Bug Summary

File:src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp
Warning:line 1502, column 28
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.0 -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MemCpyOptimizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -fhalf-no-semantic-interposition -mframe-pointer=all -relaxed-aliasing -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -resource-dir /usr/local/lib/clang/13.0.0 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Analysis -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ASMParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/BinaryFormat -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitcode -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Bitstream -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /include/llvm/CodeGen -I /include/llvm/CodeGen/PBQP -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Coroutines -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData/Coverage -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/CodeView -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/DWARF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/MSF -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/PDB -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Demangle -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/JITLink -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ExecutionEngine/Orc -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenACC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Frontend/OpenMP -I /include/llvm/CodeGen/GlobalISel -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IRReader -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/Transforms/InstCombine -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/LTO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Linker -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/MC/MCParser -I /include/llvm/CodeGen/MIRParser -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Object -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Option -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Passes -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ProfileData -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Scalar -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Support -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/DebugInfo/Symbolize -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Target -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Utils -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/Vectorize -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include/llvm/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/X86 -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/Transforms/IPO -I /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include -I /usr/src/gnu/usr.bin/clang/libLLVM/../include -I /usr/src/gnu/usr.bin/clang/libLLVM/obj -I /usr/src/gnu/usr.bin/clang/libLLVM/obj/../include -D NDEBUG -D __STDC_LIMIT_MACROS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D LLVM_PREFIX="/usr" -D PIC -internal-isystem /usr/include/c++/v1 -internal-isystem /usr/local/lib/clang/13.0.0/include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/usr/src/gnu/usr.bin/clang/libLLVM/obj -ferror-limit 19 -fvisibility-inlines-hidden -fwrapv -D_RET_PROTECTOR -ret-protector -fno-rtti -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/vmm/scan-build/2022-01-12-194120-40624-1 -x c++ /usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Transforms/Scalar/MemCpyOptimizer.cpp

1//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs various transformations related to eliminating memcpy
10// calls, or transforming sets of stores into memset's.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/None.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/iterator_range.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/AssumptionCache.h"
23#include "llvm/Analysis/GlobalsModRef.h"
24#include "llvm/Analysis/Loads.h"
25#include "llvm/Analysis/MemoryDependenceAnalysis.h"
26#include "llvm/Analysis/MemoryLocation.h"
27#include "llvm/Analysis/MemorySSA.h"
28#include "llvm/Analysis/MemorySSAUpdater.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/IR/Argument.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DerivedTypes.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GetElementPtrTypeIterator.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/IRBuilder.h"
41#include "llvm/IR/InstrTypes.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/LLVMContext.h"
47#include "llvm/IR/Module.h"
48#include "llvm/IR/Operator.h"
49#include "llvm/IR/PassManager.h"
50#include "llvm/IR/Type.h"
51#include "llvm/IR/User.h"
52#include "llvm/IR/Value.h"
53#include "llvm/InitializePasses.h"
54#include "llvm/Pass.h"
55#include "llvm/Support/Casting.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/MathExtras.h"
58#include "llvm/Support/raw_ostream.h"
59#include "llvm/Transforms/Scalar.h"
60#include "llvm/Transforms/Utils/Local.h"
61#include <algorithm>
62#include <cassert>
63#include <cstdint>
64#include <utility>
65
66using namespace llvm;
67
68#define DEBUG_TYPE"memcpyopt" "memcpyopt"
69
70static cl::opt<bool>
71 EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(true), cl::Hidden,
72 cl::desc("Use MemorySSA-backed MemCpyOpt."));
73
74STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted")static llvm::Statistic NumMemCpyInstr = {"memcpyopt", "NumMemCpyInstr"
, "Number of memcpy instructions deleted"}
;
75STATISTIC(NumMemSetInfer, "Number of memsets inferred")static llvm::Statistic NumMemSetInfer = {"memcpyopt", "NumMemSetInfer"
, "Number of memsets inferred"}
;
76STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy")static llvm::Statistic NumMoveToCpy = {"memcpyopt", "NumMoveToCpy"
, "Number of memmoves converted to memcpy"}
;
77STATISTIC(NumCpyToSet, "Number of memcpys converted to memset")static llvm::Statistic NumCpyToSet = {"memcpyopt", "NumCpyToSet"
, "Number of memcpys converted to memset"}
;
78STATISTIC(NumCallSlot, "Number of call slot optimizations performed")static llvm::Statistic NumCallSlot = {"memcpyopt", "NumCallSlot"
, "Number of call slot optimizations performed"}
;
79
80namespace {
81
82/// Represents a range of memset'd bytes with the ByteVal value.
83/// This allows us to analyze stores like:
84/// store 0 -> P+1
85/// store 0 -> P+0
86/// store 0 -> P+3
87/// store 0 -> P+2
88/// which sometimes happens with stores to arrays of structs etc. When we see
89/// the first store, we make a range [1, 2). The second store extends the range
90/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
91/// two ranges into [0, 3) which is memset'able.
92struct MemsetRange {
93 // Start/End - A semi range that describes the span that this range covers.
94 // The range is closed at the start and open at the end: [Start, End).
95 int64_t Start, End;
96
97 /// StartPtr - The getelementptr instruction that points to the start of the
98 /// range.
99 Value *StartPtr;
100
101 /// Alignment - The known alignment of the first store.
102 unsigned Alignment;
103
104 /// TheStores - The actual stores that make up this range.
105 SmallVector<Instruction*, 16> TheStores;
106
107 bool isProfitableToUseMemset(const DataLayout &DL) const;
108};
109
110} // end anonymous namespace
111
112bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
113 // If we found more than 4 stores to merge or 16 bytes, use memset.
114 if (TheStores.size() >= 4 || End-Start >= 16) return true;
115
116 // If there is nothing to merge, don't do anything.
117 if (TheStores.size() < 2) return false;
118
119 // If any of the stores are a memset, then it is always good to extend the
120 // memset.
121 for (Instruction *SI : TheStores)
122 if (!isa<StoreInst>(SI))
123 return true;
124
125 // Assume that the code generator is capable of merging pairs of stores
126 // together if it wants to.
127 if (TheStores.size() == 2) return false;
128
129 // If we have fewer than 8 stores, it can still be worthwhile to do this.
130 // For example, merging 4 i8 stores into an i32 store is useful almost always.
131 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
132 // memset will be split into 2 32-bit stores anyway) and doing so can
133 // pessimize the llvm optimizer.
134 //
135 // Since we don't have perfect knowledge here, make some assumptions: assume
136 // the maximum GPR width is the same size as the largest legal integer
137 // size. If so, check to see whether we will end up actually reducing the
138 // number of stores used.
139 unsigned Bytes = unsigned(End-Start);
140 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
141 if (MaxIntSize == 0)
142 MaxIntSize = 1;
143 unsigned NumPointerStores = Bytes / MaxIntSize;
144
145 // Assume the remaining bytes if any are done a byte at a time.
146 unsigned NumByteStores = Bytes % MaxIntSize;
147
148 // If we will reduce the # stores (according to this heuristic), do the
149 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
150 // etc.
151 return TheStores.size() > NumPointerStores+NumByteStores;
152}
153
154namespace {
155
156class MemsetRanges {
157 using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
158
159 /// A sorted list of the memset ranges.
160 SmallVector<MemsetRange, 8> Ranges;
161
162 const DataLayout &DL;
163
164public:
165 MemsetRanges(const DataLayout &DL) : DL(DL) {}
166
167 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
168
169 const_iterator begin() const { return Ranges.begin(); }
170 const_iterator end() const { return Ranges.end(); }
171 bool empty() const { return Ranges.empty(); }
172
173 void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
174 if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
175 addStore(OffsetFromFirst, SI);
176 else
177 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
178 }
179
180 void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
181 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
182 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores")((void)0);
183 addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(),
184 SI->getAlign().value(), SI);
185 }
186
187 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
188 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
189 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
190 }
191
192 void addRange(int64_t Start, int64_t Size, Value *Ptr,
193 unsigned Alignment, Instruction *Inst);
194};
195
196} // end anonymous namespace
197
198/// Add a new store to the MemsetRanges data structure. This adds a
199/// new range for the specified store at the specified offset, merging into
200/// existing ranges as appropriate.
201void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
202 unsigned Alignment, Instruction *Inst) {
203 int64_t End = Start+Size;
204
205 range_iterator I = partition_point(
206 Ranges, [=](const MemsetRange &O) { return O.End < Start; });
207
208 // We now know that I == E, in which case we didn't find anything to merge
209 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
210 // to insert a new range. Handle this now.
211 if (I == Ranges.end() || End < I->Start) {
212 MemsetRange &R = *Ranges.insert(I, MemsetRange());
213 R.Start = Start;
214 R.End = End;
215 R.StartPtr = Ptr;
216 R.Alignment = Alignment;
217 R.TheStores.push_back(Inst);
218 return;
219 }
220
221 // This store overlaps with I, add it.
222 I->TheStores.push_back(Inst);
223
224 // At this point, we may have an interval that completely contains our store.
225 // If so, just add it to the interval and return.
226 if (I->Start <= Start && I->End >= End)
227 return;
228
229 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
230 // but is not entirely contained within the range.
231
232 // See if the range extends the start of the range. In this case, it couldn't
233 // possibly cause it to join the prior range, because otherwise we would have
234 // stopped on *it*.
235 if (Start < I->Start) {
236 I->Start = Start;
237 I->StartPtr = Ptr;
238 I->Alignment = Alignment;
239 }
240
241 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
242 // is in or right at the end of I), and that End >= I->Start. Extend I out to
243 // End.
244 if (End > I->End) {
245 I->End = End;
246 range_iterator NextI = I;
247 while (++NextI != Ranges.end() && End >= NextI->Start) {
248 // Merge the range in.
249 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
250 if (NextI->End > I->End)
251 I->End = NextI->End;
252 Ranges.erase(NextI);
253 NextI = I;
254 }
255 }
256}
257
258//===----------------------------------------------------------------------===//
259// MemCpyOptLegacyPass Pass
260//===----------------------------------------------------------------------===//
261
262namespace {
263
264class MemCpyOptLegacyPass : public FunctionPass {
265 MemCpyOptPass Impl;
266
267public:
268 static char ID; // Pass identification, replacement for typeid
269
270 MemCpyOptLegacyPass() : FunctionPass(ID) {
271 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
272 }
273
274 bool runOnFunction(Function &F) override;
275
276private:
277 // This transformation requires dominator postdominator info
278 void getAnalysisUsage(AnalysisUsage &AU) const override {
279 AU.setPreservesCFG();
280 AU.addRequired<AssumptionCacheTracker>();
281 AU.addRequired<DominatorTreeWrapperPass>();
282 AU.addPreserved<DominatorTreeWrapperPass>();
283 AU.addPreserved<GlobalsAAWrapperPass>();
284 AU.addRequired<TargetLibraryInfoWrapperPass>();
285 if (!EnableMemorySSA)
286 AU.addRequired<MemoryDependenceWrapperPass>();
287 AU.addPreserved<MemoryDependenceWrapperPass>();
288 AU.addRequired<AAResultsWrapperPass>();
289 AU.addPreserved<AAResultsWrapperPass>();
290 if (EnableMemorySSA)
291 AU.addRequired<MemorySSAWrapperPass>();
292 AU.addPreserved<MemorySSAWrapperPass>();
293 }
294};
295
296} // end anonymous namespace
297
298char MemCpyOptLegacyPass::ID = 0;
299
300/// The public interface to this file...
301FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
302
303INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",static void *initializeMemCpyOptLegacyPassPassOnce(PassRegistry
&Registry) {
304 false, false)static void *initializeMemCpyOptLegacyPassPassOnce(PassRegistry
&Registry) {
305INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
306INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
307INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)initializeMemoryDependenceWrapperPassPass(Registry);
308INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
309INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
310INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry);
311INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
312INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",PassInfo *PI = new PassInfo( "MemCpy Optimization", "memcpyopt"
, &MemCpyOptLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MemCpyOptLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMemCpyOptLegacyPassPassFlag
; void llvm::initializeMemCpyOptLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeMemCpyOptLegacyPassPassFlag
, initializeMemCpyOptLegacyPassPassOnce, std::ref(Registry));
}
313 false, false)PassInfo *PI = new PassInfo( "MemCpy Optimization", "memcpyopt"
, &MemCpyOptLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MemCpyOptLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMemCpyOptLegacyPassPassFlag
; void llvm::initializeMemCpyOptLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeMemCpyOptLegacyPassPassFlag
, initializeMemCpyOptLegacyPassPassOnce, std::ref(Registry));
}
314
315// Check that V is either not accessible by the caller, or unwinding cannot
316// occur between Start and End.
317static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
318 Instruction *End) {
319 assert(Start->getParent() == End->getParent() && "Must be in same block")((void)0);
320 if (!Start->getFunction()->doesNotThrow() &&
321 !isa<AllocaInst>(getUnderlyingObject(V))) {
322 for (const Instruction &I :
323 make_range(Start->getIterator(), End->getIterator())) {
324 if (I.mayThrow())
325 return true;
326 }
327 }
328 return false;
329}
330
331void MemCpyOptPass::eraseInstruction(Instruction *I) {
332 if (MSSAU)
333 MSSAU->removeMemoryAccess(I);
334 if (MD)
335 MD->removeInstruction(I);
336 I->eraseFromParent();
337}
338
339// Check for mod or ref of Loc between Start and End, excluding both boundaries.
340// Start and End must be in the same block
341static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
342 const MemoryUseOrDef *Start,
343 const MemoryUseOrDef *End) {
344 assert(Start->getBlock() == End->getBlock() && "Only local supported")((void)0);
345 for (const MemoryAccess &MA :
346 make_range(++Start->getIterator(), End->getIterator())) {
347 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
348 Loc)))
349 return true;
350 }
351 return false;
352}
353
354// Check for mod of Loc between Start and End, excluding both boundaries.
355// Start and End can be in different blocks.
356static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc,
357 const MemoryUseOrDef *Start,
358 const MemoryUseOrDef *End) {
359 // TODO: Only walk until we hit Start.
360 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
361 End->getDefiningAccess(), Loc);
362 return !MSSA->dominates(Clobber, Start);
363}
364
365/// When scanning forward over instructions, we look for some other patterns to
366/// fold away. In particular, this looks for stores to neighboring locations of
367/// memory. If it sees enough consecutive ones, it attempts to merge them
368/// together into a memcpy/memset.
369Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
370 Value *StartPtr,
371 Value *ByteVal) {
372 const DataLayout &DL = StartInst->getModule()->getDataLayout();
373
374 // We can't track scalable types
375 if (StoreInst *SI = dyn_cast<StoreInst>(StartInst))
376 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
377 return nullptr;
378
379 // Okay, so we now have a single store that can be splatable. Scan to find
380 // all subsequent stores of the same value to offset from the same pointer.
381 // Join these together into ranges, so we can decide whether contiguous blocks
382 // are stored.
383 MemsetRanges Ranges(DL);
384
385 BasicBlock::iterator BI(StartInst);
386
387 // Keeps track of the last memory use or def before the insertion point for
388 // the new memset. The new MemoryDef for the inserted memsets will be inserted
389 // after MemInsertPoint. It points to either LastMemDef or to the last user
390 // before the insertion point of the memset, if there are any such users.
391 MemoryUseOrDef *MemInsertPoint = nullptr;
392 // Keeps track of the last MemoryDef between StartInst and the insertion point
393 // for the new memset. This will become the defining access of the inserted
394 // memsets.
395 MemoryDef *LastMemDef = nullptr;
396 for (++BI; !BI->isTerminator(); ++BI) {
397 if (MSSAU) {
398 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
399 MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
400 if (CurrentAcc) {
401 MemInsertPoint = CurrentAcc;
402 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
403 LastMemDef = CurrentDef;
404 }
405 }
406
407 // Calls that only access inaccessible memory do not block merging
408 // accessible stores.
409 if (auto *CB = dyn_cast<CallBase>(BI)) {
410 if (CB->onlyAccessesInaccessibleMemory())
411 continue;
412 }
413
414 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
415 // If the instruction is readnone, ignore it, otherwise bail out. We
416 // don't even allow readonly here because we don't want something like:
417 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
418 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
419 break;
420 continue;
421 }
422
423 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
424 // If this is a store, see if we can merge it in.
425 if (!NextStore->isSimple()) break;
426
427 Value *StoredVal = NextStore->getValueOperand();
428
429 // Don't convert stores of non-integral pointer types to memsets (which
430 // stores integers).
431 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
432 break;
433
434 // We can't track ranges involving scalable types.
435 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
436 break;
437
438 // Check to see if this stored value is of the same byte-splattable value.
439 Value *StoredByte = isBytewiseValue(StoredVal, DL);
440 if (isa<UndefValue>(ByteVal) && StoredByte)
441 ByteVal = StoredByte;
442 if (ByteVal != StoredByte)
443 break;
444
445 // Check to see if this store is to a constant offset from the start ptr.
446 Optional<int64_t> Offset =
447 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
448 if (!Offset)
449 break;
450
451 Ranges.addStore(*Offset, NextStore);
452 } else {
453 MemSetInst *MSI = cast<MemSetInst>(BI);
454
455 if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
456 !isa<ConstantInt>(MSI->getLength()))
457 break;
458
459 // Check to see if this store is to a constant offset from the start ptr.
460 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
461 if (!Offset)
462 break;
463
464 Ranges.addMemSet(*Offset, MSI);
465 }
466 }
467
468 // If we have no ranges, then we just had a single store with nothing that
469 // could be merged in. This is a very common case of course.
470 if (Ranges.empty())
471 return nullptr;
472
473 // If we had at least one store that could be merged in, add the starting
474 // store as well. We try to avoid this unless there is at least something
475 // interesting as a small compile-time optimization.
476 Ranges.addInst(0, StartInst);
477
478 // If we create any memsets, we put it right before the first instruction that
479 // isn't part of the memset block. This ensure that the memset is dominated
480 // by any addressing instruction needed by the start of the block.
481 IRBuilder<> Builder(&*BI);
482
483 // Now that we have full information about ranges, loop over the ranges and
484 // emit memset's for anything big enough to be worthwhile.
485 Instruction *AMemSet = nullptr;
486 for (const MemsetRange &Range : Ranges) {
487 if (Range.TheStores.size() == 1) continue;
488
489 // If it is profitable to lower this range to memset, do so now.
490 if (!Range.isProfitableToUseMemset(DL))
491 continue;
492
493 // Otherwise, we do want to transform this! Create a new memset.
494 // Get the starting pointer of the block.
495 StartPtr = Range.StartPtr;
496
497 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
498 MaybeAlign(Range.Alignment));
499 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SIdo { } while (false)
500 : Range.TheStores) dbgs()do { } while (false)
501 << *SI << '\n';do { } while (false)
502 dbgs() << "With: " << *AMemSet << '\n')do { } while (false);
503 if (!Range.TheStores.empty())
504 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
505
506 if (MSSAU) {
507 assert(LastMemDef && MemInsertPoint &&((void)0)
508 "Both LastMemDef and MemInsertPoint need to be set")((void)0);
509 auto *NewDef =
510 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
511 ? MSSAU->createMemoryAccessBefore(
512 AMemSet, LastMemDef, MemInsertPoint)
513 : MSSAU->createMemoryAccessAfter(
514 AMemSet, LastMemDef, MemInsertPoint));
515 MSSAU->insertDef(NewDef, /*RenameUses=*/true);
516 LastMemDef = NewDef;
517 MemInsertPoint = NewDef;
518 }
519
520 // Zap all the stores.
521 for (Instruction *SI : Range.TheStores)
522 eraseInstruction(SI);
523
524 ++NumMemSetInfer;
525 }
526
527 return AMemSet;
528}
529
530// This method try to lift a store instruction before position P.
531// It will lift the store and its argument + that anything that
532// may alias with these.
533// The method returns true if it was successful.
534bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
535 // If the store alias this position, early bail out.
536 MemoryLocation StoreLoc = MemoryLocation::get(SI);
537 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
538 return false;
539
540 // Keep track of the arguments of all instruction we plan to lift
541 // so we can make sure to lift them as well if appropriate.
542 DenseSet<Instruction*> Args;
543 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
544 if (Ptr->getParent() == SI->getParent())
545 Args.insert(Ptr);
546
547 // Instruction to lift before P.
548 SmallVector<Instruction *, 8> ToLift{SI};
549
550 // Memory locations of lifted instructions.
551 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
552
553 // Lifted calls.
554 SmallVector<const CallBase *, 8> Calls;
555
556 const MemoryLocation LoadLoc = MemoryLocation::get(LI);
557
558 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
559 auto *C = &*I;
560
561 // Make sure hoisting does not perform a store that was not guaranteed to
562 // happen.
563 if (!isGuaranteedToTransferExecutionToSuccessor(C))
564 return false;
565
566 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
567
568 bool NeedLift = false;
569 if (Args.erase(C))
570 NeedLift = true;
571 else if (MayAlias) {
572 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
573 return isModOrRefSet(AA->getModRefInfo(C, ML));
574 });
575
576 if (!NeedLift)
577 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
578 return isModOrRefSet(AA->getModRefInfo(C, Call));
579 });
580 }
581
582 if (!NeedLift)
583 continue;
584
585 if (MayAlias) {
586 // Since LI is implicitly moved downwards past the lifted instructions,
587 // none of them may modify its source.
588 if (isModSet(AA->getModRefInfo(C, LoadLoc)))
589 return false;
590 else if (const auto *Call = dyn_cast<CallBase>(C)) {
591 // If we can't lift this before P, it's game over.
592 if (isModOrRefSet(AA->getModRefInfo(P, Call)))
593 return false;
594
595 Calls.push_back(Call);
596 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
597 // If we can't lift this before P, it's game over.
598 auto ML = MemoryLocation::get(C);
599 if (isModOrRefSet(AA->getModRefInfo(P, ML)))
600 return false;
601
602 MemLocs.push_back(ML);
603 } else
604 // We don't know how to lift this instruction.
605 return false;
606 }
607
608 ToLift.push_back(C);
609 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
610 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
611 if (A->getParent() == SI->getParent()) {
612 // Cannot hoist user of P above P
613 if(A == P) return false;
614 Args.insert(A);
615 }
616 }
617 }
618
619 // Find MSSA insertion point. Normally P will always have a corresponding
620 // memory access before which we can insert. However, with non-standard AA
621 // pipelines, there may be a mismatch between AA and MSSA, in which case we
622 // will scan for a memory access before P. In either case, we know for sure
623 // that at least the load will have a memory access.
624 // TODO: Simplify this once P will be determined by MSSA, in which case the
625 // discrepancy can no longer occur.
626 MemoryUseOrDef *MemInsertPoint = nullptr;
627 if (MSSAU) {
628 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
629 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
630 } else {
631 const Instruction *ConstP = P;
632 for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
633 ++LI->getReverseIterator())) {
634 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
635 MemInsertPoint = MA;
636 break;
637 }
638 }
639 }
640 }
641
642 // We made it, we need to lift.
643 for (auto *I : llvm::reverse(ToLift)) {
644 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n")do { } while (false);
645 I->moveBefore(P);
646 if (MSSAU) {
647 assert(MemInsertPoint && "Must have found insert point")((void)0);
648 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
649 MSSAU->moveAfter(MA, MemInsertPoint);
650 MemInsertPoint = MA;
651 }
652 }
653 }
654
655 return true;
656}
657
658bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
659 if (!SI->isSimple()) return false;
660
661 // Avoid merging nontemporal stores since the resulting
662 // memcpy/memset would not be able to preserve the nontemporal hint.
663 // In theory we could teach how to propagate the !nontemporal metadata to
664 // memset calls. However, that change would force the backend to
665 // conservatively expand !nontemporal memset calls back to sequences of
666 // store instructions (effectively undoing the merging).
667 if (SI->getMetadata(LLVMContext::MD_nontemporal))
668 return false;
669
670 const DataLayout &DL = SI->getModule()->getDataLayout();
671
672 Value *StoredVal = SI->getValueOperand();
673
674 // Not all the transforms below are correct for non-integral pointers, bail
675 // until we've audited the individual pieces.
676 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
677 return false;
678
679 // Load to store forwarding can be interpreted as memcpy.
680 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
681 if (LI->isSimple() && LI->hasOneUse() &&
682 LI->getParent() == SI->getParent()) {
683
684 auto *T = LI->getType();
685 if (T->isAggregateType()) {
686 MemoryLocation LoadLoc = MemoryLocation::get(LI);
687
688 // We use alias analysis to check if an instruction may store to
689 // the memory we load from in between the load and the store. If
690 // such an instruction is found, we try to promote there instead
691 // of at the store position.
692 // TODO: Can use MSSA for this.
693 Instruction *P = SI;
694 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
695 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
696 P = &I;
697 break;
698 }
699 }
700
701 // We found an instruction that may write to the loaded memory.
702 // We can try to promote at this position instead of the store
703 // position if nothing aliases the store memory after this and the store
704 // destination is not in the range.
705 if (P && P != SI) {
706 if (!moveUp(SI, P, LI))
707 P = nullptr;
708 }
709
710 // If a valid insertion position is found, then we can promote
711 // the load/store pair to a memcpy.
712 if (P) {
713 // If we load from memory that may alias the memory we store to,
714 // memmove must be used to preserve semantic. If not, memcpy can
715 // be used.
716 bool UseMemMove = false;
717 if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
718 UseMemMove = true;
719
720 uint64_t Size = DL.getTypeStoreSize(T);
721
722 IRBuilder<> Builder(P);
723 Instruction *M;
724 if (UseMemMove)
725 M = Builder.CreateMemMove(
726 SI->getPointerOperand(), SI->getAlign(),
727 LI->getPointerOperand(), LI->getAlign(), Size);
728 else
729 M = Builder.CreateMemCpy(
730 SI->getPointerOperand(), SI->getAlign(),
731 LI->getPointerOperand(), LI->getAlign(), Size);
732
733 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "do { } while (false)
734 << *M << "\n")do { } while (false);
735
736 if (MSSAU) {
737 auto *LastDef =
738 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
739 auto *NewAccess =
740 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
741 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
742 }
743
744 eraseInstruction(SI);
745 eraseInstruction(LI);
746 ++NumMemCpyInstr;
747
748 // Make sure we do not invalidate the iterator.
749 BBI = M->getIterator();
750 return true;
751 }
752 }
753
754 // Detect cases where we're performing call slot forwarding, but
755 // happen to be using a load-store pair to implement it, rather than
756 // a memcpy.
757 CallInst *C = nullptr;
758 if (EnableMemorySSA) {
759 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
760 MSSA->getWalker()->getClobberingMemoryAccess(LI))) {
761 // The load most post-dom the call. Limit to the same block for now.
762 // TODO: Support non-local call-slot optimization?
763 if (LoadClobber->getBlock() == SI->getParent())
764 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
765 }
766 } else {
767 MemDepResult ldep = MD->getDependency(LI);
768 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
769 C = dyn_cast<CallInst>(ldep.getInst());
770 }
771
772 if (C) {
773 // Check that nothing touches the dest of the "copy" between
774 // the call and the store.
775 MemoryLocation StoreLoc = MemoryLocation::get(SI);
776 if (EnableMemorySSA) {
777 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C),
778 MSSA->getMemoryAccess(SI)))
779 C = nullptr;
780 } else {
781 for (BasicBlock::iterator I = --SI->getIterator(),
782 E = C->getIterator();
783 I != E; --I) {
784 if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
785 C = nullptr;
786 break;
787 }
788 }
789 }
790 }
791
792 if (C) {
793 bool changed = performCallSlotOptzn(
794 LI, SI, SI->getPointerOperand()->stripPointerCasts(),
795 LI->getPointerOperand()->stripPointerCasts(),
796 DL.getTypeStoreSize(SI->getOperand(0)->getType()),
797 commonAlignment(SI->getAlign(), LI->getAlign()), C);
798 if (changed) {
799 eraseInstruction(SI);
800 eraseInstruction(LI);
801 ++NumMemCpyInstr;
802 return true;
803 }
804 }
805 }
806 }
807
808 // There are two cases that are interesting for this code to handle: memcpy
809 // and memset. Right now we only handle memset.
810
811 // Ensure that the value being stored is something that can be memset'able a
812 // byte at a time like "0" or "-1" or any width, as well as things like
813 // 0xA0A0A0A0 and 0.0.
814 auto *V = SI->getOperand(0);
815 if (Value *ByteVal = isBytewiseValue(V, DL)) {
816 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
817 ByteVal)) {
818 BBI = I->getIterator(); // Don't invalidate iterator.
819 return true;
820 }
821
822 // If we have an aggregate, we try to promote it to memset regardless
823 // of opportunity for merging as it can expose optimization opportunities
824 // in subsequent passes.
825 auto *T = V->getType();
826 if (T->isAggregateType()) {
827 uint64_t Size = DL.getTypeStoreSize(T);
828 IRBuilder<> Builder(SI);
829 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
830 SI->getAlign());
831
832 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n")do { } while (false);
833
834 if (MSSAU) {
835 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)))((void)0);
836 auto *LastDef =
837 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
838 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
839 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
840 }
841
842 eraseInstruction(SI);
843 NumMemSetInfer++;
844
845 // Make sure we do not invalidate the iterator.
