| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp |
| Warning: | line 509, column 36 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This pass builds a ModuleSummaryIndex object for the module, to be written | ||||
| 10 | // to bitcode or LLVM assembly. | ||||
| 11 | // | ||||
| 12 | //===----------------------------------------------------------------------===// | ||||
| 13 | |||||
| 14 | #include "llvm/Analysis/ModuleSummaryAnalysis.h" | ||||
| 15 | #include "llvm/ADT/ArrayRef.h" | ||||
| 16 | #include "llvm/ADT/DenseSet.h" | ||||
| 17 | #include "llvm/ADT/MapVector.h" | ||||
| 18 | #include "llvm/ADT/STLExtras.h" | ||||
| 19 | #include "llvm/ADT/SetVector.h" | ||||
| 20 | #include "llvm/ADT/SmallPtrSet.h" | ||||
| 21 | #include "llvm/ADT/SmallVector.h" | ||||
| 22 | #include "llvm/ADT/StringRef.h" | ||||
| 23 | #include "llvm/Analysis/BlockFrequencyInfo.h" | ||||
| 24 | #include "llvm/Analysis/BranchProbabilityInfo.h" | ||||
| 25 | #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" | ||||
| 26 | #include "llvm/Analysis/LoopInfo.h" | ||||
| 27 | #include "llvm/Analysis/ProfileSummaryInfo.h" | ||||
| 28 | #include "llvm/Analysis/StackSafetyAnalysis.h" | ||||
| 29 | #include "llvm/Analysis/TypeMetadataUtils.h" | ||||
| 30 | #include "llvm/IR/Attributes.h" | ||||
| 31 | #include "llvm/IR/BasicBlock.h" | ||||
| 32 | #include "llvm/IR/Constant.h" | ||||
| 33 | #include "llvm/IR/Constants.h" | ||||
| 34 | #include "llvm/IR/Dominators.h" | ||||
| 35 | #include "llvm/IR/Function.h" | ||||
| 36 | #include "llvm/IR/GlobalAlias.h" | ||||
| 37 | #include "llvm/IR/GlobalValue.h" | ||||
| 38 | #include "llvm/IR/GlobalVariable.h" | ||||
| 39 | #include "llvm/IR/Instructions.h" | ||||
| 40 | #include "llvm/IR/IntrinsicInst.h" | ||||
| 41 | #include "llvm/IR/Intrinsics.h" | ||||
| 42 | #include "llvm/IR/Metadata.h" | ||||
| 43 | #include "llvm/IR/Module.h" | ||||
| 44 | #include "llvm/IR/ModuleSummaryIndex.h" | ||||
| 45 | #include "llvm/IR/Use.h" | ||||
| 46 | #include "llvm/IR/User.h" | ||||
| 47 | #include "llvm/InitializePasses.h" | ||||
| 48 | #include "llvm/Object/ModuleSymbolTable.h" | ||||
| 49 | #include "llvm/Object/SymbolicFile.h" | ||||
| 50 | #include "llvm/Pass.h" | ||||
| 51 | #include "llvm/Support/Casting.h" | ||||
| 52 | #include "llvm/Support/CommandLine.h" | ||||
| 53 | #include "llvm/Support/FileSystem.h" | ||||
| 54 | #include <algorithm> | ||||
| 55 | #include <cassert> | ||||
| 56 | #include <cstdint> | ||||
| 57 | #include <vector> | ||||
| 58 | |||||
| 59 | using namespace llvm; | ||||
| 60 | |||||
| 61 | #define DEBUG_TYPE"module-summary-analysis" "module-summary-analysis" | ||||
| 62 | |||||
| 63 | // Option to force edges cold which will block importing when the | ||||
| 64 | // -import-cold-multiplier is set to 0. Useful for debugging. | ||||
| 65 | FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = | ||||
| 66 | FunctionSummary::FSHT_None; | ||||
| 67 | cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( | ||||
| 68 | "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), | ||||
| 69 | cl::desc("Force all edges in the function summary to cold"), | ||||
| 70 | cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None.")llvm::cl::OptionEnumValue { "none", int(FunctionSummary::FSHT_None ), "None." }, | ||||
| 71 | clEnumValN(FunctionSummary::FSHT_AllNonCritical,llvm::cl::OptionEnumValue { "all-non-critical", int(FunctionSummary ::FSHT_AllNonCritical), "All non-critical edges." } | ||||
| 72 | "all-non-critical", "All non-critical edges.")llvm::cl::OptionEnumValue { "all-non-critical", int(FunctionSummary ::FSHT_AllNonCritical), "All non-critical edges." }, | ||||
| 73 | clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")llvm::cl::OptionEnumValue { "all", int(FunctionSummary::FSHT_All ), "All edges." })); | ||||
| 74 | |||||
| 75 | cl::opt<std::string> ModuleSummaryDotFile( | ||||
| 76 | "module-summary-dot-file", cl::init(""), cl::Hidden, | ||||
| 77 | cl::value_desc("filename"), | ||||
| 78 | cl::desc("File to emit dot graph of new summary into.")); | ||||
| 79 | |||||
| 80 | // Walk through the operands of a given User via worklist iteration and populate | ||||
| 81 | // the set of GlobalValue references encountered. Invoked either on an | ||||
| 82 | // Instruction or a GlobalVariable (which walks its initializer). | ||||
| 83 | // Return true if any of the operands contains blockaddress. This is important | ||||
| 84 | // to know when computing summary for global var, because if global variable | ||||
| 85 | // references basic block address we can't import it separately from function | ||||
| 86 | // containing that basic block. For simplicity we currently don't import such | ||||
| 87 | // global vars at all. When importing function we aren't interested if any | ||||
| 88 | // instruction in it takes an address of any basic block, because instruction | ||||
| 89 | // can only take an address of basic block located in the same function. | ||||
| 90 | static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, | ||||
| 91 | SetVector<ValueInfo> &RefEdges, | ||||
| 92 | SmallPtrSet<const User *, 8> &Visited) { | ||||
| 93 | bool HasBlockAddress = false; | ||||
| 94 | SmallVector<const User *, 32> Worklist; | ||||
| 95 | if (Visited.insert(CurUser).second) | ||||
| 96 | Worklist.push_back(CurUser); | ||||
| 97 | |||||
| 98 | while (!Worklist.empty()) { | ||||
| 99 | const User *U = Worklist.pop_back_val(); | ||||
| 100 | const auto *CB = dyn_cast<CallBase>(U); | ||||
| 101 | |||||
| 102 | for (const auto &OI : U->operands()) { | ||||
| 103 | const User *Operand = dyn_cast<User>(OI); | ||||
| 104 | if (!Operand) | ||||
| 105 | continue; | ||||
| 106 | if (isa<BlockAddress>(Operand)) { | ||||
| 107 | HasBlockAddress = true; | ||||
| 108 | continue; | ||||
| 109 | } | ||||
| 110 | if (auto *GV = dyn_cast<GlobalValue>(Operand)) { | ||||
| 111 | // We have a reference to a global value. This should be added to | ||||
| 112 | // the reference set unless it is a callee. Callees are handled | ||||
| 113 | // specially by WriteFunction and are added to a separate list. | ||||
| 114 | if (!(CB && CB->isCallee(&OI))) | ||||
| 115 | RefEdges.insert(Index.getOrInsertValueInfo(GV)); | ||||
| 116 | continue; | ||||
| 117 | } | ||||
| 118 | if (Visited.insert(Operand).second) | ||||
| 119 | Worklist.push_back(Operand); | ||||
| 120 | } | ||||
| 121 | } | ||||
| 122 | return HasBlockAddress; | ||||
| 123 | } | ||||
| 124 | |||||
| 125 | static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, | ||||
| 126 | ProfileSummaryInfo *PSI) { | ||||
| 127 | if (!PSI) | ||||
| 128 | return CalleeInfo::HotnessType::Unknown; | ||||
| 129 | if (PSI->isHotCount(ProfileCount)) | ||||
| 130 | return CalleeInfo::HotnessType::Hot; | ||||
| 131 | if (PSI->isColdCount(ProfileCount)) | ||||
| 132 | return CalleeInfo::HotnessType::Cold; | ||||
| 133 | return CalleeInfo::HotnessType::None; | ||||
| 134 | } | ||||
| 135 | |||||
| 136 | static bool isNonRenamableLocal(const GlobalValue &GV) { | ||||
| 137 | return GV.hasSection() && GV.hasLocalLinkage(); | ||||
| 138 | } | ||||
| 139 | |||||
| 140 | /// Determine whether this call has all constant integer arguments (excluding | ||||
| 141 | /// "this") and summarize it to VCalls or ConstVCalls as appropriate. | ||||
| 142 | static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, | ||||
| 143 | SetVector<FunctionSummary::VFuncId> &VCalls, | ||||
| 144 | SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { | ||||
| 145 | std::vector<uint64_t> Args; | ||||
| 146 | // Start from the second argument to skip the "this" pointer. | ||||
| 147 | for (auto &Arg : drop_begin(Call.CB.args())) { | ||||
| 148 | auto *CI = dyn_cast<ConstantInt>(Arg); | ||||
| 149 | if (!CI || CI->getBitWidth() > 64) { | ||||
| 150 | VCalls.insert({Guid, Call.Offset}); | ||||
| 151 | return; | ||||
| 152 | } | ||||
| 153 | Args.push_back(CI->getZExtValue()); | ||||
| 154 | } | ||||
| 155 | ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); | ||||
| 156 | } | ||||
| 157 | |||||
| 158 | /// If this intrinsic call requires that we add information to the function | ||||
| 159 | /// summary, do so via the non-constant reference arguments. | ||||
| 160 | static void addIntrinsicToSummary( | ||||
| 161 | const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, | ||||
| 162 | SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, | ||||
| 163 | SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, | ||||
| 164 | SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, | ||||
| 165 | SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls, | ||||
| 166 | DominatorTree &DT) { | ||||
| 167 | switch (CI->getCalledFunction()->getIntrinsicID()) { | ||||
| 168 | case Intrinsic::type_test: { | ||||
| 169 | auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); | ||||
| 170 | auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); | ||||
| 171 | if (!TypeId) | ||||
| 172 | break; | ||||
| 173 | GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); | ||||
| 174 | |||||
| 175 | // Produce a summary from type.test intrinsics. We only summarize type.test | ||||
