |||
| 3391 | ||||
| 3392 | /* `.' matches anything, except perhaps newline. | |||
| 3393 | Even in a multibyte buffer, it should match any | |||
| 3394 | conceivable byte value for the fastmap. */ | |||
| 3395 | if (bufp->multibyte) | |||
| 3396 | match_any_multibyte_characters = true1; | |||
| 3397 | ||||
| 3398 | simple_char_max = (1 << BYTEWIDTH8); | |||
| 3399 | for (j = 0; j < simple_char_max; j++) | |||
| 3400 | fastmap[j] = 1; | |||
| 3401 | ||||
| 3402 | /* ... except perhaps newline. */ | |||
| 3403 | if (!(bufp->syntax & RE_DOT_NEWLINE(((((((1) << 1) << 1) << 1) << 1) << 1) << 1))) | |||
| 3404 | fastmap['\n'] = fastmap_newline; | |||
| 3405 | ||||
| 3406 | /* Return if we have already set `can_be_null'; if we have, | |||
| 3407 | then the fastmap is irrelevant. Something's wrong here. */ | |||
| 3408 | else if (bufp->can_be_null) | |||
| 3409 | goto done; | |||
| 3410 | ||||
| 3411 | /* Otherwise, have to check alternative paths. */ | |||
| 3412 | break; | |||
| 3413 | } | |||
| 3414 | ||||
| 3415 | #ifdef emacs | |||
| 3416 | case wordbound: | |||
| 3417 | case notwordbound: | |||
| 3418 | case wordbeg: | |||
| 3419 | case wordend: | |||
| 3420 | case notsyntaxspec: | |||
| 3421 | case syntaxspec: | |||
| 3422 | /* This match depends on text properties. These end with | |||
| 3423 | aborting optimizations. */ | |||
| 3424 | bufp->can_be_null = 1; | |||
| 3425 | goto done; | |||
| 3426 | #if 0 | |||
| 3427 | k = *p++; | |||
| 3428 | simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH8); | |||
| 3429 | for (j = 0; j < simple_char_max; j++) | |||
| 3430 | if (SYNTAX (j)re_syntax_table[j] == (enum syntaxcode) k) | |||
| 3431 | fastmap[j] = 1; | |||
| 3432 | ||||
| 3433 | if (bufp->multibyte) | |||
| 3434 | /* Any character set can possibly contain a character | |||
| 3435 | whose syntax is K. */ | |||
| 3436 | goto set_fastmap_for_multibyte_characters; | |||
| 3437 | break; | |||
| 3438 | ||||
| 3439 | case notsyntaxspec: | |||
| 3440 | k = *p++; | |||
| 3441 | simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH8); | |||
| 3442 | for (j = 0; j < simple_char_max; j++) | |||
| 3443 | if (SYNTAX (j)re_syntax_table[j] != (enum syntaxcode) k) | |||
| 3444 | fastmap[j] = 1; | |||
| 3445 | ||||
| 3446 | if (bufp->multibyte) | |||
| 3447 | /* Any character set can possibly contain a character | |||
| 3448 | whose syntax is not K. */ | |||
| 3449 | goto set_fastmap_for_multibyte_characters; | |||
| 3450 | break; | |||
| 3451 | #endif | |||
| 3452 | ||||
| 3453 | ||||
| 3454 | case categoryspec: | |||
| 3455 | k = *p++; | |||
| 3456 | simple_char_max = (1 << BYTEWIDTH8); | |||
| 3457 | for (j = 0; j < simple_char_max; j++) | |||
| 3458 | if (CHAR_HAS_CATEGORY (j, k)) | |||
| 3459 | fastmap[j] = 1; | |||
| 3460 | ||||
| 3461 | if (bufp->multibyte) | |||
| 3462 | /* Any character set can possibly contain a character | |||
| 3463 | whose category is K. */ | |||
| 3464 | goto set_fastmap_for_multibyte_characters; | |||
| 3465 | break; | |||
| 3466 | ||||
| 3467 | ||||
| 3468 | case notcategoryspec: | |||
| 3469 | k = *p++; | |||
| 3470 | simple_char_max = (1 << BYTEWIDTH8); | |||
| 3471 | for (j = 0; j < simple_char_max; j++) | |||
| 3472 | if (!CHAR_HAS_CATEGORY (j, k)) | |||
| 3473 | fastmap[j] = 1; | |||
| 3474 | ||||
| 3475 | if (bufp->multibyte) | |||
| 3476 | /* Any character set can possibly contain a character | |||
| 3477 | whose category is not K. */ | |||
| 3478 | goto set_fastmap_for_multibyte_characters; | |||
| 3479 | break; | |||
| 3480 | ||||
| 3481 | /* All cases after this match the empty string. These end with | |||
| 3482 | `continue'. */ | |||
| 3483 | ||||
| 3484 | ||||
| 3485 | case before_dot: | |||
| 3486 | case at_dot: | |||
| 3487 | case after_dot: | |||
| 3488 | continue; | |||
| 3489 | #endif /* emacs */ | |||
| 3490 | ||||
| 3491 | ||||
| 3492 | case no_op: | |||
| 3493 | case begline: | |||
| 3494 | case endline: | |||
| 3495 | case begbuf: | |||
| 3496 | case endbuf: | |||
| 3497 | #ifndef emacs | |||
| 3498 | case wordbound: | |||
| 3499 | case notwordbound: | |||
| 3500 | case wordbeg: | |||
| 3501 | case wordend: | |||
| 3502 | #endif | |||
| 3503 | case push_dummy_failure: | |||
| 3504 | continue; | |||
| 3505 | ||||
| 3506 | ||||
| 3507 | case jump_n: | |||
| 3508 | case pop_failure_jump: | |||
| 3509 | case maybe_pop_jump: | |||
| 3510 | case jump: | |||
| 3511 | case jump_past_alt: | |||
| 3512 | case dummy_failure_jump: | |||
| 3513 | EXTRACT_NUMBER_AND_INCR (j, p)do { do { (j) = *(p) & 0377; (j) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 3514 | p += j; | |||
| 3515 | if (j > 0) | |||
| 3516 | continue; | |||
| 3517 | ||||
| 3518 | /* Jump backward implies we just went through the body of a | |||
| 3519 | loop and matched nothing. Opcode jumped to should be | |||
| 3520 | `on_failure_jump' or `succeed_n'. Just treat it like an | |||
| 3521 | ordinary jump. For a * loop, it has pushed its failure | |||
| 3522 | point already; if so, discard that as redundant. */ | |||
| 3523 | if ((re_opcode_t) *p != on_failure_jump | |||
| 3524 | && (re_opcode_t) *p != succeed_n) | |||
| 3525 | continue; | |||
| 3526 | ||||
| 3527 | p++; | |||
| 3528 | EXTRACT_NUMBER_AND_INCR (j, p)do { do { (j) = *(p) & 0377; (j) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 3529 | p += j; | |||
| 3530 | ||||
| 3531 | /* If what's on the stack is where we are now, pop it. */ | |||
| 3532 | if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0) | |||
| 3533 | && fail_stack.stack[fail_stack.avail - 1].pointer == p) | |||
| 3534 | fail_stack.avail--; | |||
| 3535 | ||||
| 3536 | continue; | |||
| 3537 | ||||
| 3538 | ||||
| 3539 | case on_failure_jump: | |||
| 3540 | case on_failure_keep_string_jump: | |||
| 3541 | handle_on_failure_jump: | |||
| 3542 | EXTRACT_NUMBER_AND_INCR (j, p)do { do { (j) = *(p) & 0377; (j) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 3543 | ||||
| 3544 | /* For some patterns, e.g., `(a?)?', `p+j' here points to the | |||
| 3545 | end of the pattern. We don't want to push such a point, | |||
| 3546 | since when we restore it above, entering the switch will | |||
| 3547 | increment `p' past the end of the pattern. We don't need | |||
| 3548 | to push such a point since we obviously won't find any more | |||
| 3549 | fastmap entries beyond `pend'. Such a pattern can match | |||
| 3550 | the null string, though. */ | |||
| 3551 | if (p + j < pend) | |||
| 3552 | { | |||
| 3553 | if (!PUSH_PATTERN_OP (p + j, fail_stack)(((fail_stack.avail == fail_stack.size) && !(((fail_stack ).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20 ) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc (( fail_stack).stack, ((re_max_failures * 20) < (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof (fail_stack_elt_t) * 4))) ), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t )), 1)))) ? 0 : ((fail_stack).stack[(fail_stack).avail++].pointer = p + j, 1))) | |||
| 3554 | { | |||
| 3555 | RESET_FAIL_STACK ()free (fail_stack.stack); | |||
| 3556 | return -2; | |||
| 3557 | } | |||
| 3558 | } | |||
| 3559 | else | |||
| 3560 | bufp->can_be_null = 1; | |||
| 3561 | ||||
| 3562 | if (succeed_n_p) | |||
| 3563 | { | |||
| 3564 | EXTRACT_NUMBER_AND_INCR (k, p)do { do { (k) = *(p) & 0377; (k) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); /* Skip the n. */ | |||
| 3565 | succeed_n_p = false0; | |||
| 3566 | } | |||
| 3567 | ||||
| 3568 | continue; | |||
| 3569 | ||||
| 3570 | ||||
| 3571 | case succeed_n: | |||
| 3572 | /* Get to the number of times to succeed. */ | |||
| 3573 | p += 2; | |||
| 3574 | ||||
| 3575 | /* Increment p past the n for when k != 0. */ | |||
| 3576 | EXTRACT_NUMBER_AND_INCR (k, p)do { do { (k) = *(p) & 0377; (k) += ((signed char) (*((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 3577 | if (k == 0) | |||
| 3578 | { | |||
| 3579 | p -= 4; | |||
| 3580 | succeed_n_p = true1; /* Spaghetti code alert. */ | |||
| 3581 | goto handle_on_failure_jump; | |||
| 3582 | } | |||
| 3583 | continue; | |||
| 3584 | ||||
| 3585 | ||||
| 3586 | case set_number_at: | |||
| 3587 | p += 4; | |||
| 3588 | continue; | |||
| 3589 | ||||
| 3590 | ||||
| 3591 | case start_memory: | |||
| 3592 | case stop_memory: | |||
| 3593 | p += 2; | |||
| 3594 | continue; | |||
| 3595 | ||||
| 3596 | ||||
| 3597 | default: | |||
| 3598 | abort (); /* We have listed all the cases. */ | |||
| 3599 | } /* switch *p++ */ | |||
| 3600 | ||||
| 3601 | /* Getting here means we have found the possible starting | |||
| 3602 | characters for one path of the pattern -- and that the empty | |||
| 3603 | string does not match. We need not follow this path further. | |||
| 3604 | Instead, look at the next alternative (remembered on the | |||
| 3605 | stack), or quit if no more. The test at the top of the loop | |||
| 3606 | does these things. */ | |||
| 3607 | path_can_be_null = false0; | |||
| 3608 | p = pend; | |||
| 3609 | } /* while p */ | |||
| 3610 | ||||
| 3611 | /* Set `can_be_null' for the last path (also the first path, if the | |||
| 3612 | pattern is empty). */ | |||
| 3613 | bufp->can_be_null |= path_can_be_null; | |||
| 3614 | ||||
| 3615 | done: | |||
| 3616 | RESET_FAIL_STACK ()free (fail_stack.stack); | |||
| 3617 | return 0; | |||
| 3618 | } /* re_compile_fastmap */ | |||
| 3619 | ||||
| 3620 | /* Set REGS to hold NUM_REGS registers, storing them in STARTS and | |||
| 3621 | ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use | |||
| 3622 | this memory for recording register information. STARTS and ENDS | |||
| 3623 | must be allocated using the malloc library routine, and must each | |||
| 3624 | be at least NUM_REGS * sizeof (regoff_t) bytes long. | |||
| 3625 | ||||
| 3626 | If NUM_REGS == 0, then subsequent matches should allocate their own | |||
| 3627 | register data. | |||
| 3628 | ||||
| 3629 | Unless this function is called, the first search or match using | |||
| 3630 | PATTERN_BUFFER will allocate its own register data, without | |||
| 3631 | freeing the old data. */ | |||
| 3632 | ||||
| 3633 | void | |||
| 3634 | re_set_registers (bufp, regs, num_regs, starts, ends) | |||
| 3635 | struct re_pattern_buffer *bufp; | |||
| 3636 | struct re_registers *regs; | |||
| 3637 | unsigned num_regs; | |||
| 3638 | regoff_t *starts, *ends; | |||
| 3639 | { | |||
| 3640 | if (num_regs) | |||
| 3641 | { | |||
| 3642 | bufp->regs_allocated = REGS_REALLOCATE1; | |||
| 3643 | regs->num_regs = num_regs; | |||
| 3644 | regs->start = starts; | |||
| 3645 | regs->end = ends; | |||
| 3646 | } | |||
| 3647 | else | |||
| 3648 | { | |||
| 3649 | bufp->regs_allocated = REGS_UNALLOCATED0; | |||
| 3650 | regs->num_regs = 0; | |||
| 3651 | regs->start = regs->end = (regoff_t *) 0; | |||
| 3652 | } | |||
| 3653 | } | |||
| 3654 | ||||
| 3655 | /* Searching routines. */ | |||
| 3656 | ||||
| 3657 | /* Like re_search_2, below, but only one string is specified, and | |||
| 3658 | doesn't let you say where to stop matching. */ | |||
| 3659 | ||||
| 3660 | int | |||
| 3661 | re_search (bufp, string, size, startpos, range, regs) | |||
| 3662 | struct re_pattern_buffer *bufp; | |||
| 3663 | const char *string; | |||
| 3664 | int size, startpos, range; | |||
| 3665 | struct re_registers *regs; | |||
| 3666 | { | |||
| 3667 | return re_search_2 (bufp, NULL((void *)0), 0, string, size, startpos, range, | |||
| 3668 | regs, size); | |||
| 3669 | } | |||
| 3670 | ||||
| 3671 | /* End address of virtual concatenation of string. */ | |||
| 3672 | #define STOP_ADDR_VSTRING(P)(((P) >= size1 ? string2 + size2 : string1 + size1)) \ | |||
| 3673 | (((P) >= size1 ? string2 + size2 : string1 + size1)) | |||
| 3674 | ||||
| 3675 | /* Address of POS in the concatenation of virtual string. */ | |||
| 3676 | #define POS_ADDR_VSTRING(POS)(((POS) >= size1 ? string2 - size1 : string1) + (POS)) \ | |||
| 3677 | (((POS) >= size1 ? string2 - size1 : string1) + (POS)) | |||
| 3678 | ||||
| 3679 | /* Using the compiled pattern in BUFP->buffer, first tries to match the | |||
| 3680 | virtual concatenation of STRING1 and STRING2, starting first at index | |||
| 3681 | STARTPOS, then at STARTPOS + 1, and so on. | |||
| 3682 | ||||
| 3683 | STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. | |||
| 3684 | ||||
| 3685 | RANGE is how far to scan while trying to match. RANGE = 0 means try | |||
| 3686 | only at STARTPOS; in general, the last start tried is STARTPOS + | |||
| 3687 | RANGE. | |||
| 3688 | ||||
| 3689 | In REGS, return the indices of the virtual concatenation of STRING1 | |||
| 3690 | and STRING2 that matched the entire BUFP->buffer and its contained | |||
| 3691 | subexpressions. | |||
| 3692 | ||||
| 3693 | Do not consider matching one past the index STOP in the virtual | |||
| 3694 | concatenation of STRING1 and STRING2. | |||
| 3695 | ||||
| 3696 | We return either the position in the strings at which the match was | |||
| 3697 | found, -1 if no match, or -2 if error (such as failure | |||
| 3698 | stack overflow). */ | |||
| 3699 | ||||
| 3700 | int | |||
| 3701 | re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) | |||
| 3702 | struct re_pattern_buffer *bufp; | |||
| 3703 | const char *string1, *string2; | |||
| 3704 | int size1, size2; | |||
| 3705 | int startpos; | |||
| 3706 | int range; | |||
| 3707 | struct re_registers *regs; | |||
| 3708 | int stop; | |||
| 3709 | { | |||
| 3710 | int val; | |||
| 3711 | register char *fastmap = bufp->fastmap; | |||
| 3712 | register RE_TRANSLATE_TYPEchar * translate = bufp->translate; | |||
| 3713 | int total_size = size1 + size2; | |||
| 3714 | int endpos = startpos + range; | |||
| 3715 | int anchored_start = 0; | |||
| 3716 | ||||
| 3717 | /* Nonzero if we have to concern multibyte character. */ | |||
| 3718 | int multibyte = bufp->multibyte; | |||
| 3719 | ||||
| 3720 | /* Check for out-of-range STARTPOS. */ | |||
| 3721 | if (startpos < 0 || startpos > total_size) | |||
| 3722 | return -1; | |||
| 3723 | ||||
| 3724 | /* Fix up RANGE if it might eventually take us outside | |||
| 3725 | the virtual concatenation of STRING1 and STRING2. | |||
| 3726 | Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ | |||
| 3727 | if (endpos < 0) | |||
| 3728 | range = 0 - startpos; | |||
| 3729 | else if (endpos > total_size) | |||
| 3730 | range = total_size - startpos; | |||
| 3731 | ||||
| 3732 | /* If the search isn't to be a backwards one, don't waste time in a | |||
| 3733 | search for a pattern anchored at beginning of buffer. */ | |||
| 3734 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) | |||
| 3735 | { | |||
| 3736 | if (startpos > 0) | |||
| 3737 | return -1; | |||
| 3738 | else | |||
| 3739 | range = 0; | |||
| 3740 | } | |||
| 3741 | ||||
| 3742 | #ifdef emacs | |||
| 3743 | /* In a forward search for something that starts with \=. | |||
| 3744 | don't keep searching past point. */ | |||
| 3745 | if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) | |||
| 3746 | { | |||
| 3747 | range = PT_BYTE - BEGV_BYTE - startpos; | |||
| 3748 | if (range < 0) | |||
| 3749 | return -1; | |||
| 3750 | } | |||
| 3751 | #endif /* emacs */ | |||
| 3752 | ||||
| 3753 | /* Update the fastmap now if not correct already. */ | |||
| 3754 | if (fastmap && !bufp->fastmap_accurate) | |||
| 3755 | if (re_compile_fastmap (bufp) == -2) | |||
| 3756 | return -2; | |||
| 3757 | ||||
| 3758 | /* See whether the pattern is anchored. */ | |||
| 3759 | if (bufp->buffer[0] == begline) | |||
| 3760 | anchored_start = 1; | |||
| 3761 | ||||
| 3762 | #ifdef emacs | |||
| 3763 | gl_state.object = re_match_object; | |||
| 3764 | { | |||
| 3765 | int adjpos = NILP (re_match_object) || BUFFERP (re_match_object); | |||
| 3766 | int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (startpos + adjpos); | |||
| 3767 | ||||
| 3768 | SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1); | |||
| 3769 | } | |||
| 3770 | #endif | |||
| 3771 | ||||
| 3772 | /* Loop through the string, looking for a place to start matching. */ | |||
| 3773 | for (;;) | |||
| 3774 | { | |||
| 3775 | /* If the pattern is anchored, | |||
| 3776 | skip quickly past places we cannot match. | |||
| 3777 | We don't bother to treat startpos == 0 specially | |||
| 3778 | because that case doesn't repeat. */ | |||
| 3779 | if (anchored_start && startpos > 0) | |||
| 3780 | { | |||
| 3781 | if (! (bufp->newline_anchor | |||
| 3782 | && ((startpos <= size1 ? string1[startpos - 1] | |||
| 3783 | : string2[startpos - size1 - 1]) | |||
| 3784 | == '\n'))) | |||
| 3785 | goto advance; | |||
| 3786 | } | |||
| 3787 | ||||
| 3788 | /* If a fastmap is supplied, skip quickly over characters that | |||
| 3789 | cannot be the start of a match. If the pattern can match the | |||
| 3790 | null string, however, we don't need to skip characters; we want | |||
| 3791 | the first null string. */ | |||
| 3792 | if (fastmap && startpos < total_size && !bufp->can_be_null) | |||
| 3793 | { | |||
| 3794 | register const char *d; | |||
| 3795 | register unsigned int buf_ch; | |||
| 3796 | ||||
| 3797 | d = POS_ADDR_VSTRING (startpos)(((startpos) >= size1 ? string2 - size1 : string1) + (startpos )); | |||
| 3798 | ||||
| 3799 | if (range > 0) /* Searching forwards. */ | |||
| 3800 | { | |||
| 3801 | register int lim = 0; | |||
| 3802 | int irange = range; | |||
| 3803 | ||||
| 3804 | if (startpos < size1 && startpos + range >= size1) | |||
| 3805 | lim = range - (size1 - startpos); | |||
| 3806 | ||||
| 3807 | /* Written out as an if-else to avoid testing `translate' | |||
| 3808 | inside the loop. */ | |||
| 3809 | if (RE_TRANSLATE_P (translate)(translate)) | |||