846 BBI = M->getIterator();
847 return true;
848 }
849 }
850
851 return false;
852}
853
854bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
855 // See if there is another memset or store neighboring this memset which
856 // allows us to widen out the memset to do a single larger store.
857 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
858 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
859 MSI->getValue())) {
860 BBI = I->getIterator(); // Don't invalidate iterator.
861 return true;
862 }
863 return false;
864}
865
866/// Takes a memcpy and a call that it depends on,
867/// and checks for the possibility of a call slot optimization by having
868/// the call write its result directly into the destination of the memcpy.
869bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
870 Instruction *cpyStore, Value *cpyDest,
871 Value *cpySrc, TypeSize cpySize,
872 Align cpyAlign, CallInst *C) {
873 // The general transformation to keep in mind is
874 //
875 // call @func(..., src, ...)
876 // memcpy(dest, src, ...)
877 //
878 // ->
879 //
880 // memcpy(dest, src, ...)
881 // call @func(..., dest, ...)
882 //
883 // Since moving the memcpy is technically awkward, we additionally check that
884 // src only holds uninitialized values at the moment of the call, meaning that
885 // the memcpy can be discarded rather than moved.
886
887 // We can't optimize scalable types.
888 if (cpySize.isScalable())
889 return false;
890
891 // Lifetime marks shouldn't be operated on.
892 if (Function *F = C->getCalledFunction())
893 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
894 return false;
895
896 // Require that src be an alloca. This simplifies the reasoning considerably.
897 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
898 if (!srcAlloca)
899 return false;
900
901 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
902 if (!srcArraySize)
903 return false;
904
905 const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
906 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
907 srcArraySize->getZExtValue();
908
909 if (cpySize < srcSize)
910 return false;
911
912 // Check that accessing the first srcSize bytes of dest will not cause a
913 // trap. Otherwise the transform is invalid since it might cause a trap
914 // to occur earlier than it otherwise would.
915 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
916 DL, C, DT))
917 return false;
918
919 // Make sure that nothing can observe cpyDest being written early. There are
920 // a number of cases to consider:
921 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
922 // the transform.
923 // 2. C itself may not access cpyDest (prior to the transform). This is
924 // checked further below.
925 // 3. If cpyDest is accessible to the caller of this function (potentially
926 // captured and not based on an alloca), we need to ensure that we cannot
927 // unwind between C and cpyStore. This is checked here.
928 // 4. If cpyDest is potentially captured, there may be accesses to it from
929 // another thread. In this case, we need to check that cpyStore is
930 // guaranteed to be executed if C is. As it is a non-atomic access, it
931 // renders accesses from other threads undefined.
932 // TODO: This is currently not checked.
933 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore))
934 return false;
935
936 // Check that dest points to memory that is at least as aligned as src.
937 Align srcAlign = srcAlloca->getAlign();
938 bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
939 // If dest is not aligned enough and we can't increase its alignment then
940 // bail out.
941 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
942 return false;
943
944 // Check that src is not accessed except via the call and the memcpy. This
945 // guarantees that it holds only undefined values when passed in (so the final
946 // memcpy can be dropped), that it is not read or written between the call and
947 // the memcpy, and that writing beyond the end of it is undefined.
948 SmallVector<User *, 8> srcUseList(srcAlloca->users());
949 while (!srcUseList.empty()) {
950 User *U = srcUseList.pop_back_val();
951
952 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
953 append_range(srcUseList, U->users());
954 continue;
955 }
956 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
957 if (!G->hasAllZeroIndices())
958 return false;
959
960 append_range(srcUseList, U->users());
961 continue;
962 }
963 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
964 if (IT->isLifetimeStartOrEnd())
965 continue;
966
967 if (U != C && U != cpyLoad)
968 return false;
969 }
970
971 // Check that src isn't captured by the called function since the
972 // transformation can cause aliasing issues in that case.
973 for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
974 if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
975 return false;
976
977 // Since we're changing the parameter to the callsite, we need to make sure
978 // that what would be the new parameter dominates the callsite.
979 if (!DT->dominates(cpyDest, C)) {
980 // Support moving a constant index GEP before the call.
981 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
982 if (GEP && GEP->hasAllConstantIndices() &&
983 DT->dominates(GEP->getPointerOperand(), C))
984 GEP->moveBefore(C);
985 else
986 return false;
987 }
988
989 // In addition to knowing that the call does not access src in some
990 // unexpected manner, for example via a global, which we deduce from
991 // the use analysis, we also need to know that it does not sneakily
992 // access dest. We rely on AA to figure this out for us.
993 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
994 // If necessary, perform additional analysis.
995 if (isModOrRefSet(MR))
996 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
997 if (isModOrRefSet(MR))
998 return false;
999
1000 // We can't create address space casts here because we don't know if they're
1001 // safe for the target.
1002 if (cpySrc->getType()->getPointerAddressSpace() !=
1003 cpyDest->getType()->getPointerAddressSpace())
1004 return false;
1005 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1006 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
1007 cpySrc->getType()->getPointerAddressSpace() !=
1008 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
1009 return false;
1010
1011 // All the checks have passed, so do the transformation.
1012 bool changedArgument = false;
1013 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
1014 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
1015 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
1016 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
1017 cpyDest->getName(), C);
1018 changedArgument = true;
1019 if (C->getArgOperand(ArgI)->getType() == Dest->getType())
1020 C->setArgOperand(ArgI, Dest);
1021 else
1022 C->setArgOperand(ArgI, CastInst::CreatePointerCast(
1023 Dest, C->getArgOperand(ArgI)->getType(),
1024 Dest->getName(), C));
1025 }
1026
1027 if (!changedArgument)
1028 return false;
1029
1030 // If the destination wasn't sufficiently aligned then increase its alignment.
1031 if (!isDestSufficientlyAligned) {
1032 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!")((void)0);
1033 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
1034 }
1035
1036 // Drop any cached information about the call, because we may have changed
1037 // its dependence information by changing its parameter.
1038 if (MD)
1039 MD->removeInstruction(C);
1040
1041 // Update AA metadata
1042 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
1043 // handled here, but combineMetadata doesn't support them yet
1044 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1045 LLVMContext::MD_noalias,
1046 LLVMContext::MD_invariant_group,
1047 LLVMContext::MD_access_group};
1048 combineMetadata(C, cpyLoad, KnownIDs, true);
1049
1050 ++NumCallSlot;
1051 return true;
1052}
1053
1054/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1055/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1056bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1057 MemCpyInst *MDep) {
1058 // We can only transforms memcpy's where the dest of one is the source of the
1059 // other.
1060 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1061 return false;
1062
1063 // If dep instruction is reading from our current input, then it is a noop
1064 // transfer and substituting the input won't change this instruction. Just
1065 // ignore the input and let someone else zap MDep. This handles cases like:
1066 // memcpy(a <- a)
1067 // memcpy(b <- a)
1068 if (M->getSource() == MDep->getSource())
1069 return false;
1070
1071 // Second, the length of the memcpy's must be the same, or the preceding one
1072 // must be larger than the following one.
1073 if (MDep->getLength() != M->getLength()) {
1074 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1075 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1076 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1077 return false;
1078 }
1079
1080 // Verify that the copied-from memory doesn't change in between the two
1081 // transfers. For example, in:
1082 // memcpy(a <- b)
1083 // *b = 42;
1084 // memcpy(c <- a)
1085 // It would be invalid to transform the second memcpy into memcpy(c <- b).
1086 //
1087 // TODO: If the code between M and MDep is transparent to the destination "c",
1088 // then we could still perform the xform by moving M up to the first memcpy.
1089 if (EnableMemorySSA) {
1090 // TODO: It would be sufficient to check the MDep source up to the memcpy
1091 // size of M, rather than MDep.
1092 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1093 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1094 return false;
1095 } else {
1096 // NOTE: This is conservative, it will stop on any read from the source loc,
1097 // not just the defining memcpy.
1098 MemDepResult SourceDep =
1099 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1100 M->getIterator(), M->getParent());
1101 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1102 return false;
1103 }
1104
1105 // If the dest of the second might alias the source of the first, then the
1106 // source and dest might overlap. We still want to eliminate the intermediate
1107 // value, but we have to generate a memmove instead of memcpy.
1108 bool UseMemMove = false;
1109 if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1110 MemoryLocation::getForSource(MDep)))
1111 UseMemMove = true;
1112
1113 // If all checks passed, then we can transform M.
1114 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"do { } while (false)
1115 << *MDep << '\n' << *M << '\n')do { } while (false);
1116
1117 // TODO: Is this worth it if we're creating a less aligned memcpy? For
1118 // example we could be moving from movaps -> movq on x86.
1119 IRBuilder<> Builder(M);
1120 Instruction *NewM;
1121 if (UseMemMove)
1122 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1123 MDep->getRawSource(), MDep->getSourceAlign(),
1124 M->getLength(), M->isVolatile());
1125 else if (isa<MemCpyInlineInst>(M)) {
1126 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1127 // never allowed since that would allow the latter to be lowered as a call
1128 // to an external function.
1129 NewM = Builder.CreateMemCpyInline(
1130 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
1131 MDep->getSourceAlign(), M->getLength(), M->isVolatile());
1132 } else
1133 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1134 MDep->getRawSource(), MDep->getSourceAlign(),
1135 M->getLength(), M->isVolatile());
1136
1137 if (MSSAU) {
1138 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)))((void)0);
1139 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1140 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1141 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1142 }
1143
1144 // Remove the instruction we're replacing.
1145 eraseInstruction(M);
1146 ++NumMemCpyInstr;
1147 return true;
1148}
1149
1150/// We've found that the (upward scanning) memory dependence of \p MemCpy is
1151/// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
1152/// weren't copied over by \p MemCpy.
1153///
1154/// In other words, transform:
1155/// \code
1156/// memset(dst, c, dst_size);
1157/// memcpy(dst, src, src_size);
1158/// \endcode
1159/// into:
1160/// \code
1161/// memcpy(dst, src, src_size);
1162/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1163/// \endcode
1164bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1165 MemSetInst *MemSet) {
1166 // We can only transform memset/memcpy with the same destination.
1167 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1168 return false;
1169
1170 // Check that src and dst of the memcpy aren't the same. While memcpy
1171 // operands cannot partially overlap, exact equality is allowed.
1172 if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(),
1173 LocationSize::precise(1)),
1174 MemoryLocation(MemCpy->getDest(),
1175 LocationSize::precise(1))))
1176 return false;
1177
1178 if (EnableMemorySSA) {
1179 // We know that dst up to src_size is not written. We now need to make sure
1180 // that dst up to dst_size is not accessed. (If we did not move the memset,
1181 // checking for reads would be sufficient.)
1182 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
1183 MSSA->getMemoryAccess(MemSet),
1184 MSSA->getMemoryAccess(MemCpy))) {
1185 return false;
1186 }
1187 } else {
1188 // We have already checked that dst up to src_size is not accessed. We
1189 // need to make sure that there are no accesses up to dst_size either.
1190 MemDepResult DstDepInfo = MD->getPointerDependencyFrom(
1191 MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(),
1192 MemCpy->getParent());
1193 if (DstDepInfo.getInst() != MemSet)
1194 return false;
1195 }
1196
1197 // Use the same i8* dest as the memcpy, killing the memset dest if different.
1198 Value *Dest = MemCpy->getRawDest();
1199 Value *DestSize = MemSet->getLength();
1200 Value *SrcSize = MemCpy->getLength();
1201
1202 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1203 return false;
1204
1205 // If the sizes are the same, simply drop the memset instead of generating
1206 // a replacement with zero size.
1207 if (DestSize == SrcSize) {
1208 eraseInstruction(MemSet);
1209 return true;
1210 }
1211
1212 // By default, create an unaligned memset.
1213 unsigned Align = 1;
1214 // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1215 // of the sum.
1216 const unsigned DestAlign =
1217 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1218 if (DestAlign > 1)
1219 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1220 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1221
1222 IRBuilder<> Builder(MemCpy);
1223
1224 // If the sizes have different types, zext the smaller one.
1225 if (DestSize->getType() != SrcSize->getType()) {
1226 if (DestSize->getType()->getIntegerBitWidth() >
1227 SrcSize->getType()->getIntegerBitWidth())
1228 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1229 else
1230 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1231 }
1232
1233 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1234 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1235 Value *MemsetLen = Builder.CreateSelect(
1236 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1237 unsigned DestAS = Dest->getType()->getPointerAddressSpace();
1238 Instruction *NewMemSet = Builder.CreateMemSet(
1239 Builder.CreateGEP(Builder.getInt8Ty(),
1240 Builder.CreatePointerCast(Dest,
1241 Builder.getInt8PtrTy(DestAS)),
1242 SrcSize),
1243 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1244
1245 if (MSSAU) {
1246 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&((void)0)
1247 "MemCpy must be a MemoryDef")((void)0);
1248 // The new memset is inserted after the memcpy, but it is known that its
1249 // defining access is the memset about to be removed which immediately
1250 // precedes the memcpy.
1251 auto *LastDef =
1252 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1253 auto *NewAccess = MSSAU->createMemoryAccessBefore(
1254 NewMemSet, LastDef->getDefiningAccess(), LastDef);
1255 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1256 }
1257
1258 eraseInstruction(MemSet);
1259 return true;
1260}
1261
1262/// Determine whether the instruction has undefined content for the given Size,
1263/// either because it was freshly alloca'd or started its lifetime.
1264static bool hasUndefContents(Instruction *I, Value *Size) {
1265 if (isa<AllocaInst>(I))
1266 return true;
1267
1268 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) {
1269 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1270 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1271 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1272 if (LTSize->getZExtValue() >= CSize->getZExtValue())
1273 return true;
1274 }
1275
1276 return false;
1277}
1278
1279static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
1280 MemoryDef *Def, Value *Size) {
1281 if (MSSA->isLiveOnEntryDef(Def))
1282 return isa<AllocaInst>(getUnderlyingObject(V));
1283
1284 if (IntrinsicInst *II =
1285 dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1286 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1287 ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1288
1289 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) {
1290 if (AA->isMustAlias(V, II->getArgOperand(1)) &&
1291 LTSize->getZExtValue() >= CSize->getZExtValue())
1292 return true;
1293 }
1294
1295 // If the lifetime.start covers a whole alloca (as it almost always
1296 // does) and we're querying a pointer based on that alloca, then we know
1297 // the memory is definitely undef, regardless of how exactly we alias.
1298 // The size also doesn't matter, as an out-of-bounds access would be UB.
1299 AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V));
1300 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
1301 const DataLayout &DL = Alloca->getModule()->getDataLayout();
1302 if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL))
1303 if (*AllocaSize == LTSize->getValue() * 8)
1304 return true;
1305 }
1306 }
1307 }
1308
1309 return false;
1310}
1311
1312/// Transform memcpy to memset when its source was just memset.
1313/// In other words, turn:
1314/// \code
1315/// memset(dst1, c, dst1_size);
1316/// memcpy(dst2, dst1, dst2_size);
1317/// \endcode
1318/// into:
1319/// \code
1320/// memset(dst1, c, dst1_size);
1321/// memset(dst2, c, dst2_size);
1322/// \endcode
1323/// When dst2_size <= dst1_size.
1324bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1325 MemSetInst *MemSet) {
1326 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1327 // memcpying from the same address. Otherwise it is hard to reason about.
1328 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1329 return false;
1330
1331 Value *MemSetSize = MemSet->getLength();
1332 Value *CopySize = MemCpy->getLength();
1333
1334 if (MemSetSize != CopySize) {
1335 // Make sure the memcpy doesn't read any more than what the memset wrote.
1336 // Don't worry about sizes larger than i64.
1337
1338 // A known memset size is required.
1339 ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1340 if (!CMemSetSize)
1341 return false;
1342
1343 // A known memcpy size is also required.
1344 ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize);
1345 if (!CCopySize)
1346 return false;
1347 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1348 // If the memcpy is larger than the memset, but the memory was undef prior
1349 // to the memset, we can just ignore the tail. Technically we're only
1350 // interested in the bytes from MemSetSize..CopySize here, but as we can't
1351 // easily represent this location, we use the full 0..CopySize range.
1352 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1353 bool CanReduceSize = false;
1354 if (EnableMemorySSA) {
1355 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1356 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1357 MemSetAccess->getDefiningAccess(), MemCpyLoc);
1358 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1359 if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize))
1360 CanReduceSize = true;
1361 } else {
1362 MemDepResult DepInfo = MD->getPointerDependencyFrom(
1363 MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1364 if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1365 CanReduceSize = true;
1366 }
1367
1368 if (!CanReduceSize)
1369 return false;
1370 CopySize = MemSetSize;
1371 }
1372 }
1373
1374 IRBuilder<> Builder(MemCpy);
1375 Instruction *NewM =
1376 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1377 CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1378 if (MSSAU) {
1379 auto *LastDef =
1380 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1381 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1382 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1383 }
1384
1385 return true;
1386}
1387
1388/// Perform simplification of memcpy's. If we have memcpy A
1389/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1390/// B to be a memcpy from X to Z (or potentially a memmove, depending on
1391/// circumstances). This allows later passes to remove the first memcpy
1392/// altogether.
1393bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1394 // We can only optimize non-volatile memcpy's.
1395 if (M->isVolatile()) return false;
27
Calling 'MemIntrinsic::isVolatile'
44
Returning from 'MemIntrinsic::isVolatile'
45
Taking false branch
1396
1397 // If the source and destination of the memcpy are the same, then zap it.
1398 if (M->getSource() == M->getDest()) {
46
Assuming the condition is false
47
Taking false branch
1399 ++BBI;
1400 eraseInstruction(M);
1401 return true;
1402 }
1403
1404 // If copying from a constant, try to turn the memcpy into a memset.
1405 if (GlobalVariable *GV
48.1
'GV' is null
48.1
'GV' is null
48.1
'GV' is null
48.1
'GV' is null
= dyn_cast<GlobalVariable>(M->getSource()))
48
Assuming the object is not a 'GlobalVariable'
49
Taking false branch
1406 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1407 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1408 M->getModule()->getDataLayout())) {
1409 IRBuilder<> Builder(M);
1410 Instruction *NewM =
1411 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1412 MaybeAlign(M->getDestAlignment()), false);
1413 if (MSSAU) {
1414 auto *LastDef =
1415 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1416 auto *NewAccess =
1417 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1418 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1419 }
1420
1421 eraseInstruction(M);
1422 ++NumCpyToSet;
1423 return true;
1424 }
1425
1426 if (EnableMemorySSA) {
50
Assuming the condition is false
51
Taking false branch
1427 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1428 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA);
1429 MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1430 const MemoryAccess *DestClobber =
1431 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
1432
1433 // Try to turn a partially redundant memset + memcpy into
1434 // memcpy + smaller memset. We don't need the memcpy size for this.
1435 // The memcpy most post-dom the memset, so limit this to the same basic
1436 // block. A non-local generalization is likely not worthwhile.
1437 if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1438 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1439 if (DestClobber->getBlock() == M->getParent())
1440 if (processMemSetMemCpyDependence(M, MDep))
1441 return true;
1442
1443 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1444 AnyClobber, MemoryLocation::getForSource(M));
1445
1446 // There are four possible optimizations we can do for memcpy:
1447 // a) memcpy-memcpy xform which exposes redundance for DSE.
1448 // b) call-memcpy xform for return slot optimization.
1449 // c) memcpy from freshly alloca'd space or space that has just started
1450 // its lifetime copies undefined data, and we can therefore eliminate
1451 // the memcpy in favor of the data that was already at the destination.
1452 // d) memcpy from a just-memset'd source can be turned into memset.
1453 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1454 if (Instruction *MI = MD->getMemoryInst()) {
1455 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1456 if (auto *C = dyn_cast<CallInst>(MI)) {
1457 // The memcpy must post-dom the call. Limit to the same block for
1458 // now. Additionally, we need to ensure that there are no accesses
1459 // to dest between the call and the memcpy. Accesses to src will be
1460 // checked by performCallSlotOptzn().
1461 // TODO: Support non-local call-slot optimization?
1462 if (C->getParent() == M->getParent() &&
1463 !accessedBetween(*AA, DestLoc, MD, MA)) {
1464 // FIXME: Can we pass in either of dest/src alignment here instead
1465 // of conservatively taking the minimum?
1466 Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1467 M->getSourceAlign().valueOrOne());
1468 if (performCallSlotOptzn(
1469 M, M, M->getDest(), M->getSource(),
1470 TypeSize::getFixed(CopySize->getZExtValue()), Alignment,
1471 C)) {
1472 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"do { } while (false)
1473 << " call: " << *C << "\n"do { } while (false)
1474 << " memcpy: " << *M << "\n")do { } while (false);
1475 eraseInstruction(M);
1476 ++NumMemCpyInstr;
1477 return true;
1478 }
1479 }
1480 }
1481 }
1482 if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1483 return processMemCpyMemCpyDependence(M, MDep);
1484 if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1485 if (performMemCpyToMemSetOptzn(M, MDep)) {
1486 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n")do { } while (false);
1487 eraseInstruction(M);
1488 ++NumCpyToSet;
1489 return true;
1490 }
1491 }
1492 }
1493
1494 if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, M->getLength())) {
1495 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n")do { } while (false);
1496 eraseInstruction(M);
1497 ++NumMemCpyInstr;
1498 return true;
1499 }
1500 }
1501 } else {
1502 MemDepResult DepInfo = MD->getDependency(M);
52
Called C++ object pointer is null
1503
1504 // Try to turn a partially redundant memset + memcpy into
1505 // memcpy + smaller memset. We don't need the memcpy size for this.
1506 if (DepInfo.isClobber())
1507 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1508 if (processMemSetMemCpyDependence(M, MDep))
1509 return true;
1510
1511 // There are four possible optimizations we can do for memcpy:
1512 // a) memcpy-memcpy xform which exposes redundance for DSE.
1513 // b) call-memcpy xform for return slot optimization.
1514 // c) memcpy from freshly alloca'd space or space that has just started
1515 // its lifetime copies undefined data, and we can therefore eliminate
1516 // the memcpy in favor of the data that was already at the destination.
1517 // d) memcpy from a just-memset'd source can be turned into memset.
1518 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1519 if (DepInfo.isClobber()) {
1520 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1521 // FIXME: Can we pass in either of dest/src alignment here instead
1522 // of conservatively taking the minimum?
1523 Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1524 M->getSourceAlign().valueOrOne());
1525 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1526 TypeSize::getFixed(CopySize->getZExtValue()),
1527 Alignment, C)) {
1528 eraseInstruction(M);
1529 ++NumMemCpyInstr;
1530 return true;
1531 }
1532 }
1533 }
1534 }
1535
1536 MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1537 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1538 SrcLoc, true, M->getIterator(), M->getParent());
1539
1540 if (SrcDepInfo.isClobber()) {
1541 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1542 return processMemCpyMemCpyDependence(M, MDep);
1543 } else if (SrcDepInfo.isDef()) {
1544 if (hasUndefContents(SrcDepInfo.getInst(), M->getLength())) {
1545 eraseInstruction(M);
1546 ++NumMemCpyInstr;
1547 return true;
1548 }
1549 }
1550
1551 if (SrcDepInfo.isClobber())
1552 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1553 if (performMemCpyToMemSetOptzn(M, MDep)) {
1554 eraseInstruction(M);
1555 ++NumCpyToSet;
1556 return true;
1557 }
1558 }
1559
1560 return false;
1561}
1562
1563/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1564/// not to alias.
1565bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1566 if (!TLI->has(LibFunc_memmove))
1567 return false;
1568
1569 // See if the pointers alias.
1570 if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1571 MemoryLocation::getForSource(M)))
1572 return false;
1573
1574 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *Mdo { } while (false)
1575 << "\n")do { } while (false);
1576
1577 // If not, then we know we can transform this.
1578 Type *ArgTys[3] = { M->getRawDest()->getType(),
1579 M->getRawSource()->getType(),
1580 M->getLength()->getType() };
1581 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1582 Intrinsic::memcpy, ArgTys));
1583
1584 // For MemorySSA nothing really changes (except that memcpy may imply stricter
1585 // aliasing guarantees).
1586
1587 // MemDep may have over conservative information about this instruction, just
1588 // conservatively flush it from the cache.
1589 if (MD)
1590 MD->removeInstruction(M);
1591
1592 ++NumMoveToCpy;
1593 return true;
1594}
1595
1596/// This is called on every byval argument in call sites.
1597bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1598 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1599 // Find out what feeds this byval argument.
1600 Value *ByValArg = CB.getArgOperand(ArgNo);
1601 Type *ByValTy = CB.getParamByValType(ArgNo);
1602 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
1603 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1604 MemCpyInst *MDep = nullptr;
1605 if (EnableMemorySSA) {
1606 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1607 if (!CallAccess)
1608 return false;
1609 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1610 CallAccess->getDefiningAccess(), Loc);
1611 if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1612 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1613 } else {
1614 MemDepResult DepInfo = MD->getPointerDependencyFrom(
1615 Loc, true, CB.getIterator(), CB.getParent());
1616 if (!DepInfo.isClobber())
1617 return false;
1618 MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1619 }
1620
1621 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1622 // a memcpy, see if we can byval from the source of the memcpy instead of the
1623 // result.
1624 if (!MDep || MDep->isVolatile() ||
1625 ByValArg->stripPointerCasts() != MDep->getDest())
1626 return false;
1627
1628 // The length of the memcpy must be larger or equal to the size of the byval.
1629 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1630 if (!C1 || !TypeSize::isKnownGE(
1631 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
1632 return false;
1633
1634 // Get the alignment of the byval. If the call doesn't specify the alignment,
1635 // then it is some target specific value that we can't know.
1636 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1637 if (!ByValAlign) return false;
1638
1639 // If it is greater than the memcpy, then we check to see if we can force the
1640 // source of the memcpy to the alignment we need. If we fail, we bail out.
1641 MaybeAlign MemDepAlign = MDep->getSourceAlign();
1642 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1643 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1644 DT) < *ByValAlign)
1645 return false;
1646
1647 // The address space of the memcpy source must match the byval argument
1648 if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1649 ByValArg->getType()->getPointerAddressSpace())
1650 return false;
1651
1652 // Verify that the copied-from memory doesn't change in between the memcpy and
1653 // the byval call.
1654 // memcpy(a <- b)
1655 // *b = 42;
1656 // foo(*a)
1657 // It would be invalid to transform the second memcpy into foo(*b).
1658 if (EnableMemorySSA) {
1659 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1660 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
1661 return false;
1662 } else {
1663 // NOTE: This is conservative, it will stop on any read from the source loc,
1664 // not just the defining memcpy.
1665 MemDepResult SourceDep = MD->getPointerDependencyFrom(
1666 MemoryLocation::getForSource(MDep), false,
1667 CB.getIterator(), MDep->getParent());
1668 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1669 return false;
1670 }
1671
1672 Value *TmpCast = MDep->getSource();
1673 if (MDep->getSource()->getType() != ByValArg->getType()) {
1674 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1675 "tmpcast", &CB);
1676 // Set the tmpcast's DebugLoc to MDep's
1677 TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1678 TmpCast = TmpBitCast;
1679 }
1680
1681 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"do { } while (false)
1682 << " " << *MDep << "\n"do { } while (false)
1683 << " " << CB << "\n")do { } while (false);
1684
1685 // Otherwise we're good! Update the byval argument.
1686 CB.setArgOperand(ArgNo, TmpCast);
1687 ++NumMemCpyInstr;
1688 return true;
1689}
1690
1691/// Executes one iteration of MemCpyOptPass.
1692bool MemCpyOptPass::iterateOnFunction(Function &F) {
1693 bool MadeChange = false;
1694
1695 // Walk all instruction in the function.
1696 for (BasicBlock &BB : F) {
1697 // Skip unreachable blocks. For example processStore assumes that an
1698 // instruction in a BB can't be dominated by a later instruction in the
1699 // same BB (which is a scenario that can happen for an unreachable BB that
1700 // has itself as a predecessor).
1701 if (!DT->isReachableFromEntry(&BB))
17
Assuming the condition is false
18
Taking false branch
1702 continue;
1703
1704 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
19
Loop condition is true. Entering loop body
1705 // Avoid invalidating the iterator.
1706 Instruction *I = &*BI++;
1707
1708 bool RepeatInstruction = false;
1709
1710 if (StoreInst *SI
20.1
'SI' is null
20.1
'SI' is null
20.1
'SI' is null
20.1
'SI' is null
= dyn_cast<StoreInst>(I))
20
Assuming 'I' is not a 'StoreInst'
21
Taking false branch
1711 MadeChange |= processStore(SI, BI);
1712 else if (MemSetInst *M
22.1
'M' is null
22.1
'M' is null
22.1
'M' is null
22.1
'M' is null
= dyn_cast<MemSetInst>(I))
22
Assuming 'I' is not a 'MemSetInst'
23
Taking false branch
1713 RepeatInstruction = processMemSet(M, BI);
1714 else if (MemCpyInst *M
24.1
'M' is non-null
24.1
'M' is non-null
24.1
'M' is non-null
24.1
'M' is non-null
= dyn_cast<MemCpyInst>(I))
24
Assuming 'I' is a 'MemCpyInst'
25
Taking true branch
1715 RepeatInstruction = processMemCpy(M, BI);
26
Calling 'MemCpyOptPass::processMemCpy'
1716 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1717 RepeatInstruction = processMemMove(M);
1718 else if (auto *CB = dyn_cast<CallBase>(I)) {
1719 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1720 if (CB->isByValArgument(i))
1721 MadeChange |= processByValArgument(*CB, i);
1722 }
1723
1724 // Reprocess the instruction if desired.