| 176 | // intrinsics that are used other than by an llvm.assume intrinsic. | ||||
| 177 | // Intrinsics that are assumed are relevant only to the devirtualization | ||||
| 178 | // pass, not the type test lowering pass. | ||||
| 179 | bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { | ||||
| 180 | return !isa<AssumeInst>(CIU.getUser()); | ||||
| 181 | }); | ||||
| 182 | if (HasNonAssumeUses) | ||||
| 183 | TypeTests.insert(Guid); | ||||
| 184 | |||||
| 185 | SmallVector<DevirtCallSite, 4> DevirtCalls; | ||||
| 186 | SmallVector<CallInst *, 4> Assumes; | ||||
| 187 | findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); | ||||
| 188 | for (auto &Call : DevirtCalls) | ||||
| 189 | addVCallToSet(Call, Guid, TypeTestAssumeVCalls, | ||||
| 190 | TypeTestAssumeConstVCalls); | ||||
| 191 | |||||
| 192 | break; | ||||
| 193 | } | ||||
| 194 | |||||
| 195 | case Intrinsic::type_checked_load: { | ||||
| 196 | auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); | ||||
| 197 | auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); | ||||
| 198 | if (!TypeId) | ||||
| 199 | break; | ||||
| 200 | GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); | ||||
| 201 | |||||
| 202 | SmallVector<DevirtCallSite, 4> DevirtCalls; | ||||
| 203 | SmallVector<Instruction *, 4> LoadedPtrs; | ||||
| 204 | SmallVector<Instruction *, 4> Preds; | ||||
| 205 | bool HasNonCallUses = false; | ||||
| 206 | findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, | ||||
| 207 | HasNonCallUses, CI, DT); | ||||
| 208 | // Any non-call uses of the result of llvm.type.checked.load will | ||||
| 209 | // prevent us from optimizing away the llvm.type.test. | ||||
| 210 | if (HasNonCallUses) | ||||
| 211 | TypeTests.insert(Guid); | ||||
| 212 | for (auto &Call : DevirtCalls) | ||||
| 213 | addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, | ||||
| 214 | TypeCheckedLoadConstVCalls); | ||||
| 215 | |||||
| 216 | break; | ||||
| 217 | } | ||||
| 218 | default: | ||||
| 219 | break; | ||||
| 220 | } | ||||
| 221 | } | ||||
| 222 | |||||
| 223 | static bool isNonVolatileLoad(const Instruction *I) { | ||||
| 224 | if (const auto *LI = dyn_cast<LoadInst>(I)) | ||||
| 225 | return !LI->isVolatile(); | ||||
| 226 | |||||
| 227 | return false; | ||||
| 228 | } | ||||
| 229 | |||||
| 230 | static bool isNonVolatileStore(const Instruction *I) { | ||||
| 231 | if (const auto *SI = dyn_cast<StoreInst>(I)) | ||||
| 232 | return !SI->isVolatile(); | ||||
| 233 | |||||
| 234 | return false; | ||||
| 235 | } | ||||
| 236 | |||||
| 237 | static void computeFunctionSummary( | ||||
| 238 | ModuleSummaryIndex &Index, const Module &M, const Function &F, | ||||
| 239 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, | ||||
| 240 | bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, | ||||
| 241 | bool IsThinLTO, | ||||
| 242 | std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { | ||||
| 243 | // Summary not currently supported for anonymous functions, they should | ||||
| 244 | // have been named. | ||||
| 245 | assert(F.hasName())((void)0); | ||||
| 246 | |||||
| 247 | unsigned NumInsts = 0; | ||||
| 248 | // Map from callee ValueId to profile count. Used to accumulate profile | ||||
| 249 | // counts for all static calls to a given callee. | ||||
| 250 | MapVector<ValueInfo, CalleeInfo> CallGraphEdges; | ||||
| 251 | SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges; | ||||
| 252 | SetVector<GlobalValue::GUID> TypeTests; | ||||
| 253 | SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, | ||||
| 254 | TypeCheckedLoadVCalls; | ||||
| 255 | SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, | ||||
| 256 | TypeCheckedLoadConstVCalls; | ||||
| 257 | ICallPromotionAnalysis ICallAnalysis; | ||||
| 258 | SmallPtrSet<const User *, 8> Visited; | ||||
| 259 | |||||
| 260 | // Add personality function, prefix data and prologue data to function's ref | ||||
| 261 | // list. | ||||
| 262 | findRefEdges(Index, &F, RefEdges, Visited); | ||||
| 263 | std::vector<const Instruction *> NonVolatileLoads; | ||||
| 264 | std::vector<const Instruction *> NonVolatileStores; | ||||
| 265 | |||||
| 266 | bool HasInlineAsmMaybeReferencingInternal = false; | ||||
| 267 | for (const BasicBlock &BB : F) | ||||
| 268 | for (const Instruction &I : BB) { | ||||
| 269 | if (isa<DbgInfoIntrinsic>(I)) | ||||
| 270 | continue; | ||||
| 271 | ++NumInsts; | ||||
| 272 | // Regular LTO module doesn't participate in ThinLTO import, | ||||
| 273 | // so no reference from it can be read/writeonly, since this | ||||
| 274 | // would require importing variable as local copy | ||||
| 275 | if (IsThinLTO) { | ||||
| 276 | if (isNonVolatileLoad(&I)) { | ||||
| 277 | // Postpone processing of non-volatile load instructions | ||||
| 278 | // See comments below | ||||
| 279 | Visited.insert(&I); | ||||
| 280 | NonVolatileLoads.push_back(&I); | ||||
| 281 | continue; | ||||
| 282 | } else if (isNonVolatileStore(&I)) { | ||||
| 283 | Visited.insert(&I); | ||||
| 284 | NonVolatileStores.push_back(&I); | ||||
| 285 | // All references from second operand of store (destination address) | ||||
| 286 | // can be considered write-only if they're not referenced by any | ||||
| 287 | // non-store instruction. References from first operand of store | ||||
| 288 | // (stored value) can't be treated either as read- or as write-only | ||||
| 289 | // so we add them to RefEdges as we do with all other instructions | ||||
| 290 | // except non-volatile load. | ||||
| 291 | Value *Stored = I.getOperand(0); | ||||
| 292 | if (auto *GV = dyn_cast<GlobalValue>(Stored)) | ||||
| 293 | // findRefEdges will try to examine GV operands, so instead | ||||
| 294 | // of calling it we should add GV to RefEdges directly. | ||||
| 295 | RefEdges.insert(Index.getOrInsertValueInfo(GV)); | ||||
| 296 | else if (auto *U = dyn_cast<User>(Stored)) | ||||
| 297 | findRefEdges(Index, U, RefEdges, Visited); | ||||
| 298 | continue; | ||||
| 299 | } | ||||
| 300 | } | ||||
| 301 | findRefEdges(Index, &I, RefEdges, Visited); | ||||
| 302 | const auto *CB = dyn_cast<CallBase>(&I); | ||||
| 303 | if (!CB) | ||||
| 304 | continue; | ||||
| 305 | |||||
| 306 | const auto *CI = dyn_cast<CallInst>(&I); | ||||
| 307 | // Since we don't know exactly which local values are referenced in inline | ||||
| 308 | // assembly, conservatively mark the function as possibly referencing | ||||
| 309 | // a local value from inline assembly to ensure we don't export a | ||||
| 310 | // reference (which would require renaming and promotion of the | ||||
| 311 | // referenced value). | ||||
| 312 | if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) | ||||
| 313 | HasInlineAsmMaybeReferencingInternal = true; | ||||
| 314 | |||||
| 315 | auto *CalledValue = CB->getCalledOperand(); | ||||
| 316 | auto *CalledFunction = CB->getCalledFunction(); | ||||
| 317 | if (CalledValue && !CalledFunction) { | ||||
| 318 | CalledValue = CalledValue->stripPointerCasts(); | ||||
| 319 | // Stripping pointer casts can reveal a called function. | ||||
| 320 | CalledFunction = dyn_cast<Function>(CalledValue); | ||||
| 321 | } | ||||
| 322 | // Check if this is an alias to a function. If so, get the | ||||
| 323 | // called aliasee for the checks below. | ||||
| 324 | if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { | ||||
| 325 | assert(!CalledFunction && "Expected null called function in callsite for alias")((void)0); | ||||
| 326 | CalledFunction = dyn_cast<Function>(GA->getBaseObject()); | ||||
| 327 | } | ||||
| 328 | // Check if this is a direct call to a known function or a known | ||||
| 329 | // intrinsic, or an indirect call with profile data. | ||||
| 330 | if (CalledFunction) { | ||||
| 331 | if (CI && CalledFunction->isIntrinsic()) { | ||||
| 332 | addIntrinsicToSummary( | ||||
| 333 | CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, | ||||
| 334 | TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); | ||||
| 335 | continue; | ||||
| 336 | } | ||||
| 337 | // We should have named any anonymous globals | ||||
| 338 | assert(CalledFunction->hasName())((void)0); | ||||
| 339 | auto ScaledCount = PSI->getProfileCount(*CB, BFI); | ||||
| 340 | auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) | ||||
| 341 | : CalleeInfo::HotnessType::Unknown; | ||||
| 342 | if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) | ||||
| 343 | Hotness = CalleeInfo::HotnessType::Cold; | ||||
| 344 | |||||
| 345 | // Use the original CalledValue, in case it was an alias. We want | ||||
| 346 | // to record the call edge to the alias in that case. Eventually | ||||
| 347 | // an alias summary will be created to associate the alias and | ||||
| 348 | // aliasee. | ||||
| 349 | auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( | ||||
| 350 | cast<GlobalValue>(CalledValue))]; | ||||
| 351 | ValueInfo.updateHotness(Hotness); | ||||
| 352 | // Add the relative block frequency to CalleeInfo if there is no profile | ||||
| 353 | // information. | ||||
| 354 | if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { | ||||
| 355 | uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); | ||||
| 356 | uint64_t EntryFreq = BFI->getEntryFreq(); | ||||
