| File: | src/gnu/usr.bin/clang/libclangAST/../../../llvm/clang/lib/AST/ASTContext.cpp |
| Warning: | line 3281, column 3 Value stored to 'AT' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the ASTContext interface. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/ASTContext.h" |
| 14 | #include "CXXABI.h" |
| 15 | #include "Interp/Context.h" |
| 16 | #include "clang/AST/APValue.h" |
| 17 | #include "clang/AST/ASTConcept.h" |
| 18 | #include "clang/AST/ASTMutationListener.h" |
| 19 | #include "clang/AST/ASTTypeTraits.h" |
| 20 | #include "clang/AST/Attr.h" |
| 21 | #include "clang/AST/AttrIterator.h" |
| 22 | #include "clang/AST/CharUnits.h" |
| 23 | #include "clang/AST/Comment.h" |
| 24 | #include "clang/AST/Decl.h" |
| 25 | #include "clang/AST/DeclBase.h" |
| 26 | #include "clang/AST/DeclCXX.h" |
| 27 | #include "clang/AST/DeclContextInternals.h" |
| 28 | #include "clang/AST/DeclObjC.h" |
| 29 | #include "clang/AST/DeclOpenMP.h" |
| 30 | #include "clang/AST/DeclTemplate.h" |
| 31 | #include "clang/AST/DeclarationName.h" |
| 32 | #include "clang/AST/DependenceFlags.h" |
| 33 | #include "clang/AST/Expr.h" |
| 34 | #include "clang/AST/ExprCXX.h" |
| 35 | #include "clang/AST/ExprConcepts.h" |
| 36 | #include "clang/AST/ExternalASTSource.h" |
| 37 | #include "clang/AST/Mangle.h" |
| 38 | #include "clang/AST/MangleNumberingContext.h" |
| 39 | #include "clang/AST/NestedNameSpecifier.h" |
| 40 | #include "clang/AST/ParentMapContext.h" |
| 41 | #include "clang/AST/RawCommentList.h" |
| 42 | #include "clang/AST/RecordLayout.h" |
| 43 | #include "clang/AST/Stmt.h" |
| 44 | #include "clang/AST/TemplateBase.h" |
| 45 | #include "clang/AST/TemplateName.h" |
| 46 | #include "clang/AST/Type.h" |
| 47 | #include "clang/AST/TypeLoc.h" |
| 48 | #include "clang/AST/UnresolvedSet.h" |
| 49 | #include "clang/AST/VTableBuilder.h" |
| 50 | #include "clang/Basic/AddressSpaces.h" |
| 51 | #include "clang/Basic/Builtins.h" |
| 52 | #include "clang/Basic/CommentOptions.h" |
| 53 | #include "clang/Basic/ExceptionSpecificationType.h" |
| 54 | #include "clang/Basic/IdentifierTable.h" |
| 55 | #include "clang/Basic/LLVM.h" |
| 56 | #include "clang/Basic/LangOptions.h" |
| 57 | #include "clang/Basic/Linkage.h" |
| 58 | #include "clang/Basic/Module.h" |
| 59 | #include "clang/Basic/NoSanitizeList.h" |
| 60 | #include "clang/Basic/ObjCRuntime.h" |
| 61 | #include "clang/Basic/SourceLocation.h" |
| 62 | #include "clang/Basic/SourceManager.h" |
| 63 | #include "clang/Basic/Specifiers.h" |
| 64 | #include "clang/Basic/TargetCXXABI.h" |
| 65 | #include "clang/Basic/TargetInfo.h" |
| 66 | #include "clang/Basic/XRayLists.h" |
| 67 | #include "llvm/ADT/APFixedPoint.h" |
| 68 | #include "llvm/ADT/APInt.h" |
| 69 | #include "llvm/ADT/APSInt.h" |
| 70 | #include "llvm/ADT/ArrayRef.h" |
| 71 | #include "llvm/ADT/DenseMap.h" |
| 72 | #include "llvm/ADT/DenseSet.h" |
| 73 | #include "llvm/ADT/FoldingSet.h" |
| 74 | #include "llvm/ADT/None.h" |
| 75 | #include "llvm/ADT/Optional.h" |
| 76 | #include "llvm/ADT/PointerUnion.h" |
| 77 | #include "llvm/ADT/STLExtras.h" |
| 78 | #include "llvm/ADT/SmallPtrSet.h" |
| 79 | #include "llvm/ADT/SmallVector.h" |
| 80 | #include "llvm/ADT/StringExtras.h" |
| 81 | #include "llvm/ADT/StringRef.h" |
| 82 | #include "llvm/ADT/Triple.h" |
| 83 | #include "llvm/Support/Capacity.h" |
| 84 | #include "llvm/Support/Casting.h" |
| 85 | #include "llvm/Support/Compiler.h" |
| 86 | #include "llvm/Support/ErrorHandling.h" |
| 87 | #include "llvm/Support/MD5.h" |
| 88 | #include "llvm/Support/MathExtras.h" |
| 89 | #include "llvm/Support/raw_ostream.h" |
| 90 | #include <algorithm> |
| 91 | #include <cassert> |
| 92 | #include <cstddef> |
| 93 | #include <cstdint> |
| 94 | #include <cstdlib> |
| 95 | #include <map> |
| 96 | #include <memory> |
| 97 | #include <string> |
| 98 | #include <tuple> |
| 99 | #include <utility> |
| 100 | |
| 101 | using namespace clang; |
| 102 | |
| 103 | enum FloatingRank { |
| 104 | BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank |
| 105 | }; |
| 106 | |
| 107 | /// \returns location that is relevant when searching for Doc comments related |
| 108 | /// to \p D. |
| 109 | static SourceLocation getDeclLocForCommentSearch(const Decl *D, |
| 110 | SourceManager &SourceMgr) { |
| 111 | assert(D)((void)0); |
| 112 | |
| 113 | // User can not attach documentation to implicit declarations. |
| 114 | if (D->isImplicit()) |
| 115 | return {}; |
| 116 | |
| 117 | // User can not attach documentation to implicit instantiations. |
| 118 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| 119 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 120 | return {}; |
| 121 | } |
| 122 | |
| 123 | if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| 124 | if (VD->isStaticDataMember() && |
| 125 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 126 | return {}; |
| 127 | } |
| 128 | |
| 129 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) { |
| 130 | if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 131 | return {}; |
| 132 | } |
| 133 | |
| 134 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) { |
| 135 | TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); |
| 136 | if (TSK == TSK_ImplicitInstantiation || |
| 137 | TSK == TSK_Undeclared) |
| 138 | return {}; |
| 139 | } |
| 140 | |
| 141 | if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
| 142 | if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 143 | return {}; |
| 144 | } |
| 145 | if (const auto *TD = dyn_cast<TagDecl>(D)) { |
| 146 | // When tag declaration (but not definition!) is part of the |
| 147 | // decl-specifier-seq of some other declaration, it doesn't get comment |
| 148 | if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) |
| 149 | return {}; |
| 150 | } |
| 151 | // TODO: handle comments for function parameters properly. |
| 152 | if (isa<ParmVarDecl>(D)) |
| 153 | return {}; |
| 154 | |
| 155 | // TODO: we could look up template parameter documentation in the template |
| 156 | // documentation. |
| 157 | if (isa<TemplateTypeParmDecl>(D) || |
| 158 | isa<NonTypeTemplateParmDecl>(D) || |
| 159 | isa<TemplateTemplateParmDecl>(D)) |
| 160 | return {}; |
| 161 | |
| 162 | // Find declaration location. |
| 163 | // For Objective-C declarations we generally don't expect to have multiple |
| 164 | // declarators, thus use declaration starting location as the "declaration |
| 165 | // location". |
| 166 | // For all other declarations multiple declarators are used quite frequently, |
| 167 | // so we use the location of the identifier as the "declaration location". |
| 168 | if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || |
| 169 | isa<ObjCPropertyDecl>(D) || |
| 170 | isa<RedeclarableTemplateDecl>(D) || |
| 171 | isa<ClassTemplateSpecializationDecl>(D) || |
| 172 | // Allow association with Y across {} in `typedef struct X {} Y`. |
| 173 | isa<TypedefDecl>(D)) |
| 174 | return D->getBeginLoc(); |
| 175 | else { |
| 176 | const SourceLocation DeclLoc = D->getLocation(); |
| 177 | if (DeclLoc.isMacroID()) { |
| 178 | if (isa<TypedefDecl>(D)) { |
| 179 | // If location of the typedef name is in a macro, it is because being |
| 180 | // declared via a macro. Try using declaration's starting location as |
| 181 | // the "declaration location". |
| 182 | return D->getBeginLoc(); |
| 183 | } else if (const auto *TD = dyn_cast<TagDecl>(D)) { |
| 184 | // If location of the tag decl is inside a macro, but the spelling of |
| 185 | // the tag name comes from a macro argument, it looks like a special |
| 186 | // macro like NS_ENUM is being used to define the tag decl. In that |
| 187 | // case, adjust the source location to the expansion loc so that we can |
| 188 | // attach the comment to the tag decl. |
| 189 | if (SourceMgr.isMacroArgExpansion(DeclLoc) && |
| 190 | TD->isCompleteDefinition()) |
| 191 | return SourceMgr.getExpansionLoc(DeclLoc); |
| 192 | } |
| 193 | } |
| 194 | return DeclLoc; |
| 195 | } |
| 196 | |
| 197 | return {}; |
| 198 | } |
| 199 | |
| 200 | RawComment *ASTContext::getRawCommentForDeclNoCacheImpl( |
| 201 | const Decl *D, const SourceLocation RepresentativeLocForDecl, |
| 202 | const std::map<unsigned, RawComment *> &CommentsInTheFile) const { |
| 203 | // If the declaration doesn't map directly to a location in a file, we |
| 204 | // can't find the comment. |
| 205 | if (RepresentativeLocForDecl.isInvalid() || |
| 206 | !RepresentativeLocForDecl.isFileID()) |
| 207 | return nullptr; |
| 208 | |
| 209 | // If there are no comments anywhere, we won't find anything. |
| 210 | if (CommentsInTheFile.empty()) |
| 211 | return nullptr; |
| 212 | |
| 213 | // Decompose the location for the declaration and find the beginning of the |
| 214 | // file buffer. |
| 215 | const std::pair<FileID, unsigned> DeclLocDecomp = |
| 216 | SourceMgr.getDecomposedLoc(RepresentativeLocForDecl); |
| 217 | |
| 218 | // Slow path. |
| 219 | auto OffsetCommentBehindDecl = |
| 220 | CommentsInTheFile.lower_bound(DeclLocDecomp.second); |
| 221 | |
| 222 | // First check whether we have a trailing comment. |
| 223 | if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { |
| 224 | RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second; |
| 225 | if ((CommentBehindDecl->isDocumentation() || |
| 226 | LangOpts.CommentOpts.ParseAllComments) && |
| 227 | CommentBehindDecl->isTrailingComment() && |
| 228 | (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || |
| 229 | isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { |
| 230 | |
| 231 | // Check that Doxygen trailing comment comes after the declaration, starts |
| 232 | // on the same line and in the same file as the declaration. |
| 233 | if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) == |
| 234 | Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first, |
| 235 | OffsetCommentBehindDecl->first)) { |
| 236 | return CommentBehindDecl; |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | // The comment just after the declaration was not a trailing comment. |
| 242 | // Let's look at the previous comment. |
| 243 | if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) |
| 244 | return nullptr; |
| 245 | |
| 246 | auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl; |
| 247 | RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second; |
| 248 | |
| 249 | // Check that we actually have a non-member Doxygen comment. |
| 250 | if (!(CommentBeforeDecl->isDocumentation() || |
| 251 | LangOpts.CommentOpts.ParseAllComments) || |
| 252 | CommentBeforeDecl->isTrailingComment()) |
| 253 | return nullptr; |
| 254 | |
| 255 | // Decompose the end of the comment. |
| 256 | const unsigned CommentEndOffset = |
| 257 | Comments.getCommentEndOffset(CommentBeforeDecl); |
| 258 | |
| 259 | // Get the corresponding buffer. |
| 260 | bool Invalid = false; |
| 261 | const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, |
| 262 | &Invalid).data(); |
| 263 | if (Invalid) |
| 264 | return nullptr; |
| 265 | |
| 266 | // Extract text between the comment and declaration. |
| 267 | StringRef Text(Buffer + CommentEndOffset, |
| 268 | DeclLocDecomp.second - CommentEndOffset); |
| 269 | |
| 270 | // There should be no other declarations or preprocessor directives between |
| 271 | // comment and declaration. |
| 272 | if (Text.find_first_of(";{}#@") != StringRef::npos) |
| 273 | return nullptr; |
| 274 | |
| 275 | return CommentBeforeDecl; |
| 276 | } |
| 277 | |
| 278 | RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { |
| 279 | const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr); |
| 280 | |
| 281 | // If the declaration doesn't map directly to a location in a file, we |
| 282 | // can't find the comment. |
| 283 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
| 284 | return nullptr; |
| 285 | |
| 286 | if (ExternalSource && !CommentsLoaded) { |
| 287 | ExternalSource->ReadComments(); |
| 288 | CommentsLoaded = true; |
| 289 | } |
| 290 | |
| 291 | if (Comments.empty()) |
| 292 | return nullptr; |
| 293 | |
| 294 | const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first; |
| 295 | const auto CommentsInThisFile = Comments.getCommentsInFile(File); |
| 296 | if (!CommentsInThisFile || CommentsInThisFile->empty()) |
| 297 | return nullptr; |
| 298 | |
| 299 | return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile); |
| 300 | } |
| 301 | |
| 302 | void ASTContext::addComment(const RawComment &RC) { |
| 303 | assert(LangOpts.RetainCommentsFromSystemHeaders ||((void)0) |
| 304 | !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()))((void)0); |
| 305 | Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc); |
| 306 | } |
| 307 | |
| 308 | /// If we have a 'templated' declaration for a template, adjust 'D' to |
| 309 | /// refer to the actual template. |
| 310 | /// If we have an implicit instantiation, adjust 'D' to refer to template. |
| 311 | static const Decl &adjustDeclToTemplate(const Decl &D) { |
| 312 | if (const auto *FD = dyn_cast<FunctionDecl>(&D)) { |
| 313 | // Is this function declaration part of a function template? |
| 314 | if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) |
| 315 | return *FTD; |
| 316 | |
| 317 | // Nothing to do if function is not an implicit instantiation. |
| 318 | if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
| 319 | return D; |
| 320 | |
| 321 | // Function is an implicit instantiation of a function template? |
| 322 | if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) |
| 323 | return *FTD; |
| 324 | |
| 325 | // Function is instantiated from a member definition of a class template? |
| 326 | if (const FunctionDecl *MemberDecl = |
| 327 | FD->getInstantiatedFromMemberFunction()) |
| 328 | return *MemberDecl; |
| 329 | |
| 330 | return D; |
| 331 | } |
| 332 | if (const auto *VD = dyn_cast<VarDecl>(&D)) { |
| 333 | // Static data member is instantiated from a member definition of a class |
| 334 | // template? |
| 335 | if (VD->isStaticDataMember()) |
| 336 | if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember()) |
| 337 | return *MemberDecl; |
| 338 | |
| 339 | return D; |
| 340 | } |
| 341 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) { |
| 342 | // Is this class declaration part of a class template? |
| 343 | if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate()) |
| 344 | return *CTD; |
| 345 | |
| 346 | // Class is an implicit instantiation of a class template or partial |
| 347 | // specialization? |
| 348 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) { |
| 349 | if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation) |
| 350 | return D; |
| 351 | llvm::PointerUnion<ClassTemplateDecl *, |
| 352 | ClassTemplatePartialSpecializationDecl *> |
| 353 | PU = CTSD->getSpecializedTemplateOrPartial(); |
| 354 | return PU.is<ClassTemplateDecl *>() |
| 355 | ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>()) |
| 356 | : *static_cast<const Decl *>( |
| 357 | PU.get<ClassTemplatePartialSpecializationDecl *>()); |
| 358 | } |
| 359 | |
| 360 | // Class is instantiated from a member definition of a class template? |
| 361 | if (const MemberSpecializationInfo *Info = |
| 362 | CRD->getMemberSpecializationInfo()) |
| 363 | return *Info->getInstantiatedFrom(); |
| 364 | |
| 365 | return D; |
| 366 | } |
| 367 | if (const auto *ED = dyn_cast<EnumDecl>(&D)) { |
| 368 | // Enum is instantiated from a member definition of a class template? |
| 369 | if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum()) |
| 370 | return *MemberDecl; |
| 371 | |
| 372 | return D; |
| 373 | } |
| 374 | // FIXME: Adjust alias templates? |
| 375 | return D; |
| 376 | } |
| 377 | |
| 378 | const RawComment *ASTContext::getRawCommentForAnyRedecl( |
| 379 | const Decl *D, |
| 380 | const Decl **OriginalDecl) const { |
| 381 | if (!D) { |
| 382 | if (OriginalDecl) |
| 383 | OriginalDecl = nullptr; |
| 384 | return nullptr; |
| 385 | } |
| 386 | |
| 387 | D = &adjustDeclToTemplate(*D); |
| 388 | |
| 389 | // Any comment directly attached to D? |
| 390 | { |
| 391 | auto DeclComment = DeclRawComments.find(D); |
| 392 | if (DeclComment != DeclRawComments.end()) { |
| 393 | if (OriginalDecl) |
| 394 | *OriginalDecl = D; |
| 395 | return DeclComment->second; |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | // Any comment attached to any redeclaration of D? |
| 400 | const Decl *CanonicalD = D->getCanonicalDecl(); |
| 401 | if (!CanonicalD) |
| 402 | return nullptr; |
| 403 | |
| 404 | { |
| 405 | auto RedeclComment = RedeclChainComments.find(CanonicalD); |
| 406 | if (RedeclComment != RedeclChainComments.end()) { |
| 407 | if (OriginalDecl) |
| 408 | *OriginalDecl = RedeclComment->second; |
| 409 | auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second); |
| 410 | assert(CommentAtRedecl != DeclRawComments.end() &&((void)0) |
| 411 | "This decl is supposed to have comment attached.")((void)0); |
| 412 | return CommentAtRedecl->second; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | // Any redeclarations of D that we haven't checked for comments yet? |
| 417 | // We can't use DenseMap::iterator directly since it'd get invalid. |
| 418 | auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * { |
| 419 | auto LookupRes = CommentlessRedeclChains.find(CanonicalD); |
| 420 | if (LookupRes != CommentlessRedeclChains.end()) |
| 421 | return LookupRes->second; |
| 422 | return nullptr; |
| 423 | }(); |
| 424 | |
| 425 | for (const auto Redecl : D->redecls()) { |
| 426 | assert(Redecl)((void)0); |
| 427 | // Skip all redeclarations that have been checked previously. |
| 428 | if (LastCheckedRedecl) { |
| 429 | if (LastCheckedRedecl == Redecl) { |
| 430 | LastCheckedRedecl = nullptr; |
| 431 | } |
| 432 | continue; |
| 433 | } |
| 434 | const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl); |
| 435 | if (RedeclComment) { |
| 436 | cacheRawCommentForDecl(*Redecl, *RedeclComment); |
| 437 | if (OriginalDecl) |
| 438 | *OriginalDecl = Redecl; |
| 439 | return RedeclComment; |
| 440 | } |
| 441 | CommentlessRedeclChains[CanonicalD] = Redecl; |
| 442 | } |
| 443 | |
| 444 | if (OriginalDecl) |
| 445 | *OriginalDecl = nullptr; |
| 446 | return nullptr; |
| 447 | } |
| 448 | |
| 449 | void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD, |
| 450 | const RawComment &Comment) const { |
| 451 | assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments)((void)0); |
| 452 | DeclRawComments.try_emplace(&OriginalD, &Comment); |
| 453 | const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); |
| 454 | RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD); |
| 455 | CommentlessRedeclChains.erase(CanonicalDecl); |
| 456 | } |
| 457 | |
| 458 | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, |
| 459 | SmallVectorImpl<const NamedDecl *> &Redeclared) { |
| 460 | const DeclContext *DC = ObjCMethod->getDeclContext(); |
| 461 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) { |
| 462 | const ObjCInterfaceDecl *ID = IMD->getClassInterface(); |
| 463 | if (!ID) |
| 464 | return; |
| 465 | // Add redeclared method here. |
| 466 | for (const auto *Ext : ID->known_extensions()) { |
| 467 | if (ObjCMethodDecl *RedeclaredMethod = |
| 468 | Ext->getMethod(ObjCMethod->getSelector(), |
| 469 | ObjCMethod->isInstanceMethod())) |
| 470 | Redeclared.push_back(RedeclaredMethod); |
| 471 | } |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls, |
| 476 | const Preprocessor *PP) { |
| 477 | if (Comments.empty() || Decls.empty()) |
| 478 | return; |
| 479 | |
| 480 | FileID File; |
| 481 | for (Decl *D : Decls) { |
| 482 | SourceLocation Loc = D->getLocation(); |
| 483 | if (Loc.isValid()) { |
| 484 | // See if there are any new comments that are not attached to a decl. |
| 485 | // The location doesn't have to be precise - we care only about the file. |
| 486 | File = SourceMgr.getDecomposedLoc(Loc).first; |
| 487 | break; |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | if (File.isInvalid()) |
| 492 | return; |
| 493 | |
| 494 | auto CommentsInThisFile = Comments.getCommentsInFile(File); |
| 495 | if (!CommentsInThisFile || CommentsInThisFile->empty() || |
| 496 | CommentsInThisFile->rbegin()->second->isAttached()) |
| 497 | return; |
| 498 | |
| 499 | // There is at least one comment not attached to a decl. |
| 500 | // Maybe it should be attached to one of Decls? |
| 501 | // |
| 502 | // Note that this way we pick up not only comments that precede the |
| 503 | // declaration, but also comments that *follow* the declaration -- thanks to |
| 504 | // the lookahead in the lexer: we've consumed the semicolon and looked |
| 505 | // ahead through comments. |
| 506 | |
| 507 | for (const Decl *D : Decls) { |
| 508 | assert(D)((void)0); |
| 509 | if (D->isInvalidDecl()) |
| 510 | continue; |
| 511 | |
| 512 | D = &adjustDeclToTemplate(*D); |
| 513 | |
| 514 | const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr); |
| 515 | |
| 516 | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) |
| 517 | continue; |
| 518 | |
| 519 | if (DeclRawComments.count(D) > 0) |
| 520 | continue; |
| 521 | |
| 522 | if (RawComment *const DocComment = |
| 523 | getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) { |
| 524 | cacheRawCommentForDecl(*D, *DocComment); |
| 525 | comments::FullComment *FC = DocComment->parse(*this, PP, D); |
| 526 | ParsedComments[D->getCanonicalDecl()] = FC; |
| 527 | } |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, |
| 532 | const Decl *D) const { |
| 533 | auto *ThisDeclInfo = new (*this) comments::DeclInfo; |
| 534 | ThisDeclInfo->CommentDecl = D; |
| 535 | ThisDeclInfo->IsFilled = false; |
| 536 | ThisDeclInfo->fill(); |
| 537 | ThisDeclInfo->CommentDecl = FC->getDecl(); |
| 538 | if (!ThisDeclInfo->TemplateParameters) |
| 539 | ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; |
| 540 | comments::FullComment *CFC = |
| 541 | new (*this) comments::FullComment(FC->getBlocks(), |
| 542 | ThisDeclInfo); |
| 543 | return CFC; |
| 544 | } |
| 545 | |
| 546 | comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { |
| 547 | const RawComment *RC = getRawCommentForDeclNoCache(D); |
| 548 | return RC ? RC->parse(*this, nullptr, D) : nullptr; |
| 549 | } |
| 550 | |
| 551 | comments::FullComment *ASTContext::getCommentForDecl( |
| 552 | const Decl *D, |
| 553 | const Preprocessor *PP) const { |
| 554 | if (!D || D->isInvalidDecl()) |
| 555 | return nullptr; |
| 556 | D = &adjustDeclToTemplate(*D); |
| 557 | |
| 558 | const Decl *Canonical = D->getCanonicalDecl(); |
| 559 | llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = |
| 560 | ParsedComments.find(Canonical); |
| 561 | |
| 562 | if (Pos != ParsedComments.end()) { |
| 563 | if (Canonical != D) { |
| 564 | comments::FullComment *FC = Pos->second; |
| 565 | comments::FullComment *CFC = cloneFullComment(FC, D); |
| 566 | return CFC; |
| 567 | } |
| 568 | return Pos->second; |
| 569 | } |
| 570 | |
| 571 | const Decl *OriginalDecl = nullptr; |
| 572 | |
| 573 | const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); |
| 574 | if (!RC) { |
| 575 | if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { |
| 576 | SmallVector<const NamedDecl*, 8> Overridden; |
| 577 | const auto *OMD = dyn_cast<ObjCMethodDecl>(D); |
| 578 | if (OMD && OMD->isPropertyAccessor()) |
| 579 | if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) |
| 580 | if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) |
| 581 | return cloneFullComment(FC, D); |
| 582 | if (OMD) |
| 583 | addRedeclaredMethods(OMD, Overridden); |
| 584 | getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); |
| 585 | for (unsigned i = 0, e = Overridden.size(); i < e; i++) |
| 586 | if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) |
| 587 | return cloneFullComment(FC, D); |
| 588 | } |
| 589 | else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
| 590 | // Attach any tag type's documentation to its typedef if latter |
| 591 | // does not have one of its own. |
| 592 | QualType QT = TD->getUnderlyingType(); |
| 593 | if (const auto *TT = QT->getAs<TagType>()) |
| 594 | if (const Decl *TD = TT->getDecl()) |
| 595 | if (comments::FullComment *FC = getCommentForDecl(TD, PP)) |
| 596 | return cloneFullComment(FC, D); |
| 597 | } |
| 598 | else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) { |
| 599 | while (IC->getSuperClass()) { |
| 600 | IC = IC->getSuperClass(); |
| 601 | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) |
| 602 | return cloneFullComment(FC, D); |
| 603 | } |
| 604 | } |
| 605 | else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) { |
| 606 | if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) |
| 607 | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) |
| 608 | return cloneFullComment(FC, D); |
| 609 | } |
| 610 | else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { |
| 611 | if (!(RD = RD->getDefinition())) |
| 612 | return nullptr; |
| 613 | // Check non-virtual bases. |
| 614 | for (const auto &I : RD->bases()) { |
| 615 | if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) |
| 616 | continue; |
| 617 | QualType Ty = I.getType(); |
| 618 | if (Ty.isNull()) |
| 619 | continue; |
| 620 | if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { |
| 621 | if (!(NonVirtualBase= NonVirtualBase->getDefinition())) |
| 622 | continue; |
| 623 | |
| 624 | if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) |
| 625 | return cloneFullComment(FC, D); |
| 626 | } |
| 627 | } |
| 628 | // Check virtual bases. |
| 629 | for (const auto &I : RD->vbases()) { |
| 630 | if (I.getAccessSpecifier() != AS_public) |
| 631 | continue; |
| 632 | QualType Ty = I.getType(); |
| 633 | if (Ty.isNull()) |
| 634 | continue; |
| 635 | if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { |
| 636 | if (!(VirtualBase= VirtualBase->getDefinition())) |
| 637 | continue; |
| 638 | if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) |
| 639 | return cloneFullComment(FC, D); |
| 640 | } |
| 641 | } |
| 642 | } |
| 643 | return nullptr; |
| 644 | } |
| 645 | |
| 646 | // If the RawComment was attached to other redeclaration of this Decl, we |
| 647 | // should parse the comment in context of that other Decl. This is important |
| 648 | // because comments can contain references to parameter names which can be |
| 649 | // different across redeclarations. |
| 650 | if (D != OriginalDecl && OriginalDecl) |
| 651 | return getCommentForDecl(OriginalDecl, PP); |
| 652 | |
| 653 | comments::FullComment *FC = RC->parse(*this, PP, D); |
| 654 | ParsedComments[Canonical] = FC; |
| 655 | return FC; |
| 656 | } |
| 657 | |
| 658 | void |
| 659 | ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID, |
| 660 | const ASTContext &C, |
| 661 | TemplateTemplateParmDecl *Parm) { |
| 662 | ID.AddInteger(Parm->getDepth()); |
| 663 | ID.AddInteger(Parm->getPosition()); |
| 664 | ID.AddBoolean(Parm->isParameterPack()); |
| 665 | |
| 666 | TemplateParameterList *Params = Parm->getTemplateParameters(); |
| 667 | ID.AddInteger(Params->size()); |
| 668 | for (TemplateParameterList::const_iterator P = Params->begin(), |
| 669 | PEnd = Params->end(); |
| 670 | P != PEnd; ++P) { |
| 671 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
| 672 | ID.AddInteger(0); |
| 673 | ID.AddBoolean(TTP->isParameterPack()); |
| 674 | const TypeConstraint *TC = TTP->getTypeConstraint(); |
| 675 | ID.AddBoolean(TC != nullptr); |
| 676 | if (TC) |
| 677 | TC->getImmediatelyDeclaredConstraint()->Profile(ID, C, |
| 678 | /*Canonical=*/true); |
| 679 | if (TTP->isExpandedParameterPack()) { |
| 680 | ID.AddBoolean(true); |
| 681 | ID.AddInteger(TTP->getNumExpansionParameters()); |
| 682 | } else |
| 683 | ID.AddBoolean(false); |
| 684 | continue; |
| 685 | } |
| 686 | |
| 687 | if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| 688 | ID.AddInteger(1); |
| 689 | ID.AddBoolean(NTTP->isParameterPack()); |
| 690 | ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr()); |
| 691 | if (NTTP->isExpandedParameterPack()) { |
| 692 | ID.AddBoolean(true); |
| 693 | ID.AddInteger(NTTP->getNumExpansionTypes()); |
| 694 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
| 695 | QualType T = NTTP->getExpansionType(I); |
| 696 | ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); |
| 697 | } |
| 698 | } else |
| 699 | ID.AddBoolean(false); |
| 700 | continue; |
| 701 | } |
| 702 | |
| 703 | auto *TTP = cast<TemplateTemplateParmDecl>(*P); |
| 704 | ID.AddInteger(2); |
| 705 | Profile(ID, C, TTP); |
| 706 | } |
| 707 | Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause(); |
| 708 | ID.AddBoolean(RequiresClause != nullptr); |
| 709 | if (RequiresClause) |
| 710 | RequiresClause->Profile(ID, C, /*Canonical=*/true); |
| 711 | } |
| 712 | |
| 713 | static Expr * |
| 714 | canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC, |
| 715 | QualType ConstrainedType) { |
| 716 | // This is a bit ugly - we need to form a new immediately-declared |
| 717 | // constraint that references the new parameter; this would ideally |
| 718 | // require semantic analysis (e.g. template<C T> struct S {}; - the |
| 719 | // converted arguments of C<T> could be an argument pack if C is |
| 720 | // declared as template<typename... T> concept C = ...). |
| 721 | // We don't have semantic analysis here so we dig deep into the |
| 722 | // ready-made constraint expr and change the thing manually. |
| 723 | ConceptSpecializationExpr *CSE; |
| 724 | if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC)) |
| 725 | CSE = cast<ConceptSpecializationExpr>(Fold->getLHS()); |
| 726 | else |
| 727 | CSE = cast<ConceptSpecializationExpr>(IDC); |
| 728 | ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments(); |
| 729 | SmallVector<TemplateArgument, 3> NewConverted; |
| 730 | NewConverted.reserve(OldConverted.size()); |
| 731 | if (OldConverted.front().getKind() == TemplateArgument::Pack) { |
| 732 | // The case: |
| 733 | // template<typename... T> concept C = true; |
| 734 | // template<C<int> T> struct S; -> constraint is C<{T, int}> |
| 735 | NewConverted.push_back(ConstrainedType); |
| 736 | for (auto &Arg : OldConverted.front().pack_elements().drop_front(1)) |
| 737 | NewConverted.push_back(Arg); |
| 738 | TemplateArgument NewPack(NewConverted); |
| 739 | |
| 740 | NewConverted.clear(); |
| 741 | NewConverted.push_back(NewPack); |
| 742 | assert(OldConverted.size() == 1 &&((void)0) |
| 743 | "Template parameter pack should be the last parameter")((void)0); |
| 744 | } else { |
| 745 | assert(OldConverted.front().getKind() == TemplateArgument::Type &&((void)0) |
| 746 | "Unexpected first argument kind for immediately-declared "((void)0) |
| 747 | "constraint")((void)0); |
| 748 | NewConverted.push_back(ConstrainedType); |
| 749 | for (auto &Arg : OldConverted.drop_front(1)) |
| 750 | NewConverted.push_back(Arg); |
| 751 | } |
| 752 | Expr *NewIDC = ConceptSpecializationExpr::Create( |
| 753 | C, CSE->getNamedConcept(), NewConverted, nullptr, |
| 754 | CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack()); |
| 755 | |
| 756 | if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC)) |
| 757 | NewIDC = new (C) CXXFoldExpr( |
| 758 | OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC, |
| 759 | BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr, |
| 760 | SourceLocation(), /*NumExpansions=*/None); |
| 761 | return NewIDC; |
| 762 | } |
| 763 | |
| 764 | TemplateTemplateParmDecl * |
| 765 | ASTContext::getCanonicalTemplateTemplateParmDecl( |
| 766 | TemplateTemplateParmDecl *TTP) const { |
| 767 | // Check if we already have a canonical template template parameter. |
| 768 | llvm::FoldingSetNodeID ID; |
| 769 | CanonicalTemplateTemplateParm::Profile(ID, *this, TTP); |
| 770 | void *InsertPos = nullptr; |
| 771 | CanonicalTemplateTemplateParm *Canonical |
| 772 | = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| 773 | if (Canonical) |
| 774 | return Canonical->getParam(); |
| 775 | |
| 776 | // Build a canonical template parameter list. |
| 777 | TemplateParameterList *Params = TTP->getTemplateParameters(); |
| 778 | SmallVector<NamedDecl *, 4> CanonParams; |
| 779 | CanonParams.reserve(Params->size()); |
| 780 | for (TemplateParameterList::const_iterator P = Params->begin(), |
| 781 | PEnd = Params->end(); |
| 782 | P != PEnd; ++P) { |
| 783 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { |
| 784 | TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this, |
| 785 | getTranslationUnitDecl(), SourceLocation(), SourceLocation(), |
| 786 | TTP->getDepth(), TTP->getIndex(), nullptr, false, |
| 787 | TTP->isParameterPack(), TTP->hasTypeConstraint(), |
| 788 | TTP->isExpandedParameterPack() ? |
| 789 | llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None); |
| 790 | if (const auto *TC = TTP->getTypeConstraint()) { |
| 791 | QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0); |
| 792 | Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint( |
| 793 | *this, TC->getImmediatelyDeclaredConstraint(), |
| 794 | ParamAsArgument); |
| 795 | TemplateArgumentListInfo CanonArgsAsWritten; |
| 796 | if (auto *Args = TC->getTemplateArgsAsWritten()) |
| 797 | for (const auto &ArgLoc : Args->arguments()) |
| 798 | CanonArgsAsWritten.addArgument( |
| 799 | TemplateArgumentLoc(ArgLoc.getArgument(), |
| 800 | TemplateArgumentLocInfo())); |
| 801 | NewTTP->setTypeConstraint( |
| 802 | NestedNameSpecifierLoc(), |
| 803 | DeclarationNameInfo(TC->getNamedConcept()->getDeclName(), |
| 804 | SourceLocation()), /*FoundDecl=*/nullptr, |
| 805 | // Actually canonicalizing a TemplateArgumentLoc is difficult so we |
| 806 | // simply omit the ArgsAsWritten |
| 807 | TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC); |
| 808 | } |
| 809 | CanonParams.push_back(NewTTP); |
| 810 | } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { |
| 811 | QualType T = getCanonicalType(NTTP->getType()); |
| 812 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
| 813 | NonTypeTemplateParmDecl *Param; |
| 814 | if (NTTP->isExpandedParameterPack()) { |
| 815 | SmallVector<QualType, 2> ExpandedTypes; |
| 816 | SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; |
| 817 | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { |
| 818 | ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); |
| 819 | ExpandedTInfos.push_back( |
| 820 | getTrivialTypeSourceInfo(ExpandedTypes.back())); |
| 821 | } |
| 822 | |
| 823 | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| 824 | SourceLocation(), |
| 825 | SourceLocation(), |
| 826 | NTTP->getDepth(), |
| 827 | NTTP->getPosition(), nullptr, |
| 828 | T, |
| 829 | TInfo, |
| 830 | ExpandedTypes, |
| 831 | ExpandedTInfos); |
| 832 | } else { |
| 833 | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| 834 | SourceLocation(), |
| 835 | SourceLocation(), |
| 836 | NTTP->getDepth(), |
| 837 | NTTP->getPosition(), nullptr, |
| 838 | T, |
| 839 | NTTP->isParameterPack(), |
| 840 | TInfo); |
| 841 | } |
| 842 | if (AutoType *AT = T->getContainedAutoType()) { |
| 843 | if (AT->isConstrained()) { |
| 844 | Param->setPlaceholderTypeConstraint( |
| 845 | canonicalizeImmediatelyDeclaredConstraint( |
| 846 | *this, NTTP->getPlaceholderTypeConstraint(), T)); |
| 847 | } |
| 848 | } |
| 849 | CanonParams.push_back(Param); |
| 850 | |
| 851 | } else |
| 852 | CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( |
| 853 | cast<TemplateTemplateParmDecl>(*P))); |
| 854 | } |
| 855 | |
| 856 | Expr *CanonRequiresClause = nullptr; |
| 857 | if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause()) |
| 858 | CanonRequiresClause = RequiresClause; |
| 859 | |
| 860 | TemplateTemplateParmDecl *CanonTTP |
| 861 | = TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(), |
| 862 | SourceLocation(), TTP->getDepth(), |