| 3810 | { | |||
| 3811 | if (multibyte) | |||
| 3812 | while (range > lim) | |||
| 3813 | { | |||
| 3814 | int buf_charlen; | |||
| 3815 | ||||
| 3816 | buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,((buf_charlen) = 1, *(d)) | |||
| 3817 | buf_charlen)((buf_charlen) = 1, *(d)); | |||
| 3818 | ||||
| 3819 | buf_ch = RE_TRANSLATE (translate, buf_ch)((translate)[buf_ch]); | |||
| 3820 | if (buf_ch >= 0400 | |||
| 3821 | || fastmap[buf_ch]) | |||
| 3822 | break; | |||
| 3823 | ||||
| 3824 | range -= buf_charlen; | |||
| 3825 | d += buf_charlen; | |||
| 3826 | } | |||
| 3827 | else | |||
| 3828 | while (range > lim | |||
| 3829 | && !fastmap[(unsigned char) | |||
| 3830 | RE_TRANSLATE (translate, (unsigned char) *d)((translate)[(unsigned char) *d])]) | |||
| 3831 | { | |||
| 3832 | d++; | |||
| 3833 | range--; | |||
| 3834 | } | |||
| 3835 | } | |||
| 3836 | else | |||
| 3837 | while (range > lim && !fastmap[(unsigned char) *d]) | |||
| 3838 | { | |||
| 3839 | d++; | |||
| 3840 | range--; | |||
| 3841 | } | |||
| 3842 | ||||
| 3843 | startpos += irange - range; | |||
| 3844 | } | |||
| 3845 | else /* Searching backwards. */ | |||
| 3846 | { | |||
| 3847 | int room = (size1 == 0 || startpos >= size1 | |||
| 3848 | ? size2 + size1 - startpos | |||
| 3849 | : size1 - startpos); | |||
| 3850 | ||||
| 3851 | buf_ch = STRING_CHAR (d, room)(*(d)); | |||
| 3852 | if (RE_TRANSLATE_P (translate)(translate)) | |||
| 3853 | buf_ch = RE_TRANSLATE (translate, buf_ch)((translate)[buf_ch]); | |||
| 3854 | ||||
| 3855 | if (! (buf_ch >= 0400 | |||
| 3856 | || fastmap[buf_ch])) | |||
| 3857 | goto advance; | |||
| 3858 | } | |||
| 3859 | } | |||
| 3860 | ||||
| 3861 | /* If can't match the null string, and that's all we have left, fail. */ | |||
| 3862 | if (range >= 0 && startpos == total_size && fastmap | |||
| 3863 | && !bufp->can_be_null) | |||
| 3864 | return -1; | |||
| 3865 | ||||
| 3866 | val = re_match_2_internal (bufp, string1, size1, string2, size2, | |||
| 3867 | startpos, regs, stop); | |||
| 3868 | #ifndef REGEX_MALLOC1 | |||
| 3869 | #ifdef C_ALLOCA | |||
| 3870 | alloca (0)__builtin_alloca(0); | |||
| 3871 | #endif | |||
| 3872 | #endif | |||
| 3873 | ||||
| 3874 | if (val >= 0) | |||
| 3875 | return startpos; | |||
| 3876 | ||||
| 3877 | if (val == -2) | |||
| 3878 | return -2; | |||
| 3879 | ||||
| 3880 | advance: | |||
| 3881 | if (!range) | |||
| 3882 | break; | |||
| 3883 | else if (range > 0) | |||
| 3884 | { | |||
| 3885 | /* Update STARTPOS to the next character boundary. */ | |||
| 3886 | if (multibyte) | |||
| 3887 | { | |||
| 3888 | const unsigned char *p | |||
| 3889 | = (const unsigned char *) POS_ADDR_VSTRING (startpos)(((startpos) >= size1 ? string2 - size1 : string1) + (startpos )); | |||
| 3890 | const unsigned char *pend | |||
| 3891 | = (const unsigned char *) STOP_ADDR_VSTRING (startpos)(((startpos) >= size1 ? string2 + size2 : string1 + size1) ); | |||
| 3892 | int len = MULTIBYTE_FORM_LENGTH (p, pend - p)(1); | |||
| 3893 | ||||
| 3894 | range -= len; | |||
| 3895 | if (range < 0) | |||
| 3896 | break; | |||
| 3897 | startpos += len; | |||
| 3898 | } | |||
| 3899 | else | |||
| 3900 | { | |||
| 3901 | range--; | |||
| 3902 | startpos++; | |||
| 3903 | } | |||
| 3904 | } | |||
| 3905 | else | |||
| 3906 | { | |||
| 3907 | range++; | |||
| 3908 | startpos--; | |||
| 3909 | ||||
| 3910 | /* Update STARTPOS to the previous character boundary. */ | |||
| 3911 | if (multibyte) | |||
| 3912 | { | |||
| 3913 | const unsigned char *p | |||
| 3914 | = (const unsigned char *) POS_ADDR_VSTRING (startpos)(((startpos) >= size1 ? string2 - size1 : string1) + (startpos )); | |||
| 3915 | int len = 0; | |||
| 3916 | ||||
| 3917 | /* Find the head of multibyte form. */ | |||
| 3918 | while (!CHAR_HEAD_P (*p)(1)) | |||
| 3919 | p--, len++; | |||
| 3920 | ||||
| 3921 | /* Adjust it. */ | |||
| 3922 | #if 0 /* XXX */ | |||
| 3923 | if (MULTIBYTE_FORM_LENGTH (p, len + 1)(1) != (len + 1)) | |||
| 3924 | ; | |||
| 3925 | else | |||
| 3926 | #endif | |||
| 3927 | { | |||
| 3928 | range += len; | |||
| 3929 | if (range > 0) | |||
| 3930 | break; | |||
| 3931 | ||||
| 3932 | startpos -= len; | |||
| 3933 | } | |||
| 3934 | } | |||
| 3935 | } | |||
| 3936 | } | |||
| 3937 | return -1; | |||
| 3938 | } /* re_search_2 */ | |||
| 3939 | ||||
| 3940 | /* Declarations and macros for re_match_2. */ | |||
| 3941 | ||||
| 3942 | static int bcmp_translate (); | |||
| 3943 | static boolean alt_match_null_string_p (), | |||
| 3944 | common_op_match_null_string_p (), | |||
| 3945 | group_match_null_string_p (); | |||
| 3946 | ||||
| 3947 | /* This converts PTR, a pointer into one of the search strings `string1' | |||
| 3948 | and `string2' into an offset from the beginning of that string. */ | |||
| 3949 | #define POINTER_TO_OFFSET(ptr)((size1 && string1 <= (ptr) && (ptr) <= string1 + size1) ? ((regoff_t) ((ptr) - string1)) : ((regoff_t ) ((ptr) - string2 + size1))) \ | |||
| 3950 | (FIRST_STRING_P (ptr)(size1 && string1 <= (ptr) && (ptr) <= string1 + size1) \ | |||
| 3951 | ? ((regoff_t) ((ptr) - string1)) \ | |||
| 3952 | : ((regoff_t) ((ptr) - string2 + size1))) | |||
| 3953 | ||||
| 3954 | /* Macros for dealing with the split strings in re_match_2. */ | |||
| 3955 | ||||
| 3956 | #define MATCHING_IN_FIRST_STRING(dend == end_match_1) (dend == end_match_1) | |||
| 3957 | ||||
| 3958 | /* Call before fetching a character with *d. This switches over to | |||
| 3959 | string2 if necessary. */ | |||
| 3960 | #define PREFETCH()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; } \ | |||
| 3961 | while (d == dend) \ | |||
| 3962 | { \ | |||
| 3963 | /* End of string2 => fail. */ \ | |||
| 3964 | if (dend == end_match_2) \ | |||
| 3965 | goto fail; \ | |||
| 3966 | /* End of string1 => advance to string2. */ \ | |||
| 3967 | d = string2; \ | |||
| 3968 | dend = end_match_2; \ | |||
| 3969 | } | |||
| 3970 | ||||
| 3971 | ||||
| 3972 | /* Test if at very beginning or at very end of the virtual concatenation | |||
| 3973 | of `string1' and `string2'. If only one string, it's `string2'. */ | |||
| 3974 | #define AT_STRINGS_BEG(d)((d) == (size1 ? string1 : string2) || !size2) ((d) == (size1 ? string1 : string2) || !size2) | |||
| 3975 | #define AT_STRINGS_END(d)((d) == end2) ((d) == end2) | |||
| 3976 | ||||
| 3977 | ||||
| 3978 | /* Test if D points to a character which is word-constituent. We have | |||
| 3979 | two special cases to check for: if past the end of string1, look at | |||
| 3980 | the first character in string2; and if before the beginning of | |||
| 3981 | string2, look at the last character in string1. */ | |||
| 3982 | #define WORDCHAR_P(d)(re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] == 1) \ | |||
| 3983 | (SYNTAX ((d) == end1 ? *string2 \re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] | |||
| 3984 | : (d) == string2 - 1 ? *(end1 - 1) : *(d))re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] \ | |||
| 3985 | == Sword1) | |||
| 3986 | ||||
| 3987 | /* Disabled due to a compiler bug -- see comment at case wordbound */ | |||
| 3988 | ||||
| 3989 | /* The comment at case wordbound is following one, but we don't use | |||
| 3990 | AT_WORD_BOUNDARY anymore to support multibyte form. | |||
| 3991 | ||||
| 3992 | The DEC Alpha C compiler 3.x generates incorrect code for the | |||
| 3993 | test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of | |||
| 3994 | AT_WORD_BOUNDARY, so this code is disabled. Expanding the | |||
| 3995 | macro and introducing temporary variables works around the bug. */ | |||
| 3996 | ||||
| 3997 | #if 0 | |||
| 3998 | /* Test if the character before D and the one at D differ with respect | |||
| 3999 | to being word-constituent. */ | |||
| 4000 | #define AT_WORD_BOUNDARY(d) \ | |||
| 4001 | (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2) || AT_STRINGS_END (d)((d) == end2) \ | |||
| 4002 | || WORDCHAR_P (d - 1)(re_syntax_table[(d - 1) == end1 ? *string2 : (d - 1) == string2 - 1 ? *(end1 - 1) : *(d - 1)] == 1) != WORDCHAR_P (d)(re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] == 1)) | |||
| 4003 | #endif | |||
| 4004 | ||||
| 4005 | /* Free everything we malloc. */ | |||
| 4006 | #ifdef MATCH_MAY_ALLOCATE | |||
| 4007 | #define FREE_VAR(var)if (var) { free (var); var = ((void *)0); } else if (var) { REGEX_FREEfree (var); var = NULL((void *)0); } else | |||
| 4008 | #define FREE_VARIABLES()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0) \ | |||
| 4009 | do { \ | |||
| 4010 | REGEX_FREE_STACKfree (fail_stack.stack); \ | |||
| 4011 | FREE_VAR (regstart)if (regstart) { free (regstart); regstart = ((void *)0); } else; \ | |||
| 4012 | FREE_VAR (regend)if (regend) { free (regend); regend = ((void *)0); } else; \ | |||
| 4013 | FREE_VAR (old_regstart)if (old_regstart) { free (old_regstart); old_regstart = ((void *)0); } else; \ | |||
| 4014 | FREE_VAR (old_regend)if (old_regend) { free (old_regend); old_regend = ((void *)0) ; } else; \ | |||
| 4015 | FREE_VAR (best_regstart)if (best_regstart) { free (best_regstart); best_regstart = (( void *)0); } else; \ | |||
| 4016 | FREE_VAR (best_regend)if (best_regend) { free (best_regend); best_regend = ((void * )0); } else; \ | |||
| 4017 | FREE_VAR (reg_info)if (reg_info) { free (reg_info); reg_info = ((void *)0); } else; \ | |||
| 4018 | FREE_VAR (reg_dummy)if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; \ | |||
| 4019 | FREE_VAR (reg_info_dummy)if (reg_info_dummy) { free (reg_info_dummy); reg_info_dummy = ((void *)0); } else; \ | |||
| 4020 | } while (0) | |||
| 4021 | #else | |||
| 4022 | #define FREE_VARIABLES()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0) ((void)0) /* Do nothing! But inhibit gcc warning. */ | |||
| 4023 | #endif /* not MATCH_MAY_ALLOCATE */ | |||
| 4024 | ||||
| 4025 | /* These values must meet several constraints. They must not be valid | |||
| 4026 | register values; since we have a limit of 255 registers (because | |||
| 4027 | we use only one byte in the pattern for the register number), we can | |||
| 4028 | use numbers larger than 255. They must differ by 1, because of | |||
| 4029 | NUM_FAILURE_ITEMS above. And the value for the lowest register must | |||
| 4030 | be larger than the value for the highest register, so we do not try | |||
| 4031 | to actually save any registers when none are active. */ | |||
| 4032 | #define NO_HIGHEST_ACTIVE_REG(1 << 8) (1 << BYTEWIDTH8) | |||
| 4033 | #define NO_LOWEST_ACTIVE_REG((1 << 8) + 1) (NO_HIGHEST_ACTIVE_REG(1 << 8) + 1) | |||
| 4034 | ||||
| 4035 | /* Matching routines. */ | |||
| 4036 | ||||
| 4037 | #ifndef emacs /* Emacs never uses this. */ | |||
| 4038 | /* re_match is like re_match_2 except it takes only a single string. */ | |||
| 4039 | ||||
| 4040 | int | |||
| 4041 | re_match (bufp, string, size, pos, regs) | |||
| 4042 | struct re_pattern_buffer *bufp; | |||
| 4043 | const char *string; | |||
| 4044 | int size, pos; | |||
| 4045 | struct re_registers *regs; | |||
| 4046 | { | |||
| 4047 | int result = re_match_2_internal (bufp, NULL((void *)0), 0, string, size, | |||
| 4048 | pos, regs, size); | |||
| 4049 | #ifndef REGEX_MALLOC1 /* CVS */ | |||
| 4050 | #ifdef C_ALLOCA /* CVS */ | |||
| 4051 | alloca (0)__builtin_alloca(0); | |||
| 4052 | #endif /* CVS */ | |||
| 4053 | #endif /* CVS */ | |||
| 4054 | return result; | |||
| 4055 | } | |||
| 4056 | #endif /* not emacs */ | |||
| 4057 | ||||
| 4058 | #ifdef emacs | |||
| 4059 | /* In Emacs, this is the string or buffer in which we | |||
| 4060 | are matching. It is used for looking up syntax properties. */ | |||
| 4061 | Lisp_Object re_match_object; | |||
| 4062 | #endif | |||
| 4063 | ||||
| 4064 | /* re_match_2 matches the compiled pattern in BUFP against the | |||
| 4065 | the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 | |||
| 4066 | and SIZE2, respectively). We start matching at POS, and stop | |||
| 4067 | matching at STOP. | |||
| 4068 | ||||
| 4069 | If REGS is non-null and the `no_sub' field of BUFP is nonzero, we | |||
| 4070 | store offsets for the substring each group matched in REGS. See the | |||
| 4071 | documentation for exactly how many groups we fill. | |||
| 4072 | ||||
| 4073 | We return -1 if no match, -2 if an internal error (such as the | |||
| 4074 | failure stack overflowing). Otherwise, we return the length of the | |||
| 4075 | matched substring. */ | |||
| 4076 | ||||
| 4077 | int | |||
| 4078 | re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) | |||
| 4079 | struct re_pattern_buffer *bufp; | |||
| 4080 | const char *string1, *string2; | |||
| 4081 | int size1, size2; | |||
| 4082 | int pos; | |||
| 4083 | struct re_registers *regs; | |||
| 4084 | int stop; | |||
| 4085 | { | |||
| 4086 | int result; | |||
| 4087 | ||||
| 4088 | #ifdef emacs | |||
| 4089 | int charpos; | |||
| 4090 | int adjpos = NILP (re_match_object) || BUFFERP (re_match_object); | |||
| 4091 | gl_state.object = re_match_object; | |||
| 4092 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos + adjpos); | |||
| 4093 | SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1); | |||
| 4094 | #endif | |||
| 4095 | ||||
| 4096 | result = re_match_2_internal (bufp, string1, size1, string2, size2, | |||
| 4097 | pos, regs, stop); | |||
| 4098 | #ifndef REGEX_MALLOC1 /* CVS */ | |||
| 4099 | #ifdef C_ALLOCA /* CVS */ | |||
| 4100 | alloca (0)__builtin_alloca(0); | |||
| 4101 | #endif /* CVS */ | |||
| 4102 | #endif /* CVS */ | |||
| 4103 | return result; | |||
| 4104 | } | |||
| 4105 | ||||
| 4106 | /* This is a separate function so that we can force an alloca cleanup | |||
| 4107 | afterwards. */ | |||
| 4108 | static int | |||
| 4109 | re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) | |||
| 4110 | struct re_pattern_buffer *bufp; | |||
| 4111 | const char *string1, *string2; | |||
| 4112 | int size1, size2; | |||
| 4113 | int pos; | |||
| 4114 | struct re_registers *regs; | |||
| 4115 | int stop; | |||
| 4116 | { | |||
| 4117 | /* General temporaries. */ | |||
| 4118 | int mcnt; | |||
| 4119 | unsigned char *p1; | |||
| 4120 | ||||
| 4121 | /* Just past the end of the corresponding string. */ | |||
| 4122 | const char *end1, *end2; | |||
| 4123 | ||||
| 4124 | /* Pointers into string1 and string2, just past the last characters in | |||
| 4125 | each to consider matching. */ | |||
| 4126 | const char *end_match_1, *end_match_2; | |||
| 4127 | ||||
| 4128 | /* Where we are in the data, and the end of the current string. */ | |||
| 4129 | const char *d, *dend; | |||
| 4130 | ||||
| 4131 | /* Where we are in the pattern, and the end of the pattern. */ | |||
| 4132 | unsigned char *p = bufp->buffer; | |||
| 4133 | register unsigned char *pend = p + bufp->used; | |||
| 4134 | ||||
| 4135 | /* Mark the opcode just after a start_memory, so we can test for an | |||
| 4136 | empty subpattern when we get to the stop_memory. */ | |||
| 4137 | unsigned char *just_past_start_mem = 0; | |||
| 4138 | ||||
| 4139 | /* We use this to map every character in the string. */ | |||
| 4140 | RE_TRANSLATE_TYPEchar * translate = bufp->translate; | |||
| 4141 | ||||
| 4142 | /* Nonzero if we have to concern multibyte character. */ | |||
| 4143 | int multibyte = bufp->multibyte; | |||
| 4144 | ||||
| 4145 | /* Failure point stack. Each place that can handle a failure further | |||
| 4146 | down the line pushes a failure point on this stack. It consists of | |||
| 4147 | restart, regend, and reg_info for all registers corresponding to | |||
| 4148 | the subexpressions we're currently inside, plus the number of such | |||
| 4149 | registers, and, finally, two char *'s. The first char * is where | |||
| 4150 | to resume scanning the pattern; the second one is where to resume | |||
| 4151 | scanning the strings. If the latter is zero, the failure point is | |||
| 4152 | a ``dummy''; if a failure happens and the failure point is a dummy, | |||
| 4153 | it gets discarded and the next next one is tried. */ | |||
| 4154 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | |||
| 4155 | fail_stack_type fail_stack; | |||
| 4156 | #endif | |||
| 4157 | #ifdef DEBUG | |||
| 4158 | static unsigned failure_id = 0; | |||
| 4159 | unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; | |||
| 4160 | #endif | |||
| 4161 | ||||
| 4162 | /* This holds the pointer to the failure stack, when | |||
| 4163 | it is allocated relocatably. */ | |||
| 4164 | fail_stack_elt_t *failure_stack_ptr; | |||
| 4165 | ||||
| 4166 | /* We fill all the registers internally, independent of what we | |||
| 4167 | return, for use in backreferences. The number here includes | |||
| 4168 | an element for register zero. */ | |||
| 4169 | unsigned num_regs = bufp->re_nsub + 1; | |||
| 4170 | ||||
| 4171 | /* The currently active registers. */ | |||
| 4172 | unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG((1 << 8) + 1); | |||
| 4173 | unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG(1 << 8); | |||
| 4174 | ||||
| 4175 | /* Information on the contents of registers. These are pointers into | |||
| 4176 | the input strings; they record just what was matched (on this | |||
| 4177 | attempt) by a subexpression part of the pattern, that is, the | |||
| 4178 | regnum-th regstart pointer points to where in the pattern we began | |||
| 4179 | matching and the regnum-th regend points to right after where we | |||
| 4180 | stopped matching the regnum-th subexpression. (The zeroth register | |||
| 4181 | keeps track of what the whole pattern matches.) */ | |||
| 4182 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |||