| 357 | ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); | ||||
| 358 | } | ||||
| 359 | } else { | ||||
| 360 | // Skip inline assembly calls. | ||||
| 361 | if (CI && CI->isInlineAsm()) | ||||
| 362 | continue; | ||||
| 363 | // Skip direct calls. | ||||
| 364 | if (!CalledValue || isa<Constant>(CalledValue)) | ||||
| 365 | continue; | ||||
| 366 | |||||
| 367 | // Check if the instruction has a callees metadata. If so, add callees | ||||
| 368 | // to CallGraphEdges to reflect the references from the metadata, and | ||||
| 369 | // to enable importing for subsequent indirect call promotion and | ||||
| 370 | // inlining. | ||||
| 371 | if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { | ||||
| 372 | for (auto &Op : MD->operands()) { | ||||
| 373 | Function *Callee = mdconst::extract_or_null<Function>(Op); | ||||
| 374 | if (Callee) | ||||
| 375 | CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; | ||||
| 376 | } | ||||
| 377 | } | ||||
| 378 | |||||
| 379 | uint32_t NumVals, NumCandidates; | ||||
| 380 | uint64_t TotalCount; | ||||
| 381 | auto CandidateProfileData = | ||||
| 382 | ICallAnalysis.getPromotionCandidatesForInstruction( | ||||
| 383 | &I, NumVals, TotalCount, NumCandidates); | ||||
| 384 | for (auto &Candidate : CandidateProfileData) | ||||
| 385 | CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] | ||||
| 386 | .updateHotness(getHotness(Candidate.Count, PSI)); | ||||
| 387 | } | ||||
| 388 | } | ||||
| 389 | Index.addBlockCount(F.size()); | ||||
| 390 | |||||
| 391 | std::vector<ValueInfo> Refs; | ||||
| 392 | if (IsThinLTO) { | ||||
| 393 | auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, | ||||
| 394 | SetVector<ValueInfo> &Edges, | ||||
| 395 | SmallPtrSet<const User *, 8> &Cache) { | ||||
| 396 | for (const auto *I : Instrs) { | ||||
| 397 | Cache.erase(I); | ||||
| 398 | findRefEdges(Index, I, Edges, Cache); | ||||
| 399 | } | ||||
| 400 | }; | ||||
| 401 | |||||
| 402 | // By now we processed all instructions in a function, except | ||||
| 403 | // non-volatile loads and non-volatile value stores. Let's find | ||||
| 404 | // ref edges for both of instruction sets | ||||
| 405 | AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); | ||||
| 406 | // We can add some values to the Visited set when processing load | ||||
| 407 | // instructions which are also used by stores in NonVolatileStores. | ||||
| 408 | // For example this can happen if we have following code: | ||||
| 409 | // | ||||
| 410 | // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) | ||||
| 411 | // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) | ||||
| 412 | // | ||||
| 413 | // After processing loads we'll add bitcast to the Visited set, and if | ||||
| 414 | // we use the same set while processing stores, we'll never see store | ||||
| 415 | // to @bar and @bar will be mistakenly treated as readonly. | ||||
| 416 | SmallPtrSet<const llvm::User *, 8> StoreCache; | ||||
| 417 | AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); | ||||
| 418 | |||||
| 419 | // If both load and store instruction reference the same variable | ||||
| 420 | // we won't be able to optimize it. Add all such reference edges | ||||
| 421 | // to RefEdges set. | ||||
| 422 | for (auto &VI : StoreRefEdges) | ||||
| 423 | if (LoadRefEdges.remove(VI)) | ||||
| 424 | RefEdges.insert(VI); | ||||
| 425 | |||||
| 426 | unsigned RefCnt = RefEdges.size(); | ||||
| 427 | // All new reference edges inserted in two loops below are either | ||||
| 428 | // read or write only. They will be grouped in the end of RefEdges | ||||
| 429 | // vector, so we can use a single integer value to identify them. | ||||
| 430 | for (auto &VI : LoadRefEdges) | ||||
| 431 | RefEdges.insert(VI); | ||||
| 432 | |||||
| 433 | unsigned FirstWORef = RefEdges.size(); | ||||
| 434 | for (auto &VI : StoreRefEdges) | ||||
| 435 | RefEdges.insert(VI); | ||||
| 436 | |||||
| 437 | Refs = RefEdges.takeVector(); | ||||
| 438 | for (; RefCnt < FirstWORef; ++RefCnt) | ||||
| 439 | Refs[RefCnt].setReadOnly(); | ||||
| 440 | |||||
| 441 | for (; RefCnt < Refs.size(); ++RefCnt) | ||||
| 442 | Refs[RefCnt].setWriteOnly(); | ||||
| 443 | } else { | ||||
| 444 | Refs = RefEdges.takeVector(); | ||||
| 445 | } | ||||
| 446 | // Explicit add hot edges to enforce importing for designated GUIDs for | ||||
| 447 | // sample PGO, to enable the same inlines as the profiled optimized binary. | ||||
| 448 | for (auto &I : F.getImportGUIDs()) | ||||
| 449 | CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( | ||||
| 450 | ForceSummaryEdgesCold == FunctionSummary::FSHT_All | ||||
| 451 | ? CalleeInfo::HotnessType::Cold | ||||
| 452 | : CalleeInfo::HotnessType::Critical); | ||||
| 453 | |||||
| 454 | bool NonRenamableLocal = isNonRenamableLocal(F); | ||||
| 455 | bool NotEligibleForImport = | ||||
| 456 | NonRenamableLocal || HasInlineAsmMaybeReferencingInternal; | ||||
| 457 | GlobalValueSummary::GVFlags Flags( | ||||
| 458 | F.getLinkage(), F.getVisibility(), NotEligibleForImport, | ||||
| 459 | /* Live = */ false, F.isDSOLocal(), | ||||
| 460 | F.hasLinkOnceODRLinkage() && F.hasGlobalUnnamedAddr()); | ||||
| 461 | FunctionSummary::FFlags FunFlags{ | ||||
| 462 | F.hasFnAttribute(Attribute::ReadNone), | ||||
| 463 | F.hasFnAttribute(Attribute::ReadOnly), | ||||
| 464 | F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), | ||||
| 465 | // FIXME: refactor this to use the same code that inliner is using. | ||||
| 466 | // Don't try to import functions with noinline attribute. | ||||
| 467 | F.getAttributes().hasFnAttribute(Attribute::NoInline), | ||||
| 468 | F.hasFnAttribute(Attribute::AlwaysInline)}; | ||||
| 469 | std::vector<FunctionSummary::ParamAccess> ParamAccesses; | ||||
| 470 | if (auto *SSI = GetSSICallback(F)) | ||||
| 471 | ParamAccesses = SSI->getParamAccesses(Index); | ||||
| 472 | auto FuncSummary = std::make_unique<FunctionSummary>( | ||||
| 473 | Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), | ||||
| 474 | CallGraphEdges.takeVector(), TypeTests.takeVector(), | ||||
| 475 | TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), | ||||
| 476 | TypeTestAssumeConstVCalls.takeVector(), | ||||
| 477 | TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses)); | ||||
| 478 | if (NonRenamableLocal) | ||||
| 479 | CantBePromoted.insert(F.getGUID()); | ||||
| 480 | Index.addGlobalValueSummary(F, std::move(FuncSummary)); | ||||
| 481 | } | ||||
| 482 | |||||
| 483 | /// Find function pointers referenced within the given vtable initializer | ||||
| 484 | /// (or subset of an initializer) \p I. The starting offset of \p I within | ||||
| 485 | /// the vtable initializer is \p StartingOffset. Any discovered function | ||||
| 486 | /// pointers are added to \p VTableFuncs along with their cumulative offset | ||||
| 487 | /// within the initializer. | ||||
| 488 | static void findFuncPointers(const Constant *I, uint64_t StartingOffset, | ||||
| 489 | const Module &M, ModuleSummaryIndex &Index, | ||||
| 490 | VTableFuncList &VTableFuncs) { | ||||
| 491 | // First check if this is a function pointer. | ||||
| 492 | if (I->getType()->isPointerTy()) { | ||||
| 493 | auto Fn = dyn_cast<Function>(I->stripPointerCasts()); | ||||
| 494 | // We can disregard __cxa_pure_virtual as a possible call target, as | ||||
| 495 | // calls to pure virtuals are UB. | ||||
| 496 | if (Fn && Fn->getName() != "__cxa_pure_virtual") | ||||
| 497 | VTableFuncs.push_back({Index.getOrInsertValueInfo(Fn), StartingOffset}); | ||||
| 498 | return; | ||||
| 499 | } | ||||
| 500 | |||||
| 501 | // Walk through the elements in the constant struct or array and recursively | ||||
| 502 | // look for virtual function pointers. | ||||
| 503 | const DataLayout &DL = M.getDataLayout(); | ||||
| 504 | if (auto *C
| ||||
| 505 | StructType *STy = dyn_cast<StructType>(C->getType()); | ||||
| 506 | assert(STy)((void)0); | ||||
| 507 | const StructLayout *SL = DL.getStructLayout(C->getType()); | ||||
| 508 | |||||
| 509 | for (auto EI : llvm::enumerate(STy->elements())) { | ||||
| |||||
| 510 | auto Offset = SL->getElementOffset(EI.index()); | ||||
| 511 | unsigned Op = SL->getElementContainingOffset(Offset); | ||||
| 512 | findFuncPointers(cast<Constant>(I->getOperand(Op)), | ||||
| 513 | StartingOffset + Offset, M, Index, VTableFuncs); | ||||
| 514 | } | ||||
| 515 | } else if (auto *C = dyn_cast<ConstantArray>(I)) { | ||||
| 516 | ArrayType *ATy = C->getType(); | ||||
| 517 | Type *EltTy = ATy->getElementType(); | ||||
| 518 | uint64_t EltSize = DL.getTypeAllocSize(EltTy); | ||||
| 519 | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { | ||||
| 520 | findFuncPointers(cast<Constant>(I->getOperand(i)), | ||||
| 521 | StartingOffset + i * EltSize, M, Index, VTableFuncs); | ||||
| 522 | } | ||||
| 523 | } | ||||
| 524 | } | ||||
| 525 | |||||
| 526 | // Identify the function pointers referenced by vtable definition \p V. | ||||
| 527 | static void computeVTableFuncs(ModuleSummaryIndex &Index, | ||||
| 528 | const GlobalVariable &V, const Module &M, | ||||
| 529 | VTableFuncList &VTableFuncs) { | ||||
| 530 | if (!V.isConstant()) | ||||
| 531 | return; | ||||
| 532 | |||||