| 863 | TTP->getPosition(), |
| 864 | TTP->isParameterPack(), |
| 865 | nullptr, |
| 866 | TemplateParameterList::Create(*this, SourceLocation(), |
| 867 | SourceLocation(), |
| 868 | CanonParams, |
| 869 | SourceLocation(), |
| 870 | CanonRequiresClause)); |
| 871 | |
| 872 | // Get the new insert position for the node we care about. |
| 873 | Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); |
| 874 | assert(!Canonical && "Shouldn't be in the map!")((void)0); |
| 875 | (void)Canonical; |
| 876 | |
| 877 | // Create the canonical template template parameter entry. |
| 878 | Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); |
| 879 | CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); |
| 880 | return CanonTTP; |
| 881 | } |
| 882 | |
| 883 | TargetCXXABI::Kind ASTContext::getCXXABIKind() const { |
| 884 | auto Kind = getTargetInfo().getCXXABI().getKind(); |
| 885 | return getLangOpts().CXXABI.getValueOr(Kind); |
| 886 | } |
| 887 | |
| 888 | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { |
| 889 | if (!LangOpts.CPlusPlus) return nullptr; |
| 890 | |
| 891 | switch (getCXXABIKind()) { |
| 892 | case TargetCXXABI::AppleARM64: |
| 893 | case TargetCXXABI::Fuchsia: |
| 894 | case TargetCXXABI::GenericARM: // Same as Itanium at this level |
| 895 | case TargetCXXABI::iOS: |
| 896 | case TargetCXXABI::WatchOS: |
| 897 | case TargetCXXABI::GenericAArch64: |
| 898 | case TargetCXXABI::GenericMIPS: |
| 899 | case TargetCXXABI::GenericItanium: |
| 900 | case TargetCXXABI::WebAssembly: |
| 901 | case TargetCXXABI::XL: |
| 902 | return CreateItaniumCXXABI(*this); |
| 903 | case TargetCXXABI::Microsoft: |
| 904 | return CreateMicrosoftCXXABI(*this); |
| 905 | } |
| 906 | llvm_unreachable("Invalid CXXABI type!")__builtin_unreachable(); |
| 907 | } |
| 908 | |
| 909 | interp::Context &ASTContext::getInterpContext() { |
| 910 | if (!InterpContext) { |
| 911 | InterpContext.reset(new interp::Context(*this)); |
| 912 | } |
| 913 | return *InterpContext.get(); |
| 914 | } |
| 915 | |
| 916 | ParentMapContext &ASTContext::getParentMapContext() { |
| 917 | if (!ParentMapCtx) |
| 918 | ParentMapCtx.reset(new ParentMapContext(*this)); |
| 919 | return *ParentMapCtx.get(); |
| 920 | } |
| 921 | |
| 922 | static const LangASMap *getAddressSpaceMap(const TargetInfo &T, |
| 923 | const LangOptions &LOpts) { |
| 924 | if (LOpts.FakeAddressSpaceMap) { |
| 925 | // The fake address space map must have a distinct entry for each |
| 926 | // language-specific address space. |
| 927 | static const unsigned FakeAddrSpaceMap[] = { |
| 928 | 0, // Default |
| 929 | 1, // opencl_global |
| 930 | 3, // opencl_local |
| 931 | 2, // opencl_constant |
| 932 | 0, // opencl_private |
| 933 | 4, // opencl_generic |
| 934 | 5, // opencl_global_device |
| 935 | 6, // opencl_global_host |
| 936 | 7, // cuda_device |
| 937 | 8, // cuda_constant |
| 938 | 9, // cuda_shared |
| 939 | 1, // sycl_global |
| 940 | 5, // sycl_global_device |
| 941 | 6, // sycl_global_host |
| 942 | 3, // sycl_local |
| 943 | 0, // sycl_private |
| 944 | 10, // ptr32_sptr |
| 945 | 11, // ptr32_uptr |
| 946 | 12 // ptr64 |
| 947 | }; |
| 948 | return &FakeAddrSpaceMap; |
| 949 | } else { |
| 950 | return &T.getAddressSpaceMap(); |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, |
| 955 | const LangOptions &LangOpts) { |
| 956 | switch (LangOpts.getAddressSpaceMapMangling()) { |
| 957 | case LangOptions::ASMM_Target: |
| 958 | return TI.useAddressSpaceMapMangling(); |
| 959 | case LangOptions::ASMM_On: |
| 960 | return true; |
| 961 | case LangOptions::ASMM_Off: |
| 962 | return false; |
| 963 | } |
| 964 | llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.")__builtin_unreachable(); |
| 965 | } |
| 966 | |
| 967 | ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, |
| 968 | IdentifierTable &idents, SelectorTable &sels, |
| 969 | Builtin::Context &builtins, TranslationUnitKind TUKind) |
| 970 | : ConstantArrayTypes(this_()), FunctionProtoTypes(this_()), |
| 971 | TemplateSpecializationTypes(this_()), |
| 972 | DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()), |
| 973 | SubstTemplateTemplateParmPacks(this_()), |
| 974 | CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts), |
| 975 | NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)), |
| 976 | XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, |
| 977 | LangOpts.XRayNeverInstrumentFiles, |
| 978 | LangOpts.XRayAttrListFiles, SM)), |
| 979 | ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), |
| 980 | PrintingPolicy(LOpts), Idents(idents), Selectors(sels), |
| 981 | BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this), |
| 982 | Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), |
| 983 | CompCategories(this_()), LastSDM(nullptr, 0) { |
| 984 | addTranslationUnitDecl(); |
| 985 | } |
| 986 | |
| 987 | ASTContext::~ASTContext() { |
| 988 | // Release the DenseMaps associated with DeclContext objects. |
| 989 | // FIXME: Is this the ideal solution? |
| 990 | ReleaseDeclContextMaps(); |
| 991 | |
| 992 | // Call all of the deallocation functions on all of their targets. |
| 993 | for (auto &Pair : Deallocations) |
| 994 | (Pair.first)(Pair.second); |
| 995 | |
| 996 | // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed |
| 997 | // because they can contain DenseMaps. |
| 998 | for (llvm::DenseMap<const ObjCContainerDecl*, |
| 999 | const ASTRecordLayout*>::iterator |
| 1000 | I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) |
| 1001 | // Increment in loop to prevent using deallocated memory. |
| 1002 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
| 1003 | R->Destroy(*this); |
| 1004 | |
| 1005 | for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator |
| 1006 | I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { |
| 1007 | // Increment in loop to prevent using deallocated memory. |
| 1008 | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) |
| 1009 | R->Destroy(*this); |
| 1010 | } |
| 1011 | |
| 1012 | for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), |
| 1013 | AEnd = DeclAttrs.end(); |
| 1014 | A != AEnd; ++A) |
| 1015 | A->second->~AttrVec(); |
| 1016 | |
| 1017 | for (const auto &Value : ModuleInitializers) |
| 1018 | Value.second->~PerModuleInitializers(); |
| 1019 | } |
| 1020 | |
| 1021 | void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { |
| 1022 | TraversalScope = TopLevelDecls; |
| 1023 | getParentMapContext().clear(); |
| 1024 | } |
| 1025 | |
| 1026 | void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { |
| 1027 | Deallocations.push_back({Callback, Data}); |
| 1028 | } |
| 1029 | |
| 1030 | void |
| 1031 | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { |
| 1032 | ExternalSource = std::move(Source); |
| 1033 | } |
| 1034 | |
| 1035 | void ASTContext::PrintStats() const { |
| 1036 | llvm::errs() << "\n*** AST Context Stats:\n"; |
| 1037 | llvm::errs() << " " << Types.size() << " types total.\n"; |
| 1038 | |
| 1039 | unsigned counts[] = { |
| 1040 | #define TYPE(Name, Parent) 0, |
| 1041 | #define ABSTRACT_TYPE(Name, Parent) |
| 1042 | #include "clang/AST/TypeNodes.inc" |
| 1043 | 0 // Extra |
| 1044 | }; |
| 1045 | |
| 1046 | for (unsigned i = 0, e = Types.size(); i != e; ++i) { |
| 1047 | Type *T = Types[i]; |
| 1048 | counts[(unsigned)T->getTypeClass()]++; |
| 1049 | } |
| 1050 | |
| 1051 | unsigned Idx = 0; |
| 1052 | unsigned TotalBytes = 0; |
| 1053 | #define TYPE(Name, Parent) \ |
| 1054 | if (counts[Idx]) \ |
| 1055 | llvm::errs() << " " << counts[Idx] << " " << #Name \ |
| 1056 | << " types, " << sizeof(Name##Type) << " each " \ |
| 1057 | << "(" << counts[Idx] * sizeof(Name##Type) \ |
| 1058 | << " bytes)\n"; \ |
| 1059 | TotalBytes += counts[Idx] * sizeof(Name##Type); \ |
| 1060 | ++Idx; |
| 1061 | #define ABSTRACT_TYPE(Name, Parent) |
| 1062 | #include "clang/AST/TypeNodes.inc" |
| 1063 | |
| 1064 | llvm::errs() << "Total bytes = " << TotalBytes << "\n"; |
| 1065 | |
| 1066 | // Implicit special member functions. |
| 1067 | llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" |
| 1068 | << NumImplicitDefaultConstructors |
| 1069 | << " implicit default constructors created\n"; |
| 1070 | llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" |
| 1071 | << NumImplicitCopyConstructors |
| 1072 | << " implicit copy constructors created\n"; |
| 1073 | if (getLangOpts().CPlusPlus) |
| 1074 | llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" |
| 1075 | << NumImplicitMoveConstructors |
| 1076 | << " implicit move constructors created\n"; |
| 1077 | llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" |
| 1078 | << NumImplicitCopyAssignmentOperators |
| 1079 | << " implicit copy assignment operators created\n"; |
| 1080 | if (getLangOpts().CPlusPlus) |
| 1081 | llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" |
| 1082 | << NumImplicitMoveAssignmentOperators |
| 1083 | << " implicit move assignment operators created\n"; |
| 1084 | llvm::errs() << NumImplicitDestructorsDeclared << "/" |
| 1085 | << NumImplicitDestructors |
| 1086 | << " implicit destructors created\n"; |
| 1087 | |
| 1088 | if (ExternalSource) { |
| 1089 | llvm::errs() << "\n"; |
| 1090 | ExternalSource->PrintStats(); |
| 1091 | } |
| 1092 | |
| 1093 | BumpAlloc.PrintStats(); |
| 1094 | } |
| 1095 | |
| 1096 | void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, |
| 1097 | bool NotifyListeners) { |
| 1098 | if (NotifyListeners) |
| 1099 | if (auto *Listener = getASTMutationListener()) |
| 1100 | Listener->RedefinedHiddenDefinition(ND, M); |
| 1101 | |
| 1102 | MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M); |
| 1103 | } |
| 1104 | |
| 1105 | void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) { |
| 1106 | auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl())); |
| 1107 | if (It == MergedDefModules.end()) |
| 1108 | return; |
| 1109 | |
| 1110 | auto &Merged = It->second; |
| 1111 | llvm::DenseSet<Module*> Found; |
| 1112 | for (Module *&M : Merged) |
| 1113 | if (!Found.insert(M).second) |
| 1114 | M = nullptr; |
| 1115 | Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end()); |
| 1116 | } |
| 1117 | |
| 1118 | ArrayRef<Module *> |
| 1119 | ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { |
| 1120 | auto MergedIt = |
| 1121 | MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl())); |
| 1122 | if (MergedIt == MergedDefModules.end()) |
| 1123 | return None; |
| 1124 | return MergedIt->second; |
| 1125 | } |
| 1126 | |
| 1127 | void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { |
| 1128 | if (LazyInitializers.empty()) |
| 1129 | return; |
| 1130 | |
| 1131 | auto *Source = Ctx.getExternalSource(); |
| 1132 | assert(Source && "lazy initializers but no external source")((void)0); |
| 1133 | |
| 1134 | auto LazyInits = std::move(LazyInitializers); |
| 1135 | LazyInitializers.clear(); |
| 1136 | |
| 1137 | for (auto ID : LazyInits) |
| 1138 | Initializers.push_back(Source->GetExternalDecl(ID)); |
| 1139 | |
| 1140 | assert(LazyInitializers.empty() &&((void)0) |
| 1141 | "GetExternalDecl for lazy module initializer added more inits")((void)0); |
| 1142 | } |
| 1143 | |
| 1144 | void ASTContext::addModuleInitializer(Module *M, Decl *D) { |
| 1145 | // One special case: if we add a module initializer that imports another |
| 1146 | // module, and that module's only initializer is an ImportDecl, simplify. |
| 1147 | if (const auto *ID = dyn_cast<ImportDecl>(D)) { |
| 1148 | auto It = ModuleInitializers.find(ID->getImportedModule()); |
| 1149 | |
| 1150 | // Maybe the ImportDecl does nothing at all. (Common case.) |
| 1151 | if (It == ModuleInitializers.end()) |
| 1152 | return; |
| 1153 | |
| 1154 | // Maybe the ImportDecl only imports another ImportDecl. |
| 1155 | auto &Imported = *It->second; |
| 1156 | if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { |
| 1157 | Imported.resolve(*this); |
| 1158 | auto *OnlyDecl = Imported.Initializers.front(); |
| 1159 | if (isa<ImportDecl>(OnlyDecl)) |
| 1160 | D = OnlyDecl; |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | auto *&Inits = ModuleInitializers[M]; |
| 1165 | if (!Inits) |
| 1166 | Inits = new (*this) PerModuleInitializers; |
| 1167 | Inits->Initializers.push_back(D); |
| 1168 | } |
| 1169 | |
| 1170 | void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) { |
| 1171 | auto *&Inits = ModuleInitializers[M]; |
| 1172 | if (!Inits) |
| 1173 | Inits = new (*this) PerModuleInitializers; |
| 1174 | Inits->LazyInitializers.insert(Inits->LazyInitializers.end(), |
| 1175 | IDs.begin(), IDs.end()); |
| 1176 | } |
| 1177 | |
| 1178 | ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { |
| 1179 | auto It = ModuleInitializers.find(M); |
| 1180 | if (It == ModuleInitializers.end()) |
| 1181 | return None; |
| 1182 | |
| 1183 | auto *Inits = It->second; |
| 1184 | Inits->resolve(*this); |
| 1185 | return Inits->Initializers; |
| 1186 | } |
| 1187 | |
| 1188 | ExternCContextDecl *ASTContext::getExternCContextDecl() const { |
| 1189 | if (!ExternCContext) |
| 1190 | ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); |
| 1191 | |
| 1192 | return ExternCContext; |
| 1193 | } |
| 1194 | |
| 1195 | BuiltinTemplateDecl * |
| 1196 | ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, |
| 1197 | const IdentifierInfo *II) const { |
| 1198 | auto *BuiltinTemplate = |
| 1199 | BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK); |
| 1200 | BuiltinTemplate->setImplicit(); |
| 1201 | getTranslationUnitDecl()->addDecl(BuiltinTemplate); |
| 1202 | |
| 1203 | return BuiltinTemplate; |
| 1204 | } |
| 1205 | |
| 1206 | BuiltinTemplateDecl * |
| 1207 | ASTContext::getMakeIntegerSeqDecl() const { |
| 1208 | if (!MakeIntegerSeqDecl) |
| 1209 | MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq, |
| 1210 | getMakeIntegerSeqName()); |
| 1211 | return MakeIntegerSeqDecl; |
| 1212 | } |
| 1213 | |
| 1214 | BuiltinTemplateDecl * |
| 1215 | ASTContext::getTypePackElementDecl() const { |
| 1216 | if (!TypePackElementDecl) |
| 1217 | TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element, |
| 1218 | getTypePackElementName()); |
| 1219 | return TypePackElementDecl; |
| 1220 | } |
| 1221 | |
| 1222 | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, |
| 1223 | RecordDecl::TagKind TK) const { |
| 1224 | SourceLocation Loc; |
| 1225 | RecordDecl *NewDecl; |
| 1226 | if (getLangOpts().CPlusPlus) |
| 1227 | NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, |
| 1228 | Loc, &Idents.get(Name)); |
| 1229 | else |
| 1230 | NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, |
| 1231 | &Idents.get(Name)); |
| 1232 | NewDecl->setImplicit(); |
| 1233 | NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( |
| 1234 | const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); |
| 1235 | return NewDecl; |
| 1236 | } |
| 1237 | |
| 1238 | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, |
| 1239 | StringRef Name) const { |
| 1240 | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); |
| 1241 | TypedefDecl *NewDecl = TypedefDecl::Create( |
| 1242 | const_cast<ASTContext &>(*this), getTranslationUnitDecl(), |
| 1243 | SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); |
| 1244 | NewDecl->setImplicit(); |
| 1245 | return NewDecl; |
| 1246 | } |
| 1247 | |
| 1248 | TypedefDecl *ASTContext::getInt128Decl() const { |
| 1249 | if (!Int128Decl) |
| 1250 | Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); |
| 1251 | return Int128Decl; |
| 1252 | } |
| 1253 | |
| 1254 | TypedefDecl *ASTContext::getUInt128Decl() const { |
| 1255 | if (!UInt128Decl) |
| 1256 | UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); |
| 1257 | return UInt128Decl; |
| 1258 | } |
| 1259 | |
| 1260 | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { |
| 1261 | auto *Ty = new (*this, TypeAlignment) BuiltinType(K); |
| 1262 | R = CanQualType::CreateUnsafe(QualType(Ty, 0)); |
| 1263 | Types.push_back(Ty); |
| 1264 | } |
| 1265 | |
| 1266 | void ASTContext::InitBuiltinTypes(const TargetInfo &Target, |
| 1267 | const TargetInfo *AuxTarget) { |
| 1268 | assert((!this->Target || this->Target == &Target) &&((void)0) |
| 1269 | "Incorrect target reinitialization")((void)0); |
| 1270 | assert(VoidTy.isNull() && "Context reinitialized?")((void)0); |
| 1271 | |
| 1272 | this->Target = &Target; |
| 1273 | this->AuxTarget = AuxTarget; |
| 1274 | |
| 1275 | ABI.reset(createCXXABI(Target)); |
| 1276 | AddrSpaceMap = getAddressSpaceMap(Target, LangOpts); |
| 1277 | AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); |
| 1278 | |
| 1279 | // C99 6.2.5p19. |
| 1280 | InitBuiltinType(VoidTy, BuiltinType::Void); |
| 1281 | |
| 1282 | // C99 6.2.5p2. |
| 1283 | InitBuiltinType(BoolTy, BuiltinType::Bool); |
| 1284 | // C99 6.2.5p3. |
| 1285 | if (LangOpts.CharIsSigned) |
| 1286 | InitBuiltinType(CharTy, BuiltinType::Char_S); |
| 1287 | else |
| 1288 | InitBuiltinType(CharTy, BuiltinType::Char_U); |
| 1289 | // C99 6.2.5p4. |
| 1290 | InitBuiltinType(SignedCharTy, BuiltinType::SChar); |
| 1291 | InitBuiltinType(ShortTy, BuiltinType::Short); |
| 1292 | InitBuiltinType(IntTy, BuiltinType::Int); |
| 1293 | InitBuiltinType(LongTy, BuiltinType::Long); |
| 1294 | InitBuiltinType(LongLongTy, BuiltinType::LongLong); |
| 1295 | |
| 1296 | // C99 6.2.5p6. |
| 1297 | InitBuiltinType(UnsignedCharTy, BuiltinType::UChar); |
| 1298 | InitBuiltinType(UnsignedShortTy, BuiltinType::UShort); |
| 1299 | InitBuiltinType(UnsignedIntTy, BuiltinType::UInt); |
| 1300 | InitBuiltinType(UnsignedLongTy, BuiltinType::ULong); |
| 1301 | InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong); |
| 1302 | |
| 1303 | // C99 6.2.5p10. |
| 1304 | InitBuiltinType(FloatTy, BuiltinType::Float); |
| 1305 | InitBuiltinType(DoubleTy, BuiltinType::Double); |
| 1306 | InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble); |
| 1307 | |
| 1308 | // GNU extension, __float128 for IEEE quadruple precision |
| 1309 | InitBuiltinType(Float128Ty, BuiltinType::Float128); |
| 1310 | |
| 1311 | // C11 extension ISO/IEC TS 18661-3 |
| 1312 | InitBuiltinType(Float16Ty, BuiltinType::Float16); |
| 1313 | |
| 1314 | // ISO/IEC JTC1 SC22 WG14 N1169 Extension |
| 1315 | InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum); |
| 1316 | InitBuiltinType(AccumTy, BuiltinType::Accum); |
| 1317 | InitBuiltinType(LongAccumTy, BuiltinType::LongAccum); |
| 1318 | InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum); |
| 1319 | InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum); |
| 1320 | InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum); |
| 1321 | InitBuiltinType(ShortFractTy, BuiltinType::ShortFract); |
| 1322 | InitBuiltinType(FractTy, BuiltinType::Fract); |
| 1323 | InitBuiltinType(LongFractTy, BuiltinType::LongFract); |
| 1324 | InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract); |
| 1325 | InitBuiltinType(UnsignedFractTy, BuiltinType::UFract); |
| 1326 | InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract); |
| 1327 | InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum); |
| 1328 | InitBuiltinType(SatAccumTy, BuiltinType::SatAccum); |
| 1329 | InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum); |
| 1330 | InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum); |
| 1331 | InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum); |
| 1332 | InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum); |
| 1333 | InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract); |
| 1334 | InitBuiltinType(SatFractTy, BuiltinType::SatFract); |
| 1335 | InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract); |
| 1336 | InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract); |
| 1337 | InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract); |
| 1338 | InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract); |
| 1339 | |
| 1340 | // GNU extension, 128-bit integers. |
| 1341 | InitBuiltinType(Int128Ty, BuiltinType::Int128); |
| 1342 | InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128); |
| 1343 | |
| 1344 | // C++ 3.9.1p5 |
| 1345 | if (TargetInfo::isTypeSigned(Target.getWCharType())) |
| 1346 | InitBuiltinType(WCharTy, BuiltinType::WChar_S); |
| 1347 | else // -fshort-wchar makes wchar_t be unsigned. |
| 1348 | InitBuiltinType(WCharTy, BuiltinType::WChar_U); |
| 1349 | if (LangOpts.CPlusPlus && LangOpts.WChar) |
| 1350 | WideCharTy = WCharTy; |
| 1351 | else { |
| 1352 | // C99 (or C++ using -fno-wchar). |
| 1353 | WideCharTy = getFromTargetType(Target.getWCharType()); |
| 1354 | } |
| 1355 | |
| 1356 | WIntTy = getFromTargetType(Target.getWIntType()); |
| 1357 | |
| 1358 | // C++20 (proposed) |
| 1359 | InitBuiltinType(Char8Ty, BuiltinType::Char8); |
| 1360 | |
| 1361 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
| 1362 | InitBuiltinType(Char16Ty, BuiltinType::Char16); |
| 1363 | else // C99 |
| 1364 | Char16Ty = getFromTargetType(Target.getChar16Type()); |
| 1365 | |
| 1366 | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ |
| 1367 | InitBuiltinType(Char32Ty, BuiltinType::Char32); |
| 1368 | else // C99 |
| 1369 | Char32Ty = getFromTargetType(Target.getChar32Type()); |
| 1370 | |
| 1371 | // Placeholder type for type-dependent expressions whose type is |
| 1372 | // completely unknown. No code should ever check a type against |
| 1373 | // DependentTy and users should never see it; however, it is here to |
| 1374 | // help diagnose failures to properly check for type-dependent |
| 1375 | // expressions. |
| 1376 | InitBuiltinType(DependentTy, BuiltinType::Dependent); |
| 1377 | |
| 1378 | // Placeholder type for functions. |
| 1379 | InitBuiltinType(OverloadTy, BuiltinType::Overload); |
| 1380 | |
| 1381 | // Placeholder type for bound members. |
| 1382 | InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember); |
| 1383 | |
| 1384 | // Placeholder type for pseudo-objects. |
| 1385 | InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject); |
| 1386 | |
| 1387 | // "any" type; useful for debugger-like clients. |
| 1388 | InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny); |
| 1389 | |
| 1390 | // Placeholder type for unbridged ARC casts. |
| 1391 | InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast); |
| 1392 | |
| 1393 | // Placeholder type for builtin functions. |
| 1394 | InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn); |
| 1395 | |
| 1396 | // Placeholder type for OMP array sections. |
| 1397 | if (LangOpts.OpenMP) { |
| 1398 | InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection); |
| 1399 | InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping); |
| 1400 | InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator); |
| 1401 | } |
| 1402 | if (LangOpts.MatrixTypes) |
| 1403 | InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx); |
| 1404 | |
| 1405 | // C99 6.2.5p11. |
| 1406 | FloatComplexTy = getComplexType(FloatTy); |
| 1407 | DoubleComplexTy = getComplexType(DoubleTy); |
| 1408 | LongDoubleComplexTy = getComplexType(LongDoubleTy); |
| 1409 | Float128ComplexTy = getComplexType(Float128Ty); |
| 1410 | |
| 1411 | // Builtin types for 'id', 'Class', and 'SEL'. |
| 1412 | InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); |
| 1413 | InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); |
| 1414 | InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); |
| 1415 | |
| 1416 | if (LangOpts.OpenCL) { |
| 1417 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 1418 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1419 | #include "clang/Basic/OpenCLImageTypes.def" |
| 1420 | |
| 1421 | InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); |
| 1422 | InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); |
| 1423 | InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); |
| 1424 | InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); |
| 1425 | InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); |
| 1426 | |
| 1427 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 1428 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
| 1429 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 1430 | } |
| 1431 | |
| 1432 | if (Target.hasAArch64SVETypes()) { |
| 1433 | #define SVE_TYPE(Name, Id, SingletonId) \ |
| 1434 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1435 | #include "clang/Basic/AArch64SVEACLETypes.def" |
| 1436 | } |
| 1437 | |
| 1438 | if (Target.getTriple().isPPC64() && |
| 1439 | Target.hasFeature("paired-vector-memops")) { |
| 1440 | if (Target.hasFeature("mma")) { |
| 1441 | #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ |
| 1442 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
| 1443 | #include "clang/Basic/PPCTypes.def" |
| 1444 | } |
| 1445 | #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ |
| 1446 | InitBuiltinType(Id##Ty, BuiltinType::Id); |
| 1447 | #include "clang/Basic/PPCTypes.def" |
| 1448 | } |
| 1449 | |
| 1450 | if (Target.hasRISCVVTypes()) { |
| 1451 | #define RVV_TYPE(Name, Id, SingletonId) \ |
| 1452 | InitBuiltinType(SingletonId, BuiltinType::Id); |
| 1453 | #include "clang/Basic/RISCVVTypes.def" |
| 1454 | } |
| 1455 | |
| 1456 | // Builtin type for __objc_yes and __objc_no |
| 1457 | ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? |
| 1458 | SignedCharTy : BoolTy); |
| 1459 | |
| 1460 | ObjCConstantStringType = QualType(); |
| 1461 | |
| 1462 | ObjCSuperType = QualType(); |
| 1463 | |
| 1464 | // void * type |
| 1465 | if (LangOpts.OpenCLGenericAddressSpace) { |
| 1466 | auto Q = VoidTy.getQualifiers(); |
| 1467 | Q.setAddressSpace(LangAS::opencl_generic); |
| 1468 | VoidPtrTy = getPointerType(getCanonicalType( |
| 1469 | getQualifiedType(VoidTy.getUnqualifiedType(), Q))); |
| 1470 | } else { |
| 1471 | VoidPtrTy = getPointerType(VoidTy); |
| 1472 | } |
| 1473 | |
| 1474 | // nullptr type (C++0x 2.14.7) |
| 1475 | InitBuiltinType(NullPtrTy, BuiltinType::NullPtr); |
| 1476 | |
| 1477 | // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 |
| 1478 | InitBuiltinType(HalfTy, BuiltinType::Half); |
| 1479 | |
| 1480 | InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16); |
| 1481 | |
| 1482 | // Builtin type used to help define __builtin_va_list. |
| 1483 | VaListTagDecl = nullptr; |
| 1484 | |
| 1485 | // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. |
| 1486 | if (LangOpts.MicrosoftExt || LangOpts.Borland) { |
| 1487 | MSGuidTagDecl = buildImplicitRecord("_GUID"); |
| 1488 | getTranslationUnitDecl()->addDecl(MSGuidTagDecl); |
| 1489 | } |
| 1490 | } |
| 1491 | |
| 1492 | DiagnosticsEngine &ASTContext::getDiagnostics() const { |
| 1493 | return SourceMgr.getDiagnostics(); |
| 1494 | } |
| 1495 | |
| 1496 | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { |
| 1497 | AttrVec *&Result = DeclAttrs[D]; |
| 1498 | if (!Result) { |
| 1499 | void *Mem = Allocate(sizeof(AttrVec)); |
| 1500 | Result = new (Mem) AttrVec; |
| 1501 | } |
| 1502 | |
| 1503 | return *Result; |
| 1504 | } |
| 1505 | |
| 1506 | /// Erase the attributes corresponding to the given declaration. |
| 1507 | void ASTContext::eraseDeclAttrs(const Decl *D) { |
| 1508 | llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); |
| 1509 | if (Pos != DeclAttrs.end()) { |
| 1510 | Pos->second->~AttrVec(); |
| 1511 | DeclAttrs.erase(Pos); |
| 1512 | } |
| 1513 | } |
| 1514 | |
| 1515 | // FIXME: Remove ? |
| 1516 | MemberSpecializationInfo * |
| 1517 | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { |
| 1518 | assert(Var->isStaticDataMember() && "Not a static data member")((void)0); |
| 1519 | return getTemplateOrSpecializationInfo(Var) |
| 1520 | .dyn_cast<MemberSpecializationInfo *>(); |
| 1521 | } |
| 1522 | |
| 1523 | ASTContext::TemplateOrSpecializationInfo |
| 1524 | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { |
| 1525 | llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = |
| 1526 | TemplateOrInstantiation.find(Var); |
| 1527 | if (Pos == TemplateOrInstantiation.end()) |
| 1528 | return {}; |
| 1529 | |
| 1530 | return Pos->second; |
| 1531 | } |
| 1532 | |
| 1533 | void |
| 1534 | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, |
| 1535 | TemplateSpecializationKind TSK, |
| 1536 | SourceLocation PointOfInstantiation) { |
| 1537 | assert(Inst->isStaticDataMember() && "Not a static data member")((void)0); |
| 1538 | assert(Tmpl->isStaticDataMember() && "Not a static data member")((void)0); |
| 1539 | setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( |
| 1540 | Tmpl, TSK, PointOfInstantiation)); |
| 1541 | } |
| 1542 | |
| 1543 | void |
| 1544 | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, |
| 1545 | TemplateOrSpecializationInfo TSI) { |
| 1546 | assert(!TemplateOrInstantiation[Inst] &&((void)0) |
| 1547 | "Already noted what the variable was instantiated from")((void)0); |
| 1548 | TemplateOrInstantiation[Inst] = TSI; |
| 1549 | } |
| 1550 | |
| 1551 | NamedDecl * |
| 1552 | ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { |
| 1553 | auto Pos = InstantiatedFromUsingDecl.find(UUD); |
| 1554 | if (Pos == InstantiatedFromUsingDecl.end()) |
| 1555 | return nullptr; |
| 1556 | |
| 1557 | return Pos->second; |
| 1558 | } |
| 1559 | |
| 1560 | void |
| 1561 | ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { |
| 1562 | assert((isa<UsingDecl>(Pattern) ||((void)0) |
| 1563 | isa<UnresolvedUsingValueDecl>(Pattern) ||((void)0) |
| 1564 | isa<UnresolvedUsingTypenameDecl>(Pattern)) &&((void)0) |
| 1565 | "pattern decl is not a using decl")((void)0); |
| 1566 | assert((isa<UsingDecl>(Inst) ||((void)0) |
| 1567 | isa<UnresolvedUsingValueDecl>(Inst) ||((void)0) |
| 1568 | isa<UnresolvedUsingTypenameDecl>(Inst)) &&((void)0) |
| 1569 | "instantiation did not produce a using decl")((void)0); |
| 1570 | assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists")((void)0); |
| 1571 | InstantiatedFromUsingDecl[Inst] = Pattern; |
| 1572 | } |
| 1573 | |
| 1574 | UsingEnumDecl * |
| 1575 | ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) { |
| 1576 | auto Pos = InstantiatedFromUsingEnumDecl.find(UUD); |
| 1577 | if (Pos == InstantiatedFromUsingEnumDecl.end()) |
| 1578 | return nullptr; |
| 1579 | |
| 1580 | return Pos->second; |
| 1581 | } |
| 1582 | |
| 1583 | void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst, |
| 1584 | UsingEnumDecl *Pattern) { |
| 1585 | assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists")((void)0); |
| 1586 | InstantiatedFromUsingEnumDecl[Inst] = Pattern; |
| 1587 | } |
| 1588 | |
| 1589 | UsingShadowDecl * |
| 1590 | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { |
| 1591 | llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos |
| 1592 | = InstantiatedFromUsingShadowDecl.find(Inst); |
| 1593 | if (Pos == InstantiatedFromUsingShadowDecl.end()) |
| 1594 | return nullptr; |
| 1595 | |
| 1596 | return Pos->second; |
| 1597 | } |
| 1598 | |
| 1599 | void |
| 1600 | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, |
| 1601 | UsingShadowDecl *Pattern) { |
| 1602 | assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists")((void)0); |
| 1603 | InstantiatedFromUsingShadowDecl[Inst] = Pattern; |
| 1604 | } |
| 1605 | |
| 1606 | FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) { |
| 1607 | llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos |
| 1608 | = InstantiatedFromUnnamedFieldDecl.find(Field); |
| 1609 | if (Pos == InstantiatedFromUnnamedFieldDecl.end()) |
| 1610 | return nullptr; |
| 1611 | |
| 1612 | return Pos->second; |
| 1613 | } |
| 1614 | |
| 1615 | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, |
| 1616 | FieldDecl *Tmpl) { |
| 1617 | assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed")((void)0); |
| 1618 | assert(!Tmpl->getDeclName() && "Template field decl is not unnamed")((void)0); |
| 1619 | assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&((void)0) |
| 1620 | "Already noted what unnamed field was instantiated from")((void)0); |
| 1621 | |
| 1622 | InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; |
| 1623 | } |
| 1624 | |
| 1625 | ASTContext::overridden_cxx_method_iterator |
| 1626 | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { |
| 1627 | return overridden_methods(Method).begin(); |
| 1628 | } |
| 1629 | |
| 1630 | ASTContext::overridden_cxx_method_iterator |
| 1631 | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { |
| 1632 | return overridden_methods(Method).end(); |
| 1633 | } |
| 1634 | |
| 1635 | unsigned |
| 1636 | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { |
| 1637 | auto Range = overridden_methods(Method); |
| 1638 | return Range.end() - Range.begin(); |
| 1639 | } |
| 1640 | |
| 1641 | ASTContext::overridden_method_range |
| 1642 | ASTContext::overridden_methods(const CXXMethodDecl *Method) const { |
| 1643 | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = |
| 1644 | OverriddenMethods.find(Method->getCanonicalDecl()); |
| 1645 | if (Pos == OverriddenMethods.end()) |
| 1646 | return overridden_method_range(nullptr, nullptr); |
| 1647 | return overridden_method_range(Pos->second.begin(), Pos->second.end()); |
| 1648 | } |
| 1649 | |
| 1650 | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, |
| 1651 | const CXXMethodDecl *Overridden) { |
| 1652 | assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl())((void)0); |
| 1653 | OverriddenMethods[Method].push_back(Overridden); |
| 1654 | } |
| 1655 | |
| 1656 | void ASTContext::getOverriddenMethods( |
| 1657 | const NamedDecl *D, |
| 1658 | SmallVectorImpl<const NamedDecl *> &Overridden) const { |
| 1659 | assert(D)((void)0); |
| 1660 | |
| 1661 | if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { |
| 1662 | Overridden.append(overridden_methods_begin(CXXMethod), |
| 1663 | overridden_methods_end(CXXMethod)); |
| 1664 | return; |
| 1665 | } |
| 1666 | |
| 1667 | const auto *Method = dyn_cast<ObjCMethodDecl>(D); |
| 1668 | if (!Method) |
| 1669 | return; |
| 1670 | |
| 1671 | SmallVector<const ObjCMethodDecl *, 8> OverDecls; |
| 1672 | Method->getOverriddenMethods(OverDecls); |
| 1673 | Overridden.append(OverDecls.begin(), OverDecls.end()); |
| 1674 | } |
| 1675 | |
| 1676 | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { |
| 1677 | assert(!Import->getNextLocalImport() &&((void)0) |
| 1678 | "Import declaration already in the chain")((void)0); |
| 1679 | assert(!Import->isFromASTFile() && "Non-local import declaration")((void)0); |
| 1680 | if (!FirstLocalImport) { |
| 1681 | FirstLocalImport = Import; |
| 1682 | LastLocalImport = Import; |
| 1683 | return; |
| 1684 | } |
| 1685 | |
| 1686 | LastLocalImport->setNextLocalImport(Import); |
| 1687 | LastLocalImport = Import; |
| 1688 | } |
| 1689 | |
| 1690 | //===----------------------------------------------------------------------===// |
| 1691 | // Type Sizing and Analysis |
| 1692 | //===----------------------------------------------------------------------===// |
| 1693 | |
| 1694 | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified |
| 1695 | /// scalar floating point type. |
| 1696 | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { |
| 1697 | switch (T->castAs<BuiltinType>()->getKind()) { |
| 1698 | default: |
| 1699 | llvm_unreachable("Not a floating point type!")__builtin_unreachable(); |
| 1700 | case BuiltinType::BFloat16: |
| 1701 | return Target->getBFloat16Format(); |
| 1702 | case BuiltinType::Float16: |
| 1703 | case BuiltinType::Half: |
| 1704 | return Target->getHalfFormat(); |
| 1705 | case BuiltinType::Float: return Target->getFloatFormat(); |
| 1706 | case BuiltinType::Double: return Target->getDoubleFormat(); |
| 1707 | case BuiltinType::LongDouble: |
| 1708 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) |
| 1709 | return AuxTarget->getLongDoubleFormat(); |
| 1710 | return Target->getLongDoubleFormat(); |
| 1711 | case BuiltinType::Float128: |
| 1712 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) |