1725 if (RepeatInstruction) {
1726 if (BI != BB.begin())
1727 --BI;
1728 MadeChange = true;
1729 }
1730 }
1731 }
1732
1733 return MadeChange;
1734}
1735
1736PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1737 auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F)
1738 : AM.getCachedResult<MemoryDependenceAnalysis>(F);
1739 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1740 auto *AA = &AM.getResult<AAManager>(F);
1741 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1742 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1743 auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F)
1744 : AM.getCachedResult<MemorySSAAnalysis>(F);
1745
1746 bool MadeChange =
1747 runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
1748 if (!MadeChange)
1749 return PreservedAnalyses::all();
1750
1751 PreservedAnalyses PA;
1752 PA.preserveSet<CFGAnalyses>();
1753 if (MD)
1754 PA.preserve<MemoryDependenceAnalysis>();
1755 if (MSSA)
1756 PA.preserve<MemorySSAAnalysis>();
1757 return PA;
1758}
1759
1760bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
1761 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
1762 AssumptionCache *AC_, DominatorTree *DT_,
1763 MemorySSA *MSSA_) {
1764 bool MadeChange = false;
1765 MD = MD_;
12
Null pointer value stored to field 'MD'
1766 TLI = TLI_;
1767 AA = AA_;
1768 AC = AC_;
1769 DT = DT_;
1770 MSSA = MSSA_;
1771 MemorySSAUpdater MSSAU_(MSSA_);
1772 MSSAU = MSSA_
12.1
'MSSA_' is null
12.1
'MSSA_' is null
12.1
'MSSA_' is null
12.1
'MSSA_' is null
? &MSSAU_ : nullptr;
13
'?' condition is false
1773 // If we don't have at least memset and memcpy, there is little point of doing
1774 // anything here. These are required by a freestanding implementation, so if
1775 // even they are disabled, there is no point in trying hard.
1776 if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
14
Taking false branch
1777 return false;
1778
1779 while (true) {
15
Loop condition is true. Entering loop body
1780 if (!iterateOnFunction(F))
16
Calling 'MemCpyOptPass::iterateOnFunction'
1781 break;
1782 MadeChange = true;
1783 }
1784
1785 if (MSSA_ && VerifyMemorySSA)
1786 MSSA_->verifyMemorySSA();
1787
1788 MD = nullptr;
1789 return MadeChange;
1790}
1791
1792/// This is the main transformation entry point for a function.
1793bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1794 if (skipFunction(F))
1
Assuming the condition is false
2
Taking false branch
1795 return false;
1796
1797 auto *MDWP = !EnableMemorySSA
3
Assuming the condition is false
4
'?' condition is false
1798 ? &getAnalysis<MemoryDependenceWrapperPass>()
1799 : getAnalysisIfAvailable<MemoryDependenceWrapperPass>();
1800 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1801 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1802 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1803 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1804 auto *MSSAWP = EnableMemorySSA
5
Assuming the condition is false
6
'?' condition is false
1805 ? &getAnalysis<MemorySSAWrapperPass>()
1806 : getAnalysisIfAvailable<MemorySSAWrapperPass>();
1807
1808 return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT,
7
Assuming 'MDWP' is null
8
'?' condition is false
10
Passing null pointer value via 2nd parameter 'MD_'
11
Calling 'MemCpyOptPass::runImpl'
1809 MSSAWP
8.1
'MSSAWP' is null
8.1
'MSSAWP' is null
8.1
'MSSAWP' is null
8.1
'MSSAWP' is null
? &MSSAWP->getMSSA() : nullptr)
;
9
'?' condition is false
1810}

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/IntrinsicInst.h

1//===-- llvm/IntrinsicInst.h - Intrinsic Instruction Wrappers ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines classes that make it really easy to deal with intrinsic
10// functions with the isa/dyncast family of functions. In particular, this
11// allows you to do things like:
12//
13// if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(Inst))
14// ... MCI->getDest() ... MCI->getSource() ...
15//
16// All intrinsic function calls are instances of the call instruction, so these
17// are all subclasses of the CallInst class. Note that none of these classes
18// has state or virtual methods, which is an important part of this gross/neat
19// hack working.
20//
21//===----------------------------------------------------------------------===//
22
23#ifndef LLVM_IR_INTRINSICINST_H
24#define LLVM_IR_INTRINSICINST_H
25
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DebugInfoMetadata.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/FPEnv.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/Intrinsics.h"
34#include "llvm/IR/Metadata.h"
35#include "llvm/IR/Value.h"
36#include "llvm/Support/Casting.h"
37#include <cassert>
38#include <cstdint>
39
40namespace llvm {
41
42/// A wrapper class for inspecting calls to intrinsic functions.
43/// This allows the standard isa/dyncast/cast functionality to work with calls
44/// to intrinsic functions.
45class IntrinsicInst : public CallInst {
46public:
47 IntrinsicInst() = delete;
48 IntrinsicInst(const IntrinsicInst &) = delete;
49 IntrinsicInst &operator=(const IntrinsicInst &) = delete;
50
51 /// Return the intrinsic ID of this intrinsic.
52 Intrinsic::ID getIntrinsicID() const {
53 return getCalledFunction()->getIntrinsicID();
54 }
55
56 /// Return true if swapping the first two arguments to the intrinsic produces
57 /// the same result.
58 bool isCommutative() const {
59 switch (getIntrinsicID()) {
60 case Intrinsic::maxnum:
61 case Intrinsic::minnum:
62 case Intrinsic::maximum:
63 case Intrinsic::minimum:
64 case Intrinsic::smax:
65 case Intrinsic::smin:
66 case Intrinsic::umax:
67 case Intrinsic::umin:
68 case Intrinsic::sadd_sat:
69 case Intrinsic::uadd_sat:
70 case Intrinsic::sadd_with_overflow:
71 case Intrinsic::uadd_with_overflow:
72 case Intrinsic::smul_with_overflow:
73 case Intrinsic::umul_with_overflow:
74 case Intrinsic::smul_fix:
75 case Intrinsic::umul_fix:
76 case Intrinsic::smul_fix_sat:
77 case Intrinsic::umul_fix_sat:
78 case Intrinsic::fma:
79 case Intrinsic::fmuladd:
80 return true;
81 default:
82 return false;
83 }
84 }
85
86 // Checks if the intrinsic is an annotation.
87 bool isAssumeLikeIntrinsic() const {
88 switch (getIntrinsicID()) {
89 default: break;
90 case Intrinsic::assume:
91 case Intrinsic::sideeffect:
92 case Intrinsic::pseudoprobe:
93 case Intrinsic::dbg_declare:
94 case Intrinsic::dbg_value:
95 case Intrinsic::dbg_label:
96 case Intrinsic::invariant_start:
97 case Intrinsic::invariant_end:
98 case Intrinsic::lifetime_start:
99 case Intrinsic::lifetime_end:
100 case Intrinsic::experimental_noalias_scope_decl:
101 case Intrinsic::objectsize:
102 case Intrinsic::ptr_annotation:
103 case Intrinsic::var_annotation:
104 return true;
105 }
106 return false;
107 }
108
109 // Methods for support type inquiry through isa, cast, and dyn_cast:
110 static bool classof(const CallInst *I) {
111 if (const Function *CF = I->getCalledFunction())
112 return CF->isIntrinsic();
113 return false;
114 }
115 static bool classof(const Value *V) {
116 return isa<CallInst>(V) && classof(cast<CallInst>(V));
117 }
118};
119
120/// Check if \p ID corresponds to a debug info intrinsic.
121static inline bool isDbgInfoIntrinsic(Intrinsic::ID ID) {
122 switch (ID) {
123 case Intrinsic::dbg_declare:
124 case Intrinsic::dbg_value:
125 case Intrinsic::dbg_addr:
126 case Intrinsic::dbg_label:
127 return true;
128 default:
129 return false;
130 }
131}
132
133/// This is the common base class for debug info intrinsics.
134class DbgInfoIntrinsic : public IntrinsicInst {
135public:
136 /// \name Casting methods
137 /// @{
138 static bool classof(const IntrinsicInst *I) {
139 return isDbgInfoIntrinsic(I->getIntrinsicID());
140 }
141 static bool classof(const Value *V) {
142 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
143 }
144 /// @}
145};
146
147/// This is the common base class for debug info intrinsics for variables.
148class DbgVariableIntrinsic : public DbgInfoIntrinsic {
149public:
150 // Iterator for ValueAsMetadata that internally uses direct pointer iteration
151 // over either a ValueAsMetadata* or a ValueAsMetadata**, dereferencing to the
152 // ValueAsMetadata .
153 class location_op_iterator
154 : public iterator_facade_base<location_op_iterator,
155 std::bidirectional_iterator_tag, Value *> {
156 PointerUnion<ValueAsMetadata *, ValueAsMetadata **> I;
157
158 public:
159 location_op_iterator(ValueAsMetadata *SingleIter) : I(SingleIter) {}
160 location_op_iterator(ValueAsMetadata **MultiIter) : I(MultiIter) {}
161
162 location_op_iterator(const location_op_iterator &R) : I(R.I) {}
163 location_op_iterator &operator=(const location_op_iterator &R) {
164 I = R.I;
165 return *this;
166 }
167 bool operator==(const location_op_iterator &RHS) const {
168 return I == RHS.I;
169 }
170 const Value *operator*() const {
171 ValueAsMetadata *VAM = I.is<ValueAsMetadata *>()
172 ? I.get<ValueAsMetadata *>()
173 : *I.get<ValueAsMetadata **>();
174 return VAM->getValue();
175 };
176 Value *operator*() {
177 ValueAsMetadata *VAM = I.is<ValueAsMetadata *>()
178 ? I.get<ValueAsMetadata *>()
179 : *I.get<ValueAsMetadata **>();
180 return VAM->getValue();
181 }
182 location_op_iterator &operator++() {
183 if (I.is<ValueAsMetadata *>())
184 I = I.get<ValueAsMetadata *>() + 1;
185 else
186 I = I.get<ValueAsMetadata **>() + 1;
187 return *this;
188 }
189 location_op_iterator &operator--() {
190 if (I.is<ValueAsMetadata *>())
191 I = I.get<ValueAsMetadata *>() - 1;
192 else
193 I = I.get<ValueAsMetadata **>() - 1;
194 return *this;
195 }
196 };
197
198 /// Get the locations corresponding to the variable referenced by the debug
199 /// info intrinsic. Depending on the intrinsic, this could be the
200 /// variable's value or its address.
201 iterator_range<location_op_iterator> location_ops() const;
202
203 Value *getVariableLocationOp(unsigned OpIdx) const;
204
205 void replaceVariableLocationOp(Value *OldValue, Value *NewValue);
206 void replaceVariableLocationOp(unsigned OpIdx, Value *NewValue);
207 /// Adding a new location operand will always result in this intrinsic using
208 /// an ArgList, and must always be accompanied by a new expression that uses
209 /// the new operand.
210 void addVariableLocationOps(ArrayRef<Value *> NewValues,
211 DIExpression *NewExpr);
212
213 void setVariable(DILocalVariable *NewVar) {
214 setArgOperand(1, MetadataAsValue::get(NewVar->getContext(), NewVar));
215 }
216
217 void setExpression(DIExpression *NewExpr) {
218 setArgOperand(2, MetadataAsValue::get(NewExpr->getContext(), NewExpr));
219 }
220
221 unsigned getNumVariableLocationOps() const {
222 if (hasArgList())
223 return cast<DIArgList>(getRawLocation())->getArgs().size();
224 return 1;
225 }
226
227 bool hasArgList() const { return isa<DIArgList>(getRawLocation()); }
228
229 /// Does this describe the address of a local variable. True for dbg.addr
230 /// and dbg.declare, but not dbg.value, which describes its value.
231 bool isAddressOfVariable() const {
232 return getIntrinsicID() != Intrinsic::dbg_value;
233 }
234
235 void setUndef() {
236 // TODO: When/if we remove duplicate values from DIArgLists, we don't need
237 // this set anymore.
238 SmallPtrSet<Value *, 4> RemovedValues;
239 for (Value *OldValue : location_ops()) {
240 if (!RemovedValues.insert(OldValue).second)
241 continue;
242 Value *Undef = UndefValue::get(OldValue->getType());
243 replaceVariableLocationOp(OldValue, Undef);
244 }
245 }
246
247 bool isUndef() const {
248 return (getNumVariableLocationOps() == 0 &&
249 !getExpression()->isComplex()) ||
250 any_of(location_ops(), [](Value *V) { return isa<UndefValue>(V); });
251 }
252
253 DILocalVariable *getVariable() const {
254 return cast<DILocalVariable>(getRawVariable());
255 }
256
257 DIExpression *getExpression() const {
258 return cast<DIExpression>(getRawExpression());
259 }
260
261 Metadata *getRawLocation() const {
262 return cast<MetadataAsValue>(getArgOperand(0))->getMetadata();
263 }
264
265 Metadata *getRawVariable() const {
266 return cast<MetadataAsValue>(getArgOperand(1))->getMetadata();
267 }
268
269 Metadata *getRawExpression() const {
270 return cast<MetadataAsValue>(getArgOperand(2))->getMetadata();
271 }
272
273 /// Use of this should generally be avoided; instead,
274 /// replaceVariableLocationOp and addVariableLocationOps should be used where
275 /// possible to avoid creating invalid state.
276 void setRawLocation(Metadata *Location) {
277 return setArgOperand(0, MetadataAsValue::get(getContext(), Location));
278 }
279
280 /// Get the size (in bits) of the variable, or fragment of the variable that
281 /// is described.
282 Optional<uint64_t> getFragmentSizeInBits() const;
283
284 /// \name Casting methods
285 /// @{
286 static bool classof(const IntrinsicInst *I) {
287 switch (I->getIntrinsicID()) {
288 case Intrinsic::dbg_declare:
289 case Intrinsic::dbg_value:
290 case Intrinsic::dbg_addr:
291 return true;
292 default:
293 return false;
294 }
295 }
296 static bool classof(const Value *V) {
297 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
298 }
299 /// @}
300private:
301 void setArgOperand(unsigned i, Value *v) {
302 DbgInfoIntrinsic::setArgOperand(i, v);
303 }
304 void setOperand(unsigned i, Value *v) { DbgInfoIntrinsic::setOperand(i, v); }
305};
306
307/// This represents the llvm.dbg.declare instruction.
308class DbgDeclareInst : public DbgVariableIntrinsic {
309public:
310 Value *getAddress() const {
311 assert(getNumVariableLocationOps() == 1 &&((void)0)
312 "dbg.declare must have exactly 1 location operand.")((void)0);
313 return getVariableLocationOp(0);
314 }
315
316 /// \name Casting methods
317 /// @{
318 static bool classof(const IntrinsicInst *I) {
319 return I->getIntrinsicID() == Intrinsic::dbg_declare;
320 }
321 static bool classof(const Value *V) {
322 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
323 }
324 /// @}
325};
326
327/// This represents the llvm.dbg.addr instruction.
328class DbgAddrIntrinsic : public DbgVariableIntrinsic {
329public:
330 Value *getAddress() const {
331 assert(getNumVariableLocationOps() == 1 &&((void)0)
332 "dbg.addr must have exactly 1 location operand.")((void)0);
333 return getVariableLocationOp(0);
334 }
335
336 /// \name Casting methods
337 /// @{
338 static bool classof(const IntrinsicInst *I) {
339 return I->getIntrinsicID() == Intrinsic::dbg_addr;
340 }
341 static bool classof(const Value *V) {
342 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
343 }
344};
345
346/// This represents the llvm.dbg.value instruction.
347class DbgValueInst : public DbgVariableIntrinsic {
348public:
349 // The default argument should only be used in ISel, and the default option
350 // should be removed once ISel support for multiple location ops is complete.
351 Value *getValue(unsigned OpIdx = 0) const {
352 return getVariableLocationOp(OpIdx);
353 }
354 iterator_range<location_op_iterator> getValues() const {
355 return location_ops();
356 }
357
358 /// \name Casting methods
359 /// @{
360 static bool classof(const IntrinsicInst *I) {
361 return I->getIntrinsicID() == Intrinsic::dbg_value;
362 }
363 static bool classof(const Value *V) {
364 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
365 }
366 /// @}
367};
368
369/// This represents the llvm.dbg.label instruction.
370class DbgLabelInst : public DbgInfoIntrinsic {
371public:
372 DILabel *getLabel() const { return cast<DILabel>(getRawLabel()); }
373
374 Metadata *getRawLabel() const {
375 return cast<MetadataAsValue>(getArgOperand(0))->getMetadata();
376 }
377
378 /// Methods for support type inquiry through isa, cast, and dyn_cast:
379 /// @{
380 static bool classof(const IntrinsicInst *I) {
381 return I->getIntrinsicID() == Intrinsic::dbg_label;
382 }
383 static bool classof(const Value *V) {
384 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
385 }
386 /// @}
387};
388
389/// This is the common base class for vector predication intrinsics.
390class VPIntrinsic : public IntrinsicInst {
391public:
392 /// \brief Declares a llvm.vp.* intrinsic in \p M that matches the parameters
393 /// \p Params.
394 static Function *getDeclarationForParams(Module *M, Intrinsic::ID,
395 ArrayRef<Value *> Params);
396
397 static Optional<unsigned> getMaskParamPos(Intrinsic::ID IntrinsicID);
398 static Optional<unsigned> getVectorLengthParamPos(Intrinsic::ID IntrinsicID);
399
400 /// The llvm.vp.* intrinsics for this instruction Opcode
401 static Intrinsic::ID getForOpcode(unsigned OC);
402
403 // Whether \p ID is a VP intrinsic ID.
404 static bool isVPIntrinsic(Intrinsic::ID);
405
406 /// \return The mask parameter or nullptr.
407 Value *getMaskParam() const;
408 void setMaskParam(Value *);
409
410 /// \return The vector length parameter or nullptr.
411 Value *getVectorLengthParam() const;
412 void setVectorLengthParam(Value *);
413
414 /// \return Whether the vector length param can be ignored.
415 bool canIgnoreVectorLengthParam() const;
416
417 /// \return The static element count (vector number of elements) the vector
418 /// length parameter applies to.
419 ElementCount getStaticVectorLength() const;
420
421 /// \return The alignment of the pointer used by this load/store/gather or
422 /// scatter.
423 MaybeAlign getPointerAlignment() const;
424 // MaybeAlign setPointerAlignment(Align NewAlign); // TODO
425
426 /// \return The pointer operand of this load,store, gather or scatter.
427 Value *getMemoryPointerParam() const;
428 static Optional<unsigned> getMemoryPointerParamPos(Intrinsic::ID);
429
430 /// \return The data (payload) operand of this store or scatter.
431 Value *getMemoryDataParam() const;
432 static Optional<unsigned> getMemoryDataParamPos(Intrinsic::ID);
433
434 // Methods for support type inquiry through isa, cast, and dyn_cast:
435 static bool classof(const IntrinsicInst *I) {
436 return isVPIntrinsic(I->getIntrinsicID());
437 }
438 static bool classof(const Value *V) {
439 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
440 }
441
442 // Equivalent non-predicated opcode
443 Optional<unsigned> getFunctionalOpcode() const {
444 return getFunctionalOpcodeForVP(getIntrinsicID());
445 }
446
447 // Equivalent non-predicated opcode
448 static Optional<unsigned> getFunctionalOpcodeForVP(Intrinsic::ID ID);
449};
450
451/// This is the common base class for constrained floating point intrinsics.
452class ConstrainedFPIntrinsic : public IntrinsicInst {
453public:
454 bool isUnaryOp() const;
455 bool isTernaryOp() const;
456 Optional<RoundingMode> getRoundingMode() const;
457 Optional<fp::ExceptionBehavior> getExceptionBehavior() const;
458 bool isDefaultFPEnvironment() const;
459
460 // Methods for support type inquiry through isa, cast, and dyn_cast:
461 static bool classof(const IntrinsicInst *I);
462 static bool classof(const Value *V) {
463 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
464 }
465};
466
467/// Constrained floating point compare intrinsics.
468class ConstrainedFPCmpIntrinsic : public ConstrainedFPIntrinsic {
469public:
470 FCmpInst::Predicate getPredicate() const;
471
472 // Methods for support type inquiry through isa, cast, and dyn_cast:
473 static bool classof(const IntrinsicInst *I) {
474 switch (I->getIntrinsicID()) {
475 case Intrinsic::experimental_constrained_fcmp:
476 case Intrinsic::experimental_constrained_fcmps:
477 return true;
478 default:
479 return false;
480 }
481 }
482 static bool classof(const Value *V) {
483 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
484 }
485};
486
487/// This class represents min/max intrinsics.
488class MinMaxIntrinsic : public IntrinsicInst {
489public:
490 static bool classof(const IntrinsicInst *I) {
491 switch (I->getIntrinsicID()) {
492 case Intrinsic::umin:
493 case Intrinsic::umax:
494 case Intrinsic::smin:
495 case Intrinsic::smax:
496 return true;
497 default:
498 return false;
499 }
500 }
501 static bool classof(const Value *V) {
502 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
503 }
504
505 Value *getLHS() const { return const_cast<Value *>(getArgOperand(0)); }
506 Value *getRHS() const { return const_cast<Value *>(getArgOperand(1)); }
507
508 /// Returns the comparison predicate underlying the intrinsic.
509 ICmpInst::Predicate getPredicate() const {
510 switch (getIntrinsicID()) {
511 case Intrinsic::umin:
512 return ICmpInst::Predicate::ICMP_ULT;
513 case Intrinsic::umax:
514 return ICmpInst::Predicate::ICMP_UGT;
515 case Intrinsic::smin:
516 return ICmpInst::Predicate::ICMP_SLT;
517 case Intrinsic::smax:
518 return ICmpInst::Predicate::ICMP_SGT;
519 default:
520 llvm_unreachable("Invalid intrinsic")__builtin_unreachable();
521 }
522 }
523
524 /// Whether the intrinsic is signed or unsigned.
525 bool isSigned() const { return ICmpInst::isSigned(getPredicate()); };
526};
527
528/// This class represents an intrinsic that is based on a binary operation.
529/// This includes op.with.overflow and saturating add/sub intrinsics.
530class BinaryOpIntrinsic : public IntrinsicInst {
531public:
532 static bool classof(const IntrinsicInst *I) {
533 switch (I->getIntrinsicID()) {
534 case Intrinsic::uadd_with_overflow:
535 case Intrinsic::sadd_with_overflow:
536 case Intrinsic::usub_with_overflow:
537 case Intrinsic::ssub_with_overflow:
538 case Intrinsic::umul_with_overflow:
539 case Intrinsic::smul_with_overflow:
540 case Intrinsic::uadd_sat:
541 case Intrinsic::sadd_sat:
542 case Intrinsic::usub_sat:
543 case Intrinsic::ssub_sat:
544 return true;
545 default:
546 return false;
547 }
548 }
549 static bool classof(const Value *V) {
550 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
551 }
552
553 Value *getLHS() const { return const_cast<Value *>(getArgOperand(0)); }
554 Value *getRHS() const { return const_cast<Value *>(getArgOperand(1)); }
555
556 /// Returns the binary operation underlying the intrinsic.
557 Instruction::BinaryOps getBinaryOp() const;
558
559 /// Whether the intrinsic is signed or unsigned.
560 bool isSigned() const;
561
562 /// Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
563 unsigned getNoWrapKind() const;
564};
565
566/// Represents an op.with.overflow intrinsic.
567class WithOverflowInst : public BinaryOpIntrinsic {
568public:
569 static bool classof(const IntrinsicInst *I) {
570 switch (I->getIntrinsicID()) {
571 case Intrinsic::uadd_with_overflow:
572 case Intrinsic::sadd_with_overflow:
573 case Intrinsic::usub_with_overflow:
574 case Intrinsic::ssub_with_overflow:
575 case Intrinsic::umul_with_overflow:
576 case Intrinsic::smul_with_overflow:
577 return true;
578 default:
579 return false;
580 }
581 }
582 static bool classof(const Value *V) {
583 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
584 }
585};
586
587/// Represents a saturating add/sub intrinsic.
588class SaturatingInst : public BinaryOpIntrinsic {
589public:
590 static bool classof(const IntrinsicInst *I) {
591 switch (I->getIntrinsicID()) {
592 case Intrinsic::uadd_sat:
593 case Intrinsic::sadd_sat:
594 case Intrinsic::usub_sat:
595 case Intrinsic::ssub_sat:
596 return true;
597 default:
598 return false;
599 }
600 }
601 static bool classof(const Value *V) {
602 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
603 }
604};
605
606/// Common base class for all memory intrinsics. Simply provides
607/// common methods.
608/// Written as CRTP to avoid a common base class amongst the
609/// three atomicity hierarchies.
610template <typename Derived> class MemIntrinsicBase : public IntrinsicInst {
611private:
612 enum { ARG_DEST = 0, ARG_LENGTH = 2 };
613
614public:
615 Value *getRawDest() const {
616 return const_cast<Value *>(getArgOperand(ARG_DEST));
617 }
618 const Use &getRawDestUse() const { return getArgOperandUse(ARG_DEST); }
619 Use &getRawDestUse() { return getArgOperandUse(ARG_DEST); }
620
621 Value *getLength() const {
622 return const_cast<Value *>(getArgOperand(ARG_LENGTH));
623 }
624 const Use &getLengthUse() const { return getArgOperandUse(ARG_LENGTH); }
625 Use &getLengthUse() { return getArgOperandUse(ARG_LENGTH); }
626
627 /// This is just like getRawDest, but it strips off any cast
628 /// instructions (including addrspacecast) that feed it, giving the
629 /// original input. The returned value is guaranteed to be a pointer.
630 Value *getDest() const { return getRawDest()->stripPointerCasts(); }
631
632 unsigned getDestAddressSpace() const {
633 return cast<PointerType>(getRawDest()->getType())->getAddressSpace();
634 }
635
636 /// FIXME: Remove this function once transition to Align is over.
637 /// Use getDestAlign() instead.
638 unsigned getDestAlignment() const {
639 if (auto MA = getParamAlign(ARG_DEST))
640 return MA->value();
641 return 0;
642 }
643 MaybeAlign getDestAlign() const { return getParamAlign(ARG_DEST); }
644
645 /// Set the specified arguments of the instruction.
646 void setDest(Value *Ptr) {
647 assert(getRawDest()->getType() == Ptr->getType() &&((void)0)
648 "setDest called with pointer of wrong type!")((void)0);
649 setArgOperand(ARG_DEST, Ptr);
650 }
651
652 /// FIXME: Remove this function once transition to Align is over.
653 /// Use the version that takes MaybeAlign instead of this one.
654 void setDestAlignment(unsigned Alignment) {
655 setDestAlignment(MaybeAlign(Alignment));
656 }
657 void setDestAlignment(MaybeAlign Alignment) {
658 removeParamAttr(ARG_DEST, Attribute::Alignment);
659 if (Alignment)
660 addParamAttr(ARG_DEST,
661 Attribute::getWithAlignment(getContext(), *Alignment));
662 }
663 void setDestAlignment(Align Alignment) {
664 removeParamAttr(ARG_DEST, Attribute::Alignment);
665 addParamAttr(ARG_DEST,
666 Attribute::getWithAlignment(getContext(), Alignment));
667 }
668
669 void setLength(Value *L) {
670 assert(getLength()->getType() == L->getType() &&((void)0)
671 "setLength called with value of wrong type!")((void)0);
672 setArgOperand(ARG_LENGTH, L);
673 }
674};
675
676/// Common base class for all memory transfer intrinsics. Simply provides
677/// common methods.
678template <class BaseCL> class MemTransferBase : public BaseCL {
679private:
680 enum { ARG_SOURCE = 1 };
681
682public:
683 /// Return the arguments to the instruction.
684 Value *getRawSource() const {
685 return const_cast<Value *>(BaseCL::getArgOperand(ARG_SOURCE));
686 }
687 const Use &getRawSourceUse() const {
688 return BaseCL::getArgOperandUse(ARG_SOURCE);
689 }
690 Use &getRawSourceUse() { return BaseCL::getArgOperandUse(ARG_SOURCE); }
691
692 /// This is just like getRawSource, but it strips off any cast
693 /// instructions that feed it, giving the original input. The returned
694 /// value is guaranteed to be a pointer.
695 Value *getSource() const { return getRawSource()->stripPointerCasts(); }
696
697 unsigned getSourceAddressSpace() const {
698 return cast<PointerType>(getRawSource()->getType())->getAddressSpace();
699 }
700
701 /// FIXME: Remove this function once transition to Align is over.