| 533 | findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, | ||||
| 534 | VTableFuncs); | ||||
| 535 | |||||
| 536 | #ifndef NDEBUG1 | ||||
| 537 | // Validate that the VTableFuncs list is ordered by offset. | ||||
| 538 | uint64_t PrevOffset = 0; | ||||
| 539 | for (auto &P : VTableFuncs) { | ||||
| 540 | // The findVFuncPointers traversal should have encountered the | ||||
| 541 | // functions in offset order. We need to use ">=" since PrevOffset | ||||
| 542 | // starts at 0. | ||||
| 543 | assert(P.VTableOffset >= PrevOffset)((void)0); | ||||
| 544 | PrevOffset = P.VTableOffset; | ||||
| 545 | } | ||||
| 546 | #endif | ||||
| 547 | } | ||||
| 548 | |||||
| 549 | /// Record vtable definition \p V for each type metadata it references. | ||||
| 550 | static void | ||||
| 551 | recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, | ||||
| 552 | const GlobalVariable &V, | ||||
| 553 | SmallVectorImpl<MDNode *> &Types) { | ||||
| 554 | for (MDNode *Type : Types) { | ||||
| 555 | auto TypeID = Type->getOperand(1).get(); | ||||
| 556 | |||||
| 557 | uint64_t Offset = | ||||
| 558 | cast<ConstantInt>( | ||||
| 559 | cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) | ||||
| 560 | ->getZExtValue(); | ||||
| 561 | |||||
| 562 | if (auto *TypeId = dyn_cast<MDString>(TypeID)) | ||||
| 563 | Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) | ||||
| 564 | .push_back({Offset, Index.getOrInsertValueInfo(&V)}); | ||||
| 565 | } | ||||
| 566 | } | ||||
| 567 | |||||
| 568 | static void computeVariableSummary(ModuleSummaryIndex &Index, | ||||
| 569 | const GlobalVariable &V, | ||||
| 570 | DenseSet<GlobalValue::GUID> &CantBePromoted, | ||||
| 571 | const Module &M, | ||||
| 572 | SmallVectorImpl<MDNode *> &Types) { | ||||
| 573 | SetVector<ValueInfo> RefEdges; | ||||
| 574 | SmallPtrSet<const User *, 8> Visited; | ||||
| 575 | bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); | ||||
| 576 | bool NonRenamableLocal = isNonRenamableLocal(V); | ||||
| 577 | GlobalValueSummary::GVFlags Flags( | ||||
| 578 | V.getLinkage(), V.getVisibility(), NonRenamableLocal, | ||||
| 579 | /* Live = */ false, V.isDSOLocal(), | ||||
| 580 | V.hasLinkOnceODRLinkage() && V.hasGlobalUnnamedAddr()); | ||||
| 581 | |||||
| 582 | VTableFuncList VTableFuncs; | ||||
| 583 | // If splitting is not enabled, then we compute the summary information | ||||
| 584 | // necessary for index-based whole program devirtualization. | ||||
| 585 | if (!Index.enableSplitLTOUnit()) { | ||||
| 586 | Types.clear(); | ||||
| 587 | V.getMetadata(LLVMContext::MD_type, Types); | ||||
| 588 | if (!Types.empty()) { | ||||
| 589 | // Identify the function pointers referenced by this vtable definition. | ||||
| 590 | computeVTableFuncs(Index, V, M, VTableFuncs); | ||||
| 591 | |||||
| 592 | // Record this vtable definition for each type metadata it references. | ||||
| 593 | recordTypeIdCompatibleVtableReferences(Index, V, Types); | ||||
| 594 | } | ||||
| 595 | } | ||||
| 596 | |||||
| 597 | // Don't mark variables we won't be able to internalize as read/write-only. | ||||
| 598 | bool CanBeInternalized = | ||||
| 599 | !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && | ||||
| 600 | !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); | ||||
| 601 | bool Constant = V.isConstant(); | ||||
| 602 | GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, | ||||
| 603 | Constant ? false : CanBeInternalized, | ||||
| 604 | Constant, V.getVCallVisibility()); | ||||
| 605 | auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, | ||||
| 606 | RefEdges.takeVector()); | ||||
| 607 | if (NonRenamableLocal) | ||||
| 608 | CantBePromoted.insert(V.getGUID()); | ||||
| 609 | if (HasBlockAddress) | ||||
| 610 | GVarSummary->setNotEligibleToImport(); | ||||
| 611 | if (!VTableFuncs.empty()) | ||||
| 612 | GVarSummary->setVTableFuncs(VTableFuncs); | ||||
| 613 | Index.addGlobalValueSummary(V, std::move(GVarSummary)); | ||||
| 614 | } | ||||
| 615 | |||||
| 616 | static void | ||||
| 617 | computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, | ||||
| 618 | DenseSet<GlobalValue::GUID> &CantBePromoted) { | ||||
| 619 | bool NonRenamableLocal = isNonRenamableLocal(A); | ||||
| 620 | GlobalValueSummary::GVFlags Flags( | ||||
| 621 | A.getLinkage(), A.getVisibility(), NonRenamableLocal, | ||||
| 622 | /* Live = */ false, A.isDSOLocal(), | ||||
| 623 | A.hasLinkOnceODRLinkage() && A.hasGlobalUnnamedAddr()); | ||||
| 624 | auto AS = std::make_unique<AliasSummary>(Flags); | ||||
| 625 | auto *Aliasee = A.getBaseObject(); | ||||
| 626 | auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); | ||||
| 627 | assert(AliaseeVI && "Alias expects aliasee summary to be available")((void)0); | ||||
| 628 | assert(AliaseeVI.getSummaryList().size() == 1 &&((void)0) | ||||
| 629 | "Expected a single entry per aliasee in per-module index")((void)0); | ||||
| 630 | AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); | ||||
| 631 | if (NonRenamableLocal) | ||||
| 632 | CantBePromoted.insert(A.getGUID()); | ||||
| 633 | Index.addGlobalValueSummary(A, std::move(AS)); | ||||
| 634 | } | ||||
| 635 | |||||
| 636 | // Set LiveRoot flag on entries matching the given value name. | ||||
| 637 | static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { | ||||
| 638 | if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) | ||||
| 639 | for (auto &Summary : VI.getSummaryList()) | ||||
| 640 | Summary->setLive(true); | ||||
| 641 | } | ||||
| 642 | |||||
| 643 | ModuleSummaryIndex llvm::buildModuleSummaryIndex( | ||||
| 644 | const Module &M, | ||||
| 645 | std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, | ||||
| 646 | ProfileSummaryInfo *PSI, | ||||
| 647 | std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { | ||||
| 648 | assert(PSI)((void)0); | ||||
| 649 | bool EnableSplitLTOUnit = false; | ||||
| 650 | if (auto *MD
| ||||
| 651 | M.getModuleFlag("EnableSplitLTOUnit"))) | ||||
| 652 | EnableSplitLTOUnit = MD->getZExtValue(); | ||||
| 653 | ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit); | ||||
| 654 | |||||
| 655 | // Identify the local values in the llvm.used and llvm.compiler.used sets, | ||||
| 656 | // which should not be exported as they would then require renaming and | ||||
| 657 | // promotion, but we may have opaque uses e.g. in inline asm. We collect them | ||||
| 658 | // here because we use this information to mark functions containing inline | ||||
| 659 | // assembly calls as not importable. | ||||
| 660 | SmallPtrSet<GlobalValue *, 4> LocalsUsed; | ||||
| 661 | SmallVector<GlobalValue *, 4> Used; | ||||
| 662 | // First collect those in the llvm.used set. | ||||
| 663 | collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); | ||||
| 664 | // Next collect those in the llvm.compiler.used set. | ||||
| 665 | collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); | ||||
| 666 | DenseSet<GlobalValue::GUID> CantBePromoted; | ||||
| 667 | for (auto *V : Used) { | ||||
| 668 | if (V->hasLocalLinkage()) { | ||||
| 669 | LocalsUsed.insert(V); | ||||
| 670 | CantBePromoted.insert(V->getGUID()); | ||||
| 671 | } | ||||
| 672 | } | ||||
| 673 | |||||
| 674 | bool HasLocalInlineAsmSymbol = false; | ||||
| 675 | if (!M.getModuleInlineAsm().empty()) { | ||||
| 676 | // Collect the local values defined by module level asm, and set up | ||||
| 677 | // summaries for these symbols so that they can be marked as NoRename, | ||||
| 678 | // to prevent export of any use of them in regular IR that would require | ||||
| 679 | // renaming within the module level asm. Note we don't need to create a | ||||
| 680 | // summary for weak or global defs, as they don't need to be flagged as | ||||
| 681 | // NoRename, and defs in module level asm can't be imported anyway. | ||||
| 682 | // Also, any values used but not defined within module level asm should | ||||
| 683 | // be listed on the llvm.used or llvm.compiler.used global and marked as | ||||
| 684 | // referenced from there. | ||||
| 685 | ModuleSymbolTable::CollectAsmSymbols( | ||||
| 686 | M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { | ||||
| 687 | // Symbols not marked as Weak or Global are local definitions. | ||||
| 688 | if (Flags & (object::BasicSymbolRef::SF_Weak | | ||||
| 689 | object::BasicSymbolRef::SF_Global)) | ||||
| 690 | return; | ||||
| 691 | HasLocalInlineAsmSymbol = true; | ||||
| 692 | GlobalValue *GV = M.getNamedValue(Name); | ||||
| 693 | if (!GV) | ||||
| 694 | return; | ||||
| 695 | assert(GV->isDeclaration() && "Def in module asm already has definition")((void)0); | ||||
| 696 | GlobalValueSummary::GVFlags GVFlags( | ||||
| 697 | GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, | ||||
| 698 | /* NotEligibleToImport = */ true, | ||||
| 699 | /* Live = */ true, | ||||
| 700 | /* Local */ GV->isDSOLocal(), | ||||
| 701 | GV->hasLinkOnceODRLinkage() && GV->hasGlobalUnnamedAddr()); | ||||
| 702 | CantBePromoted.insert(GV->getGUID()); | ||||
| 703 | // Create the appropriate summary type. | ||||
| 704 | if (Function *F = dyn_cast<Function>(GV)) { | ||||
| 705 | std::unique_ptr<FunctionSummary> Summary = | ||||
| 706 | std::make_unique<FunctionSummary>( | ||||