| 1713 | return AuxTarget->getFloat128Format(); |
| 1714 | return Target->getFloat128Format(); |
| 1715 | } |
| 1716 | } |
| 1717 | |
| 1718 | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { |
| 1719 | unsigned Align = Target->getCharWidth(); |
| 1720 | |
| 1721 | bool UseAlignAttrOnly = false; |
| 1722 | if (unsigned AlignFromAttr = D->getMaxAlignment()) { |
| 1723 | Align = AlignFromAttr; |
| 1724 | |
| 1725 | // __attribute__((aligned)) can increase or decrease alignment |
| 1726 | // *except* on a struct or struct member, where it only increases |
| 1727 | // alignment unless 'packed' is also specified. |
| 1728 | // |
| 1729 | // It is an error for alignas to decrease alignment, so we can |
| 1730 | // ignore that possibility; Sema should diagnose it. |
| 1731 | if (isa<FieldDecl>(D)) { |
| 1732 | UseAlignAttrOnly = D->hasAttr<PackedAttr>() || |
| 1733 | cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); |
| 1734 | } else { |
| 1735 | UseAlignAttrOnly = true; |
| 1736 | } |
| 1737 | } |
| 1738 | else if (isa<FieldDecl>(D)) |
| 1739 | UseAlignAttrOnly = |
| 1740 | D->hasAttr<PackedAttr>() || |
| 1741 | cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>(); |
| 1742 | |
| 1743 | // If we're using the align attribute only, just ignore everything |
| 1744 | // else about the declaration and its type. |
| 1745 | if (UseAlignAttrOnly) { |
| 1746 | // do nothing |
| 1747 | } else if (const auto *VD = dyn_cast<ValueDecl>(D)) { |
| 1748 | QualType T = VD->getType(); |
| 1749 | if (const auto *RT = T->getAs<ReferenceType>()) { |
| 1750 | if (ForAlignof) |
| 1751 | T = RT->getPointeeType(); |
| 1752 | else |
| 1753 | T = getPointerType(RT->getPointeeType()); |
| 1754 | } |
| 1755 | QualType BaseT = getBaseElementType(T); |
| 1756 | if (T->isFunctionType()) |
| 1757 | Align = getTypeInfoImpl(T.getTypePtr()).Align; |
| 1758 | else if (!BaseT->isIncompleteType()) { |
| 1759 | // Adjust alignments of declarations with array type by the |
| 1760 | // large-array alignment on the target. |
| 1761 | if (const ArrayType *arrayType = getAsArrayType(T)) { |
| 1762 | unsigned MinWidth = Target->getLargeArrayMinWidth(); |
| 1763 | if (!ForAlignof && MinWidth) { |
| 1764 | if (isa<VariableArrayType>(arrayType)) |
| 1765 | Align = std::max(Align, Target->getLargeArrayAlign()); |
| 1766 | else if (isa<ConstantArrayType>(arrayType) && |
| 1767 | MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) |
| 1768 | Align = std::max(Align, Target->getLargeArrayAlign()); |
| 1769 | } |
| 1770 | } |
| 1771 | Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); |
| 1772 | if (BaseT.getQualifiers().hasUnaligned()) |
| 1773 | Align = Target->getCharWidth(); |
| 1774 | if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| 1775 | if (VD->hasGlobalStorage() && !ForAlignof) { |
| 1776 | uint64_t TypeSize = getTypeSize(T.getTypePtr()); |
| 1777 | Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize)); |
| 1778 | } |
| 1779 | } |
| 1780 | } |
| 1781 | |
| 1782 | // Fields can be subject to extra alignment constraints, like if |
| 1783 | // the field is packed, the struct is packed, or the struct has a |
| 1784 | // a max-field-alignment constraint (#pragma pack). So calculate |
| 1785 | // the actual alignment of the field within the struct, and then |
| 1786 | // (as we're expected to) constrain that by the alignment of the type. |
| 1787 | if (const auto *Field = dyn_cast<FieldDecl>(VD)) { |
| 1788 | const RecordDecl *Parent = Field->getParent(); |
| 1789 | // We can only produce a sensible answer if the record is valid. |
| 1790 | if (!Parent->isInvalidDecl()) { |
| 1791 | const ASTRecordLayout &Layout = getASTRecordLayout(Parent); |
| 1792 | |
| 1793 | // Start with the record's overall alignment. |
| 1794 | unsigned FieldAlign = toBits(Layout.getAlignment()); |
| 1795 | |
| 1796 | // Use the GCD of that and the offset within the record. |
| 1797 | uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); |
| 1798 | if (Offset > 0) { |
| 1799 | // Alignment is always a power of 2, so the GCD will be a power of 2, |
| 1800 | // which means we get to do this crazy thing instead of Euclid's. |
| 1801 | uint64_t LowBitOfOffset = Offset & (~Offset + 1); |
| 1802 | if (LowBitOfOffset < FieldAlign) |
| 1803 | FieldAlign = static_cast<unsigned>(LowBitOfOffset); |
| 1804 | } |
| 1805 | |
| 1806 | Align = std::min(Align, FieldAlign); |
| 1807 | } |
| 1808 | } |
| 1809 | } |
| 1810 | |
| 1811 | // Some targets have hard limitation on the maximum requestable alignment in |
| 1812 | // aligned attribute for static variables. |
| 1813 | const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute(); |
| 1814 | const auto *VD = dyn_cast<VarDecl>(D); |
| 1815 | if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static) |
| 1816 | Align = std::min(Align, MaxAlignedAttr); |
| 1817 | |
| 1818 | return toCharUnitsFromBits(Align); |
| 1819 | } |
| 1820 | |
| 1821 | CharUnits ASTContext::getExnObjectAlignment() const { |
| 1822 | return toCharUnitsFromBits(Target->getExnObjectAlignment()); |
| 1823 | } |
| 1824 | |
| 1825 | // getTypeInfoDataSizeInChars - Return the size of a type, in |
| 1826 | // chars. If the type is a record, its data size is returned. This is |
| 1827 | // the size of the memcpy that's performed when assigning this type |
| 1828 | // using a trivial copy/move assignment operator. |
| 1829 | TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { |
| 1830 | TypeInfoChars Info = getTypeInfoInChars(T); |
| 1831 | |
| 1832 | // In C++, objects can sometimes be allocated into the tail padding |
| 1833 | // of a base-class subobject. We decide whether that's possible |
| 1834 | // during class layout, so here we can just trust the layout results. |
| 1835 | if (getLangOpts().CPlusPlus) { |
| 1836 | if (const auto *RT = T->getAs<RecordType>()) { |
| 1837 | const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl()); |
| 1838 | Info.Width = layout.getDataSize(); |
| 1839 | } |
| 1840 | } |
| 1841 | |
| 1842 | return Info; |
| 1843 | } |
| 1844 | |
| 1845 | /// getConstantArrayInfoInChars - Performing the computation in CharUnits |
| 1846 | /// instead of in bits prevents overflowing the uint64_t for some large arrays. |
| 1847 | TypeInfoChars |
| 1848 | static getConstantArrayInfoInChars(const ASTContext &Context, |
| 1849 | const ConstantArrayType *CAT) { |
| 1850 | TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType()); |
| 1851 | uint64_t Size = CAT->getSize().getZExtValue(); |
| 1852 | assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=((void)0) |
| 1853 | (uint64_t)(-1)/Size) &&((void)0) |
| 1854 | "Overflow in array type char size evaluation")((void)0); |
| 1855 | uint64_t Width = EltInfo.Width.getQuantity() * Size; |
| 1856 | unsigned Align = EltInfo.Align.getQuantity(); |
| 1857 | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || |
| 1858 | Context.getTargetInfo().getPointerWidth(0) == 64) |
| 1859 | Width = llvm::alignTo(Width, Align); |
| 1860 | return TypeInfoChars(CharUnits::fromQuantity(Width), |
| 1861 | CharUnits::fromQuantity(Align), |
| 1862 | EltInfo.AlignIsRequired); |
| 1863 | } |
| 1864 | |
| 1865 | TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { |
| 1866 | if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) |
| 1867 | return getConstantArrayInfoInChars(*this, CAT); |
| 1868 | TypeInfo Info = getTypeInfo(T); |
| 1869 | return TypeInfoChars(toCharUnitsFromBits(Info.Width), |
| 1870 | toCharUnitsFromBits(Info.Align), |
| 1871 | Info.AlignIsRequired); |
| 1872 | } |
| 1873 | |
| 1874 | TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { |
| 1875 | return getTypeInfoInChars(T.getTypePtr()); |
| 1876 | } |
| 1877 | |
| 1878 | bool ASTContext::isAlignmentRequired(const Type *T) const { |
| 1879 | return getTypeInfo(T).AlignIsRequired; |
| 1880 | } |
| 1881 | |
| 1882 | bool ASTContext::isAlignmentRequired(QualType T) const { |
| 1883 | return isAlignmentRequired(T.getTypePtr()); |
| 1884 | } |
| 1885 | |
| 1886 | unsigned ASTContext::getTypeAlignIfKnown(QualType T, |
| 1887 | bool NeedsPreferredAlignment) const { |
| 1888 | // An alignment on a typedef overrides anything else. |
| 1889 | if (const auto *TT = T->getAs<TypedefType>()) |
| 1890 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
| 1891 | return Align; |
| 1892 | |
| 1893 | // If we have an (array of) complete type, we're done. |
| 1894 | T = getBaseElementType(T); |
| 1895 | if (!T->isIncompleteType()) |
| 1896 | return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); |
| 1897 | |
| 1898 | // If we had an array type, its element type might be a typedef |
| 1899 | // type with an alignment attribute. |
| 1900 | if (const auto *TT = T->getAs<TypedefType>()) |
| 1901 | if (unsigned Align = TT->getDecl()->getMaxAlignment()) |
| 1902 | return Align; |
| 1903 | |
| 1904 | // Otherwise, see if the declaration of the type had an attribute. |
| 1905 | if (const auto *TT = T->getAs<TagType>()) |
| 1906 | return TT->getDecl()->getMaxAlignment(); |
| 1907 | |
| 1908 | return 0; |
| 1909 | } |
| 1910 | |
| 1911 | TypeInfo ASTContext::getTypeInfo(const Type *T) const { |
| 1912 | TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); |
| 1913 | if (I != MemoizedTypeInfo.end()) |
| 1914 | return I->second; |
| 1915 | |
| 1916 | // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. |
| 1917 | TypeInfo TI = getTypeInfoImpl(T); |
| 1918 | MemoizedTypeInfo[T] = TI; |
| 1919 | return TI; |
| 1920 | } |
| 1921 | |
| 1922 | /// getTypeInfoImpl - Return the size of the specified type, in bits. This |
| 1923 | /// method does not work on incomplete types. |
| 1924 | /// |
| 1925 | /// FIXME: Pointers into different addr spaces could have different sizes and |
| 1926 | /// alignment requirements: getPointerInfo should take an AddrSpace, this |
| 1927 | /// should take a QualType, &c. |
| 1928 | TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { |
| 1929 | uint64_t Width = 0; |
| 1930 | unsigned Align = 8; |
| 1931 | bool AlignIsRequired = false; |
| 1932 | unsigned AS = 0; |
| 1933 | switch (T->getTypeClass()) { |
| 1934 | #define TYPE(Class, Base) |
| 1935 | #define ABSTRACT_TYPE(Class, Base) |
| 1936 | #define NON_CANONICAL_TYPE(Class, Base) |
| 1937 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 1938 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \ |
| 1939 | case Type::Class: \ |
| 1940 | assert(!T->isDependentType() && "should not see dependent types here")((void)0); \ |
| 1941 | return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); |
| 1942 | #include "clang/AST/TypeNodes.inc" |
| 1943 | llvm_unreachable("Should not see dependent types")__builtin_unreachable(); |
| 1944 | |
| 1945 | case Type::FunctionNoProto: |
| 1946 | case Type::FunctionProto: |
| 1947 | // GCC extension: alignof(function) = 32 bits |
| 1948 | Width = 0; |
| 1949 | Align = 32; |
| 1950 | break; |
| 1951 | |
| 1952 | case Type::IncompleteArray: |
| 1953 | case Type::VariableArray: |
| 1954 | case Type::ConstantArray: { |
| 1955 | // Model non-constant sized arrays as size zero, but track the alignment. |
| 1956 | uint64_t Size = 0; |
| 1957 | if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) |
| 1958 | Size = CAT->getSize().getZExtValue(); |
| 1959 | |
| 1960 | TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType()); |
| 1961 | assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&((void)0) |
| 1962 | "Overflow in array type bit size evaluation")((void)0); |
| 1963 | Width = EltInfo.Width * Size; |
| 1964 | Align = EltInfo.Align; |
| 1965 | AlignIsRequired = EltInfo.AlignIsRequired; |
| 1966 | if (!getTargetInfo().getCXXABI().isMicrosoft() || |
| 1967 | getTargetInfo().getPointerWidth(0) == 64) |
| 1968 | Width = llvm::alignTo(Width, Align); |
| 1969 | break; |
| 1970 | } |
| 1971 | |
| 1972 | case Type::ExtVector: |
| 1973 | case Type::Vector: { |
| 1974 | const auto *VT = cast<VectorType>(T); |
| 1975 | TypeInfo EltInfo = getTypeInfo(VT->getElementType()); |
| 1976 | Width = EltInfo.Width * VT->getNumElements(); |
| 1977 | Align = Width; |
| 1978 | // If the alignment is not a power of 2, round up to the next power of 2. |
| 1979 | // This happens for non-power-of-2 length vectors. |
| 1980 | if (Align & (Align-1)) { |
| 1981 | Align = llvm::NextPowerOf2(Align); |
| 1982 | Width = llvm::alignTo(Width, Align); |
| 1983 | } |
| 1984 | // Adjust the alignment based on the target max. |
| 1985 | uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); |
| 1986 | if (TargetVectorAlign && TargetVectorAlign < Align) |
| 1987 | Align = TargetVectorAlign; |
| 1988 | if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) |
| 1989 | // Adjust the alignment for fixed-length SVE vectors. This is important |
| 1990 | // for non-power-of-2 vector lengths. |
| 1991 | Align = 128; |
| 1992 | else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) |
| 1993 | // Adjust the alignment for fixed-length SVE predicates. |
| 1994 | Align = 16; |
| 1995 | break; |
| 1996 | } |
| 1997 | |
| 1998 | case Type::ConstantMatrix: { |
| 1999 | const auto *MT = cast<ConstantMatrixType>(T); |
| 2000 | TypeInfo ElementInfo = getTypeInfo(MT->getElementType()); |
| 2001 | // The internal layout of a matrix value is implementation defined. |
| 2002 | // Initially be ABI compatible with arrays with respect to alignment and |
| 2003 | // size. |
| 2004 | Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); |
| 2005 | Align = ElementInfo.Align; |
| 2006 | break; |
| 2007 | } |
| 2008 | |
| 2009 | case Type::Builtin: |
| 2010 | switch (cast<BuiltinType>(T)->getKind()) { |
| 2011 | default: llvm_unreachable("Unknown builtin type!")__builtin_unreachable(); |
| 2012 | case BuiltinType::Void: |
| 2013 | // GCC extension: alignof(void) = 8 bits. |
| 2014 | Width = 0; |
| 2015 | Align = 8; |
| 2016 | break; |
| 2017 | case BuiltinType::Bool: |
| 2018 | Width = Target->getBoolWidth(); |
| 2019 | Align = Target->getBoolAlign(); |
| 2020 | break; |
| 2021 | case BuiltinType::Char_S: |
| 2022 | case BuiltinType::Char_U: |
| 2023 | case BuiltinType::UChar: |
| 2024 | case BuiltinType::SChar: |
| 2025 | case BuiltinType::Char8: |
| 2026 | Width = Target->getCharWidth(); |
| 2027 | Align = Target->getCharAlign(); |
| 2028 | break; |
| 2029 | case BuiltinType::WChar_S: |
| 2030 | case BuiltinType::WChar_U: |
| 2031 | Width = Target->getWCharWidth(); |
| 2032 | Align = Target->getWCharAlign(); |
| 2033 | break; |
| 2034 | case BuiltinType::Char16: |
| 2035 | Width = Target->getChar16Width(); |
| 2036 | Align = Target->getChar16Align(); |
| 2037 | break; |
| 2038 | case BuiltinType::Char32: |
| 2039 | Width = Target->getChar32Width(); |
| 2040 | Align = Target->getChar32Align(); |
| 2041 | break; |
| 2042 | case BuiltinType::UShort: |
| 2043 | case BuiltinType::Short: |
| 2044 | Width = Target->getShortWidth(); |
| 2045 | Align = Target->getShortAlign(); |
| 2046 | break; |
| 2047 | case BuiltinType::UInt: |
| 2048 | case BuiltinType::Int: |
| 2049 | Width = Target->getIntWidth(); |
| 2050 | Align = Target->getIntAlign(); |
| 2051 | break; |
| 2052 | case BuiltinType::ULong: |
| 2053 | case BuiltinType::Long: |
| 2054 | Width = Target->getLongWidth(); |
| 2055 | Align = Target->getLongAlign(); |
| 2056 | break; |
| 2057 | case BuiltinType::ULongLong: |
| 2058 | case BuiltinType::LongLong: |
| 2059 | Width = Target->getLongLongWidth(); |
| 2060 | Align = Target->getLongLongAlign(); |
| 2061 | break; |
| 2062 | case BuiltinType::Int128: |
| 2063 | case BuiltinType::UInt128: |
| 2064 | Width = 128; |
| 2065 | Align = 128; // int128_t is 128-bit aligned on all targets. |
| 2066 | break; |
| 2067 | case BuiltinType::ShortAccum: |
| 2068 | case BuiltinType::UShortAccum: |
| 2069 | case BuiltinType::SatShortAccum: |
| 2070 | case BuiltinType::SatUShortAccum: |
| 2071 | Width = Target->getShortAccumWidth(); |
| 2072 | Align = Target->getShortAccumAlign(); |
| 2073 | break; |
| 2074 | case BuiltinType::Accum: |
| 2075 | case BuiltinType::UAccum: |
| 2076 | case BuiltinType::SatAccum: |
| 2077 | case BuiltinType::SatUAccum: |
| 2078 | Width = Target->getAccumWidth(); |
| 2079 | Align = Target->getAccumAlign(); |
| 2080 | break; |
| 2081 | case BuiltinType::LongAccum: |
| 2082 | case BuiltinType::ULongAccum: |
| 2083 | case BuiltinType::SatLongAccum: |
| 2084 | case BuiltinType::SatULongAccum: |
| 2085 | Width = Target->getLongAccumWidth(); |
| 2086 | Align = Target->getLongAccumAlign(); |
| 2087 | break; |
| 2088 | case BuiltinType::ShortFract: |
| 2089 | case BuiltinType::UShortFract: |
| 2090 | case BuiltinType::SatShortFract: |
| 2091 | case BuiltinType::SatUShortFract: |
| 2092 | Width = Target->getShortFractWidth(); |
| 2093 | Align = Target->getShortFractAlign(); |
| 2094 | break; |
| 2095 | case BuiltinType::Fract: |
| 2096 | case BuiltinType::UFract: |
| 2097 | case BuiltinType::SatFract: |
| 2098 | case BuiltinType::SatUFract: |
| 2099 | Width = Target->getFractWidth(); |
| 2100 | Align = Target->getFractAlign(); |
| 2101 | break; |
| 2102 | case BuiltinType::LongFract: |
| 2103 | case BuiltinType::ULongFract: |
| 2104 | case BuiltinType::SatLongFract: |
| 2105 | case BuiltinType::SatULongFract: |
| 2106 | Width = Target->getLongFractWidth(); |
| 2107 | Align = Target->getLongFractAlign(); |
| 2108 | break; |
| 2109 | case BuiltinType::BFloat16: |
| 2110 | Width = Target->getBFloat16Width(); |
| 2111 | Align = Target->getBFloat16Align(); |
| 2112 | break; |
| 2113 | case BuiltinType::Float16: |
| 2114 | case BuiltinType::Half: |
| 2115 | if (Target->hasFloat16Type() || !getLangOpts().OpenMP || |
| 2116 | !getLangOpts().OpenMPIsDevice) { |
| 2117 | Width = Target->getHalfWidth(); |
| 2118 | Align = Target->getHalfAlign(); |
| 2119 | } else { |
| 2120 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&((void)0) |
| 2121 | "Expected OpenMP device compilation.")((void)0); |
| 2122 | Width = AuxTarget->getHalfWidth(); |
| 2123 | Align = AuxTarget->getHalfAlign(); |
| 2124 | } |
| 2125 | break; |
| 2126 | case BuiltinType::Float: |
| 2127 | Width = Target->getFloatWidth(); |
| 2128 | Align = Target->getFloatAlign(); |
| 2129 | break; |
| 2130 | case BuiltinType::Double: |
| 2131 | Width = Target->getDoubleWidth(); |
| 2132 | Align = Target->getDoubleAlign(); |
| 2133 | break; |
| 2134 | case BuiltinType::LongDouble: |
| 2135 | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && |
| 2136 | (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || |
| 2137 | Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { |
| 2138 | Width = AuxTarget->getLongDoubleWidth(); |
| 2139 | Align = AuxTarget->getLongDoubleAlign(); |
| 2140 | } else { |
| 2141 | Width = Target->getLongDoubleWidth(); |
| 2142 | Align = Target->getLongDoubleAlign(); |
| 2143 | } |
| 2144 | break; |
| 2145 | case BuiltinType::Float128: |
| 2146 | if (Target->hasFloat128Type() || !getLangOpts().OpenMP || |
| 2147 | !getLangOpts().OpenMPIsDevice) { |
| 2148 | Width = Target->getFloat128Width(); |
| 2149 | Align = Target->getFloat128Align(); |
| 2150 | } else { |
| 2151 | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&((void)0) |
| 2152 | "Expected OpenMP device compilation.")((void)0); |
| 2153 | Width = AuxTarget->getFloat128Width(); |
| 2154 | Align = AuxTarget->getFloat128Align(); |
| 2155 | } |
| 2156 | break; |
| 2157 | case BuiltinType::NullPtr: |
| 2158 | Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t) |
| 2159 | Align = Target->getPointerAlign(0); // == sizeof(void*) |
| 2160 | break; |
| 2161 | case BuiltinType::ObjCId: |
| 2162 | case BuiltinType::ObjCClass: |
| 2163 | case BuiltinType::ObjCSel: |
| 2164 | Width = Target->getPointerWidth(0); |
| 2165 | Align = Target->getPointerAlign(0); |
| 2166 | break; |
| 2167 | case BuiltinType::OCLSampler: |
| 2168 | case BuiltinType::OCLEvent: |
| 2169 | case BuiltinType::OCLClkEvent: |
| 2170 | case BuiltinType::OCLQueue: |
| 2171 | case BuiltinType::OCLReserveID: |
| 2172 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 2173 | case BuiltinType::Id: |
| 2174 | #include "clang/Basic/OpenCLImageTypes.def" |
| 2175 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 2176 | case BuiltinType::Id: |
| 2177 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 2178 | AS = getTargetAddressSpace( |
| 2179 | Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T))); |
| 2180 | Width = Target->getPointerWidth(AS); |
| 2181 | Align = Target->getPointerAlign(AS); |
| 2182 | break; |
| 2183 | // The SVE types are effectively target-specific. The length of an |
| 2184 | // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple |
| 2185 | // of 128 bits. There is one predicate bit for each vector byte, so the |
| 2186 | // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. |
| 2187 | // |
| 2188 | // Because the length is only known at runtime, we use a dummy value |
| 2189 | // of 0 for the static length. The alignment values are those defined |
| 2190 | // by the Procedure Call Standard for the Arm Architecture. |
| 2191 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ |
| 2192 | IsSigned, IsFP, IsBF) \ |
| 2193 | case BuiltinType::Id: \ |
| 2194 | Width = 0; \ |
| 2195 | Align = 128; \ |
| 2196 | break; |
| 2197 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ |
| 2198 | case BuiltinType::Id: \ |
| 2199 | Width = 0; \ |
| 2200 | Align = 16; \ |
| 2201 | break; |
| 2202 | #include "clang/Basic/AArch64SVEACLETypes.def" |
| 2203 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| 2204 | case BuiltinType::Id: \ |
| 2205 | Width = Size; \ |
| 2206 | Align = Size; \ |
| 2207 | break; |
| 2208 | #include "clang/Basic/PPCTypes.def" |
| 2209 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned, \ |
| 2210 | IsFP) \ |
| 2211 | case BuiltinType::Id: \ |
| 2212 | Width = 0; \ |
| 2213 | Align = ElBits; \ |
| 2214 | break; |
| 2215 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \ |
| 2216 | case BuiltinType::Id: \ |
| 2217 | Width = 0; \ |
| 2218 | Align = 8; \ |
| 2219 | break; |
| 2220 | #include "clang/Basic/RISCVVTypes.def" |
| 2221 | } |
| 2222 | break; |
| 2223 | case Type::ObjCObjectPointer: |
| 2224 | Width = Target->getPointerWidth(0); |
| 2225 | Align = Target->getPointerAlign(0); |
| 2226 | break; |
| 2227 | case Type::BlockPointer: |
| 2228 | AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType()); |
| 2229 | Width = Target->getPointerWidth(AS); |
| 2230 | Align = Target->getPointerAlign(AS); |
| 2231 | break; |
| 2232 | case Type::LValueReference: |
| 2233 | case Type::RValueReference: |
| 2234 | // alignof and sizeof should never enter this code path here, so we go |
| 2235 | // the pointer route. |
| 2236 | AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType()); |
| 2237 | Width = Target->getPointerWidth(AS); |
| 2238 | Align = Target->getPointerAlign(AS); |
| 2239 | break; |
| 2240 | case Type::Pointer: |
| 2241 | AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType()); |
| 2242 | Width = Target->getPointerWidth(AS); |
| 2243 | Align = Target->getPointerAlign(AS); |
| 2244 | break; |
| 2245 | case Type::MemberPointer: { |
| 2246 | const auto *MPT = cast<MemberPointerType>(T); |
| 2247 | CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); |
| 2248 | Width = MPI.Width; |
| 2249 | Align = MPI.Align; |
| 2250 | break; |
| 2251 | } |
| 2252 | case Type::Complex: { |
| 2253 | // Complex types have the same alignment as their elements, but twice the |
| 2254 | // size. |
| 2255 | TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); |
| 2256 | Width = EltInfo.Width * 2; |
| 2257 | Align = EltInfo.Align; |
| 2258 | break; |
| 2259 | } |
| 2260 | case Type::ObjCObject: |
| 2261 | return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); |
| 2262 | case Type::Adjusted: |
| 2263 | case Type::Decayed: |
| 2264 | return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); |
| 2265 | case Type::ObjCInterface: { |
| 2266 | const auto *ObjCI = cast<ObjCInterfaceType>(T); |
| 2267 | if (ObjCI->getDecl()->isInvalidDecl()) { |
| 2268 | Width = 8; |
| 2269 | Align = 8; |
| 2270 | break; |
| 2271 | } |
| 2272 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
| 2273 | Width = toBits(Layout.getSize()); |
| 2274 | Align = toBits(Layout.getAlignment()); |
| 2275 | break; |
| 2276 | } |
| 2277 | case Type::ExtInt: { |
| 2278 | const auto *EIT = cast<ExtIntType>(T); |
| 2279 | Align = |
| 2280 | std::min(static_cast<unsigned>(std::max( |
| 2281 | getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))), |
| 2282 | Target->getLongLongAlign()); |
| 2283 | Width = llvm::alignTo(EIT->getNumBits(), Align); |
| 2284 | break; |
| 2285 | } |
| 2286 | case Type::Record: |
| 2287 | case Type::Enum: { |
| 2288 | const auto *TT = cast<TagType>(T); |
| 2289 | |
| 2290 | if (TT->getDecl()->isInvalidDecl()) { |
| 2291 | Width = 8; |
| 2292 | Align = 8; |
| 2293 | break; |
| 2294 | } |
| 2295 | |
| 2296 | if (const auto *ET = dyn_cast<EnumType>(TT)) { |
| 2297 | const EnumDecl *ED = ET->getDecl(); |
| 2298 | TypeInfo Info = |
| 2299 | getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); |
| 2300 | if (unsigned AttrAlign = ED->getMaxAlignment()) { |
| 2301 | Info.Align = AttrAlign; |
| 2302 | Info.AlignIsRequired = true; |
| 2303 | } |
| 2304 | return Info; |
| 2305 | } |
| 2306 | |
| 2307 | const auto *RT = cast<RecordType>(TT); |
| 2308 | const RecordDecl *RD = RT->getDecl(); |
| 2309 | const ASTRecordLayout &Layout = getASTRecordLayout(RD); |
| 2310 | Width = toBits(Layout.getSize()); |
| 2311 | Align = toBits(Layout.getAlignment()); |
| 2312 | AlignIsRequired = RD->hasAttr<AlignedAttr>(); |
| 2313 | break; |
| 2314 | } |
| 2315 | |
| 2316 | case Type::SubstTemplateTypeParm: |
| 2317 | return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> |
| 2318 | getReplacementType().getTypePtr()); |
| 2319 | |
| 2320 | case Type::Auto: |
| 2321 | case Type::DeducedTemplateSpecialization: { |
| 2322 | const auto *A = cast<DeducedType>(T); |
| 2323 | assert(!A->getDeducedType().isNull() &&((void)0) |
| 2324 | "cannot request the size of an undeduced or dependent auto type")((void)0); |
| 2325 | return getTypeInfo(A->getDeducedType().getTypePtr()); |
| 2326 | } |
| 2327 | |
| 2328 | case Type::Paren: |
| 2329 | return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); |
| 2330 | |
| 2331 | case Type::MacroQualified: |
| 2332 | return getTypeInfo( |
| 2333 | cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr()); |
| 2334 | |
| 2335 | case Type::ObjCTypeParam: |
| 2336 | return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr()); |
| 2337 | |
| 2338 | case Type::Typedef: { |
| 2339 | const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl(); |
| 2340 | TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr()); |
| 2341 | // If the typedef has an aligned attribute on it, it overrides any computed |
| 2342 | // alignment we have. This violates the GCC documentation (which says that |
| 2343 | // attribute(aligned) can only round up) but matches its implementation. |
| 2344 | if (unsigned AttrAlign = Typedef->getMaxAlignment()) { |
| 2345 | Align = AttrAlign; |
| 2346 | AlignIsRequired = true; |
| 2347 | } else { |
| 2348 | Align = Info.Align; |
| 2349 | AlignIsRequired = Info.AlignIsRequired; |
| 2350 | } |
| 2351 | Width = Info.Width; |
| 2352 | break; |
| 2353 | } |
| 2354 | |
| 2355 | case Type::Elaborated: |
| 2356 | return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr()); |
| 2357 | |
| 2358 | case Type::Attributed: |
| 2359 | return getTypeInfo( |
| 2360 | cast<AttributedType>(T)->getEquivalentType().getTypePtr()); |
| 2361 | |
| 2362 | case Type::Atomic: { |
| 2363 | // Start with the base type information. |
| 2364 | TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); |
| 2365 | Width = Info.Width; |
| 2366 | Align = Info.Align; |
| 2367 | |
| 2368 | if (!Width) { |
| 2369 | // An otherwise zero-sized type should still generate an |
| 2370 | // atomic operation. |
| 2371 | Width = Target->getCharWidth(); |
| 2372 | assert(Align)((void)0); |
| 2373 | } else if (Width <= Target->getMaxAtomicPromoteWidth()) { |
| 2374 | // If the size of the type doesn't exceed the platform's max |
| 2375 | // atomic promotion width, make the size and alignment more |
| 2376 | // favorable to atomic operations: |
| 2377 | |
| 2378 | // Round the size up to a power of 2. |
| 2379 | if (!llvm::isPowerOf2_64(Width)) |
| 2380 | Width = llvm::NextPowerOf2(Width); |
| 2381 | |
| 2382 | // Set the alignment equal to the size. |
| 2383 | Align = static_cast<unsigned>(Width); |
| 2384 | } |
| 2385 | } |
| 2386 | break; |
| 2387 | |
| 2388 | case Type::Pipe: |
| 2389 | Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global)); |
| 2390 | Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global)); |
| 2391 | break; |
| 2392 | } |
| 2393 | |
| 2394 | assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2")((void)0); |
| 2395 | return TypeInfo(Width, Align, AlignIsRequired); |
| 2396 | } |
| 2397 | |
| 2398 | unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { |
| 2399 | UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T); |
| 2400 | if (I != MemoizedUnadjustedAlign.end()) |
| 2401 | return I->second; |
| 2402 | |
| 2403 | unsigned UnadjustedAlign; |
| 2404 | if (const auto *RT = T->getAs<RecordType>()) { |
| 2405 | const RecordDecl *RD = RT->getDecl(); |
| 2406 | const ASTRecordLayout &Layout = getASTRecordLayout(RD); |
| 2407 | UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); |
| 2408 | } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) { |
| 2409 | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); |
| 2410 | UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); |
| 2411 | } else { |
| 2412 | UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType()); |
| 2413 | } |
| 2414 | |
| 2415 | MemoizedUnadjustedAlign[T] = UnadjustedAlign; |
| 2416 | return UnadjustedAlign; |
| 2417 | } |
| 2418 | |
| 2419 | unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { |
| 2420 | unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign(); |
| 2421 | return SimdAlign; |
| 2422 | } |
| 2423 | |
| 2424 | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. |
| 2425 | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { |
| 2426 | return CharUnits::fromQuantity(BitSize / getCharWidth()); |
| 2427 | } |
| 2428 | |
| 2429 | /// toBits - Convert a size in characters to a size in characters. |
| 2430 | int64_t ASTContext::toBits(CharUnits CharSize) const { |
| 2431 | return CharSize.getQuantity() * getCharWidth(); |
| 2432 | } |
| 2433 | |
| 2434 | /// getTypeSizeInChars - Return the size of the specified type, in characters. |
| 2435 | /// This method does not work on incomplete types. |
| 2436 | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { |
| 2437 | return getTypeInfoInChars(T).Width; |
| 2438 | } |
| 2439 | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { |
| 2440 | return getTypeInfoInChars(T).Width; |
| 2441 | } |
| 2442 | |
| 2443 | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in |
| 2444 | /// characters. This method does not work on incomplete types. |
| 2445 | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { |
| 2446 | return toCharUnitsFromBits(getTypeAlign(T)); |
| 2447 | } |
| 2448 | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { |
| 2449 | return toCharUnitsFromBits(getTypeAlign(T)); |
| 2450 | } |
| 2451 | |
| 2452 | /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a |
| 2453 | /// type, in characters, before alignment adustments. This method does |
| 2454 | /// not work on incomplete types. |
| 2455 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { |
| 2456 | return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); |
| 2457 | } |
| 2458 | CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { |
| 2459 | return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); |
| 2460 | } |
| 2461 | |
| 2462 | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified |
| 2463 | /// type for the current target in bits. This can be different than the ABI |
| 2464 | /// alignment in cases where it is beneficial for performance or backwards |
| 2465 | /// compatibility preserving to overalign a data type. (Note: despite the name, |
| 2466 | /// the preferred alignment is ABI-impacting, and not an optimization.) |
| 2467 | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { |
| 2468 | TypeInfo TI = getTypeInfo(T); |
| 2469 | unsigned ABIAlign = TI.Align; |
| 2470 | |
| 2471 | T = T->getBaseElementTypeUnsafe(); |
| 2472 | |
| 2473 | // The preferred alignment of member pointers is that of a pointer. |
| 2474 | if (T->isMemberPointerType()) |
| 2475 | return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); |
| 2476 | |
| 2477 | if (!Target->allowsLargerPreferedTypeAlignment()) |
| 2478 | return ABIAlign; |
| 2479 | |
| 2480 | if (const auto *RT = T->getAs<RecordType>()) { |
| 2481 | if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl()) |
| 2482 | return ABIAlign; |
| 2483 | |
| 2484 | unsigned PreferredAlign = static_cast<unsigned>( |
| 2485 | toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment)); |
| 2486 | assert(PreferredAlign >= ABIAlign &&((void)0) |
| 2487 | "PreferredAlign should be at least as large as ABIAlign.")((void)0); |
| 2488 | return PreferredAlign; |
| 2489 | } |
| 2490 | |
| 2491 | // Double (and, for targets supporting AIX `power` alignment, long double) and |
| 2492 | // long long should be naturally aligned (despite requiring less alignment) if |
| 2493 | // possible. |
| 2494 | if (const auto *CT = T->getAs<ComplexType>()) |
| 2495 | T = CT->getElementType().getTypePtr(); |
| 2496 | if (const auto *ET = T->getAs<EnumType>()) |
| 2497 | T = ET->getDecl()->getIntegerType().getTypePtr(); |
| 2498 | if (T->isSpecificBuiltinType(BuiltinType::Double) || |
| 2499 | T->isSpecificBuiltinType(BuiltinType::LongLong) || |
| 2500 | T->isSpecificBuiltinType(BuiltinType::ULongLong) || |
| 2501 | (T->isSpecificBuiltinType(BuiltinType::LongDouble) && |
| 2502 | Target->defaultsToAIXPowerAlignment())) |
| 2503 | // Don't increase the alignment if an alignment attribute was specified on a |
| 2504 | // typedef declaration. |
| 2505 | if (!TI.AlignIsRequired) |
| 2506 | return std::max(ABIAlign, (unsigned)getTypeSize(T)); |
| 2507 | |
| 2508 | return ABIAlign; |
| 2509 | } |
| 2510 | |
| 2511 | /// getTargetDefaultAlignForAttributeAligned - Return the default alignment |
| 2512 | /// for __attribute__((aligned)) on this target, to be used if no alignment |
| 2513 | /// value is specified. |
| 2514 | unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { |
| 2515 | return getTargetInfo().getDefaultAlignForAttributeAligned(); |
| 2516 | } |
| 2517 | |
| 2518 | /// getAlignOfGlobalVar - Return the alignment in bits that should be given |
| 2519 | /// to a global variable of the specified type. |
| 2520 | unsigned ASTContext::getAlignOfGlobalVar(QualType T) const { |
| 2521 | uint64_t TypeSize = getTypeSize(T.getTypePtr()); |
| 2522 | return std::max(getPreferredTypeAlign(T), |
| 2523 | getTargetInfo().getMinGlobalAlign(TypeSize)); |
| 2524 | } |
| 2525 | |
| 2526 | /// getAlignOfGlobalVarInChars - Return the alignment in characters that |
| 2527 | /// should be given to a global variable of the specified type. |
| 2528 | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const { |
| 2529 | return toCharUnitsFromBits(getAlignOfGlobalVar(T)); |
| 2530 | } |
| 2531 | |
| 2532 | CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { |
| 2533 | CharUnits Offset = CharUnits::Zero(); |
| 2534 | const ASTRecordLayout *Layout = &getASTRecordLayout(RD); |
| 2535 | while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { |
| 2536 | Offset += Layout->getBaseClassOffset(Base); |
| 2537 | Layout = &getASTRecordLayout(Base); |