| 4183 | const char **regstart, **regend; | |||
| 4184 | #endif | |||
| 4185 | ||||
| 4186 | /* If a group that's operated upon by a repetition operator fails to | |||
| 4187 | match anything, then the register for its start will need to be | |||
| 4188 | restored because it will have been set to wherever in the string we | |||
| 4189 | are when we last see its open-group operator. Similarly for a | |||
| 4190 | register's end. */ | |||
| 4191 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |||
| 4192 | const char **old_regstart, **old_regend; | |||
| 4193 | #endif | |||
| 4194 | ||||
| 4195 | /* The is_active field of reg_info helps us keep track of which (possibly | |||
| 4196 | nested) subexpressions we are currently in. The matched_something | |||
| 4197 | field of reg_info[reg_num] helps us tell whether or not we have | |||
| 4198 | matched any of the pattern so far this time through the reg_num-th | |||
| 4199 | subexpression. These two fields get reset each time through any | |||
| 4200 | loop their register is in. */ | |||
| 4201 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ | |||
| 4202 | register_info_type *reg_info; | |||
| 4203 | #endif | |||
| 4204 | ||||
| 4205 | /* The following record the register info as found in the above | |||
| 4206 | variables when we find a match better than any we've seen before. | |||
| 4207 | This happens as we backtrack through the failure points, which in | |||
| 4208 | turn happens only if we have not yet matched the entire string. */ | |||
| 4209 | unsigned best_regs_set = false0; | |||
| 4210 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |||
| 4211 | const char **best_regstart, **best_regend; | |||
| 4212 | #endif | |||
| 4213 | ||||
| 4214 | /* Logically, this is `best_regend[0]'. But we don't want to have to | |||
| 4215 | allocate space for that if we're not allocating space for anything | |||
| 4216 | else (see below). Also, we never need info about register 0 for | |||
| 4217 | any of the other register vectors, and it seems rather a kludge to | |||
| 4218 | treat `best_regend' differently than the rest. So we keep track of | |||
| 4219 | the end of the best match so far in a separate variable. We | |||
| 4220 | initialize this to NULL so that when we backtrack the first time | |||
| 4221 | and need to test it, it's not garbage. */ | |||
| 4222 | const char *match_end = NULL((void *)0); | |||
| 4223 | ||||
| 4224 | /* This helps SET_REGS_MATCHED avoid doing redundant work. */ | |||
| 4225 | int set_regs_matched_done = 0; | |||
| 4226 | ||||
| 4227 | /* Used when we pop values we don't care about. */ | |||
| 4228 | #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ | |||
| 4229 | const char **reg_dummy; | |||
| 4230 | register_info_type *reg_info_dummy; | |||
| 4231 | #endif | |||
| 4232 | ||||
| 4233 | #ifdef DEBUG | |||
| 4234 | /* Counts the total number of registers pushed. */ | |||
| 4235 | unsigned num_regs_pushed = 0; | |||
| 4236 | #endif | |||
| 4237 | ||||
| 4238 | DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); | |||
| 4239 | ||||
| 4240 | INIT_FAIL_STACK ()do { fail_stack.stack = (fail_stack_elt_t *) malloc (20 * 20 * sizeof (fail_stack_elt_t)); if (fail_stack.stack == ((void * )0)) return -2; fail_stack.size = 20; fail_stack.avail = 0; } while (0); | |||
| ||||
| 4241 | ||||
| 4242 | #ifdef MATCH_MAY_ALLOCATE | |||
| 4243 | /* Do not bother to initialize all the register variables if there are | |||
| 4244 | no groups in the pattern, as it takes a fair amount of time. If | |||
| 4245 | there are groups, we include space for register 0 (the whole | |||
| 4246 | pattern), even though we never use it, since it simplifies the | |||
| 4247 | array indexing. We should fix this. */ | |||
| 4248 | if (bufp->re_nsub) | |||
| 4249 | { | |||
| 4250 | regstart = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
| 4251 | regend = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
| 4252 | old_regstart = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
| 4253 | old_regend = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
| 4254 | best_regstart = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
| 4255 | best_regend = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
| 4256 | reg_info = REGEX_TALLOC (num_regs, register_info_type)((register_info_type *) malloc ((num_regs) * sizeof (register_info_type ))); | |||
| 4257 | reg_dummy = REGEX_TALLOC (num_regs, const char *)((const char * *) malloc ((num_regs) * sizeof (const char *)) ); | |||
| 4258 | reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type)((register_info_type *) malloc ((num_regs) * sizeof (register_info_type ))); | |||
| 4259 | ||||
| 4260 | if (!(regstart && regend && old_regstart && old_regend && reg_info | |||
| 4261 | && best_regstart && best_regend && reg_dummy && reg_info_dummy)) | |||
| 4262 | { | |||
| 4263 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
| 4264 | return -2; | |||
| 4265 | } | |||
| 4266 | } | |||
| 4267 | else | |||
| 4268 | { | |||
| 4269 | /* We must initialize all our variables to NULL, so that | |||
| 4270 | `FREE_VARIABLES' doesn't try to free them. */ | |||
| 4271 | regstart = regend = old_regstart = old_regend = best_regstart | |||
| 4272 | = best_regend = reg_dummy = NULL((void *)0); | |||
| 4273 | reg_info = reg_info_dummy = (register_info_type *) NULL((void *)0); | |||
| 4274 | } | |||
| 4275 | #endif /* MATCH_MAY_ALLOCATE */ | |||
| 4276 | ||||
| 4277 | /* The starting position is bogus. */ | |||
| 4278 | if (pos < 0 || pos > size1 + size2) | |||
| 4279 | { | |||
| 4280 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
| 4281 | return -1; | |||
| 4282 | } | |||
| 4283 | ||||
| 4284 | /* Initialize subexpression text positions to -1 to mark ones that no | |||
| 4285 | start_memory/stop_memory has been seen for. Also initialize the | |||
| 4286 | register information struct. */ | |||
| 4287 | for (mcnt = 1; mcnt < num_regs; mcnt++) | |||
| 4288 | { | |||
| 4289 | regstart[mcnt] = regend[mcnt] | |||
| 4290 | = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE(®_unset_dummy); | |||
| 4291 | ||||
| 4292 | REG_MATCH_NULL_STRING_P (reg_info[mcnt])((reg_info[mcnt]).bits.match_null_string_p) = MATCH_NULL_UNSET_VALUE3; | |||
| 4293 | IS_ACTIVE (reg_info[mcnt])((reg_info[mcnt]).bits.is_active) = 0; | |||
| 4294 | MATCHED_SOMETHING (reg_info[mcnt])((reg_info[mcnt]).bits.matched_something) = 0; | |||
| 4295 | EVER_MATCHED_SOMETHING (reg_info[mcnt])((reg_info[mcnt]).bits.ever_matched_something) = 0; | |||
| 4296 | } | |||
| 4297 | ||||
| 4298 | /* We move `string1' into `string2' if the latter's empty -- but not if | |||
| 4299 | `string1' is null. */ | |||
| 4300 | if (size2 == 0 && string1 != NULL((void *)0)) | |||
| 4301 | { | |||
| 4302 | string2 = string1; | |||
| 4303 | size2 = size1; | |||
| 4304 | string1 = 0; | |||
| 4305 | size1 = 0; | |||
| 4306 | } | |||
| 4307 | end1 = string1 + size1; | |||
| 4308 | end2 = string2 + size2; | |||
| 4309 | ||||
| 4310 | /* Compute where to stop matching, within the two strings. */ | |||
| 4311 | if (stop <= size1) | |||
| 4312 | { | |||
| 4313 | end_match_1 = string1 + stop; | |||
| 4314 | end_match_2 = string2; | |||
| 4315 | } | |||
| 4316 | else | |||
| 4317 | { | |||
| 4318 | end_match_1 = end1; | |||
| 4319 | end_match_2 = string2 + stop - size1; | |||
| 4320 | } | |||
| 4321 | ||||
| 4322 | /* `p' scans through the pattern as `d' scans through the data. | |||
| 4323 | `dend' is the end of the input string that `d' points within. `d' | |||
| 4324 | is advanced into the following input string whenever necessary, but | |||
| 4325 | this happens before fetching; therefore, at the beginning of the | |||
| 4326 | loop, `d' can be pointing at the end of a string, but it cannot | |||
| 4327 | equal `string2'. */ | |||
| 4328 | if (size1
| |||
| 4329 | { | |||
| 4330 | d = string1 + pos; | |||
| 4331 | dend = end_match_1; | |||
| 4332 | } | |||
| 4333 | else | |||
| 4334 | { | |||
| 4335 | d = string2 + pos - size1; | |||
| 4336 | dend = end_match_2; | |||
| 4337 | } | |||
| 4338 | ||||
| 4339 | DEBUG_PRINT1 ("The compiled pattern is: "); | |||
| 4340 | DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); | |||
| 4341 | DEBUG_PRINT1 ("The string to match is: `"); | |||
| 4342 | DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); | |||
| 4343 | DEBUG_PRINT1 ("'\n"); | |||
| 4344 | ||||
| 4345 | /* This loops over pattern commands. It exits by returning from the | |||
| 4346 | function if the match is complete, or it drops through if the match | |||
| 4347 | fails at this starting point in the input data. */ | |||
| 4348 | for (;;) | |||
| 4349 | { | |||
| 4350 | DEBUG_PRINT2 ("\n0x%x: ", p); | |||
| 4351 | ||||
| 4352 | if (p == pend) | |||
| 4353 | { /* End of pattern means we might have succeeded. */ | |||
| 4354 | DEBUG_PRINT1 ("end of pattern ... "); | |||
| 4355 | ||||
| 4356 | /* If we haven't matched the entire string, and we want the | |||
| 4357 | longest match, try backtracking. */ | |||
| 4358 | if (d != end_match_2) | |||
| 4359 | { | |||
| 4360 | /* 1 if this match ends in the same string (string1 or string2) | |||
| 4361 | as the best previous match. */ | |||
| 4362 | boolean same_str_p = (FIRST_STRING_P (match_end)(size1 && string1 <= (match_end) && (match_end ) <= string1 + size1) | |||
| 4363 | == MATCHING_IN_FIRST_STRING(dend == end_match_1)); | |||
| 4364 | /* 1 if this match is the best seen so far. */ | |||
| 4365 | boolean best_match_p; | |||
| 4366 | ||||
| 4367 | /* AIX compiler got confused when this was combined | |||
| 4368 | with the previous declaration. */ | |||
| 4369 | if (same_str_p) | |||
| 4370 | best_match_p = d > match_end; | |||
| 4371 | else | |||
| 4372 | best_match_p = !MATCHING_IN_FIRST_STRING(dend == end_match_1); | |||
| 4373 | ||||
| 4374 | DEBUG_PRINT1 ("backtracking.\n"); | |||
| 4375 | ||||
| 4376 | if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0)) | |||
| 4377 | { /* More failure points to try. */ | |||
| 4378 | ||||
| 4379 | /* If exceeds best match so far, save it. */ | |||
| 4380 | if (!best_regs_set || best_match_p) | |||
| 4381 | { | |||
| 4382 | best_regs_set = true1; | |||
| 4383 | match_end = d; | |||
| 4384 | ||||
| 4385 | DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); | |||
| 4386 | ||||
| 4387 | for (mcnt = 1; mcnt < num_regs; mcnt++) | |||
| 4388 | { | |||
| 4389 | best_regstart[mcnt] = regstart[mcnt]; | |||
| 4390 | best_regend[mcnt] = regend[mcnt]; | |||
| 4391 | } | |||
| 4392 | } | |||
| 4393 | goto fail; | |||
| 4394 | } | |||
| 4395 | ||||
| 4396 | /* If no failure points, don't restore garbage. And if | |||
| 4397 | last match is real best match, don't restore second | |||
| 4398 | best one. */ | |||
| 4399 | else if (best_regs_set && !best_match_p) | |||
| 4400 | { | |||
| 4401 | restore_best_regs: | |||
| 4402 | /* Restore best match. It may happen that `dend == | |||
| 4403 | end_match_1' while the restored d is in string2. | |||
| 4404 | For example, the pattern `x.*y.*z' against the | |||
| 4405 | strings `x-' and `y-z-', if the two strings are | |||
| 4406 | not consecutive in memory. */ | |||
| 4407 | DEBUG_PRINT1 ("Restoring best registers.\n"); | |||
| 4408 | ||||
| 4409 | d = match_end; | |||
| 4410 | dend = ((d >= string1 && d <= end1) | |||
| 4411 | ? end_match_1 : end_match_2); | |||
| 4412 | ||||
| 4413 | for (mcnt = 1; mcnt < num_regs; mcnt++) | |||
| 4414 | { | |||
| 4415 | regstart[mcnt] = best_regstart[mcnt]; | |||
| 4416 | regend[mcnt] = best_regend[mcnt]; | |||
| 4417 | } | |||
| 4418 | } | |||
| 4419 | } /* d != end_match_2 */ | |||
| 4420 | ||||
| 4421 | succeed_label: | |||
| 4422 | DEBUG_PRINT1 ("Accepting match.\n"); | |||
| 4423 | ||||
| 4424 | /* If caller wants register contents data back, do it. */ | |||
| 4425 | if (regs && !bufp->no_sub) | |||
| 4426 | { | |||
| 4427 | /* Have the register data arrays been allocated? */ | |||
| 4428 | if (bufp->regs_allocated == REGS_UNALLOCATED0) | |||
| 4429 | { /* No. So allocate them with malloc. We need one | |||
| 4430 | extra element beyond `num_regs' for the `-1' marker | |||
| 4431 | GNU code uses. */ | |||
| 4432 | regs->num_regs = MAX (RE_NREGS, num_regs + 1)((30) > (num_regs + 1) ? (30) : (num_regs + 1)); | |||
| 4433 | regs->start = TALLOC (regs->num_regs, regoff_t)((regoff_t *) malloc ((regs->num_regs) * sizeof (regoff_t) )); | |||
| 4434 | regs->end = TALLOC (regs->num_regs, regoff_t)((regoff_t *) malloc ((regs->num_regs) * sizeof (regoff_t) )); | |||
| 4435 | if (regs->start == NULL((void *)0) || regs->end == NULL((void *)0)) | |||
| 4436 | { | |||
| 4437 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
| 4438 | return -2; | |||
| 4439 | } | |||
| 4440 | bufp->regs_allocated = REGS_REALLOCATE1; | |||
| 4441 | } | |||
| 4442 | else if (bufp->regs_allocated == REGS_REALLOCATE1) | |||
| 4443 | { /* Yes. If we need more elements than were already | |||
| 4444 | allocated, reallocate them. If we need fewer, just | |||
| 4445 | leave it alone. */ | |||
| 4446 | if (regs->num_regs < num_regs + 1) | |||
| 4447 | { | |||
| 4448 | regs->num_regs = num_regs + 1; | |||
| 4449 | RETALLOC (regs->start, regs->num_regs, regoff_t)((regs->start) = (regoff_t *) realloc (regs->start, (regs ->num_regs) * sizeof (regoff_t))); | |||
| 4450 | RETALLOC (regs->end, regs->num_regs, regoff_t)((regs->end) = (regoff_t *) realloc (regs->end, (regs-> num_regs) * sizeof (regoff_t))); | |||
| 4451 | if (regs->start == NULL((void *)0) || regs->end == NULL((void *)0)) | |||
| 4452 | { | |||
| 4453 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
| 4454 | return -2; | |||
| 4455 | } | |||
| 4456 | } | |||
| 4457 | } | |||
| 4458 | else | |||
| 4459 | { | |||
| 4460 | /* These braces fend off a "empty body in an else-statement" | |||
| 4461 | warning under GCC when assert expands to nothing. */ | |||
| 4462 | assert (bufp->regs_allocated == REGS_FIXED); | |||
| 4463 | } | |||
| 4464 | ||||
| 4465 | /* Convert the pointer data in `regstart' and `regend' to | |||
| 4466 | indices. Register zero has to be set differently, | |||
| 4467 | since we haven't kept track of any info for it. */ | |||
| 4468 | if (regs->num_regs > 0) | |||
| 4469 | { | |||
| 4470 | regs->start[0] = pos; | |||
| 4471 | regs->end[0] = (MATCHING_IN_FIRST_STRING(dend == end_match_1) | |||
| 4472 | ? ((regoff_t) (d - string1)) | |||
| 4473 | : ((regoff_t) (d - string2 + size1))); | |||
| 4474 | } | |||
| 4475 | ||||
| 4476 | /* Go through the first `min (num_regs, regs->num_regs)' | |||
| 4477 | registers, since that is all we initialized. */ | |||
| 4478 | for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs)((num_regs) < (regs->num_regs) ? (num_regs) : (regs-> num_regs)); mcnt++) | |||
| 4479 | { | |||
| 4480 | if (REG_UNSET (regstart[mcnt])((regstart[mcnt]) == (®_unset_dummy)) || REG_UNSET (regend[mcnt])((regend[mcnt]) == (®_unset_dummy))) | |||
| 4481 | regs->start[mcnt] = regs->end[mcnt] = -1; | |||
| 4482 | else | |||
| 4483 | { | |||
| 4484 | regs->start[mcnt] | |||
| 4485 | = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt])((size1 && string1 <= (regstart[mcnt]) && ( regstart[mcnt]) <= string1 + size1) ? ((regoff_t) ((regstart [mcnt]) - string1)) : ((regoff_t) ((regstart[mcnt]) - string2 + size1))); | |||
| 4486 | regs->end[mcnt] | |||
| 4487 | = (regoff_t) POINTER_TO_OFFSET (regend[mcnt])((size1 && string1 <= (regend[mcnt]) && (regend [mcnt]) <= string1 + size1) ? ((regoff_t) ((regend[mcnt]) - string1)) : ((regoff_t) ((regend[mcnt]) - string2 + size1))); | |||
| 4488 | } | |||
| 4489 | } | |||
| 4490 | ||||
| 4491 | /* If the regs structure we return has more elements than | |||
| 4492 | were in the pattern, set the extra elements to -1. If | |||
| 4493 | we (re)allocated the registers, this is the case, | |||
| 4494 | because we always allocate enough to have at least one | |||
| 4495 | -1 at the end. */ | |||
| 4496 | for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) | |||
| 4497 | regs->start[mcnt] = regs->end[mcnt] = -1; | |||
| 4498 | } /* regs && !bufp->no_sub */ | |||
| 4499 | ||||
| 4500 | DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", | |||
| 4501 | nfailure_points_pushed, nfailure_points_popped, | |||
| 4502 | nfailure_points_pushed - nfailure_points_popped); | |||
| 4503 | DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); | |||
| 4504 | ||||
| 4505 | mcnt = d - pos - (MATCHING_IN_FIRST_STRING(dend == end_match_1) | |||
| 4506 | ? string1 | |||
| 4507 | : string2 - size1); | |||
| 4508 | ||||
| 4509 | DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); | |||
| 4510 | ||||
| 4511 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
| 4512 | return mcnt; | |||
| 4513 | } | |||
| 4514 | ||||
| 4515 | /* Otherwise match next pattern command. */ | |||
| 4516 | switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)((re_opcode_t) *p++)) | |||
| 4517 | { | |||
| 4518 | /* Ignore these. Used to ignore the n of succeed_n's which | |||
| 4519 | currently have n == 0. */ | |||
| 4520 | case no_op: | |||
| 4521 | DEBUG_PRINT1 ("EXECUTING no_op.\n"); | |||
| 4522 | break; | |||
| 4523 | ||||
| 4524 | case succeed: | |||
| 4525 | DEBUG_PRINT1 ("EXECUTING succeed.\n"); | |||
| 4526 | goto succeed_label; | |||
| 4527 | ||||
| 4528 | /* Match the next n pattern characters exactly. The following | |||
| 4529 | byte in the pattern defines n, and the n bytes after that | |||
| 4530 | are the characters to match. */ | |||
| 4531 | case exactn: | |||
| 4532 | mcnt = *p++; | |||
| 4533 | DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); | |||
| 4534 | ||||