| 707 | GVFlags, /*InstCount=*/0, | ||||
| 708 | FunctionSummary::FFlags{ | ||||
| 709 | F->hasFnAttribute(Attribute::ReadNone), | ||||
| 710 | F->hasFnAttribute(Attribute::ReadOnly), | ||||
| 711 | F->hasFnAttribute(Attribute::NoRecurse), | ||||
| 712 | F->returnDoesNotAlias(), | ||||
| 713 | /* NoInline = */ false, | ||||
| 714 | F->hasFnAttribute(Attribute::AlwaysInline)}, | ||||
| 715 | /*EntryCount=*/0, ArrayRef<ValueInfo>{}, | ||||
| 716 | ArrayRef<FunctionSummary::EdgeTy>{}, | ||||
| 717 | ArrayRef<GlobalValue::GUID>{}, | ||||
| 718 | ArrayRef<FunctionSummary::VFuncId>{}, | ||||
| 719 | ArrayRef<FunctionSummary::VFuncId>{}, | ||||
| 720 | ArrayRef<FunctionSummary::ConstVCall>{}, | ||||
| 721 | ArrayRef<FunctionSummary::ConstVCall>{}, | ||||
| 722 | ArrayRef<FunctionSummary::ParamAccess>{}); | ||||
| 723 | Index.addGlobalValueSummary(*GV, std::move(Summary)); | ||||
| 724 | } else { | ||||
| 725 | std::unique_ptr<GlobalVarSummary> Summary = | ||||
| 726 | std::make_unique<GlobalVarSummary>( | ||||
| 727 | GVFlags, | ||||
| 728 | GlobalVarSummary::GVarFlags( | ||||
| 729 | false, false, cast<GlobalVariable>(GV)->isConstant(), | ||||
| 730 | GlobalObject::VCallVisibilityPublic), | ||||
| 731 | ArrayRef<ValueInfo>{}); | ||||
| 732 | Index.addGlobalValueSummary(*GV, std::move(Summary)); | ||||
| 733 | } | ||||
| 734 | }); | ||||
| 735 | } | ||||
| 736 | |||||
| 737 | bool IsThinLTO = true; | ||||
| 738 | if (auto *MD
| ||||
| 739 | mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) | ||||
| 740 | IsThinLTO = MD->getZExtValue(); | ||||
| 741 | |||||
| 742 | // Compute summaries for all functions defined in module, and save in the | ||||
| 743 | // index. | ||||
| 744 | for (auto &F : M) { | ||||
| 745 | if (F.isDeclaration()) | ||||
| 746 | continue; | ||||
| 747 | |||||
| 748 | DominatorTree DT(const_cast<Function &>(F)); | ||||
| 749 | BlockFrequencyInfo *BFI = nullptr; | ||||
| 750 | std::unique_ptr<BlockFrequencyInfo> BFIPtr; | ||||
| 751 | if (GetBFICallback) | ||||
| 752 | BFI = GetBFICallback(F); | ||||
| 753 | else if (F.hasProfileData()) { | ||||
| 754 | LoopInfo LI{DT}; | ||||
| 755 | BranchProbabilityInfo BPI{F, LI}; | ||||
| 756 | BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); | ||||
| 757 | BFI = BFIPtr.get(); | ||||
| 758 | } | ||||
| 759 | |||||
| 760 | computeFunctionSummary(Index, M, F, BFI, PSI, DT, | ||||
| 761 | !LocalsUsed.empty() || HasLocalInlineAsmSymbol, | ||||
| 762 | CantBePromoted, IsThinLTO, GetSSICallback); | ||||
| 763 | } | ||||
| 764 | |||||
| 765 | // Compute summaries for all variables defined in module, and save in the | ||||
| 766 | // index. | ||||
| 767 | SmallVector<MDNode *, 2> Types; | ||||
| 768 | for (const GlobalVariable &G : M.globals()) { | ||||
| 769 | if (G.isDeclaration()) | ||||
| 770 | continue; | ||||
| 771 | computeVariableSummary(Index, G, CantBePromoted, M, Types); | ||||
| 772 | } | ||||
| 773 | |||||
| 774 | // Compute summaries for all aliases defined in module, and save in the | ||||
| 775 | // index. | ||||
| 776 | for (const GlobalAlias &A : M.aliases()) | ||||
| 777 | computeAliasSummary(Index, A, CantBePromoted); | ||||
| 778 | |||||
| 779 | for (auto *V : LocalsUsed) { | ||||
| 780 | auto *Summary = Index.getGlobalValueSummary(*V); | ||||
| 781 | assert(Summary && "Missing summary for global value")((void)0); | ||||
| 782 | Summary->setNotEligibleToImport(); | ||||
| 783 | } | ||||
| 784 | |||||
| 785 | // The linker doesn't know about these LLVM produced values, so we need | ||||
| 786 | // to flag them as live in the index to ensure index-based dead value | ||||
| 787 | // analysis treats them as live roots of the analysis. | ||||
| 788 | setLiveRoot(Index, "llvm.used"); | ||||
| 789 | setLiveRoot(Index, "llvm.compiler.used"); | ||||
| 790 | setLiveRoot(Index, "llvm.global_ctors"); | ||||
| 791 | setLiveRoot(Index, "llvm.global_dtors"); | ||||
| 792 | setLiveRoot(Index, "llvm.global.annotations"); | ||||
| 793 | |||||
| 794 | for (auto &GlobalList : Index) { | ||||
| 795 | // Ignore entries for references that are undefined in the current module. | ||||
| 796 | if (GlobalList.second.SummaryList.empty()) | ||||
| 797 | continue; | ||||
| 798 | |||||
| 799 | assert(GlobalList.second.SummaryList.size() == 1 &&((void)0) | ||||
| 800 | "Expected module's index to have one summary per GUID")((void)0); | ||||
| 801 | auto &Summary = GlobalList.second.SummaryList[0]; | ||||
| 802 | if (!IsThinLTO) { | ||||
| 803 | Summary->setNotEligibleToImport(); | ||||
| 804 | continue; | ||||
| 805 | } | ||||
| 806 | |||||
| 807 | bool AllRefsCanBeExternallyReferenced = | ||||
| 808 | llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { | ||||
| 809 | return !CantBePromoted.count(VI.getGUID()); | ||||
| 810 | }); | ||||
| 811 | if (!AllRefsCanBeExternallyReferenced) { | ||||
| 812 | Summary->setNotEligibleToImport(); | ||||
| 813 | continue; | ||||
| 814 | } | ||||
| 815 | |||||
| 816 | if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { | ||||
| 817 | bool AllCallsCanBeExternallyReferenced = llvm::all_of( | ||||
| 818 | FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { | ||||
| 819 | return !CantBePromoted.count(Edge.first.getGUID()); | ||||
| 820 | }); | ||||
| 821 | if (!AllCallsCanBeExternallyReferenced) | ||||
| 822 | Summary->setNotEligibleToImport(); | ||||
| 823 | } | ||||
| 824 | } | ||||
| 825 | |||||
| 826 | if (!ModuleSummaryDotFile.empty()) { | ||||
| 827 | std::error_code EC; | ||||
| 828 | raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); | ||||
| 829 | if (EC) | ||||
| 830 | report_fatal_error(Twine("Failed to open dot file ") + | ||||
| 831 | ModuleSummaryDotFile + ": " + EC.message() + "\n"); | ||||
| 832 | Index.exportToDot(OSDot, {}); | ||||
| 833 | } | ||||
| 834 | |||||
| 835 | return Index; | ||||
| 836 | } | ||||
| 837 | |||||
| 838 | AnalysisKey ModuleSummaryIndexAnalysis::Key; | ||||
| 839 | |||||
| 840 | ModuleSummaryIndex | ||||
| 841 | ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { | ||||
| 842 | ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); | ||||
| 843 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); | ||||
| 844 | bool NeedSSI = needsParamAccessSummary(M); | ||||
| 845 | return buildModuleSummaryIndex( | ||||
| 846 | M, | ||||
| 847 | [&FAM](const Function &F) { | ||||
| 848 | return &FAM.getResult<BlockFrequencyAnalysis>( | ||||
| 849 | *const_cast<Function *>(&F)); | ||||
| 850 | }, | ||||
| 851 | &PSI, | ||||
| 852 | [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { | ||||
| 853 | return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( | ||||
| 854 | const_cast<Function &>(F)) | ||||
| 855 | : nullptr; | ||||
| 856 | }); | ||||
| 857 | } | ||||
| 858 | |||||
| 859 | char ModuleSummaryIndexWrapperPass::ID = 0; | ||||
| 860 | |||||
| 861 | INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",static void *initializeModuleSummaryIndexWrapperPassPassOnce( PassRegistry &Registry) { | ||||
| 862 | "Module Summary Analysis", false, true)static void *initializeModuleSummaryIndexWrapperPassPassOnce( PassRegistry &Registry) { | ||||
| 863 | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)initializeBlockFrequencyInfoWrapperPassPass(Registry); | ||||
| 864 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)initializeProfileSummaryInfoWrapperPassPass(Registry); | ||||
| 865 | INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)initializeStackSafetyInfoWrapperPassPass(Registry); | ||||
| 866 | INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",PassInfo *PI = new PassInfo( "Module Summary Analysis", "module-summary-analysis" , &ModuleSummaryIndexWrapperPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<ModuleSummaryIndexWrapperPass>), false , true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleSummaryIndexWrapperPassPassFlag ; void llvm::initializeModuleSummaryIndexWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleSummaryIndexWrapperPassPassFlag , initializeModuleSummaryIndexWrapperPassPassOnce, std::ref(Registry )); } | ||||
| 867 | "Module Summary Analysis", false, true)PassInfo *PI = new PassInfo( "Module Summary Analysis", "module-summary-analysis" , &ModuleSummaryIndexWrapperPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<ModuleSummaryIndexWrapperPass>), false , true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleSummaryIndexWrapperPassPassFlag ; void llvm::initializeModuleSummaryIndexWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleSummaryIndexWrapperPassPassFlag , initializeModuleSummaryIndexWrapperPassPassOnce, std::ref(Registry )); } | ||||
| 868 | |||||
| 869 | ModulePass *llvm::createModuleSummaryIndexWrapperPass() { | ||||
| 870 | return new ModuleSummaryIndexWrapperPass(); | ||||
| 871 | } | ||||
| 872 | |||||
| 873 | ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() | ||||
| 874 | : ModulePass(ID) { | ||||
| 875 | initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); | ||||
| 876 | } | ||||
| 877 | |||||
| 878 | bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { | ||||
| 879 | auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | ||||
| 880 | bool NeedSSI = needsParamAccessSummary(M); | ||||