| 2538 | } |
| 2539 | return Offset; |
| 2540 | } |
| 2541 | |
| 2542 | CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { |
| 2543 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
| 2544 | CharUnits ThisAdjustment = CharUnits::Zero(); |
| 2545 | ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); |
| 2546 | bool DerivedMember = MP.isMemberPointerToDerivedMember(); |
| 2547 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); |
| 2548 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
| 2549 | const CXXRecordDecl *Base = RD; |
| 2550 | const CXXRecordDecl *Derived = Path[I]; |
| 2551 | if (DerivedMember) |
| 2552 | std::swap(Base, Derived); |
| 2553 | ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base); |
| 2554 | RD = Path[I]; |
| 2555 | } |
| 2556 | if (DerivedMember) |
| 2557 | ThisAdjustment = -ThisAdjustment; |
| 2558 | return ThisAdjustment; |
| 2559 | } |
| 2560 | |
| 2561 | /// DeepCollectObjCIvars - |
| 2562 | /// This routine first collects all declared, but not synthesized, ivars in |
| 2563 | /// super class and then collects all ivars, including those synthesized for |
| 2564 | /// current class. This routine is used for implementation of current class |
| 2565 | /// when all ivars, declared and synthesized are known. |
| 2566 | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, |
| 2567 | bool leafClass, |
| 2568 | SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { |
| 2569 | if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) |
| 2570 | DeepCollectObjCIvars(SuperClass, false, Ivars); |
| 2571 | if (!leafClass) { |
| 2572 | for (const auto *I : OI->ivars()) |
| 2573 | Ivars.push_back(I); |
| 2574 | } else { |
| 2575 | auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); |
| 2576 | for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; |
| 2577 | Iv= Iv->getNextIvar()) |
| 2578 | Ivars.push_back(Iv); |
| 2579 | } |
| 2580 | } |
| 2581 | |
| 2582 | /// CollectInheritedProtocols - Collect all protocols in current class and |
| 2583 | /// those inherited by it. |
| 2584 | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, |
| 2585 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { |
| 2586 | if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { |
| 2587 | // We can use protocol_iterator here instead of |
| 2588 | // all_referenced_protocol_iterator since we are walking all categories. |
| 2589 | for (auto *Proto : OI->all_referenced_protocols()) { |
| 2590 | CollectInheritedProtocols(Proto, Protocols); |
| 2591 | } |
| 2592 | |
| 2593 | // Categories of this Interface. |
| 2594 | for (const auto *Cat : OI->visible_categories()) |
| 2595 | CollectInheritedProtocols(Cat, Protocols); |
| 2596 | |
| 2597 | if (ObjCInterfaceDecl *SD = OI->getSuperClass()) |
| 2598 | while (SD) { |
| 2599 | CollectInheritedProtocols(SD, Protocols); |
| 2600 | SD = SD->getSuperClass(); |
| 2601 | } |
| 2602 | } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { |
| 2603 | for (auto *Proto : OC->protocols()) { |
| 2604 | CollectInheritedProtocols(Proto, Protocols); |
| 2605 | } |
| 2606 | } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { |
| 2607 | // Insert the protocol. |
| 2608 | if (!Protocols.insert( |
| 2609 | const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) |
| 2610 | return; |
| 2611 | |
| 2612 | for (auto *Proto : OP->protocols()) |
| 2613 | CollectInheritedProtocols(Proto, Protocols); |
| 2614 | } |
| 2615 | } |
| 2616 | |
| 2617 | static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, |
| 2618 | const RecordDecl *RD) { |
| 2619 | assert(RD->isUnion() && "Must be union type")((void)0); |
| 2620 | CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl()); |
| 2621 | |
| 2622 | for (const auto *Field : RD->fields()) { |
| 2623 | if (!Context.hasUniqueObjectRepresentations(Field->getType())) |
| 2624 | return false; |
| 2625 | CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType()); |
| 2626 | if (FieldSize != UnionSize) |
| 2627 | return false; |
| 2628 | } |
| 2629 | return !RD->field_empty(); |
| 2630 | } |
| 2631 | |
| 2632 | static bool isStructEmpty(QualType Ty) { |
| 2633 | const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl(); |
| 2634 | |
| 2635 | if (!RD->field_empty()) |
| 2636 | return false; |
| 2637 | |
| 2638 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) |
| 2639 | return ClassDecl->isEmpty(); |
| 2640 | |
| 2641 | return true; |
| 2642 | } |
| 2643 | |
| 2644 | static llvm::Optional<int64_t> |
| 2645 | structHasUniqueObjectRepresentations(const ASTContext &Context, |
| 2646 | const RecordDecl *RD) { |
| 2647 | assert(!RD->isUnion() && "Must be struct/class type")((void)0); |
| 2648 | const auto &Layout = Context.getASTRecordLayout(RD); |
| 2649 | |
| 2650 | int64_t CurOffsetInBits = 0; |
| 2651 | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { |
| 2652 | if (ClassDecl->isDynamicClass()) |
| 2653 | return llvm::None; |
| 2654 | |
| 2655 | SmallVector<std::pair<QualType, int64_t>, 4> Bases; |
| 2656 | for (const auto &Base : ClassDecl->bases()) { |
| 2657 | // Empty types can be inherited from, and non-empty types can potentially |
| 2658 | // have tail padding, so just make sure there isn't an error. |
| 2659 | if (!isStructEmpty(Base.getType())) { |
| 2660 | llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations( |
| 2661 | Context, Base.getType()->castAs<RecordType>()->getDecl()); |
| 2662 | if (!Size) |
| 2663 | return llvm::None; |
| 2664 | Bases.emplace_back(Base.getType(), Size.getValue()); |
| 2665 | } |
| 2666 | } |
| 2667 | |
| 2668 | llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L, |
| 2669 | const std::pair<QualType, int64_t> &R) { |
| 2670 | return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) < |
| 2671 | Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl()); |
| 2672 | }); |
| 2673 | |
| 2674 | for (const auto &Base : Bases) { |
| 2675 | int64_t BaseOffset = Context.toBits( |
| 2676 | Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl())); |
| 2677 | int64_t BaseSize = Base.second; |
| 2678 | if (BaseOffset != CurOffsetInBits) |
| 2679 | return llvm::None; |
| 2680 | CurOffsetInBits = BaseOffset + BaseSize; |
| 2681 | } |
| 2682 | } |
| 2683 | |
| 2684 | for (const auto *Field : RD->fields()) { |
| 2685 | if (!Field->getType()->isReferenceType() && |
| 2686 | !Context.hasUniqueObjectRepresentations(Field->getType())) |
| 2687 | return llvm::None; |
| 2688 | |
| 2689 | int64_t FieldSizeInBits = |
| 2690 | Context.toBits(Context.getTypeSizeInChars(Field->getType())); |
| 2691 | if (Field->isBitField()) { |
| 2692 | int64_t BitfieldSize = Field->getBitWidthValue(Context); |
| 2693 | |
| 2694 | if (BitfieldSize > FieldSizeInBits) |
| 2695 | return llvm::None; |
| 2696 | FieldSizeInBits = BitfieldSize; |
| 2697 | } |
| 2698 | |
| 2699 | int64_t FieldOffsetInBits = Context.getFieldOffset(Field); |
| 2700 | |
| 2701 | if (FieldOffsetInBits != CurOffsetInBits) |
| 2702 | return llvm::None; |
| 2703 | |
| 2704 | CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits; |
| 2705 | } |
| 2706 | |
| 2707 | return CurOffsetInBits; |
| 2708 | } |
| 2709 | |
| 2710 | bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const { |
| 2711 | // C++17 [meta.unary.prop]: |
| 2712 | // The predicate condition for a template specialization |
| 2713 | // has_unique_object_representations<T> shall be |
| 2714 | // satisfied if and only if: |
| 2715 | // (9.1) - T is trivially copyable, and |
| 2716 | // (9.2) - any two objects of type T with the same value have the same |
| 2717 | // object representation, where two objects |
| 2718 | // of array or non-union class type are considered to have the same value |
| 2719 | // if their respective sequences of |
| 2720 | // direct subobjects have the same values, and two objects of union type |
| 2721 | // are considered to have the same |
| 2722 | // value if they have the same active member and the corresponding members |
| 2723 | // have the same value. |
| 2724 | // The set of scalar types for which this condition holds is |
| 2725 | // implementation-defined. [ Note: If a type has padding |
| 2726 | // bits, the condition does not hold; otherwise, the condition holds true |
| 2727 | // for unsigned integral types. -- end note ] |
| 2728 | assert(!Ty.isNull() && "Null QualType sent to unique object rep check")((void)0); |
| 2729 | |
| 2730 | // Arrays are unique only if their element type is unique. |
| 2731 | if (Ty->isArrayType()) |
| 2732 | return hasUniqueObjectRepresentations(getBaseElementType(Ty)); |
| 2733 | |
| 2734 | // (9.1) - T is trivially copyable... |
| 2735 | if (!Ty.isTriviallyCopyableType(*this)) |
| 2736 | return false; |
| 2737 | |
| 2738 | // All integrals and enums are unique. |
| 2739 | if (Ty->isIntegralOrEnumerationType()) |
| 2740 | return true; |
| 2741 | |
| 2742 | // All other pointers are unique. |
| 2743 | if (Ty->isPointerType()) |
| 2744 | return true; |
| 2745 | |
| 2746 | if (Ty->isMemberPointerType()) { |
| 2747 | const auto *MPT = Ty->getAs<MemberPointerType>(); |
| 2748 | return !ABI->getMemberPointerInfo(MPT).HasPadding; |
| 2749 | } |
| 2750 | |
| 2751 | if (Ty->isRecordType()) { |
| 2752 | const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl(); |
| 2753 | |
| 2754 | if (Record->isInvalidDecl()) |
| 2755 | return false; |
| 2756 | |
| 2757 | if (Record->isUnion()) |
| 2758 | return unionHasUniqueObjectRepresentations(*this, Record); |
| 2759 | |
| 2760 | Optional<int64_t> StructSize = |
| 2761 | structHasUniqueObjectRepresentations(*this, Record); |
| 2762 | |
| 2763 | return StructSize && |
| 2764 | StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty)); |
| 2765 | } |
| 2766 | |
| 2767 | // FIXME: More cases to handle here (list by rsmith): |
| 2768 | // vectors (careful about, eg, vector of 3 foo) |
| 2769 | // _Complex int and friends |
| 2770 | // _Atomic T |
| 2771 | // Obj-C block pointers |
| 2772 | // Obj-C object pointers |
| 2773 | // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, |
| 2774 | // clk_event_t, queue_t, reserve_id_t) |
| 2775 | // There're also Obj-C class types and the Obj-C selector type, but I think it |
| 2776 | // makes sense for those to return false here. |
| 2777 | |
| 2778 | return false; |
| 2779 | } |
| 2780 | |
| 2781 | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { |
| 2782 | unsigned count = 0; |
| 2783 | // Count ivars declared in class extension. |
| 2784 | for (const auto *Ext : OI->known_extensions()) |
| 2785 | count += Ext->ivar_size(); |
| 2786 | |
| 2787 | // Count ivar defined in this class's implementation. This |
| 2788 | // includes synthesized ivars. |
| 2789 | if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) |
| 2790 | count += ImplDecl->ivar_size(); |
| 2791 | |
| 2792 | return count; |
| 2793 | } |
| 2794 | |
| 2795 | bool ASTContext::isSentinelNullExpr(const Expr *E) { |
| 2796 | if (!E) |
| 2797 | return false; |
| 2798 | |
| 2799 | // nullptr_t is always treated as null. |
| 2800 | if (E->getType()->isNullPtrType()) return true; |
| 2801 | |
| 2802 | if (E->getType()->isAnyPointerType() && |
| 2803 | E->IgnoreParenCasts()->isNullPointerConstant(*this, |
| 2804 | Expr::NPC_ValueDependentIsNull)) |
| 2805 | return true; |
| 2806 | |
| 2807 | // Unfortunately, __null has type 'int'. |
| 2808 | if (isa<GNUNullExpr>(E)) return true; |
| 2809 | |
| 2810 | return false; |
| 2811 | } |
| 2812 | |
| 2813 | /// Get the implementation of ObjCInterfaceDecl, or nullptr if none |
| 2814 | /// exists. |
| 2815 | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { |
| 2816 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
| 2817 | I = ObjCImpls.find(D); |
| 2818 | if (I != ObjCImpls.end()) |
| 2819 | return cast<ObjCImplementationDecl>(I->second); |
| 2820 | return nullptr; |
| 2821 | } |
| 2822 | |
| 2823 | /// Get the implementation of ObjCCategoryDecl, or nullptr if none |
| 2824 | /// exists. |
| 2825 | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { |
| 2826 | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator |
| 2827 | I = ObjCImpls.find(D); |
| 2828 | if (I != ObjCImpls.end()) |
| 2829 | return cast<ObjCCategoryImplDecl>(I->second); |
| 2830 | return nullptr; |
| 2831 | } |
| 2832 | |
| 2833 | /// Set the implementation of ObjCInterfaceDecl. |
| 2834 | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, |
| 2835 | ObjCImplementationDecl *ImplD) { |
| 2836 | assert(IFaceD && ImplD && "Passed null params")((void)0); |
| 2837 | ObjCImpls[IFaceD] = ImplD; |
| 2838 | } |
| 2839 | |
| 2840 | /// Set the implementation of ObjCCategoryDecl. |
| 2841 | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, |
| 2842 | ObjCCategoryImplDecl *ImplD) { |
| 2843 | assert(CatD && ImplD && "Passed null params")((void)0); |
| 2844 | ObjCImpls[CatD] = ImplD; |
| 2845 | } |
| 2846 | |
| 2847 | const ObjCMethodDecl * |
| 2848 | ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { |
| 2849 | return ObjCMethodRedecls.lookup(MD); |
| 2850 | } |
| 2851 | |
| 2852 | void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, |
| 2853 | const ObjCMethodDecl *Redecl) { |
| 2854 | assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration")((void)0); |
| 2855 | ObjCMethodRedecls[MD] = Redecl; |
| 2856 | } |
| 2857 | |
| 2858 | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( |
| 2859 | const NamedDecl *ND) const { |
| 2860 | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) |
| 2861 | return ID; |
| 2862 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) |
| 2863 | return CD->getClassInterface(); |
| 2864 | if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) |
| 2865 | return IMD->getClassInterface(); |
| 2866 | |
| 2867 | return nullptr; |
| 2868 | } |
| 2869 | |
| 2870 | /// Get the copy initialization expression of VarDecl, or nullptr if |
| 2871 | /// none exists. |
| 2872 | BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { |
| 2873 | assert(VD && "Passed null params")((void)0); |
| 2874 | assert(VD->hasAttr<BlocksAttr>() &&((void)0) |
| 2875 | "getBlockVarCopyInits - not __block var")((void)0); |
| 2876 | auto I = BlockVarCopyInits.find(VD); |
| 2877 | if (I != BlockVarCopyInits.end()) |
| 2878 | return I->second; |
| 2879 | return {nullptr, false}; |
| 2880 | } |
| 2881 | |
| 2882 | /// Set the copy initialization expression of a block var decl. |
| 2883 | void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, |
| 2884 | bool CanThrow) { |
| 2885 | assert(VD && CopyExpr && "Passed null params")((void)0); |
| 2886 | assert(VD->hasAttr<BlocksAttr>() &&((void)0) |
| 2887 | "setBlockVarCopyInits - not __block var")((void)0); |
| 2888 | BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); |
| 2889 | } |
| 2890 | |
| 2891 | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, |
| 2892 | unsigned DataSize) const { |
| 2893 | if (!DataSize) |
| 2894 | DataSize = TypeLoc::getFullDataSizeForType(T); |
| 2895 | else |
| 2896 | assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&((void)0) |
| 2897 | "incorrect data size provided to CreateTypeSourceInfo!")((void)0); |
| 2898 | |
| 2899 | auto *TInfo = |
| 2900 | (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); |
| 2901 | new (TInfo) TypeSourceInfo(T); |
| 2902 | return TInfo; |
| 2903 | } |
| 2904 | |
| 2905 | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, |
| 2906 | SourceLocation L) const { |
| 2907 | TypeSourceInfo *DI = CreateTypeSourceInfo(T); |
| 2908 | DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); |
| 2909 | return DI; |
| 2910 | } |
| 2911 | |
| 2912 | const ASTRecordLayout & |
| 2913 | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { |
| 2914 | return getObjCLayout(D, nullptr); |
| 2915 | } |
| 2916 | |
| 2917 | const ASTRecordLayout & |
| 2918 | ASTContext::getASTObjCImplementationLayout( |
| 2919 | const ObjCImplementationDecl *D) const { |
| 2920 | return getObjCLayout(D->getClassInterface(), D); |
| 2921 | } |
| 2922 | |
| 2923 | //===----------------------------------------------------------------------===// |
| 2924 | // Type creation/memoization methods |
| 2925 | //===----------------------------------------------------------------------===// |
| 2926 | |
| 2927 | QualType |
| 2928 | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { |
| 2929 | unsigned fastQuals = quals.getFastQualifiers(); |
| 2930 | quals.removeFastQualifiers(); |
| 2931 | |
| 2932 | // Check if we've already instantiated this type. |
| 2933 | llvm::FoldingSetNodeID ID; |
| 2934 | ExtQuals::Profile(ID, baseType, quals); |
| 2935 | void *insertPos = nullptr; |
| 2936 | if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { |
| 2937 | assert(eq->getQualifiers() == quals)((void)0); |
| 2938 | return QualType(eq, fastQuals); |
| 2939 | } |
| 2940 | |
| 2941 | // If the base type is not canonical, make the appropriate canonical type. |
| 2942 | QualType canon; |
| 2943 | if (!baseType->isCanonicalUnqualified()) { |
| 2944 | SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); |
| 2945 | canonSplit.Quals.addConsistentQualifiers(quals); |
| 2946 | canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); |
| 2947 | |
| 2948 | // Re-find the insert position. |
| 2949 | (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); |
| 2950 | } |
| 2951 | |
| 2952 | auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals); |
| 2953 | ExtQualNodes.InsertNode(eq, insertPos); |
| 2954 | return QualType(eq, fastQuals); |
| 2955 | } |
| 2956 | |
| 2957 | QualType ASTContext::getAddrSpaceQualType(QualType T, |
| 2958 | LangAS AddressSpace) const { |
| 2959 | QualType CanT = getCanonicalType(T); |
| 2960 | if (CanT.getAddressSpace() == AddressSpace) |
| 2961 | return T; |
| 2962 | |
| 2963 | // If we are composing extended qualifiers together, merge together |
| 2964 | // into one ExtQuals node. |
| 2965 | QualifierCollector Quals; |
| 2966 | const Type *TypeNode = Quals.strip(T); |
| 2967 | |
| 2968 | // If this type already has an address space specified, it cannot get |
| 2969 | // another one. |
| 2970 | assert(!Quals.hasAddressSpace() &&((void)0) |
| 2971 | "Type cannot be in multiple addr spaces!")((void)0); |
| 2972 | Quals.addAddressSpace(AddressSpace); |
| 2973 | |
| 2974 | return getExtQualType(TypeNode, Quals); |
| 2975 | } |
| 2976 | |
| 2977 | QualType ASTContext::removeAddrSpaceQualType(QualType T) const { |
| 2978 | // If the type is not qualified with an address space, just return it |
| 2979 | // immediately. |
| 2980 | if (!T.hasAddressSpace()) |
| 2981 | return T; |
| 2982 | |
| 2983 | // If we are composing extended qualifiers together, merge together |
| 2984 | // into one ExtQuals node. |
| 2985 | QualifierCollector Quals; |
| 2986 | const Type *TypeNode; |
| 2987 | |
| 2988 | while (T.hasAddressSpace()) { |
| 2989 | TypeNode = Quals.strip(T); |
| 2990 | |
| 2991 | // If the type no longer has an address space after stripping qualifiers, |
| 2992 | // jump out. |
| 2993 | if (!QualType(TypeNode, 0).hasAddressSpace()) |
| 2994 | break; |
| 2995 | |
| 2996 | // There might be sugar in the way. Strip it and try again. |
| 2997 | T = T.getSingleStepDesugaredType(*this); |
| 2998 | } |
| 2999 | |
| 3000 | Quals.removeAddressSpace(); |
| 3001 | |
| 3002 | // Removal of the address space can mean there are no longer any |
| 3003 | // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) |
| 3004 | // or required. |
| 3005 | if (Quals.hasNonFastQualifiers()) |
| 3006 | return getExtQualType(TypeNode, Quals); |
| 3007 | else |
| 3008 | return QualType(TypeNode, Quals.getFastQualifiers()); |
| 3009 | } |
| 3010 | |
| 3011 | QualType ASTContext::getObjCGCQualType(QualType T, |
| 3012 | Qualifiers::GC GCAttr) const { |
| 3013 | QualType CanT = getCanonicalType(T); |
| 3014 | if (CanT.getObjCGCAttr() == GCAttr) |
| 3015 | return T; |
| 3016 | |
| 3017 | if (const auto *ptr = T->getAs<PointerType>()) { |
| 3018 | QualType Pointee = ptr->getPointeeType(); |
| 3019 | if (Pointee->isAnyPointerType()) { |
| 3020 | QualType ResultType = getObjCGCQualType(Pointee, GCAttr); |
| 3021 | return getPointerType(ResultType); |
| 3022 | } |
| 3023 | } |
| 3024 | |
| 3025 | // If we are composing extended qualifiers together, merge together |
| 3026 | // into one ExtQuals node. |
| 3027 | QualifierCollector Quals; |
| 3028 | const Type *TypeNode = Quals.strip(T); |
| 3029 | |
| 3030 | // If this type already has an ObjCGC specified, it cannot get |
| 3031 | // another one. |
| 3032 | assert(!Quals.hasObjCGCAttr() &&((void)0) |
| 3033 | "Type cannot have multiple ObjCGCs!")((void)0); |
| 3034 | Quals.addObjCGCAttr(GCAttr); |
| 3035 | |
| 3036 | return getExtQualType(TypeNode, Quals); |
| 3037 | } |
| 3038 | |
| 3039 | QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { |
| 3040 | if (const PointerType *Ptr = T->getAs<PointerType>()) { |
| 3041 | QualType Pointee = Ptr->getPointeeType(); |
| 3042 | if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) { |
| 3043 | return getPointerType(removeAddrSpaceQualType(Pointee)); |
| 3044 | } |
| 3045 | } |
| 3046 | return T; |
| 3047 | } |
| 3048 | |
| 3049 | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, |
| 3050 | FunctionType::ExtInfo Info) { |
| 3051 | if (T->getExtInfo() == Info) |
| 3052 | return T; |
| 3053 | |
| 3054 | QualType Result; |
| 3055 | if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) { |
| 3056 | Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); |
| 3057 | } else { |
| 3058 | const auto *FPT = cast<FunctionProtoType>(T); |
| 3059 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 3060 | EPI.ExtInfo = Info; |
| 3061 | Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); |
| 3062 | } |
| 3063 | |
| 3064 | return cast<FunctionType>(Result.getTypePtr()); |
| 3065 | } |
| 3066 | |
| 3067 | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, |
| 3068 | QualType ResultType) { |
| 3069 | FD = FD->getMostRecentDecl(); |
| 3070 | while (true) { |
| 3071 | const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
| 3072 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 3073 | FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI)); |
| 3074 | if (FunctionDecl *Next = FD->getPreviousDecl()) |
| 3075 | FD = Next; |
| 3076 | else |
| 3077 | break; |
| 3078 | } |
| 3079 | if (ASTMutationListener *L = getASTMutationListener()) |
| 3080 | L->DeducedReturnType(FD, ResultType); |
| 3081 | } |
| 3082 | |
| 3083 | /// Get a function type and produce the equivalent function type with the |
| 3084 | /// specified exception specification. Type sugar that can be present on a |
| 3085 | /// declaration of a function with an exception specification is permitted |
| 3086 | /// and preserved. Other type sugar (for instance, typedefs) is not. |
| 3087 | QualType ASTContext::getFunctionTypeWithExceptionSpec( |
| 3088 | QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) { |
| 3089 | // Might have some parens. |
| 3090 | if (const auto *PT = dyn_cast<ParenType>(Orig)) |
| 3091 | return getParenType( |
| 3092 | getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI)); |
| 3093 | |
| 3094 | // Might be wrapped in a macro qualified type. |
| 3095 | if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig)) |
| 3096 | return getMacroQualifiedType( |
| 3097 | getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI), |
| 3098 | MQT->getMacroIdentifier()); |
| 3099 | |
| 3100 | // Might have a calling-convention attribute. |
| 3101 | if (const auto *AT = dyn_cast<AttributedType>(Orig)) |
| 3102 | return getAttributedType( |
| 3103 | AT->getAttrKind(), |
| 3104 | getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI), |
| 3105 | getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI)); |
| 3106 | |
| 3107 | // Anything else must be a function type. Rebuild it with the new exception |
| 3108 | // specification. |
| 3109 | const auto *Proto = Orig->castAs<FunctionProtoType>(); |
| 3110 | return getFunctionType( |
| 3111 | Proto->getReturnType(), Proto->getParamTypes(), |
| 3112 | Proto->getExtProtoInfo().withExceptionSpec(ESI)); |
| 3113 | } |
| 3114 | |
| 3115 | bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, |
| 3116 | QualType U) { |
| 3117 | return hasSameType(T, U) || |
| 3118 | (getLangOpts().CPlusPlus17 && |
| 3119 | hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None), |
| 3120 | getFunctionTypeWithExceptionSpec(U, EST_None))); |
| 3121 | } |
| 3122 | |
| 3123 | QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { |
| 3124 | if (const auto *Proto = T->getAs<FunctionProtoType>()) { |
| 3125 | QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); |
| 3126 | SmallVector<QualType, 16> Args(Proto->param_types()); |
| 3127 | for (unsigned i = 0, n = Args.size(); i != n; ++i) |
| 3128 | Args[i] = removePtrSizeAddrSpace(Args[i]); |
| 3129 | return getFunctionType(RetTy, Args, Proto->getExtProtoInfo()); |
| 3130 | } |
| 3131 | |
| 3132 | if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { |
| 3133 | QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); |
| 3134 | return getFunctionNoProtoType(RetTy, Proto->getExtInfo()); |
| 3135 | } |
| 3136 | |
| 3137 | return T; |
| 3138 | } |
| 3139 | |
| 3140 | bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { |
| 3141 | return hasSameType(T, U) || |
| 3142 | hasSameType(getFunctionTypeWithoutPtrSizes(T), |
| 3143 | getFunctionTypeWithoutPtrSizes(U)); |
| 3144 | } |
| 3145 | |
| 3146 | void ASTContext::adjustExceptionSpec( |
| 3147 | FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, |
| 3148 | bool AsWritten) { |
| 3149 | // Update the type. |
| 3150 | QualType Updated = |
| 3151 | getFunctionTypeWithExceptionSpec(FD->getType(), ESI); |
| 3152 | FD->setType(Updated); |
| 3153 | |
| 3154 | if (!AsWritten) |
| 3155 | return; |
| 3156 | |
| 3157 | // Update the type in the type source information too. |
| 3158 | if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { |
| 3159 | // If the type and the type-as-written differ, we may need to update |
| 3160 | // the type-as-written too. |
| 3161 | if (TSInfo->getType() != FD->getType()) |
| 3162 | Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI); |
| 3163 | |
| 3164 | // FIXME: When we get proper type location information for exceptions, |
| 3165 | // we'll also have to rebuild the TypeSourceInfo. For now, we just patch |
| 3166 | // up the TypeSourceInfo; |
| 3167 | assert(TypeLoc::getFullDataSizeForType(Updated) ==((void)0) |
| 3168 | TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&((void)0) |
| 3169 | "TypeLoc size mismatch from updating exception specification")((void)0); |
| 3170 | TSInfo->overrideType(Updated); |
| 3171 | } |
| 3172 | } |
| 3173 | |
| 3174 | /// getComplexType - Return the uniqued reference to the type for a complex |
| 3175 | /// number with the specified element type. |
| 3176 | QualType ASTContext::getComplexType(QualType T) const { |
| 3177 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 3178 | // structure. |
| 3179 | llvm::FoldingSetNodeID ID; |
| 3180 | ComplexType::Profile(ID, T); |
| 3181 | |
| 3182 | void *InsertPos = nullptr; |
| 3183 | if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3184 | return QualType(CT, 0); |
| 3185 | |
| 3186 | // If the pointee type isn't canonical, this won't be a canonical type either, |
| 3187 | // so fill in the canonical type field. |
| 3188 | QualType Canonical; |
| 3189 | if (!T.isCanonical()) { |
| 3190 | Canonical = getComplexType(getCanonicalType(T)); |
| 3191 | |
| 3192 | // Get the new insert position for the node we care about. |
| 3193 | ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3194 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 3195 | } |
| 3196 | auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical); |
| 3197 | Types.push_back(New); |
| 3198 | ComplexTypes.InsertNode(New, InsertPos); |
| 3199 | return QualType(New, 0); |
| 3200 | } |
| 3201 | |
| 3202 | /// getPointerType - Return the uniqued reference to the type for a pointer to |
| 3203 | /// the specified type. |
| 3204 | QualType ASTContext::getPointerType(QualType T) const { |
| 3205 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 3206 | // structure. |
| 3207 | llvm::FoldingSetNodeID ID; |
| 3208 | PointerType::Profile(ID, T); |
| 3209 | |
| 3210 | void *InsertPos = nullptr; |
| 3211 | if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3212 | return QualType(PT, 0); |
| 3213 | |
| 3214 | // If the pointee type isn't canonical, this won't be a canonical type either, |
| 3215 | // so fill in the canonical type field. |
| 3216 | QualType Canonical; |
| 3217 | if (!T.isCanonical()) { |
| 3218 | Canonical = getPointerType(getCanonicalType(T)); |
| 3219 | |
| 3220 | // Get the new insert position for the node we care about. |
| 3221 | PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3222 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 3223 | } |
| 3224 | auto *New = new (*this, TypeAlignment) PointerType(T, Canonical); |
| 3225 | Types.push_back(New); |
| 3226 | PointerTypes.InsertNode(New, InsertPos); |
| 3227 | return QualType(New, 0); |
| 3228 | } |
| 3229 | |
| 3230 | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { |
| 3231 | llvm::FoldingSetNodeID ID; |
| 3232 | AdjustedType::Profile(ID, Orig, New); |
| 3233 | void *InsertPos = nullptr; |
| 3234 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3235 | if (AT) |
| 3236 | return QualType(AT, 0); |
| 3237 | |
| 3238 | QualType Canonical = getCanonicalType(New); |
| 3239 | |
| 3240 | // Get the new insert position for the node we care about. |
| 3241 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3242 | assert(!AT && "Shouldn't be in the map!")((void)0); |
| 3243 | |
| 3244 | AT = new (*this, TypeAlignment) |
| 3245 | AdjustedType(Type::Adjusted, Orig, New, Canonical); |
| 3246 | Types.push_back(AT); |
| 3247 | AdjustedTypes.InsertNode(AT, InsertPos); |
| 3248 | return QualType(AT, 0); |
| 3249 | } |
| 3250 | |
| 3251 | QualType ASTContext::getDecayedType(QualType T) const { |
| 3252 | assert((T->isArrayType() || T->isFunctionType()) && "T does not decay")((void)0); |
| 3253 | |
| 3254 | QualType Decayed; |
| 3255 | |
| 3256 | // C99 6.7.5.3p7: |
| 3257 | // A declaration of a parameter as "array of type" shall be |
| 3258 | // adjusted to "qualified pointer to type", where the type |
| 3259 | // qualifiers (if any) are those specified within the [ and ] of |
| 3260 | // the array type derivation. |
| 3261 | if (T->isArrayType()) |
| 3262 | Decayed = getArrayDecayedType(T); |
| 3263 | |
| 3264 | // C99 6.7.5.3p8: |
| 3265 | // A declaration of a parameter as "function returning type" |
| 3266 | // shall be adjusted to "pointer to function returning type", as |
| 3267 | // in 6.3.2.1. |
| 3268 | if (T->isFunctionType()) |
| 3269 | Decayed = getPointerType(T); |
| 3270 | |
| 3271 | llvm::FoldingSetNodeID ID; |
| 3272 | AdjustedType::Profile(ID, T, Decayed); |
| 3273 | void *InsertPos = nullptr; |
| 3274 | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3275 | if (AT) |
| 3276 | return QualType(AT, 0); |
| 3277 | |
| 3278 | QualType Canonical = getCanonicalType(Decayed); |
| 3279 | |
| 3280 | // Get the new insert position for the node we care about. |
| 3281 | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); |
Value stored to 'AT' is never read | |
| 3282 | assert(!AT && "Shouldn't be in the map!")((void)0); |
| 3283 | |
| 3284 | AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical); |
| 3285 | Types.push_back(AT); |
| 3286 | AdjustedTypes.InsertNode(AT, InsertPos); |
| 3287 | return QualType(AT, 0); |
| 3288 | } |
| 3289 | |
| 3290 | /// getBlockPointerType - Return the uniqued reference to the type for |
| 3291 | /// a pointer to the specified block. |
| 3292 | QualType ASTContext::getBlockPointerType(QualType T) const { |
| 3293 | assert(T->isFunctionType() && "block of function types only")((void)0); |
| 3294 | // Unique pointers, to guarantee there is only one block of a particular |
| 3295 | // structure. |
| 3296 | llvm::FoldingSetNodeID ID; |
| 3297 | BlockPointerType::Profile(ID, T); |
| 3298 | |
| 3299 | void *InsertPos = nullptr; |
| 3300 | if (BlockPointerType *PT = |
| 3301 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3302 | return QualType(PT, 0); |
| 3303 | |
| 3304 | // If the block pointee type isn't canonical, this won't be a canonical |
| 3305 | // type either so fill in the canonical type field. |
| 3306 | QualType Canonical; |
| 3307 | if (!T.isCanonical()) { |
| 3308 | Canonical = getBlockPointerType(getCanonicalType(T)); |
| 3309 | |
| 3310 | // Get the new insert position for the node we care about. |
| 3311 | BlockPointerType *NewIP = |
| 3312 | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3313 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 3314 | } |
| 3315 | auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical); |
| 3316 | Types.push_back(New); |
| 3317 | BlockPointerTypes.InsertNode(New, InsertPos); |
| 3318 | return QualType(New, 0); |
| 3319 | } |
| 3320 | |
| 3321 | /// getLValueReferenceType - Return the uniqued reference to the type for an |
| 3322 | /// lvalue reference to the specified type. |
| 3323 | QualType |
| 3324 | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { |
| 3325 | assert(getCanonicalType(T) != OverloadTy &&((void)0) |
| 3326 | "Unresolved overloaded function type")((void)0); |
| 3327 | |
| 3328 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 3329 | // structure. |
| 3330 | llvm::FoldingSetNodeID ID; |
| 3331 | ReferenceType::Profile(ID, T, SpelledAsLValue); |
| 3332 | |
| 3333 | void *InsertPos = nullptr; |
| 3334 | if (LValueReferenceType *RT = |
| 3335 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3336 | return QualType(RT, 0); |
| 3337 | |
| 3338 | const auto *InnerRef = T->getAs<ReferenceType>(); |
| 3339 | |
| 3340 | // If the referencee type isn't canonical, this won't be a canonical type |
| 3341 | // either, so fill in the canonical type field. |
| 3342 | QualType Canonical; |
| 3343 | if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { |
| 3344 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
| 3345 | Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); |
| 3346 | |
| 3347 | // Get the new insert position for the node we care about. |
| 3348 | LValueReferenceType *NewIP = |
| 3349 | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3350 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 3351 | } |
| 3352 | |
| 3353 | auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical, |
| 3354 | SpelledAsLValue); |
| 3355 | Types.push_back(New); |
| 3356 | LValueReferenceTypes.InsertNode(New, InsertPos); |
| 3357 | |
| 3358 | return QualType(New, 0); |
| 3359 | } |
| 3360 | |
| 3361 | /// getRValueReferenceType - Return the uniqued reference to the type for an |
| 3362 | /// rvalue reference to the specified type. |
| 3363 | QualType ASTContext::getRValueReferenceType(QualType T) const { |
| 3364 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 3365 | // structure. |
| 3366 | llvm::FoldingSetNodeID ID; |
| 3367 | ReferenceType::Profile(ID, T, false); |
| 3368 | |
| 3369 | void *InsertPos = nullptr; |
| 3370 | if (RValueReferenceType *RT = |
| 3371 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3372 | return QualType(RT, 0); |
| 3373 | |
| 3374 | const auto *InnerRef = T->getAs<ReferenceType>(); |
| 3375 | |
| 3376 | // If the referencee type isn't canonical, this won't be a canonical type |
| 3377 | // either, so fill in the canonical type field. |
| 3378 | QualType Canonical; |
| 3379 | if (InnerRef || !T.isCanonical()) { |
| 3380 | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); |
| 3381 | Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); |
| 3382 | |