702 /// Use getSourceAlign() instead.
703 unsigned getSourceAlignment() const {
704 if (auto MA = BaseCL::getParamAlign(ARG_SOURCE))
705 return MA->value();
706 return 0;
707 }
708
709 MaybeAlign getSourceAlign() const {
710 return BaseCL::getParamAlign(ARG_SOURCE);
711 }
712
713 void setSource(Value *Ptr) {
714 assert(getRawSource()->getType() == Ptr->getType() &&((void)0)
715 "setSource called with pointer of wrong type!")((void)0);
716 BaseCL::setArgOperand(ARG_SOURCE, Ptr);
717 }
718
719 /// FIXME: Remove this function once transition to Align is over.
720 /// Use the version that takes MaybeAlign instead of this one.
721 void setSourceAlignment(unsigned Alignment) {
722 setSourceAlignment(MaybeAlign(Alignment));
723 }
724 void setSourceAlignment(MaybeAlign Alignment) {
725 BaseCL::removeParamAttr(ARG_SOURCE, Attribute::Alignment);
726 if (Alignment)
727 BaseCL::addParamAttr(ARG_SOURCE, Attribute::getWithAlignment(
728 BaseCL::getContext(), *Alignment));
729 }
730 void setSourceAlignment(Align Alignment) {
731 BaseCL::removeParamAttr(ARG_SOURCE, Attribute::Alignment);
732 BaseCL::addParamAttr(ARG_SOURCE, Attribute::getWithAlignment(
733 BaseCL::getContext(), Alignment));
734 }
735};
736
737/// Common base class for all memset intrinsics. Simply provides
738/// common methods.
739template <class BaseCL> class MemSetBase : public BaseCL {
740private:
741 enum { ARG_VALUE = 1 };
742
743public:
744 Value *getValue() const {
745 return const_cast<Value *>(BaseCL::getArgOperand(ARG_VALUE));
746 }
747 const Use &getValueUse() const { return BaseCL::getArgOperandUse(ARG_VALUE); }
748 Use &getValueUse() { return BaseCL::getArgOperandUse(ARG_VALUE); }
749
750 void setValue(Value *Val) {
751 assert(getValue()->getType() == Val->getType() &&((void)0)
752 "setValue called with value of wrong type!")((void)0);
753 BaseCL::setArgOperand(ARG_VALUE, Val);
754 }
755};
756
757// The common base class for the atomic memset/memmove/memcpy intrinsics
758// i.e. llvm.element.unordered.atomic.memset/memcpy/memmove
759class AtomicMemIntrinsic : public MemIntrinsicBase<AtomicMemIntrinsic> {
760private:
761 enum { ARG_ELEMENTSIZE = 3 };
762
763public:
764 Value *getRawElementSizeInBytes() const {
765 return const_cast<Value *>(getArgOperand(ARG_ELEMENTSIZE));
766 }
767
768 ConstantInt *getElementSizeInBytesCst() const {
769 return cast<ConstantInt>(getRawElementSizeInBytes());
770 }
771
772 uint32_t getElementSizeInBytes() const {
773 return getElementSizeInBytesCst()->getZExtValue();
774 }
775
776 void setElementSizeInBytes(Constant *V) {
777 assert(V->getType() == Type::getInt8Ty(getContext()) &&((void)0)
778 "setElementSizeInBytes called with value of wrong type!")((void)0);
779 setArgOperand(ARG_ELEMENTSIZE, V);
780 }
781
782 static bool classof(const IntrinsicInst *I) {
783 switch (I->getIntrinsicID()) {
784 case Intrinsic::memcpy_element_unordered_atomic:
785 case Intrinsic::memmove_element_unordered_atomic:
786 case Intrinsic::memset_element_unordered_atomic:
787 return true;
788 default:
789 return false;
790 }
791 }
792 static bool classof(const Value *V) {
793 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
794 }
795};
796
797/// This class represents atomic memset intrinsic
798// i.e. llvm.element.unordered.atomic.memset
799class AtomicMemSetInst : public MemSetBase<AtomicMemIntrinsic> {
800public:
801 static bool classof(const IntrinsicInst *I) {
802 return I->getIntrinsicID() == Intrinsic::memset_element_unordered_atomic;
803 }
804 static bool classof(const Value *V) {
805 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
806 }
807};
808
809// This class wraps the atomic memcpy/memmove intrinsics
810// i.e. llvm.element.unordered.atomic.memcpy/memmove
811class AtomicMemTransferInst : public MemTransferBase<AtomicMemIntrinsic> {
812public:
813 static bool classof(const IntrinsicInst *I) {
814 switch (I->getIntrinsicID()) {
815 case Intrinsic::memcpy_element_unordered_atomic:
816 case Intrinsic::memmove_element_unordered_atomic:
817 return true;
818 default:
819 return false;
820 }
821 }
822 static bool classof(const Value *V) {
823 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
824 }
825};
826
827/// This class represents the atomic memcpy intrinsic
828/// i.e. llvm.element.unordered.atomic.memcpy
829class AtomicMemCpyInst : public AtomicMemTransferInst {
830public:
831 static bool classof(const IntrinsicInst *I) {
832 return I->getIntrinsicID() == Intrinsic::memcpy_element_unordered_atomic;
833 }
834 static bool classof(const Value *V) {
835 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
836 }
837};
838
839/// This class represents the atomic memmove intrinsic
840/// i.e. llvm.element.unordered.atomic.memmove
841class AtomicMemMoveInst : public AtomicMemTransferInst {
842public:
843 static bool classof(const IntrinsicInst *I) {
844 return I->getIntrinsicID() == Intrinsic::memmove_element_unordered_atomic;
845 }
846 static bool classof(const Value *V) {
847 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
848 }
849};
850
851/// This is the common base class for memset/memcpy/memmove.
852class MemIntrinsic : public MemIntrinsicBase<MemIntrinsic> {
853private:
854 enum { ARG_VOLATILE = 3 };
855
856public:
857 ConstantInt *getVolatileCst() const {
858 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(ARG_VOLATILE)));
859 }
860
861 bool isVolatile() const { return !getVolatileCst()->isZero(); }
28
Calling 'ConstantInt::isZero'
42
Returning from 'ConstantInt::isZero'
43
Returning zero, which participates in a condition later
862
863 void setVolatile(Constant *V) { setArgOperand(ARG_VOLATILE, V); }
864
865 // Methods for support type inquiry through isa, cast, and dyn_cast:
866 static bool classof(const IntrinsicInst *I) {
867 switch (I->getIntrinsicID()) {
868 case Intrinsic::memcpy:
869 case Intrinsic::memmove:
870 case Intrinsic::memset:
871 case Intrinsic::memcpy_inline:
872 return true;
873 default:
874 return false;
875 }
876 }
877 static bool classof(const Value *V) {
878 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
879 }
880};
881
882/// This class wraps the llvm.memset intrinsic.
883class MemSetInst : public MemSetBase<MemIntrinsic> {
884public:
885 // Methods for support type inquiry through isa, cast, and dyn_cast:
886 static bool classof(const IntrinsicInst *I) {
887 return I->getIntrinsicID() == Intrinsic::memset;
888 }
889 static bool classof(const Value *V) {
890 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
891 }
892};
893
894/// This class wraps the llvm.memcpy/memmove intrinsics.
895class MemTransferInst : public MemTransferBase<MemIntrinsic> {
896public:
897 // Methods for support type inquiry through isa, cast, and dyn_cast:
898 static bool classof(const IntrinsicInst *I) {
899 switch (I->getIntrinsicID()) {
900 case Intrinsic::memcpy:
901 case Intrinsic::memmove:
902 case Intrinsic::memcpy_inline:
903 return true;
904 default:
905 return false;
906 }
907 }
908 static bool classof(const Value *V) {
909 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
910 }
911};
912
913/// This class wraps the llvm.memcpy intrinsic.
914class MemCpyInst : public MemTransferInst {
915public:
916 // Methods for support type inquiry through isa, cast, and dyn_cast:
917 static bool classof(const IntrinsicInst *I) {
918 return I->getIntrinsicID() == Intrinsic::memcpy ||
919 I->getIntrinsicID() == Intrinsic::memcpy_inline;
920 }
921 static bool classof(const Value *V) {
922 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
923 }
924};
925
926/// This class wraps the llvm.memmove intrinsic.
927class MemMoveInst : public MemTransferInst {
928public:
929 // Methods for support type inquiry through isa, cast, and dyn_cast:
930 static bool classof(const IntrinsicInst *I) {
931 return I->getIntrinsicID() == Intrinsic::memmove;
932 }
933 static bool classof(const Value *V) {
934 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
935 }
936};
937
938/// This class wraps the llvm.memcpy.inline intrinsic.
939class MemCpyInlineInst : public MemCpyInst {
940public:
941 ConstantInt *getLength() const {
942 return cast<ConstantInt>(MemCpyInst::getLength());
943 }
944 // Methods for support type inquiry through isa, cast, and dyn_cast:
945 static bool classof(const IntrinsicInst *I) {
946 return I->getIntrinsicID() == Intrinsic::memcpy_inline;
947 }
948 static bool classof(const Value *V) {
949 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
950 }
951};
952
953// The common base class for any memset/memmove/memcpy intrinsics;
954// whether they be atomic or non-atomic.
955// i.e. llvm.element.unordered.atomic.memset/memcpy/memmove
956// and llvm.memset/memcpy/memmove
957class AnyMemIntrinsic : public MemIntrinsicBase<AnyMemIntrinsic> {
958public:
959 bool isVolatile() const {
960 // Only the non-atomic intrinsics can be volatile
961 if (auto *MI = dyn_cast<MemIntrinsic>(this))
962 return MI->isVolatile();
963 return false;
964 }
965
966 static bool classof(const IntrinsicInst *I) {
967 switch (I->getIntrinsicID()) {
968 case Intrinsic::memcpy:
969 case Intrinsic::memcpy_inline:
970 case Intrinsic::memmove:
971 case Intrinsic::memset:
972 case Intrinsic::memcpy_element_unordered_atomic:
973 case Intrinsic::memmove_element_unordered_atomic:
974 case Intrinsic::memset_element_unordered_atomic:
975 return true;
976 default:
977 return false;
978 }
979 }
980 static bool classof(const Value *V) {
981 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
982 }
983};
984
985/// This class represents any memset intrinsic
986// i.e. llvm.element.unordered.atomic.memset
987// and llvm.memset
988class AnyMemSetInst : public MemSetBase<AnyMemIntrinsic> {
989public:
990 static bool classof(const IntrinsicInst *I) {
991 switch (I->getIntrinsicID()) {
992 case Intrinsic::memset:
993 case Intrinsic::memset_element_unordered_atomic:
994 return true;
995 default:
996 return false;
997 }
998 }
999 static bool classof(const Value *V) {
1000 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1001 }
1002};
1003
1004// This class wraps any memcpy/memmove intrinsics
1005// i.e. llvm.element.unordered.atomic.memcpy/memmove
1006// and llvm.memcpy/memmove
1007class AnyMemTransferInst : public MemTransferBase<AnyMemIntrinsic> {
1008public:
1009 static bool classof(const IntrinsicInst *I) {
1010 switch (I->getIntrinsicID()) {
1011 case Intrinsic::memcpy:
1012 case Intrinsic::memcpy_inline:
1013 case Intrinsic::memmove:
1014 case Intrinsic::memcpy_element_unordered_atomic:
1015 case Intrinsic::memmove_element_unordered_atomic:
1016 return true;
1017 default:
1018 return false;
1019 }
1020 }
1021 static bool classof(const Value *V) {
1022 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1023 }
1024};
1025
1026/// This class represents any memcpy intrinsic
1027/// i.e. llvm.element.unordered.atomic.memcpy
1028/// and llvm.memcpy
1029class AnyMemCpyInst : public AnyMemTransferInst {
1030public:
1031 static bool classof(const IntrinsicInst *I) {
1032 switch (I->getIntrinsicID()) {
1033 case Intrinsic::memcpy:
1034 case Intrinsic::memcpy_inline:
1035 case Intrinsic::memcpy_element_unordered_atomic:
1036 return true;
1037 default:
1038 return false;
1039 }
1040 }
1041 static bool classof(const Value *V) {
1042 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1043 }
1044};
1045
1046/// This class represents any memmove intrinsic
1047/// i.e. llvm.element.unordered.atomic.memmove
1048/// and llvm.memmove
1049class AnyMemMoveInst : public AnyMemTransferInst {
1050public:
1051 static bool classof(const IntrinsicInst *I) {
1052 switch (I->getIntrinsicID()) {
1053 case Intrinsic::memmove:
1054 case Intrinsic::memmove_element_unordered_atomic:
1055 return true;
1056 default:
1057 return false;
1058 }
1059 }
1060 static bool classof(const Value *V) {
1061 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1062 }
1063};
1064
1065/// This represents the llvm.va_start intrinsic.
1066class VAStartInst : public IntrinsicInst {
1067public:
1068 static bool classof(const IntrinsicInst *I) {
1069 return I->getIntrinsicID() == Intrinsic::vastart;
1070 }
1071 static bool classof(const Value *V) {
1072 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1073 }
1074
1075 Value *getArgList() const { return const_cast<Value *>(getArgOperand(0)); }
1076};
1077
1078/// This represents the llvm.va_end intrinsic.
1079class VAEndInst : public IntrinsicInst {
1080public:
1081 static bool classof(const IntrinsicInst *I) {
1082 return I->getIntrinsicID() == Intrinsic::vaend;
1083 }
1084 static bool classof(const Value *V) {
1085 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1086 }
1087
1088 Value *getArgList() const { return const_cast<Value *>(getArgOperand(0)); }
1089};
1090
1091/// This represents the llvm.va_copy intrinsic.
1092class VACopyInst : public IntrinsicInst {
1093public:
1094 static bool classof(const IntrinsicInst *I) {
1095 return I->getIntrinsicID() == Intrinsic::vacopy;
1096 }
1097 static bool classof(const Value *V) {
1098 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1099 }
1100
1101 Value *getDest() const { return const_cast<Value *>(getArgOperand(0)); }
1102 Value *getSrc() const { return const_cast<Value *>(getArgOperand(1)); }
1103};
1104
1105/// This represents the llvm.instrprof_increment intrinsic.
1106class InstrProfIncrementInst : public IntrinsicInst {
1107public:
1108 static bool classof(const IntrinsicInst *I) {
1109 return I->getIntrinsicID() == Intrinsic::instrprof_increment;
1110 }
1111 static bool classof(const Value *V) {
1112 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1113 }
1114
1115 GlobalVariable *getName() const {
1116 return cast<GlobalVariable>(
1117 const_cast<Value *>(getArgOperand(0))->stripPointerCasts());
1118 }
1119
1120 ConstantInt *getHash() const {
1121 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(1)));
1122 }
1123
1124 ConstantInt *getNumCounters() const {
1125 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(2)));
1126 }
1127
1128 ConstantInt *getIndex() const {
1129 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(3)));
1130 }
1131
1132 Value *getStep() const;
1133};
1134
1135class InstrProfIncrementInstStep : public InstrProfIncrementInst {
1136public:
1137 static bool classof(const IntrinsicInst *I) {
1138 return I->getIntrinsicID() == Intrinsic::instrprof_increment_step;
1139 }
1140 static bool classof(const Value *V) {
1141 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1142 }
1143};
1144
1145/// This represents the llvm.instrprof_value_profile intrinsic.
1146class InstrProfValueProfileInst : public IntrinsicInst {
1147public:
1148 static bool classof(const IntrinsicInst *I) {
1149 return I->getIntrinsicID() == Intrinsic::instrprof_value_profile;
1150 }
1151 static bool classof(const Value *V) {
1152 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1153 }
1154
1155 GlobalVariable *getName() const {
1156 return cast<GlobalVariable>(
1157 const_cast<Value *>(getArgOperand(0))->stripPointerCasts());
1158 }
1159
1160 ConstantInt *getHash() const {
1161 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(1)));
1162 }
1163
1164 Value *getTargetValue() const {
1165 return cast<Value>(const_cast<Value *>(getArgOperand(2)));
1166 }
1167
1168 ConstantInt *getValueKind() const {
1169 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(3)));
1170 }
1171
1172 // Returns the value site index.
1173 ConstantInt *getIndex() const {
1174 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(4)));
1175 }
1176};
1177
1178class PseudoProbeInst : public IntrinsicInst {
1179public:
1180 static bool classof(const IntrinsicInst *I) {
1181 return I->getIntrinsicID() == Intrinsic::pseudoprobe;
1182 }
1183
1184 static bool classof(const Value *V) {
1185 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1186 }
1187
1188 ConstantInt *getFuncGuid() const {
1189 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(0)));
1190 }
1191
1192 ConstantInt *getIndex() const {
1193 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(1)));
1194 }
1195
1196 ConstantInt *getAttributes() const {
1197 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(2)));
1198 }
1199
1200 ConstantInt *getFactor() const {
1201 return cast<ConstantInt>(const_cast<Value *>(getArgOperand(3)));
1202 }
1203};
1204
1205class NoAliasScopeDeclInst : public IntrinsicInst {
1206public:
1207 static bool classof(const IntrinsicInst *I) {
1208 return I->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl;
1209 }
1210
1211 static bool classof(const Value *V) {
1212 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1213 }
1214
1215 MDNode *getScopeList() const {
1216 auto *MV =
1217 cast<MetadataAsValue>(getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
1218 return cast<MDNode>(MV->getMetadata());
1219 }
1220
1221 void setScopeList(MDNode *ScopeList) {
1222 setOperand(Intrinsic::NoAliasScopeDeclScopeArg,
1223 MetadataAsValue::get(getContext(), ScopeList));
1224 }
1225};
1226
1227// Defined in Statepoint.h -- NOT a subclass of IntrinsicInst
1228class GCStatepointInst;
1229
1230/// Common base class for representing values projected from a statepoint.
1231/// Currently, the only projections available are gc.result and gc.relocate.
1232class GCProjectionInst : public IntrinsicInst {
1233public:
1234 static bool classof(const IntrinsicInst *I) {
1235 return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate ||
1236 I->getIntrinsicID() == Intrinsic::experimental_gc_result;
1237 }
1238
1239 static bool classof(const Value *V) {
1240 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1241 }
1242
1243 /// Return true if this relocate is tied to the invoke statepoint.
1244 /// This includes relocates which are on the unwinding path.
1245 bool isTiedToInvoke() const {
1246 const Value *Token = getArgOperand(0);
1247
1248 return isa<LandingPadInst>(Token) || isa<InvokeInst>(Token);
1249 }
1250
1251 /// The statepoint with which this gc.relocate is associated.
1252 const GCStatepointInst *getStatepoint() const;
1253};
1254
1255/// Represents calls to the gc.relocate intrinsic.
1256class GCRelocateInst : public GCProjectionInst {
1257public:
1258 static bool classof(const IntrinsicInst *I) {
1259 return I->getIntrinsicID() == Intrinsic::experimental_gc_relocate;
1260 }
1261
1262 static bool classof(const Value *V) {
1263 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1264 }
1265
1266 /// The index into the associate statepoint's argument list
1267 /// which contains the base pointer of the pointer whose
1268 /// relocation this gc.relocate describes.
1269 unsigned getBasePtrIndex() const {
1270 return cast<ConstantInt>(getArgOperand(1))->getZExtValue();
1271 }
1272
1273 /// The index into the associate statepoint's argument list which
1274 /// contains the pointer whose relocation this gc.relocate describes.
1275 unsigned getDerivedPtrIndex() const {
1276 return cast<ConstantInt>(getArgOperand(2))->getZExtValue();
1277 }
1278
1279 Value *getBasePtr() const;
1280 Value *getDerivedPtr() const;
1281};
1282
1283/// Represents calls to the gc.result intrinsic.
1284class GCResultInst : public GCProjectionInst {
1285public:
1286 static bool classof(const IntrinsicInst *I) {
1287 return I->getIntrinsicID() == Intrinsic::experimental_gc_result;
1288 }
1289
1290 static bool classof(const Value *V) {
1291 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1292 }
1293};
1294
1295
1296/// This represents the llvm.assume intrinsic.
1297class AssumeInst : public IntrinsicInst {
1298public:
1299 static bool classof(const IntrinsicInst *I) {
1300 return I->getIntrinsicID() == Intrinsic::assume;
1301 }
1302 static bool classof(const Value *V) {
1303 return isa<IntrinsicInst>(V) && classof(cast<IntrinsicInst>(V));
1304 }
1305};
1306
1307} // end namespace llvm
1308
1309#endif // LLVM_IR_INTRINSICINST_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/IR/Constants.h

1//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// @file
10/// This file contains the declarations for the subclasses of Constant,
11/// which represent the different flavors of constant values that live in LLVM.
12/// Note that Constants are immutable (once created they never change) and are
13/// fully shared by structural equivalence. This means that two structurally
14/// equivalent constants will always have the same address. Constants are
15/// created on demand as needed and never deleted: thus clients don't have to
16/// worry about the lifetime of the objects.
17//
18//===----------------------------------------------------------------------===//
19
20#ifndef LLVM_IR_CONSTANTS_H
21#define LLVM_IR_CONSTANTS_H
22
23#include "llvm/ADT/APFloat.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/ADT/None.h"
27#include "llvm/ADT/Optional.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/IR/Constant.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/OperandTraits.h"
33#include "llvm/IR/User.h"
34#include "llvm/IR/Value.h"
35#include "llvm/Support/Casting.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/ErrorHandling.h"
38#include <cassert>
39#include <cstddef>
40#include <cstdint>
41
42namespace llvm {
43
44template <class ConstantClass> struct ConstantAggrKeyType;
45
46/// Base class for constants with no operands.
47///
48/// These constants have no operands; they represent their data directly.
49/// Since they can be in use by unrelated modules (and are never based on
50/// GlobalValues), it never makes sense to RAUW them.
51class ConstantData : public Constant {
52 friend class Constant;
53
54 Value *handleOperandChangeImpl(Value *From, Value *To) {
55 llvm_unreachable("Constant data does not have operands!")__builtin_unreachable();
56 }
57
58protected:
59 explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {}
60
61 void *operator new(size_t S) { return User::operator new(S, 0); }
62
63public:
64 void operator delete(void *Ptr) { User::operator delete(Ptr); }
65
66 ConstantData(const ConstantData &) = delete;
67
68 /// Methods to support type inquiry through isa, cast, and dyn_cast.
69 static bool classof(const Value *V) {
70 return V->getValueID() >= ConstantDataFirstVal &&
71 V->getValueID() <= ConstantDataLastVal;
72 }
73};
74
75//===----------------------------------------------------------------------===//
76/// This is the shared class of boolean and integer constants. This class
77/// represents both boolean and integral constants.
78/// Class for constant integers.
79class ConstantInt final : public ConstantData {
80 friend class Constant;
81
82 APInt Val;
83
84 ConstantInt(IntegerType *Ty, const APInt &V);
85
86 void destroyConstantImpl();
87
88public:
89 ConstantInt(const ConstantInt &) = delete;
90
91 static ConstantInt *getTrue(LLVMContext &Context);
92 static ConstantInt *getFalse(LLVMContext &Context);
93 static ConstantInt *getBool(LLVMContext &Context, bool V);
94 static Constant *getTrue(Type *Ty);
95 static Constant *getFalse(Type *Ty);
96 static Constant *getBool(Type *Ty, bool V);
97
98 /// If Ty is a vector type, return a Constant with a splat of the given
99 /// value. Otherwise return a ConstantInt for the given value.
100 static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
101
102 /// Return a ConstantInt with the specified integer value for the specified
103 /// type. If the type is wider than 64 bits, the value will be zero-extended
104 /// to fit the type, unless IsSigned is true, in which case the value will
105 /// be interpreted as a 64-bit signed integer and sign-extended to fit
106 /// the type.
107 /// Get a ConstantInt for a specific value.
108 static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
109
110 /// Return a ConstantInt with the specified value for the specified type. The
111 /// value V will be canonicalized to a an unsigned APInt. Accessing it with
112 /// either getSExtValue() or getZExtValue() will yield a correctly sized and
113 /// signed value for the type Ty.
114 /// Get a ConstantInt for a specific signed value.
115 static ConstantInt *getSigned(IntegerType *Ty, int64_t V);
116 static Constant *getSigned(Type *Ty, int64_t V);
117
118 /// Return a ConstantInt with the specified value and an implied Type. The
119 /// type is the integer type that corresponds to the bit width of the value.
120 static ConstantInt *get(LLVMContext &Context, const APInt &V);
121
122 /// Return a ConstantInt constructed from the string strStart with the given
123 /// radix.
124 static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
125
126 /// If Ty is a vector type, return a Constant with a splat of the given
127 /// value. Otherwise return a ConstantInt for the given value.
128 static Constant *get(Type *Ty, const APInt &V);
129
130 /// Return the constant as an APInt value reference. This allows clients to
131 /// obtain a full-precision copy of the value.
132 /// Return the constant's value.
133 inline const APInt &getValue() const { return Val; }
134
135 /// getBitWidth - Return the bitwidth of this constant.
136 unsigned getBitWidth() const { return Val.getBitWidth(); }
137
138 /// Return the constant as a 64-bit unsigned integer value after it
139 /// has been zero extended as appropriate for the type of this constant. Note
140 /// that this method can assert if the value does not fit in 64 bits.
141 /// Return the zero extended value.
142 inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
143
144 /// Return the constant as a 64-bit integer value after it has been sign
145 /// extended as appropriate for the type of this constant. Note that
146 /// this method can assert if the value does not fit in 64 bits.
147 /// Return the sign extended value.
148 inline int64_t getSExtValue() const { return Val.getSExtValue(); }
149
150 /// Return the constant as an llvm::MaybeAlign.
151 /// Note that this method can assert if the value does not fit in 64 bits or
152 /// is not a power of two.
153 inline MaybeAlign getMaybeAlignValue() const {
154 return MaybeAlign(getZExtValue());
155 }
156
157 /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
158 /// Note that this method can assert if the value does not fit in 64 bits or
159 /// is not a power of two.
160 inline Align getAlignValue() const {
161 return getMaybeAlignValue().valueOrOne();
162 }
163
164 /// A helper method that can be used to determine if the constant contained
165 /// within is equal to a constant. This only works for very small values,
166 /// because this is all that can be represented with all types.
167 /// Determine if this constant's value is same as an unsigned char.
168 bool equalsInt(uint64_t V) const { return Val == V; }
169
170 /// getType - Specialize the getType() method to always return an IntegerType,
171 /// which reduces the amount of casting needed in parts of the compiler.
172 ///
173 inline IntegerType *getType() const {
174 return cast<IntegerType>(Value::getType());
175 }
176
177 /// This static method returns true if the type Ty is big enough to
178 /// represent the value V. This can be used to avoid having the get method
179 /// assert when V is larger than Ty can represent. Note that there are two
180 /// versions of this method, one for unsigned and one for signed integers.
181 /// Although ConstantInt canonicalizes everything to an unsigned integer,
182 /// the signed version avoids callers having to convert a signed quantity
183 /// to the appropriate unsigned type before calling the method.
184 /// @returns true if V is a valid value for type Ty
185 /// Determine if the value is in range for the given type.
186 static bool isValueValidForType(Type *Ty, uint64_t V);
187 static bool isValueValidForType(Type *Ty, int64_t V);
188
189 bool isNegative() const { return Val.isNegative(); }
190
191 /// This is just a convenience method to make client code smaller for a
192 /// common code. It also correctly performs the comparison without the
193 /// potential for an assertion from getZExtValue().
194 bool isZero() const { return Val.isNullValue(); }
29
Calling 'APInt::isNullValue'
40
Returning from 'APInt::isNullValue'
41
Returning the value 1, which participates in a condition later
195
196 /// This is just a convenience method to make client code smaller for a
197 /// common case. It also correctly performs the comparison without the
198 /// potential for an assertion from getZExtValue().
199 /// Determine if the value is one.
200 bool isOne() const { return Val.isOneValue(); }
201
202 /// This function will return true iff every bit in this constant is set
203 /// to true.
204 /// @returns true iff this constant's bits are all set to true.
205 /// Determine if the value is all ones.
206 bool isMinusOne() const { return Val.isAllOnesValue(); }
207
208 /// This function will return true iff this constant represents the largest
209 /// value that may be represented by the constant's type.
210 /// @returns true iff this is the largest value that may be represented
211 /// by this type.
212 /// Determine if the value is maximal.
213 bool isMaxValue(bool IsSigned) const {
214 if (IsSigned)
215 return Val.isMaxSignedValue();
216 else
217 return Val.isMaxValue();
218 }
219
220 /// This function will return true iff this constant represents the smallest
221 /// value that may be represented by this constant's type.
222 /// @returns true if this is the smallest value that may be represented by
223 /// this type.
224 /// Determine if the value is minimal.
225 bool isMinValue(bool IsSigned) const {
226 if (IsSigned)
227 return Val.isMinSignedValue();
228 else
229 return Val.isMinValue();
230 }
231
232 /// This function will return true iff this constant represents a value with
233 /// active bits bigger than 64 bits or a value greater than the given uint64_t
234 /// value.