| 881 | Index.emplace(buildModuleSummaryIndex( | ||||
| |||||
| 882 | M, | ||||
| 883 | [this](const Function &F) { | ||||
| 884 | return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( | ||||
| 885 | *const_cast<Function *>(&F)) | ||||
| 886 | .getBFI()); | ||||
| 887 | }, | ||||
| 888 | PSI, | ||||
| 889 | [&](const Function &F) -> const StackSafetyInfo * { | ||||
| 890 | return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( | ||||
| 891 | const_cast<Function &>(F)) | ||||
| 892 | .getResult() | ||||
| 893 | : nullptr; | ||||
| 894 | })); | ||||
| 895 | return false; | ||||
| 896 | } | ||||
| 897 | |||||
| 898 | bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { | ||||
| 899 | Index.reset(); | ||||
| 900 | return false; | ||||
| 901 | } | ||||
| 902 | |||||
| 903 | void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | ||||
| 904 | AU.setPreservesAll(); | ||||
| 905 | AU.addRequired<BlockFrequencyInfoWrapperPass>(); | ||||
| 906 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | ||||
| 907 | AU.addRequired<StackSafetyInfoWrapperPass>(); | ||||
| 908 | } | ||||
| 909 | |||||
| 910 | char ImmutableModuleSummaryIndexWrapperPass::ID = 0; | ||||
| 911 | |||||
| 912 | ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( | ||||
| 913 | const ModuleSummaryIndex *Index) | ||||
| 914 | : ImmutablePass(ID), Index(Index) { | ||||
| 915 | initializeImmutableModuleSummaryIndexWrapperPassPass( | ||||
| 916 | *PassRegistry::getPassRegistry()); | ||||
| 917 | } | ||||
| 918 | |||||
| 919 | void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( | ||||
| 920 | AnalysisUsage &AU) const { | ||||
| 921 | AU.setPreservesAll(); | ||||
| 922 | } | ||||
| 923 | |||||
| 924 | ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( | ||||
| 925 | const ModuleSummaryIndex *Index) { | ||||
| 926 | return new ImmutableModuleSummaryIndexWrapperPass(Index); | ||||
| 927 | } | ||||
| 928 | |||||
| 929 | INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",static void *initializeImmutableModuleSummaryIndexWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Module summary info" , "module-summary-info", &ImmutableModuleSummaryIndexWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ImmutableModuleSummaryIndexWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeImmutableModuleSummaryIndexWrapperPassPassFlag ; void llvm::initializeImmutableModuleSummaryIndexWrapperPassPass (PassRegistry &Registry) { llvm::call_once(InitializeImmutableModuleSummaryIndexWrapperPassPassFlag , initializeImmutableModuleSummaryIndexWrapperPassPassOnce, std ::ref(Registry)); } | ||||
| 930 | "Module summary info", false, true)static void *initializeImmutableModuleSummaryIndexWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Module summary info" , "module-summary-info", &ImmutableModuleSummaryIndexWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ImmutableModuleSummaryIndexWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeImmutableModuleSummaryIndexWrapperPassPassFlag ; void llvm::initializeImmutableModuleSummaryIndexWrapperPassPass (PassRegistry &Registry) { llvm::call_once(InitializeImmutableModuleSummaryIndexWrapperPassPassFlag , initializeImmutableModuleSummaryIndexWrapperPassPassOnce, std ::ref(Registry)); } |
| 1 | //===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the declaration of the Type class. For more "Type" |
| 10 | // stuff, look in DerivedTypes.h. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_IR_TYPE_H |
| 15 | #define LLVM_IR_TYPE_H |
| 16 | |
| 17 | #include "llvm/ADT/APFloat.h" |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/SmallPtrSet.h" |
| 20 | #include "llvm/Support/CBindingWrapping.h" |
| 21 | #include "llvm/Support/Casting.h" |
| 22 | #include "llvm/Support/Compiler.h" |
| 23 | #include "llvm/Support/ErrorHandling.h" |
| 24 | #include "llvm/Support/TypeSize.h" |
| 25 | #include <cassert> |
| 26 | #include <cstdint> |
| 27 | #include <iterator> |
| 28 | |
| 29 | namespace llvm { |
| 30 | |
| 31 | class IntegerType; |
| 32 | class LLVMContext; |
| 33 | class PointerType; |
| 34 | class raw_ostream; |
| 35 | class StringRef; |
| 36 | |
| 37 | /// The instances of the Type class are immutable: once they are created, |
| 38 | /// they are never changed. Also note that only one instance of a particular |
| 39 | /// type is ever created. Thus seeing if two types are equal is a matter of |
| 40 | /// doing a trivial pointer comparison. To enforce that no two equal instances |
| 41 | /// are created, Type instances can only be created via static factory methods |
| 42 | /// in class Type and in derived classes. Once allocated, Types are never |
| 43 | /// free'd. |
| 44 | /// |
| 45 | class Type { |
| 46 | public: |
| 47 | //===--------------------------------------------------------------------===// |
| 48 | /// Definitions of all of the base types for the Type system. Based on this |
| 49 | /// value, you can cast to a class defined in DerivedTypes.h. |
| 50 | /// Note: If you add an element to this, you need to add an element to the |
| 51 | /// Type::getPrimitiveType function, or else things will break! |
| 52 | /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. |
| 53 | /// |
| 54 | enum TypeID { |
| 55 | // PrimitiveTypes |
| 56 | HalfTyID = 0, ///< 16-bit floating point type |
| 57 | BFloatTyID, ///< 16-bit floating point type (7-bit significand) |
| 58 | FloatTyID, ///< 32-bit floating point type |
| 59 | DoubleTyID, ///< 64-bit floating point type |
| 60 | X86_FP80TyID, ///< 80-bit floating point type (X87) |
| 61 | FP128TyID, ///< 128-bit floating point type (112-bit significand) |
| 62 | PPC_FP128TyID, ///< 128-bit floating point type (two 64-bits, PowerPC) |
| 63 | VoidTyID, ///< type with no size |
| 64 | LabelTyID, ///< Labels |
| 65 | MetadataTyID, ///< Metadata |
| 66 | X86_MMXTyID, ///< MMX vectors (64 bits, X86 specific) |
| 67 | X86_AMXTyID, ///< AMX vectors (8192 bits, X86 specific) |
| 68 | TokenTyID, ///< Tokens |
| 69 | |
| 70 | // Derived types... see DerivedTypes.h file. |
| 71 | IntegerTyID, ///< Arbitrary bit width integers |
| 72 | FunctionTyID, ///< Functions |
| 73 | PointerTyID, ///< Pointers |
| 74 | StructTyID, ///< Structures |
| 75 | ArrayTyID, ///< Arrays |
| 76 | FixedVectorTyID, ///< Fixed width SIMD vector type |
| 77 | ScalableVectorTyID ///< Scalable SIMD vector type |
| 78 | }; |
| 79 | |
| 80 | private: |
| 81 | /// This refers to the LLVMContext in which this type was uniqued. |
| 82 | LLVMContext &Context; |
| 83 | |
| 84 | TypeID ID : 8; // The current base type of this type. |
| 85 | unsigned SubclassData : 24; // Space for subclasses to store data. |
| 86 | // Note that this should be synchronized with |
| 87 | // MAX_INT_BITS value in IntegerType class. |
| 88 | |
| 89 | protected: |
| 90 | friend class LLVMContextImpl; |
| 91 | |
| 92 | explicit Type(LLVMContext &C, TypeID tid) |
| 93 | : Context(C), ID(tid), SubclassData(0) {} |
| 94 | ~Type() = default; |
| 95 | |
| 96 | unsigned getSubclassData() const { return SubclassData; } |
| 97 | |
| 98 | void setSubclassData(unsigned val) { |
| 99 | SubclassData = val; |
| 100 | // Ensure we don't have any accidental truncation. |
| 101 | assert(getSubclassData() == val && "Subclass data too large for field")((void)0); |
| 102 | } |
| 103 | |
| 104 | /// Keeps track of how many Type*'s there are in the ContainedTys list. |
| 105 | unsigned NumContainedTys = 0; |
| 106 | |
| 107 | /// A pointer to the array of Types contained by this Type. For example, this |
| 108 | /// includes the arguments of a function type, the elements of a structure, |
| 109 | /// the pointee of a pointer, the element type of an array, etc. This pointer |
| 110 | /// may be 0 for types that don't contain other types (Integer, Double, |
| 111 | /// Float). |
| 112 | Type * const *ContainedTys = nullptr; |
| 113 | |
| 114 | public: |
| 115 | /// Print the current type. |
| 116 | /// Omit the type details if \p NoDetails == true. |
| 117 | /// E.g., let %st = type { i32, i16 } |
| 118 | /// When \p NoDetails is true, we only print %st. |
| 119 | /// Put differently, \p NoDetails prints the type as if |
| 120 | /// inlined with the operands when printing an instruction. |
| 121 | void print(raw_ostream &O, bool IsForDebug = false, |
| 122 | bool NoDetails = false) const; |
| 123 | |
| 124 | void dump() const; |
| 125 | |
| 126 | /// Return the LLVMContext in which this type was uniqued. |
| 127 | LLVMContext &getContext() const { return Context; } |
| 128 | |
| 129 | //===--------------------------------------------------------------------===// |
| 130 | // Accessors for working with types. |
| 131 | // |
| 132 | |
| 133 | /// Return the type id for the type. This will return one of the TypeID enum |
| 134 | /// elements defined above. |
| 135 | TypeID getTypeID() const { return ID; } |
| 136 | |
| 137 | /// Return true if this is 'void'. |
| 138 | bool isVoidTy() const { return getTypeID() == VoidTyID; } |
| 139 | |
| 140 | /// Return true if this is 'half', a 16-bit IEEE fp type. |
| 141 | bool isHalfTy() const { return getTypeID() == HalfTyID; } |
| 142 | |
| 143 | /// Return true if this is 'bfloat', a 16-bit bfloat type. |