| 3383 | // Get the new insert position for the node we care about. |
| 3384 | RValueReferenceType *NewIP = |
| 3385 | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3386 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 3387 | } |
| 3388 | |
| 3389 | auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical); |
| 3390 | Types.push_back(New); |
| 3391 | RValueReferenceTypes.InsertNode(New, InsertPos); |
| 3392 | return QualType(New, 0); |
| 3393 | } |
| 3394 | |
| 3395 | /// getMemberPointerType - Return the uniqued reference to the type for a |
| 3396 | /// member pointer to the specified type, in the specified class. |
| 3397 | QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const { |
| 3398 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 3399 | // structure. |
| 3400 | llvm::FoldingSetNodeID ID; |
| 3401 | MemberPointerType::Profile(ID, T, Cls); |
| 3402 | |
| 3403 | void *InsertPos = nullptr; |
| 3404 | if (MemberPointerType *PT = |
| 3405 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3406 | return QualType(PT, 0); |
| 3407 | |
| 3408 | // If the pointee or class type isn't canonical, this won't be a canonical |
| 3409 | // type either, so fill in the canonical type field. |
| 3410 | QualType Canonical; |
| 3411 | if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) { |
| 3412 | Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls)); |
| 3413 | |
| 3414 | // Get the new insert position for the node we care about. |
| 3415 | MemberPointerType *NewIP = |
| 3416 | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3417 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 3418 | } |
| 3419 | auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical); |
| 3420 | Types.push_back(New); |
| 3421 | MemberPointerTypes.InsertNode(New, InsertPos); |
| 3422 | return QualType(New, 0); |
| 3423 | } |
| 3424 | |
| 3425 | /// getConstantArrayType - Return the unique reference to the type for an |
| 3426 | /// array of the specified element type. |
| 3427 | QualType ASTContext::getConstantArrayType(QualType EltTy, |
| 3428 | const llvm::APInt &ArySizeIn, |
| 3429 | const Expr *SizeExpr, |
| 3430 | ArrayType::ArraySizeModifier ASM, |
| 3431 | unsigned IndexTypeQuals) const { |
| 3432 | assert((EltTy->isDependentType() ||((void)0) |
| 3433 | EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&((void)0) |
| 3434 | "Constant array of VLAs is illegal!")((void)0); |
| 3435 | |
| 3436 | // We only need the size as part of the type if it's instantiation-dependent. |
| 3437 | if (SizeExpr && !SizeExpr->isInstantiationDependent()) |
| 3438 | SizeExpr = nullptr; |
| 3439 | |
| 3440 | // Convert the array size into a canonical width matching the pointer size for |
| 3441 | // the target. |
| 3442 | llvm::APInt ArySize(ArySizeIn); |
| 3443 | ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth()); |
| 3444 | |
| 3445 | llvm::FoldingSetNodeID ID; |
| 3446 | ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM, |
| 3447 | IndexTypeQuals); |
| 3448 | |
| 3449 | void *InsertPos = nullptr; |
| 3450 | if (ConstantArrayType *ATP = |
| 3451 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3452 | return QualType(ATP, 0); |
| 3453 | |
| 3454 | // If the element type isn't canonical or has qualifiers, or the array bound |
| 3455 | // is instantiation-dependent, this won't be a canonical type either, so fill |
| 3456 | // in the canonical type field. |
| 3457 | QualType Canon; |
| 3458 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { |
| 3459 | SplitQualType canonSplit = getCanonicalType(EltTy).split(); |
| 3460 | Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr, |
| 3461 | ASM, IndexTypeQuals); |
| 3462 | Canon = getQualifiedType(Canon, canonSplit.Quals); |
| 3463 | |
| 3464 | // Get the new insert position for the node we care about. |
| 3465 | ConstantArrayType *NewIP = |
| 3466 | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3467 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 3468 | } |
| 3469 | |
| 3470 | void *Mem = Allocate( |
| 3471 | ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0), |
| 3472 | TypeAlignment); |
| 3473 | auto *New = new (Mem) |
| 3474 | ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals); |
| 3475 | ConstantArrayTypes.InsertNode(New, InsertPos); |
| 3476 | Types.push_back(New); |
| 3477 | return QualType(New, 0); |
| 3478 | } |
| 3479 | |
| 3480 | /// getVariableArrayDecayedType - Turns the given type, which may be |
| 3481 | /// variably-modified, into the corresponding type with all the known |
| 3482 | /// sizes replaced with [*]. |
| 3483 | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { |
| 3484 | // Vastly most common case. |
| 3485 | if (!type->isVariablyModifiedType()) return type; |
| 3486 | |
| 3487 | QualType result; |
| 3488 | |
| 3489 | SplitQualType split = type.getSplitDesugaredType(); |
| 3490 | const Type *ty = split.Ty; |
| 3491 | switch (ty->getTypeClass()) { |
| 3492 | #define TYPE(Class, Base) |
| 3493 | #define ABSTRACT_TYPE(Class, Base) |
| 3494 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 3495 | #include "clang/AST/TypeNodes.inc" |
| 3496 | llvm_unreachable("didn't desugar past all non-canonical types?")__builtin_unreachable(); |
| 3497 | |
| 3498 | // These types should never be variably-modified. |
| 3499 | case Type::Builtin: |
| 3500 | case Type::Complex: |
| 3501 | case Type::Vector: |
| 3502 | case Type::DependentVector: |
| 3503 | case Type::ExtVector: |
| 3504 | case Type::DependentSizedExtVector: |
| 3505 | case Type::ConstantMatrix: |
| 3506 | case Type::DependentSizedMatrix: |
| 3507 | case Type::DependentAddressSpace: |
| 3508 | case Type::ObjCObject: |
| 3509 | case Type::ObjCInterface: |
| 3510 | case Type::ObjCObjectPointer: |
| 3511 | case Type::Record: |
| 3512 | case Type::Enum: |
| 3513 | case Type::UnresolvedUsing: |
| 3514 | case Type::TypeOfExpr: |
| 3515 | case Type::TypeOf: |
| 3516 | case Type::Decltype: |
| 3517 | case Type::UnaryTransform: |
| 3518 | case Type::DependentName: |
| 3519 | case Type::InjectedClassName: |
| 3520 | case Type::TemplateSpecialization: |
| 3521 | case Type::DependentTemplateSpecialization: |
| 3522 | case Type::TemplateTypeParm: |
| 3523 | case Type::SubstTemplateTypeParmPack: |
| 3524 | case Type::Auto: |
| 3525 | case Type::DeducedTemplateSpecialization: |
| 3526 | case Type::PackExpansion: |
| 3527 | case Type::ExtInt: |
| 3528 | case Type::DependentExtInt: |
| 3529 | llvm_unreachable("type should never be variably-modified")__builtin_unreachable(); |
| 3530 | |
| 3531 | // These types can be variably-modified but should never need to |
| 3532 | // further decay. |
| 3533 | case Type::FunctionNoProto: |
| 3534 | case Type::FunctionProto: |
| 3535 | case Type::BlockPointer: |
| 3536 | case Type::MemberPointer: |
| 3537 | case Type::Pipe: |
| 3538 | return type; |
| 3539 | |
| 3540 | // These types can be variably-modified. All these modifications |
| 3541 | // preserve structure except as noted by comments. |
| 3542 | // TODO: if we ever care about optimizing VLAs, there are no-op |
| 3543 | // optimizations available here. |
| 3544 | case Type::Pointer: |
| 3545 | result = getPointerType(getVariableArrayDecayedType( |
| 3546 | cast<PointerType>(ty)->getPointeeType())); |
| 3547 | break; |
| 3548 | |
| 3549 | case Type::LValueReference: { |
| 3550 | const auto *lv = cast<LValueReferenceType>(ty); |
| 3551 | result = getLValueReferenceType( |
| 3552 | getVariableArrayDecayedType(lv->getPointeeType()), |
| 3553 | lv->isSpelledAsLValue()); |
| 3554 | break; |
| 3555 | } |
| 3556 | |
| 3557 | case Type::RValueReference: { |
| 3558 | const auto *lv = cast<RValueReferenceType>(ty); |
| 3559 | result = getRValueReferenceType( |
| 3560 | getVariableArrayDecayedType(lv->getPointeeType())); |
| 3561 | break; |
| 3562 | } |
| 3563 | |
| 3564 | case Type::Atomic: { |
| 3565 | const auto *at = cast<AtomicType>(ty); |
| 3566 | result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); |
| 3567 | break; |
| 3568 | } |
| 3569 | |
| 3570 | case Type::ConstantArray: { |
| 3571 | const auto *cat = cast<ConstantArrayType>(ty); |
| 3572 | result = getConstantArrayType( |
| 3573 | getVariableArrayDecayedType(cat->getElementType()), |
| 3574 | cat->getSize(), |
| 3575 | cat->getSizeExpr(), |
| 3576 | cat->getSizeModifier(), |
| 3577 | cat->getIndexTypeCVRQualifiers()); |
| 3578 | break; |
| 3579 | } |
| 3580 | |
| 3581 | case Type::DependentSizedArray: { |
| 3582 | const auto *dat = cast<DependentSizedArrayType>(ty); |
| 3583 | result = getDependentSizedArrayType( |
| 3584 | getVariableArrayDecayedType(dat->getElementType()), |
| 3585 | dat->getSizeExpr(), |
| 3586 | dat->getSizeModifier(), |
| 3587 | dat->getIndexTypeCVRQualifiers(), |
| 3588 | dat->getBracketsRange()); |
| 3589 | break; |
| 3590 | } |
| 3591 | |
| 3592 | // Turn incomplete types into [*] types. |
| 3593 | case Type::IncompleteArray: { |
| 3594 | const auto *iat = cast<IncompleteArrayType>(ty); |
| 3595 | result = getVariableArrayType( |
| 3596 | getVariableArrayDecayedType(iat->getElementType()), |
| 3597 | /*size*/ nullptr, |
| 3598 | ArrayType::Normal, |
| 3599 | iat->getIndexTypeCVRQualifiers(), |
| 3600 | SourceRange()); |
| 3601 | break; |
| 3602 | } |
| 3603 | |
| 3604 | // Turn VLA types into [*] types. |
| 3605 | case Type::VariableArray: { |
| 3606 | const auto *vat = cast<VariableArrayType>(ty); |
| 3607 | result = getVariableArrayType( |
| 3608 | getVariableArrayDecayedType(vat->getElementType()), |
| 3609 | /*size*/ nullptr, |
| 3610 | ArrayType::Star, |
| 3611 | vat->getIndexTypeCVRQualifiers(), |
| 3612 | vat->getBracketsRange()); |
| 3613 | break; |
| 3614 | } |
| 3615 | } |
| 3616 | |
| 3617 | // Apply the top-level qualifiers from the original. |
| 3618 | return getQualifiedType(result, split.Quals); |
| 3619 | } |
| 3620 | |
| 3621 | /// getVariableArrayType - Returns a non-unique reference to the type for a |
| 3622 | /// variable array of the specified element type. |
| 3623 | QualType ASTContext::getVariableArrayType(QualType EltTy, |
| 3624 | Expr *NumElts, |
| 3625 | ArrayType::ArraySizeModifier ASM, |
| 3626 | unsigned IndexTypeQuals, |
| 3627 | SourceRange Brackets) const { |
| 3628 | // Since we don't unique expressions, it isn't possible to unique VLA's |
| 3629 | // that have an expression provided for their size. |
| 3630 | QualType Canon; |
| 3631 | |
| 3632 | // Be sure to pull qualifiers off the element type. |
| 3633 | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { |
| 3634 | SplitQualType canonSplit = getCanonicalType(EltTy).split(); |
| 3635 | Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, |
| 3636 | IndexTypeQuals, Brackets); |
| 3637 | Canon = getQualifiedType(Canon, canonSplit.Quals); |
| 3638 | } |
| 3639 | |
| 3640 | auto *New = new (*this, TypeAlignment) |
| 3641 | VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets); |
| 3642 | |
| 3643 | VariableArrayTypes.push_back(New); |
| 3644 | Types.push_back(New); |
| 3645 | return QualType(New, 0); |
| 3646 | } |
| 3647 | |
| 3648 | /// getDependentSizedArrayType - Returns a non-unique reference to |
| 3649 | /// the type for a dependently-sized array of the specified element |
| 3650 | /// type. |
| 3651 | QualType ASTContext::getDependentSizedArrayType(QualType elementType, |
| 3652 | Expr *numElements, |
| 3653 | ArrayType::ArraySizeModifier ASM, |
| 3654 | unsigned elementTypeQuals, |
| 3655 | SourceRange brackets) const { |
| 3656 | assert((!numElements || numElements->isTypeDependent() ||((void)0) |
| 3657 | numElements->isValueDependent()) &&((void)0) |
| 3658 | "Size must be type- or value-dependent!")((void)0); |
| 3659 | |
| 3660 | // Dependently-sized array types that do not have a specified number |
| 3661 | // of elements will have their sizes deduced from a dependent |
| 3662 | // initializer. We do no canonicalization here at all, which is okay |
| 3663 | // because they can't be used in most locations. |
| 3664 | if (!numElements) { |
| 3665 | auto *newType |
| 3666 | = new (*this, TypeAlignment) |
| 3667 | DependentSizedArrayType(*this, elementType, QualType(), |
| 3668 | numElements, ASM, elementTypeQuals, |
| 3669 | brackets); |
| 3670 | Types.push_back(newType); |
| 3671 | return QualType(newType, 0); |
| 3672 | } |
| 3673 | |
| 3674 | // Otherwise, we actually build a new type every time, but we |
| 3675 | // also build a canonical type. |
| 3676 | |
| 3677 | SplitQualType canonElementType = getCanonicalType(elementType).split(); |
| 3678 | |
| 3679 | void *insertPos = nullptr; |
| 3680 | llvm::FoldingSetNodeID ID; |
| 3681 | DependentSizedArrayType::Profile(ID, *this, |
| 3682 | QualType(canonElementType.Ty, 0), |
| 3683 | ASM, elementTypeQuals, numElements); |
| 3684 | |
| 3685 | // Look for an existing type with these properties. |
| 3686 | DependentSizedArrayType *canonTy = |
| 3687 | DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); |
| 3688 | |
| 3689 | // If we don't have one, build one. |
| 3690 | if (!canonTy) { |
| 3691 | canonTy = new (*this, TypeAlignment) |
| 3692 | DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0), |
| 3693 | QualType(), numElements, ASM, elementTypeQuals, |
| 3694 | brackets); |
| 3695 | DependentSizedArrayTypes.InsertNode(canonTy, insertPos); |
| 3696 | Types.push_back(canonTy); |
| 3697 | } |
| 3698 | |
| 3699 | // Apply qualifiers from the element type to the array. |
| 3700 | QualType canon = getQualifiedType(QualType(canonTy,0), |
| 3701 | canonElementType.Quals); |
| 3702 | |
| 3703 | // If we didn't need extra canonicalization for the element type or the size |
| 3704 | // expression, then just use that as our result. |
| 3705 | if (QualType(canonElementType.Ty, 0) == elementType && |
| 3706 | canonTy->getSizeExpr() == numElements) |
| 3707 | return canon; |
| 3708 | |
| 3709 | // Otherwise, we need to build a type which follows the spelling |
| 3710 | // of the element type. |
| 3711 | auto *sugaredType |
| 3712 | = new (*this, TypeAlignment) |
| 3713 | DependentSizedArrayType(*this, elementType, canon, numElements, |
| 3714 | ASM, elementTypeQuals, brackets); |
| 3715 | Types.push_back(sugaredType); |
| 3716 | return QualType(sugaredType, 0); |
| 3717 | } |
| 3718 | |
| 3719 | QualType ASTContext::getIncompleteArrayType(QualType elementType, |
| 3720 | ArrayType::ArraySizeModifier ASM, |
| 3721 | unsigned elementTypeQuals) const { |
| 3722 | llvm::FoldingSetNodeID ID; |
| 3723 | IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); |
| 3724 | |
| 3725 | void *insertPos = nullptr; |
| 3726 | if (IncompleteArrayType *iat = |
| 3727 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) |
| 3728 | return QualType(iat, 0); |
| 3729 | |
| 3730 | // If the element type isn't canonical, this won't be a canonical type |
| 3731 | // either, so fill in the canonical type field. We also have to pull |
| 3732 | // qualifiers off the element type. |
| 3733 | QualType canon; |
| 3734 | |
| 3735 | if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { |
| 3736 | SplitQualType canonSplit = getCanonicalType(elementType).split(); |
| 3737 | canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), |
| 3738 | ASM, elementTypeQuals); |
| 3739 | canon = getQualifiedType(canon, canonSplit.Quals); |
| 3740 | |
| 3741 | // Get the new insert position for the node we care about. |
| 3742 | IncompleteArrayType *existing = |
| 3743 | IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); |
| 3744 | assert(!existing && "Shouldn't be in the map!")((void)0); (void) existing; |
| 3745 | } |
| 3746 | |
| 3747 | auto *newType = new (*this, TypeAlignment) |
| 3748 | IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); |
| 3749 | |
| 3750 | IncompleteArrayTypes.InsertNode(newType, insertPos); |
| 3751 | Types.push_back(newType); |
| 3752 | return QualType(newType, 0); |
| 3753 | } |
| 3754 | |
| 3755 | ASTContext::BuiltinVectorTypeInfo |
| 3756 | ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { |
| 3757 | #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS){getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable (ELTS), NUMVECTORS}; \ |
| 3758 | {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ |
| 3759 | NUMVECTORS}; |
| 3760 | |
| 3761 | #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS){ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; \ |
| 3762 | {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; |
| 3763 | |
| 3764 | switch (Ty->getKind()) { |
| 3765 | default: |
| 3766 | llvm_unreachable("Unsupported builtin vector type")__builtin_unreachable(); |
| 3767 | case BuiltinType::SveInt8: |
| 3768 | return SVE_INT_ELTTY(8, 16, true, 1){getIntTypeForBitwidth(8, true), llvm::ElementCount::getScalable (16), 1};; |
| 3769 | case BuiltinType::SveUint8: |
| 3770 | return SVE_INT_ELTTY(8, 16, false, 1){getIntTypeForBitwidth(8, false), llvm::ElementCount::getScalable (16), 1};; |
| 3771 | case BuiltinType::SveInt8x2: |
| 3772 | return SVE_INT_ELTTY(8, 16, true, 2){getIntTypeForBitwidth(8, true), llvm::ElementCount::getScalable (16), 2};; |
| 3773 | case BuiltinType::SveUint8x2: |
| 3774 | return SVE_INT_ELTTY(8, 16, false, 2){getIntTypeForBitwidth(8, false), llvm::ElementCount::getScalable (16), 2};; |
| 3775 | case BuiltinType::SveInt8x3: |
| 3776 | return SVE_INT_ELTTY(8, 16, true, 3){getIntTypeForBitwidth(8, true), llvm::ElementCount::getScalable (16), 3};; |
| 3777 | case BuiltinType::SveUint8x3: |
| 3778 | return SVE_INT_ELTTY(8, 16, false, 3){getIntTypeForBitwidth(8, false), llvm::ElementCount::getScalable (16), 3};; |
| 3779 | case BuiltinType::SveInt8x4: |
| 3780 | return SVE_INT_ELTTY(8, 16, true, 4){getIntTypeForBitwidth(8, true), llvm::ElementCount::getScalable (16), 4};; |
| 3781 | case BuiltinType::SveUint8x4: |
| 3782 | return SVE_INT_ELTTY(8, 16, false, 4){getIntTypeForBitwidth(8, false), llvm::ElementCount::getScalable (16), 4};; |
| 3783 | case BuiltinType::SveInt16: |
| 3784 | return SVE_INT_ELTTY(16, 8, true, 1){getIntTypeForBitwidth(16, true), llvm::ElementCount::getScalable (8), 1};; |
| 3785 | case BuiltinType::SveUint16: |
| 3786 | return SVE_INT_ELTTY(16, 8, false, 1){getIntTypeForBitwidth(16, false), llvm::ElementCount::getScalable (8), 1};; |
| 3787 | case BuiltinType::SveInt16x2: |
| 3788 | return SVE_INT_ELTTY(16, 8, true, 2){getIntTypeForBitwidth(16, true), llvm::ElementCount::getScalable (8), 2};; |
| 3789 | case BuiltinType::SveUint16x2: |
| 3790 | return SVE_INT_ELTTY(16, 8, false, 2){getIntTypeForBitwidth(16, false), llvm::ElementCount::getScalable (8), 2};; |
| 3791 | case BuiltinType::SveInt16x3: |
| 3792 | return SVE_INT_ELTTY(16, 8, true, 3){getIntTypeForBitwidth(16, true), llvm::ElementCount::getScalable (8), 3};; |
| 3793 | case BuiltinType::SveUint16x3: |
| 3794 | return SVE_INT_ELTTY(16, 8, false, 3){getIntTypeForBitwidth(16, false), llvm::ElementCount::getScalable (8), 3};; |
| 3795 | case BuiltinType::SveInt16x4: |
| 3796 | return SVE_INT_ELTTY(16, 8, true, 4){getIntTypeForBitwidth(16, true), llvm::ElementCount::getScalable (8), 4};; |
| 3797 | case BuiltinType::SveUint16x4: |
| 3798 | return SVE_INT_ELTTY(16, 8, false, 4){getIntTypeForBitwidth(16, false), llvm::ElementCount::getScalable (8), 4};; |
| 3799 | case BuiltinType::SveInt32: |
| 3800 | return SVE_INT_ELTTY(32, 4, true, 1){getIntTypeForBitwidth(32, true), llvm::ElementCount::getScalable (4), 1};; |
| 3801 | case BuiltinType::SveUint32: |
| 3802 | return SVE_INT_ELTTY(32, 4, false, 1){getIntTypeForBitwidth(32, false), llvm::ElementCount::getScalable (4), 1};; |
| 3803 | case BuiltinType::SveInt32x2: |
| 3804 | return SVE_INT_ELTTY(32, 4, true, 2){getIntTypeForBitwidth(32, true), llvm::ElementCount::getScalable (4), 2};; |
| 3805 | case BuiltinType::SveUint32x2: |
| 3806 | return SVE_INT_ELTTY(32, 4, false, 2){getIntTypeForBitwidth(32, false), llvm::ElementCount::getScalable (4), 2};; |
| 3807 | case BuiltinType::SveInt32x3: |
| 3808 | return SVE_INT_ELTTY(32, 4, true, 3){getIntTypeForBitwidth(32, true), llvm::ElementCount::getScalable (4), 3};; |
| 3809 | case BuiltinType::SveUint32x3: |
| 3810 | return SVE_INT_ELTTY(32, 4, false, 3){getIntTypeForBitwidth(32, false), llvm::ElementCount::getScalable (4), 3};; |
| 3811 | case BuiltinType::SveInt32x4: |
| 3812 | return SVE_INT_ELTTY(32, 4, true, 4){getIntTypeForBitwidth(32, true), llvm::ElementCount::getScalable (4), 4};; |
| 3813 | case BuiltinType::SveUint32x4: |
| 3814 | return SVE_INT_ELTTY(32, 4, false, 4){getIntTypeForBitwidth(32, false), llvm::ElementCount::getScalable (4), 4};; |
| 3815 | case BuiltinType::SveInt64: |
| 3816 | return SVE_INT_ELTTY(64, 2, true, 1){getIntTypeForBitwidth(64, true), llvm::ElementCount::getScalable (2), 1};; |
| 3817 | case BuiltinType::SveUint64: |
| 3818 | return SVE_INT_ELTTY(64, 2, false, 1){getIntTypeForBitwidth(64, false), llvm::ElementCount::getScalable (2), 1};; |
| 3819 | case BuiltinType::SveInt64x2: |
| 3820 | return SVE_INT_ELTTY(64, 2, true, 2){getIntTypeForBitwidth(64, true), llvm::ElementCount::getScalable (2), 2};; |
| 3821 | case BuiltinType::SveUint64x2: |
| 3822 | return SVE_INT_ELTTY(64, 2, false, 2){getIntTypeForBitwidth(64, false), llvm::ElementCount::getScalable (2), 2};; |
| 3823 | case BuiltinType::SveInt64x3: |
| 3824 | return SVE_INT_ELTTY(64, 2, true, 3){getIntTypeForBitwidth(64, true), llvm::ElementCount::getScalable (2), 3};; |
| 3825 | case BuiltinType::SveUint64x3: |
| 3826 | return SVE_INT_ELTTY(64, 2, false, 3){getIntTypeForBitwidth(64, false), llvm::ElementCount::getScalable (2), 3};; |
| 3827 | case BuiltinType::SveInt64x4: |
| 3828 | return SVE_INT_ELTTY(64, 2, true, 4){getIntTypeForBitwidth(64, true), llvm::ElementCount::getScalable (2), 4};; |
| 3829 | case BuiltinType::SveUint64x4: |
| 3830 | return SVE_INT_ELTTY(64, 2, false, 4){getIntTypeForBitwidth(64, false), llvm::ElementCount::getScalable (2), 4};; |
| 3831 | case BuiltinType::SveBool: |
| 3832 | return SVE_ELTTY(BoolTy, 16, 1){BoolTy, llvm::ElementCount::getScalable(16), 1};; |
| 3833 | case BuiltinType::SveFloat16: |
| 3834 | return SVE_ELTTY(HalfTy, 8, 1){HalfTy, llvm::ElementCount::getScalable(8), 1};; |
| 3835 | case BuiltinType::SveFloat16x2: |
| 3836 | return SVE_ELTTY(HalfTy, 8, 2){HalfTy, llvm::ElementCount::getScalable(8), 2};; |
| 3837 | case BuiltinType::SveFloat16x3: |
| 3838 | return SVE_ELTTY(HalfTy, 8, 3){HalfTy, llvm::ElementCount::getScalable(8), 3};; |
| 3839 | case BuiltinType::SveFloat16x4: |
| 3840 | return SVE_ELTTY(HalfTy, 8, 4){HalfTy, llvm::ElementCount::getScalable(8), 4};; |
| 3841 | case BuiltinType::SveFloat32: |
| 3842 | return SVE_ELTTY(FloatTy, 4, 1){FloatTy, llvm::ElementCount::getScalable(4), 1};; |
| 3843 | case BuiltinType::SveFloat32x2: |
| 3844 | return SVE_ELTTY(FloatTy, 4, 2){FloatTy, llvm::ElementCount::getScalable(4), 2};; |
| 3845 | case BuiltinType::SveFloat32x3: |
| 3846 | return SVE_ELTTY(FloatTy, 4, 3){FloatTy, llvm::ElementCount::getScalable(4), 3};; |
| 3847 | case BuiltinType::SveFloat32x4: |
| 3848 | return SVE_ELTTY(FloatTy, 4, 4){FloatTy, llvm::ElementCount::getScalable(4), 4};; |
| 3849 | case BuiltinType::SveFloat64: |
| 3850 | return SVE_ELTTY(DoubleTy, 2, 1){DoubleTy, llvm::ElementCount::getScalable(2), 1};; |
| 3851 | case BuiltinType::SveFloat64x2: |
| 3852 | return SVE_ELTTY(DoubleTy, 2, 2){DoubleTy, llvm::ElementCount::getScalable(2), 2};; |
| 3853 | case BuiltinType::SveFloat64x3: |
| 3854 | return SVE_ELTTY(DoubleTy, 2, 3){DoubleTy, llvm::ElementCount::getScalable(2), 3};; |
| 3855 | case BuiltinType::SveFloat64x4: |
| 3856 | return SVE_ELTTY(DoubleTy, 2, 4){DoubleTy, llvm::ElementCount::getScalable(2), 4};; |
| 3857 | case BuiltinType::SveBFloat16: |
| 3858 | return SVE_ELTTY(BFloat16Ty, 8, 1){BFloat16Ty, llvm::ElementCount::getScalable(8), 1};; |
| 3859 | case BuiltinType::SveBFloat16x2: |
| 3860 | return SVE_ELTTY(BFloat16Ty, 8, 2){BFloat16Ty, llvm::ElementCount::getScalable(8), 2};; |
| 3861 | case BuiltinType::SveBFloat16x3: |
| 3862 | return SVE_ELTTY(BFloat16Ty, 8, 3){BFloat16Ty, llvm::ElementCount::getScalable(8), 3};; |
| 3863 | case BuiltinType::SveBFloat16x4: |
| 3864 | return SVE_ELTTY(BFloat16Ty, 8, 4){BFloat16Ty, llvm::ElementCount::getScalable(8), 4};; |
| 3865 | #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF, \ |
| 3866 | IsSigned) \ |
| 3867 | case BuiltinType::Id: \ |
| 3868 | return {getIntTypeForBitwidth(ElBits, IsSigned), \ |
| 3869 | llvm::ElementCount::getScalable(NumEls), NF}; |
| 3870 | #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \ |
| 3871 | case BuiltinType::Id: \ |
| 3872 | return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy), \ |
| 3873 | llvm::ElementCount::getScalable(NumEls), NF}; |
| 3874 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
| 3875 | case BuiltinType::Id: \ |
| 3876 | return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1}; |
| 3877 | #include "clang/Basic/RISCVVTypes.def" |
| 3878 | } |
| 3879 | } |
| 3880 | |
| 3881 | /// getScalableVectorType - Return the unique reference to a scalable vector |
| 3882 | /// type of the specified element type and size. VectorType must be a built-in |
| 3883 | /// type. |
| 3884 | QualType ASTContext::getScalableVectorType(QualType EltTy, |
| 3885 | unsigned NumElts) const { |
| 3886 | if (Target->hasAArch64SVETypes()) { |
| 3887 | uint64_t EltTySize = getTypeSize(EltTy); |
| 3888 | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \ |
| 3889 | IsSigned, IsFP, IsBF) \ |
| 3890 | if (!EltTy->isBooleanType() && \ |
| 3891 | ((EltTy->hasIntegerRepresentation() && \ |
| 3892 | EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ |
| 3893 | (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \ |
| 3894 | IsFP && !IsBF) || \ |
| 3895 | (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \ |
| 3896 | IsBF && !IsFP)) && \ |
| 3897 | EltTySize == ElBits && NumElts == NumEls) { \ |
| 3898 | return SingletonId; \ |
| 3899 | } |
| 3900 | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \ |
| 3901 | if (EltTy->isBooleanType() && NumElts == NumEls) \ |
| 3902 | return SingletonId; |
| 3903 | #include "clang/Basic/AArch64SVEACLETypes.def" |
| 3904 | } else if (Target->hasRISCVVTypes()) { |
| 3905 | uint64_t EltTySize = getTypeSize(EltTy); |
| 3906 | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \ |
| 3907 | IsFP) \ |
| 3908 | if (!EltTy->isBooleanType() && \ |
| 3909 | ((EltTy->hasIntegerRepresentation() && \ |
| 3910 | EltTy->hasSignedIntegerRepresentation() == IsSigned) || \ |
| 3911 | (EltTy->hasFloatingRepresentation() && IsFP)) && \ |
| 3912 | EltTySize == ElBits && NumElts == NumEls) \ |
| 3913 | return SingletonId; |
| 3914 | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \ |
| 3915 | if (EltTy->isBooleanType() && NumElts == NumEls) \ |
| 3916 | return SingletonId; |
| 3917 | #include "clang/Basic/RISCVVTypes.def" |
| 3918 | } |
| 3919 | return QualType(); |
| 3920 | } |
| 3921 | |
| 3922 | /// getVectorType - Return the unique reference to a vector type of |
| 3923 | /// the specified element type and size. VectorType must be a built-in type. |
| 3924 | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, |
| 3925 | VectorType::VectorKind VecKind) const { |
| 3926 | assert(vecType->isBuiltinType())((void)0); |
| 3927 | |
| 3928 | // Check if we've already instantiated a vector of this type. |
| 3929 | llvm::FoldingSetNodeID ID; |
| 3930 | VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); |
| 3931 | |
| 3932 | void *InsertPos = nullptr; |
| 3933 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 3934 | return QualType(VTP, 0); |
| 3935 | |
| 3936 | // If the element type isn't canonical, this won't be a canonical type either, |
| 3937 | // so fill in the canonical type field. |
| 3938 | QualType Canonical; |
| 3939 | if (!vecType.isCanonical()) { |
| 3940 | Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); |
| 3941 | |
| 3942 | // Get the new insert position for the node we care about. |
| 3943 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3944 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 3945 | } |
| 3946 | auto *New = new (*this, TypeAlignment) |
| 3947 | VectorType(vecType, NumElts, Canonical, VecKind); |
| 3948 | VectorTypes.InsertNode(New, InsertPos); |
| 3949 | Types.push_back(New); |
| 3950 | return QualType(New, 0); |
| 3951 | } |
| 3952 | |
| 3953 | QualType |
| 3954 | ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, |
| 3955 | SourceLocation AttrLoc, |
| 3956 | VectorType::VectorKind VecKind) const { |
| 3957 | llvm::FoldingSetNodeID ID; |
| 3958 | DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr, |
| 3959 | VecKind); |
| 3960 | void *InsertPos = nullptr; |
| 3961 | DependentVectorType *Canon = |
| 3962 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3963 | DependentVectorType *New; |
| 3964 | |
| 3965 | if (Canon) { |
| 3966 | New = new (*this, TypeAlignment) DependentVectorType( |
| 3967 | *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); |
| 3968 | } else { |
| 3969 | QualType CanonVecTy = getCanonicalType(VecType); |
| 3970 | if (CanonVecTy == VecType) { |
| 3971 | New = new (*this, TypeAlignment) DependentVectorType( |
| 3972 | *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind); |
| 3973 | |
| 3974 | DependentVectorType *CanonCheck = |
| 3975 | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 3976 | assert(!CanonCheck &&((void)0) |
| 3977 | "Dependent-sized vector_size canonical type broken")((void)0); |
| 3978 | (void)CanonCheck; |
| 3979 | DependentVectorTypes.InsertNode(New, InsertPos); |
| 3980 | } else { |
| 3981 | QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr, |
| 3982 | SourceLocation(), VecKind); |
| 3983 | New = new (*this, TypeAlignment) DependentVectorType( |
| 3984 | *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind); |
| 3985 | } |
| 3986 | } |
| 3987 | |
| 3988 | Types.push_back(New); |
| 3989 | return QualType(New, 0); |
| 3990 | } |
| 3991 | |
| 3992 | /// getExtVectorType - Return the unique reference to an extended vector type of |
| 3993 | /// the specified element type and size. VectorType must be a built-in type. |
| 3994 | QualType |
| 3995 | ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const { |
| 3996 | assert(vecType->isBuiltinType() || vecType->isDependentType())((void)0); |
| 3997 | |
| 3998 | // Check if we've already instantiated a vector of this type. |
| 3999 | llvm::FoldingSetNodeID ID; |
| 4000 | VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, |
| 4001 | VectorType::GenericVector); |
| 4002 | void *InsertPos = nullptr; |
| 4003 | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4004 | return QualType(VTP, 0); |
| 4005 | |
| 4006 | // If the element type isn't canonical, this won't be a canonical type either, |
| 4007 | // so fill in the canonical type field. |
| 4008 | QualType Canonical; |
| 4009 | if (!vecType.isCanonical()) { |
| 4010 | Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); |
| 4011 | |
| 4012 | // Get the new insert position for the node we care about. |
| 4013 | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4014 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 4015 | } |
| 4016 | auto *New = new (*this, TypeAlignment) |
| 4017 | ExtVectorType(vecType, NumElts, Canonical); |
| 4018 | VectorTypes.InsertNode(New, InsertPos); |
| 4019 | Types.push_back(New); |
| 4020 | return QualType(New, 0); |
| 4021 | } |
| 4022 | |
| 4023 | QualType |
| 4024 | ASTContext::getDependentSizedExtVectorType(QualType vecType, |
| 4025 | Expr *SizeExpr, |
| 4026 | SourceLocation AttrLoc) const { |
| 4027 | llvm::FoldingSetNodeID ID; |
| 4028 | DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), |
| 4029 | SizeExpr); |
| 4030 | |
| 4031 | void *InsertPos = nullptr; |
| 4032 | DependentSizedExtVectorType *Canon |
| 4033 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4034 | DependentSizedExtVectorType *New; |
| 4035 | if (Canon) { |
| 4036 | // We already have a canonical version of this array type; use it as |
| 4037 | // the canonical type for a newly-built type. |
| 4038 | New = new (*this, TypeAlignment) |
| 4039 | DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0), |
| 4040 | SizeExpr, AttrLoc); |
| 4041 | } else { |
| 4042 | QualType CanonVecTy = getCanonicalType(vecType); |
| 4043 | if (CanonVecTy == vecType) { |
| 4044 | New = new (*this, TypeAlignment) |
| 4045 | DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr, |
| 4046 | AttrLoc); |
| 4047 | |
| 4048 | DependentSizedExtVectorType *CanonCheck |
| 4049 | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4050 | assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken")((void)0); |
| 4051 | (void)CanonCheck; |
| 4052 | DependentSizedExtVectorTypes.InsertNode(New, InsertPos); |
| 4053 | } else { |
| 4054 | QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, |
| 4055 | SourceLocation()); |
| 4056 | New = new (*this, TypeAlignment) DependentSizedExtVectorType( |
| 4057 | *this, vecType, CanonExtTy, SizeExpr, AttrLoc); |
| 4058 | } |
| 4059 | } |
| 4060 | |
| 4061 | Types.push_back(New); |
| 4062 | return QualType(New, 0); |
| 4063 | } |
| 4064 | |
| 4065 | QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, |
| 4066 | unsigned NumColumns) const { |
| 4067 | llvm::FoldingSetNodeID ID; |
| 4068 | ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns, |
| 4069 | Type::ConstantMatrix); |
| 4070 | |
| 4071 | assert(MatrixType::isValidElementType(ElementTy) &&((void)0) |
| 4072 | "need a valid element type")((void)0); |
| 4073 | assert(ConstantMatrixType::isDimensionValid(NumRows) &&((void)0) |
| 4074 | ConstantMatrixType::isDimensionValid(NumColumns) &&((void)0) |
| 4075 | "need valid matrix dimensions")((void)0); |
| 4076 | void *InsertPos = nullptr; |
| 4077 | if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4078 | return QualType(MTP, 0); |
| 4079 | |
| 4080 | QualType Canonical; |
| 4081 | if (!ElementTy.isCanonical()) { |
| 4082 | Canonical = |
| 4083 | getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns); |
| 4084 | |
| 4085 | ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4086 | assert(!NewIP && "Matrix type shouldn't already exist in the map")((void)0); |
| 4087 | (void)NewIP; |
| 4088 | } |
| 4089 | |
| 4090 | auto *New = new (*this, TypeAlignment) |
| 4091 | ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); |
| 4092 | MatrixTypes.InsertNode(New, InsertPos); |
| 4093 | Types.push_back(New); |
| 4094 | return QualType(New, 0); |
| 4095 | } |
| 4096 | |
| 4097 | QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, |
| 4098 | Expr *RowExpr, |
| 4099 | Expr *ColumnExpr, |
| 4100 | SourceLocation AttrLoc) const { |
| 4101 | QualType CanonElementTy = getCanonicalType(ElementTy); |
| 4102 | llvm::FoldingSetNodeID ID; |
| 4103 | DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr, |
| 4104 | ColumnExpr); |
| 4105 | |
| 4106 | void *InsertPos = nullptr; |
| 4107 | DependentSizedMatrixType *Canon = |
| 4108 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4109 | |
| 4110 | if (!Canon) { |
| 4111 | Canon = new (*this, TypeAlignment) DependentSizedMatrixType( |
| 4112 | *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc); |
| 4113 | #ifndef NDEBUG1 |
| 4114 | DependentSizedMatrixType *CanonCheck = |
| 4115 | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4116 | assert(!CanonCheck && "Dependent-sized matrix canonical type broken")((void)0); |
| 4117 | #endif |
| 4118 | DependentSizedMatrixTypes.InsertNode(Canon, InsertPos); |
| 4119 | Types.push_back(Canon); |
| 4120 | } |
| 4121 | |
| 4122 | // Already have a canonical version of the matrix type |
| 4123 | // |
| 4124 | // If it exactly matches the requested type, use it directly. |
| 4125 | if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && |
| 4126 | Canon->getRowExpr() == ColumnExpr) |