235 /// @returns true iff this constant is greater or equal to the given number.
236 /// Determine if the value is greater or equal to the given number.
237 bool uge(uint64_t Num) const { return Val.uge(Num); }
238
239 /// getLimitedValue - If the value is smaller than the specified limit,
240 /// return it, otherwise return the limit value. This causes the value
241 /// to saturate to the limit.
242 /// @returns the min of the value of the constant and the specified value
243 /// Get the constant's value with a saturation limit
244 uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
245 return Val.getLimitedValue(Limit);
246 }
247
248 /// Methods to support type inquiry through isa, cast, and dyn_cast.
249 static bool classof(const Value *V) {
250 return V->getValueID() == ConstantIntVal;
251 }
252};
253
254//===----------------------------------------------------------------------===//
255/// ConstantFP - Floating Point Values [float, double]
256///
257class ConstantFP final : public ConstantData {
258 friend class Constant;
259
260 APFloat Val;
261
262 ConstantFP(Type *Ty, const APFloat &V);
263
264 void destroyConstantImpl();
265
266public:
267 ConstantFP(const ConstantFP &) = delete;
268
269 /// Floating point negation must be implemented with f(x) = -0.0 - x. This
270 /// method returns the negative zero constant for floating point or vector
271 /// floating point types; for all other types, it returns the null value.
272 static Constant *getZeroValueForNegation(Type *Ty);
273
274 /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
275 /// for the specified value in the specified type. This should only be used
276 /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
277 /// host double and as the target format.
278 static Constant *get(Type *Ty, double V);
279
280 /// If Ty is a vector type, return a Constant with a splat of the given
281 /// value. Otherwise return a ConstantFP for the given value.
282 static Constant *get(Type *Ty, const APFloat &V);
283
284 static Constant *get(Type *Ty, StringRef Str);
285 static ConstantFP *get(LLVMContext &Context, const APFloat &V);
286 static Constant *getNaN(Type *Ty, bool Negative = false,
287 uint64_t Payload = 0);
288 static Constant *getQNaN(Type *Ty, bool Negative = false,
289 APInt *Payload = nullptr);
290 static Constant *getSNaN(Type *Ty, bool Negative = false,
291 APInt *Payload = nullptr);
292 static Constant *getNegativeZero(Type *Ty);
293 static Constant *getInfinity(Type *Ty, bool Negative = false);
294
295 /// Return true if Ty is big enough to represent V.
296 static bool isValueValidForType(Type *Ty, const APFloat &V);
297 inline const APFloat &getValueAPF() const { return Val; }
298 inline const APFloat &getValue() const { return Val; }
299
300 /// Return true if the value is positive or negative zero.
301 bool isZero() const { return Val.isZero(); }
302
303 /// Return true if the sign bit is set.
304 bool isNegative() const { return Val.isNegative(); }
305
306 /// Return true if the value is infinity
307 bool isInfinity() const { return Val.isInfinity(); }
308
309 /// Return true if the value is a NaN.
310 bool isNaN() const { return Val.isNaN(); }
311
312 /// We don't rely on operator== working on double values, as it returns true
313 /// for things that are clearly not equal, like -0.0 and 0.0.
314 /// As such, this method can be used to do an exact bit-for-bit comparison of
315 /// two floating point values. The version with a double operand is retained
316 /// because it's so convenient to write isExactlyValue(2.0), but please use
317 /// it only for simple constants.
318 bool isExactlyValue(const APFloat &V) const;
319
320 bool isExactlyValue(double V) const {
321 bool ignored;
322 APFloat FV(V);
323 FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
324 return isExactlyValue(FV);
325 }
326
327 /// Methods for support type inquiry through isa, cast, and dyn_cast:
328 static bool classof(const Value *V) {
329 return V->getValueID() == ConstantFPVal;
330 }
331};
332
333//===----------------------------------------------------------------------===//
334/// All zero aggregate value
335///
336class ConstantAggregateZero final : public ConstantData {
337 friend class Constant;
338
339 explicit ConstantAggregateZero(Type *Ty)
340 : ConstantData(Ty, ConstantAggregateZeroVal) {}
341
342 void destroyConstantImpl();
343
344public:
345 ConstantAggregateZero(const ConstantAggregateZero &) = delete;
346
347 static ConstantAggregateZero *get(Type *Ty);
348
349 /// If this CAZ has array or vector type, return a zero with the right element
350 /// type.
351 Constant *getSequentialElement() const;
352
353 /// If this CAZ has struct type, return a zero with the right element type for
354 /// the specified element.
355 Constant *getStructElement(unsigned Elt) const;
356
357 /// Return a zero of the right value for the specified GEP index if we can,
358 /// otherwise return null (e.g. if C is a ConstantExpr).
359 Constant *getElementValue(Constant *C) const;
360
361 /// Return a zero of the right value for the specified GEP index.
362 Constant *getElementValue(unsigned Idx) const;
363
364 /// Return the number of elements in the array, vector, or struct.
365 ElementCount getElementCount() const;
366
367 /// Methods for support type inquiry through isa, cast, and dyn_cast:
368 ///
369 static bool classof(const Value *V) {
370 return V->getValueID() == ConstantAggregateZeroVal;
371 }
372};
373
374/// Base class for aggregate constants (with operands).
375///
376/// These constants are aggregates of other constants, which are stored as
377/// operands.
378///
379/// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
380/// ConstantVector.
381///
382/// \note Some subclasses of \a ConstantData are semantically aggregates --
383/// such as \a ConstantDataArray -- but are not subclasses of this because they
384/// use operands.
385class ConstantAggregate : public Constant {
386protected:
387 ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V);
388
389public:
390 /// Transparently provide more efficient getOperand methods.
391 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant)public: inline Constant *getOperand(unsigned) const; inline void
setOperand(unsigned, Constant*); inline op_iterator op_begin
(); inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
392
393 /// Methods for support type inquiry through isa, cast, and dyn_cast:
394 static bool classof(const Value *V) {
395 return V->getValueID() >= ConstantAggregateFirstVal &&
396 V->getValueID() <= ConstantAggregateLastVal;
397 }
398};
399
400template <>
401struct OperandTraits<ConstantAggregate>
402 : public VariadicOperandTraits<ConstantAggregate> {};
403
404DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)ConstantAggregate::op_iterator ConstantAggregate::op_begin() {
return OperandTraits<ConstantAggregate>::op_begin(this
); } ConstantAggregate::const_op_iterator ConstantAggregate::
op_begin() const { return OperandTraits<ConstantAggregate>
::op_begin(const_cast<ConstantAggregate*>(this)); } ConstantAggregate
::op_iterator ConstantAggregate::op_end() { return OperandTraits
<ConstantAggregate>::op_end(this); } ConstantAggregate::
const_op_iterator ConstantAggregate::op_end() const { return OperandTraits
<ConstantAggregate>::op_end(const_cast<ConstantAggregate
*>(this)); } Constant *ConstantAggregate::getOperand(unsigned
i_nocapture) const { ((void)0); return cast_or_null<Constant
>( OperandTraits<ConstantAggregate>::op_begin(const_cast
<ConstantAggregate*>(this))[i_nocapture].get()); } void
ConstantAggregate::setOperand(unsigned i_nocapture, Constant
*Val_nocapture) { ((void)0); OperandTraits<ConstantAggregate
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ConstantAggregate::getNumOperands() const { return OperandTraits
<ConstantAggregate>::operands(this); } template <int
Idx_nocapture> Use &ConstantAggregate::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ConstantAggregate::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
405
406//===----------------------------------------------------------------------===//
407/// ConstantArray - Constant Array Declarations
408///
409class ConstantArray final : public ConstantAggregate {
410 friend struct ConstantAggrKeyType<ConstantArray>;
411 friend class Constant;
412
413 ConstantArray(ArrayType *T, ArrayRef<Constant *> Val);
414
415 void destroyConstantImpl();
416 Value *handleOperandChangeImpl(Value *From, Value *To);
417
418public:
419 // ConstantArray accessors
420 static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
421
422private:
423 static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
424
425public:
426 /// Specialize the getType() method to always return an ArrayType,
427 /// which reduces the amount of casting needed in parts of the compiler.
428 inline ArrayType *getType() const {
429 return cast<ArrayType>(Value::getType());
430 }
431
432 /// Methods for support type inquiry through isa, cast, and dyn_cast:
433 static bool classof(const Value *V) {
434 return V->getValueID() == ConstantArrayVal;
435 }
436};
437
438//===----------------------------------------------------------------------===//
439// Constant Struct Declarations
440//
441class ConstantStruct final : public ConstantAggregate {
442 friend struct ConstantAggrKeyType<ConstantStruct>;
443 friend class Constant;
444
445 ConstantStruct(StructType *T, ArrayRef<Constant *> Val);
446
447 void destroyConstantImpl();
448 Value *handleOperandChangeImpl(Value *From, Value *To);
449
450public:
451 // ConstantStruct accessors
452 static Constant *get(StructType *T, ArrayRef<Constant *> V);
453
454 template <typename... Csts>
455 static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
456 get(StructType *T, Csts *...Vs) {
457 return get(T, ArrayRef<Constant *>({Vs...}));
458 }
459
460 /// Return an anonymous struct that has the specified elements.
461 /// If the struct is possibly empty, then you must specify a context.
462 static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
463 return get(getTypeForElements(V, Packed), V);
464 }
465 static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
466 bool Packed = false) {
467 return get(getTypeForElements(Ctx, V, Packed), V);
468 }
469
470 /// Return an anonymous struct type to use for a constant with the specified
471 /// set of elements. The list must not be empty.
472 static StructType *getTypeForElements(ArrayRef<Constant *> V,
473 bool Packed = false);
474 /// This version of the method allows an empty list.
475 static StructType *getTypeForElements(LLVMContext &Ctx,
476 ArrayRef<Constant *> V,
477 bool Packed = false);
478
479 /// Specialization - reduce amount of casting.
480 inline StructType *getType() const {
481 return cast<StructType>(Value::getType());
482 }
483
484 /// Methods for support type inquiry through isa, cast, and dyn_cast:
485 static bool classof(const Value *V) {
486 return V->getValueID() == ConstantStructVal;
487 }
488};
489
490//===----------------------------------------------------------------------===//
491/// Constant Vector Declarations
492///
493class ConstantVector final : public ConstantAggregate {
494 friend struct ConstantAggrKeyType<ConstantVector>;
495 friend class Constant;
496
497 ConstantVector(VectorType *T, ArrayRef<Constant *> Val);
498
499 void destroyConstantImpl();
500 Value *handleOperandChangeImpl(Value *From, Value *To);
501
502public:
503 // ConstantVector accessors
504 static Constant *get(ArrayRef<Constant *> V);
505
506private:
507 static Constant *getImpl(ArrayRef<Constant *> V);
508
509public:
510 /// Return a ConstantVector with the specified constant in each element.
511 /// Note that this might not return an instance of ConstantVector
512 static Constant *getSplat(ElementCount EC, Constant *Elt);
513
514 /// Specialize the getType() method to always return a FixedVectorType,
515 /// which reduces the amount of casting needed in parts of the compiler.
516 inline FixedVectorType *getType() const {
517 return cast<FixedVectorType>(Value::getType());
518 }
519
520 /// If all elements of the vector constant have the same value, return that
521 /// value. Otherwise, return nullptr. Ignore undefined elements by setting
522 /// AllowUndefs to true.
523 Constant *getSplatValue(bool AllowUndefs = false) const;
524
525 /// Methods for support type inquiry through isa, cast, and dyn_cast:
526 static bool classof(const Value *V) {
527 return V->getValueID() == ConstantVectorVal;
528 }
529};
530
531//===----------------------------------------------------------------------===//
532/// A constant pointer value that points to null
533///
534class ConstantPointerNull final : public ConstantData {
535 friend class Constant;
536
537 explicit ConstantPointerNull(PointerType *T)
538 : ConstantData(T, Value::ConstantPointerNullVal) {}
539
540 void destroyConstantImpl();
541
542public:
543 ConstantPointerNull(const ConstantPointerNull &) = delete;
544
545 /// Static factory methods - Return objects of the specified value
546 static ConstantPointerNull *get(PointerType *T);
547
548 /// Specialize the getType() method to always return an PointerType,
549 /// which reduces the amount of casting needed in parts of the compiler.
550 inline PointerType *getType() const {
551 return cast<PointerType>(Value::getType());
552 }
553
554 /// Methods for support type inquiry through isa, cast, and dyn_cast:
555 static bool classof(const Value *V) {
556 return V->getValueID() == ConstantPointerNullVal;
557 }
558};
559
560//===----------------------------------------------------------------------===//
561/// ConstantDataSequential - A vector or array constant whose element type is a
562/// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
563/// are just simple data values (i.e. ConstantInt/ConstantFP). This Constant
564/// node has no operands because it stores all of the elements of the constant
565/// as densely packed data, instead of as Value*'s.
566///
567/// This is the common base class of ConstantDataArray and ConstantDataVector.
568///
569class ConstantDataSequential : public ConstantData {
570 friend class LLVMContextImpl;
571 friend class Constant;
572
573 /// A pointer to the bytes underlying this constant (which is owned by the
574 /// uniquing StringMap).
575 const char *DataElements;
576
577 /// This forms a link list of ConstantDataSequential nodes that have
578 /// the same value but different type. For example, 0,0,0,1 could be a 4
579 /// element array of i8, or a 1-element array of i32. They'll both end up in
580 /// the same StringMap bucket, linked up.
581 std::unique_ptr<ConstantDataSequential> Next;
582
583 void destroyConstantImpl();
584
585protected:
586 explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
587 : ConstantData(ty, VT), DataElements(Data) {}
588
589 static Constant *getImpl(StringRef Bytes, Type *Ty);
590
591public:
592 ConstantDataSequential(const ConstantDataSequential &) = delete;
593
594 /// Return true if a ConstantDataSequential can be formed with a vector or
595 /// array of the specified element type.
596 /// ConstantDataArray only works with normal float and int types that are
597 /// stored densely in memory, not with things like i42 or x86_f80.
598 static bool isElementTypeCompatible(Type *Ty);
599
600 /// If this is a sequential container of integers (of any size), return the
601 /// specified element in the low bits of a uint64_t.
602 uint64_t getElementAsInteger(unsigned i) const;
603
604 /// If this is a sequential container of integers (of any size), return the
605 /// specified element as an APInt.
606 APInt getElementAsAPInt(unsigned i) const;
607
608 /// If this is a sequential container of floating point type, return the
609 /// specified element as an APFloat.
610 APFloat getElementAsAPFloat(unsigned i) const;
611
612 /// If this is an sequential container of floats, return the specified element
613 /// as a float.
614 float getElementAsFloat(unsigned i) const;
615
616 /// If this is an sequential container of doubles, return the specified
617 /// element as a double.
618 double getElementAsDouble(unsigned i) const;
619
620 /// Return a Constant for a specified index's element.
621 /// Note that this has to compute a new constant to return, so it isn't as
622 /// efficient as getElementAsInteger/Float/Double.
623 Constant *getElementAsConstant(unsigned i) const;
624
625 /// Return the element type of the array/vector.
626 Type *getElementType() const;
627
628 /// Return the number of elements in the array or vector.
629 unsigned getNumElements() const;
630
631 /// Return the size (in bytes) of each element in the array/vector.
632 /// The size of the elements is known to be a multiple of one byte.
633 uint64_t getElementByteSize() const;
634
635 /// This method returns true if this is an array of \p CharSize integers.
636 bool isString(unsigned CharSize = 8) const;
637
638 /// This method returns true if the array "isString", ends with a null byte,
639 /// and does not contains any other null bytes.
640 bool isCString() const;
641
642 /// If this array is isString(), then this method returns the array as a
643 /// StringRef. Otherwise, it asserts out.
644 StringRef getAsString() const {
645 assert(isString() && "Not a string")((void)0);
646 return getRawDataValues();
647 }
648
649 /// If this array is isCString(), then this method returns the array (without
650 /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
651 StringRef getAsCString() const {
652 assert(isCString() && "Isn't a C string")((void)0);
653 StringRef Str = getAsString();
654 return Str.substr(0, Str.size() - 1);
655 }
656
657 /// Return the raw, underlying, bytes of this data. Note that this is an
658 /// extremely tricky thing to work with, as it exposes the host endianness of
659 /// the data elements.
660 StringRef getRawDataValues() const;
661
662 /// Methods for support type inquiry through isa, cast, and dyn_cast:
663 static bool classof(const Value *V) {
664 return V->getValueID() == ConstantDataArrayVal ||
665 V->getValueID() == ConstantDataVectorVal;
666 }
667
668private:
669 const char *getElementPointer(unsigned Elt) const;
670};
671
672//===----------------------------------------------------------------------===//
673/// An array constant whose element type is a simple 1/2/4/8-byte integer or
674/// float/double, and whose elements are just simple data values
675/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
676/// stores all of the elements of the constant as densely packed data, instead
677/// of as Value*'s.
678class ConstantDataArray final : public ConstantDataSequential {
679 friend class ConstantDataSequential;
680
681 explicit ConstantDataArray(Type *ty, const char *Data)
682 : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
683
684public:
685 ConstantDataArray(const ConstantDataArray &) = delete;
686
687 /// get() constructor - Return a constant with array type with an element
688 /// count and element type matching the ArrayRef passed in. Note that this
689 /// can return a ConstantAggregateZero object.
690 template <typename ElementTy>
691 static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
692 const char *Data = reinterpret_cast<const char *>(Elts.data());
693 return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
694 Type::getScalarTy<ElementTy>(Context));
695 }
696
697 /// get() constructor - ArrayTy needs to be compatible with
698 /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
699 template <typename ArrayTy>
700 static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
701 return ConstantDataArray::get(Context, makeArrayRef(Elts));
702 }
703
704 /// getRaw() constructor - Return a constant with array type with an element
705 /// count and element type matching the NumElements and ElementTy parameters
706 /// passed in. Note that this can return a ConstantAggregateZero object.
707 /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
708 /// the buffer containing the elements. Be careful to make sure Data uses the
709 /// right endianness, the buffer will be used as-is.
710 static Constant *getRaw(StringRef Data, uint64_t NumElements,
711 Type *ElementTy) {
712 Type *Ty = ArrayType::get(ElementTy, NumElements);
713 return getImpl(Data, Ty);
714 }
715
716 /// getFP() constructors - Return a constant of array type with a float
717 /// element type taken from argument `ElementType', and count taken from
718 /// argument `Elts'. The amount of bits of the contained type must match the
719 /// number of bits of the type contained in the passed in ArrayRef.
720 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
721 /// that this can return a ConstantAggregateZero object.
722 static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
723 static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
724 static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
725
726 /// This method constructs a CDS and initializes it with a text string.
727 /// The default behavior (AddNull==true) causes a null terminator to
728 /// be placed at the end of the array (increasing the length of the string by
729 /// one more than the StringRef would normally indicate. Pass AddNull=false
730 /// to disable this behavior.
731 static Constant *getString(LLVMContext &Context, StringRef Initializer,
732 bool AddNull = true);
733
734 /// Specialize the getType() method to always return an ArrayType,
735 /// which reduces the amount of casting needed in parts of the compiler.
736 inline ArrayType *getType() const {
737 return cast<ArrayType>(Value::getType());
738 }
739
740 /// Methods for support type inquiry through isa, cast, and dyn_cast:
741 static bool classof(const Value *V) {
742 return V->getValueID() == ConstantDataArrayVal;
743 }
744};
745
746//===----------------------------------------------------------------------===//
747/// A vector constant whose element type is a simple 1/2/4/8-byte integer or
748/// float/double, and whose elements are just simple data values
749/// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
750/// stores all of the elements of the constant as densely packed data, instead
751/// of as Value*'s.
752class ConstantDataVector final : public ConstantDataSequential {
753 friend class ConstantDataSequential;
754
755 explicit ConstantDataVector(Type *ty, const char *Data)
756 : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
757 IsSplatSet(false) {}
758 // Cache whether or not the constant is a splat.
759 mutable bool IsSplatSet : 1;
760 mutable bool IsSplat : 1;
761 bool isSplatData() const;
762
763public:
764 ConstantDataVector(const ConstantDataVector &) = delete;
765
766 /// get() constructors - Return a constant with vector type with an element
767 /// count and element type matching the ArrayRef passed in. Note that this
768 /// can return a ConstantAggregateZero object.
769 static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
770 static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
771 static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
772 static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
773 static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
774 static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
775
776 /// getRaw() constructor - Return a constant with vector type with an element
777 /// count and element type matching the NumElements and ElementTy parameters
778 /// passed in. Note that this can return a ConstantAggregateZero object.
779 /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
780 /// the buffer containing the elements. Be careful to make sure Data uses the
781 /// right endianness, the buffer will be used as-is.
782 static Constant *getRaw(StringRef Data, uint64_t NumElements,
783 Type *ElementTy) {
784 Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
785 return getImpl(Data, Ty);
786 }
787
788 /// getFP() constructors - Return a constant of vector type with a float
789 /// element type taken from argument `ElementType', and count taken from
790 /// argument `Elts'. The amount of bits of the contained type must match the
791 /// number of bits of the type contained in the passed in ArrayRef.
792 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
793 /// that this can return a ConstantAggregateZero object.
794 static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
795 static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
796 static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
797
798 /// Return a ConstantVector with the specified constant in each element.
799 /// The specified constant has to be a of a compatible type (i8/i16/
800 /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
801 static Constant *getSplat(unsigned NumElts, Constant *Elt);
802
803 /// Returns true if this is a splat constant, meaning that all elements have
804 /// the same value.
805 bool isSplat() const;
806
807 /// If this is a splat constant, meaning that all of the elements have the
808 /// same value, return that value. Otherwise return NULL.
809 Constant *getSplatValue() const;
810
811 /// Specialize the getType() method to always return a FixedVectorType,
812 /// which reduces the amount of casting needed in parts of the compiler.
813 inline FixedVectorType *getType() const {
814 return cast<FixedVectorType>(Value::getType());
815 }
816
817 /// Methods for support type inquiry through isa, cast, and dyn_cast:
818 static bool classof(const Value *V) {
819 return V->getValueID() == ConstantDataVectorVal;
820 }
821};
822
823//===----------------------------------------------------------------------===//
824/// A constant token which is empty
825///
826class ConstantTokenNone final : public ConstantData {
827 friend class Constant;
828
829 explicit ConstantTokenNone(LLVMContext &Context)
830 : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
831
832 void destroyConstantImpl();
833
834public:
835 ConstantTokenNone(const ConstantTokenNone &) = delete;
836
837 /// Return the ConstantTokenNone.
838 static ConstantTokenNone *get(LLVMContext &Context);
839
840 /// Methods to support type inquiry through isa, cast, and dyn_cast.
841 static bool classof(const Value *V) {
842 return V->getValueID() == ConstantTokenNoneVal;
843 }
844};
845
846/// The address of a basic block.
847///
848class BlockAddress final : public Constant {
849 friend class Constant;
850
851 BlockAddress(Function *F, BasicBlock *BB);
852
853 void *operator new(size_t S) { return User::operator new(S, 2); }
854
855 void destroyConstantImpl();
856 Value *handleOperandChangeImpl(Value *From, Value *To);
857
858public:
859 void operator delete(void *Ptr) { User::operator delete(Ptr); }
860
861 /// Return a BlockAddress for the specified function and basic block.
862 static BlockAddress *get(Function *F, BasicBlock *BB);
863
864 /// Return a BlockAddress for the specified basic block. The basic
865 /// block must be embedded into a function.
866 static BlockAddress *get(BasicBlock *BB);
867
868 /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
869 ///
870 /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
871 static BlockAddress *lookup(const BasicBlock *BB);
872
873 /// Transparently provide more efficient getOperand methods.
874 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
875
876 Function *getFunction() const { return (Function *)Op<0>().get(); }
877 BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
878
879 /// Methods for support type inquiry through isa, cast, and dyn_cast:
880 static bool classof(const Value *V) {
881 return V->getValueID() == BlockAddressVal;
882 }
883};
884
885template <>
886struct OperandTraits<BlockAddress>
887 : public FixedNumOperandTraits<BlockAddress, 2> {};
888
889DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)BlockAddress::op_iterator BlockAddress::op_begin() { return OperandTraits
<BlockAddress>::op_begin(this); } BlockAddress::const_op_iterator
BlockAddress::op_begin() const { return OperandTraits<BlockAddress
>::op_begin(const_cast<BlockAddress*>(this)); } BlockAddress
::op_iterator BlockAddress::op_end() { return OperandTraits<
BlockAddress>::op_end(this); } BlockAddress::const_op_iterator
BlockAddress::op_end() const { return OperandTraits<BlockAddress
>::op_end(const_cast<BlockAddress*>(this)); } Value *
BlockAddress::getOperand(unsigned i_nocapture) const { ((void
)0); return cast_or_null<Value>( OperandTraits<BlockAddress
>::op_begin(const_cast<BlockAddress*>(this))[i_nocapture
].get()); } void BlockAddress::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { ((void)0); OperandTraits<BlockAddress
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
BlockAddress::getNumOperands() const { return OperandTraits<
BlockAddress>::operands(this); } template <int Idx_nocapture
> Use &BlockAddress::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &BlockAddress::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
890
891/// Wrapper for a function that represents a value that
892/// functionally represents the original function. This can be a function,
893/// global alias to a function, or an ifunc.
894class DSOLocalEquivalent final : public Constant {
895 friend class Constant;
896
897 DSOLocalEquivalent(GlobalValue *GV);
898
899 void *operator new(size_t S) { return User::operator new(S, 1); }
900
901 void destroyConstantImpl();
902 Value *handleOperandChangeImpl(Value *From, Value *To);
903
904public:
905 void operator delete(void *Ptr) { User::operator delete(Ptr); }
906
907 /// Return a DSOLocalEquivalent for the specified global value.
908 static DSOLocalEquivalent *get(GlobalValue *GV);
909
910 /// Transparently provide more efficient getOperand methods.
911 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
912
913 GlobalValue *getGlobalValue() const {
914 return cast<GlobalValue>(Op<0>().get());
915 }
916
917 /// Methods for support type inquiry through isa, cast, and dyn_cast:
918 static bool classof(const Value *V) {
919 return V->getValueID() == DSOLocalEquivalentVal;
920 }
921};
922
923template <>
924struct OperandTraits<DSOLocalEquivalent>
925 : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
926
927DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)DSOLocalEquivalent::op_iterator DSOLocalEquivalent::op_begin(
) { return OperandTraits<DSOLocalEquivalent>::op_begin(
this); } DSOLocalEquivalent::const_op_iterator DSOLocalEquivalent
::op_begin() const { return OperandTraits<DSOLocalEquivalent
>::op_begin(const_cast<DSOLocalEquivalent*>(this)); }
DSOLocalEquivalent::op_iterator DSOLocalEquivalent::op_end()
{ return OperandTraits<DSOLocalEquivalent>::op_end(this
); } DSOLocalEquivalent::const_op_iterator DSOLocalEquivalent
::op_end() const { return OperandTraits<DSOLocalEquivalent
>::op_end(const_cast<DSOLocalEquivalent*>(this)); } Value
*DSOLocalEquivalent::getOperand(unsigned i_nocapture) const {
((void)0); return cast_or_null<Value>( OperandTraits<
DSOLocalEquivalent>::op_begin(const_cast<DSOLocalEquivalent
*>(this))[i_nocapture].get()); } void DSOLocalEquivalent::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((void
)0); OperandTraits<DSOLocalEquivalent>::op_begin(this)[
i_nocapture] = Val_nocapture; } unsigned DSOLocalEquivalent::
getNumOperands() const { return OperandTraits<DSOLocalEquivalent
>::operands(this); } template <int Idx_nocapture> Use
&DSOLocalEquivalent::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
DSOLocalEquivalent::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
928
929//===----------------------------------------------------------------------===//
930/// A constant value that is initialized with an expression using
931/// other constant values.
932///
933/// This class uses the standard Instruction opcodes to define the various
934/// constant expressions. The Opcode field for the ConstantExpr class is
935/// maintained in the Value::SubclassData field.
936class ConstantExpr : public Constant {
937 friend struct ConstantExprKeyType;
938 friend class Constant;
939
940 void destroyConstantImpl();
941 Value *handleOperandChangeImpl(Value *From, Value *To);
942
943protected:
944 ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps)
945 : Constant(ty, ConstantExprVal, Ops, NumOps) {
946 // Operation type (an Instruction opcode) is stored as the SubclassData.
947 setValueSubclassData(Opcode);
948 }
949
950 ~ConstantExpr() = default;
951
952public:
953 // Static methods to construct a ConstantExpr of different kinds. Note that
954 // these methods may return a object that is not an instance of the
955 // ConstantExpr class, because they will attempt to fold the constant
956 // expression into something simpler if possible.
957
958 /// getAlignOf constant expr - computes the alignment of a type in a target
959 /// independent way (Note: the return type is an i64).