| 144 | bool isBFloatTy() const { return getTypeID() == BFloatTyID; } |
| 145 | |
| 146 | /// Return true if this is 'float', a 32-bit IEEE fp type. |
| 147 | bool isFloatTy() const { return getTypeID() == FloatTyID; } |
| 148 | |
| 149 | /// Return true if this is 'double', a 64-bit IEEE fp type. |
| 150 | bool isDoubleTy() const { return getTypeID() == DoubleTyID; } |
| 151 | |
| 152 | /// Return true if this is x86 long double. |
| 153 | bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } |
| 154 | |
| 155 | /// Return true if this is 'fp128'. |
| 156 | bool isFP128Ty() const { return getTypeID() == FP128TyID; } |
| 157 | |
| 158 | /// Return true if this is powerpc long double. |
| 159 | bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } |
| 160 | |
| 161 | /// Return true if this is one of the six floating-point types |
| 162 | bool isFloatingPointTy() const { |
| 163 | return getTypeID() == HalfTyID || getTypeID() == BFloatTyID || |
| 164 | getTypeID() == FloatTyID || getTypeID() == DoubleTyID || |
| 165 | getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID || |
| 166 | getTypeID() == PPC_FP128TyID; |
| 167 | } |
| 168 | |
| 169 | const fltSemantics &getFltSemantics() const { |
| 170 | switch (getTypeID()) { |
| 171 | case HalfTyID: return APFloat::IEEEhalf(); |
| 172 | case BFloatTyID: return APFloat::BFloat(); |
| 173 | case FloatTyID: return APFloat::IEEEsingle(); |
| 174 | case DoubleTyID: return APFloat::IEEEdouble(); |
| 175 | case X86_FP80TyID: return APFloat::x87DoubleExtended(); |
| 176 | case FP128TyID: return APFloat::IEEEquad(); |
| 177 | case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); |
| 178 | default: llvm_unreachable("Invalid floating type")__builtin_unreachable(); |
| 179 | } |
| 180 | } |
| 181 | |
| 182 | /// Return true if this is X86 MMX. |
| 183 | bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } |
| 184 | |
| 185 | /// Return true if this is X86 AMX. |
| 186 | bool isX86_AMXTy() const { return getTypeID() == X86_AMXTyID; } |
| 187 | |
| 188 | /// Return true if this is a FP type or a vector of FP. |
| 189 | bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } |
| 190 | |
| 191 | /// Return true if this is 'label'. |
| 192 | bool isLabelTy() const { return getTypeID() == LabelTyID; } |
| 193 | |
| 194 | /// Return true if this is 'metadata'. |
| 195 | bool isMetadataTy() const { return getTypeID() == MetadataTyID; } |
| 196 | |
| 197 | /// Return true if this is 'token'. |
| 198 | bool isTokenTy() const { return getTypeID() == TokenTyID; } |
| 199 | |
| 200 | /// True if this is an instance of IntegerType. |
| 201 | bool isIntegerTy() const { return getTypeID() == IntegerTyID; } |
| 202 | |
| 203 | /// Return true if this is an IntegerType of the given width. |
| 204 | bool isIntegerTy(unsigned Bitwidth) const; |
| 205 | |
| 206 | /// Return true if this is an integer type or a vector of integer types. |
| 207 | bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } |
| 208 | |
| 209 | /// Return true if this is an integer type or a vector of integer types of |
| 210 | /// the given width. |
| 211 | bool isIntOrIntVectorTy(unsigned BitWidth) const { |
| 212 | return getScalarType()->isIntegerTy(BitWidth); |
| 213 | } |
| 214 | |
| 215 | /// Return true if this is an integer type or a pointer type. |
| 216 | bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } |
| 217 | |
| 218 | /// True if this is an instance of FunctionType. |
| 219 | bool isFunctionTy() const { return getTypeID() == FunctionTyID; } |
| 220 | |
| 221 | /// True if this is an instance of StructType. |
| 222 | bool isStructTy() const { return getTypeID() == StructTyID; } |
| 223 | |
| 224 | /// True if this is an instance of ArrayType. |
| 225 | bool isArrayTy() const { return getTypeID() == ArrayTyID; } |
| 226 | |
| 227 | /// True if this is an instance of PointerType. |
| 228 | bool isPointerTy() const { return getTypeID() == PointerTyID; } |
| 229 | |
| 230 | /// True if this is an instance of an opaque PointerType. |
| 231 | bool isOpaquePointerTy() const; |
| 232 | |
| 233 | /// Return true if this is a pointer type or a vector of pointer types. |
| 234 | bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } |
| 235 | |
| 236 | /// True if this is an instance of VectorType. |
| 237 | inline bool isVectorTy() const { |
| 238 | return getTypeID() == ScalableVectorTyID || getTypeID() == FixedVectorTyID; |
| 239 | } |
| 240 | |
| 241 | /// Return true if this type could be converted with a lossless BitCast to |
| 242 | /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the |
| 243 | /// same size only where no re-interpretation of the bits is done. |
| 244 | /// Determine if this type could be losslessly bitcast to Ty |
| 245 | bool canLosslesslyBitCastTo(Type *Ty) const; |
| 246 | |
| 247 | /// Return true if this type is empty, that is, it has no elements or all of |
| 248 | /// its elements are empty. |
| 249 | bool isEmptyTy() const; |
| 250 | |
| 251 | /// Return true if the type is "first class", meaning it is a valid type for a |
| 252 | /// Value. |
| 253 | bool isFirstClassType() const { |
| 254 | return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; |
| 255 | } |
| 256 | |
| 257 | /// Return true if the type is a valid type for a register in codegen. This |
| 258 | /// includes all first-class types except struct and array types. |
| 259 | bool isSingleValueType() const { |
| 260 | return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() || |
| 261 | isPointerTy() || isVectorTy() || isX86_AMXTy(); |
| 262 | } |
| 263 | |
| 264 | /// Return true if the type is an aggregate type. This means it is valid as |
| 265 | /// the first operand of an insertvalue or extractvalue instruction. This |
| 266 | /// includes struct and array types, but does not include vector types. |
| 267 | bool isAggregateType() const { |
| 268 | return getTypeID() == StructTyID || getTypeID() == ArrayTyID; |
| 269 | } |
| 270 | |
| 271 | /// Return true if it makes sense to take the size of this type. To get the |
| 272 | /// actual size for a particular target, it is reasonable to use the |
| 273 | /// DataLayout subsystem to do this. |
| 274 | bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const { |
| 275 | // If it's a primitive, it is always sized. |
| 276 | if (getTypeID() == IntegerTyID || isFloatingPointTy() || |
| 277 | getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID || |
| 278 | getTypeID() == X86_AMXTyID) |
| 279 | return true; |
| 280 | // If it is not something that can have a size (e.g. a function or label), |
| 281 | // it doesn't have a size. |
| 282 | if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && !isVectorTy()) |
| 283 | return false; |
| 284 | // Otherwise we have to try harder to decide. |
| 285 | return isSizedDerivedType(Visited); |
| 286 | } |
| 287 | |
| 288 | /// Return the basic size of this type if it is a primitive type. These are |
| 289 | /// fixed by LLVM and are not target-dependent. |
| 290 | /// This will return zero if the type does not have a size or is not a |
| 291 | /// primitive type. |
| 292 | /// |
| 293 | /// If this is a scalable vector type, the scalable property will be set and |
| 294 | /// the runtime size will be a positive integer multiple of the base size. |
| 295 | /// |
| 296 | /// Note that this may not reflect the size of memory allocated for an |
| 297 | /// instance of the type or the number of bytes that are written when an |
| 298 | /// instance of the type is stored to memory. The DataLayout class provides |
| 299 | /// additional query functions to provide this information. |
| 300 | /// |
| 301 | TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
| 302 | |
| 303 | /// If this is a vector type, return the getPrimitiveSizeInBits value for the |
| 304 | /// element type. Otherwise return the getPrimitiveSizeInBits value for this |
| 305 | /// type. |
| 306 | unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__)); |
| 307 | |
| 308 | /// Return the width of the mantissa of this type. This is only valid on |
| 309 | /// floating-point types. If the FP type does not have a stable mantissa (e.g. |
| 310 | /// ppc long double), this method returns -1. |
| 311 | int getFPMantissaWidth() const; |
| 312 | |
| 313 | /// Return whether the type is IEEE compatible, as defined by the eponymous |
| 314 | /// method in APFloat. |
| 315 | bool isIEEE() const { return APFloat::getZero(getFltSemantics()).isIEEE(); } |
| 316 | |
| 317 | /// If this is a vector type, return the element type, otherwise return |
| 318 | /// 'this'. |
| 319 | inline Type *getScalarType() const { |
| 320 | if (isVectorTy()) |
| 321 | return getContainedType(0); |
| 322 | return const_cast<Type *>(this); |
| 323 | } |
| 324 | |
| 325 | //===--------------------------------------------------------------------===// |
| 326 | // Type Iteration support. |
| 327 | // |
| 328 | using subtype_iterator = Type * const *; |
| 329 | |
| 330 | subtype_iterator subtype_begin() const { return ContainedTys; } |
| 331 | subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} |
| 332 | ArrayRef<Type*> subtypes() const { |
| 333 | return makeArrayRef(subtype_begin(), subtype_end()); |