| 4535 | /* This is written out as an if-else so we don't waste time | |||
| 4536 | testing `translate' inside the loop. */ | |||
| 4537 | if (RE_TRANSLATE_P (translate)(translate)) | |||
| 4538 | { | |||
| 4539 | #ifdef emacs | |||
| 4540 | if (multibyte) | |||
| 4541 | do | |||
| 4542 | { | |||
| 4543 | int pat_charlen, buf_charlen; | |||
| 4544 | unsigned int pat_ch, buf_ch; | |||
| 4545 | ||||
| 4546 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 4547 | pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen)((pat_charlen) = 1, *(p)); | |||
| 4548 | buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen)((buf_charlen) = 1, *(d)); | |||
| 4549 | ||||
| 4550 | if (RE_TRANSLATE (translate, buf_ch)((translate)[buf_ch]) | |||
| 4551 | != pat_ch) | |||
| 4552 | goto fail; | |||
| 4553 | ||||
| 4554 | p += pat_charlen; | |||
| 4555 | d += buf_charlen; | |||
| 4556 | mcnt -= pat_charlen; | |||
| 4557 | } | |||
| 4558 | while (mcnt > 0); | |||
| 4559 | else | |||
| 4560 | #endif /* not emacs */ | |||
| 4561 | do | |||
| 4562 | { | |||
| 4563 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 4564 | if ((unsigned char) RE_TRANSLATE (translate, (unsigned char) *d)((translate)[(unsigned char) *d]) | |||
| 4565 | != (unsigned char) *p++) | |||
| 4566 | goto fail; | |||
| 4567 | d++; | |||
| 4568 | } | |||
| 4569 | while (--mcnt); | |||
| 4570 | } | |||
| 4571 | else | |||
| 4572 | { | |||
| 4573 | do | |||
| 4574 | { | |||
| 4575 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 4576 | if (*d++ != (char) *p++) goto fail; | |||
| 4577 | } | |||
| 4578 | while (--mcnt); | |||
| 4579 | } | |||
| 4580 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 4581 | break; | |||
| 4582 | ||||
| 4583 | ||||
| 4584 | /* Match any character except possibly a newline or a null. */ | |||
| 4585 | case anychar: | |||
| 4586 | { | |||
| 4587 | int buf_charlen; | |||
| 4588 | unsigned int buf_ch; | |||
| 4589 | ||||
| 4590 | DEBUG_PRINT1 ("EXECUTING anychar.\n"); | |||
| 4591 | ||||
| 4592 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 4593 | ||||
| 4594 | #ifdef emacs | |||
| 4595 | if (multibyte) | |||
| 4596 | buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen)((buf_charlen) = 1, *(d)); | |||
| 4597 | else | |||
| 4598 | #endif /* not emacs */ | |||
| 4599 | { | |||
| 4600 | buf_ch = (unsigned char) *d; | |||
| 4601 | buf_charlen = 1; | |||
| 4602 | } | |||
| 4603 | ||||
| 4604 | buf_ch = TRANSLATE (buf_ch)((translate) ? (unsigned) ((translate)[(unsigned) (buf_ch)]) : (buf_ch)); | |||
| 4605 | ||||
| 4606 | if ((!(bufp->syntax & RE_DOT_NEWLINE(((((((1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 4607 | && buf_ch == '\n') | |||
| 4608 | || ((bufp->syntax & RE_DOT_NOT_NULL((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | |||
| 4609 | && buf_ch == '\000')) | |||
| 4610 | goto fail; | |||
| 4611 | ||||
| 4612 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 4613 | DEBUG_PRINT2 (" Matched `%d'.\n", *d); | |||
| 4614 | d += buf_charlen; | |||
| 4615 | } | |||
| 4616 | break; | |||
| 4617 | ||||
| 4618 | ||||
| 4619 | case charset: | |||
| 4620 | case charset_not: | |||
| 4621 | { | |||
| 4622 | register unsigned int c; | |||
| 4623 | boolean not = (re_opcode_t) *(p - 1) == charset_not; | |||
| 4624 | int len; | |||
| 4625 | ||||
| 4626 | /* Start of actual range_table, or end of bitmap if there is no | |||
| 4627 | range table. */ | |||
| 4628 | unsigned char *range_table; | |||
| 4629 | ||||
| 4630 | /* Nonzero if there is range table. */ | |||
| 4631 | int range_table_exists; | |||
| 4632 | ||||
| 4633 | /* Number of ranges of range table. Not in bytes. */ | |||
| 4634 | int count; | |||
| 4635 | ||||
| 4636 | DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); | |||
| 4637 | ||||
| 4638 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 4639 | c = (unsigned char) *d; | |||
| 4640 | ||||
| 4641 | range_table = CHARSET_RANGE_TABLE (&p[-1])(&(&p[-1])[2 + ((&p[-1])[1] & 0x7F)]); /* Past the bitmap. */ | |||
| 4642 | range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1])((&p[-1])[1] & 0x80); | |||
| 4643 | if (range_table_exists) | |||
| 4644 | EXTRACT_NUMBER_AND_INCR (count, range_table)do { do { (count) = *(range_table) & 0377; (count) += ((signed char) (*((range_table) + 1))) << 8; } while (0); (range_table ) += 2; } while (0); | |||
| 4645 | else | |||
| 4646 | count = 0; | |||
| 4647 | ||||
| 4648 | if (multibyte && BASE_LEADING_CODE_P (c)(0)) | |||
| 4649 | c = STRING_CHAR_AND_LENGTH (d, dend - d, len)((len) = 1, *(d)); | |||
| 4650 | ||||
| 4651 | if (SINGLE_BYTE_CHAR_P (c)(1)) | |||
| 4652 | { /* Lookup bitmap. */ | |||
| 4653 | c = TRANSLATE (c)((translate) ? (unsigned) ((translate)[(unsigned) (c)]) : (c) ); /* The character to match. */ | |||
| 4654 | len = 1; | |||
| 4655 | ||||
| 4656 | /* Cast to `unsigned' instead of `unsigned char' in | |||
| 4657 | case the bit list is a full 32 bytes long. */ | |||
| 4658 | if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1])((&p[-1])[1] & 0x7F) * BYTEWIDTH8) | |||
| 4659 | && p[1 + c / BYTEWIDTH8] & (1 << (c % BYTEWIDTH8))) | |||
| 4660 | not = !not; | |||
| 4661 | } | |||
| 4662 | else if (range_table_exists) | |||
| 4663 | CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count)do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3) [1] << 8) | ((p + 3)[2] << 16)); } while (0); if ( range_start <= (c) && (c) <= range_end) { (not) = !(not); break; } } } while (0); | |||
| 4664 | ||||
| 4665 | p = CHARSET_RANGE_TABLE_END (range_table, count)((range_table) + (count) * 2 * 3); | |||
| 4666 | ||||
| 4667 | if (!not) goto fail; | |||
| 4668 | ||||
| 4669 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 4670 | d += len; | |||
| 4671 | break; | |||
| 4672 | } | |||
| 4673 | ||||
| 4674 | ||||
| 4675 | /* The beginning of a group is represented by start_memory. | |||
| 4676 | The arguments are the register number in the next byte, and the | |||
| 4677 | number of groups inner to this one in the next. The text | |||
| 4678 | matched within the group is recorded (in the internal | |||
| 4679 | registers data structure) under the register number. */ | |||
| 4680 | case start_memory: | |||
| 4681 | DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]); | |||
| 4682 | ||||
| 4683 | /* Find out if this group can match the empty string. */ | |||
| 4684 | p1 = p; /* To send to group_match_null_string_p. */ | |||
| 4685 | ||||
| 4686 | if (REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) == MATCH_NULL_UNSET_VALUE3) | |||
| 4687 | REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) | |||
| 4688 | = group_match_null_string_p (&p1, pend, reg_info); | |||
| 4689 | ||||
| 4690 | /* Save the position in the string where we were the last time | |||
| 4691 | we were at this open-group operator in case the group is | |||
| 4692 | operated upon by a repetition operator, e.g., with `(a*)*b' | |||
| 4693 | against `ab'; then we want to ignore where we are now in | |||
| 4694 | the string in case this attempt to match fails. */ | |||
| 4695 | old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) | |||
| 4696 | ? REG_UNSET (regstart[*p])((regstart[*p]) == (®_unset_dummy)) ? d : regstart[*p] | |||
| 4697 | : regstart[*p]; | |||
| 4698 | DEBUG_PRINT2 (" old_regstart: %d\n", | |||
| 4699 | POINTER_TO_OFFSET (old_regstart[*p])); | |||
| 4700 | ||||
| 4701 | regstart[*p] = d; | |||
| 4702 | DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); | |||
| 4703 | ||||
| 4704 | IS_ACTIVE (reg_info[*p])((reg_info[*p]).bits.is_active) = 1; | |||
| 4705 | MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.matched_something) = 0; | |||
| 4706 | ||||
| 4707 | /* Clear this whenever we change the register activity status. */ | |||
| 4708 | set_regs_matched_done = 0; | |||
| 4709 | ||||
| 4710 | /* This is the new highest active register. */ | |||
| 4711 | highest_active_reg = *p; | |||
| 4712 | ||||
| 4713 | /* If nothing was active before, this is the new lowest active | |||
| 4714 | register. */ | |||
| 4715 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG((1 << 8) + 1)) | |||
| 4716 | lowest_active_reg = *p; | |||
| 4717 | ||||
| 4718 | /* Move past the register number and inner group count. */ | |||
| 4719 | p += 2; | |||
| 4720 | just_past_start_mem = p; | |||
| 4721 | ||||
| 4722 | break; | |||
| 4723 | ||||
| 4724 | ||||
| 4725 | /* The stop_memory opcode represents the end of a group. Its | |||
| 4726 | arguments are the same as start_memory's: the register | |||
| 4727 | number, and the number of inner groups. */ | |||
| 4728 | case stop_memory: | |||
| 4729 | DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]); | |||
| 4730 | ||||
| 4731 | /* We need to save the string position the last time we were at | |||
| 4732 | this close-group operator in case the group is operated | |||
| 4733 | upon by a repetition operator, e.g., with `((a*)*(b*)*)*' | |||
| 4734 | against `aba'; then we want to ignore where we are now in | |||
| 4735 | the string in case this attempt to match fails. */ | |||
| 4736 | old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])((reg_info[*p]).bits.match_null_string_p) | |||
| 4737 | ? REG_UNSET (regend[*p])((regend[*p]) == (®_unset_dummy)) ? d : regend[*p] | |||
| 4738 | : regend[*p]; | |||
| 4739 | DEBUG_PRINT2 (" old_regend: %d\n", | |||
| 4740 | POINTER_TO_OFFSET (old_regend[*p])); | |||
| 4741 | ||||
| 4742 | regend[*p] = d; | |||
| 4743 | DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); | |||
| 4744 | ||||
| 4745 | /* This register isn't active anymore. */ | |||
| 4746 | IS_ACTIVE (reg_info[*p])((reg_info[*p]).bits.is_active) = 0; | |||
| 4747 | ||||
| 4748 | /* Clear this whenever we change the register activity status. */ | |||
| 4749 | set_regs_matched_done = 0; | |||
| 4750 | ||||
| 4751 | /* If this was the only register active, nothing is active | |||
| 4752 | anymore. */ | |||
| 4753 | if (lowest_active_reg == highest_active_reg) | |||
| 4754 | { | |||
| 4755 | lowest_active_reg = NO_LOWEST_ACTIVE_REG((1 << 8) + 1); | |||
| 4756 | highest_active_reg = NO_HIGHEST_ACTIVE_REG(1 << 8); | |||
| 4757 | } | |||
| 4758 | else | |||
| 4759 | { /* We must scan for the new highest active register, since | |||
| 4760 | it isn't necessarily one less than now: consider | |||
| 4761 | (a(b)c(d(e)f)g). When group 3 ends, after the f), the | |||
| 4762 | new highest active register is 1. */ | |||
| 4763 | unsigned char r = *p - 1; | |||
| 4764 | while (r > 0 && !IS_ACTIVE (reg_info[r])((reg_info[r]).bits.is_active)) | |||
| 4765 | r--; | |||
| 4766 | ||||
| 4767 | /* If we end up at register zero, that means that we saved | |||
| 4768 | the registers as the result of an `on_failure_jump', not | |||
| 4769 | a `start_memory', and we jumped to past the innermost | |||
| 4770 | `stop_memory'. For example, in ((.)*) we save | |||
| 4771 | registers 1 and 2 as a result of the *, but when we pop | |||
| 4772 | back to the second ), we are at the stop_memory 1. | |||
| 4773 | Thus, nothing is active. */ | |||
| 4774 | if (r == 0) | |||
| 4775 | { | |||
| 4776 | lowest_active_reg = NO_LOWEST_ACTIVE_REG((1 << 8) + 1); | |||
| 4777 | highest_active_reg = NO_HIGHEST_ACTIVE_REG(1 << 8); | |||
| 4778 | } | |||
| 4779 | else | |||
| 4780 | highest_active_reg = r; | |||
| 4781 | } | |||
| 4782 | ||||
| 4783 | /* If just failed to match something this time around with a | |||
| 4784 | group that's operated on by a repetition operator, try to | |||
| 4785 | force exit from the ``loop'', and restore the register | |||
| 4786 | information for this group that we had before trying this | |||
| 4787 | last match. */ | |||
| 4788 | if ((!MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.matched_something) | |||
| 4789 | || just_past_start_mem == p - 1) | |||
| 4790 | && (p + 2) < pend) | |||
| 4791 | { | |||
| 4792 | boolean is_a_jump_n = false0; | |||
| 4793 | ||||
| 4794 | p1 = p + 2; | |||
| 4795 | mcnt = 0; | |||
| 4796 | switch ((re_opcode_t) *p1++) | |||
| 4797 | { | |||
| 4798 | case jump_n: | |||
| 4799 | is_a_jump_n = true1; | |||
| 4800 | case pop_failure_jump: | |||
| 4801 | case maybe_pop_jump: | |||
| 4802 | case jump: | |||
| 4803 | case dummy_failure_jump: | |||
| 4804 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 4805 | if (is_a_jump_n) | |||
| 4806 | p1 += 2; | |||
| 4807 | break; | |||
| 4808 | ||||
| 4809 | default: | |||
| 4810 | /* do nothing */ ; | |||
| 4811 | } | |||
| 4812 | p1 += mcnt; | |||
| 4813 | ||||
| 4814 | /* If the next operation is a jump backwards in the pattern | |||
| 4815 | to an on_failure_jump right before the start_memory | |||
| 4816 | corresponding to this stop_memory, exit from the loop | |||
| 4817 | by forcing a failure after pushing on the stack the | |||
| 4818 | on_failure_jump's jump in the pattern, and d. */ | |||
| 4819 | if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump | |||
| 4820 | && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) | |||
| 4821 | { | |||
| 4822 | /* If this group ever matched anything, then restore | |||
| 4823 | what its registers were before trying this last | |||
| 4824 | failed match, e.g., with `(a*)*b' against `ab' for | |||
| 4825 | regstart[1], and, e.g., with `((a*)*(b*)*)*' | |||
| 4826 | against `aba' for regend[3]. | |||
| 4827 | ||||
| 4828 | Also restore the registers for inner groups for, | |||
| 4829 | e.g., `((a*)(b*))*' against `aba' (register 3 would | |||
| 4830 | otherwise get trashed). */ | |||
| 4831 | ||||
| 4832 | if (EVER_MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.ever_matched_something)) | |||
| 4833 | { | |||
| 4834 | unsigned r; | |||
| 4835 | ||||
| 4836 | EVER_MATCHED_SOMETHING (reg_info[*p])((reg_info[*p]).bits.ever_matched_something) = 0; | |||
| 4837 | ||||
| 4838 | /* Restore this and inner groups' (if any) registers. */ | |||
| 4839 | for (r = *p; r < *p + *(p + 1); r++) | |||
| 4840 | { | |||
| 4841 | regstart[r] = old_regstart[r]; | |||
| 4842 | ||||
| 4843 | /* xx why this test? */ | |||
| 4844 | if (old_regend[r] >= regstart[r]) | |||
| 4845 | regend[r] = old_regend[r]; | |||
| 4846 | } | |||
| 4847 | } | |||
| 4848 | p1++; | |||
| 4849 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 4850 | PUSH_FAILURE_POINT (p1 + mcnt, d, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (p1 + mcnt); ; ; ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (d); ; ; } while (0); | |||
| 4851 | ||||
| 4852 | goto fail; | |||
| 4853 | } | |||
| 4854 | } | |||
| 4855 | ||||
| 4856 | /* Move past the register number and the inner group count. */ | |||
| 4857 | p += 2; | |||
| 4858 | break; | |||
| 4859 | ||||
| 4860 | ||||
| 4861 | /* \<digit> has been turned into a `duplicate' command which is | |||
| 4862 | followed by the numeric value of <digit> as the register number. */ | |||
| 4863 | case duplicate: | |||
| 4864 | { | |||
| 4865 | register const char *d2, *dend2; | |||
| 4866 | int regno = *p++; /* Get which register to match against. */ | |||
| 4867 | DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); | |||
| 4868 | ||||
| 4869 | /* Can't back reference a group which we've never matched. */ | |||
| 4870 | if (REG_UNSET (regstart[regno])((regstart[regno]) == (®_unset_dummy)) || REG_UNSET (regend[regno])((regend[regno]) == (®_unset_dummy))) | |||
| 4871 | goto fail; | |||
| 4872 | ||||
| 4873 | /* Where in input to try to start matching. */ | |||
| 4874 | d2 = regstart[regno]; | |||
| 4875 | ||||
| 4876 | /* Where to stop matching; if both the place to start and | |||
| 4877 | the place to stop matching are in the same string, then | |||
| 4878 | set to the place to stop, otherwise, for now have to use | |||
| 4879 | the end of the first string. */ | |||
| 4880 | ||||
| 4881 | dend2 = ((FIRST_STRING_P (regstart[regno])(size1 && string1 <= (regstart[regno]) && ( regstart[regno]) <= string1 + size1) | |||
| 4882 | == FIRST_STRING_P (regend[regno])(size1 && string1 <= (regend[regno]) && (regend [regno]) <= string1 + size1)) | |||
| 4883 | ? regend[regno] : end_match_1); | |||
| 4884 | for (;;) | |||
| 4885 | { | |||
| 4886 | /* If necessary, advance to next segment in register | |||
| 4887 | contents. */ | |||
| 4888 | while (d2 == dend2) | |||
| 4889 | { | |||
| 4890 | if (dend2 == end_match_2) break; | |||
| 4891 | if (dend2 == regend[regno]) break; | |||
| 4892 | ||||
| 4893 | /* End of string1 => advance to string2. */ | |||
| 4894 | d2 = string2; | |||
| 4895 | dend2 = regend[regno]; | |||
| 4896 | } | |||
| 4897 | /* At end of register contents => success */ | |||
| 4898 | if (d2 == dend2) break; | |||
| 4899 | ||||
| 4900 | /* If necessary, advance to next segment in data. */ | |||
| 4901 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 4902 | ||||
| 4903 | /* How many characters left in this segment to match. */ | |||
| 4904 | mcnt = dend - d; | |||
| 4905 | ||||
| 4906 | /* Want how many consecutive characters we can match in | |||
| 4907 | one shot, so, if necessary, adjust the count. */ | |||
| 4908 | if (mcnt > dend2 - d2) | |||
| 4909 | mcnt = dend2 - d2; | |||
| 4910 | ||||
| 4911 | /* Compare that many; failure if mismatch, else move | |||
| 4912 | past them. */ | |||
| 4913 | if (RE_TRANSLATE_P (translate)(translate) | |||
| 4914 | ? bcmp_translate (d, d2, mcnt, translate) | |||
| 4915 | : bcmp (d, d2, mcnt)memcmp ((d), (d2), (mcnt))) | |||
| 4916 | goto fail; | |||
| 4917 | d += mcnt, d2 += mcnt; | |||
| 4918 | ||||
| 4919 | /* Do this because we've match some characters. */ | |||
| 4920 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 4921 | } | |||