960 static Constant *getAlignOf(Type *Ty);
961
962 /// getSizeOf constant expr - computes the (alloc) size of a type (in
963 /// address-units, not bits) in a target independent way (Note: the return
964 /// type is an i64).
965 ///
966 static Constant *getSizeOf(Type *Ty);
967
968 /// getOffsetOf constant expr - computes the offset of a struct field in a
969 /// target independent way (Note: the return type is an i64).
970 ///
971 static Constant *getOffsetOf(StructType *STy, unsigned FieldNo);
972
973 /// getOffsetOf constant expr - This is a generalized form of getOffsetOf,
974 /// which supports any aggregate type, and any Constant index.
975 ///
976 static Constant *getOffsetOf(Type *Ty, Constant *FieldNo);
977
978 static Constant *getNeg(Constant *C, bool HasNUW = false,
979 bool HasNSW = false);
980 static Constant *getFNeg(Constant *C);
981 static Constant *getNot(Constant *C);
982 static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
983 bool HasNSW = false);
984 static Constant *getFAdd(Constant *C1, Constant *C2);
985 static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
986 bool HasNSW = false);
987 static Constant *getFSub(Constant *C1, Constant *C2);
988 static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
989 bool HasNSW = false);
990 static Constant *getFMul(Constant *C1, Constant *C2);
991 static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false);
992 static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false);
993 static Constant *getFDiv(Constant *C1, Constant *C2);
994 static Constant *getURem(Constant *C1, Constant *C2);
995 static Constant *getSRem(Constant *C1, Constant *C2);
996 static Constant *getFRem(Constant *C1, Constant *C2);
997 static Constant *getAnd(Constant *C1, Constant *C2);
998 static Constant *getOr(Constant *C1, Constant *C2);
999 static Constant *getXor(Constant *C1, Constant *C2);
1000 static Constant *getUMin(Constant *C1, Constant *C2);
1001 static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false,
1002 bool HasNSW = false);
1003 static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false);
1004 static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false);
1005 static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1006 static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1007 static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1008 static Constant *getFPTrunc(Constant *C, Type *Ty,
1009 bool OnlyIfReduced = false);
1010 static Constant *getFPExtend(Constant *C, Type *Ty,
1011 bool OnlyIfReduced = false);
1012 static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1013 static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1014 static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1015 static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1016 static Constant *getPtrToInt(Constant *C, Type *Ty,
1017 bool OnlyIfReduced = false);
1018 static Constant *getIntToPtr(Constant *C, Type *Ty,
1019 bool OnlyIfReduced = false);
1020 static Constant *getBitCast(Constant *C, Type *Ty,
1021 bool OnlyIfReduced = false);
1022 static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1023 bool OnlyIfReduced = false);
1024
1025 static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); }
1026 static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); }
1027
1028 static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1029 return getAdd(C1, C2, false, true);
1030 }
1031
1032 static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1033 return getAdd(C1, C2, true, false);
1034 }
1035
1036 static Constant *getNSWSub(Constant *C1, Constant *C2) {
1037 return getSub(C1, C2, false, true);
1038 }
1039
1040 static Constant *getNUWSub(Constant *C1, Constant *C2) {
1041 return getSub(C1, C2, true, false);
1042 }
1043
1044 static Constant *getNSWMul(Constant *C1, Constant *C2) {
1045 return getMul(C1, C2, false, true);
1046 }
1047
1048 static Constant *getNUWMul(Constant *C1, Constant *C2) {
1049 return getMul(C1, C2, true, false);
1050 }
1051
1052 static Constant *getNSWShl(Constant *C1, Constant *C2) {
1053 return getShl(C1, C2, false, true);
1054 }
1055
1056 static Constant *getNUWShl(Constant *C1, Constant *C2) {
1057 return getShl(C1, C2, true, false);
1058 }
1059
1060 static Constant *getExactSDiv(Constant *C1, Constant *C2) {
1061 return getSDiv(C1, C2, true);
1062 }
1063
1064 static Constant *getExactUDiv(Constant *C1, Constant *C2) {
1065 return getUDiv(C1, C2, true);
1066 }
1067
1068 static Constant *getExactAShr(Constant *C1, Constant *C2) {
1069 return getAShr(C1, C2, true);
1070 }
1071
1072 static Constant *getExactLShr(Constant *C1, Constant *C2) {
1073 return getLShr(C1, C2, true);
1074 }
1075
1076 /// If C is a scalar/fixed width vector of known powers of 2, then this
1077 /// function returns a new scalar/fixed width vector obtained from logBase2
1078 /// of C. Undef vector elements are set to zero.
1079 /// Return a null pointer otherwise.
1080 static Constant *getExactLogBase2(Constant *C);
1081
1082 /// Return the identity constant for a binary opcode.
1083 /// The identity constant C is defined as X op C = X and C op X = X for every
1084 /// X when the binary operation is commutative. If the binop is not
1085 /// commutative, callers can acquire the operand 1 identity constant by
1086 /// setting AllowRHSConstant to true. For example, any shift has a zero
1087 /// identity constant for operand 1: X shift 0 = X.
1088 /// Return nullptr if the operator does not have an identity constant.
1089 static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1090 bool AllowRHSConstant = false);
1091
1092 /// Return the absorbing element for the given binary
1093 /// operation, i.e. a constant C such that X op C = C and C op X = C for
1094 /// every X. For example, this returns zero for integer multiplication.
1095 /// It returns null if the operator doesn't have an absorbing element.
1096 static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty);
1097
1098 /// Transparently provide more efficient getOperand methods.
1099 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant)public: inline Constant *getOperand(unsigned) const; inline void
setOperand(unsigned, Constant*); inline op_iterator op_begin
(); inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1100
1101 /// Convenience function for getting a Cast operation.
1102 ///
1103 /// \param ops The opcode for the conversion
1104 /// \param C The constant to be converted
1105 /// \param Ty The type to which the constant is converted
1106 /// \param OnlyIfReduced see \a getWithOperands() docs.
1107 static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1108 bool OnlyIfReduced = false);
1109
1110 // Create a ZExt or BitCast cast constant expression
1111 static Constant *
1112 getZExtOrBitCast(Constant *C, ///< The constant to zext or bitcast
1113 Type *Ty ///< The type to zext or bitcast C to
1114 );
1115
1116 // Create a SExt or BitCast cast constant expression
1117 static Constant *
1118 getSExtOrBitCast(Constant *C, ///< The constant to sext or bitcast
1119 Type *Ty ///< The type to sext or bitcast C to
1120 );
1121
1122 // Create a Trunc or BitCast cast constant expression
1123 static Constant *
1124 getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1125 Type *Ty ///< The type to trunc or bitcast C to
1126 );
1127
1128 /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1129 /// expression.
1130 static Constant *
1131 getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1132 Type *Ty ///< The type to which cast should be made
1133 );
1134
1135 /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1136 /// the address space.
1137 static Constant *getPointerBitCastOrAddrSpaceCast(
1138 Constant *C, ///< The constant to addrspacecast or bitcast
1139 Type *Ty ///< The type to bitcast or addrspacecast C to
1140 );
1141
1142 /// Create a ZExt, Bitcast or Trunc for integer -> integer casts
1143 static Constant *
1144 getIntegerCast(Constant *C, ///< The integer constant to be casted
1145 Type *Ty, ///< The integer type to cast to
1146 bool IsSigned ///< Whether C should be treated as signed or not
1147 );
1148
1149 /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts
1150 static Constant *getFPCast(Constant *C, ///< The integer constant to be casted
1151 Type *Ty ///< The integer type to cast to
1152 );
1153
1154 /// Return true if this is a convert constant expression
1155 bool isCast() const;
1156
1157 /// Return true if this is a compare constant expression
1158 bool isCompare() const;
1159
1160 /// Return true if this is an insertvalue or extractvalue expression,
1161 /// and the getIndices() method may be used.
1162 bool hasIndices() const;
1163
1164 /// Return true if this is a getelementptr expression and all
1165 /// the index operands are compile-time known integers within the
1166 /// corresponding notional static array extents. Note that this is
1167 /// not equivalant to, a subset of, or a superset of the "inbounds"
1168 /// property.
1169 bool isGEPWithNoNotionalOverIndexing() const;
1170
1171 /// Select constant expr
1172 ///
1173 /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1174 static Constant *getSelect(Constant *C, Constant *V1, Constant *V2,
1175 Type *OnlyIfReducedTy = nullptr);
1176
1177 /// get - Return a unary operator constant expression,
1178 /// folding if possible.
1179 ///
1180 /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1181 static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0,
1182 Type *OnlyIfReducedTy = nullptr);
1183
1184 /// get - Return a binary or shift operator constant expression,
1185 /// folding if possible.
1186 ///
1187 /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1188 static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1189 unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1190
1191 /// Return an ICmp or FCmp comparison operator constant expression.
1192 ///
1193 /// \param OnlyIfReduced see \a getWithOperands() docs.
1194 static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2,
1195 bool OnlyIfReduced = false);
1196
1197 /// get* - Return some common constants without having to
1198 /// specify the full Instruction::OPCODE identifier.
1199 ///
1200 static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS,
1201 bool OnlyIfReduced = false);
1202 static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS,
1203 bool OnlyIfReduced = false);
1204
1205 /// Getelementptr form. Value* is only accepted for convenience;
1206 /// all elements must be Constants.
1207 ///
1208 /// \param InRangeIndex the inrange index if present or None.
1209 /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1210 static Constant *getGetElementPtr(Type *Ty, Constant *C,
1211 ArrayRef<Constant *> IdxList,
1212 bool InBounds = false,
1213 Optional<unsigned> InRangeIndex = None,
1214 Type *OnlyIfReducedTy = nullptr) {
1215 return getGetElementPtr(
1216 Ty, C, makeArrayRef((Value *const *)IdxList.data(), IdxList.size()),
1217 InBounds, InRangeIndex, OnlyIfReducedTy);
1218 }
1219 static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1220 bool InBounds = false,
1221 Optional<unsigned> InRangeIndex = None,
1222 Type *OnlyIfReducedTy = nullptr) {
1223 // This form of the function only exists to avoid ambiguous overload
1224 // warnings about whether to convert Idx to ArrayRef<Constant *> or
1225 // ArrayRef<Value *>.
1226 return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex,
1227 OnlyIfReducedTy);
1228 }
1229 static Constant *getGetElementPtr(Type *Ty, Constant *C,
1230 ArrayRef<Value *> IdxList,
1231 bool InBounds = false,
1232 Optional<unsigned> InRangeIndex = None,
1233 Type *OnlyIfReducedTy = nullptr);
1234
1235 /// Create an "inbounds" getelementptr. See the documentation for the
1236 /// "inbounds" flag in LangRef.html for details.
1237 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1238 ArrayRef<Constant *> IdxList) {
1239 return getGetElementPtr(Ty, C, IdxList, true);
1240 }
1241 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1242 Constant *Idx) {
1243 // This form of the function only exists to avoid ambiguous overload
1244 // warnings about whether to convert Idx to ArrayRef<Constant *> or
1245 // ArrayRef<Value *>.
1246 return getGetElementPtr(Ty, C, Idx, true);
1247 }
1248 static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1249 ArrayRef<Value *> IdxList) {
1250 return getGetElementPtr(Ty, C, IdxList, true);
1251 }
1252
1253 static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1254 Type *OnlyIfReducedTy = nullptr);
1255 static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1256 Type *OnlyIfReducedTy = nullptr);
1257 static Constant *getShuffleVector(Constant *V1, Constant *V2,
1258 ArrayRef<int> Mask,
1259 Type *OnlyIfReducedTy = nullptr);
1260 static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
1261 Type *OnlyIfReducedTy = nullptr);
1262 static Constant *getInsertValue(Constant *Agg, Constant *Val,
1263 ArrayRef<unsigned> Idxs,
1264 Type *OnlyIfReducedTy = nullptr);
1265
1266 /// Return the opcode at the root of this constant expression
1267 unsigned getOpcode() const { return getSubclassDataFromValue(); }
1268
1269 /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or
1270 /// FCMP constant expression.
1271 unsigned getPredicate() const;
1272
1273 /// Assert that this is an insertvalue or exactvalue
1274 /// expression and return the list of indices.
1275 ArrayRef<unsigned> getIndices() const;
1276
1277 /// Assert that this is a shufflevector and return the mask. See class
1278 /// ShuffleVectorInst for a description of the mask representation.
1279 ArrayRef<int> getShuffleMask() const;
1280
1281 /// Assert that this is a shufflevector and return the mask.
1282 ///
1283 /// TODO: This is a temporary hack until we update the bitcode format for
1284 /// shufflevector.
1285 Constant *getShuffleMaskForBitcode() const;
1286
1287 /// Return a string representation for an opcode.
1288 const char *getOpcodeName() const;
1289
1290 /// Return a constant expression identical to this one, but with the specified
1291 /// operand set to the specified value.
1292 Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const;
1293
1294 /// This returns the current constant expression with the operands replaced
1295 /// with the specified values. The specified array must have the same number
1296 /// of operands as our current one.
1297 Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1298 return getWithOperands(Ops, getType());
1299 }
1300
1301 /// Get the current expression with the operands replaced.
1302 ///
1303 /// Return the current constant expression with the operands replaced with \c
1304 /// Ops and the type with \c Ty. The new operands must have the same number
1305 /// as the current ones.
1306 ///
1307 /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1308 /// gets constant-folded, the type changes, or the expression is otherwise
1309 /// canonicalized. This parameter should almost always be \c false.
1310 Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1311 bool OnlyIfReduced = false,
1312 Type *SrcTy = nullptr) const;
1313
1314 /// Returns an Instruction which implements the same operation as this
1315 /// ConstantExpr. The instruction is not linked to any basic block.
1316 ///
1317 /// A better approach to this could be to have a constructor for Instruction
1318 /// which would take a ConstantExpr parameter, but that would have spread
1319 /// implementation details of ConstantExpr outside of Constants.cpp, which
1320 /// would make it harder to remove ConstantExprs altogether.
1321 Instruction *getAsInstruction() const;
1322
1323 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1324 static bool classof(const Value *V) {
1325 return V->getValueID() == ConstantExprVal;
1326 }
1327
1328private:
1329 // Shadow Value::setValueSubclassData with a private forwarding method so that
1330 // subclasses cannot accidentally use it.
1331 void setValueSubclassData(unsigned short D) {
1332 Value::setValueSubclassData(D);
1333 }
1334};
1335
1336template <>
1337struct OperandTraits<ConstantExpr>
1338 : public VariadicOperandTraits<ConstantExpr, 1> {};
1339
1340DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)ConstantExpr::op_iterator ConstantExpr::op_begin() { return OperandTraits
<ConstantExpr>::op_begin(this); } ConstantExpr::const_op_iterator
ConstantExpr::op_begin() const { return OperandTraits<ConstantExpr
>::op_begin(const_cast<ConstantExpr*>(this)); } ConstantExpr
::op_iterator ConstantExpr::op_end() { return OperandTraits<
ConstantExpr>::op_end(this); } ConstantExpr::const_op_iterator
ConstantExpr::op_end() const { return OperandTraits<ConstantExpr
>::op_end(const_cast<ConstantExpr*>(this)); } Constant
*ConstantExpr::getOperand(unsigned i_nocapture) const { ((void
)0); return cast_or_null<Constant>( OperandTraits<ConstantExpr
>::op_begin(const_cast<ConstantExpr*>(this))[i_nocapture
].get()); } void ConstantExpr::setOperand(unsigned i_nocapture
, Constant *Val_nocapture) { ((void)0); OperandTraits<ConstantExpr
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ConstantExpr::getNumOperands() const { return OperandTraits<
ConstantExpr>::operands(this); } template <int Idx_nocapture
> Use &ConstantExpr::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &ConstantExpr::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
1341
1342//===----------------------------------------------------------------------===//
1343/// 'undef' values are things that do not have specified contents.
1344/// These are used for a variety of purposes, including global variable
1345/// initializers and operands to instructions. 'undef' values can occur with
1346/// any first-class type.
1347///
1348/// Undef values aren't exactly constants; if they have multiple uses, they
1349/// can appear to have different bit patterns at each use. See
1350/// LangRef.html#undefvalues for details.
1351///
1352class UndefValue : public ConstantData {
1353 friend class Constant;
1354
1355 explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1356
1357 void destroyConstantImpl();
1358
1359protected:
1360 explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1361
1362public:
1363 UndefValue(const UndefValue &) = delete;
1364
1365 /// Static factory methods - Return an 'undef' object of the specified type.
1366 static UndefValue *get(Type *T);
1367
1368 /// If this Undef has array or vector type, return a undef with the right
1369 /// element type.
1370 UndefValue *getSequentialElement() const;
1371
1372 /// If this undef has struct type, return a undef with the right element type
1373 /// for the specified element.
1374 UndefValue *getStructElement(unsigned Elt) const;
1375
1376 /// Return an undef of the right value for the specified GEP index if we can,
1377 /// otherwise return null (e.g. if C is a ConstantExpr).
1378 UndefValue *getElementValue(Constant *C) const;
1379
1380 /// Return an undef of the right value for the specified GEP index.
1381 UndefValue *getElementValue(unsigned Idx) const;
1382
1383 /// Return the number of elements in the array, vector, or struct.
1384 unsigned getNumElements() const;
1385
1386 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1387 static bool classof(const Value *V) {
1388 return V->getValueID() == UndefValueVal ||
1389 V->getValueID() == PoisonValueVal;
1390 }
1391};
1392
1393//===----------------------------------------------------------------------===//
1394/// In order to facilitate speculative execution, many instructions do not
1395/// invoke immediate undefined behavior when provided with illegal operands,
1396/// and return a poison value instead.
1397///
1398/// see LangRef.html#poisonvalues for details.
1399///
1400class PoisonValue final : public UndefValue {
1401 friend class Constant;
1402
1403 explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1404
1405 void destroyConstantImpl();
1406
1407public:
1408 PoisonValue(const PoisonValue &) = delete;
1409
1410 /// Static factory methods - Return an 'poison' object of the specified type.
1411 static PoisonValue *get(Type *T);
1412
1413 /// If this poison has array or vector type, return a poison with the right
1414 /// element type.
1415 PoisonValue *getSequentialElement() const;
1416
1417 /// If this poison has struct type, return a poison with the right element
1418 /// type for the specified element.
1419 PoisonValue *getStructElement(unsigned Elt) const;
1420
1421 /// Return an poison of the right value for the specified GEP index if we can,
1422 /// otherwise return null (e.g. if C is a ConstantExpr).
1423 PoisonValue *getElementValue(Constant *C) const;
1424
1425 /// Return an poison of the right value for the specified GEP index.
1426 PoisonValue *getElementValue(unsigned Idx) const;
1427
1428 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1429 static bool classof(const Value *V) {
1430 return V->getValueID() == PoisonValueVal;
1431 }
1432};
1433
1434} // end namespace llvm
1435
1436#endif // LLVM_IR_CONSTANTS_H

/usr/src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <utility>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34template <typename T> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
80 };
81
82 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
88 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
89
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
100 friend struct DenseMapInfo<APInt>;
101
102 friend class APSInt;
103
104 /// Fast internal constructor
105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
112 /// Determine which word a bit is in.
113 ///
114 /// \returns the word position for the specified bit position.
115 static unsigned whichWord(unsigned bitPosition) {
116 return bitPosition / APINT_BITS_PER_WORD;
117 }
118
119 /// Determine which bit in a word a bit is in.
120 ///
121 /// \returns the bit position in a word for the specified bit position
122 /// in the APInt.
123 static unsigned whichBit(unsigned bitPosition) {
124 return bitPosition % APINT_BITS_PER_WORD;
125 }
126
127 /// Get a single bit mask.
128 ///
129 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
130 /// This method generates and returns a uint64_t (word) mask for a single
131 /// bit at a specific bit position. This is used to mask the bit in the
132 /// corresponding word.
133 static uint64_t maskBit(unsigned bitPosition) {
134 return 1ULL << whichBit(bitPosition);
135 }
136
137 /// Clear unused high order bits
138 ///
139 /// This method is used internally to clear the top "N" bits in the high order
140 /// word that are not used by the APInt. This is needed after the most
141 /// significant word is assigned a value to ensure that those bits are
142 /// zero'd out.
143 APInt &clearUnusedBits() {
144 // Compute how many bits are used in the final word
145 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
146
147 // Mask out the high bits.
148 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
149 if (isSingleWord())
150 U.VAL &= mask;
151 else
152 U.pVal[getNumWords() - 1] &= mask;
153 return *this;
154 }
155
156 /// Get the word corresponding to a bit position
157 /// \returns the corresponding word for the specified bit position.
158 uint64_t getWord(unsigned bitPosition) const {
159 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
160 }
161
162 /// Utility method to change the bit width of this APInt to new bit width,
163 /// allocating and/or deallocating as necessary. There is no guarantee on the
164 /// value of any bits upon return. Caller should populate the bits after.
165 void reallocate(unsigned NewBitWidth);
166
167 /// Convert a char array into an APInt
168 ///
169 /// \param radix 2, 8, 10, 16, or 36
170 /// Converts a string into a number. The string must be non-empty
171 /// and well-formed as a number of the given base. The bit-width
172 /// must be sufficient to hold the result.
173 ///
174 /// This is used by the constructors that take string arguments.
175 ///
176 /// StringRef::getAsInteger is superficially similar but (1) does
177 /// not assume that the string is well-formed and (2) grows the
178 /// result to hold the input.
179 void fromString(unsigned numBits, StringRef str, uint8_t radix);
180
181 /// An internal division function for dividing APInts.
182 ///
183 /// This is used by the toString method to divide by the radix. It simply
184 /// provides a more convenient form of divide for internal use since KnuthDiv
185 /// has specific constraints on its inputs. If those constraints are not met
186 /// then it provides a simpler form of divide.
187 static void divide(const WordType *LHS, unsigned lhsWords,
188 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
189 WordType *Remainder);
190
191 /// out-of-line slow case for inline constructor
192 void initSlowCase(uint64_t val, bool isSigned);
193
194 /// shared code between two array constructors
195 void initFromArray(ArrayRef<uint64_t> array);
196
197 /// out-of-line slow case for inline copy constructor
198 void initSlowCase(const APInt &that);
199
200 /// out-of-line slow case for shl
201 void shlSlowCase(unsigned ShiftAmt);
202
203 /// out-of-line slow case for lshr.
204 void lshrSlowCase(unsigned ShiftAmt);
205
206 /// out-of-line slow case for ashr.
207 void ashrSlowCase(unsigned ShiftAmt);
208
209 /// out-of-line slow case for operator=
210 void AssignSlowCase(const APInt &RHS);
211
212 /// out-of-line slow case for operator==
213 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
214
215 /// out-of-line slow case for countLeadingZeros
216 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
217
218 /// out-of-line slow case for countLeadingOnes.
219 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
220
221 /// out-of-line slow case for countTrailingZeros.
222 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
223
224 /// out-of-line slow case for countTrailingOnes
225 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
226
227 /// out-of-line slow case for countPopulation
228 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
229
230 /// out-of-line slow case for intersects.
231 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
232
233 /// out-of-line slow case for isSubsetOf.
234 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
235
236 /// out-of-line slow case for setBits.
237 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
238
239 /// out-of-line slow case for flipAllBits.
240 void flipAllBitsSlowCase();
241
242 /// out-of-line slow case for operator&=.
243 void AndAssignSlowCase(const APInt& RHS);
244
245 /// out-of-line slow case for operator|=.
246 void OrAssignSlowCase(const APInt& RHS);
247
248 /// out-of-line slow case for operator^=.
249 void XorAssignSlowCase(const APInt& RHS);
250
251 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
252 /// to, or greater than RHS.
253 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
254
255 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
256 /// to, or greater than RHS.
257 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
258
259public:
260 /// \name Constructors
261 /// @{
262
263 /// Create a new APInt of numBits width, initialized as val.
264 ///
265 /// If isSigned is true then val is treated as if it were a signed value
266 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
267 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
268 /// the range of val are zero filled).
269 ///
270 /// \param numBits the bit width of the constructed APInt
271 /// \param val the initial value of the APInt
272 /// \param isSigned how to treat signedness of val
273 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
274 : BitWidth(numBits) {
275 assert(BitWidth && "bitwidth too small")((void)0);
276 if (isSingleWord()) {
277 U.VAL = val;
278 clearUnusedBits();
279 } else {
280 initSlowCase(val, isSigned);
281 }
282 }
283
284 /// Construct an APInt of numBits width, initialized as bigVal[].
285 ///
286 /// Note that bigVal.size() can be smaller or larger than the corresponding
287 /// bit width but any extraneous bits will be dropped.
288 ///
289 /// \param numBits the bit width of the constructed APInt
290 /// \param bigVal a sequence of words to form the initial value of the APInt
291 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
292
293 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
294 /// deprecated because this constructor is prone to ambiguity with the
295 /// APInt(unsigned, uint64_t, bool) constructor.
296 ///
297 /// If this overload is ever deleted, care should be taken to prevent calls
298 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
299 /// constructor.
300 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
301
302 /// Construct an APInt from a string representation.
303 ///
304 /// This constructor interprets the string \p str in the given radix. The
305 /// interpretation stops when the first character that is not suitable for the
306 /// radix is encountered, or the end of the string. Acceptable radix values
307 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
308 /// string to require more bits than numBits.
309 ///
310 /// \param numBits the bit width of the constructed APInt
311 /// \param str the string to be interpreted
312 /// \param radix the radix to use for the conversion
313 APInt(unsigned numBits, StringRef str, uint8_t radix);
314
315 /// Simply makes *this a copy of that.
316 /// Copy Constructor.
317 APInt(const APInt &that) : BitWidth(that.BitWidth) {
318 if (isSingleWord())
319 U.VAL = that.U.VAL;
320 else
321 initSlowCase(that);
322 }
323
324 /// Move Constructor.
325 APInt(APInt &&that) : BitWidth(that.BitWidth) {
326 memcpy(&U, &that.U, sizeof(U));
327 that.BitWidth = 0;
328 }
329
330 /// Destructor.
331 ~APInt() {
332 if (needsCleanup())
333 delete[] U.pVal;
334 }
335
336 /// Default constructor that creates an uninteresting APInt
337 /// representing a 1-bit zero value.
338 ///
339 /// This is useful for object deserialization (pair this with the static
340 /// method Read).
341 explicit APInt() : BitWidth(1) { U.VAL = 0; }
342
343 /// Returns whether this instance allocated memory.
344 bool needsCleanup() const { return !isSingleWord(); }
345
346 /// Used to insert APInt objects, or objects that contain APInt objects, into
347 /// FoldingSets.
348 void Profile(FoldingSetNodeID &id) const;
349
350 /// @}
351 /// \name Value Tests
352 /// @{
353
354 /// Determine if this APInt just has one word to store value.
355 ///
356 /// \returns true if the number of bits <= 64, false otherwise.
357 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
32
Assuming field 'BitWidth' is > APINT_BITS_PER_WORD
33
Returning zero, which participates in a condition later
358
359 /// Determine sign of this APInt.
360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
366 /// Determine if this APInt Value is non-negative (>= 0)
367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
371 /// Determine if sign bit of this APInt is set.
372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
378 /// Determine if sign bit of this APInt is clear.
379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
385 /// Determine if this APInt Value is positive.
386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
393 /// Determine if this APInt Value is non-positive (<= 0).
394 ///
395 /// \returns true if this APInt is non-positive.
396 bool isNonPositive() const { return !isStrictlyPositive(); }
397
398 /// Determine if all bits are set
399 ///
400 /// This checks to see if the value has all bits of the APInt are set or not.
401 bool isAllOnesValue() const {
402 if (isSingleWord())
403 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
404 return countTrailingOnesSlowCase() == BitWidth;
405 }
406
407 /// Determine if all bits are clear
408 ///
409 /// This checks to see if the value has all bits of the APInt are clear or
410 /// not.
411 bool isNullValue() const { return !*this; }
30
Calling 'APInt::operator!'
38
Returning from 'APInt::operator!'
39
Returning the value 1, which participates in a condition later
412
413 /// Determine if this is a value of 1.
414 ///
415 /// This checks to see if the value of this APInt is one.
416 bool isOneValue() const {
417 if (isSingleWord())
418 return U.VAL == 1;
419 return countLeadingZerosSlowCase() == BitWidth - 1;
420 }
421
422 /// Determine if this is the largest unsigned value.
423 ///
424 /// This checks to see if the value of this APInt is the maximum unsigned
425 /// value for the APInt's bit width.
426 bool isMaxValue() const { return isAllOnesValue(); }
427
428 /// Determine if this is the largest signed value.
429 ///
430 /// This checks to see if the value of this APInt is the maximum signed
431 /// value for the APInt's bit width.
432 bool isMaxSignedValue() const {
433 if (isSingleWord())
434 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
435 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
436 }
437
438 /// Determine if this is the smallest unsigned value.
439 ///
440 /// This checks to see if the value of this APInt is the minimum unsigned
441 /// value for the APInt's bit width.
442 bool isMinValue() const { return isNullValue(); }
443
444 /// Determine if this is the smallest signed value.
445 ///
446 /// This checks to see if the value of this APInt is the minimum signed
447 /// value for the APInt's bit width.