| 334 | } |
| 335 | |
| 336 | using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>; |
| 337 | |
| 338 | subtype_reverse_iterator subtype_rbegin() const { |
| 339 | return subtype_reverse_iterator(subtype_end()); |
| 340 | } |
| 341 | subtype_reverse_iterator subtype_rend() const { |
| 342 | return subtype_reverse_iterator(subtype_begin()); |
| 343 | } |
| 344 | |
| 345 | /// This method is used to implement the type iterator (defined at the end of |
| 346 | /// the file). For derived types, this returns the types 'contained' in the |
| 347 | /// derived type. |
| 348 | Type *getContainedType(unsigned i) const { |
| 349 | assert(i < NumContainedTys && "Index out of range!")((void)0); |
| 350 | return ContainedTys[i]; |
| 351 | } |
| 352 | |
| 353 | /// Return the number of types in the derived type. |
| 354 | unsigned getNumContainedTypes() const { return NumContainedTys; } |
| 355 | |
| 356 | //===--------------------------------------------------------------------===// |
| 357 | // Helper methods corresponding to subclass methods. This forces a cast to |
| 358 | // the specified subclass and calls its accessor. "getArrayNumElements" (for |
| 359 | // example) is shorthand for cast<ArrayType>(Ty)->getNumElements(). This is |
| 360 | // only intended to cover the core methods that are frequently used, helper |
| 361 | // methods should not be added here. |
| 362 | |
| 363 | inline unsigned getIntegerBitWidth() const; |
| 364 | |
| 365 | inline Type *getFunctionParamType(unsigned i) const; |
| 366 | inline unsigned getFunctionNumParams() const; |
| 367 | inline bool isFunctionVarArg() const; |
| 368 | |
| 369 | inline StringRef getStructName() const; |
| 370 | inline unsigned getStructNumElements() const; |
| 371 | inline Type *getStructElementType(unsigned N) const; |
| 372 | |
| 373 | inline uint64_t getArrayNumElements() const; |
| 374 | |
| 375 | Type *getArrayElementType() const { |
| 376 | assert(getTypeID() == ArrayTyID)((void)0); |
| 377 | return ContainedTys[0]; |
| 378 | } |
| 379 | |
| 380 | Type *getPointerElementType() const { |
| 381 | assert(getTypeID() == PointerTyID)((void)0); |
| 382 | return ContainedTys[0]; |
| 383 | } |
| 384 | |
| 385 | /// Given vector type, change the element type, |
| 386 | /// whilst keeping the old number of elements. |
| 387 | /// For non-vectors simply returns \p EltTy. |
| 388 | inline Type *getWithNewType(Type *EltTy) const; |
| 389 | |
| 390 | /// Given an integer or vector type, change the lane bitwidth to NewBitwidth, |
| 391 | /// whilst keeping the old number of lanes. |
| 392 | inline Type *getWithNewBitWidth(unsigned NewBitWidth) const; |
| 393 | |
| 394 | /// Given scalar/vector integer type, returns a type with elements twice as |
| 395 | /// wide as in the original type. For vectors, preserves element count. |
| 396 | inline Type *getExtendedType() const; |
| 397 | |
| 398 | /// Get the address space of this pointer or pointer vector type. |
| 399 | inline unsigned getPointerAddressSpace() const; |
| 400 | |
| 401 | //===--------------------------------------------------------------------===// |
| 402 | // Static members exported by the Type class itself. Useful for getting |
| 403 | // instances of Type. |
| 404 | // |
| 405 | |
| 406 | /// Return a type based on an identifier. |
| 407 | static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); |
| 408 | |
| 409 | //===--------------------------------------------------------------------===// |
| 410 | // These are the builtin types that are always available. |
| 411 | // |
| 412 | static Type *getVoidTy(LLVMContext &C); |
| 413 | static Type *getLabelTy(LLVMContext &C); |
| 414 | static Type *getHalfTy(LLVMContext &C); |
| 415 | static Type *getBFloatTy(LLVMContext &C); |
| 416 | static Type *getFloatTy(LLVMContext &C); |
| 417 | static Type *getDoubleTy(LLVMContext &C); |
| 418 | static Type *getMetadataTy(LLVMContext &C); |
| 419 | static Type *getX86_FP80Ty(LLVMContext &C); |
| 420 | static Type *getFP128Ty(LLVMContext &C); |
| 421 | static Type *getPPC_FP128Ty(LLVMContext &C); |
| 422 | static Type *getX86_MMXTy(LLVMContext &C); |
| 423 | static Type *getX86_AMXTy(LLVMContext &C); |
| 424 | static Type *getTokenTy(LLVMContext &C); |
| 425 | static IntegerType *getIntNTy(LLVMContext &C, unsigned N); |
| 426 | static IntegerType *getInt1Ty(LLVMContext &C); |
| 427 | static IntegerType *getInt8Ty(LLVMContext &C); |
| 428 | static IntegerType *getInt16Ty(LLVMContext &C); |
| 429 | static IntegerType *getInt32Ty(LLVMContext &C); |
| 430 | static IntegerType *getInt64Ty(LLVMContext &C); |
| 431 | static IntegerType *getInt128Ty(LLVMContext &C); |
| 432 | template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) { |
| 433 | int noOfBits = sizeof(ScalarTy) * CHAR_BIT8; |
| 434 | if (std::is_integral<ScalarTy>::value) { |
| 435 | return (Type*) Type::getIntNTy(C, noOfBits); |
| 436 | } else if (std::is_floating_point<ScalarTy>::value) { |
| 437 | switch (noOfBits) { |
| 438 | case 32: |
| 439 | return Type::getFloatTy(C); |
| 440 | case 64: |
| 441 | return Type::getDoubleTy(C); |
| 442 | } |
| 443 | } |
| 444 | llvm_unreachable("Unsupported type in Type::getScalarTy")__builtin_unreachable(); |
| 445 | } |
| 446 | static Type *getFloatingPointTy(LLVMContext &C, const fltSemantics &S) { |
| 447 | Type *Ty; |
| 448 | if (&S == &APFloat::IEEEhalf()) |
| 449 | Ty = Type::getHalfTy(C); |
| 450 | else if (&S == &APFloat::BFloat()) |
| 451 | Ty = Type::getBFloatTy(C); |
| 452 | else if (&S == &APFloat::IEEEsingle()) |
| 453 | Ty = Type::getFloatTy(C); |
| 454 | else if (&S == &APFloat::IEEEdouble()) |
| 455 | Ty = Type::getDoubleTy(C); |
| 456 | else if (&S == &APFloat::x87DoubleExtended()) |
| 457 | Ty = Type::getX86_FP80Ty(C); |
| 458 | else if (&S == &APFloat::IEEEquad()) |
| 459 | Ty = Type::getFP128Ty(C); |
| 460 | else { |
| 461 | assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format")((void)0); |
| 462 | Ty = Type::getPPC_FP128Ty(C); |
| 463 | } |
| 464 | return Ty; |
| 465 | } |
| 466 | |
| 467 | //===--------------------------------------------------------------------===// |
| 468 | // Convenience methods for getting pointer types with one of the above builtin |
| 469 | // types as pointee. |
| 470 | // |
| 471 | static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0); |
| 472 | static PointerType *getBFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
| 473 | static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); |
| 474 | static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); |
| 475 | static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); |
| 476 | static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); |
| 477 | static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); |
| 478 | static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); |
| 479 | static PointerType *getX86_AMXPtrTy(LLVMContext &C, unsigned AS = 0); |
| 480 | static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); |
| 481 | static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); |
| 482 | static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); |
| 483 | static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); |
| 484 | static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); |
| 485 | static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); |
| 486 | |
| 487 | /// Return a pointer to the current type. This is equivalent to |
| 488 | /// PointerType::get(Foo, AddrSpace). |
| 489 | /// TODO: Remove this after opaque pointer transition is complete. |
| 490 | PointerType *getPointerTo(unsigned AddrSpace = 0) const; |
| 491 | |
| 492 | private: |
| 493 | /// Derived types like structures and arrays are sized iff all of the members |
| 494 | /// of the type are sized as well. Since asking for their size is relatively |
| 495 | /// uncommon, move this operation out-of-line. |
| 496 | bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const; |
| 497 | }; |
| 498 | |
| 499 | // Printing of types. |
| 500 | inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { |
| 501 | T.print(OS); |
| 502 | return OS; |
| 503 | } |
| 504 | |
| 505 | // allow isa<PointerType>(x) to work without DerivedTypes.h included. |
| 506 | template <> struct isa_impl<PointerType, Type> { |
| 507 | static inline bool doit(const Type &Ty) { |
| 508 | return Ty.getTypeID() == Type::PointerTyID; |
| 509 | } |
| 510 | }; |
| 511 | |
| 512 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
| 513 | DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast< Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return reinterpret_cast<LLVMTypeRef>(const_cast<Type*>( P)); } template<typename T> inline T *unwrap(LLVMTypeRef P) { return cast<T>(unwrap(P)); } |
| 514 | |
| 515 | /* Specialized opaque type conversions. |
| 516 | */ |
| 517 | inline Type **unwrap(LLVMTypeRef* Tys) { |
| 518 | return reinterpret_cast<Type**>(Tys); |
| 519 | } |
| 520 | |
| 521 | inline LLVMTypeRef *wrap(Type **Tys) { |
| 522 | return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys)); |
| 523 | } |
| 524 | |
| 525 | } // end namespace llvm |
| 526 | |
| 527 | #endif // LLVM_IR_TYPE_H |