| 4127 | return QualType(Canon, 0); |
| 4128 | |
| 4129 | // Use Canon as the canonical type for newly-built type. |
| 4130 | DependentSizedMatrixType *New = new (*this, TypeAlignment) |
| 4131 | DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr, |
| 4132 | ColumnExpr, AttrLoc); |
| 4133 | Types.push_back(New); |
| 4134 | return QualType(New, 0); |
| 4135 | } |
| 4136 | |
| 4137 | QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, |
| 4138 | Expr *AddrSpaceExpr, |
| 4139 | SourceLocation AttrLoc) const { |
| 4140 | assert(AddrSpaceExpr->isInstantiationDependent())((void)0); |
| 4141 | |
| 4142 | QualType canonPointeeType = getCanonicalType(PointeeType); |
| 4143 | |
| 4144 | void *insertPos = nullptr; |
| 4145 | llvm::FoldingSetNodeID ID; |
| 4146 | DependentAddressSpaceType::Profile(ID, *this, canonPointeeType, |
| 4147 | AddrSpaceExpr); |
| 4148 | |
| 4149 | DependentAddressSpaceType *canonTy = |
| 4150 | DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos); |
| 4151 | |
| 4152 | if (!canonTy) { |
| 4153 | canonTy = new (*this, TypeAlignment) |
| 4154 | DependentAddressSpaceType(*this, canonPointeeType, |
| 4155 | QualType(), AddrSpaceExpr, AttrLoc); |
| 4156 | DependentAddressSpaceTypes.InsertNode(canonTy, insertPos); |
| 4157 | Types.push_back(canonTy); |
| 4158 | } |
| 4159 | |
| 4160 | if (canonPointeeType == PointeeType && |
| 4161 | canonTy->getAddrSpaceExpr() == AddrSpaceExpr) |
| 4162 | return QualType(canonTy, 0); |
| 4163 | |
| 4164 | auto *sugaredType |
| 4165 | = new (*this, TypeAlignment) |
| 4166 | DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0), |
| 4167 | AddrSpaceExpr, AttrLoc); |
| 4168 | Types.push_back(sugaredType); |
| 4169 | return QualType(sugaredType, 0); |
| 4170 | } |
| 4171 | |
| 4172 | /// Determine whether \p T is canonical as the result type of a function. |
| 4173 | static bool isCanonicalResultType(QualType T) { |
| 4174 | return T.isCanonical() && |
| 4175 | (T.getObjCLifetime() == Qualifiers::OCL_None || |
| 4176 | T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); |
| 4177 | } |
| 4178 | |
| 4179 | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. |
| 4180 | QualType |
| 4181 | ASTContext::getFunctionNoProtoType(QualType ResultTy, |
| 4182 | const FunctionType::ExtInfo &Info) const { |
| 4183 | // Unique functions, to guarantee there is only one function of a particular |
| 4184 | // structure. |
| 4185 | llvm::FoldingSetNodeID ID; |
| 4186 | FunctionNoProtoType::Profile(ID, ResultTy, Info); |
| 4187 | |
| 4188 | void *InsertPos = nullptr; |
| 4189 | if (FunctionNoProtoType *FT = |
| 4190 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4191 | return QualType(FT, 0); |
| 4192 | |
| 4193 | QualType Canonical; |
| 4194 | if (!isCanonicalResultType(ResultTy)) { |
| 4195 | Canonical = |
| 4196 | getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info); |
| 4197 | |
| 4198 | // Get the new insert position for the node we care about. |
| 4199 | FunctionNoProtoType *NewIP = |
| 4200 | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4201 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 4202 | } |
| 4203 | |
| 4204 | auto *New = new (*this, TypeAlignment) |
| 4205 | FunctionNoProtoType(ResultTy, Canonical, Info); |
| 4206 | Types.push_back(New); |
| 4207 | FunctionNoProtoTypes.InsertNode(New, InsertPos); |
| 4208 | return QualType(New, 0); |
| 4209 | } |
| 4210 | |
| 4211 | CanQualType |
| 4212 | ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { |
| 4213 | CanQualType CanResultType = getCanonicalType(ResultType); |
| 4214 | |
| 4215 | // Canonical result types do not have ARC lifetime qualifiers. |
| 4216 | if (CanResultType.getQualifiers().hasObjCLifetime()) { |
| 4217 | Qualifiers Qs = CanResultType.getQualifiers(); |
| 4218 | Qs.removeObjCLifetime(); |
| 4219 | return CanQualType::CreateUnsafe( |
| 4220 | getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); |
| 4221 | } |
| 4222 | |
| 4223 | return CanResultType; |
| 4224 | } |
| 4225 | |
| 4226 | static bool isCanonicalExceptionSpecification( |
| 4227 | const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { |
| 4228 | if (ESI.Type == EST_None) |
| 4229 | return true; |
| 4230 | if (!NoexceptInType) |
| 4231 | return false; |
| 4232 | |
| 4233 | // C++17 onwards: exception specification is part of the type, as a simple |
| 4234 | // boolean "can this function type throw". |
| 4235 | if (ESI.Type == EST_BasicNoexcept) |
| 4236 | return true; |
| 4237 | |
| 4238 | // A noexcept(expr) specification is (possibly) canonical if expr is |
| 4239 | // value-dependent. |
| 4240 | if (ESI.Type == EST_DependentNoexcept) |
| 4241 | return true; |
| 4242 | |
| 4243 | // A dynamic exception specification is canonical if it only contains pack |
| 4244 | // expansions (so we can't tell whether it's non-throwing) and all its |
| 4245 | // contained types are canonical. |
| 4246 | if (ESI.Type == EST_Dynamic) { |
| 4247 | bool AnyPackExpansions = false; |
| 4248 | for (QualType ET : ESI.Exceptions) { |
| 4249 | if (!ET.isCanonical()) |
| 4250 | return false; |
| 4251 | if (ET->getAs<PackExpansionType>()) |
| 4252 | AnyPackExpansions = true; |
| 4253 | } |
| 4254 | return AnyPackExpansions; |
| 4255 | } |
| 4256 | |
| 4257 | return false; |
| 4258 | } |
| 4259 | |
| 4260 | QualType ASTContext::getFunctionTypeInternal( |
| 4261 | QualType ResultTy, ArrayRef<QualType> ArgArray, |
| 4262 | const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { |
| 4263 | size_t NumArgs = ArgArray.size(); |
| 4264 | |
| 4265 | // Unique functions, to guarantee there is only one function of a particular |
| 4266 | // structure. |
| 4267 | llvm::FoldingSetNodeID ID; |
| 4268 | FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, |
| 4269 | *this, true); |
| 4270 | |
| 4271 | QualType Canonical; |
| 4272 | bool Unique = false; |
| 4273 | |
| 4274 | void *InsertPos = nullptr; |
| 4275 | if (FunctionProtoType *FPT = |
| 4276 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { |
| 4277 | QualType Existing = QualType(FPT, 0); |
| 4278 | |
| 4279 | // If we find a pre-existing equivalent FunctionProtoType, we can just reuse |
| 4280 | // it so long as our exception specification doesn't contain a dependent |
| 4281 | // noexcept expression, or we're just looking for a canonical type. |
| 4282 | // Otherwise, we're going to need to create a type |
| 4283 | // sugar node to hold the concrete expression. |
| 4284 | if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) || |
| 4285 | EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) |
| 4286 | return Existing; |
| 4287 | |
| 4288 | // We need a new type sugar node for this one, to hold the new noexcept |
| 4289 | // expression. We do no canonicalization here, but that's OK since we don't |
| 4290 | // expect to see the same noexcept expression much more than once. |
| 4291 | Canonical = getCanonicalType(Existing); |
| 4292 | Unique = true; |
| 4293 | } |
| 4294 | |
| 4295 | bool NoexceptInType = getLangOpts().CPlusPlus17; |
| 4296 | bool IsCanonicalExceptionSpec = |
| 4297 | isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType); |
| 4298 | |
| 4299 | // Determine whether the type being created is already canonical or not. |
| 4300 | bool isCanonical = !Unique && IsCanonicalExceptionSpec && |
| 4301 | isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn; |
| 4302 | for (unsigned i = 0; i != NumArgs && isCanonical; ++i) |
| 4303 | if (!ArgArray[i].isCanonicalAsParam()) |
| 4304 | isCanonical = false; |
| 4305 | |
| 4306 | if (OnlyWantCanonical) |
| 4307 | assert(isCanonical &&((void)0) |
| 4308 | "given non-canonical parameters constructing canonical type")((void)0); |
| 4309 | |
| 4310 | // If this type isn't canonical, get the canonical version of it if we don't |
| 4311 | // already have it. The exception spec is only partially part of the |
| 4312 | // canonical type, and only in C++17 onwards. |
| 4313 | if (!isCanonical && Canonical.isNull()) { |
| 4314 | SmallVector<QualType, 16> CanonicalArgs; |
| 4315 | CanonicalArgs.reserve(NumArgs); |
| 4316 | for (unsigned i = 0; i != NumArgs; ++i) |
| 4317 | CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); |
| 4318 | |
| 4319 | llvm::SmallVector<QualType, 8> ExceptionTypeStorage; |
| 4320 | FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; |
| 4321 | CanonicalEPI.HasTrailingReturn = false; |
| 4322 | |
| 4323 | if (IsCanonicalExceptionSpec) { |
| 4324 | // Exception spec is already OK. |
| 4325 | } else if (NoexceptInType) { |
| 4326 | switch (EPI.ExceptionSpec.Type) { |
| 4327 | case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: |
| 4328 | // We don't know yet. It shouldn't matter what we pick here; no-one |
| 4329 | // should ever look at this. |
| 4330 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
| 4331 | case EST_None: case EST_MSAny: case EST_NoexceptFalse: |
| 4332 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
| 4333 | break; |
| 4334 | |
| 4335 | // A dynamic exception specification is almost always "not noexcept", |
| 4336 | // with the exception that a pack expansion might expand to no types. |
| 4337 | case EST_Dynamic: { |
| 4338 | bool AnyPacks = false; |
| 4339 | for (QualType ET : EPI.ExceptionSpec.Exceptions) { |
| 4340 | if (ET->getAs<PackExpansionType>()) |
| 4341 | AnyPacks = true; |
| 4342 | ExceptionTypeStorage.push_back(getCanonicalType(ET)); |
| 4343 | } |
| 4344 | if (!AnyPacks) |
| 4345 | CanonicalEPI.ExceptionSpec.Type = EST_None; |
| 4346 | else { |
| 4347 | CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; |
| 4348 | CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; |
| 4349 | } |
| 4350 | break; |
| 4351 | } |
| 4352 | |
| 4353 | case EST_DynamicNone: |
| 4354 | case EST_BasicNoexcept: |
| 4355 | case EST_NoexceptTrue: |
| 4356 | case EST_NoThrow: |
| 4357 | CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; |
| 4358 | break; |
| 4359 | |
| 4360 | case EST_DependentNoexcept: |
| 4361 | llvm_unreachable("dependent noexcept is already canonical")__builtin_unreachable(); |
| 4362 | } |
| 4363 | } else { |
| 4364 | CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); |
| 4365 | } |
| 4366 | |
| 4367 | // Adjust the canonical function result type. |
| 4368 | CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); |
| 4369 | Canonical = |
| 4370 | getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true); |
| 4371 | |
| 4372 | // Get the new insert position for the node we care about. |
| 4373 | FunctionProtoType *NewIP = |
| 4374 | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4375 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 4376 | } |
| 4377 | |
| 4378 | // Compute the needed size to hold this FunctionProtoType and the |
| 4379 | // various trailing objects. |
| 4380 | auto ESH = FunctionProtoType::getExceptionSpecSize( |
| 4381 | EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size()); |
| 4382 | size_t Size = FunctionProtoType::totalSizeToAlloc< |
| 4383 | QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, |
| 4384 | FunctionType::ExceptionType, Expr *, FunctionDecl *, |
| 4385 | FunctionProtoType::ExtParameterInfo, Qualifiers>( |
| 4386 | NumArgs, EPI.Variadic, |
| 4387 | FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type), |
| 4388 | ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr, |
| 4389 | EPI.ExtParameterInfos ? NumArgs : 0, |
| 4390 | EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0); |
| 4391 | |
| 4392 | auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment); |
| 4393 | FunctionProtoType::ExtProtoInfo newEPI = EPI; |
| 4394 | new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); |
| 4395 | Types.push_back(FTP); |
| 4396 | if (!Unique) |
| 4397 | FunctionProtoTypes.InsertNode(FTP, InsertPos); |
| 4398 | return QualType(FTP, 0); |
| 4399 | } |
| 4400 | |
| 4401 | QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { |
| 4402 | llvm::FoldingSetNodeID ID; |
| 4403 | PipeType::Profile(ID, T, ReadOnly); |
| 4404 | |
| 4405 | void *InsertPos = nullptr; |
| 4406 | if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4407 | return QualType(PT, 0); |
| 4408 | |
| 4409 | // If the pipe element type isn't canonical, this won't be a canonical type |
| 4410 | // either, so fill in the canonical type field. |
| 4411 | QualType Canonical; |
| 4412 | if (!T.isCanonical()) { |
| 4413 | Canonical = getPipeType(getCanonicalType(T), ReadOnly); |
| 4414 | |
| 4415 | // Get the new insert position for the node we care about. |
| 4416 | PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4417 | assert(!NewIP && "Shouldn't be in the map!")((void)0); |
| 4418 | (void)NewIP; |
| 4419 | } |
| 4420 | auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly); |
| 4421 | Types.push_back(New); |
| 4422 | PipeTypes.InsertNode(New, InsertPos); |
| 4423 | return QualType(New, 0); |
| 4424 | } |
| 4425 | |
| 4426 | QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { |
| 4427 | // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. |
| 4428 | return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant) |
| 4429 | : Ty; |
| 4430 | } |
| 4431 | |
| 4432 | QualType ASTContext::getReadPipeType(QualType T) const { |
| 4433 | return getPipeType(T, true); |
| 4434 | } |
| 4435 | |
| 4436 | QualType ASTContext::getWritePipeType(QualType T) const { |
| 4437 | return getPipeType(T, false); |
| 4438 | } |
| 4439 | |
| 4440 | QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const { |
| 4441 | llvm::FoldingSetNodeID ID; |
| 4442 | ExtIntType::Profile(ID, IsUnsigned, NumBits); |
| 4443 | |
| 4444 | void *InsertPos = nullptr; |
| 4445 | if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4446 | return QualType(EIT, 0); |
| 4447 | |
| 4448 | auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits); |
| 4449 | ExtIntTypes.InsertNode(New, InsertPos); |
| 4450 | Types.push_back(New); |
| 4451 | return QualType(New, 0); |
| 4452 | } |
| 4453 | |
| 4454 | QualType ASTContext::getDependentExtIntType(bool IsUnsigned, |
| 4455 | Expr *NumBitsExpr) const { |
| 4456 | assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent")((void)0); |
| 4457 | llvm::FoldingSetNodeID ID; |
| 4458 | DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr); |
| 4459 | |
| 4460 | void *InsertPos = nullptr; |
| 4461 | if (DependentExtIntType *Existing = |
| 4462 | DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4463 | return QualType(Existing, 0); |
| 4464 | |
| 4465 | auto *New = new (*this, TypeAlignment) |
| 4466 | DependentExtIntType(*this, IsUnsigned, NumBitsExpr); |
| 4467 | DependentExtIntTypes.InsertNode(New, InsertPos); |
| 4468 | |
| 4469 | Types.push_back(New); |
| 4470 | return QualType(New, 0); |
| 4471 | } |
| 4472 | |
| 4473 | #ifndef NDEBUG1 |
| 4474 | static bool NeedsInjectedClassNameType(const RecordDecl *D) { |
| 4475 | if (!isa<CXXRecordDecl>(D)) return false; |
| 4476 | const auto *RD = cast<CXXRecordDecl>(D); |
| 4477 | if (isa<ClassTemplatePartialSpecializationDecl>(RD)) |
| 4478 | return true; |
| 4479 | if (RD->getDescribedClassTemplate() && |
| 4480 | !isa<ClassTemplateSpecializationDecl>(RD)) |
| 4481 | return true; |
| 4482 | return false; |
| 4483 | } |
| 4484 | #endif |
| 4485 | |
| 4486 | /// getInjectedClassNameType - Return the unique reference to the |
| 4487 | /// injected class name type for the specified templated declaration. |
| 4488 | QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl, |
| 4489 | QualType TST) const { |
| 4490 | assert(NeedsInjectedClassNameType(Decl))((void)0); |
| 4491 | if (Decl->TypeForDecl) { |
| 4492 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl))((void)0); |
| 4493 | } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) { |
| 4494 | assert(PrevDecl->TypeForDecl && "previous declaration has no type")((void)0); |
| 4495 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| 4496 | assert(isa<InjectedClassNameType>(Decl->TypeForDecl))((void)0); |
| 4497 | } else { |
| 4498 | Type *newType = |
| 4499 | new (*this, TypeAlignment) InjectedClassNameType(Decl, TST); |
| 4500 | Decl->TypeForDecl = newType; |
| 4501 | Types.push_back(newType); |
| 4502 | } |
| 4503 | return QualType(Decl->TypeForDecl, 0); |
| 4504 | } |
| 4505 | |
| 4506 | /// getTypeDeclType - Return the unique reference to the type for the |
| 4507 | /// specified type declaration. |
| 4508 | QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const { |
| 4509 | assert(Decl && "Passed null for Decl param")((void)0); |
| 4510 | assert(!Decl->TypeForDecl && "TypeForDecl present in slow case")((void)0); |
| 4511 | |
| 4512 | if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl)) |
| 4513 | return getTypedefType(Typedef); |
| 4514 | |
| 4515 | assert(!isa<TemplateTypeParmDecl>(Decl) &&((void)0) |
| 4516 | "Template type parameter types are always available.")((void)0); |
| 4517 | |
| 4518 | if (const auto *Record = dyn_cast<RecordDecl>(Decl)) { |
| 4519 | assert(Record->isFirstDecl() && "struct/union has previous declaration")((void)0); |
| 4520 | assert(!NeedsInjectedClassNameType(Record))((void)0); |
| 4521 | return getRecordType(Record); |
| 4522 | } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) { |
| 4523 | assert(Enum->isFirstDecl() && "enum has previous declaration")((void)0); |
| 4524 | return getEnumType(Enum); |
| 4525 | } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) { |
| 4526 | Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using); |
| 4527 | Decl->TypeForDecl = newType; |
| 4528 | Types.push_back(newType); |
| 4529 | } else |
| 4530 | llvm_unreachable("TypeDecl without a type?")__builtin_unreachable(); |
| 4531 | |
| 4532 | return QualType(Decl->TypeForDecl, 0); |
| 4533 | } |
| 4534 | |
| 4535 | /// getTypedefType - Return the unique reference to the type for the |
| 4536 | /// specified typedef name decl. |
| 4537 | QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl, |
| 4538 | QualType Underlying) const { |
| 4539 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| 4540 | |
| 4541 | if (Underlying.isNull()) |
| 4542 | Underlying = Decl->getUnderlyingType(); |
| 4543 | QualType Canonical = getCanonicalType(Underlying); |
| 4544 | auto *newType = new (*this, TypeAlignment) |
| 4545 | TypedefType(Type::Typedef, Decl, Underlying, Canonical); |
| 4546 | Decl->TypeForDecl = newType; |
| 4547 | Types.push_back(newType); |
| 4548 | return QualType(newType, 0); |
| 4549 | } |
| 4550 | |
| 4551 | QualType ASTContext::getRecordType(const RecordDecl *Decl) const { |
| 4552 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| 4553 | |
| 4554 | if (const RecordDecl *PrevDecl = Decl->getPreviousDecl()) |
| 4555 | if (PrevDecl->TypeForDecl) |
| 4556 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
| 4557 | |
| 4558 | auto *newType = new (*this, TypeAlignment) RecordType(Decl); |
| 4559 | Decl->TypeForDecl = newType; |
| 4560 | Types.push_back(newType); |
| 4561 | return QualType(newType, 0); |
| 4562 | } |
| 4563 | |
| 4564 | QualType ASTContext::getEnumType(const EnumDecl *Decl) const { |
| 4565 | if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0); |
| 4566 | |
| 4567 | if (const EnumDecl *PrevDecl = Decl->getPreviousDecl()) |
| 4568 | if (PrevDecl->TypeForDecl) |
| 4569 | return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0); |
| 4570 | |
| 4571 | auto *newType = new (*this, TypeAlignment) EnumType(Decl); |
| 4572 | Decl->TypeForDecl = newType; |
| 4573 | Types.push_back(newType); |
| 4574 | return QualType(newType, 0); |
| 4575 | } |
| 4576 | |
| 4577 | QualType ASTContext::getAttributedType(attr::Kind attrKind, |
| 4578 | QualType modifiedType, |
| 4579 | QualType equivalentType) { |
| 4580 | llvm::FoldingSetNodeID id; |
| 4581 | AttributedType::Profile(id, attrKind, modifiedType, equivalentType); |
| 4582 | |
| 4583 | void *insertPos = nullptr; |
| 4584 | AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); |
| 4585 | if (type) return QualType(type, 0); |
| 4586 | |
| 4587 | QualType canon = getCanonicalType(equivalentType); |
| 4588 | type = new (*this, TypeAlignment) |
| 4589 | AttributedType(canon, attrKind, modifiedType, equivalentType); |
| 4590 | |
| 4591 | Types.push_back(type); |
| 4592 | AttributedTypes.InsertNode(type, insertPos); |
| 4593 | |
| 4594 | return QualType(type, 0); |
| 4595 | } |
| 4596 | |
| 4597 | /// Retrieve a substitution-result type. |
| 4598 | QualType |
| 4599 | ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm, |
| 4600 | QualType Replacement) const { |
| 4601 | assert(Replacement.isCanonical()((void)0) |
| 4602 | && "replacement types must always be canonical")((void)0); |
| 4603 | |
| 4604 | llvm::FoldingSetNodeID ID; |
| 4605 | SubstTemplateTypeParmType::Profile(ID, Parm, Replacement); |
| 4606 | void *InsertPos = nullptr; |
| 4607 | SubstTemplateTypeParmType *SubstParm |
| 4608 | = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4609 | |
| 4610 | if (!SubstParm) { |
| 4611 | SubstParm = new (*this, TypeAlignment) |
| 4612 | SubstTemplateTypeParmType(Parm, Replacement); |
| 4613 | Types.push_back(SubstParm); |
| 4614 | SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); |
| 4615 | } |
| 4616 | |
| 4617 | return QualType(SubstParm, 0); |
| 4618 | } |
| 4619 | |
| 4620 | /// Retrieve a |
| 4621 | QualType ASTContext::getSubstTemplateTypeParmPackType( |
| 4622 | const TemplateTypeParmType *Parm, |
| 4623 | const TemplateArgument &ArgPack) { |
| 4624 | #ifndef NDEBUG1 |
| 4625 | for (const auto &P : ArgPack.pack_elements()) { |
| 4626 | assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type")((void)0); |
| 4627 | assert(P.getAsType().isCanonical() && "Pack contains non-canonical type")((void)0); |
| 4628 | } |
| 4629 | #endif |
| 4630 | |
| 4631 | llvm::FoldingSetNodeID ID; |
| 4632 | SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack); |
| 4633 | void *InsertPos = nullptr; |
| 4634 | if (SubstTemplateTypeParmPackType *SubstParm |
| 4635 | = SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 4636 | return QualType(SubstParm, 0); |
| 4637 | |
| 4638 | QualType Canon; |
| 4639 | if (!Parm->isCanonicalUnqualified()) { |
| 4640 | Canon = getCanonicalType(QualType(Parm, 0)); |
| 4641 | Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon), |
| 4642 | ArgPack); |
| 4643 | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4644 | } |
| 4645 | |
| 4646 | auto *SubstParm |
| 4647 | = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon, |
| 4648 | ArgPack); |
| 4649 | Types.push_back(SubstParm); |
| 4650 | SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos); |
| 4651 | return QualType(SubstParm, 0); |
| 4652 | } |
| 4653 | |
| 4654 | /// Retrieve the template type parameter type for a template |
| 4655 | /// parameter or parameter pack with the given depth, index, and (optionally) |
| 4656 | /// name. |
| 4657 | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, |
| 4658 | bool ParameterPack, |
| 4659 | TemplateTypeParmDecl *TTPDecl) const { |
| 4660 | llvm::FoldingSetNodeID ID; |
| 4661 | TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); |
| 4662 | void *InsertPos = nullptr; |
| 4663 | TemplateTypeParmType *TypeParm |
| 4664 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4665 | |
| 4666 | if (TypeParm) |
| 4667 | return QualType(TypeParm, 0); |
| 4668 | |
| 4669 | if (TTPDecl) { |
| 4670 | QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); |
| 4671 | TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon); |
| 4672 | |
| 4673 | TemplateTypeParmType *TypeCheck |
| 4674 | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4675 | assert(!TypeCheck && "Template type parameter canonical type broken")((void)0); |
| 4676 | (void)TypeCheck; |
| 4677 | } else |
| 4678 | TypeParm = new (*this, TypeAlignment) |
| 4679 | TemplateTypeParmType(Depth, Index, ParameterPack); |
| 4680 | |
| 4681 | Types.push_back(TypeParm); |
| 4682 | TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); |
| 4683 | |
| 4684 | return QualType(TypeParm, 0); |
| 4685 | } |
| 4686 | |
| 4687 | TypeSourceInfo * |
| 4688 | ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name, |
| 4689 | SourceLocation NameLoc, |
| 4690 | const TemplateArgumentListInfo &Args, |
| 4691 | QualType Underlying) const { |
| 4692 | assert(!Name.getAsDependentTemplateName() &&((void)0) |
| 4693 | "No dependent template names here!")((void)0); |
| 4694 | QualType TST = getTemplateSpecializationType(Name, Args, Underlying); |
| 4695 | |
| 4696 | TypeSourceInfo *DI = CreateTypeSourceInfo(TST); |
| 4697 | TemplateSpecializationTypeLoc TL = |
| 4698 | DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>(); |
| 4699 | TL.setTemplateKeywordLoc(SourceLocation()); |
| 4700 | TL.setTemplateNameLoc(NameLoc); |
| 4701 | TL.setLAngleLoc(Args.getLAngleLoc()); |
| 4702 | TL.setRAngleLoc(Args.getRAngleLoc()); |
| 4703 | for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i) |
| 4704 | TL.setArgLocInfo(i, Args[i].getLocInfo()); |
| 4705 | return DI; |
| 4706 | } |
| 4707 | |
| 4708 | QualType |
| 4709 | ASTContext::getTemplateSpecializationType(TemplateName Template, |
| 4710 | const TemplateArgumentListInfo &Args, |
| 4711 | QualType Underlying) const { |
| 4712 | assert(!Template.getAsDependentTemplateName() &&((void)0) |
| 4713 | "No dependent template names here!")((void)0); |
| 4714 | |
| 4715 | SmallVector<TemplateArgument, 4> ArgVec; |
| 4716 | ArgVec.reserve(Args.size()); |
| 4717 | for (const TemplateArgumentLoc &Arg : Args.arguments()) |
| 4718 | ArgVec.push_back(Arg.getArgument()); |
| 4719 | |
| 4720 | return getTemplateSpecializationType(Template, ArgVec, Underlying); |
| 4721 | } |
| 4722 | |
| 4723 | #ifndef NDEBUG1 |
| 4724 | static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { |
| 4725 | for (const TemplateArgument &Arg : Args) |
| 4726 | if (Arg.isPackExpansion()) |
| 4727 | return true; |
| 4728 | |
| 4729 | return true; |
| 4730 | } |
| 4731 | #endif |
| 4732 | |
| 4733 | QualType |
| 4734 | ASTContext::getTemplateSpecializationType(TemplateName Template, |
| 4735 | ArrayRef<TemplateArgument> Args, |
| 4736 | QualType Underlying) const { |
| 4737 | assert(!Template.getAsDependentTemplateName() &&((void)0) |
| 4738 | "No dependent template names here!")((void)0); |
| 4739 | // Look through qualified template names. |
| 4740 | if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| 4741 | Template = TemplateName(QTN->getTemplateDecl()); |
| 4742 | |
| 4743 | bool IsTypeAlias = |
| 4744 | Template.getAsTemplateDecl() && |
| 4745 | isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl()); |
| 4746 | QualType CanonType; |
| 4747 | if (!Underlying.isNull()) |
| 4748 | CanonType = getCanonicalType(Underlying); |
| 4749 | else { |
| 4750 | // We can get here with an alias template when the specialization contains |
| 4751 | // a pack expansion that does not match up with a parameter pack. |
| 4752 | assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&((void)0) |
| 4753 | "Caller must compute aliased type")((void)0); |
| 4754 | IsTypeAlias = false; |
| 4755 | CanonType = getCanonicalTemplateSpecializationType(Template, Args); |
| 4756 | } |
| 4757 | |
| 4758 | // Allocate the (non-canonical) template specialization type, but don't |
| 4759 | // try to unique it: these types typically have location information that |
| 4760 | // we don't unique and don't want to lose. |
| 4761 | void *Mem = Allocate(sizeof(TemplateSpecializationType) + |
| 4762 | sizeof(TemplateArgument) * Args.size() + |
| 4763 | (IsTypeAlias? sizeof(QualType) : 0), |
| 4764 | TypeAlignment); |
| 4765 | auto *Spec |
| 4766 | = new (Mem) TemplateSpecializationType(Template, Args, CanonType, |
| 4767 | IsTypeAlias ? Underlying : QualType()); |
| 4768 | |
| 4769 | Types.push_back(Spec); |
| 4770 | return QualType(Spec, 0); |
| 4771 | } |
| 4772 | |
| 4773 | QualType ASTContext::getCanonicalTemplateSpecializationType( |
| 4774 | TemplateName Template, ArrayRef<TemplateArgument> Args) const { |
| 4775 | assert(!Template.getAsDependentTemplateName() &&((void)0) |
| 4776 | "No dependent template names here!")((void)0); |
| 4777 | |
| 4778 | // Look through qualified template names. |
| 4779 | if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName()) |
| 4780 | Template = TemplateName(QTN->getTemplateDecl()); |
| 4781 | |
| 4782 | // Build the canonical template specialization type. |
| 4783 | TemplateName CanonTemplate = getCanonicalTemplateName(Template); |
| 4784 | SmallVector<TemplateArgument, 4> CanonArgs; |
| 4785 | unsigned NumArgs = Args.size(); |
| 4786 | CanonArgs.reserve(NumArgs); |
| 4787 | for (const TemplateArgument &Arg : Args) |
| 4788 | CanonArgs.push_back(getCanonicalTemplateArgument(Arg)); |
| 4789 | |
| 4790 | // Determine whether this canonical template specialization type already |
| 4791 | // exists. |
| 4792 | llvm::FoldingSetNodeID ID; |
| 4793 | TemplateSpecializationType::Profile(ID, CanonTemplate, |
| 4794 | CanonArgs, *this); |
| 4795 | |
| 4796 | void *InsertPos = nullptr; |
| 4797 | TemplateSpecializationType *Spec |
| 4798 | = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4799 | |
| 4800 | if (!Spec) { |
| 4801 | // Allocate a new canonical template specialization type. |
| 4802 | void *Mem = Allocate((sizeof(TemplateSpecializationType) + |
| 4803 | sizeof(TemplateArgument) * NumArgs), |
| 4804 | TypeAlignment); |
| 4805 | Spec = new (Mem) TemplateSpecializationType(CanonTemplate, |
| 4806 | CanonArgs, |
| 4807 | QualType(), QualType()); |
| 4808 | Types.push_back(Spec); |
| 4809 | TemplateSpecializationTypes.InsertNode(Spec, InsertPos); |
| 4810 | } |
| 4811 | |
| 4812 | assert(Spec->isDependentType() &&((void)0) |
| 4813 | "Non-dependent template-id type must have a canonical type")((void)0); |
| 4814 | return QualType(Spec, 0); |
| 4815 | } |
| 4816 | |
| 4817 | QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword, |
| 4818 | NestedNameSpecifier *NNS, |
| 4819 | QualType NamedType, |
| 4820 | TagDecl *OwnedTagDecl) const { |
| 4821 | llvm::FoldingSetNodeID ID; |
| 4822 | ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl); |
| 4823 | |
| 4824 | void *InsertPos = nullptr; |
| 4825 | ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4826 | if (T) |
| 4827 | return QualType(T, 0); |
| 4828 | |
| 4829 | QualType Canon = NamedType; |
| 4830 | if (!Canon.isCanonical()) { |
| 4831 | Canon = getCanonicalType(NamedType); |
| 4832 | ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4833 | assert(!CheckT && "Elaborated canonical type broken")((void)0); |
| 4834 | (void)CheckT; |
| 4835 | } |
| 4836 | |
| 4837 | void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl), |
| 4838 | TypeAlignment); |
| 4839 | T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl); |
| 4840 | |
| 4841 | Types.push_back(T); |
| 4842 | ElaboratedTypes.InsertNode(T, InsertPos); |
| 4843 | return QualType(T, 0); |
| 4844 | } |
| 4845 | |
| 4846 | QualType |
| 4847 | ASTContext::getParenType(QualType InnerType) const { |
| 4848 | llvm::FoldingSetNodeID ID; |
| 4849 | ParenType::Profile(ID, InnerType); |
| 4850 | |
| 4851 | void *InsertPos = nullptr; |
| 4852 | ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4853 | if (T) |
| 4854 | return QualType(T, 0); |
| 4855 | |
| 4856 | QualType Canon = InnerType; |
| 4857 | if (!Canon.isCanonical()) { |
| 4858 | Canon = getCanonicalType(InnerType); |
| 4859 | ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4860 | assert(!CheckT && "Paren canonical type broken")((void)0); |
| 4861 | (void)CheckT; |
| 4862 | } |
| 4863 | |
| 4864 | T = new (*this, TypeAlignment) ParenType(InnerType, Canon); |
| 4865 | Types.push_back(T); |
| 4866 | ParenTypes.InsertNode(T, InsertPos); |
| 4867 | return QualType(T, 0); |
| 4868 | } |
| 4869 | |
| 4870 | QualType |
| 4871 | ASTContext::getMacroQualifiedType(QualType UnderlyingTy, |
| 4872 | const IdentifierInfo *MacroII) const { |
| 4873 | QualType Canon = UnderlyingTy; |
| 4874 | if (!Canon.isCanonical()) |
| 4875 | Canon = getCanonicalType(UnderlyingTy); |
| 4876 | |
| 4877 | auto *newType = new (*this, TypeAlignment) |
| 4878 | MacroQualifiedType(UnderlyingTy, Canon, MacroII); |
| 4879 | Types.push_back(newType); |
| 4880 | return QualType(newType, 0); |
| 4881 | } |
| 4882 | |
| 4883 | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, |
| 4884 | NestedNameSpecifier *NNS, |
| 4885 | const IdentifierInfo *Name, |
| 4886 | QualType Canon) const { |
| 4887 | if (Canon.isNull()) { |
| 4888 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| 4889 | if (CanonNNS != NNS) |
| 4890 | Canon = getDependentNameType(Keyword, CanonNNS, Name); |
| 4891 | } |
| 4892 | |
| 4893 | llvm::FoldingSetNodeID ID; |
| 4894 | DependentNameType::Profile(ID, Keyword, NNS, Name); |
| 4895 | |
| 4896 | void *InsertPos = nullptr; |
| 4897 | DependentNameType *T |
| 4898 | = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4899 | if (T) |
| 4900 | return QualType(T, 0); |
| 4901 | |
| 4902 | T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon); |
| 4903 | Types.push_back(T); |
| 4904 | DependentNameTypes.InsertNode(T, InsertPos); |
| 4905 | return QualType(T, 0); |
| 4906 | } |
| 4907 | |
| 4908 | QualType |
| 4909 | ASTContext::getDependentTemplateSpecializationType( |
| 4910 | ElaboratedTypeKeyword Keyword, |
| 4911 | NestedNameSpecifier *NNS, |
| 4912 | const IdentifierInfo *Name, |
| 4913 | const TemplateArgumentListInfo &Args) const { |
| 4914 | // TODO: avoid this copy |
| 4915 | SmallVector<TemplateArgument, 16> ArgCopy; |
| 4916 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
| 4917 | ArgCopy.push_back(Args[I].getArgument()); |
| 4918 | return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy); |
| 4919 | } |
| 4920 | |
| 4921 | QualType |
| 4922 | ASTContext::getDependentTemplateSpecializationType( |
| 4923 | ElaboratedTypeKeyword Keyword, |
| 4924 | NestedNameSpecifier *NNS, |
| 4925 | const IdentifierInfo *Name, |
| 4926 | ArrayRef<TemplateArgument> Args) const { |
| 4927 | assert((!NNS || NNS->isDependent()) &&((void)0) |
| 4928 | "nested-name-specifier must be dependent")((void)0); |
| 4929 | |
| 4930 | llvm::FoldingSetNodeID ID; |
| 4931 | DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS, |
| 4932 | Name, Args); |
| 4933 | |
| 4934 | void *InsertPos = nullptr; |
| 4935 | DependentTemplateSpecializationType *T |
| 4936 | = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4937 | if (T) |
| 4938 | return QualType(T, 0); |
| 4939 | |
| 4940 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| 4941 | |
| 4942 | ElaboratedTypeKeyword CanonKeyword = Keyword; |
| 4943 | if (Keyword == ETK_None) CanonKeyword = ETK_Typename; |
| 4944 | |
| 4945 | bool AnyNonCanonArgs = false; |
| 4946 | unsigned NumArgs = Args.size(); |
| 4947 | SmallVector<TemplateArgument, 16> CanonArgs(NumArgs); |
| 4948 | for (unsigned I = 0; I != NumArgs; ++I) { |
| 4949 | CanonArgs[I] = getCanonicalTemplateArgument(Args[I]); |
| 4950 | if (!CanonArgs[I].structurallyEquals(Args[I])) |
| 4951 | AnyNonCanonArgs = true; |
| 4952 | } |
| 4953 | |
| 4954 | QualType Canon; |
| 4955 | if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) { |
| 4956 | Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS, |
| 4957 | Name, |
| 4958 | CanonArgs); |
| 4959 | |
| 4960 | // Find the insert position again. |
| 4961 | DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 4962 | } |
| 4963 | |
| 4964 | void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) + |
| 4965 | sizeof(TemplateArgument) * NumArgs), |
| 4966 | TypeAlignment); |
| 4967 | T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS, |
| 4968 | Name, Args, Canon); |
| 4969 | Types.push_back(T); |
| 4970 | DependentTemplateSpecializationTypes.InsertNode(T, InsertPos); |
| 4971 | return QualType(T, 0); |
| 4972 | } |