448 bool isMinSignedValue() const {
449 if (isSingleWord())
450 return U.VAL == (WordType(1) << (BitWidth - 1));
451 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
452 }
453
454 /// Check if this APInt has an N-bits unsigned integer value.
455 bool isIntN(unsigned N) const {
456 assert(N && "N == 0 ???")((void)0);
457 return getActiveBits() <= N;
458 }
459
460 /// Check if this APInt has an N-bits signed integer value.
461 bool isSignedIntN(unsigned N) const {
462 assert(N && "N == 0 ???")((void)0);
463 return getMinSignedBits() <= N;
464 }
465
466 /// Check if this APInt's value is a power of two greater than zero.
467 ///
468 /// \returns true if the argument APInt value is a power of two > 0.
469 bool isPowerOf2() const {
470 if (isSingleWord())
471 return isPowerOf2_64(U.VAL);
472 return countPopulationSlowCase() == 1;
473 }
474
475 /// Check if the APInt's value is returned by getSignMask.
476 ///
477 /// \returns true if this is the value returned by getSignMask.
478 bool isSignMask() const { return isMinSignedValue(); }
479
480 /// Convert APInt to a boolean value.
481 ///
482 /// This converts the APInt to a boolean value as a test against zero.
483 bool getBoolValue() const { return !!*this; }
484
485 /// If this value is smaller than the specified limit, return it, otherwise
486 /// return the limit value. This causes the value to saturate to the limit.
487 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX0xffffffffffffffffULL) const {
488 return ugt(Limit) ? Limit : getZExtValue();
489 }
490
491 /// Check if the APInt consists of a repeated bit pattern.
492 ///
493 /// e.g. 0x01010101 satisfies isSplat(8).
494 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
495 /// width without remainder.
496 bool isSplat(unsigned SplatSizeInBits) const;
497
498 /// \returns true if this APInt value is a sequence of \param numBits ones
499 /// starting at the least significant bit with the remainder zero.
500 bool isMask(unsigned numBits) const {
501 assert(numBits != 0 && "numBits must be non-zero")((void)0);
502 assert(numBits <= BitWidth && "numBits out of range")((void)0);
503 if (isSingleWord())
504 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
505 unsigned Ones = countTrailingOnesSlowCase();
506 return (numBits == Ones) &&
507 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
508 }
509
510 /// \returns true if this APInt is a non-empty sequence of ones starting at
511 /// the least significant bit with the remainder zero.
512 /// Ex. isMask(0x0000FFFFU) == true.
513 bool isMask() const {
514 if (isSingleWord())
515 return isMask_64(U.VAL);
516 unsigned Ones = countTrailingOnesSlowCase();
517 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
518 }
519
520 /// Return true if this APInt value contains a sequence of ones with
521 /// the remainder zero.
522 bool isShiftedMask() const {
523 if (isSingleWord())
524 return isShiftedMask_64(U.VAL);
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
528 }
529
530 /// @}
531 /// \name Value Generators
532 /// @{
533
534 /// Gets maximum unsigned value of APInt for specific bit width.
535 static APInt getMaxValue(unsigned numBits) {
536 return getAllOnesValue(numBits);
537 }
538
539 /// Gets maximum signed value of APInt for a specific bit width.
540 static APInt getSignedMaxValue(unsigned numBits) {
541 APInt API = getAllOnesValue(numBits);
542 API.clearBit(numBits - 1);
543 return API;
544 }
545
546 /// Gets minimum unsigned value of APInt for a specific bit width.
547 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
548
549 /// Gets minimum signed value of APInt for a specific bit width.
550 static APInt getSignedMinValue(unsigned numBits) {
551 APInt API(numBits, 0);
552 API.setBit(numBits - 1);
553 return API;
554 }
555
556 /// Get the SignMask for a specific bit width.
557 ///
558 /// This is just a wrapper function of getSignedMinValue(), and it helps code
559 /// readability when we want to get a SignMask.
560 static APInt getSignMask(unsigned BitWidth) {
561 return getSignedMinValue(BitWidth);
562 }
563
564 /// Get the all-ones value.
565 ///
566 /// \returns the all-ones value for an APInt of the specified bit-width.
567 static APInt getAllOnesValue(unsigned numBits) {
568 return APInt(numBits, WORDTYPE_MAX, true);
569 }
570
571 /// Get the '0' value.
572 ///
573 /// \returns the '0' value for an APInt of the specified bit-width.
574 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
575
576 /// Compute an APInt containing numBits highbits from this APInt.
577 ///
578 /// Get an APInt with the same BitWidth as this APInt, just zero mask
579 /// the low bits and right shift to the least significant bit.
580 ///
581 /// \returns the high "numBits" bits of this APInt.
582 APInt getHiBits(unsigned numBits) const;
583
584 /// Compute an APInt containing numBits lowbits from this APInt.
585 ///
586 /// Get an APInt with the same BitWidth as this APInt, just zero mask
587 /// the high bits.
588 ///
589 /// \returns the low "numBits" bits of this APInt.
590 APInt getLoBits(unsigned numBits) const;
591
592 /// Return an APInt with exactly one bit set in the result.
593 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
594 APInt Res(numBits, 0);
595 Res.setBit(BitNo);
596 return Res;
597 }
598
599 /// Get a value with a block of bits set.
600 ///
601 /// Constructs an APInt value that has a contiguous range of bits set. The
602 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
603 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
604 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
605 /// \p hiBit.
606 ///
607 /// \param numBits the intended bit width of the result
608 /// \param loBit the index of the lowest bit set.
609 /// \param hiBit the index of the highest bit set.
610 ///
611 /// \returns An APInt value with the requested bits set.
612 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
613 assert(loBit <= hiBit && "loBit greater than hiBit")((void)0);
614 APInt Res(numBits, 0);
615 Res.setBits(loBit, hiBit);
616 return Res;
617 }
618
619 /// Wrap version of getBitsSet.
620 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
621 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
622 /// with parameters (32, 28, 4), you would get 0xF000000F.
623 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
624 /// set.
625 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
626 unsigned hiBit) {
627 APInt Res(numBits, 0);
628 Res.setBitsWithWrap(loBit, hiBit);
629 return Res;
630 }
631
632 /// Get a value with upper bits starting at loBit set.
633 ///
634 /// Constructs an APInt value that has a contiguous range of bits set. The
635 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
636 /// bits will be zero. For example, with parameters(32, 12) you would get
637 /// 0xFFFFF000.
638 ///
639 /// \param numBits the intended bit width of the result
640 /// \param loBit the index of the lowest bit to set.
641 ///
642 /// \returns An APInt value with the requested bits set.
643 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
644 APInt Res(numBits, 0);
645 Res.setBitsFrom(loBit);
646 return Res;
647 }
648
649 /// Get a value with high bits set
650 ///
651 /// Constructs an APInt value that has the top hiBitsSet bits set.
652 ///
653 /// \param numBits the bitwidth of the result
654 /// \param hiBitsSet the number of high-order bits set in the result.
655 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
656 APInt Res(numBits, 0);
657 Res.setHighBits(hiBitsSet);
658 return Res;
659 }
660
661 /// Get a value with low bits set
662 ///
663 /// Constructs an APInt value that has the bottom loBitsSet bits set.
664 ///
665 /// \param numBits the bitwidth of the result
666 /// \param loBitsSet the number of low-order bits set in the result.
667 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
668 APInt Res(numBits, 0);
669 Res.setLowBits(loBitsSet);
670 return Res;
671 }
672
673 /// Return a value containing V broadcasted over NewLen bits.
674 static APInt getSplat(unsigned NewLen, const APInt &V);
675
676 /// Determine if two APInts have the same value, after zero-extending
677 /// one of them (if needed!) to ensure that the bit-widths match.
678 static bool isSameValue(const APInt &I1, const APInt &I2) {
679 if (I1.getBitWidth() == I2.getBitWidth())
680 return I1 == I2;
681
682 if (I1.getBitWidth() > I2.getBitWidth())
683 return I1 == I2.zext(I1.getBitWidth());
684
685 return I1.zext(I2.getBitWidth()) == I2;
686 }
687
688 /// Overload to compute a hash_code for an APInt value.
689 friend hash_code hash_value(const APInt &Arg);
690
691 /// This function returns a pointer to the internal storage of the APInt.
692 /// This is useful for writing out the APInt in binary form without any
693 /// conversions.
694 const uint64_t *getRawData() const {
695 if (isSingleWord())
696 return &U.VAL;
697 return &U.pVal[0];
698 }
699
700 /// @}
701 /// \name Unary Operators
702 /// @{
703
704 /// Postfix increment operator.
705 ///
706 /// Increments *this by 1.
707 ///
708 /// \returns a new APInt value representing the original value of *this.
709 const APInt operator++(int) {
710 APInt API(*this);
711 ++(*this);
712 return API;
713 }
714
715 /// Prefix increment operator.
716 ///
717 /// \returns *this incremented by one
718 APInt &operator++();
719
720 /// Postfix decrement operator.
721 ///
722 /// Decrements *this by 1.
723 ///
724 /// \returns a new APInt value representing the original value of *this.
725 const APInt operator--(int) {
726 APInt API(*this);
727 --(*this);
728 return API;
729 }
730
731 /// Prefix decrement operator.
732 ///
733 /// \returns *this decremented by one.
734 APInt &operator--();
735
736 /// Logical negation operator.
737 ///
738 /// Performs logical negation operation on this APInt.
739 ///
740 /// \returns true if *this is zero, false otherwise.
741 bool operator!() const {
742 if (isSingleWord())
31
Calling 'APInt::isSingleWord'
34
Returning from 'APInt::isSingleWord'
35
Taking false branch
743 return U.VAL == 0;
744 return countLeadingZerosSlowCase() == BitWidth;
36
Assuming the condition is true
37
Returning the value 1, which participates in a condition later
745 }
746
747 /// @}
748 /// \name Assignment Operators
749 /// @{
750
751 /// Copy assignment operator.
752 ///
753 /// \returns *this after assignment of RHS.
754 APInt &operator=(const APInt &RHS) {
755 // If the bitwidths are the same, we can avoid mucking with memory
756 if (isSingleWord() && RHS.isSingleWord()) {
757 U.VAL = RHS.U.VAL;
758 BitWidth = RHS.BitWidth;
759 return clearUnusedBits();
760 }
761
762 AssignSlowCase(RHS);
763 return *this;
764 }
765
766 /// Move assignment operator.
767 APInt &operator=(APInt &&that) {
768#ifdef EXPENSIVE_CHECKS
769 // Some std::shuffle implementations still do self-assignment.
770 if (this == &that)
771 return *this;
772#endif
773 assert(this != &that && "Self-move not supported")((void)0);
774 if (!isSingleWord())
775 delete[] U.pVal;
776
777 // Use memcpy so that type based alias analysis sees both VAL and pVal
778 // as modified.
779 memcpy(&U, &that.U, sizeof(U));
780
781 BitWidth = that.BitWidth;
782 that.BitWidth = 0;
783
784 return *this;
785 }
786
787 /// Assignment operator.
788 ///
789 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
790 /// the bit width, the excess bits are truncated. If the bit width is larger
791 /// than 64, the value is zero filled in the unspecified high order bits.
792 ///
793 /// \returns *this after assignment of RHS value.
794 APInt &operator=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL = RHS;
797 return clearUnusedBits();
798 }
799 U.pVal[0] = RHS;
800 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// Bitwise AND assignment operator.
805 ///
806 /// Performs a bitwise AND operation on this APInt and RHS. The result is
807 /// assigned to *this.
808 ///
809 /// \returns *this after ANDing with RHS.
810 APInt &operator&=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0);
812 if (isSingleWord())
813 U.VAL &= RHS.U.VAL;
814 else
815 AndAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// Bitwise AND assignment operator.
820 ///
821 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator&=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL &= RHS;
827 return *this;
828 }
829 U.pVal[0] &= RHS;
830 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
831 return *this;
832 }
833
834 /// Bitwise OR assignment operator.
835 ///
836 /// Performs a bitwise OR operation on this APInt and RHS. The result is
837 /// assigned *this;
838 ///
839 /// \returns *this after ORing with RHS.
840 APInt &operator|=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0);
842 if (isSingleWord())
843 U.VAL |= RHS.U.VAL;
844 else
845 OrAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// Bitwise OR assignment operator.
850 ///
851 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator|=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL |= RHS;
857 return clearUnusedBits();
858 }
859 U.pVal[0] |= RHS;
860 return *this;
861 }
862
863 /// Bitwise XOR assignment operator.
864 ///
865 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
866 /// assigned to *this.
867 ///
868 /// \returns *this after XORing with RHS.
869 APInt &operator^=(const APInt &RHS) {
870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0);
871 if (isSingleWord())
872 U.VAL ^= RHS.U.VAL;
873 else
874 XorAssignSlowCase(RHS);
875 return *this;
876 }
877
878 /// Bitwise XOR assignment operator.
879 ///
880 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
881 /// logically zero-extended or truncated to match the bit-width of
882 /// the LHS.
883 APInt &operator^=(uint64_t RHS) {
884 if (isSingleWord()) {
885 U.VAL ^= RHS;
886 return clearUnusedBits();
887 }
888 U.pVal[0] ^= RHS;
889 return *this;
890 }
891
892 /// Multiplication assignment operator.
893 ///
894 /// Multiplies this APInt by RHS and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator*=(const APInt &RHS);
898 APInt &operator*=(uint64_t RHS);
899
900 /// Addition assignment operator.
901 ///
902 /// Adds RHS to *this and assigns the result to *this.
903 ///
904 /// \returns *this
905 APInt &operator+=(const APInt &RHS);
906 APInt &operator+=(uint64_t RHS);
907
908 /// Subtraction assignment operator.
909 ///
910 /// Subtracts RHS from *this and assigns the result to *this.
911 ///
912 /// \returns *this
913 APInt &operator-=(const APInt &RHS);
914 APInt &operator-=(uint64_t RHS);
915
916 /// Left-shift assignment function.
917 ///
918 /// Shifts *this left by shiftAmt and assigns the result to *this.
919 ///
920 /// \returns *this after shifting left by ShiftAmt
921 APInt &operator<<=(unsigned ShiftAmt) {
922 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0);
923 if (isSingleWord()) {
924 if (ShiftAmt == BitWidth)
925 U.VAL = 0;
926 else
927 U.VAL <<= ShiftAmt;
928 return clearUnusedBits();
929 }
930 shlSlowCase(ShiftAmt);
931 return *this;
932 }
933
934 /// Left-shift assignment function.
935 ///
936 /// Shifts *this left by shiftAmt and assigns the result to *this.
937 ///
938 /// \returns *this after shifting left by ShiftAmt
939 APInt &operator<<=(const APInt &ShiftAmt);
940
941 /// @}
942 /// \name Binary Operators
943 /// @{
944
945 /// Multiplication operator.
946 ///
947 /// Multiplies this APInt by RHS and returns the result.
948 APInt operator*(const APInt &RHS) const;
949
950 /// Left logical shift operator.
951 ///
952 /// Shifts this APInt left by \p Bits and returns the result.
953 APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
955 /// Left logical shift operator.
956 ///
957 /// Shifts this APInt left by \p Bits and returns the result.
958 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
960 /// Arithmetic right-shift function.
961 ///
962 /// Arithmetic right-shift this APInt by shiftAmt.
963 APInt ashr(unsigned ShiftAmt) const {
964 APInt R(*this);
965 R.ashrInPlace(ShiftAmt);
966 return R;
967 }
968
969 /// Arithmetic right-shift this APInt by ShiftAmt in place.
970 void ashrInPlace(unsigned ShiftAmt) {
971 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0);
972 if (isSingleWord()) {
973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974 if (ShiftAmt == BitWidth)
975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976 else
977 U.VAL = SExtVAL >> ShiftAmt;
978 clearUnusedBits();
979 return;
980 }
981 ashrSlowCase(ShiftAmt);
982 }
983
984 /// Logical right-shift function.
985 ///
986 /// Logical right-shift this APInt by shiftAmt.
987 APInt lshr(unsigned shiftAmt) const {
988 APInt R(*this);
989 R.lshrInPlace(shiftAmt);
990 return R;
991 }
992
993 /// Logical right-shift this APInt by ShiftAmt in place.
994 void lshrInPlace(unsigned ShiftAmt) {
995 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((void)0);
996 if (isSingleWord()) {
997 if (ShiftAmt == BitWidth)
998 U.VAL = 0;
999 else
1000 U.VAL >>= ShiftAmt;
1001 return;
1002 }
1003 lshrSlowCase(ShiftAmt);
1004 }
1005
1006 /// Left-shift function.
1007 ///
1008 /// Left-shift this APInt by shiftAmt.
1009 APInt shl(unsigned shiftAmt) const {
1010 APInt R(*this);
1011 R <<= shiftAmt;
1012 return R;
1013 }
1014
1015 /// Rotate left by rotateAmt.
1016 APInt rotl(unsigned rotateAmt) const;
1017
1018 /// Rotate right by rotateAmt.
1019 APInt rotr(unsigned rotateAmt) const;
1020
1021 /// Arithmetic right-shift function.
1022 ///
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 APInt ashr(const APInt &ShiftAmt) const {
1025 APInt R(*this);
1026 R.ashrInPlace(ShiftAmt);
1027 return R;
1028 }
1029
1030 /// Arithmetic right-shift this APInt by shiftAmt in place.
1031 void ashrInPlace(const APInt &shiftAmt);
1032
1033 /// Logical right-shift function.
1034 ///
1035 /// Logical right-shift this APInt by shiftAmt.
1036 APInt lshr(const APInt &ShiftAmt) const {
1037 APInt R(*this);
1038 R.lshrInPlace(ShiftAmt);
1039 return R;
1040 }
1041
1042 /// Logical right-shift this APInt by ShiftAmt in place.
1043 void lshrInPlace(const APInt &ShiftAmt);
1044
1045 /// Left-shift function.
1046 ///
1047 /// Left-shift this APInt by shiftAmt.
1048 APInt shl(const APInt &ShiftAmt) const {
1049 APInt R(*this);
1050 R <<= ShiftAmt;
1051 return R;
1052 }
1053
1054 /// Rotate left by rotateAmt.
1055 APInt rotl(const APInt &rotateAmt) const;
1056
1057 /// Rotate right by rotateAmt.
1058 APInt rotr(const APInt &rotateAmt) const;
1059
1060 /// Unsigned division operation.
1061 ///
1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063 /// RHS are treated as unsigned quantities for purposes of this division.
1064 ///
1065 /// \returns a new APInt value containing the division result, rounded towards
1066 /// zero.
1067 APInt udiv(const APInt &RHS) const;
1068 APInt udiv(uint64_t RHS) const;
1069
1070 /// Signed division function for APInt.
1071 ///
1072 /// Signed divide this APInt by APInt RHS.
1073 ///
1074 /// The result is rounded towards zero.
1075 APInt sdiv(const APInt &RHS) const;
1076 APInt sdiv(int64_t RHS) const;
1077
1078 /// Unsigned remainder operation.
1079 ///
1080 /// Perform an unsigned remainder operation on this APInt with RHS being the
1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082 /// of this operation. Note that this is a true remainder operation and not a
1083 /// modulo operation because the sign follows the sign of the dividend which
1084 /// is *this.
1085 ///
1086 /// \returns a new APInt value containing the remainder result
1087 APInt urem(const APInt &RHS) const;
1088 uint64_t urem(uint64_t RHS) const;
1089
1090 /// Function for signed remainder operation.
1091 ///
1092 /// Signed remainder operation on APInt.
1093 APInt srem(const APInt &RHS) const;
1094 int64_t srem(int64_t RHS) const;
1095
1096 /// Dual division/remainder interface.
1097 ///
1098 /// Sometimes it is convenient to divide two APInt values and obtain both the
1099 /// quotient and remainder. This function does both operations in the same
1100 /// computation making it a little more efficient. The pair of input arguments
1101 /// may overlap with the pair of output arguments. It is safe to call
1102 /// udivrem(X, Y, X, Y), for example.
1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104 APInt &Remainder);
1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106 uint64_t &Remainder);
1107
1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109 APInt &Remainder);
1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111 int64_t &Remainder);
1112
1113 // Operations that return overflow indicators.
1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
1124 // Operations that saturate
1125 APInt sadd_sat(const APInt &RHS) const;
1126 APInt uadd_sat(const APInt &RHS) const;
1127 APInt ssub_sat(const APInt &RHS) const;
1128 APInt usub_sat(const APInt &RHS) const;
1129 APInt smul_sat(const APInt &RHS) const;
1130 APInt umul_sat(const APInt &RHS) const;
1131 APInt sshl_sat(const APInt &RHS) const;
1132 APInt ushl_sat(const APInt &RHS) const;
1133
1134 /// Array-indexing support.
1135 ///
1136 /// \returns the bit value at bitPosition
1137 bool operator[](unsigned bitPosition) const {
1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((void)0);
1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140 }
1141
1142 /// @}
1143 /// \name Comparison Operators
1144 /// @{
1145
1146 /// Equality operator.
1147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 bool operator==(const APInt &RHS) const {
1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((void)0);
1152 if (isSingleWord())
1153 return U.VAL == RHS.U.VAL;
1154 return EqualSlowCase(RHS);
1155 }
1156
1157 /// Equality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the equality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this == Val
1163 bool operator==(uint64_t Val) const {
1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165 }
1166
1167 /// Equality comparison.
1168 ///
1169 /// Compares this APInt with RHS for the validity of the equality
1170 /// relationship.
1171 ///
1172 /// \returns true if *this == Val
1173 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1174
1175 /// Inequality operator.
1176 ///
1177 /// Compares this APInt with RHS for the validity of the inequality
1178 /// relationship.
1179 ///
1180 /// \returns true if *this != Val
1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
1183 /// Inequality operator.
1184 ///
1185 /// Compares this APInt with a uint64_t for the validity of the inequality
1186 /// relationship.
1187 ///
1188 /// \returns true if *this != Val
1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
1191 /// Inequality comparison
1192 ///
1193 /// Compares this APInt with RHS for the validity of the inequality
1194 /// relationship.
1195 ///
1196 /// \returns true if *this != Val
1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
1199 /// Unsigned less than comparison
1200 ///
1201 /// Regards both *this and RHS as unsigned quantities and compares them for
1202 /// the validity of the less-than relationship.
1203 ///
1204 /// \returns true if *this < RHS when both are considered unsigned.
1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1206
1207 /// Unsigned less than comparison
1208 ///
1209 /// Regards both *this as an unsigned quantity and compares it with RHS for
1210 /// the validity of the less-than relationship.
1211 ///
1212 /// \returns true if *this < RHS when considered unsigned.
1213 bool ult(uint64_t RHS) const {
1214 // Only need to check active bits if not a single word.
1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216 }
1217
1218 /// Signed less than comparison
1219 ///
1220 /// Regards both *this and RHS as signed quantities and compares them for
1221 /// validity of the less-than relationship.
1222 ///
1223 /// \returns true if *this < RHS when both are considered signed.
1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
1226 /// Signed less than comparison
1227 ///
1228 /// Regards both *this as a signed quantity and compares it with RHS for
1229 /// the validity of the less-than relationship.
1230 ///
1231 /// \returns true if *this < RHS when considered signed.
1232 bool slt(int64_t RHS) const {
1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234 : getSExtValue() < RHS;
1235 }
1236
1237 /// Unsigned less or equal comparison
1238 ///
1239 /// Regards both *this and RHS as unsigned quantities and compares them for
1240 /// validity of the less-or-equal relationship.
1241 ///
1242 /// \returns true if *this <= RHS when both are considered unsigned.
1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
1245 /// Unsigned less or equal comparison
1246 ///
1247 /// Regards both *this as an unsigned quantity and compares it with RHS for
1248 /// the validity of the less-or-equal relationship.
1249 ///
1250 /// \returns true if *this <= RHS when considered unsigned.
1251 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
1253 /// Signed less or equal comparison
1254 ///
1255 /// Regards both *this and RHS as signed quantities and compares them for
1256 /// validity of the less-or-equal relationship.
1257 ///
1258 /// \returns true if *this <= RHS when both are considered signed.
1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
1261 /// Signed less or equal comparison
1262 ///
1263 /// Regards both *this as a signed quantity and compares it with RHS for the
1264 /// validity of the less-or-equal relationship.
1265 ///
1266 /// \returns true if *this <= RHS when considered signed.
1267 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
1269 /// Unsigned greater than comparison
1270 ///
1271 /// Regards both *this and RHS as unsigned quantities and compares them for
1272 /// the validity of the greater-than relationship.
1273 ///
1274 /// \returns true if *this > RHS when both are considered unsigned.
1275 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
1277 /// Unsigned greater than comparison
1278 ///
1279 /// Regards both *this as an unsigned quantity and compares it with RHS for
1280 /// the validity of the greater-than relationship.
1281 ///
1282 /// \returns true if *this > RHS when considered unsigned.
1283 bool ugt(uint64_t RHS) const {
1284 // Only need to check active bits if not a single word.
1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286 }
1287
1288 /// Signed greater than comparison
1289 ///
1290 /// Regards both *this and RHS as signed quantities and compares them for the
1291 /// validity of the greater-than relationship.
1292 ///
1293 /// \returns true if *this > RHS when both are considered signed.
1294 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
1296 /// Signed greater than comparison
1297 ///
1298 /// Regards both *this as a signed quantity and compares it with RHS for
1299 /// the validity of the greater-than relationship.
1300 ///
1301 /// \returns true if *this > RHS when considered signed.
1302 bool sgt(int64_t RHS) const {
1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304 : getSExtValue() > RHS;
1305 }
1306
1307 /// Unsigned greater or equal comparison
1308 ///
1309 /// Regards both *this and RHS as unsigned quantities and compares them for
1310 /// validity of the greater-or-equal relationship.
1311 ///
1312 /// \returns true if *this >= RHS when both are considered unsigned.
1313 bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
1315 /// Unsigned greater or equal comparison
1316 ///
1317 /// Regards both *this as an unsigned quantity and compares it with RHS for
1318 /// the validity of the greater-or-equal relationship.
1319 ///
1320 /// \returns true if *this >= RHS when considered unsigned.
1321 bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
1323 /// Signed greater or equal comparison
1324 ///
1325 /// Regards both *this and RHS as signed quantities and compares them for
1326 /// validity of the greater-or-equal relationship.
1327 ///
1328 /// \returns true if *this >= RHS when both are considered signed.
1329 bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
1331 /// Signed greater or equal comparison
1332 ///
1333 /// Regards both *this as a signed quantity and compares it with RHS for
1334 /// the validity of the greater-or-equal relationship.
1335 ///
1336 /// \returns true if *this >= RHS when considered signed.
1337 bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339 /// This operation tests if there are any pairs of corresponding bits
1340 /// between this APInt and RHS that are both set.
1341 bool intersects(const APInt &RHS) const {
1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0);
1343 if (isSingleWord())
1344 return (U.VAL & RHS.U.VAL) != 0;
1345 return intersectsSlowCase(RHS);
1346 }
1347
1348 /// This operation checks that all bits set in this APInt are also set in RHS.
1349 bool isSubsetOf(const APInt &RHS) const {
1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((void)0);
1351 if (isSingleWord())
1352 return (U.VAL & ~RHS.U.VAL) == 0;
1353 return isSubsetOfSlowCase(RHS);
1354 }
1355
1356 /// @}
1357 /// \name Resizing Operators
1358 /// @{
1359
1360 /// Truncate to new width.
1361 ///
1362 /// Truncate the APInt to a specified width. It is an error to specify a width
1363 /// that is greater than or equal to the current width.
1364 APInt trunc(unsigned width) const;
1365
1366 /// Truncate to new width with unsigned saturation.
1367 ///
1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369 /// the new bitwidth, then return truncated APInt. Else, return max value.
1370 APInt truncUSat(unsigned width) const;
1371
1372 /// Truncate to new width with signed saturation.
1373 ///
1374 /// If this APInt, treated as signed integer, can be losslessly truncated to
1375 /// the new bitwidth, then return truncated APInt. Else, return either
1376 /// signed min value if the APInt was negative, or signed max value.
1377 APInt truncSSat(unsigned width) const;
1378
1379 /// Sign extend to a new width.
1380 ///
1381 /// This operation sign extends the APInt to a new width. If the high order
1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383 /// It is an error to specify a width that is less than or equal to the
1384 /// current width.
1385 APInt sext(unsigned width) const;
1386
1387 /// Zero extend to a new width.
1388 ///
1389 /// This operation zero extends the APInt to a new width. The high order bits
1390 /// are filled with 0 bits. It is an error to specify a width that is less
1391 /// than or equal to the current width.
1392 APInt zext(unsigned width) const;
1393
1394 /// Sign extend or truncate to width
1395 ///
1396 /// Make this APInt have the bit width given by \p width. The value is sign
1397 /// extended, truncated, or left alone to make it that width.
1398 APInt sextOrTrunc(unsigned width) const;
1399
1400 /// Zero extend or truncate to width
1401 ///
1402 /// Make this APInt have the bit width given by \p width. The value is zero
1403 /// extended, truncated, or left alone to make it that width.