| 4922 | } | |||
| 4923 | break; | |||
| 4924 | ||||
| 4925 | ||||
| 4926 | /* begline matches the empty string at the beginning of the string | |||
| 4927 | (unless `not_bol' is set in `bufp'), and, if | |||
| 4928 | `newline_anchor' is set, after newlines. */ | |||
| 4929 | case begline: | |||
| 4930 | DEBUG_PRINT1 ("EXECUTING begline.\n"); | |||
| 4931 | ||||
| 4932 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2)) | |||
| 4933 | { | |||
| 4934 | if (!bufp->not_bol) break; | |||
| 4935 | } | |||
| 4936 | else if (d[-1] == '\n' && bufp->newline_anchor) | |||
| 4937 | { | |||
| 4938 | break; | |||
| 4939 | } | |||
| 4940 | /* In all other cases, we fail. */ | |||
| 4941 | goto fail; | |||
| 4942 | ||||
| 4943 | ||||
| 4944 | /* endline is the dual of begline. */ | |||
| 4945 | case endline: | |||
| 4946 | DEBUG_PRINT1 ("EXECUTING endline.\n"); | |||
| 4947 | ||||
| 4948 | if (AT_STRINGS_END (d)((d) == end2)) | |||
| 4949 | { | |||
| 4950 | if (!bufp->not_eol) break; | |||
| 4951 | } | |||
| 4952 | ||||
| 4953 | /* We have to ``prefetch'' the next character. */ | |||
| 4954 | else if ((d == end1 ? *string2 : *d) == '\n' | |||
| 4955 | && bufp->newline_anchor) | |||
| 4956 | { | |||
| 4957 | break; | |||
| 4958 | } | |||
| 4959 | goto fail; | |||
| 4960 | ||||
| 4961 | ||||
| 4962 | /* Match at the very beginning of the data. */ | |||
| 4963 | case begbuf: | |||
| 4964 | DEBUG_PRINT1 ("EXECUTING begbuf.\n"); | |||
| 4965 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2)) | |||
| 4966 | break; | |||
| 4967 | goto fail; | |||
| 4968 | ||||
| 4969 | ||||
| 4970 | /* Match at the very end of the data. */ | |||
| 4971 | case endbuf: | |||
| 4972 | DEBUG_PRINT1 ("EXECUTING endbuf.\n"); | |||
| 4973 | if (AT_STRINGS_END (d)((d) == end2)) | |||
| 4974 | break; | |||
| 4975 | goto fail; | |||
| 4976 | ||||
| 4977 | ||||
| 4978 | /* on_failure_keep_string_jump is used to optimize `.*\n'. It | |||
| 4979 | pushes NULL as the value for the string on the stack. Then | |||
| 4980 | `pop_failure_point' will keep the current value for the | |||
| 4981 | string, instead of restoring it. To see why, consider | |||
| 4982 | matching `foo\nbar' against `.*\n'. The .* matches the foo; | |||
| 4983 | then the . fails against the \n. But the next thing we want | |||
| 4984 | to do is match the \n against the \n; if we restored the | |||
| 4985 | string value, we would be back at the foo. | |||
| 4986 | ||||
| 4987 | Because this is used only in specific cases, we don't need to | |||
| 4988 | check all the things that `on_failure_jump' does, to make | |||
| 4989 | sure the right things get saved on the stack. Hence we don't | |||
| 4990 | share its code. The only reason to push anything on the | |||
| 4991 | stack at all is that otherwise we would have to change | |||
| 4992 | `anychar's code to do something besides goto fail in this | |||
| 4993 | case; that seems worse than this. */ | |||
| 4994 | case on_failure_keep_string_jump: | |||
| 4995 | DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); | |||
| 4996 | ||||
| 4997 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 4998 | DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); | |||
| 4999 | ||||
| 5000 | PUSH_FAILURE_POINT (p + mcnt, NULL, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (p + mcnt); ; ; ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (((void *)0)); ; ; } while (0); | |||
| 5001 | break; | |||
| 5002 | ||||
| 5003 | ||||
| 5004 | /* Uses of on_failure_jump: | |||
| 5005 | ||||
| 5006 | Each alternative starts with an on_failure_jump that points | |||
| 5007 | to the beginning of the next alternative. Each alternative | |||
| 5008 | except the last ends with a jump that in effect jumps past | |||
| 5009 | the rest of the alternatives. (They really jump to the | |||
| 5010 | ending jump of the following alternative, because tensioning | |||
| 5011 | these jumps is a hassle.) | |||
| 5012 | ||||
| 5013 | Repeats start with an on_failure_jump that points past both | |||
| 5014 | the repetition text and either the following jump or | |||
| 5015 | pop_failure_jump back to this on_failure_jump. */ | |||
| 5016 | case on_failure_jump: | |||
| 5017 | on_failure: | |||
| 5018 | DEBUG_PRINT1 ("EXECUTING on_failure_jump"); | |||
| 5019 | ||||
| 5020 | #if defined (WINDOWSNT) && defined (emacs) | |||
| 5021 | QUIT; | |||
| 5022 | #endif | |||
| 5023 | ||||
| 5024 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 5025 | DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); | |||
| 5026 | ||||
| 5027 | /* If this on_failure_jump comes right before a group (i.e., | |||
| 5028 | the original * applied to a group), save the information | |||
| 5029 | for that group and all inner ones, so that if we fail back | |||
| 5030 | to this point, the group's information will be correct. | |||
| 5031 | For example, in \(a*\)*\1, we need the preceding group, | |||
| 5032 | and in \(zz\(a*\)b*\)\2, we need the inner group. */ | |||
| 5033 | ||||
| 5034 | /* We can't use `p' to check ahead because we push | |||
| 5035 | a failure point to `p + mcnt' after we do this. */ | |||
| 5036 | p1 = p; | |||
| 5037 | ||||
| 5038 | /* We need to skip no_op's before we look for the | |||
| 5039 | start_memory in case this on_failure_jump is happening as | |||
| 5040 | the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 | |||
| 5041 | against aba. */ | |||
| 5042 | while (p1 < pend && (re_opcode_t) *p1 == no_op) | |||
| 5043 | p1++; | |||
| 5044 | ||||
| 5045 | if (p1 < pend && (re_opcode_t) *p1 == start_memory) | |||
| 5046 | { | |||
| 5047 | /* We have a new highest active register now. This will | |||
| 5048 | get reset at the start_memory we are about to get to, | |||
| 5049 | but we will have saved all the registers relevant to | |||
| 5050 | this repetition op, as described above. */ | |||
| 5051 | highest_active_reg = *(p1 + 1) + *(p1 + 2); | |||
| 5052 | if (lowest_active_reg == NO_LOWEST_ACTIVE_REG((1 << 8) + 1)) | |||
| 5053 | lowest_active_reg = *(p1 + 1); | |||
| 5054 | } | |||
| 5055 | ||||
| 5056 | DEBUG_PRINT1 (":\n"); | |||
| 5057 | PUSH_FAILURE_POINT (p + mcnt, d, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (p + mcnt); ; ; ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (d); ; ; } while (0); | |||
| 5058 | break; | |||
| 5059 | ||||
| 5060 | ||||
| 5061 | /* A smart repeat ends with `maybe_pop_jump'. | |||
| 5062 | We change it to either `pop_failure_jump' or `jump'. */ | |||
| 5063 | case maybe_pop_jump: | |||
| 5064 | #if defined (WINDOWSNT) && defined (emacs) | |||
| 5065 | QUIT; | |||
| 5066 | #endif | |||
| 5067 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 5068 | DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); | |||
| 5069 | { | |||
| 5070 | register unsigned char *p2 = p; | |||
| 5071 | ||||
| 5072 | /* Compare the beginning of the repeat with what in the | |||
| 5073 | pattern follows its end. If we can establish that there | |||
| 5074 | is nothing that they would both match, i.e., that we | |||
| 5075 | would have to backtrack because of (as in, e.g., `a*a') | |||
| 5076 | then we can change to pop_failure_jump, because we'll | |||
| 5077 | never have to backtrack. | |||
| 5078 | ||||
| 5079 | This is not true in the case of alternatives: in | |||
| 5080 | `(a|ab)*' we do need to backtrack to the `ab' alternative | |||
| 5081 | (e.g., if the string was `ab'). But instead of trying to | |||
| 5082 | detect that here, the alternative has put on a dummy | |||
| 5083 | failure point which is what we will end up popping. */ | |||
| 5084 | ||||
| 5085 | /* Skip over open/close-group commands. | |||
| 5086 | If what follows this loop is a ...+ construct, | |||
| 5087 | look at what begins its body, since we will have to | |||
| 5088 | match at least one of that. */ | |||
| 5089 | while (1) | |||
| 5090 | { | |||
| 5091 | if (p2 + 2 < pend | |||
| 5092 | && ((re_opcode_t) *p2 == stop_memory | |||
| 5093 | || (re_opcode_t) *p2 == start_memory)) | |||
| 5094 | p2 += 3; | |||
| 5095 | else if (p2 + 6 < pend | |||
| 5096 | && (re_opcode_t) *p2 == dummy_failure_jump) | |||
| 5097 | p2 += 6; | |||
| 5098 | else | |||
| 5099 | break; | |||
| 5100 | } | |||
| 5101 | ||||
| 5102 | p1 = p + mcnt; | |||
| 5103 | /* p1[0] ... p1[2] are the `on_failure_jump' corresponding | |||
| 5104 | to the `maybe_finalize_jump' of this case. Examine what | |||
| 5105 | follows. */ | |||
| 5106 | ||||
| 5107 | /* If we're at the end of the pattern, we can change. */ | |||
| 5108 | if (p2 == pend) | |||
| 5109 | { | |||
| 5110 | /* Consider what happens when matching ":\(.*\)" | |||
| 5111 | against ":/". I don't really understand this code | |||
| 5112 | yet. */ | |||
| 5113 | p[-3] = (unsigned char) pop_failure_jump; | |||
| 5114 | DEBUG_PRINT1 | |||
| 5115 | (" End of pattern: change to `pop_failure_jump'.\n"); | |||
| 5116 | } | |||
| 5117 | ||||
| 5118 | else if ((re_opcode_t) *p2 == exactn | |||
| 5119 | || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) | |||
| 5120 | { | |||
| 5121 | register unsigned int c | |||
| 5122 | = *p2 == (unsigned char) endline ? '\n' : p2[2]; | |||
| 5123 | ||||
| 5124 | if ((re_opcode_t) p1[3] == exactn) | |||
| 5125 | { | |||
| 5126 | if (!(multibyte /* && (c != '\n') */ | |||
| 5127 | && BASE_LEADING_CODE_P (c)(0)) | |||
| 5128 | ? c != p1[5] | |||
| 5129 | : (STRING_CHAR (&p2[2], pend - &p2[2])(*(&p2[2])) | |||
| 5130 | != STRING_CHAR (&p1[5], pend - &p1[5])(*(&p1[5])))) | |||
| 5131 | { | |||
| 5132 | p[-3] = (unsigned char) pop_failure_jump; | |||
| 5133 | DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", | |||
| 5134 | c, p1[5]); | |||
| 5135 | } | |||
| 5136 | } | |||
| 5137 | ||||
| 5138 | else if ((re_opcode_t) p1[3] == charset | |||
| 5139 | || (re_opcode_t) p1[3] == charset_not) | |||
| 5140 | { | |||
| 5141 | int not = (re_opcode_t) p1[3] == charset_not; | |||
| 5142 | ||||
| 5143 | if (multibyte /* && (c != '\n') */ | |||
| 5144 | && BASE_LEADING_CODE_P (c)(0)) | |||
| 5145 | c = STRING_CHAR (&p2[2], pend - &p2[2])(*(&p2[2])); | |||
| 5146 | ||||
| 5147 | /* Test if C is listed in charset (or charset_not) | |||
| 5148 | at `&p1[3]'. */ | |||
| 5149 | if (SINGLE_BYTE_CHAR_P (c)(1)) | |||
| 5150 | { | |||
| 5151 | if (c < CHARSET_BITMAP_SIZE (&p1[3])((&p1[3])[1] & 0x7F) * BYTEWIDTH8 | |||
| 5152 | && p1[5 + c / BYTEWIDTH8] & (1 << (c % BYTEWIDTH8))) | |||
| 5153 | not = !not; | |||
| 5154 | } | |||
| 5155 | else if (CHARSET_RANGE_TABLE_EXISTS_P (&p1[3])((&p1[3])[1] & 0x80)) | |||
| 5156 | CHARSET_LOOKUP_RANGE_TABLE (not, c, &p1[3])do { int count; unsigned char *range_table = (&(&p1[3 ])[2 + ((&p1[3])[1] & 0x7F)]); do { do { (count) = *( range_table) & 0377; (count) += ((signed char) (*((range_table ) + 1))) << 8; } while (0); (range_table) += 2; } while (0); do { int range_start, range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3 ); for (p = (range_table); p < range_table_end; p += 2 * 3 ) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p) [2] << 16)); } while (0); do { (range_end) = ((p + 3)[0 ] | ((p + 3)[1] << 8) | ((p + 3)[2] << 16)); } while (0); if (range_start <= ((c)) && ((c)) <= range_end ) { ((not)) = !((not)); break; } } } while (0); } while (0); | |||
| 5157 | ||||
| 5158 | /* `not' is equal to 1 if c would match, which means | |||
| 5159 | that we can't change to pop_failure_jump. */ | |||
| 5160 | if (!not) | |||
| 5161 | { | |||
| 5162 | p[-3] = (unsigned char) pop_failure_jump; | |||
| 5163 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |||
| 5164 | } | |||
| 5165 | } | |||
| 5166 | } | |||
| 5167 | else if ((re_opcode_t) *p2 == charset) | |||
| 5168 | { | |||
| 5169 | if ((re_opcode_t) p1[3] == exactn) | |||
| 5170 | { | |||
| 5171 | register unsigned int c = p1[5]; | |||
| 5172 | int not = 0; | |||
| 5173 | ||||
| 5174 | if (multibyte && BASE_LEADING_CODE_P (c)(0)) | |||
| 5175 | c = STRING_CHAR (&p1[5], pend - &p1[5])(*(&p1[5])); | |||
| 5176 | ||||
| 5177 | /* Test if C is listed in charset at `p2'. */ | |||
| 5178 | if (SINGLE_BYTE_CHAR_P (c)(1)) | |||
| 5179 | { | |||
| 5180 | if (c < CHARSET_BITMAP_SIZE (p2)((p2)[1] & 0x7F) * BYTEWIDTH8 | |||
| 5181 | && (p2[2 + c / BYTEWIDTH8] | |||
| 5182 | & (1 << (c % BYTEWIDTH8)))) | |||
| 5183 | not = !not; | |||
| 5184 | } | |||
| 5185 | else if (CHARSET_RANGE_TABLE_EXISTS_P (p2)((p2)[1] & 0x80)) | |||
| 5186 | CHARSET_LOOKUP_RANGE_TABLE (not, c, p2)do { int count; unsigned char *range_table = (&(p2)[2 + ( (p2)[1] & 0x7F)]); do { do { (count) = *(range_table) & 0377; (count) += ((signed char) (*((range_table) + 1))) << 8; } while (0); (range_table) += 2; } while (0); do { int range_start , range_end; unsigned char *p; unsigned char *range_table_end = (((range_table)) + ((count)) * 2 * 3); for (p = (range_table ); p < range_table_end; p += 2 * 3) { do { (range_start) = ((p)[0] | ((p)[1] << 8) | ((p)[2] << 16)); } while (0); do { (range_end) = ((p + 3)[0] | ((p + 3)[1] << 8 ) | ((p + 3)[2] << 16)); } while (0); if (range_start <= ((c)) && ((c)) <= range_end) { ((not)) = !((not)) ; break; } } } while (0); } while (0); | |||
| 5187 | ||||
| 5188 | if (!not) | |||
| 5189 | { | |||
| 5190 | p[-3] = (unsigned char) pop_failure_jump; | |||
| 5191 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |||
| 5192 | } | |||
| 5193 | } | |||
| 5194 | ||||
| 5195 | /* It is hard to list up all the character in charset | |||
| 5196 | P2 if it includes multibyte character. Give up in | |||
| 5197 | such case. */ | |||
| 5198 | else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2)((p2)[1] & 0x80)) | |||
| 5199 | { | |||
| 5200 | /* Now, we are sure that P2 has no range table. | |||
| 5201 | So, for the size of bitmap in P2, `p2[1]' is | |||
| 5202 | enough. But P1 may have range table, so the | |||
| 5203 | size of bitmap table of P1 is extracted by | |||
| 5204 | using macro `CHARSET_BITMAP_SIZE'. | |||
| 5205 | ||||
| 5206 | Since we know that all the character listed in | |||
| 5207 | P2 is ASCII, it is enough to test only bitmap | |||
| 5208 | table of P1. */ | |||
| 5209 | ||||
| 5210 | if ((re_opcode_t) p1[3] == charset_not) | |||
| 5211 | { | |||
| 5212 | int idx; | |||
| 5213 | /* We win if the charset_not inside the loop lists | |||
| 5214 | every character listed in the charset after. */ | |||
| 5215 | for (idx = 0; idx < (int) p2[1]; idx++) | |||
| 5216 | if (! (p2[2 + idx] == 0 | |||
| 5217 | || (idx < CHARSET_BITMAP_SIZE (&p1[3])((&p1[3])[1] & 0x7F) | |||
| 5218 | && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) | |||
| 5219 | break; | |||
| 5220 | ||||
| 5221 | if (idx == p2[1]) | |||
| 5222 | { | |||
| 5223 | p[-3] = (unsigned char) pop_failure_jump; | |||
| 5224 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |||
| 5225 | } | |||
| 5226 | } | |||
| 5227 | else if ((re_opcode_t) p1[3] == charset) | |||
| 5228 | { | |||
| 5229 | int idx; | |||
| 5230 | /* We win if the charset inside the loop | |||
| 5231 | has no overlap with the one after the loop. */ | |||
| 5232 | for (idx = 0; | |||
| 5233 | (idx < (int) p2[1] | |||
| 5234 | && idx < CHARSET_BITMAP_SIZE (&p1[3])((&p1[3])[1] & 0x7F)); | |||
| 5235 | idx++) | |||
| 5236 | if ((p2[2 + idx] & p1[5 + idx]) != 0) | |||
| 5237 | break; | |||
| 5238 | ||||
| 5239 | if (idx == p2[1] | |||
| 5240 | || idx == CHARSET_BITMAP_SIZE (&p1[3])((&p1[3])[1] & 0x7F)) | |||
| 5241 | { | |||
| 5242 | p[-3] = (unsigned char) pop_failure_jump; | |||
| 5243 | DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); | |||
| 5244 | } | |||
| 5245 | } | |||
| 5246 | } | |||
| 5247 | } | |||
| 5248 | } | |||
| 5249 | p -= 2; /* Point at relative address again. */ | |||
| 5250 | if ((re_opcode_t) p[-1] != pop_failure_jump) | |||
| 5251 | { | |||
| 5252 | p[-1] = (unsigned char) jump; | |||
| 5253 | DEBUG_PRINT1 (" Match => jump.\n"); | |||
| 5254 | goto unconditional_jump; | |||
| 5255 | } | |||
| 5256 | /* Note fall through. */ | |||
| 5257 | ||||
| 5258 | ||||
| 5259 | /* The end of a simple repeat has a pop_failure_jump back to | |||
| 5260 | its matching on_failure_jump, where the latter will push a | |||
| 5261 | failure point. The pop_failure_jump takes off failure | |||
| 5262 | points put on by this pop_failure_jump's matching | |||
| 5263 | on_failure_jump; we got through the pattern to here from the | |||
| 5264 | matching on_failure_jump, so didn't fail. */ | |||
| 5265 | case pop_failure_jump: | |||
| 5266 | { | |||
| 5267 | /* We need to pass separate storage for the lowest and | |||
| 5268 | highest registers, even though we don't care about the | |||
| 5269 | actual values. Otherwise, we will restore only one | |||
| 5270 | register from the stack, since lowest will == highest in | |||
| 5271 | `pop_failure_point'. */ | |||
| 5272 | unsigned dummy_low_reg, dummy_high_reg; | |||
| 5273 | unsigned char *pdummy; | |||
| 5274 | const char *sdummy; | |||
| 5275 | ||||
| 5276 | DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); | |||
| 5277 | POP_FAILURE_POINT (sdummy, pdummy,{ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) sdummy = (const char *) string_temp ; ; ; ; pdummy = (unsigned char *) fail_stack.stack[--fail_stack .avail].pointer; ; ; dummy_high_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; dummy_low_reg = (unsigned) fail_stack .stack[--fail_stack.avail].integer; ; if (1) for (this_reg = dummy_high_reg ; this_reg >= dummy_low_reg; this_reg--) { ; reg_info_dummy [this_reg].word = fail_stack.stack[--fail_stack.avail]; ; reg_dummy [this_reg] = (const char *) fail_stack.stack[--fail_stack.avail ].pointer; ; reg_dummy[this_reg] = (const char *) fail_stack. stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > dummy_high_reg; this_reg-- ) { reg_info_dummy[this_reg].word.integer = 0; reg_dummy[this_reg ] = 0; reg_dummy[this_reg] = 0; } highest_active_reg = dummy_high_reg ; } set_regs_matched_done = 0; ; } | |||