| 4973 | |
| 4974 | TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) { |
| 4975 | TemplateArgument Arg; |
| 4976 | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { |
| 4977 | QualType ArgType = getTypeDeclType(TTP); |
| 4978 | if (TTP->isParameterPack()) |
| 4979 | ArgType = getPackExpansionType(ArgType, None); |
| 4980 | |
| 4981 | Arg = TemplateArgument(ArgType); |
| 4982 | } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| 4983 | QualType T = |
| 4984 | NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this); |
| 4985 | // For class NTTPs, ensure we include the 'const' so the type matches that |
| 4986 | // of a real template argument. |
| 4987 | // FIXME: It would be more faithful to model this as something like an |
| 4988 | // lvalue-to-rvalue conversion applied to a const-qualified lvalue. |
| 4989 | if (T->isRecordType()) |
| 4990 | T.addConst(); |
| 4991 | Expr *E = new (*this) DeclRefExpr( |
| 4992 | *this, NTTP, /*enclosing*/ false, T, |
| 4993 | Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation()); |
| 4994 | |
| 4995 | if (NTTP->isParameterPack()) |
| 4996 | E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(), |
| 4997 | None); |
| 4998 | Arg = TemplateArgument(E); |
| 4999 | } else { |
| 5000 | auto *TTP = cast<TemplateTemplateParmDecl>(Param); |
| 5001 | if (TTP->isParameterPack()) |
| 5002 | Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>()); |
| 5003 | else |
| 5004 | Arg = TemplateArgument(TemplateName(TTP)); |
| 5005 | } |
| 5006 | |
| 5007 | if (Param->isTemplateParameterPack()) |
| 5008 | Arg = TemplateArgument::CreatePackCopy(*this, Arg); |
| 5009 | |
| 5010 | return Arg; |
| 5011 | } |
| 5012 | |
| 5013 | void |
| 5014 | ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params, |
| 5015 | SmallVectorImpl<TemplateArgument> &Args) { |
| 5016 | Args.reserve(Args.size() + Params->size()); |
| 5017 | |
| 5018 | for (NamedDecl *Param : *Params) |
| 5019 | Args.push_back(getInjectedTemplateArg(Param)); |
| 5020 | } |
| 5021 | |
| 5022 | QualType ASTContext::getPackExpansionType(QualType Pattern, |
| 5023 | Optional<unsigned> NumExpansions, |
| 5024 | bool ExpectPackInType) { |
| 5025 | assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&((void)0) |
| 5026 | "Pack expansions must expand one or more parameter packs")((void)0); |
| 5027 | |
| 5028 | llvm::FoldingSetNodeID ID; |
| 5029 | PackExpansionType::Profile(ID, Pattern, NumExpansions); |
| 5030 | |
| 5031 | void *InsertPos = nullptr; |
| 5032 | PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5033 | if (T) |
| 5034 | return QualType(T, 0); |
| 5035 | |
| 5036 | QualType Canon; |
| 5037 | if (!Pattern.isCanonical()) { |
| 5038 | Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions, |
| 5039 | /*ExpectPackInType=*/false); |
| 5040 | |
| 5041 | // Find the insert position again, in case we inserted an element into |
| 5042 | // PackExpansionTypes and invalidated our insert position. |
| 5043 | PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5044 | } |
| 5045 | |
| 5046 | T = new (*this, TypeAlignment) |
| 5047 | PackExpansionType(Pattern, Canon, NumExpansions); |
| 5048 | Types.push_back(T); |
| 5049 | PackExpansionTypes.InsertNode(T, InsertPos); |
| 5050 | return QualType(T, 0); |
| 5051 | } |
| 5052 | |
| 5053 | /// CmpProtocolNames - Comparison predicate for sorting protocols |
| 5054 | /// alphabetically. |
| 5055 | static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, |
| 5056 | ObjCProtocolDecl *const *RHS) { |
| 5057 | return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); |
| 5058 | } |
| 5059 | |
| 5060 | static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { |
| 5061 | if (Protocols.empty()) return true; |
| 5062 | |
| 5063 | if (Protocols[0]->getCanonicalDecl() != Protocols[0]) |
| 5064 | return false; |
| 5065 | |
| 5066 | for (unsigned i = 1; i != Protocols.size(); ++i) |
| 5067 | if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || |
| 5068 | Protocols[i]->getCanonicalDecl() != Protocols[i]) |
| 5069 | return false; |
| 5070 | return true; |
| 5071 | } |
| 5072 | |
| 5073 | static void |
| 5074 | SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { |
| 5075 | // Sort protocols, keyed by name. |
| 5076 | llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); |
| 5077 | |
| 5078 | // Canonicalize. |
| 5079 | for (ObjCProtocolDecl *&P : Protocols) |
| 5080 | P = P->getCanonicalDecl(); |
| 5081 | |
| 5082 | // Remove duplicates. |
| 5083 | auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end()); |
| 5084 | Protocols.erase(ProtocolsEnd, Protocols.end()); |
| 5085 | } |
| 5086 | |
| 5087 | QualType ASTContext::getObjCObjectType(QualType BaseType, |
| 5088 | ObjCProtocolDecl * const *Protocols, |
| 5089 | unsigned NumProtocols) const { |
| 5090 | return getObjCObjectType(BaseType, {}, |
| 5091 | llvm::makeArrayRef(Protocols, NumProtocols), |
| 5092 | /*isKindOf=*/false); |
| 5093 | } |
| 5094 | |
| 5095 | QualType ASTContext::getObjCObjectType( |
| 5096 | QualType baseType, |
| 5097 | ArrayRef<QualType> typeArgs, |
| 5098 | ArrayRef<ObjCProtocolDecl *> protocols, |
| 5099 | bool isKindOf) const { |
| 5100 | // If the base type is an interface and there aren't any protocols or |
| 5101 | // type arguments to add, then the interface type will do just fine. |
| 5102 | if (typeArgs.empty() && protocols.empty() && !isKindOf && |
| 5103 | isa<ObjCInterfaceType>(baseType)) |
| 5104 | return baseType; |
| 5105 | |
| 5106 | // Look in the folding set for an existing type. |
| 5107 | llvm::FoldingSetNodeID ID; |
| 5108 | ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); |
| 5109 | void *InsertPos = nullptr; |
| 5110 | if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5111 | return QualType(QT, 0); |
| 5112 | |
| 5113 | // Determine the type arguments to be used for canonicalization, |
| 5114 | // which may be explicitly specified here or written on the base |
| 5115 | // type. |
| 5116 | ArrayRef<QualType> effectiveTypeArgs = typeArgs; |
| 5117 | if (effectiveTypeArgs.empty()) { |
| 5118 | if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) |
| 5119 | effectiveTypeArgs = baseObject->getTypeArgs(); |
| 5120 | } |
| 5121 | |
| 5122 | // Build the canonical type, which has the canonical base type and a |
| 5123 | // sorted-and-uniqued list of protocols and the type arguments |
| 5124 | // canonicalized. |
| 5125 | QualType canonical; |
| 5126 | bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(), |
| 5127 | effectiveTypeArgs.end(), |
| 5128 | [&](QualType type) { |
| 5129 | return type.isCanonical(); |
| 5130 | }); |
| 5131 | bool protocolsSorted = areSortedAndUniqued(protocols); |
| 5132 | if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { |
| 5133 | // Determine the canonical type arguments. |
| 5134 | ArrayRef<QualType> canonTypeArgs; |
| 5135 | SmallVector<QualType, 4> canonTypeArgsVec; |
| 5136 | if (!typeArgsAreCanonical) { |
| 5137 | canonTypeArgsVec.reserve(effectiveTypeArgs.size()); |
| 5138 | for (auto typeArg : effectiveTypeArgs) |
| 5139 | canonTypeArgsVec.push_back(getCanonicalType(typeArg)); |
| 5140 | canonTypeArgs = canonTypeArgsVec; |
| 5141 | } else { |
| 5142 | canonTypeArgs = effectiveTypeArgs; |
| 5143 | } |
| 5144 | |
| 5145 | ArrayRef<ObjCProtocolDecl *> canonProtocols; |
| 5146 | SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; |
| 5147 | if (!protocolsSorted) { |
| 5148 | canonProtocolsVec.append(protocols.begin(), protocols.end()); |
| 5149 | SortAndUniqueProtocols(canonProtocolsVec); |
| 5150 | canonProtocols = canonProtocolsVec; |
| 5151 | } else { |
| 5152 | canonProtocols = protocols; |
| 5153 | } |
| 5154 | |
| 5155 | canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, |
| 5156 | canonProtocols, isKindOf); |
| 5157 | |
| 5158 | // Regenerate InsertPos. |
| 5159 | ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5160 | } |
| 5161 | |
| 5162 | unsigned size = sizeof(ObjCObjectTypeImpl); |
| 5163 | size += typeArgs.size() * sizeof(QualType); |
| 5164 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
| 5165 | void *mem = Allocate(size, TypeAlignment); |
| 5166 | auto *T = |
| 5167 | new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, |
| 5168 | isKindOf); |
| 5169 | |
| 5170 | Types.push_back(T); |
| 5171 | ObjCObjectTypes.InsertNode(T, InsertPos); |
| 5172 | return QualType(T, 0); |
| 5173 | } |
| 5174 | |
| 5175 | /// Apply Objective-C protocol qualifiers to the given type. |
| 5176 | /// If this is for the canonical type of a type parameter, we can apply |
| 5177 | /// protocol qualifiers on the ObjCObjectPointerType. |
| 5178 | QualType |
| 5179 | ASTContext::applyObjCProtocolQualifiers(QualType type, |
| 5180 | ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, |
| 5181 | bool allowOnPointerType) const { |
| 5182 | hasError = false; |
| 5183 | |
| 5184 | if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) { |
| 5185 | return getObjCTypeParamType(objT->getDecl(), protocols); |
| 5186 | } |
| 5187 | |
| 5188 | // Apply protocol qualifiers to ObjCObjectPointerType. |
| 5189 | if (allowOnPointerType) { |
| 5190 | if (const auto *objPtr = |
| 5191 | dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) { |
| 5192 | const ObjCObjectType *objT = objPtr->getObjectType(); |
| 5193 | // Merge protocol lists and construct ObjCObjectType. |
| 5194 | SmallVector<ObjCProtocolDecl*, 8> protocolsVec; |
| 5195 | protocolsVec.append(objT->qual_begin(), |
| 5196 | objT->qual_end()); |
| 5197 | protocolsVec.append(protocols.begin(), protocols.end()); |
| 5198 | ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; |
| 5199 | type = getObjCObjectType( |
| 5200 | objT->getBaseType(), |
| 5201 | objT->getTypeArgsAsWritten(), |
| 5202 | protocols, |
| 5203 | objT->isKindOfTypeAsWritten()); |
| 5204 | return getObjCObjectPointerType(type); |
| 5205 | } |
| 5206 | } |
| 5207 | |
| 5208 | // Apply protocol qualifiers to ObjCObjectType. |
| 5209 | if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){ |
| 5210 | // FIXME: Check for protocols to which the class type is already |
| 5211 | // known to conform. |
| 5212 | |
| 5213 | return getObjCObjectType(objT->getBaseType(), |
| 5214 | objT->getTypeArgsAsWritten(), |
| 5215 | protocols, |
| 5216 | objT->isKindOfTypeAsWritten()); |
| 5217 | } |
| 5218 | |
| 5219 | // If the canonical type is ObjCObjectType, ... |
| 5220 | if (type->isObjCObjectType()) { |
| 5221 | // Silently overwrite any existing protocol qualifiers. |
| 5222 | // TODO: determine whether that's the right thing to do. |
| 5223 | |
| 5224 | // FIXME: Check for protocols to which the class type is already |
| 5225 | // known to conform. |
| 5226 | return getObjCObjectType(type, {}, protocols, false); |
| 5227 | } |
| 5228 | |
| 5229 | // id<protocol-list> |
| 5230 | if (type->isObjCIdType()) { |
| 5231 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
| 5232 | type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols, |
| 5233 | objPtr->isKindOfType()); |
| 5234 | return getObjCObjectPointerType(type); |
| 5235 | } |
| 5236 | |
| 5237 | // Class<protocol-list> |
| 5238 | if (type->isObjCClassType()) { |
| 5239 | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); |
| 5240 | type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols, |
| 5241 | objPtr->isKindOfType()); |
| 5242 | return getObjCObjectPointerType(type); |
| 5243 | } |
| 5244 | |
| 5245 | hasError = true; |
| 5246 | return type; |
| 5247 | } |
| 5248 | |
| 5249 | QualType |
| 5250 | ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, |
| 5251 | ArrayRef<ObjCProtocolDecl *> protocols) const { |
| 5252 | // Look in the folding set for an existing type. |
| 5253 | llvm::FoldingSetNodeID ID; |
| 5254 | ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols); |
| 5255 | void *InsertPos = nullptr; |
| 5256 | if (ObjCTypeParamType *TypeParam = |
| 5257 | ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5258 | return QualType(TypeParam, 0); |
| 5259 | |
| 5260 | // We canonicalize to the underlying type. |
| 5261 | QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); |
| 5262 | if (!protocols.empty()) { |
| 5263 | // Apply the protocol qualifers. |
| 5264 | bool hasError; |
| 5265 | Canonical = getCanonicalType(applyObjCProtocolQualifiers( |
| 5266 | Canonical, protocols, hasError, true /*allowOnPointerType*/)); |
| 5267 | assert(!hasError && "Error when apply protocol qualifier to bound type")((void)0); |
| 5268 | } |
| 5269 | |
| 5270 | unsigned size = sizeof(ObjCTypeParamType); |
| 5271 | size += protocols.size() * sizeof(ObjCProtocolDecl *); |
| 5272 | void *mem = Allocate(size, TypeAlignment); |
| 5273 | auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); |
| 5274 | |
| 5275 | Types.push_back(newType); |
| 5276 | ObjCTypeParamTypes.InsertNode(newType, InsertPos); |
| 5277 | return QualType(newType, 0); |
| 5278 | } |
| 5279 | |
| 5280 | void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, |
| 5281 | ObjCTypeParamDecl *New) const { |
| 5282 | New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType())); |
| 5283 | // Update TypeForDecl after updating TypeSourceInfo. |
| 5284 | auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl()); |
| 5285 | SmallVector<ObjCProtocolDecl *, 8> protocols; |
| 5286 | protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end()); |
| 5287 | QualType UpdatedTy = getObjCTypeParamType(New, protocols); |
| 5288 | New->setTypeForDecl(UpdatedTy.getTypePtr()); |
| 5289 | } |
| 5290 | |
| 5291 | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's |
| 5292 | /// protocol list adopt all protocols in QT's qualified-id protocol |
| 5293 | /// list. |
| 5294 | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, |
| 5295 | ObjCInterfaceDecl *IC) { |
| 5296 | if (!QT->isObjCQualifiedIdType()) |
| 5297 | return false; |
| 5298 | |
| 5299 | if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { |
| 5300 | // If both the right and left sides have qualifiers. |
| 5301 | for (auto *Proto : OPT->quals()) { |
| 5302 | if (!IC->ClassImplementsProtocol(Proto, false)) |
| 5303 | return false; |
| 5304 | } |
| 5305 | return true; |
| 5306 | } |
| 5307 | return false; |
| 5308 | } |
| 5309 | |
| 5310 | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in |
| 5311 | /// QT's qualified-id protocol list adopt all protocols in IDecl's list |
| 5312 | /// of protocols. |
| 5313 | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, |
| 5314 | ObjCInterfaceDecl *IDecl) { |
| 5315 | if (!QT->isObjCQualifiedIdType()) |
| 5316 | return false; |
| 5317 | const auto *OPT = QT->getAs<ObjCObjectPointerType>(); |
| 5318 | if (!OPT) |
| 5319 | return false; |
| 5320 | if (!IDecl->hasDefinition()) |
| 5321 | return false; |
| 5322 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; |
| 5323 | CollectInheritedProtocols(IDecl, InheritedProtocols); |
| 5324 | if (InheritedProtocols.empty()) |
| 5325 | return false; |
| 5326 | // Check that if every protocol in list of id<plist> conforms to a protocol |
| 5327 | // of IDecl's, then bridge casting is ok. |
| 5328 | bool Conforms = false; |
| 5329 | for (auto *Proto : OPT->quals()) { |
| 5330 | Conforms = false; |
| 5331 | for (auto *PI : InheritedProtocols) { |
| 5332 | if (ProtocolCompatibleWithProtocol(Proto, PI)) { |
| 5333 | Conforms = true; |
| 5334 | break; |
| 5335 | } |
| 5336 | } |
| 5337 | if (!Conforms) |
| 5338 | break; |
| 5339 | } |
| 5340 | if (Conforms) |
| 5341 | return true; |
| 5342 | |
| 5343 | for (auto *PI : InheritedProtocols) { |
| 5344 | // If both the right and left sides have qualifiers. |
| 5345 | bool Adopts = false; |
| 5346 | for (auto *Proto : OPT->quals()) { |
| 5347 | // return 'true' if 'PI' is in the inheritance hierarchy of Proto |
| 5348 | if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) |
| 5349 | break; |
| 5350 | } |
| 5351 | if (!Adopts) |
| 5352 | return false; |
| 5353 | } |
| 5354 | return true; |
| 5355 | } |
| 5356 | |
| 5357 | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for |
| 5358 | /// the given object type. |
| 5359 | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { |
| 5360 | llvm::FoldingSetNodeID ID; |
| 5361 | ObjCObjectPointerType::Profile(ID, ObjectT); |
| 5362 | |
| 5363 | void *InsertPos = nullptr; |
| 5364 | if (ObjCObjectPointerType *QT = |
| 5365 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5366 | return QualType(QT, 0); |
| 5367 | |
| 5368 | // Find the canonical object type. |
| 5369 | QualType Canonical; |
| 5370 | if (!ObjectT.isCanonical()) { |
| 5371 | Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); |
| 5372 | |
| 5373 | // Regenerate InsertPos. |
| 5374 | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5375 | } |
| 5376 | |
| 5377 | // No match. |
| 5378 | void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment); |
| 5379 | auto *QType = |
| 5380 | new (Mem) ObjCObjectPointerType(Canonical, ObjectT); |
| 5381 | |
| 5382 | Types.push_back(QType); |
| 5383 | ObjCObjectPointerTypes.InsertNode(QType, InsertPos); |
| 5384 | return QualType(QType, 0); |
| 5385 | } |
| 5386 | |
| 5387 | /// getObjCInterfaceType - Return the unique reference to the type for the |
| 5388 | /// specified ObjC interface decl. The list of protocols is optional. |
| 5389 | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, |
| 5390 | ObjCInterfaceDecl *PrevDecl) const { |
| 5391 | if (Decl->TypeForDecl) |
| 5392 | return QualType(Decl->TypeForDecl, 0); |
| 5393 | |
| 5394 | if (PrevDecl) { |
| 5395 | assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl")((void)0); |
| 5396 | Decl->TypeForDecl = PrevDecl->TypeForDecl; |
| 5397 | return QualType(PrevDecl->TypeForDecl, 0); |
| 5398 | } |
| 5399 | |
| 5400 | // Prefer the definition, if there is one. |
| 5401 | if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) |
| 5402 | Decl = Def; |
| 5403 | |
| 5404 | void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment); |
| 5405 | auto *T = new (Mem) ObjCInterfaceType(Decl); |
| 5406 | Decl->TypeForDecl = T; |
| 5407 | Types.push_back(T); |
| 5408 | return QualType(T, 0); |
| 5409 | } |
| 5410 | |
| 5411 | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique |
| 5412 | /// TypeOfExprType AST's (since expression's are never shared). For example, |
| 5413 | /// multiple declarations that refer to "typeof(x)" all contain different |
| 5414 | /// DeclRefExpr's. This doesn't effect the type checker, since it operates |
| 5415 | /// on canonical type's (which are always unique). |
| 5416 | QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const { |
| 5417 | TypeOfExprType *toe; |
| 5418 | if (tofExpr->isTypeDependent()) { |
| 5419 | llvm::FoldingSetNodeID ID; |
| 5420 | DependentTypeOfExprType::Profile(ID, *this, tofExpr); |
| 5421 | |
| 5422 | void *InsertPos = nullptr; |
| 5423 | DependentTypeOfExprType *Canon |
| 5424 | = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5425 | if (Canon) { |
| 5426 | // We already have a "canonical" version of an identical, dependent |
| 5427 | // typeof(expr) type. Use that as our canonical type. |
| 5428 | toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, |
| 5429 | QualType((TypeOfExprType*)Canon, 0)); |
| 5430 | } else { |
| 5431 | // Build a new, canonical typeof(expr) type. |
| 5432 | Canon |
| 5433 | = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr); |
| 5434 | DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); |
| 5435 | toe = Canon; |
| 5436 | } |
| 5437 | } else { |
| 5438 | QualType Canonical = getCanonicalType(tofExpr->getType()); |
| 5439 | toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical); |
| 5440 | } |
| 5441 | Types.push_back(toe); |
| 5442 | return QualType(toe, 0); |
| 5443 | } |
| 5444 | |
| 5445 | /// getTypeOfType - Unlike many "get<Type>" functions, we don't unique |
| 5446 | /// TypeOfType nodes. The only motivation to unique these nodes would be |
| 5447 | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be |
| 5448 | /// an issue. This doesn't affect the type checker, since it operates |
| 5449 | /// on canonical types (which are always unique). |
| 5450 | QualType ASTContext::getTypeOfType(QualType tofType) const { |
| 5451 | QualType Canonical = getCanonicalType(tofType); |
| 5452 | auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical); |
| 5453 | Types.push_back(tot); |
| 5454 | return QualType(tot, 0); |
| 5455 | } |
| 5456 | |
| 5457 | /// Unlike many "get<Type>" functions, we don't unique DecltypeType |
| 5458 | /// nodes. This would never be helpful, since each such type has its own |
| 5459 | /// expression, and would not give a significant memory saving, since there |
| 5460 | /// is an Expr tree under each such type. |
| 5461 | QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const { |
| 5462 | DecltypeType *dt; |
| 5463 | |
| 5464 | // C++11 [temp.type]p2: |
| 5465 | // If an expression e involves a template parameter, decltype(e) denotes a |
| 5466 | // unique dependent type. Two such decltype-specifiers refer to the same |
| 5467 | // type only if their expressions are equivalent (14.5.6.1). |
| 5468 | if (e->isInstantiationDependent()) { |
| 5469 | llvm::FoldingSetNodeID ID; |
| 5470 | DependentDecltypeType::Profile(ID, *this, e); |
| 5471 | |
| 5472 | void *InsertPos = nullptr; |
| 5473 | DependentDecltypeType *Canon |
| 5474 | = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5475 | if (!Canon) { |
| 5476 | // Build a new, canonical decltype(expr) type. |
| 5477 | Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e); |
| 5478 | DependentDecltypeTypes.InsertNode(Canon, InsertPos); |
| 5479 | } |
| 5480 | dt = new (*this, TypeAlignment) |
| 5481 | DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0)); |
| 5482 | } else { |
| 5483 | dt = new (*this, TypeAlignment) |
| 5484 | DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType)); |
| 5485 | } |
| 5486 | Types.push_back(dt); |
| 5487 | return QualType(dt, 0); |
| 5488 | } |
| 5489 | |
| 5490 | /// getUnaryTransformationType - We don't unique these, since the memory |
| 5491 | /// savings are minimal and these are rare. |
| 5492 | QualType ASTContext::getUnaryTransformType(QualType BaseType, |
| 5493 | QualType UnderlyingType, |
| 5494 | UnaryTransformType::UTTKind Kind) |
| 5495 | const { |
| 5496 | UnaryTransformType *ut = nullptr; |
| 5497 | |
| 5498 | if (BaseType->isDependentType()) { |
| 5499 | // Look in the folding set for an existing type. |
| 5500 | llvm::FoldingSetNodeID ID; |
| 5501 | DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind); |
| 5502 | |
| 5503 | void *InsertPos = nullptr; |
| 5504 | DependentUnaryTransformType *Canon |
| 5505 | = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5506 | |
| 5507 | if (!Canon) { |
| 5508 | // Build a new, canonical __underlying_type(type) type. |
| 5509 | Canon = new (*this, TypeAlignment) |
| 5510 | DependentUnaryTransformType(*this, getCanonicalType(BaseType), |
| 5511 | Kind); |
| 5512 | DependentUnaryTransformTypes.InsertNode(Canon, InsertPos); |
| 5513 | } |
| 5514 | ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, |
| 5515 | QualType(), Kind, |
| 5516 | QualType(Canon, 0)); |
| 5517 | } else { |
| 5518 | QualType CanonType = getCanonicalType(UnderlyingType); |
| 5519 | ut = new (*this, TypeAlignment) UnaryTransformType (BaseType, |
| 5520 | UnderlyingType, Kind, |
| 5521 | CanonType); |
| 5522 | } |
| 5523 | Types.push_back(ut); |
| 5524 | return QualType(ut, 0); |
| 5525 | } |
| 5526 | |
| 5527 | /// getAutoType - Return the uniqued reference to the 'auto' type which has been |
| 5528 | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the |
| 5529 | /// canonical deduced-but-dependent 'auto' type. |
| 5530 | QualType |
| 5531 | ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, |
| 5532 | bool IsDependent, bool IsPack, |
| 5533 | ConceptDecl *TypeConstraintConcept, |
| 5534 | ArrayRef<TemplateArgument> TypeConstraintArgs) const { |
| 5535 | assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack")((void)0); |
| 5536 | if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && |
| 5537 | !TypeConstraintConcept && !IsDependent) |
| 5538 | return getAutoDeductType(); |
| 5539 | |
| 5540 | // Look in the folding set for an existing type. |
| 5541 | void *InsertPos = nullptr; |
| 5542 | llvm::FoldingSetNodeID ID; |
| 5543 | AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent, |
| 5544 | TypeConstraintConcept, TypeConstraintArgs); |
| 5545 | if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5546 | return QualType(AT, 0); |
| 5547 | |
| 5548 | void *Mem = Allocate(sizeof(AutoType) + |
| 5549 | sizeof(TemplateArgument) * TypeConstraintArgs.size(), |
| 5550 | TypeAlignment); |
| 5551 | auto *AT = new (Mem) AutoType( |
| 5552 | DeducedType, Keyword, |
| 5553 | (IsDependent ? TypeDependence::DependentInstantiation |
| 5554 | : TypeDependence::None) | |
| 5555 | (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), |
| 5556 | TypeConstraintConcept, TypeConstraintArgs); |
| 5557 | Types.push_back(AT); |
| 5558 | if (InsertPos) |
| 5559 | AutoTypes.InsertNode(AT, InsertPos); |
| 5560 | return QualType(AT, 0); |
| 5561 | } |
| 5562 | |
| 5563 | /// Return the uniqued reference to the deduced template specialization type |
| 5564 | /// which has been deduced to the given type, or to the canonical undeduced |
| 5565 | /// such type, or the canonical deduced-but-dependent such type. |
| 5566 | QualType ASTContext::getDeducedTemplateSpecializationType( |
| 5567 | TemplateName Template, QualType DeducedType, bool IsDependent) const { |
| 5568 | // Look in the folding set for an existing type. |
| 5569 | void *InsertPos = nullptr; |
| 5570 | llvm::FoldingSetNodeID ID; |
| 5571 | DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType, |
| 5572 | IsDependent); |
| 5573 | if (DeducedTemplateSpecializationType *DTST = |
| 5574 | DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5575 | return QualType(DTST, 0); |
| 5576 | |
| 5577 | auto *DTST = new (*this, TypeAlignment) |
| 5578 | DeducedTemplateSpecializationType(Template, DeducedType, IsDependent); |
| 5579 | Types.push_back(DTST); |
| 5580 | if (InsertPos) |
| 5581 | DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos); |
| 5582 | return QualType(DTST, 0); |
| 5583 | } |
| 5584 | |
| 5585 | /// getAtomicType - Return the uniqued reference to the atomic type for |
| 5586 | /// the given value type. |
| 5587 | QualType ASTContext::getAtomicType(QualType T) const { |
| 5588 | // Unique pointers, to guarantee there is only one pointer of a particular |
| 5589 | // structure. |
| 5590 | llvm::FoldingSetNodeID ID; |
| 5591 | AtomicType::Profile(ID, T); |
| 5592 | |
| 5593 | void *InsertPos = nullptr; |
| 5594 | if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) |
| 5595 | return QualType(AT, 0); |
| 5596 | |
| 5597 | // If the atomic value type isn't canonical, this won't be a canonical type |
| 5598 | // either, so fill in the canonical type field. |
| 5599 | QualType Canonical; |
| 5600 | if (!T.isCanonical()) { |
| 5601 | Canonical = getAtomicType(getCanonicalType(T)); |
| 5602 | |
| 5603 | // Get the new insert position for the node we care about. |
| 5604 | AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); |
| 5605 | assert(!NewIP && "Shouldn't be in the map!")((void)0); (void)NewIP; |
| 5606 | } |
| 5607 | auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical); |
| 5608 | Types.push_back(New); |
| 5609 | AtomicTypes.InsertNode(New, InsertPos); |
| 5610 | return QualType(New, 0); |
| 5611 | } |
| 5612 | |
| 5613 | /// getAutoDeductType - Get type pattern for deducing against 'auto'. |
| 5614 | QualType ASTContext::getAutoDeductType() const { |
| 5615 | if (AutoDeductTy.isNull()) |
| 5616 | AutoDeductTy = QualType(new (*this, TypeAlignment) |
| 5617 | AutoType(QualType(), AutoTypeKeyword::Auto, |
| 5618 | TypeDependence::None, |
| 5619 | /*concept*/ nullptr, /*args*/ {}), |
| 5620 | 0); |
| 5621 | return AutoDeductTy; |
| 5622 | } |
| 5623 | |
| 5624 | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. |
| 5625 | QualType ASTContext::getAutoRRefDeductType() const { |
| 5626 | if (AutoRRefDeductTy.isNull()) |
| 5627 | AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); |
| 5628 | assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern")((void)0); |
| 5629 | return AutoRRefDeductTy; |
| 5630 | } |
| 5631 | |
| 5632 | /// getTagDeclType - Return the unique reference to the type for the |
| 5633 | /// specified TagDecl (struct/union/class/enum) decl. |
| 5634 | QualType ASTContext::getTagDeclType(const TagDecl *Decl) const { |
| 5635 | assert(Decl)((void)0); |
| 5636 | // FIXME: What is the design on getTagDeclType when it requires casting |
| 5637 | // away const? mutable? |
| 5638 | return getTypeDeclType(const_cast<TagDecl*>(Decl)); |
| 5639 | } |
| 5640 | |
| 5641 | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result |
| 5642 | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and |
| 5643 | /// needs to agree with the definition in <stddef.h>. |
| 5644 | CanQualType ASTContext::getSizeType() const { |
| 5645 | return getFromTargetType(Target->getSizeType()); |
| 5646 | } |
| 5647 | |
| 5648 | /// Return the unique signed counterpart of the integer type |
| 5649 | /// corresponding to size_t. |
| 5650 | CanQualType ASTContext::getSignedSizeType() const { |
| 5651 | return getFromTargetType(Target->getSignedSizeType()); |
| 5652 | } |
| 5653 | |
| 5654 | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). |
| 5655 | CanQualType ASTContext::getIntMaxType() const { |
| 5656 | return getFromTargetType(Target->getIntMaxType()); |
| 5657 | } |
| 5658 | |
| 5659 | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). |
| 5660 | CanQualType ASTContext::getUIntMaxType() const { |
| 5661 | return getFromTargetType(Target->getUIntMaxType()); |
| 5662 | } |
| 5663 | |
| 5664 | /// getSignedWCharType - Return the type of "signed wchar_t". |
| 5665 | /// Used when in C++, as a GCC extension. |
| 5666 | QualType ASTContext::getSignedWCharType() const { |
| 5667 | // FIXME: derive from "Target" ? |
| 5668 | return WCharTy; |
| 5669 | } |
| 5670 | |
| 5671 | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". |
| 5672 | /// Used when in C++, as a GCC extension. |
| 5673 | QualType ASTContext::getUnsignedWCharType() const { |
| 5674 | // FIXME: derive from "Target" ? |
| 5675 | return UnsignedIntTy; |
| 5676 | } |
| 5677 | |
| 5678 | QualType ASTContext::getIntPtrType() const { |
| 5679 | return getFromTargetType(Target->getIntPtrType()); |
| 5680 | } |
| 5681 | |
| 5682 | QualType ASTContext::getUIntPtrType() const { |
| 5683 | return getCorrespondingUnsignedType(getIntPtrType()); |
| 5684 | } |
| 5685 | |
| 5686 | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) |
| 5687 | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). |
| 5688 | QualType ASTContext::getPointerDiffType() const { |
| 5689 | return getFromTargetType(Target->getPtrDiffType(0)); |
| 5690 | } |
| 5691 | |
| 5692 | /// Return the unique unsigned counterpart of "ptrdiff_t" |
| 5693 | /// integer type. The standard (C11 7.21.6.1p7) refers to this type |
| 5694 | /// in the definition of %tu format specifier. |
| 5695 | QualType ASTContext::getUnsignedPointerDiffType() const { |
| 5696 | return getFromTargetType(Target->getUnsignedPtrDiffType(0)); |
| 5697 | } |
| 5698 | |
| 5699 | /// Return the unique type for "pid_t" defined in |
| 5700 | /// <sys/types.h>. We need this to compute the correct type for vfork(). |
| 5701 | QualType ASTContext::getProcessIDType() const { |
| 5702 | return getFromTargetType(Target->getProcessIDType()); |
| 5703 | } |
| 5704 | |
| 5705 | //===----------------------------------------------------------------------===// |
| 5706 | // Type Operators |
| 5707 | //===----------------------------------------------------------------------===// |
| 5708 | |
| 5709 | CanQualType ASTContext::getCanonicalParamType(QualType T) const { |
| 5710 | // Push qualifiers into arrays, and then discard any remaining |
| 5711 | // qualifiers. |
| 5712 | T = getCanonicalType(T); |
| 5713 | T = getVariableArrayDecayedType(T); |
| 5714 | const Type *Ty = T.getTypePtr(); |
| 5715 | QualType Result; |
| 5716 | if (isa<ArrayType>(Ty)) { |
| 5717 | Result = getArrayDecayedType(QualType(Ty,0)); |
| 5718 | } else if (isa<FunctionType>(Ty)) { |
| 5719 | Result = getPointerType(QualType(Ty, 0)); |
| 5720 | } else { |
| 5721 | Result = QualType(Ty, 0); |
| 5722 | } |
| 5723 | |
| 5724 | return CanQualType::CreateUnsafe(Result); |
| 5725 | } |
| 5726 | |
| 5727 | QualType ASTContext::getUnqualifiedArrayType(QualType type, |
| 5728 | Qualifiers &quals) { |
| 5729 | SplitQualType splitType = type.getSplitUnqualifiedType(); |
| 5730 | |
| 5731 | // FIXME: getSplitUnqualifiedType() actually walks all the way to |
| 5732 | // the unqualified desugared type and then drops it on the floor. |
| 5733 | // We then have to strip that sugar back off with |
| 5734 | // getUnqualifiedDesugaredType(), which is silly. |
| 5735 | const auto *AT = |
| 5736 | dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); |
| 5737 | |
| 5738 | // If we don't have an array, just use the results in splitType. |
| 5739 | if (!AT) { |
| 5740 | quals = splitType.Quals; |
| 5741 | return QualType(splitType.Ty, 0); |
| 5742 | } |
| 5743 | |
| 5744 | // Otherwise, recurse on the array's element type. |
| 5745 | QualType elementType = AT->getElementType(); |
| 5746 | QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); |
| 5747 | |
| 5748 | // If that didn't change the element type, AT has no qualifiers, so we |
| 5749 | // can just use the results in splitType. |
| 5750 | if (elementType == unqualElementType) { |
| 5751 | assert(quals.empty())((void)0); // from the recursive call |
| 5752 | quals = splitType.Quals; |
| 5753 | return QualType(splitType.Ty, 0); |
| 5754 | } |
| 5755 | |
| 5756 | // Otherwise, add in the qualifiers from the outermost type, then |
| 5757 | // build the type back up. |
| 5758 | quals.addConsistentQualifiers(splitType.Quals); |
| 5759 | |
| 5760 | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { |
| 5761 | return getConstantArrayType(unqualElementType, CAT->getSize(), |
| 5762 | CAT->getSizeExpr(), CAT->getSizeModifier(), 0); |
| 5763 | } |
| 5764 | |
| 5765 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
| 5766 | return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); |
| 5767 | } |
| 5768 | |
| 5769 | if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) { |
| 5770 | return getVariableArrayType(unqualElementType, |
| 5771 | VAT->getSizeExpr(), |
| 5772 | VAT->getSizeModifier(), |
| 5773 | VAT->getIndexTypeCVRQualifiers(), |
| 5774 | VAT->getBracketsRange()); |
| 5775 | } |
| 5776 | |
| 5777 | const auto *DSAT = cast<DependentSizedArrayType>(AT); |
| 5778 | return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), |
| 5779 | DSAT->getSizeModifier(), 0, |
| 5780 | SourceRange()); |
| 5781 | } |
| 5782 | |
| 5783 | /// Attempt to unwrap two types that may both be array types with the same bound |
| 5784 | /// (or both be array types of unknown bound) for the purpose of comparing the |
| 5785 | /// cv-decomposition of two types per C++ [conv.qual]. |
| 5786 | void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) { |
| 5787 | while (true) { |
| 5788 | auto *AT1 = getAsArrayType(T1); |
| 5789 | if (!AT1) |
| 5790 | return; |
| 5791 | |
| 5792 | auto *AT2 = getAsArrayType(T2); |
| 5793 | if (!AT2) |
| 5794 | return; |
| 5795 | |
| 5796 | // If we don't have two array types with the same constant bound nor two |
| 5797 | // incomplete array types, we've unwrapped everything we can. |
| 5798 | if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) { |