1404 APInt zextOrTrunc(unsigned width) const;
1405
1406 /// Truncate to width
1407 ///
1408 /// Make this APInt have the bit width given by \p width. The value is
1409 /// truncated or left alone to make it that width.
1410 APInt truncOrSelf(unsigned width) const;
1411
1412 /// Sign extend or truncate to width
1413 ///
1414 /// Make this APInt have the bit width given by \p width. The value is sign
1415 /// extended, or left alone to make it that width.
1416 APInt sextOrSelf(unsigned width) const;
1417
1418 /// Zero extend or truncate to width
1419 ///
1420 /// Make this APInt have the bit width given by \p width. The value is zero
1421 /// extended, or left alone to make it that width.
1422 APInt zextOrSelf(unsigned width) const;
1423
1424 /// @}
1425 /// \name Bit Manipulation Operators
1426 /// @{
1427
1428 /// Set every bit to 1.
1429 void setAllBits() {
1430 if (isSingleWord())
1431 U.VAL = WORDTYPE_MAX;
1432 else
1433 // Set all the bits in all the words.
1434 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1435 // Clear the unused ones
1436 clearUnusedBits();
1437 }
1438
1439 /// Set a given bit to 1.
1440 ///
1441 /// Set the given bit to 1 whose position is given as "bitPosition".
1442 void setBit(unsigned BitPosition) {
1443 assert(BitPosition < BitWidth && "BitPosition out of range")((void)0);
1444 WordType Mask = maskBit(BitPosition);
1445 if (isSingleWord())
1446 U.VAL |= Mask;
1447 else
1448 U.pVal[whichWord(BitPosition)] |= Mask;
1449 }
1450
1451 /// Set the sign bit to 1.
1452 void setSignBit() {
1453 setBit(BitWidth - 1);
1454 }
1455
1456 /// Set a given bit to a given value.
1457 void setBitVal(unsigned BitPosition, bool BitValue) {
1458 if (BitValue)
1459 setBit(BitPosition);
1460 else
1461 clearBit(BitPosition);
1462 }
1463
1464 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1465 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1466 /// setBits when \p loBit < \p hiBit.
1467 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1468 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1469 assert(hiBit <= BitWidth && "hiBit out of range")((void)0);
1470 assert(loBit <= BitWidth && "loBit out of range")((void)0);
1471 if (loBit < hiBit) {
1472 setBits(loBit, hiBit);
1473 return;
1474 }
1475 setLowBits(hiBit);
1476 setHighBits(BitWidth - loBit);
1477 }
1478
1479 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1480 /// This function handles case when \p loBit <= \p hiBit.
1481 void setBits(unsigned loBit, unsigned hiBit) {
1482 assert(hiBit <= BitWidth && "hiBit out of range")((void)0);
1483 assert(loBit <= BitWidth && "loBit out of range")((void)0);
1484 assert(loBit <= hiBit && "loBit greater than hiBit")((void)0);
1485 if (loBit == hiBit)
1486 return;
1487 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1488 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1489 mask <<= loBit;
1490 if (isSingleWord())
1491 U.VAL |= mask;
1492 else
1493 U.pVal[0] |= mask;
1494 } else {
1495 setBitsSlowCase(loBit, hiBit);
1496 }
1497 }
1498
1499 /// Set the top bits starting from loBit.
1500 void setBitsFrom(unsigned loBit) {
1501 return setBits(loBit, BitWidth);
1502 }
1503
1504 /// Set the bottom loBits bits.
1505 void setLowBits(unsigned loBits) {
1506 return setBits(0, loBits);
1507 }
1508
1509 /// Set the top hiBits bits.
1510 void setHighBits(unsigned hiBits) {
1511 return setBits(BitWidth - hiBits, BitWidth);
1512 }
1513
1514 /// Set every bit to 0.
1515 void clearAllBits() {
1516 if (isSingleWord())
1517 U.VAL = 0;
1518 else
1519 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1520 }
1521
1522 /// Set a given bit to 0.
1523 ///
1524 /// Set the given bit to 0 whose position is given as "bitPosition".
1525 void clearBit(unsigned BitPosition) {
1526 assert(BitPosition < BitWidth && "BitPosition out of range")((void)0);
1527 WordType Mask = ~maskBit(BitPosition);
1528 if (isSingleWord())
1529 U.VAL &= Mask;
1530 else
1531 U.pVal[whichWord(BitPosition)] &= Mask;
1532 }
1533
1534 /// Set bottom loBits bits to 0.
1535 void clearLowBits(unsigned loBits) {
1536 assert(loBits <= BitWidth && "More bits than bitwidth")((void)0);
1537 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1538 *this &= Keep;
1539 }
1540
1541 /// Set the sign bit to 0.
1542 void clearSignBit() {
1543 clearBit(BitWidth - 1);
1544 }
1545
1546 /// Toggle every bit to its opposite value.
1547 void flipAllBits() {
1548 if (isSingleWord()) {
1549 U.VAL ^= WORDTYPE_MAX;
1550 clearUnusedBits();
1551 } else {
1552 flipAllBitsSlowCase();
1553 }
1554 }
1555
1556 /// Toggles a given bit to its opposite value.
1557 ///
1558 /// Toggle a given bit to its opposite value whose position is given
1559 /// as "bitPosition".
1560 void flipBit(unsigned bitPosition);
1561
1562 /// Negate this APInt in place.
1563 void negate() {
1564 flipAllBits();
1565 ++(*this);
1566 }
1567
1568 /// Insert the bits from a smaller APInt starting at bitPosition.
1569 void insertBits(const APInt &SubBits, unsigned bitPosition);
1570 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1571
1572 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1573 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1574 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1575
1576 /// @}
1577 /// \name Value Characterization Functions
1578 /// @{
1579
1580 /// Return the number of bits in the APInt.
1581 unsigned getBitWidth() const { return BitWidth; }
1582
1583 /// Get the number of words.
1584 ///
1585 /// Here one word's bitwidth equals to that of uint64_t.
1586 ///
1587 /// \returns the number of words to hold the integer value of this APInt.
1588 unsigned getNumWords() const { return getNumWords(BitWidth); }
1589
1590 /// Get the number of words.
1591 ///
1592 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1593 ///
1594 /// \returns the number of words to hold the integer value with a given bit
1595 /// width.
1596 static unsigned getNumWords(unsigned BitWidth) {
1597 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1598 }
1599
1600 /// Compute the number of active bits in the value
1601 ///
1602 /// This function returns the number of active bits which is defined as the
1603 /// bit width minus the number of leading zeros. This is used in several
1604 /// computations to see how "wide" the value is.
1605 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1606
1607 /// Compute the number of active words in the value of this APInt.
1608 ///
1609 /// This is used in conjunction with getActiveData to extract the raw value of
1610 /// the APInt.
1611 unsigned getActiveWords() const {
1612 unsigned numActiveBits = getActiveBits();
1613 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1614 }
1615
1616 /// Get the minimum bit size for this signed APInt
1617 ///
1618 /// Computes the minimum bit width for this APInt while considering it to be a
1619 /// signed (and probably negative) value. If the value is not negative, this
1620 /// function returns the same value as getActiveBits()+1. Otherwise, it
1621 /// returns the smallest bit width that will retain the negative value. For
1622 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1623 /// for -1, this function will always return 1.
1624 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; }
1625
1626 /// Get zero extended value
1627 ///
1628 /// This method attempts to return the value of this APInt as a zero extended
1629 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1630 /// uint64_t. Otherwise an assertion will result.
1631 uint64_t getZExtValue() const {
1632 if (isSingleWord())
1633 return U.VAL;
1634 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((void)0);
1635 return U.pVal[0];
1636 }
1637
1638 /// Get sign extended value
1639 ///
1640 /// This method attempts to return the value of this APInt as a sign extended
1641 /// int64_t. The bit width must be <= 64 or the value must fit within an
1642 /// int64_t. Otherwise an assertion will result.
1643 int64_t getSExtValue() const {
1644 if (isSingleWord())
1645 return SignExtend64(U.VAL, BitWidth);
1646 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((void)0);
1647 return int64_t(U.pVal[0]);
1648 }
1649
1650 /// Get bits required for string value.
1651 ///
1652 /// This method determines how many bits are required to hold the APInt
1653 /// equivalent of the string given by \p str.
1654 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1655
1656 /// The APInt version of the countLeadingZeros functions in
1657 /// MathExtras.h.
1658 ///
1659 /// It counts the number of zeros from the most significant bit to the first
1660 /// one bit.
1661 ///
1662 /// \returns BitWidth if the value is zero, otherwise returns the number of
1663 /// zeros from the most significant bit to the first one bits.
1664 unsigned countLeadingZeros() const {
1665 if (isSingleWord()) {
1666 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1667 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1668 }
1669 return countLeadingZerosSlowCase();
1670 }
1671
1672 /// Count the number of leading one bits.
1673 ///
1674 /// This function is an APInt version of the countLeadingOnes
1675 /// functions in MathExtras.h. It counts the number of ones from the most
1676 /// significant bit to the first zero bit.
1677 ///
1678 /// \returns 0 if the high order bit is not set, otherwise returns the number
1679 /// of 1 bits from the most significant to the least
1680 unsigned countLeadingOnes() const {
1681 if (isSingleWord())
1682 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1683 return countLeadingOnesSlowCase();
1684 }
1685
1686 /// Computes the number of leading bits of this APInt that are equal to its
1687 /// sign bit.
1688 unsigned getNumSignBits() const {
1689 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1690 }
1691
1692 /// Count the number of trailing zero bits.
1693 ///
1694 /// This function is an APInt version of the countTrailingZeros
1695 /// functions in MathExtras.h. It counts the number of zeros from the least
1696 /// significant bit to the first set bit.
1697 ///
1698 /// \returns BitWidth if the value is zero, otherwise returns the number of
1699 /// zeros from the least significant bit to the first one bit.
1700 unsigned countTrailingZeros() const {
1701 if (isSingleWord()) {
1702 unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL);
1703 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros);
1704 }
1705 return countTrailingZerosSlowCase();
1706 }
1707
1708 /// Count the number of trailing one bits.
1709 ///
1710 /// This function is an APInt version of the countTrailingOnes
1711 /// functions in MathExtras.h. It counts the number of ones from the least
1712 /// significant bit to the first zero bit.
1713 ///
1714 /// \returns BitWidth if the value is all ones, otherwise returns the number
1715 /// of ones from the least significant bit to the first zero bit.
1716 unsigned countTrailingOnes() const {
1717 if (isSingleWord())
1718 return llvm::countTrailingOnes(U.VAL);
1719 return countTrailingOnesSlowCase();
1720 }
1721
1722 /// Count the number of bits set.
1723 ///
1724 /// This function is an APInt version of the countPopulation functions
1725 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1726 ///
1727 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1728 unsigned countPopulation() const {
1729 if (isSingleWord())
1730 return llvm::countPopulation(U.VAL);
1731 return countPopulationSlowCase();
1732 }
1733
1734 /// @}
1735 /// \name Conversion Functions
1736 /// @{
1737 void print(raw_ostream &OS, bool isSigned) const;
1738
1739 /// Converts an APInt to a string and append it to Str. Str is commonly a
1740 /// SmallString.
1741 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1742 bool formatAsCLiteral = false) const;
1743
1744 /// Considers the APInt to be unsigned and converts it into a string in the
1745 /// radix given. The radix can be 2, 8, 10 16, or 36.
1746 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1747 toString(Str, Radix, false, false);
1748 }
1749
1750 /// Considers the APInt to be signed and converts it into a string in the
1751 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1752 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1753 toString(Str, Radix, true, false);
1754 }
1755
1756 /// \returns a byte-swapped representation of this APInt Value.
1757 APInt byteSwap() const;
1758
1759 /// \returns the value with the bit representation reversed of this APInt
1760 /// Value.
1761 APInt reverseBits() const;
1762
1763 /// Converts this APInt to a double value.
1764 double roundToDouble(bool isSigned) const;
1765
1766 /// Converts this unsigned APInt to a double value.
1767 double roundToDouble() const { return roundToDouble(false); }
1768
1769 /// Converts this signed APInt to a double value.
1770 double signedRoundToDouble() const { return roundToDouble(true); }
1771
1772 /// Converts APInt bits to a double
1773 ///
1774 /// The conversion does not do a translation from integer to double, it just
1775 /// re-interprets the bits as a double. Note that it is valid to do this on
1776 /// any bit width. Exactly 64 bits will be translated.
1777 double bitsToDouble() const {
1778 return BitsToDouble(getWord(0));
1779 }
1780
1781 /// Converts APInt bits to a float
1782 ///
1783 /// The conversion does not do a translation from integer to float, it just
1784 /// re-interprets the bits as a float. Note that it is valid to do this on
1785 /// any bit width. Exactly 32 bits will be translated.
1786 float bitsToFloat() const {
1787 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1788 }
1789
1790 /// Converts a double to APInt bits.
1791 ///
1792 /// The conversion does not do a translation from double to integer, it just
1793 /// re-interprets the bits of the double.
1794 static APInt doubleToBits(double V) {
1795 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1796 }
1797
1798 /// Converts a float to APInt bits.
1799 ///
1800 /// The conversion does not do a translation from float to integer, it just
1801 /// re-interprets the bits of the float.
1802 static APInt floatToBits(float V) {
1803 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1804 }
1805
1806 /// @}
1807 /// \name Mathematics Operations
1808 /// @{
1809
1810 /// \returns the floor log base 2 of this APInt.
1811 unsigned logBase2() const { return getActiveBits() - 1; }
1812
1813 /// \returns the ceil log base 2 of this APInt.
1814 unsigned ceilLogBase2() const {
1815 APInt temp(*this);
1816 --temp;
1817 return temp.getActiveBits();
1818 }
1819
1820 /// \returns the nearest log base 2 of this APInt. Ties round up.
1821 ///
1822 /// NOTE: When we have a BitWidth of 1, we define:
1823 ///
1824 /// log2(0) = UINT32_MAX
1825 /// log2(1) = 0
1826 ///
1827 /// to get around any mathematical concerns resulting from
1828 /// referencing 2 in a space where 2 does no exist.
1829 unsigned nearestLogBase2() const {
1830 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1831 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1832 // UINT32_MAX.
1833 if (BitWidth == 1)
1834 return U.VAL - 1;
1835
1836 // Handle the zero case.
1837 if (isNullValue())
1838 return UINT32_MAX0xffffffffU;
1839
1840 // The non-zero case is handled by computing:
1841 //
1842 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1843 //
1844 // where x[i] is referring to the value of the ith bit of x.
1845 unsigned lg = logBase2();
1846 return lg + unsigned((*this)[lg - 1]);
1847 }
1848
1849 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1850 /// otherwise
1851 int32_t exactLogBase2() const {
1852 if (!isPowerOf2())
1853 return -1;
1854 return logBase2();
1855 }
1856
1857 /// Compute the square root
1858 APInt sqrt() const;
1859
1860 /// Get the absolute value;
1861 ///
1862 /// If *this is < 0 then return -(*this), otherwise *this;
1863 APInt abs() const {
1864 if (isNegative())
1865 return -(*this);
1866 return *this;
1867 }
1868
1869 /// \returns the multiplicative inverse for a given modulo.
1870 APInt multiplicativeInverse(const APInt &modulo) const;
1871
1872 /// @}
1873 /// \name Support for division by constant
1874 /// @{
1875
1876 /// Calculate the magic number for signed division by a constant.
1877 struct ms;
1878 ms magic() const;
1879
1880 /// Calculate the magic number for unsigned division by a constant.
1881 struct mu;
1882 mu magicu(unsigned LeadingZeros = 0) const;
1883
1884 /// @}
1885 /// \name Building-block Operations for APInt and APFloat
1886 /// @{
1887
1888 // These building block operations operate on a representation of arbitrary
1889 // precision, two's-complement, bignum integer values. They should be
1890 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1891 // generally a pointer to the base of an array of integer parts, representing
1892 // an unsigned bignum, and a count of how many parts there are.
1893
1894 /// Sets the least significant part of a bignum to the input value, and zeroes
1895 /// out higher parts.
1896 static void tcSet(WordType *, WordType, unsigned);
1897
1898 /// Assign one bignum to another.
1899 static void tcAssign(WordType *, const WordType *, unsigned);
1900
1901 /// Returns true if a bignum is zero, false otherwise.
1902 static bool tcIsZero(const WordType *, unsigned);
1903
1904 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1905 static int tcExtractBit(const WordType *, unsigned bit);
1906
1907 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1908 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1909 /// significant bit of DST. All high bits above srcBITS in DST are
1910 /// zero-filled.
1911 static void tcExtract(WordType *, unsigned dstCount,
1912 const WordType *, unsigned srcBits,
1913 unsigned srcLSB);
1914
1915 /// Set the given bit of a bignum. Zero-based.
1916 static void tcSetBit(WordType *, unsigned bit);
1917
1918 /// Clear the given bit of a bignum. Zero-based.
1919 static void tcClearBit(WordType *, unsigned bit);
1920
1921 /// Returns the bit number of the least or most significant set bit of a
1922 /// number. If the input number has no bits set -1U is returned.
1923 static unsigned tcLSB(const WordType *, unsigned n);
1924 static unsigned tcMSB(const WordType *parts, unsigned n);
1925
1926 /// Negate a bignum in-place.
1927 static void tcNegate(WordType *, unsigned);
1928
1929 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1930 static WordType tcAdd(WordType *, const WordType *,
1931 WordType carry, unsigned);
1932 /// DST += RHS. Returns the carry flag.
1933 static WordType tcAddPart(WordType *, WordType, unsigned);
1934
1935 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1936 static WordType tcSubtract(WordType *, const WordType *,
1937 WordType carry, unsigned);
1938 /// DST -= RHS. Returns the carry flag.
1939 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1940
1941 /// DST += SRC * MULTIPLIER + PART if add is true
1942 /// DST = SRC * MULTIPLIER + PART if add is false
1943 ///
1944 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1945 /// start at the same point, i.e. DST == SRC.
1946 ///
1947 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1948 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1949 /// result, and if all of the omitted higher parts were zero return zero,
1950 /// otherwise overflow occurred and return one.
1951 static int tcMultiplyPart(WordType *dst, const WordType *src,
1952 WordType multiplier, WordType carry,
1953 unsigned srcParts, unsigned dstParts,
1954 bool add);
1955
1956 /// DST = LHS * RHS, where DST has the same width as the operands and is
1957 /// filled with the least significant parts of the result. Returns one if
1958 /// overflow occurred, otherwise zero. DST must be disjoint from both
1959 /// operands.
1960 static int tcMultiply(WordType *, const WordType *, const WordType *,
1961 unsigned);
1962
1963 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1964 /// operands. No overflow occurs. DST must be disjoint from both operands.
1965 static void tcFullMultiply(WordType *, const WordType *,
1966 const WordType *, unsigned, unsigned);
1967
1968 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1969 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1970 /// REMAINDER to the remainder, return zero. i.e.
1971 ///
1972 /// OLD_LHS = RHS * LHS + REMAINDER
1973 ///
1974 /// SCRATCH is a bignum of the same size as the operands and result for use by
1975 /// the routine; its contents need not be initialized and are destroyed. LHS,
1976 /// REMAINDER and SCRATCH must be distinct.
1977 static int tcDivide(WordType *lhs, const WordType *rhs,
1978 WordType *remainder, WordType *scratch,
1979 unsigned parts);
1980
1981 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1982 /// restrictions on Count.
1983 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1984
1985 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1986 /// restrictions on Count.
1987 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1988
1989 /// The obvious AND, OR and XOR and complement operations.
1990 static void tcAnd(WordType *, const WordType *, unsigned);
1991 static void tcOr(WordType *, const WordType *, unsigned);
1992 static void tcXor(WordType *, const WordType *, unsigned);
1993 static void tcComplement(WordType *, unsigned);
1994
1995 /// Comparison (unsigned) of two bignums.
1996 static int tcCompare(const WordType *, const WordType *, unsigned);
1997
1998 /// Increment a bignum in-place. Return the carry flag.
1999 static WordType tcIncrement(WordType *dst, unsigned parts) {
2000 return tcAddPart(dst, 1, parts);
2001 }
2002
2003 /// Decrement a bignum in-place. Return the borrow flag.
2004 static WordType tcDecrement(WordType *dst, unsigned parts) {
2005 return tcSubtractPart(dst, 1, parts);
2006 }
2007
2008 /// Set the least significant BITS and clear the rest.
2009 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2010
2011 /// debug method
2012 void dump() const;
2013
2014 /// @}
2015};
2016
2017/// Magic data for optimising signed division by a constant.
2018struct APInt::ms {
2019 APInt m; ///< magic number
2020 unsigned s; ///< shift amount
2021};
2022
2023/// Magic data for optimising unsigned division by a constant.
2024struct APInt::mu {
2025 APInt m; ///< magic number
2026 bool a; ///< add indicator
2027 unsigned s; ///< shift amount
2028};
2029
2030inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2031
2032inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2033
2034/// Unary bitwise complement operator.
2035///
2036/// \returns an APInt that is the bitwise complement of \p v.
2037inline APInt operator~(APInt v) {
2038 v.flipAllBits();
2039 return v;
2040}
2041
2042inline APInt operator&(APInt a, const APInt &b) {
2043 a &= b;
2044 return a;
2045}
2046
2047inline APInt operator&(const APInt &a, APInt &&b) {
2048 b &= a;
2049 return std::move(b);
2050}
2051
2052inline APInt operator&(APInt a, uint64_t RHS) {
2053 a &= RHS;
2054 return a;
2055}
2056
2057inline APInt operator&(uint64_t LHS, APInt b) {
2058 b &= LHS;
2059 return b;
2060}
2061
2062inline APInt operator|(APInt a, const APInt &b) {
2063 a |= b;
2064 return a;
2065}
2066
2067inline APInt operator|(const APInt &a, APInt &&b) {
2068 b |= a;
2069 return std::move(b);
2070}
2071
2072inline APInt operator|(APInt a, uint64_t RHS) {
2073 a |= RHS;
2074 return a;
2075}
2076
2077inline APInt operator|(uint64_t LHS, APInt b) {
2078 b |= LHS;
2079 return b;
2080}
2081
2082inline APInt operator^(APInt a, const APInt &b) {
2083 a ^= b;
2084 return a;
2085}
2086
2087inline APInt operator^(const APInt &a, APInt &&b) {
2088 b ^= a;
2089 return std::move(b);
2090}
2091
2092inline APInt operator^(APInt a, uint64_t RHS) {
2093 a ^= RHS;
2094 return a;
2095}
2096
2097inline APInt operator^(uint64_t LHS, APInt b) {
2098 b ^= LHS;
2099 return b;
2100}
2101
2102inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2103 I.print(OS, true);
2104 return OS;
2105}
2106
2107inline APInt operator-(APInt v) {
2108 v.negate();
2109 return v;
2110}
2111
2112inline APInt operator+(APInt a, const APInt &b) {
2113 a += b;
2114 return a;
2115}
2116
2117inline APInt operator+(const APInt &a, APInt &&b) {
2118 b += a;
2119 return std::move(b);
2120}
2121
2122inline APInt operator+(APInt a, uint64_t RHS) {
2123 a += RHS;
2124 return a;
2125}
2126
2127inline APInt operator+(uint64_t LHS, APInt b) {
2128 b += LHS;
2129 return b;
2130}
2131
2132inline APInt operator-(APInt a, const APInt &b) {
2133 a -= b;
2134 return a;
2135}
2136
2137inline APInt operator-(const APInt &a, APInt &&b) {
2138 b.negate();
2139 b += a;
2140 return std::move(b);
2141}
2142
2143inline APInt operator-(APInt a, uint64_t RHS) {
2144 a -= RHS;
2145 return a;
2146}
2147
2148inline APInt operator-(uint64_t LHS, APInt b) {
2149 b.negate();
2150 b += LHS;
2151 return b;
2152}
2153
2154inline APInt operator*(APInt a, uint64_t RHS) {
2155 a *= RHS;
2156 return a;
2157}
2158
2159inline APInt operator*(uint64_t LHS, APInt b) {
2160 b *= LHS;
2161 return b;
2162}
2163
2164
2165namespace APIntOps {
2166
2167/// Determine the smaller of two APInts considered to be signed.
2168inline const APInt &smin(const APInt &A, const APInt &B) {
2169 return A.slt(B) ? A : B;
2170}
2171
2172/// Determine the larger of two APInts considered to be signed.
2173inline const APInt &smax(const APInt &A, const APInt &B) {
2174 return A.sgt(B) ? A : B;
2175}
2176
2177/// Determine the smaller of two APInts considered to be unsigned.
2178inline const APInt &umin(const APInt &A, const APInt &B) {
2179 return A.ult(B) ? A : B;
2180}
2181
2182/// Determine the larger of two APInts considered to be unsigned.
2183inline const APInt &umax(const APInt &A, const APInt &B) {
2184 return A.ugt(B) ? A : B;
2185}
2186
2187/// Compute GCD of two unsigned APInt values.
2188///
2189/// This function returns the greatest common divisor of the two APInt values
2190/// using Stein's algorithm.
2191///
2192/// \returns the greatest common divisor of A and B.
2193APInt GreatestCommonDivisor(APInt A, APInt B);
2194
2195/// Converts the given APInt to a double value.
2196///
2197/// Treats the APInt as an unsigned value for conversion purposes.
2198inline double RoundAPIntToDouble(const APInt &APIVal) {
2199 return APIVal.roundToDouble();
2200}
2201
2202/// Converts the given APInt to a double value.
2203///
2204/// Treats the APInt as a signed value for conversion purposes.
2205inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2206 return APIVal.signedRoundToDouble();
2207}
2208
2209/// Converts the given APInt to a float value.
2210inline float RoundAPIntToFloat(const APInt &APIVal) {
2211 return float(RoundAPIntToDouble(APIVal));
2212}
2213
2214/// Converts the given APInt to a float value.
2215///
2216/// Treats the APInt as a signed value for conversion purposes.
2217inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2218 return float(APIVal.signedRoundToDouble());
2219}
2220
2221/// Converts the given double value into a APInt.
2222///
2223/// This function convert a double value to an APInt value.
2224APInt RoundDoubleToAPInt(double Double, unsigned width);
2225
2226/// Converts a float value into a APInt.
2227///
2228/// Converts a float value into an APInt value.
2229inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2230 return RoundDoubleToAPInt(double(Float), width);
2231}
2232
2233/// Return A unsign-divided by B, rounded by the given rounding mode.
2234APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2235
2236/// Return A sign-divided by B, rounded by the given rounding mode.
2237APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2238
2239/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2240/// (e.g. 32 for i32).
2241/// This function finds the smallest number n, such that
2242/// (a) n >= 0 and q(n) = 0, or
2243/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2244/// integers, belong to two different intervals [Rk, Rk+R),
2245/// where R = 2^BW, and k is an integer.
2246/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2247/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2248/// subtraction (treated as addition of negated numbers) would always
2249/// count as an overflow, but here we want to allow values to decrease
2250/// and increase as long as they are within the same interval.
2251/// Specifically, adding of two negative numbers should not cause an
2252/// overflow (as long as the magnitude does not exceed the bit width).
2253/// On the other hand, given a positive number, adding a negative
2254/// number to it can give a negative result, which would cause the
2255/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2256/// treated as a special case of an overflow.
2257///
2258/// This function returns None if after finding k that minimizes the
2259/// positive solution to q(n) = kR, both solutions are contained between
2260/// two consecutive integers.
2261///
2262/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2263/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2264/// virtue of *signed* overflow. This function will *not* find such an n,
2265/// however it may find a value of n satisfying the inequalities due to
2266/// an *unsigned* overflow (if the values are treated as unsigned).
2267/// To find a solution for a signed overflow, treat it as a problem of
2268/// finding an unsigned overflow with a range with of BW-1.
2269///
2270/// The returned value may have a different bit width from the input
2271/// coefficients.
2272Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2273 unsigned RangeWidth);
2274
2275/// Compare two values, and if they are different, return the position of the
2276/// most significant bit that is different in the values.
2277Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2278 const APInt &B);
2279
2280} // End of APIntOps namespace
2281
2282// See friend declaration above. This additional declaration is required in
2283// order to compile LLVM with IBM xlC compiler.
2284hash_code hash_value(const APInt &Arg);
2285
2286/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2287/// with the integer held in IntVal.
2288void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2289
2290/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2291/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2292void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2293
2294/// Provide DenseMapInfo for APInt.
2295template <> struct DenseMapInfo<APInt> {
2296 static inline APInt getEmptyKey() {
2297 APInt V(nullptr, 0);
2298 V.U.VAL = 0;
2299 return V;
2300 }
2301
2302 static inline APInt getTombstoneKey() {
2303 APInt V(nullptr, 0);
2304 V.U.VAL = 1;
2305 return V;
2306 }
2307
2308 static unsigned getHashValue(const APInt &Key);
2309
2310 static bool isEqual(const APInt &LHS, const APInt &RHS) {
2311 return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS;
2312 }
2313};
2314
2315} // namespace llvm
2316
2317#endif