| 5278 | dummy_low_reg, dummy_high_reg,{ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) sdummy = (const char *) string_temp ; ; ; ; pdummy = (unsigned char *) fail_stack.stack[--fail_stack .avail].pointer; ; ; dummy_high_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; dummy_low_reg = (unsigned) fail_stack .stack[--fail_stack.avail].integer; ; if (1) for (this_reg = dummy_high_reg ; this_reg >= dummy_low_reg; this_reg--) { ; reg_info_dummy [this_reg].word = fail_stack.stack[--fail_stack.avail]; ; reg_dummy [this_reg] = (const char *) fail_stack.stack[--fail_stack.avail ].pointer; ; reg_dummy[this_reg] = (const char *) fail_stack. stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > dummy_high_reg; this_reg-- ) { reg_info_dummy[this_reg].word.integer = 0; reg_dummy[this_reg ] = 0; reg_dummy[this_reg] = 0; } highest_active_reg = dummy_high_reg ; } set_regs_matched_done = 0; ; } | |||
| 5279 | reg_dummy, reg_dummy, reg_info_dummy){ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) sdummy = (const char *) string_temp ; ; ; ; pdummy = (unsigned char *) fail_stack.stack[--fail_stack .avail].pointer; ; ; dummy_high_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; dummy_low_reg = (unsigned) fail_stack .stack[--fail_stack.avail].integer; ; if (1) for (this_reg = dummy_high_reg ; this_reg >= dummy_low_reg; this_reg--) { ; reg_info_dummy [this_reg].word = fail_stack.stack[--fail_stack.avail]; ; reg_dummy [this_reg] = (const char *) fail_stack.stack[--fail_stack.avail ].pointer; ; reg_dummy[this_reg] = (const char *) fail_stack. stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > dummy_high_reg; this_reg-- ) { reg_info_dummy[this_reg].word.integer = 0; reg_dummy[this_reg ] = 0; reg_dummy[this_reg] = 0; } highest_active_reg = dummy_high_reg ; } set_regs_matched_done = 0; ; }; | |||
| 5280 | } | |||
| 5281 | /* Note fall through. */ | |||
| 5282 | ||||
| 5283 | ||||
| 5284 | /* Unconditionally jump (without popping any failure points). */ | |||
| 5285 | case jump: | |||
| 5286 | unconditional_jump: | |||
| 5287 | #if defined (WINDOWSNT) && defined (emacs) | |||
| 5288 | QUIT; | |||
| 5289 | #endif | |||
| 5290 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); /* Get the amount to jump. */ | |||
| 5291 | DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); | |||
| 5292 | p += mcnt; /* Do the jump. */ | |||
| 5293 | DEBUG_PRINT2 ("(to 0x%x).\n", p); | |||
| 5294 | break; | |||
| 5295 | ||||
| 5296 | ||||
| 5297 | /* We need this opcode so we can detect where alternatives end | |||
| 5298 | in `group_match_null_string_p' et al. */ | |||
| 5299 | case jump_past_alt: | |||
| 5300 | DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); | |||
| 5301 | goto unconditional_jump; | |||
| 5302 | ||||
| 5303 | ||||
| 5304 | /* Normally, the on_failure_jump pushes a failure point, which | |||
| 5305 | then gets popped at pop_failure_jump. We will end up at | |||
| 5306 | pop_failure_jump, also, and with a pattern of, say, `a+', we | |||
| 5307 | are skipping over the on_failure_jump, so we have to push | |||
| 5308 | something meaningless for pop_failure_jump to pop. */ | |||
| 5309 | case dummy_failure_jump: | |||
| 5310 | DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); | |||
| 5311 | /* It doesn't matter what we push for the string here. What | |||
| 5312 | the code at `fail' tests is the value for the pattern. */ | |||
| 5313 | PUSH_FAILURE_POINT (0, 0, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (0); ; ; ; fail_stack .stack[fail_stack.avail++].pointer = (unsigned char *) (0); ; ; } while (0); | |||
| 5314 | goto unconditional_jump; | |||
| 5315 | ||||
| 5316 | ||||
| 5317 | /* At the end of an alternative, we need to push a dummy failure | |||
| 5318 | point in case we are followed by a `pop_failure_jump', because | |||
| 5319 | we don't want the failure point for the alternative to be | |||
| 5320 | popped. For example, matching `(a|ab)*' against `aab' | |||
| 5321 | requires that we match the `ab' alternative. */ | |||
| 5322 | case push_dummy_failure: | |||
| 5323 | DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); | |||
| 5324 | /* See comments just above at `dummy_failure_jump' about the | |||
| 5325 | two zeroes. */ | |||
| 5326 | PUSH_FAILURE_POINT (0, 0, -2)do { char *destination; int this_reg; ; ; ; ; ; ; ; while ((( fail_stack).size - (fail_stack).avail) < (((0 ? 0 : highest_active_reg - lowest_active_reg + 1) * 3) + 4)) { if (!(((fail_stack).size * sizeof (fail_stack_elt_t) >= re_max_failures * 20) ? 0 : ((fail_stack).stack = (fail_stack_elt_t *) realloc ((fail_stack ).stack, ((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack ).size * sizeof (fail_stack_elt_t) * 4)))), (fail_stack).stack == ((void *)0) ? 0 : ((fail_stack).size = (((re_max_failures * 20) < (((fail_stack).size * sizeof (fail_stack_elt_t) * 4)) ? (re_max_failures * 20) : (((fail_stack).size * sizeof ( fail_stack_elt_t) * 4))) / sizeof (fail_stack_elt_t)), 1)))) return -2; ; ; } ; if (1) for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; this_reg++) { ; ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (regstart[this_reg ]); ; fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (regend[this_reg]); ; ; ; ; ; ; fail_stack.stack[fail_stack .avail++] = (reg_info[this_reg].word); } ; fail_stack.stack[fail_stack .avail++].integer = (lowest_active_reg); ; fail_stack.stack[fail_stack .avail++].integer = (highest_active_reg); ; ; fail_stack.stack [fail_stack.avail++].pointer = (unsigned char *) (0); ; ; ; fail_stack .stack[fail_stack.avail++].pointer = (unsigned char *) (0); ; ; } while (0); | |||
| 5327 | break; | |||
| 5328 | ||||
| 5329 | /* Have to succeed matching what follows at least n times. | |||
| 5330 | After that, handle like `on_failure_jump'. */ | |||
| 5331 | case succeed_n: | |||
| 5332 | EXTRACT_NUMBER (mcnt, p + 2)do { (mcnt) = *(p + 2) & 0377; (mcnt) += ((signed char) ( *((p + 2) + 1))) << 8; } while (0); | |||
| 5333 | DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); | |||
| 5334 | ||||
| 5335 | assert (mcnt >= 0); | |||
| 5336 | /* Originally, this is how many times we HAVE to succeed. */ | |||
| 5337 | if (mcnt > 0) | |||
| 5338 | { | |||
| 5339 | mcnt--; | |||
| 5340 | p += 2; | |||
| 5341 | STORE_NUMBER_AND_INCR (p, mcnt)do { do { (p)[0] = (mcnt) & 0377; (p)[1] = (mcnt) >> 8; } while (0); (p) += 2; } while (0); | |||
| 5342 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt); | |||
| 5343 | } | |||
| 5344 | else if (mcnt == 0) | |||
| 5345 | { | |||
| 5346 | DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2); | |||
| 5347 | p[2] = (unsigned char) no_op; | |||
| 5348 | p[3] = (unsigned char) no_op; | |||
| 5349 | goto on_failure; | |||
| 5350 | } | |||
| 5351 | break; | |||
| 5352 | ||||
| 5353 | case jump_n: | |||
| 5354 | EXTRACT_NUMBER (mcnt, p + 2)do { (mcnt) = *(p + 2) & 0377; (mcnt) += ((signed char) ( *((p + 2) + 1))) << 8; } while (0); | |||
| 5355 | DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); | |||
| 5356 | ||||
| 5357 | /* Originally, this is how many times we CAN jump. */ | |||
| 5358 | if (mcnt) | |||
| 5359 | { | |||
| 5360 | mcnt--; | |||
| 5361 | STORE_NUMBER (p + 2, mcnt)do { (p + 2)[0] = (mcnt) & 0377; (p + 2)[1] = (mcnt) >> 8; } while (0); | |||
| 5362 | goto unconditional_jump; | |||
| 5363 | } | |||
| 5364 | /* If don't have to jump any more, skip over the rest of command. */ | |||
| 5365 | else | |||
| 5366 | p += 4; | |||
| 5367 | break; | |||
| 5368 | ||||
| 5369 | case set_number_at: | |||
| 5370 | { | |||
| 5371 | DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); | |||
| 5372 | ||||
| 5373 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 5374 | p1 = p + mcnt; | |||
| 5375 | EXTRACT_NUMBER_AND_INCR (mcnt, p)do { do { (mcnt) = *(p) & 0377; (mcnt) += ((signed char) ( *((p) + 1))) << 8; } while (0); (p) += 2; } while (0); | |||
| 5376 | DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); | |||
| 5377 | STORE_NUMBER (p1, mcnt)do { (p1)[0] = (mcnt) & 0377; (p1)[1] = (mcnt) >> 8 ; } while (0); | |||
| 5378 | break; | |||
| 5379 | } | |||
| 5380 | ||||
| 5381 | case wordbound: | |||
| 5382 | DEBUG_PRINT1 ("EXECUTING wordbound.\n"); | |||
| 5383 | ||||
| 5384 | /* We SUCCEED in one of the following cases: */ | |||
| 5385 | ||||
| 5386 | /* Case 1: D is at the beginning or the end of string. */ | |||
| 5387 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2) || AT_STRINGS_END (d)((d) == end2)) | |||
| 5388 | break; | |||
| 5389 | else | |||
| 5390 | { | |||
| 5391 | /* C1 is the character before D, S1 is the syntax of C1, C2 | |||
| 5392 | is the character at D, and S2 is the syntax of C2. */ | |||
| 5393 | int c1, c2, s1, s2; | |||
| 5394 | int pos1 = PTR_TO_OFFSET (d - 1)0; | |||
| 5395 | int charpos; | |||
| 5396 | ||||
| 5397 | GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2)(c1 = ((d) == (string2) ? *((end1) - 1) : *((d) - 1))); | |||
| 5398 | GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2)(c2 = ((d) == (end1) ? *(string2) : *(d))); | |||
| 5399 | #ifdef emacs | |||
| 5400 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); | |||
| 5401 | UPDATE_SYNTAX_TABLE (charpos); | |||
| 5402 | #endif | |||
| 5403 | s1 = SYNTAX (c1)re_syntax_table[c1]; | |||
| 5404 | #ifdef emacs | |||
| 5405 | UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1); | |||
| 5406 | #endif | |||
| 5407 | s2 = SYNTAX (c2)re_syntax_table[c2]; | |||
| 5408 | ||||
| 5409 | if (/* Case 2: Only one of S1 and S2 is Sword. */ | |||
| 5410 | ((s1 == Sword1) != (s2 == Sword1)) | |||
| 5411 | /* Case 3: Both of S1 and S2 are Sword, and macro | |||
| 5412 | WORD_BOUNDARY_P (C1, C2) returns nonzero. */ | |||
| 5413 | || ((s1 == Sword1) && WORD_BOUNDARY_P (c1, c2)(0))) | |||
| 5414 | break; | |||
| 5415 | } | |||
| 5416 | goto fail; | |||
| 5417 | ||||
| 5418 | case notwordbound: | |||
| 5419 | DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); | |||
| 5420 | ||||
| 5421 | /* We FAIL in one of the following cases: */ | |||
| 5422 | ||||
| 5423 | /* Case 1: D is at the beginning or the end of string. */ | |||
| 5424 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2) || AT_STRINGS_END (d)((d) == end2)) | |||
| 5425 | goto fail; | |||
| 5426 | else | |||
| 5427 | { | |||
| 5428 | /* C1 is the character before D, S1 is the syntax of C1, C2 | |||
| 5429 | is the character at D, and S2 is the syntax of C2. */ | |||
| 5430 | int c1, c2, s1, s2; | |||
| 5431 | int pos1 = PTR_TO_OFFSET (d - 1)0; | |||
| 5432 | int charpos; | |||
| 5433 | ||||
| 5434 | GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2)(c1 = ((d) == (string2) ? *((end1) - 1) : *((d) - 1))); | |||
| 5435 | GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2)(c2 = ((d) == (end1) ? *(string2) : *(d))); | |||
| 5436 | #ifdef emacs | |||
| 5437 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); | |||
| 5438 | UPDATE_SYNTAX_TABLE (charpos); | |||
| 5439 | #endif | |||
| 5440 | s1 = SYNTAX (c1)re_syntax_table[c1]; | |||
| 5441 | #ifdef emacs | |||
| 5442 | UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1); | |||
| 5443 | #endif | |||
| 5444 | s2 = SYNTAX (c2)re_syntax_table[c2]; | |||
| 5445 | ||||
| 5446 | if (/* Case 2: Only one of S1 and S2 is Sword. */ | |||
| 5447 | ((s1 == Sword1) != (s2 == Sword1)) | |||
| 5448 | /* Case 3: Both of S1 and S2 are Sword, and macro | |||
| 5449 | WORD_BOUNDARY_P (C1, C2) returns nonzero. */ | |||
| 5450 | || ((s1 == Sword1) && WORD_BOUNDARY_P (c1, c2)(0))) | |||
| 5451 | goto fail; | |||
| 5452 | } | |||
| 5453 | break; | |||
| 5454 | ||||
| 5455 | case wordbeg: | |||
| 5456 | DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); | |||
| 5457 | ||||
| 5458 | /* We FAIL in one of the following cases: */ | |||
| 5459 | ||||
| 5460 | /* Case 1: D is at the end of string. */ | |||
| 5461 | if (AT_STRINGS_END (d)((d) == end2)) | |||
| 5462 | goto fail; | |||
| 5463 | else | |||
| 5464 | { | |||
| 5465 | /* C1 is the character before D, S1 is the syntax of C1, C2 | |||
| 5466 | is the character at D, and S2 is the syntax of C2. */ | |||
| 5467 | int c1, c2, s1, s2; | |||
| 5468 | int pos1 = PTR_TO_OFFSET (d)0; | |||
| 5469 | int charpos; | |||
| 5470 | ||||
| 5471 | GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2)(c2 = ((d) == (end1) ? *(string2) : *(d))); | |||
| 5472 | #ifdef emacs | |||
| 5473 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1); | |||
| 5474 | UPDATE_SYNTAX_TABLE (charpos); | |||
| 5475 | #endif | |||
| 5476 | s2 = SYNTAX (c2)re_syntax_table[c2]; | |||
| 5477 | ||||
| 5478 | /* Case 2: S2 is not Sword. */ | |||
| 5479 | if (s2 != Sword1) | |||
| 5480 | goto fail; | |||
| 5481 | ||||
| 5482 | /* Case 3: D is not at the beginning of string ... */ | |||
| 5483 | if (!AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2)) | |||
| 5484 | { | |||
| 5485 | GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2)(c1 = ((d) == (string2) ? *((end1) - 1) : *((d) - 1))); | |||
| 5486 | #ifdef emacs | |||
| 5487 | UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1); | |||
| 5488 | #endif | |||
| 5489 | s1 = SYNTAX (c1)re_syntax_table[c1]; | |||
| 5490 | ||||
| 5491 | /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2) | |||
| 5492 | returns 0. */ | |||
| 5493 | if ((s1 == Sword1) && !WORD_BOUNDARY_P (c1, c2)(0)) | |||
| 5494 | goto fail; | |||
| 5495 | } | |||
| 5496 | } | |||
| 5497 | break; | |||
| 5498 | ||||
| 5499 | case wordend: | |||
| 5500 | DEBUG_PRINT1 ("EXECUTING wordend.\n"); | |||
| 5501 | ||||
| 5502 | /* We FAIL in one of the following cases: */ | |||
| 5503 | ||||
| 5504 | /* Case 1: D is at the beginning of string. */ | |||
| 5505 | if (AT_STRINGS_BEG (d)((d) == (size1 ? string1 : string2) || !size2)) | |||
| 5506 | goto fail; | |||
| 5507 | else | |||
| 5508 | { | |||
| 5509 | /* C1 is the character before D, S1 is the syntax of C1, C2 | |||
| 5510 | is the character at D, and S2 is the syntax of C2. */ | |||
| 5511 | int c1, c2, s1, s2; | |||
| 5512 | int pos1 = PTR_TO_OFFSET (d)0; | |||
| 5513 | int charpos; | |||
| 5514 | ||||
| 5515 | GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2)(c1 = ((d) == (string2) ? *((end1) - 1) : *((d) - 1))); | |||
| ||||
| 5516 | #ifdef emacs | |||
| 5517 | charpos = SYNTAX_TABLE_BYTE_TO_CHAR (pos1 - 1); | |||
| 5518 | UPDATE_SYNTAX_TABLE (charpos); | |||
| 5519 | #endif | |||
| 5520 | s1 = SYNTAX (c1)re_syntax_table[c1]; | |||
| 5521 | ||||
| 5522 | /* Case 2: S1 is not Sword. */ | |||
| 5523 | if (s1 != Sword1) | |||
| 5524 | goto fail; | |||
| 5525 | ||||
| 5526 | /* Case 3: D is not at the end of string ... */ | |||
| 5527 | if (!AT_STRINGS_END (d)((d) == end2)) | |||
| 5528 | { | |||
| 5529 | GET_CHAR_AFTER_2 (c2, d, string1, end1, string2, end2)(c2 = ((d) == (end1) ? *(string2) : *(d))); | |||
| 5530 | #ifdef emacs | |||
| 5531 | UPDATE_SYNTAX_TABLE_FORWARD (charpos); | |||
| 5532 | #endif | |||
| 5533 | s2 = SYNTAX (c2)re_syntax_table[c2]; | |||
| 5534 | ||||
| 5535 | /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2) | |||
| 5536 | returns 0. */ | |||
| 5537 | if ((s2 == Sword1) && !WORD_BOUNDARY_P (c1, c2)(0)) | |||
| 5538 | goto fail; | |||
| 5539 | } | |||
| 5540 | } | |||
| 5541 | break; | |||
| 5542 | ||||
| 5543 | #ifdef emacs | |||
| 5544 | case before_dot: | |||
| 5545 | DEBUG_PRINT1 ("EXECUTING before_dot.\n"); | |||
| 5546 | if (PTR_BYTE_POS ((unsigned char *) d) >= PT_BYTE) | |||
| 5547 | goto fail; | |||
| 5548 | break; | |||
| 5549 | ||||
| 5550 | case at_dot: | |||
| 5551 | DEBUG_PRINT1 ("EXECUTING at_dot.\n"); | |||
| 5552 | if (PTR_BYTE_POS ((unsigned char *) d) != PT_BYTE) | |||
| 5553 | goto fail; | |||
| 5554 | break; | |||
| 5555 | ||||
| 5556 | case after_dot: | |||
| 5557 | DEBUG_PRINT1 ("EXECUTING after_dot.\n"); | |||
| 5558 | if (PTR_BYTE_POS ((unsigned char *) d) <= PT_BYTE) | |||
| 5559 | goto fail; | |||
| 5560 | break; | |||
| 5561 | ||||
| 5562 | case syntaxspec: | |||
| 5563 | DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); | |||
| 5564 | mcnt = *p++; | |||
| 5565 | goto matchsyntax; | |||
| 5566 | ||||
| 5567 | case wordchar: | |||
| 5568 | DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); | |||
| 5569 | mcnt = (int) Sword1; | |||
| 5570 | matchsyntax: | |||
| 5571 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 5572 | #ifdef emacs | |||
| 5573 | { | |||
| 5574 | int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d)0); | |||
| 5575 | UPDATE_SYNTAX_TABLE (pos1); | |||
| 5576 | } | |||
| 5577 | #endif | |||
| 5578 | { | |||
| 5579 | int c, len; | |||
| 5580 | ||||
| 5581 | if (multibyte) | |||
| 5582 | /* we must concern about multibyte form, ... */ | |||
| 5583 | c = STRING_CHAR_AND_LENGTH (d, dend - d, len)((len) = 1, *(d)); | |||
| 5584 | else | |||
| 5585 | /* everything should be handled as ASCII, even though it | |||
| 5586 | looks like multibyte form. */ | |||
| 5587 | c = *d, len = 1; | |||
| 5588 | ||||
| 5589 | if (SYNTAX (c)re_syntax_table[c] != (enum syntaxcode) mcnt) | |||
| 5590 | goto fail; | |||
| 5591 | d += len; | |||
| 5592 | } | |||
| 5593 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 5594 | break; | |||
| 5595 | ||||
| 5596 | case notsyntaxspec: | |||
| 5597 | DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); | |||
| 5598 | mcnt = *p++; | |||
| 5599 | goto matchnotsyntax; | |||
| 5600 | ||||
| 5601 | case notwordchar: | |||
| 5602 | DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); | |||
| 5603 | mcnt = (int) Sword1; | |||
| 5604 | matchnotsyntax: | |||
| 5605 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 5606 | #ifdef emacs | |||
| 5607 | { | |||
| 5608 | int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d)0); | |||
| 5609 | UPDATE_SYNTAX_TABLE (pos1); | |||
| 5610 | } | |||
| 5611 | #endif | |||
| 5612 | { | |||
| 5613 | int c, len; | |||
| 5614 | ||||
| 5615 | if (multibyte) | |||
| 5616 | c = STRING_CHAR_AND_LENGTH (d, dend - d, len)((len) = 1, *(d)); | |||
| 5617 | else | |||
| 5618 | c = *d, len = 1; | |||
| 5619 | ||||
| 5620 | if (SYNTAX (c)re_syntax_table[c] == (enum syntaxcode) mcnt) | |||
| 5621 | goto fail; | |||
| 5622 | d += len; | |||
| 5623 | } | |||
| 5624 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 5625 | break; | |||
| 5626 | ||||
| 5627 | case categoryspec: | |||
| 5628 | DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p); | |||
| 5629 | mcnt = *p++; | |||
| 5630 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 5631 | { | |||
| 5632 | int c, len; | |||
| 5633 | ||||
| 5634 | if (multibyte) | |||
| 5635 | c = STRING_CHAR_AND_LENGTH (d, dend - d, len)((len) = 1, *(d)); | |||
| 5636 | else | |||
| 5637 | c = *d, len = 1; | |||
| 5638 | ||||
| 5639 | if (!CHAR_HAS_CATEGORY (c, mcnt)) | |||
| 5640 | goto fail; | |||
| 5641 | d += len; | |||
| 5642 | } | |||
| 5643 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 5644 | break; | |||
| 5645 | ||||
| 5646 | case notcategoryspec: | |||
| 5647 | DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p); | |||
| 5648 | mcnt = *p++; | |||
| 5649 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 5650 | { | |||
| 5651 | int c, len; | |||
| 5652 | ||||
| 5653 | if (multibyte) | |||
| 5654 | c = STRING_CHAR_AND_LENGTH (d, dend - d, len)((len) = 1, *(d)); | |||
| 5655 | else | |||
| 5656 | c = *d, len = 1; | |||
| 5657 | ||||
| 5658 | if (CHAR_HAS_CATEGORY (c, mcnt)) | |||
| 5659 | goto fail; | |||
| 5660 | d += len; | |||
| 5661 | } | |||
| 5662 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 5663 | break; | |||
| 5664 | ||||
| 5665 | #else /* not emacs */ | |||
| 5666 | case wordchar: | |||
| 5667 | DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); | |||
| 5668 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 5669 | if (!WORDCHAR_P (d)(re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] == 1)) | |||
| 5670 | goto fail; | |||
| 5671 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 5672 | d++; | |||
| 5673 | break; | |||
| 5674 | ||||
| 5675 | case notwordchar: | |||
| 5676 | DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); | |||
| 5677 | PREFETCH ()while (d == dend) { if (dend == end_match_2) goto fail; d = string2 ; dend = end_match_2; }; | |||
| 5678 | if (WORDCHAR_P (d)(re_syntax_table[(d) == end1 ? *string2 : (d) == string2 - 1 ? *(end1 - 1) : *(d)] == 1)) | |||
| 5679 | goto fail; | |||
| 5680 | SET_REGS_MATCHED ()do { if (!set_regs_matched_done) { unsigned r; set_regs_matched_done = 1; for (r = lowest_active_reg; r <= highest_active_reg; r++) { ((reg_info[r]).bits.matched_something) = ((reg_info[r ]).bits.ever_matched_something) = 1; } } } while (0); | |||
| 5681 | d++; | |||
| 5682 | break; | |||
| 5683 | #endif /* not emacs */ | |||
| 5684 | ||||
| 5685 | default: | |||
| 5686 | abort (); | |||
| 5687 | } | |||
| 5688 | continue; /* Successfully executed one pattern command; keep going. */ | |||
| 5689 | ||||
| 5690 | ||||
| 5691 | /* We goto here if a matching operation fails. */ | |||
| 5692 | fail: | |||
| 5693 | #if defined (WINDOWSNT) && defined (emacs) | |||
| 5694 | QUIT; | |||
| 5695 | #endif | |||
| 5696 | if (!FAIL_STACK_EMPTY ()(fail_stack.avail == 0)) | |||
| 5697 | { /* A restart point is known. Restore to that state. */ | |||
| 5698 | DEBUG_PRINT1 ("\nFAIL:\n"); | |||
| 5699 | POP_FAILURE_POINT (d, p,{ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) d = (const char *) string_temp ; ; ; ; p = (unsigned char *) fail_stack.stack[--fail_stack.avail ].pointer; ; ; highest_active_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; lowest_active_reg = (unsigned ) fail_stack.stack[--fail_stack.avail].integer; ; if (1) for ( this_reg = highest_active_reg; this_reg >= lowest_active_reg ; this_reg--) { ; reg_info[this_reg].word = fail_stack.stack[ --fail_stack.avail]; ; regend[this_reg] = (const char *) fail_stack .stack[--fail_stack.avail].pointer; ; regstart[this_reg] = (const char *) fail_stack.stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > highest_active_reg ; this_reg--) { reg_info[this_reg].word.integer = 0; regend[this_reg ] = 0; regstart[this_reg] = 0; } highest_active_reg = highest_active_reg ; } set_regs_matched_done = 0; ; } | |||
| 5700 | lowest_active_reg, highest_active_reg,{ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) d = (const char *) string_temp ; ; ; ; p = (unsigned char *) fail_stack.stack[--fail_stack.avail ].pointer; ; ; highest_active_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; lowest_active_reg = (unsigned ) fail_stack.stack[--fail_stack.avail].integer; ; if (1) for ( this_reg = highest_active_reg; this_reg >= lowest_active_reg ; this_reg--) { ; reg_info[this_reg].word = fail_stack.stack[ --fail_stack.avail]; ; regend[this_reg] = (const char *) fail_stack .stack[--fail_stack.avail].pointer; ; regstart[this_reg] = (const char *) fail_stack.stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > highest_active_reg ; this_reg--) { reg_info[this_reg].word.integer = 0; regend[this_reg ] = 0; regstart[this_reg] = 0; } highest_active_reg = highest_active_reg ; } set_regs_matched_done = 0; ; } | |||
| 5701 | regstart, regend, reg_info){ int this_reg; const unsigned char *string_temp; ; ; ; ; ; ; ; string_temp = fail_stack.stack[--fail_stack.avail].pointer ; if (string_temp != ((void *)0)) d = (const char *) string_temp ; ; ; ; p = (unsigned char *) fail_stack.stack[--fail_stack.avail ].pointer; ; ; highest_active_reg = (unsigned) fail_stack.stack [--fail_stack.avail].integer; ; lowest_active_reg = (unsigned ) fail_stack.stack[--fail_stack.avail].integer; ; if (1) for ( this_reg = highest_active_reg; this_reg >= lowest_active_reg ; this_reg--) { ; reg_info[this_reg].word = fail_stack.stack[ --fail_stack.avail]; ; regend[this_reg] = (const char *) fail_stack .stack[--fail_stack.avail].pointer; ; regstart[this_reg] = (const char *) fail_stack.stack[--fail_stack.avail].pointer; ; } else { for (this_reg = highest_active_reg; this_reg > highest_active_reg ; this_reg--) { reg_info[this_reg].word.integer = 0; regend[this_reg ] = 0; regstart[this_reg] = 0; } highest_active_reg = highest_active_reg ; } set_regs_matched_done = 0; ; }; | |||
| 5702 | ||||
| 5703 | /* If this failure point is a dummy, try the next one. */ | |||
| 5704 | if (!p) | |||
| 5705 | goto fail; | |||
| 5706 | ||||
| 5707 | /* If we failed to the end of the pattern, don't examine *p. */ | |||
| 5708 | assert (p <= pend); | |||
| 5709 | if (p < pend) | |||
| 5710 | { | |||
| 5711 | boolean is_a_jump_n = false0; | |||
| 5712 | ||||
| 5713 | /* If failed to a backwards jump that's part of a repetition | |||
| 5714 | loop, need to pop this failure point and use the next one. */ | |||
| 5715 | switch ((re_opcode_t) *p) | |||
| 5716 | { | |||
| 5717 | case jump_n: | |||
| 5718 | is_a_jump_n = true1; | |||
| 5719 | case maybe_pop_jump: | |||
| 5720 | case pop_failure_jump: | |||
| 5721 | case jump: | |||
| 5722 | p1 = p + 1; | |||
| 5723 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 5724 | p1 += mcnt; | |||
| 5725 | ||||
| 5726 | if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) | |||
| 5727 | || (!is_a_jump_n | |||
| 5728 | && (re_opcode_t) *p1 == on_failure_jump)) | |||
| 5729 | goto fail; | |||
| 5730 | break; | |||
| 5731 | default: | |||
| 5732 | /* do nothing */ ; | |||
| 5733 | } | |||
| 5734 | } | |||
| 5735 | ||||
| 5736 | if (d >= string1 && d <= end1) | |||
| 5737 | dend = end_match_1; | |||
| 5738 | } | |||
| 5739 | else | |||
| 5740 | break; /* Matching at this starting point really fails. */ | |||
| 5741 | } /* for (;;) */ | |||
| 5742 | ||||
| 5743 | if (best_regs_set) | |||
| 5744 | goto restore_best_regs; | |||
| 5745 | ||||
| 5746 | FREE_VARIABLES ()do { free (fail_stack.stack); if (regstart) { free (regstart) ; regstart = ((void *)0); } else; if (regend) { free (regend) ; regend = ((void *)0); } else; if (old_regstart) { free (old_regstart ); old_regstart = ((void *)0); } else; if (old_regend) { free (old_regend); old_regend = ((void *)0); } else; if (best_regstart ) { free (best_regstart); best_regstart = ((void *)0); } else ; if (best_regend) { free (best_regend); best_regend = ((void *)0); } else; if (reg_info) { free (reg_info); reg_info = (( void *)0); } else; if (reg_dummy) { free (reg_dummy); reg_dummy = ((void *)0); } else; if (reg_info_dummy) { free (reg_info_dummy ); reg_info_dummy = ((void *)0); } else; } while (0); | |||
| 5747 | ||||
| 5748 | return -1; /* Failure to match. */ | |||
| 5749 | } /* re_match_2 */ | |||
| 5750 | ||||
| 5751 | /* Subroutine definitions for re_match_2. */ | |||
| 5752 | ||||
| 5753 | ||||
| 5754 | /* We are passed P pointing to a register number after a start_memory. | |||
| 5755 | ||||
| 5756 | Return true if the pattern up to the corresponding stop_memory can | |||
| 5757 | match the empty string, and false otherwise. | |||
| 5758 | ||||
| 5759 | If we find the matching stop_memory, sets P to point to one past its number. | |||
| 5760 | Otherwise, sets P to an undefined byte less than or equal to END. | |||
| 5761 | ||||
| 5762 | We don't handle duplicates properly (yet). */ | |||
| 5763 | ||||
| 5764 | static boolean | |||
| 5765 | group_match_null_string_p (p, end, reg_info) | |||
| 5766 | unsigned char **p, *end; | |||
| 5767 | register_info_type *reg_info; | |||
| 5768 | { | |||
| 5769 | int mcnt; | |||
| 5770 | /* Point to after the args to the start_memory. */ | |||
| 5771 | unsigned char *p1 = *p + 2; | |||
| 5772 | ||||
| 5773 | while (p1 < end) | |||
| 5774 | { | |||
| 5775 | /* Skip over opcodes that can match nothing, and return true or | |||
| 5776 | false, as appropriate, when we get to one that can't, or to the | |||
| 5777 | matching stop_memory. */ | |||
| 5778 | ||||
| 5779 | switch ((re_opcode_t) *p1) | |||
| 5780 | { | |||
| 5781 | /* Could be either a loop or a series of alternatives. */ | |||
| 5782 | case on_failure_jump: | |||
| 5783 | p1++; | |||
| 5784 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 5785 | ||||
| 5786 | /* If the next operation is not a jump backwards in the | |||
| 5787 | pattern. */ | |||
| 5788 | ||||
| 5789 | if (mcnt >= 0) | |||
| 5790 | { | |||
| 5791 | /* Go through the on_failure_jumps of the alternatives, | |||
| 5792 | seeing if any of the alternatives cannot match nothing. | |||
| 5793 | The last alternative starts with only a jump, | |||
| 5794 | whereas the rest start with on_failure_jump and end | |||
| 5795 | with a jump, e.g., here is the pattern for `a|b|c': | |||
| 5796 | ||||
| 5797 | /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 | |||
| 5798 | /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 | |||
| 5799 | /exactn/1/c | |||
| 5800 | ||||
| 5801 | So, we have to first go through the first (n-1) | |||
| 5802 | alternatives and then deal with the last one separately. */ | |||
| 5803 | ||||
| 5804 | ||||
| 5805 | /* Deal with the first (n-1) alternatives, which start | |||
| 5806 | with an on_failure_jump (see above) that jumps to right | |||
| 5807 | past a jump_past_alt. */ | |||
| 5808 | ||||
| 5809 | while ((re_opcode_t) p1[mcnt-3] == jump_past_alt) | |||
| 5810 | { | |||
| 5811 | /* `mcnt' holds how many bytes long the alternative | |||
| 5812 | is, including the ending `jump_past_alt' and | |||
| 5813 | its number. */ | |||
| 5814 | ||||
| 5815 | if (!alt_match_null_string_p (p1, p1 + mcnt - 3, | |||
| 5816 | reg_info)) | |||
| 5817 | return false0; | |||
| 5818 | ||||
| 5819 | /* Move to right after this alternative, including the | |||
| 5820 | jump_past_alt. */ | |||
| 5821 | p1 += mcnt; | |||
| 5822 | ||||
| 5823 | /* Break if it's the beginning of an n-th alternative | |||
| 5824 | that doesn't begin with an on_failure_jump. */ | |||
| 5825 | if ((re_opcode_t) *p1 != on_failure_jump) | |||
| 5826 | break; | |||
| 5827 | ||||
| 5828 | /* Still have to check that it's not an n-th | |||
| 5829 | alternative that starts with an on_failure_jump. */ | |||
| 5830 | p1++; | |||
| 5831 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 5832 | if ((re_opcode_t) p1[mcnt-3] != jump_past_alt) | |||
| 5833 | { | |||
| 5834 | /* Get to the beginning of the n-th alternative. */ | |||
| 5835 | p1 -= 3; | |||
| 5836 | break; | |||
| 5837 | } | |||
| 5838 | } | |||
| 5839 | ||||
| 5840 | /* Deal with the last alternative: go back and get number | |||
| 5841 | of the `jump_past_alt' just before it. `mcnt' contains | |||
| 5842 | the length of the alternative. */ | |||
| 5843 | EXTRACT_NUMBER (mcnt, p1 - 2)do { (mcnt) = *(p1 - 2) & 0377; (mcnt) += ((signed char) ( *((p1 - 2) + 1))) << 8; } while (0); | |||
| 5844 | ||||
| 5845 | if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) | |||
| 5846 | return false0; | |||
| 5847 | ||||
| 5848 | p1 += mcnt; /* Get past the n-th alternative. */ | |||
| 5849 | } /* if mcnt > 0 */ | |||
| 5850 | break; | |||
| 5851 | ||||
| 5852 | ||||
| 5853 | case stop_memory: | |||
| 5854 | assert (p1[1] == **p); | |||
| 5855 | *p = p1 + 2; | |||
| 5856 | return true1; | |||
| 5857 | ||||
| 5858 | ||||
| 5859 | default: | |||
| 5860 | if (!common_op_match_null_string_p (&p1, end, reg_info)) | |||
| 5861 | return false0; | |||
| 5862 | } | |||
| 5863 | } /* while p1 < end */ | |||
| 5864 | ||||
| 5865 | return false0; | |||
| 5866 | } /* group_match_null_string_p */ | |||
| 5867 | ||||
| 5868 | ||||
| 5869 | /* Similar to group_match_null_string_p, but doesn't deal with alternatives: | |||
| 5870 | It expects P to be the first byte of a single alternative and END one | |||
| 5871 | byte past the last. The alternative can contain groups. */ | |||
| 5872 | ||||
| 5873 | static boolean | |||
| 5874 | alt_match_null_string_p (p, end, reg_info) | |||
| 5875 | unsigned char *p, *end; | |||
| 5876 | register_info_type *reg_info; | |||
| 5877 | { | |||
| 5878 | int mcnt; | |||
| 5879 | unsigned char *p1 = p; | |||
| 5880 | ||||
| 5881 | while (p1 < end) | |||
| 5882 | { | |||
| 5883 | /* Skip over opcodes that can match nothing, and break when we get | |||
| 5884 | to one that can't. */ | |||
| 5885 | ||||
| 5886 | switch ((re_opcode_t) *p1) | |||
| 5887 | { | |||
| 5888 | /* It's a loop. */ | |||
| 5889 | case on_failure_jump: | |||
| 5890 | p1++; | |||
| 5891 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 5892 | p1 += mcnt; | |||
| 5893 | break; | |||
| 5894 | ||||
| 5895 | default: | |||
| 5896 | if (!common_op_match_null_string_p (&p1, end, reg_info)) | |||
| 5897 | return false0; | |||
| 5898 | } | |||
| 5899 | } /* while p1 < end */ | |||
| 5900 | ||||
| 5901 | return true1; | |||
| 5902 | } /* alt_match_null_string_p */ | |||
| 5903 | ||||
| 5904 | ||||
| 5905 | /* Deals with the ops common to group_match_null_string_p and | |||
| 5906 | alt_match_null_string_p. | |||
| 5907 | ||||
| 5908 | Sets P to one after the op and its arguments, if any. */ | |||
| 5909 | ||||
| 5910 | static boolean | |||
| 5911 | common_op_match_null_string_p (p, end, reg_info) | |||
| 5912 | unsigned char **p, *end; | |||
| 5913 | register_info_type *reg_info; | |||
| 5914 | { | |||
| 5915 | int mcnt; | |||
| 5916 | boolean ret; | |||
| 5917 | int reg_no; | |||
| 5918 | unsigned char *p1 = *p; | |||
| 5919 | ||||
| 5920 | switch ((re_opcode_t) *p1++) | |||
| 5921 | { | |||
| 5922 | case no_op: | |||
| 5923 | case begline: | |||
| 5924 | case endline: | |||
| 5925 | case begbuf: | |||
| 5926 | case endbuf: | |||
| 5927 | case wordbeg: | |||
| 5928 | case wordend: | |||
| 5929 | case wordbound: | |||
| 5930 | case notwordbound: | |||
| 5931 | #ifdef emacs | |||
| 5932 | case before_dot: | |||
| 5933 | case at_dot: | |||
| 5934 | case after_dot: | |||
| 5935 | #endif | |||
| 5936 | break; | |||
| 5937 | ||||
| 5938 | case start_memory: | |||
| 5939 | reg_no = *p1; | |||
| 5940 | assert (reg_no > 0 && reg_no <= MAX_REGNUM); | |||
| 5941 | ret = group_match_null_string_p (&p1, end, reg_info); | |||
| 5942 | ||||
| 5943 | /* Have to set this here in case we're checking a group which | |||
| 5944 | contains a group and a back reference to it. */ | |||
| 5945 | ||||
| 5946 | if (REG_MATCH_NULL_STRING_P (reg_info[reg_no])((reg_info[reg_no]).bits.match_null_string_p) == MATCH_NULL_UNSET_VALUE3) | |||
| 5947 | REG_MATCH_NULL_STRING_P (reg_info[reg_no])((reg_info[reg_no]).bits.match_null_string_p) = ret; | |||
| 5948 | ||||
| 5949 | if (!ret) | |||
| 5950 | return false0; | |||
| 5951 | break; | |||
| 5952 | ||||
| 5953 | /* If this is an optimized succeed_n for zero times, make the jump. */ | |||
| 5954 | case jump: | |||
| 5955 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 5956 | if (mcnt >= 0) | |||
| 5957 | p1 += mcnt; | |||
| 5958 | else | |||
| 5959 | return false0; | |||
| 5960 | break; | |||
| 5961 | ||||
| 5962 | case succeed_n: | |||
| 5963 | /* Get to the number of times to succeed. */ | |||
| 5964 | p1 += 2; | |||
| 5965 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 5966 | ||||
| 5967 | if (mcnt == 0) | |||
| 5968 | { | |||
| 5969 | p1 -= 4; | |||
| 5970 | EXTRACT_NUMBER_AND_INCR (mcnt, p1)do { do { (mcnt) = *(p1) & 0377; (mcnt) += ((signed char) (*((p1) + 1))) << 8; } while (0); (p1) += 2; } while ( 0); | |||
| 5971 | p1 += mcnt; | |||
| 5972 | } | |||
| 5973 | else | |||
| 5974 | return false0; | |||
| 5975 | break; | |||
| 5976 | ||||
| 5977 | case duplicate: | |||
| 5978 | if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])((reg_info[*p1]).bits.match_null_string_p)) | |||
| 5979 | return false0; | |||
| 5980 | break; | |||
| 5981 | ||||
| 5982 | case set_number_at: | |||
| 5983 | p1 += 4; | |||
| 5984 | ||||
| 5985 | default: | |||
| 5986 | /* All other opcodes mean we cannot match the empty string. */ | |||
| 5987 | return false0; | |||
| 5988 | } | |||
| 5989 | ||||
| 5990 | *p = p1; | |||
| 5991 | return true1; | |||
| 5992 | } /* common_op_match_null_string_p */ | |||
| 5993 | ||||
| 5994 | ||||
| 5995 | /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN | |||
| 5996 | bytes; nonzero otherwise. */ | |||
| 5997 | ||||
| 5998 | static int | |||
| 5999 | bcmp_translate (s1, s2, len, translate) | |||
| 6000 | unsigned char *s1, *s2; | |||
| 6001 | register int len; | |||
| 6002 | RE_TRANSLATE_TYPEchar * translate; | |||
| 6003 | { | |||
| 6004 | register unsigned char *p1 = s1, *p2 = s2; | |||
| 6005 | unsigned char *p1_end = s1 + len; | |||
| 6006 | unsigned char *p2_end = s2 + len; | |||
| 6007 | ||||
| 6008 | while (p1 != p1_end && p2 != p2_end) | |||
| 6009 | { | |||
| 6010 | int p1_charlen, p2_charlen; | |||
| 6011 | int p1_ch, p2_ch; | |||
| 6012 | ||||
| 6013 | p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen)((p1_charlen) = 1, *(p1)); | |||
| 6014 | p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen)((p2_charlen) = 1, *(p2)); | |||
| 6015 | ||||
| 6016 | if (RE_TRANSLATE (translate, p1_ch)((translate)[p1_ch]) | |||
| 6017 | != RE_TRANSLATE (translate, p2_ch)((translate)[p2_ch])) | |||
| 6018 | return 1; | |||
| 6019 | ||||
| 6020 | p1 += p1_charlen, p2 += p2_charlen; | |||
| 6021 | } | |||
| 6022 | ||||
| 6023 | if (p1 != p1_end || p2 != p2_end) | |||
| 6024 | return 1; | |||
| 6025 | ||||
| 6026 | return 0; | |||
| 6027 | } | |||
| 6028 | ||||
| 6029 | /* Entry points for GNU code. */ | |||
| 6030 | ||||
| 6031 | /* re_compile_pattern is the GNU regular expression compiler: it | |||
| 6032 | compiles PATTERN (of length SIZE) and puts the result in BUFP. | |||
| 6033 | Returns 0 if the pattern was valid, otherwise an error string. | |||
| 6034 | ||||
| 6035 | Assumes the `allocated' (and perhaps `buffer') and `translate' fields | |||
| 6036 | are set in BUFP on entry. | |||
| 6037 | ||||
| 6038 | We call regex_compile to do the actual compilation. */ | |||
| 6039 | ||||
| 6040 | const char * | |||
| 6041 | re_compile_pattern (pattern, length, bufp) | |||
| 6042 | const char *pattern; | |||
| 6043 | int length; | |||
| 6044 | struct re_pattern_buffer *bufp; | |||
| 6045 | { | |||
| 6046 | reg_errcode_t ret; | |||
| 6047 | ||||
| 6048 | /* GNU code is written to assume at least RE_NREGS registers will be set | |||
| 6049 | (and at least one extra will be -1). */ | |||
| 6050 | bufp->regs_allocated = REGS_UNALLOCATED0; | |||
| 6051 | ||||
| 6052 | /* And GNU code determines whether or not to get register information | |||
| 6053 | by passing null for the REGS argument to re_match, etc., not by | |||
| 6054 | setting no_sub. */ | |||
| 6055 | bufp->no_sub = 0; | |||
| 6056 | ||||
| 6057 | /* Match anchors at newline. */ | |||
| 6058 | bufp->newline_anchor = 1; | |||
| 6059 | ||||
| 6060 | ret = regex_compile (pattern, length, re_syntax_options, bufp); | |||
| 6061 | ||||
| 6062 | if (!ret) | |||
| 6063 | return NULL((void *)0); | |||
| 6064 | return gettext (re_error_msgid[(int) ret])(re_error_msgid[(int) ret]); | |||
| 6065 | } | |||
| 6066 | ||||
| 6067 | /* Entry points compatible with 4.2 BSD regex library. We don't define | |||
| 6068 | them unless specifically requested. */ | |||
| 6069 | ||||
| 6070 | #if defined (_REGEX_RE_COMP1) || defined (_LIBC) | |||
| 6071 | ||||
| 6072 | /* BSD has one and only one pattern buffer. */ | |||
| 6073 | static struct re_pattern_buffer re_comp_buf; | |||
| 6074 | ||||
| 6075 | char * | |||
| 6076 | #ifdef _LIBC | |||
| 6077 | /* Make these definitions weak in libc, so POSIX programs can redefine | |||
| 6078 | these names if they don't use our functions, and still use | |||
| 6079 | regcomp/regexec below without link errors. */ | |||
| 6080 | weak_function | |||
| 6081 | #endif | |||
| 6082 | re_comp (s) | |||
| 6083 | const char *s; | |||
| 6084 | { | |||
| 6085 | reg_errcode_t ret; | |||
| 6086 | ||||
| 6087 | if (!s) | |||
| 6088 | { | |||
| 6089 | if (!re_comp_buf.buffer) | |||
| 6090 | return gettext ("No previous regular expression")("No previous regular expression"); | |||
| 6091 | return 0; | |||
| 6092 | } | |||
| 6093 | ||||
| 6094 | if (!re_comp_buf.buffer) | |||
| 6095 | { | |||
| 6096 | re_comp_buf.buffer = (unsigned char *) malloc (200); | |||
| 6097 | if (re_comp_buf.buffer == NULL((void *)0)) | |||
| 6098 | /* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | |||
| 6099 | return (char *) gettext (re_error_msgid[(int) REG_ESPACE])(re_error_msgid[(int) REG_ESPACE]); | |||
| 6100 | re_comp_buf.allocated = 200; | |||
| 6101 | ||||
| 6102 | re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH8); | |||
| 6103 | if (re_comp_buf.fastmap == NULL((void *)0)) | |||
| 6104 | /* CVS: Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | |||
| 6105 | return (char *) gettext (re_error_msgid[(int) REG_ESPACE])(re_error_msgid[(int) REG_ESPACE]); | |||
| 6106 | } | |||
| 6107 | ||||
| 6108 | /* Since `re_exec' always passes NULL for the `regs' argument, we | |||
| 6109 | don't need to initialize the pattern buffer fields which affect it. */ | |||
| 6110 | ||||
| 6111 | /* Match anchors at newlines. */ | |||
| 6112 | re_comp_buf.newline_anchor = 1; | |||
| 6113 | ||||
| 6114 | ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); | |||
| 6115 | ||||
| 6116 | if (!ret) | |||
| 6117 | return NULL((void *)0); | |||
| 6118 | ||||
| 6119 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | |||
| 6120 | return (char *) gettext (re_error_msgid[(int) ret])(re_error_msgid[(int) ret]); | |||
| 6121 | } | |||
| 6122 | ||||
| 6123 | ||||
| 6124 | int | |||
| 6125 | #ifdef _LIBC | |||
| 6126 | weak_function | |||
| 6127 | #endif | |||
| 6128 | re_exec (s) | |||
| 6129 | const char *s; | |||
| 6130 | { | |||
| 6131 | const int len = strlen (s); | |||
| 6132 | return | |||
| 6133 | 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); | |||
| 6134 | } | |||
| 6135 | #endif /* _REGEX_RE_COMP */ | |||
| 6136 | ||||
| 6137 | /* POSIX.2 functions. Don't define these for Emacs. */ | |||
| 6138 | ||||
| 6139 | #ifndef emacs | |||
| 6140 | ||||
| 6141 | /* regcomp takes a regular expression as a string and compiles it. | |||
| 6142 | ||||
| 6143 | PREG is a regex_t *. We do not expect any fields to be initialized, | |||
| 6144 | since POSIX says we shouldn't. Thus, we set | |||
| 6145 | ||||
| 6146 | `buffer' to the compiled pattern; | |||
| 6147 | `used' to the length of the compiled pattern; | |||
| 6148 | `syntax' to RE_SYNTAX_POSIX_EXTENDED if the | |||
| 6149 | REG_EXTENDED bit in CFLAGS is set; otherwise, to | |||
| 6150 | RE_SYNTAX_POSIX_BASIC; | |||
| 6151 | `newline_anchor' to REG_NEWLINE being set in CFLAGS; | |||
| 6152 | `fastmap' and `fastmap_accurate' to zero; | |||
| 6153 | `re_nsub' to the number of subexpressions in PATTERN. | |||
| 6154 | ||||
| 6155 | PATTERN is the address of the pattern string. | |||
| 6156 | ||||
| 6157 | CFLAGS is a series of bits which affect compilation. | |||
| 6158 | ||||
| 6159 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | |||
| 6160 | use POSIX basic syntax. | |||
| 6161 | ||||
| 6162 | If REG_NEWLINE is set, then . and [^...] don't match newline. | |||
| 6163 | Also, regexec will try a match beginning after every newline. | |||
| 6164 | ||||
| 6165 | If REG_ICASE is set, then we considers upper- and lowercase | |||
| 6166 | versions of letters to be equivalent when matching. | |||
| 6167 | ||||
| 6168 | If REG_NOSUB is set, then when PREG is passed to regexec, that | |||
| 6169 | routine will report only success or failure, and nothing about the | |||
| 6170 | registers. | |||
| 6171 | ||||
| 6172 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | |||
| 6173 | the return codes and their meanings.) */ | |||
| 6174 | ||||
| 6175 | int | |||
| 6176 | regcomp (preg, pattern, cflags) | |||
| 6177 | regex_t *preg; | |||
| 6178 | const char *pattern; | |||
| 6179 | int cflags; | |||
| 6180 | { | |||
| 6181 | reg_errcode_t ret; | |||
| 6182 | unsigned syntax | |||
| 6183 | = (cflags & REG_EXTENDED1) ? | |||
| 6184 | RE_SYNTAX_POSIX_EXTENDED(((((1) << 1) << 1) | (((((((1) << 1) << 1) << 1) << 1) << 1) << 1) | ((((((( (1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) | ((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) | (((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | ((((1) << 1) << 1) << 1) | (((((1) << 1) << 1) << 1) << 1) | (((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) | ((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) | ((((((((( (((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) | ((((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) : RE_SYNTAX_POSIX_BASIC(((((1) << 1) << 1) | (((((((1) << 1) << 1) << 1) << 1) << 1) << 1) | ((((((( (1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) | ((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) | (((((((((((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1 ) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1)) | ((1) << 1)); | |||
| 6185 | ||||
| 6186 | /* regex_compile will allocate the space for the compiled pattern. */ | |||
| 6187 | preg->buffer = 0; | |||
| 6188 | preg->allocated = 0; | |||
| 6189 | preg->used = 0; | |||
| 6190 | ||||
| 6191 | /* Don't bother to use a fastmap when searching. This simplifies the | |||
| 6192 | REG_NEWLINE case: if we used a fastmap, we'd have to put all the | |||
| 6193 | characters after newlines into the fastmap. This way, we just try | |||
| 6194 | every character. */ | |||
| 6195 | preg->fastmap = 0; | |||
| 6196 | ||||
| 6197 | if (cflags & REG_ICASE(1 << 1)) | |||
| 6198 | { | |||
| 6199 | unsigned i; | |||
| 6200 | ||||
| 6201 | preg->translate | |||
| 6202 | = (RE_TRANSLATE_TYPEchar *) malloc (CHAR_SET_SIZE256 | |||
| 6203 | * sizeof (*(RE_TRANSLATE_TYPEchar *)0)); | |||
| 6204 | if (preg->translate == NULL((void *)0)) | |||
| 6205 | return (int) REG_ESPACE; | |||
| 6206 | ||||
| 6207 | /* Map uppercase characters to corresponding lowercase ones. */ | |||
| 6208 | for (i = 0; i < CHAR_SET_SIZE256; i++) | |||
| 6209 | preg->translate[i] = ISUPPER (i)(1 && isupper (i)) ? tolower (i) : i; | |||
| 6210 | } | |||
| 6211 | else | |||
| 6212 | preg->translate = NULL((void *)0); | |||
| 6213 | ||||
| 6214 | /* If REG_NEWLINE is set, newlines are treated differently. */ | |||
| 6215 | if (cflags & REG_NEWLINE((1 << 1) << 1)) | |||
| 6216 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | |||
| 6217 | syntax &= ~RE_DOT_NEWLINE(((((((1) << 1) << 1) << 1) << 1) << 1) << 1); | |||
| 6218 | syntax |= RE_HAT_LISTS_NOT_NEWLINE(((((((((1) << 1) << 1) << 1) << 1) << 1) << 1) << 1) << 1); | |||
| 6219 | /* It also changes the matching behavior. */ | |||
| 6220 | preg->newline_anchor = 1; | |||
| 6221 | } | |||
| 6222 | else | |||
| 6223 | preg->newline_anchor = 0; | |||
| 6224 | ||||
| 6225 | preg->no_sub = !!(cflags & REG_NOSUB(((1 << 1) << 1) << 1)); | |||
| 6226 | ||||
| 6227 | /* POSIX says a null character in the pattern terminates it, so we | |||
| 6228 | can use strlen here in compiling the pattern. */ | |||
| 6229 | ret = regex_compile (pattern, strlen (pattern), syntax, preg); | |||
| 6230 | ||||
| 6231 | /* POSIX doesn't distinguish between an unmatched open-group and an | |||
| 6232 | unmatched close-group: both are REG_EPAREN. */ | |||
| 6233 | if (ret == REG_ERPAREN) ret = REG_EPAREN; | |||
| 6234 | ||||
| 6235 | return (int) ret; | |||
| 6236 | } | |||
| 6237 | ||||
| 6238 | ||||
| 6239 | /* regexec searches for a given pattern, specified by PREG, in the | |||
| 6240 | string STRING. | |||
| 6241 | ||||
| 6242 | If NMATCH is zero or REG_NOSUB was set in the cflags argument to | |||
| 6243 | `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at | |||
| 6244 | least NMATCH elements, and we set them to the offsets of the | |||
| 6245 | corresponding matched substrings. | |||
| 6246 | ||||
| 6247 | EFLAGS specifies `execution flags' which affect matching: if | |||
| 6248 | REG_NOTBOL is set, then ^ does not match at the beginning of the | |||
| 6249 | string; if REG_NOTEOL is set, then $ does not match at the end. | |||
| 6250 | ||||
| 6251 | We return 0 if we find a match and REG_NOMATCH if not. */ | |||
| 6252 | ||||
| 6253 | int | |||
| 6254 | regexec (preg, string, nmatch, pmatch, eflags) | |||
| 6255 | const regex_t *preg; | |||
| 6256 | const char *string; | |||
| 6257 | size_t nmatch; | |||
| 6258 | regmatch_t pmatch[]; | |||
| 6259 | int eflags; | |||
| 6260 | { | |||
| 6261 | int ret; | |||
| 6262 | struct re_registers regs; | |||
| 6263 | regex_t private_preg; | |||
| 6264 | int len = strlen (string); | |||
| 6265 | boolean want_reg_info = !preg->no_sub && nmatch > 0; | |||
| 6266 | ||||
| 6267 | private_preg = *preg; | |||
| 6268 | ||||
| 6269 | private_preg.not_bol = !!(eflags & REG_NOTBOL1); | |||
| 6270 | private_preg.not_eol = !!(eflags & REG_NOTEOL(1 << 1)); | |||
| 6271 | ||||
| 6272 | /* The user has told us exactly how many registers to return | |||
| 6273 | information about, via `nmatch'. We have to pass that on to the | |||
| 6274 | matching routines. */ | |||
| 6275 | private_preg.regs_allocated = REGS_FIXED2; | |||
| 6276 | ||||
| 6277 | if (want_reg_info) | |||
| 6278 | { | |||
| 6279 | regs.num_regs = nmatch; | |||
| 6280 | regs.start = TALLOC (nmatch, regoff_t)((regoff_t *) malloc ((nmatch) * sizeof (regoff_t))); | |||
| 6281 | regs.end = TALLOC (nmatch, regoff_t)((regoff_t *) malloc ((nmatch) * sizeof (regoff_t))); | |||
| 6282 | if (regs.start == NULL((void *)0) || regs.end == NULL((void *)0)) | |||
| 6283 | return (int) REG_NOMATCH; | |||
| 6284 | } | |||
| 6285 | ||||
| 6286 | /* Perform the searching operation. */ | |||
| 6287 | ret = re_search (&private_preg, string, len, | |||
| 6288 | /* start: */ 0, /* range: */ len, | |||
| 6289 | want_reg_info ? ®s : (struct re_registers *) 0); | |||
| 6290 | ||||
| 6291 | /* Copy the register information to the POSIX structure. */ | |||
| 6292 | if (want_reg_info) | |||
| 6293 | { | |||
| 6294 | if (ret >= 0) | |||
| 6295 | { | |||
| 6296 | unsigned r; | |||
| 6297 | ||||
| 6298 | for (r = 0; r < nmatch; r++) | |||
| 6299 | { | |||
| 6300 | pmatch[r].rm_so = regs.start[r]; | |||
| 6301 | pmatch[r].rm_eo = regs.end[r]; | |||
| 6302 | } | |||
| 6303 | } | |||
| 6304 | ||||
| 6305 | /* If we needed the temporary register info, free the space now. */ | |||
| 6306 | free (regs.start); | |||
| 6307 | free (regs.end); | |||
| 6308 | } | |||
| 6309 | ||||
| 6310 | /* We want zero return to mean success, unlike `re_search'. */ | |||
| 6311 | return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; | |||
| 6312 | } | |||
| 6313 | ||||
| 6314 | ||||
| 6315 | /* Returns a message corresponding to an error code, ERRCODE, returned | |||
| 6316 | from either regcomp or regexec. We don't use PREG here. */ | |||
| 6317 | ||||
| 6318 | size_t | |||
| 6319 | regerror (errcode, preg, errbuf, errbuf_size) | |||
| 6320 | int errcode; | |||
| 6321 | const regex_t *preg; | |||
| 6322 | char *errbuf; | |||
| 6323 | size_t errbuf_size; | |||
| 6324 | { | |||
| 6325 | const char *msg; | |||
| 6326 | size_t msg_size; | |||
| 6327 | ||||
| 6328 | if (errcode < 0 | |||
| 6329 | || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) | |||
| 6330 | /* Only error codes returned by the rest of the code should be passed | |||
| 6331 | to this routine. If we are given anything else, or if other regex | |||
| 6332 | code generates an invalid error code, then the program has a bug. | |||
| 6333 | Dump core so we can fix it. */ | |||
| 6334 | abort (); | |||
| 6335 | ||||
| 6336 | msg = gettext (re_error_msgid[errcode])(re_error_msgid[errcode]); | |||
| 6337 | ||||
| 6338 | msg_size = strlen (msg) + 1; /* Includes the null. */ | |||
| 6339 | ||||
| 6340 | if (errbuf_size != 0) | |||
| 6341 | { | |||
| 6342 | if (msg_size > errbuf_size) | |||
| 6343 | { | |||
| 6344 | strncpy (errbuf, msg, errbuf_size - 1); | |||
| 6345 | errbuf[errbuf_size - 1] = 0; | |||
| 6346 | } | |||
| 6347 | else | |||
| 6348 | strcpy (errbuf, msg); | |||
| 6349 | } | |||
| 6350 | ||||
| 6351 | return msg_size; | |||
| 6352 | } | |||
| 6353 | ||||
| 6354 | ||||
| 6355 | /* Free dynamically allocated space used by PREG. */ | |||
| 6356 | ||||
| 6357 | void | |||
| 6358 | regfree (preg) | |||
| 6359 | regex_t *preg; | |||
| 6360 | { | |||
| 6361 | if (preg->buffer != NULL((void *)0)) | |||
| 6362 | free (preg->buffer); | |||
| 6363 | preg->buffer = NULL((void *)0); | |||
| 6364 | ||||
| 6365 | preg->allocated = 0; | |||
| 6366 | preg->used = 0; | |||
| 6367 | ||||
| 6368 | if (preg->fastmap != NULL((void *)0)) | |||
| 6369 | free (preg->fastmap); | |||
| 6370 | preg->fastmap = NULL((void *)0); | |||
| 6371 | preg->fastmap_accurate = 0; | |||
| 6372 | ||||
| 6373 | if (preg->translate != NULL((void *)0)) | |||
| 6374 | free (preg->translate); | |||
| 6375 | preg->translate = NULL((void *)0); | |||
| 6376 | } | |||
| 6377 | ||||
| 6378 | #endif /* not emacs */ |