| 5799 | auto *CAT2 = dyn_cast<ConstantArrayType>(AT2); |
| 5800 | if (!CAT2 || CAT1->getSize() != CAT2->getSize()) |
| 5801 | return; |
| 5802 | } else if (!isa<IncompleteArrayType>(AT1) || |
| 5803 | !isa<IncompleteArrayType>(AT2)) { |
| 5804 | return; |
| 5805 | } |
| 5806 | |
| 5807 | T1 = AT1->getElementType(); |
| 5808 | T2 = AT2->getElementType(); |
| 5809 | } |
| 5810 | } |
| 5811 | |
| 5812 | /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). |
| 5813 | /// |
| 5814 | /// If T1 and T2 are both pointer types of the same kind, or both array types |
| 5815 | /// with the same bound, unwraps layers from T1 and T2 until a pointer type is |
| 5816 | /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. |
| 5817 | /// |
| 5818 | /// This function will typically be called in a loop that successively |
| 5819 | /// "unwraps" pointer and pointer-to-member types to compare them at each |
| 5820 | /// level. |
| 5821 | /// |
| 5822 | /// \return \c true if a pointer type was unwrapped, \c false if we reached a |
| 5823 | /// pair of types that can't be unwrapped further. |
| 5824 | bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) { |
| 5825 | UnwrapSimilarArrayTypes(T1, T2); |
| 5826 | |
| 5827 | const auto *T1PtrType = T1->getAs<PointerType>(); |
| 5828 | const auto *T2PtrType = T2->getAs<PointerType>(); |
| 5829 | if (T1PtrType && T2PtrType) { |
| 5830 | T1 = T1PtrType->getPointeeType(); |
| 5831 | T2 = T2PtrType->getPointeeType(); |
| 5832 | return true; |
| 5833 | } |
| 5834 | |
| 5835 | const auto *T1MPType = T1->getAs<MemberPointerType>(); |
| 5836 | const auto *T2MPType = T2->getAs<MemberPointerType>(); |
| 5837 | if (T1MPType && T2MPType && |
| 5838 | hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0), |
| 5839 | QualType(T2MPType->getClass(), 0))) { |
| 5840 | T1 = T1MPType->getPointeeType(); |
| 5841 | T2 = T2MPType->getPointeeType(); |
| 5842 | return true; |
| 5843 | } |
| 5844 | |
| 5845 | if (getLangOpts().ObjC) { |
| 5846 | const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); |
| 5847 | const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); |
| 5848 | if (T1OPType && T2OPType) { |
| 5849 | T1 = T1OPType->getPointeeType(); |
| 5850 | T2 = T2OPType->getPointeeType(); |
| 5851 | return true; |
| 5852 | } |
| 5853 | } |
| 5854 | |
| 5855 | // FIXME: Block pointers, too? |
| 5856 | |
| 5857 | return false; |
| 5858 | } |
| 5859 | |
| 5860 | bool ASTContext::hasSimilarType(QualType T1, QualType T2) { |
| 5861 | while (true) { |
| 5862 | Qualifiers Quals; |
| 5863 | T1 = getUnqualifiedArrayType(T1, Quals); |
| 5864 | T2 = getUnqualifiedArrayType(T2, Quals); |
| 5865 | if (hasSameType(T1, T2)) |
| 5866 | return true; |
| 5867 | if (!UnwrapSimilarTypes(T1, T2)) |
| 5868 | return false; |
| 5869 | } |
| 5870 | } |
| 5871 | |
| 5872 | bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { |
| 5873 | while (true) { |
| 5874 | Qualifiers Quals1, Quals2; |
| 5875 | T1 = getUnqualifiedArrayType(T1, Quals1); |
| 5876 | T2 = getUnqualifiedArrayType(T2, Quals2); |
| 5877 | |
| 5878 | Quals1.removeCVRQualifiers(); |
| 5879 | Quals2.removeCVRQualifiers(); |
| 5880 | if (Quals1 != Quals2) |
| 5881 | return false; |
| 5882 | |
| 5883 | if (hasSameType(T1, T2)) |
| 5884 | return true; |
| 5885 | |
| 5886 | if (!UnwrapSimilarTypes(T1, T2)) |
| 5887 | return false; |
| 5888 | } |
| 5889 | } |
| 5890 | |
| 5891 | DeclarationNameInfo |
| 5892 | ASTContext::getNameForTemplate(TemplateName Name, |
| 5893 | SourceLocation NameLoc) const { |
| 5894 | switch (Name.getKind()) { |
| 5895 | case TemplateName::QualifiedTemplate: |
| 5896 | case TemplateName::Template: |
| 5897 | // DNInfo work in progress: CHECKME: what about DNLoc? |
| 5898 | return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), |
| 5899 | NameLoc); |
| 5900 | |
| 5901 | case TemplateName::OverloadedTemplate: { |
| 5902 | OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); |
| 5903 | // DNInfo work in progress: CHECKME: what about DNLoc? |
| 5904 | return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); |
| 5905 | } |
| 5906 | |
| 5907 | case TemplateName::AssumedTemplate: { |
| 5908 | AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); |
| 5909 | return DeclarationNameInfo(Storage->getDeclName(), NameLoc); |
| 5910 | } |
| 5911 | |
| 5912 | case TemplateName::DependentTemplate: { |
| 5913 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
| 5914 | DeclarationName DName; |
| 5915 | if (DTN->isIdentifier()) { |
| 5916 | DName = DeclarationNames.getIdentifier(DTN->getIdentifier()); |
| 5917 | return DeclarationNameInfo(DName, NameLoc); |
| 5918 | } else { |
| 5919 | DName = DeclarationNames.getCXXOperatorName(DTN->getOperator()); |
| 5920 | // DNInfo work in progress: FIXME: source locations? |
| 5921 | DeclarationNameLoc DNLoc = |
| 5922 | DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange()); |
| 5923 | return DeclarationNameInfo(DName, NameLoc, DNLoc); |
| 5924 | } |
| 5925 | } |
| 5926 | |
| 5927 | case TemplateName::SubstTemplateTemplateParm: { |
| 5928 | SubstTemplateTemplateParmStorage *subst |
| 5929 | = Name.getAsSubstTemplateTemplateParm(); |
| 5930 | return DeclarationNameInfo(subst->getParameter()->getDeclName(), |
| 5931 | NameLoc); |
| 5932 | } |
| 5933 | |
| 5934 | case TemplateName::SubstTemplateTemplateParmPack: { |
| 5935 | SubstTemplateTemplateParmPackStorage *subst |
| 5936 | = Name.getAsSubstTemplateTemplateParmPack(); |
| 5937 | return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), |
| 5938 | NameLoc); |
| 5939 | } |
| 5940 | } |
| 5941 | |
| 5942 | llvm_unreachable("bad template name kind!")__builtin_unreachable(); |
| 5943 | } |
| 5944 | |
| 5945 | TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const { |
| 5946 | switch (Name.getKind()) { |
| 5947 | case TemplateName::QualifiedTemplate: |
| 5948 | case TemplateName::Template: { |
| 5949 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
| 5950 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template)) |
| 5951 | Template = getCanonicalTemplateTemplateParmDecl(TTP); |
| 5952 | |
| 5953 | // The canonical template name is the canonical template declaration. |
| 5954 | return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); |
| 5955 | } |
| 5956 | |
| 5957 | case TemplateName::OverloadedTemplate: |
| 5958 | case TemplateName::AssumedTemplate: |
| 5959 | llvm_unreachable("cannot canonicalize unresolved template")__builtin_unreachable(); |
| 5960 | |
| 5961 | case TemplateName::DependentTemplate: { |
| 5962 | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); |
| 5963 | assert(DTN && "Non-dependent template names must refer to template decls.")((void)0); |
| 5964 | return DTN->CanonicalTemplateName; |
| 5965 | } |
| 5966 | |
| 5967 | case TemplateName::SubstTemplateTemplateParm: { |
| 5968 | SubstTemplateTemplateParmStorage *subst |
| 5969 | = Name.getAsSubstTemplateTemplateParm(); |
| 5970 | return getCanonicalTemplateName(subst->getReplacement()); |
| 5971 | } |
| 5972 | |
| 5973 | case TemplateName::SubstTemplateTemplateParmPack: { |
| 5974 | SubstTemplateTemplateParmPackStorage *subst |
| 5975 | = Name.getAsSubstTemplateTemplateParmPack(); |
| 5976 | TemplateTemplateParmDecl *canonParameter |
| 5977 | = getCanonicalTemplateTemplateParmDecl(subst->getParameterPack()); |
| 5978 | TemplateArgument canonArgPack |
| 5979 | = getCanonicalTemplateArgument(subst->getArgumentPack()); |
| 5980 | return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack); |
| 5981 | } |
| 5982 | } |
| 5983 | |
| 5984 | llvm_unreachable("bad template name!")__builtin_unreachable(); |
| 5985 | } |
| 5986 | |
| 5987 | bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) { |
| 5988 | X = getCanonicalTemplateName(X); |
| 5989 | Y = getCanonicalTemplateName(Y); |
| 5990 | return X.getAsVoidPointer() == Y.getAsVoidPointer(); |
| 5991 | } |
| 5992 | |
| 5993 | TemplateArgument |
| 5994 | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { |
| 5995 | switch (Arg.getKind()) { |
| 5996 | case TemplateArgument::Null: |
| 5997 | return Arg; |
| 5998 | |
| 5999 | case TemplateArgument::Expression: |
| 6000 | return Arg; |
| 6001 | |
| 6002 | case TemplateArgument::Declaration: { |
| 6003 | auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); |
| 6004 | return TemplateArgument(D, Arg.getParamTypeForDecl()); |
| 6005 | } |
| 6006 | |
| 6007 | case TemplateArgument::NullPtr: |
| 6008 | return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), |
| 6009 | /*isNullPtr*/true); |
| 6010 | |
| 6011 | case TemplateArgument::Template: |
| 6012 | return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate())); |
| 6013 | |
| 6014 | case TemplateArgument::TemplateExpansion: |
| 6015 | return TemplateArgument(getCanonicalTemplateName( |
| 6016 | Arg.getAsTemplateOrTemplatePattern()), |
| 6017 | Arg.getNumTemplateExpansions()); |
| 6018 | |
| 6019 | case TemplateArgument::Integral: |
| 6020 | return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); |
| 6021 | |
| 6022 | case TemplateArgument::Type: |
| 6023 | return TemplateArgument(getCanonicalType(Arg.getAsType())); |
| 6024 | |
| 6025 | case TemplateArgument::Pack: { |
| 6026 | if (Arg.pack_size() == 0) |
| 6027 | return Arg; |
| 6028 | |
| 6029 | auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()]; |
| 6030 | unsigned Idx = 0; |
| 6031 | for (TemplateArgument::pack_iterator A = Arg.pack_begin(), |
| 6032 | AEnd = Arg.pack_end(); |
| 6033 | A != AEnd; (void)++A, ++Idx) |
| 6034 | CanonArgs[Idx] = getCanonicalTemplateArgument(*A); |
| 6035 | |
| 6036 | return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size())); |
| 6037 | } |
| 6038 | } |
| 6039 | |
| 6040 | // Silence GCC warning |
| 6041 | llvm_unreachable("Unhandled template argument kind")__builtin_unreachable(); |
| 6042 | } |
| 6043 | |
| 6044 | NestedNameSpecifier * |
| 6045 | ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const { |
| 6046 | if (!NNS) |
| 6047 | return nullptr; |
| 6048 | |
| 6049 | switch (NNS->getKind()) { |
| 6050 | case NestedNameSpecifier::Identifier: |
| 6051 | // Canonicalize the prefix but keep the identifier the same. |
| 6052 | return NestedNameSpecifier::Create(*this, |
| 6053 | getCanonicalNestedNameSpecifier(NNS->getPrefix()), |
| 6054 | NNS->getAsIdentifier()); |
| 6055 | |
| 6056 | case NestedNameSpecifier::Namespace: |
| 6057 | // A namespace is canonical; build a nested-name-specifier with |
| 6058 | // this namespace and no prefix. |
| 6059 | return NestedNameSpecifier::Create(*this, nullptr, |
| 6060 | NNS->getAsNamespace()->getOriginalNamespace()); |
| 6061 | |
| 6062 | case NestedNameSpecifier::NamespaceAlias: |
| 6063 | // A namespace is canonical; build a nested-name-specifier with |
| 6064 | // this namespace and no prefix. |
| 6065 | return NestedNameSpecifier::Create(*this, nullptr, |
| 6066 | NNS->getAsNamespaceAlias()->getNamespace() |
| 6067 | ->getOriginalNamespace()); |
| 6068 | |
| 6069 | // The difference between TypeSpec and TypeSpecWithTemplate is that the |
| 6070 | // latter will have the 'template' keyword when printed. |
| 6071 | case NestedNameSpecifier::TypeSpec: |
| 6072 | case NestedNameSpecifier::TypeSpecWithTemplate: { |
| 6073 | const Type *T = getCanonicalType(NNS->getAsType()); |
| 6074 | |
| 6075 | // If we have some kind of dependent-named type (e.g., "typename T::type"), |
| 6076 | // break it apart into its prefix and identifier, then reconsititute those |
| 6077 | // as the canonical nested-name-specifier. This is required to canonicalize |
| 6078 | // a dependent nested-name-specifier involving typedefs of dependent-name |
| 6079 | // types, e.g., |
| 6080 | // typedef typename T::type T1; |
| 6081 | // typedef typename T1::type T2; |
| 6082 | if (const auto *DNT = T->getAs<DependentNameType>()) |
| 6083 | return NestedNameSpecifier::Create( |
| 6084 | *this, DNT->getQualifier(), |
| 6085 | const_cast<IdentifierInfo *>(DNT->getIdentifier())); |
| 6086 | if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>()) |
| 6087 | return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true, |
| 6088 | const_cast<Type *>(T)); |
| 6089 | |
| 6090 | // TODO: Set 'Template' parameter to true for other template types. |
| 6091 | return NestedNameSpecifier::Create(*this, nullptr, false, |
| 6092 | const_cast<Type *>(T)); |
| 6093 | } |
| 6094 | |
| 6095 | case NestedNameSpecifier::Global: |
| 6096 | case NestedNameSpecifier::Super: |
| 6097 | // The global specifier and __super specifer are canonical and unique. |
| 6098 | return NNS; |
| 6099 | } |
| 6100 | |
| 6101 | llvm_unreachable("Invalid NestedNameSpecifier::Kind!")__builtin_unreachable(); |
| 6102 | } |
| 6103 | |
| 6104 | const ArrayType *ASTContext::getAsArrayType(QualType T) const { |
| 6105 | // Handle the non-qualified case efficiently. |
| 6106 | if (!T.hasLocalQualifiers()) { |
| 6107 | // Handle the common positive case fast. |
| 6108 | if (const auto *AT = dyn_cast<ArrayType>(T)) |
| 6109 | return AT; |
| 6110 | } |
| 6111 | |
| 6112 | // Handle the common negative case fast. |
| 6113 | if (!isa<ArrayType>(T.getCanonicalType())) |
| 6114 | return nullptr; |
| 6115 | |
| 6116 | // Apply any qualifiers from the array type to the element type. This |
| 6117 | // implements C99 6.7.3p8: "If the specification of an array type includes |
| 6118 | // any type qualifiers, the element type is so qualified, not the array type." |
| 6119 | |
| 6120 | // If we get here, we either have type qualifiers on the type, or we have |
| 6121 | // sugar such as a typedef in the way. If we have type qualifiers on the type |
| 6122 | // we must propagate them down into the element type. |
| 6123 | |
| 6124 | SplitQualType split = T.getSplitDesugaredType(); |
| 6125 | Qualifiers qs = split.Quals; |
| 6126 | |
| 6127 | // If we have a simple case, just return now. |
| 6128 | const auto *ATy = dyn_cast<ArrayType>(split.Ty); |
| 6129 | if (!ATy || qs.empty()) |
| 6130 | return ATy; |
| 6131 | |
| 6132 | // Otherwise, we have an array and we have qualifiers on it. Push the |
| 6133 | // qualifiers into the array element type and return a new array type. |
| 6134 | QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); |
| 6135 | |
| 6136 | if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy)) |
| 6137 | return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), |
| 6138 | CAT->getSizeExpr(), |
| 6139 | CAT->getSizeModifier(), |
| 6140 | CAT->getIndexTypeCVRQualifiers())); |
| 6141 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy)) |
| 6142 | return cast<ArrayType>(getIncompleteArrayType(NewEltTy, |
| 6143 | IAT->getSizeModifier(), |
| 6144 | IAT->getIndexTypeCVRQualifiers())); |
| 6145 | |
| 6146 | if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy)) |
| 6147 | return cast<ArrayType>( |
| 6148 | getDependentSizedArrayType(NewEltTy, |
| 6149 | DSAT->getSizeExpr(), |
| 6150 | DSAT->getSizeModifier(), |
| 6151 | DSAT->getIndexTypeCVRQualifiers(), |
| 6152 | DSAT->getBracketsRange())); |
| 6153 | |
| 6154 | const auto *VAT = cast<VariableArrayType>(ATy); |
| 6155 | return cast<ArrayType>(getVariableArrayType(NewEltTy, |
| 6156 | VAT->getSizeExpr(), |
| 6157 | VAT->getSizeModifier(), |
| 6158 | VAT->getIndexTypeCVRQualifiers(), |
| 6159 | VAT->getBracketsRange())); |
| 6160 | } |
| 6161 | |
| 6162 | QualType ASTContext::getAdjustedParameterType(QualType T) const { |
| 6163 | if (T->isArrayType() || T->isFunctionType()) |
| 6164 | return getDecayedType(T); |
| 6165 | return T; |
| 6166 | } |
| 6167 | |
| 6168 | QualType ASTContext::getSignatureParameterType(QualType T) const { |
| 6169 | T = getVariableArrayDecayedType(T); |
| 6170 | T = getAdjustedParameterType(T); |
| 6171 | return T.getUnqualifiedType(); |
| 6172 | } |
| 6173 | |
| 6174 | QualType ASTContext::getExceptionObjectType(QualType T) const { |
| 6175 | // C++ [except.throw]p3: |
| 6176 | // A throw-expression initializes a temporary object, called the exception |
| 6177 | // object, the type of which is determined by removing any top-level |
| 6178 | // cv-qualifiers from the static type of the operand of throw and adjusting |
| 6179 | // the type from "array of T" or "function returning T" to "pointer to T" |
| 6180 | // or "pointer to function returning T", [...] |
| 6181 | T = getVariableArrayDecayedType(T); |
| 6182 | if (T->isArrayType() || T->isFunctionType()) |
| 6183 | T = getDecayedType(T); |
| 6184 | return T.getUnqualifiedType(); |
| 6185 | } |
| 6186 | |
| 6187 | /// getArrayDecayedType - Return the properly qualified result of decaying the |
| 6188 | /// specified array type to a pointer. This operation is non-trivial when |
| 6189 | /// handling typedefs etc. The canonical type of "T" must be an array type, |
| 6190 | /// this returns a pointer to a properly qualified element of the array. |
| 6191 | /// |
| 6192 | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. |
| 6193 | QualType ASTContext::getArrayDecayedType(QualType Ty) const { |
| 6194 | // Get the element type with 'getAsArrayType' so that we don't lose any |
| 6195 | // typedefs in the element type of the array. This also handles propagation |
| 6196 | // of type qualifiers from the array type into the element type if present |
| 6197 | // (C99 6.7.3p8). |
| 6198 | const ArrayType *PrettyArrayType = getAsArrayType(Ty); |
| 6199 | assert(PrettyArrayType && "Not an array type!")((void)0); |
| 6200 | |
| 6201 | QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); |
| 6202 | |
| 6203 | // int x[restrict 4] -> int *restrict |
| 6204 | QualType Result = getQualifiedType(PtrTy, |
| 6205 | PrettyArrayType->getIndexTypeQualifiers()); |
| 6206 | |
| 6207 | // int x[_Nullable] -> int * _Nullable |
| 6208 | if (auto Nullability = Ty->getNullability(*this)) { |
| 6209 | Result = const_cast<ASTContext *>(this)->getAttributedType( |
| 6210 | AttributedType::getNullabilityAttrKind(*Nullability), Result, Result); |
| 6211 | } |
| 6212 | return Result; |
| 6213 | } |
| 6214 | |
| 6215 | QualType ASTContext::getBaseElementType(const ArrayType *array) const { |
| 6216 | return getBaseElementType(array->getElementType()); |
| 6217 | } |
| 6218 | |
| 6219 | QualType ASTContext::getBaseElementType(QualType type) const { |
| 6220 | Qualifiers qs; |
| 6221 | while (true) { |
| 6222 | SplitQualType split = type.getSplitDesugaredType(); |
| 6223 | const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); |
| 6224 | if (!array) break; |
| 6225 | |
| 6226 | type = array->getElementType(); |
| 6227 | qs.addConsistentQualifiers(split.Quals); |
| 6228 | } |
| 6229 | |
| 6230 | return getQualifiedType(type, qs); |
| 6231 | } |
| 6232 | |
| 6233 | /// getConstantArrayElementCount - Returns number of constant array elements. |
| 6234 | uint64_t |
| 6235 | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const { |
| 6236 | uint64_t ElementCount = 1; |
| 6237 | do { |
| 6238 | ElementCount *= CA->getSize().getZExtValue(); |
| 6239 | CA = dyn_cast_or_null<ConstantArrayType>( |
| 6240 | CA->getElementType()->getAsArrayTypeUnsafe()); |
| 6241 | } while (CA); |
| 6242 | return ElementCount; |
| 6243 | } |
| 6244 | |
| 6245 | /// getFloatingRank - Return a relative rank for floating point types. |
| 6246 | /// This routine will assert if passed a built-in type that isn't a float. |
| 6247 | static FloatingRank getFloatingRank(QualType T) { |
| 6248 | if (const auto *CT = T->getAs<ComplexType>()) |
| 6249 | return getFloatingRank(CT->getElementType()); |
| 6250 | |
| 6251 | switch (T->castAs<BuiltinType>()->getKind()) { |
| 6252 | default: llvm_unreachable("getFloatingRank(): not a floating type")__builtin_unreachable(); |
| 6253 | case BuiltinType::Float16: return Float16Rank; |
| 6254 | case BuiltinType::Half: return HalfRank; |
| 6255 | case BuiltinType::Float: return FloatRank; |
| 6256 | case BuiltinType::Double: return DoubleRank; |
| 6257 | case BuiltinType::LongDouble: return LongDoubleRank; |
| 6258 | case BuiltinType::Float128: return Float128Rank; |
| 6259 | case BuiltinType::BFloat16: return BFloat16Rank; |
| 6260 | } |
| 6261 | } |
| 6262 | |
| 6263 | /// getFloatingTypeOfSizeWithinDomain - Returns a real floating |
| 6264 | /// point or a complex type (based on typeDomain/typeSize). |
| 6265 | /// 'typeDomain' is a real floating point or complex type. |
| 6266 | /// 'typeSize' is a real floating point or complex type. |
| 6267 | QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size, |
| 6268 | QualType Domain) const { |
| 6269 | FloatingRank EltRank = getFloatingRank(Size); |
| 6270 | if (Domain->isComplexType()) { |
| 6271 | switch (EltRank) { |
| 6272 | case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported")__builtin_unreachable(); |
| 6273 | case Float16Rank: |
| 6274 | case HalfRank: llvm_unreachable("Complex half is not supported")__builtin_unreachable(); |
| 6275 | case FloatRank: return FloatComplexTy; |
| 6276 | case DoubleRank: return DoubleComplexTy; |
| 6277 | case LongDoubleRank: return LongDoubleComplexTy; |
| 6278 | case Float128Rank: return Float128ComplexTy; |
| 6279 | } |
| 6280 | } |
| 6281 | |
| 6282 | assert(Domain->isRealFloatingType() && "Unknown domain!")((void)0); |
| 6283 | switch (EltRank) { |
| 6284 | case Float16Rank: return HalfTy; |
| 6285 | case BFloat16Rank: return BFloat16Ty; |
| 6286 | case HalfRank: return HalfTy; |
| 6287 | case FloatRank: return FloatTy; |
| 6288 | case DoubleRank: return DoubleTy; |
| 6289 | case LongDoubleRank: return LongDoubleTy; |
| 6290 | case Float128Rank: return Float128Ty; |
| 6291 | } |
| 6292 | llvm_unreachable("getFloatingRank(): illegal value for rank")__builtin_unreachable(); |
| 6293 | } |
| 6294 | |
| 6295 | /// getFloatingTypeOrder - Compare the rank of the two specified floating |
| 6296 | /// point types, ignoring the domain of the type (i.e. 'double' == |
| 6297 | /// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| 6298 | /// LHS < RHS, return -1. |
| 6299 | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { |
| 6300 | FloatingRank LHSR = getFloatingRank(LHS); |
| 6301 | FloatingRank RHSR = getFloatingRank(RHS); |
| 6302 | |
| 6303 | if (LHSR == RHSR) |
| 6304 | return 0; |
| 6305 | if (LHSR > RHSR) |
| 6306 | return 1; |
| 6307 | return -1; |
| 6308 | } |
| 6309 | |
| 6310 | int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { |
| 6311 | if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS)) |
| 6312 | return 0; |
| 6313 | return getFloatingTypeOrder(LHS, RHS); |
| 6314 | } |
| 6315 | |
| 6316 | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This |
| 6317 | /// routine will assert if passed a built-in type that isn't an integer or enum, |
| 6318 | /// or if it is not canonicalized. |
| 6319 | unsigned ASTContext::getIntegerRank(const Type *T) const { |
| 6320 | assert(T->isCanonicalUnqualified() && "T should be canonicalized")((void)0); |
| 6321 | |
| 6322 | // Results in this 'losing' to any type of the same size, but winning if |
| 6323 | // larger. |
| 6324 | if (const auto *EIT = dyn_cast<ExtIntType>(T)) |
| 6325 | return 0 + (EIT->getNumBits() << 3); |
| 6326 | |
| 6327 | switch (cast<BuiltinType>(T)->getKind()) { |
| 6328 | default: llvm_unreachable("getIntegerRank(): not a built-in integer")__builtin_unreachable(); |
| 6329 | case BuiltinType::Bool: |
| 6330 | return 1 + (getIntWidth(BoolTy) << 3); |
| 6331 | case BuiltinType::Char_S: |
| 6332 | case BuiltinType::Char_U: |
| 6333 | case BuiltinType::SChar: |
| 6334 | case BuiltinType::UChar: |
| 6335 | return 2 + (getIntWidth(CharTy) << 3); |
| 6336 | case BuiltinType::Short: |
| 6337 | case BuiltinType::UShort: |
| 6338 | return 3 + (getIntWidth(ShortTy) << 3); |
| 6339 | case BuiltinType::Int: |
| 6340 | case BuiltinType::UInt: |
| 6341 | return 4 + (getIntWidth(IntTy) << 3); |
| 6342 | case BuiltinType::Long: |
| 6343 | case BuiltinType::ULong: |
| 6344 | return 5 + (getIntWidth(LongTy) << 3); |
| 6345 | case BuiltinType::LongLong: |
| 6346 | case BuiltinType::ULongLong: |
| 6347 | return 6 + (getIntWidth(LongLongTy) << 3); |
| 6348 | case BuiltinType::Int128: |
| 6349 | case BuiltinType::UInt128: |
| 6350 | return 7 + (getIntWidth(Int128Ty) << 3); |
| 6351 | } |
| 6352 | } |
| 6353 | |
| 6354 | /// Whether this is a promotable bitfield reference according |
| 6355 | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). |
| 6356 | /// |
| 6357 | /// \returns the type this bit-field will promote to, or NULL if no |
| 6358 | /// promotion occurs. |
| 6359 | QualType ASTContext::isPromotableBitField(Expr *E) const { |
| 6360 | if (E->isTypeDependent() || E->isValueDependent()) |
| 6361 | return {}; |
| 6362 | |
| 6363 | // C++ [conv.prom]p5: |
| 6364 | // If the bit-field has an enumerated type, it is treated as any other |
| 6365 | // value of that type for promotion purposes. |
| 6366 | if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) |
| 6367 | return {}; |
| 6368 | |
| 6369 | // FIXME: We should not do this unless E->refersToBitField() is true. This |
| 6370 | // matters in C where getSourceBitField() will find bit-fields for various |
| 6371 | // cases where the source expression is not a bit-field designator. |
| 6372 | |
| 6373 | FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? |
| 6374 | if (!Field) |
| 6375 | return {}; |
| 6376 | |
| 6377 | QualType FT = Field->getType(); |
| 6378 | |
| 6379 | uint64_t BitWidth = Field->getBitWidthValue(*this); |
| 6380 | uint64_t IntSize = getTypeSize(IntTy); |
| 6381 | // C++ [conv.prom]p5: |
| 6382 | // A prvalue for an integral bit-field can be converted to a prvalue of type |
| 6383 | // int if int can represent all the values of the bit-field; otherwise, it |
| 6384 | // can be converted to unsigned int if unsigned int can represent all the |
| 6385 | // values of the bit-field. If the bit-field is larger yet, no integral |
| 6386 | // promotion applies to it. |
| 6387 | // C11 6.3.1.1/2: |
| 6388 | // [For a bit-field of type _Bool, int, signed int, or unsigned int:] |
| 6389 | // If an int can represent all values of the original type (as restricted by |
| 6390 | // the width, for a bit-field), the value is converted to an int; otherwise, |
| 6391 | // it is converted to an unsigned int. |
| 6392 | // |
| 6393 | // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. |
| 6394 | // We perform that promotion here to match GCC and C++. |
| 6395 | // FIXME: C does not permit promotion of an enum bit-field whose rank is |
| 6396 | // greater than that of 'int'. We perform that promotion to match GCC. |
| 6397 | if (BitWidth < IntSize) |
| 6398 | return IntTy; |
| 6399 | |
| 6400 | if (BitWidth == IntSize) |
| 6401 | return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; |
| 6402 | |
| 6403 | // Bit-fields wider than int are not subject to promotions, and therefore act |
| 6404 | // like the base type. GCC has some weird bugs in this area that we |
| 6405 | // deliberately do not follow (GCC follows a pre-standard resolution to |
| 6406 | // C's DR315 which treats bit-width as being part of the type, and this leaks |
| 6407 | // into their semantics in some cases). |
| 6408 | return {}; |
| 6409 | } |
| 6410 | |
| 6411 | /// getPromotedIntegerType - Returns the type that Promotable will |
| 6412 | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable |
| 6413 | /// integer type. |
| 6414 | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { |
| 6415 | assert(!Promotable.isNull())((void)0); |
| 6416 | assert(Promotable->isPromotableIntegerType())((void)0); |
| 6417 | if (const auto *ET = Promotable->getAs<EnumType>()) |
| 6418 | return ET->getDecl()->getPromotionType(); |
| 6419 | |
| 6420 | if (const auto *BT = Promotable->getAs<BuiltinType>()) { |
| 6421 | // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t |
| 6422 | // (3.9.1) can be converted to a prvalue of the first of the following |
| 6423 | // types that can represent all the values of its underlying type: |
| 6424 | // int, unsigned int, long int, unsigned long int, long long int, or |
| 6425 | // unsigned long long int [...] |
| 6426 | // FIXME: Is there some better way to compute this? |
| 6427 | if (BT->getKind() == BuiltinType::WChar_S || |
| 6428 | BT->getKind() == BuiltinType::WChar_U || |
| 6429 | BT->getKind() == BuiltinType::Char8 || |
| 6430 | BT->getKind() == BuiltinType::Char16 || |
| 6431 | BT->getKind() == BuiltinType::Char32) { |
| 6432 | bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; |
| 6433 | uint64_t FromSize = getTypeSize(BT); |
| 6434 | QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, |
| 6435 | LongLongTy, UnsignedLongLongTy }; |
| 6436 | for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) { |
| 6437 | uint64_t ToSize = getTypeSize(PromoteTypes[Idx]); |
| 6438 | if (FromSize < ToSize || |
| 6439 | (FromSize == ToSize && |
| 6440 | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) |
| 6441 | return PromoteTypes[Idx]; |
| 6442 | } |
| 6443 | llvm_unreachable("char type should fit into long long")__builtin_unreachable(); |
| 6444 | } |
| 6445 | } |
| 6446 | |
| 6447 | // At this point, we should have a signed or unsigned integer type. |
| 6448 | if (Promotable->isSignedIntegerType()) |
| 6449 | return IntTy; |
| 6450 | uint64_t PromotableSize = getIntWidth(Promotable); |
| 6451 | uint64_t IntSize = getIntWidth(IntTy); |
| 6452 | assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize)((void)0); |
| 6453 | return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; |
| 6454 | } |
| 6455 | |
| 6456 | /// Recurses in pointer/array types until it finds an objc retainable |
| 6457 | /// type and returns its ownership. |
| 6458 | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { |
| 6459 | while (!T.isNull()) { |
| 6460 | if (T.getObjCLifetime() != Qualifiers::OCL_None) |
| 6461 | return T.getObjCLifetime(); |
| 6462 | if (T->isArrayType()) |
| 6463 | T = getBaseElementType(T); |
| 6464 | else if (const auto *PT = T->getAs<PointerType>()) |
| 6465 | T = PT->getPointeeType(); |
| 6466 | else if (const auto *RT = T->getAs<ReferenceType>()) |
| 6467 | T = RT->getPointeeType(); |
| 6468 | else |
| 6469 | break; |
| 6470 | } |
| 6471 | |
| 6472 | return Qualifiers::OCL_None; |
| 6473 | } |
| 6474 | |
| 6475 | static const Type *getIntegerTypeForEnum(const EnumType *ET) { |
| 6476 | // Incomplete enum types are not treated as integer types. |
| 6477 | // FIXME: In C++, enum types are never integer types. |
| 6478 | if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped()) |
| 6479 | return ET->getDecl()->getIntegerType().getTypePtr(); |
| 6480 | return nullptr; |
| 6481 | } |
| 6482 | |
| 6483 | /// getIntegerTypeOrder - Returns the highest ranked integer type: |
| 6484 | /// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If |
| 6485 | /// LHS < RHS, return -1. |
| 6486 | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { |
| 6487 | const Type *LHSC = getCanonicalType(LHS).getTypePtr(); |
| 6488 | const Type *RHSC = getCanonicalType(RHS).getTypePtr(); |
| 6489 | |
| 6490 | // Unwrap enums to their underlying type. |
| 6491 | if (const auto *ET = dyn_cast<EnumType>(LHSC)) |
| 6492 | LHSC = getIntegerTypeForEnum(ET); |
| 6493 | if (const auto *ET = dyn_cast<EnumType>(RHSC)) |
| 6494 | RHSC = getIntegerTypeForEnum(ET); |
| 6495 | |
| 6496 | if (LHSC == RHSC) return 0; |
| 6497 | |
| 6498 | bool LHSUnsigned = LHSC->isUnsignedIntegerType(); |
| 6499 | bool RHSUnsigned = RHSC->isUnsignedIntegerType(); |
| 6500 | |
| 6501 | unsigned LHSRank = getIntegerRank(LHSC); |
| 6502 | unsigned RHSRank = getIntegerRank(RHSC); |
| 6503 | |
| 6504 | if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned. |
| 6505 | if (LHSRank == RHSRank) return 0; |
| 6506 | return LHSRank > RHSRank ? 1 : -1; |
| 6507 | } |
| 6508 | |
| 6509 | // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. |
| 6510 | if (LHSUnsigned) { |
| 6511 | // If the unsigned [LHS] type is larger, return it. |
| 6512 | if (LHSRank >= RHSRank) |
| 6513 | return 1; |
| 6514 | |
| 6515 | // If the signed type can represent all values of the unsigned type, it |
| 6516 | // wins. Because we are dealing with 2's complement and types that are |
| 6517 | // powers of two larger than each other, this is always safe. |
| 6518 | return -1; |
| 6519 | } |
| 6520 | |
| 6521 | // If the unsigned [RHS] type is larger, return it. |
| 6522 | if (RHSRank >= LHSRank) |
| 6523 | return -1; |
| 6524 | |
| 6525 | // If the signed type can represent all values of the unsigned type, it |
| 6526 | // wins. Because we are dealing with 2's complement and types that are |
| 6527 | // powers of two larger than each other, this is always safe. |
| 6528 | return 1; |
| 6529 | } |
| 6530 | |
| 6531 | TypedefDecl *ASTContext::getCFConstantStringDecl() const { |
| 6532 | if (CFConstantStringTypeDecl) |
| 6533 | return CFConstantStringTypeDecl; |
| 6534 | |
| 6535 | assert(!CFConstantStringTagDecl &&((void)0) |
| 6536 | "tag and typedef should be initialized together")((void)0); |
| 6537 | CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag"); |
| 6538 | CFConstantStringTagDecl->startDefinition(); |
| 6539 | |
| 6540 | struct { |
| 6541 | QualType Type; |
| 6542 | const char *Name; |
| 6543 | } Fields[5]; |
| 6544 | unsigned Count = 0; |
| 6545 | |
| 6546 | /// Objective-C ABI |
| 6547 | /// |
| 6548 | /// typedef struct __NSConstantString_tag { |
| 6549 | /// const int *isa; |
| 6550 | /// int flags; |
| 6551 | /// const char *str; |
| 6552 | /// long length; |
| 6553 | /// } __NSConstantString; |
| 6554 | /// |
| 6555 | /// Swift ABI (4.1, 4.2) |
| 6556 | /// |
| 6557 | /// typedef struct __NSConstantString_tag { |
| 6558 | /// uintptr_t _cfisa; |
| 6559 | /// uintptr_t _swift_rc; |
| 6560 | /// _Atomic(uint64_t) _cfinfoa; |
| 6561 | /// const char *_ptr; |
| 6562 | /// uint32_t _length; |
| 6563 | /// } __NSConstantString; |
| 6564 | /// |
| 6565 | /// Swift ABI (5.0) |
| 6566 | /// |
| 6567 | /// typedef struct __NSConstantString_tag { |
| 6568 | /// uintptr_t _cfisa; |
| 6569 | /// uintptr_t _swift_rc; |
| 6570 | /// _Atomic(uint64_t) _cfinfoa; |
| 6571 | /// const char *_ptr; |
| 6572 | /// uintptr_t _length; |
| 6573 | /// } __NSConstantString; |
| 6574 | |
| 6575 | const auto CFRuntime = getLangOpts().CFRuntime; |
| 6576 | if (static_cast<unsigned>(CFRuntime) < |
| 6577 | static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { |
| 6578 | Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" }; |
| 6579 | Fields[Count++] = { IntTy, "flags" }; |
| 6580 | Fields[Count++] = { getPointerType(CharTy.withConst()), "str" }; |
| 6581 | Fields[Count++] = { LongTy, "length" }; |
| 6582 | } else { |
| 6583 | Fields[Count++] = { getUIntPtrType(), "_cfisa" }; |
| 6584 | Fields[Count++] = { getUIntPtrType(), "_swift_rc" }; |
| 6585 | Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" }; |
| 6586 | Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" }; |
| 6587 | if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || |
| 6588 | CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) |
| 6589 | Fields[Count++] = { IntTy, "_ptr" }; |
| 6590 | else |
| 6591 | Fields[Count++] = { getUIntPtrType(), "_ptr" }; |
| 6592 | } |
| 6593 | |
| 6594 | // Create fields |
| 6595 | for (unsigned i = 0; i < Count; ++i) { |
| 6596 | FieldDecl *Field = |
| 6597 | FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(), |
| 6598 | SourceLocation(), &Idents.get(Fields[i].Name), |
| 6599 | Fields[i].Type, /*TInfo=*/nullptr, |
| 6600 | /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); |
| 6601 | Field->setAccess(AS_public); |
| 6602 | CFConstantStringTagDecl->addDecl(Field); |
| 6603 | } |
| 6604 | |
| 6605 | CFConstantStringTagDecl->completeDefinition(); |
| 6606 | // This type is designed to be compatible with NSConstantString, but cannot |
| 6607 | // use the same name, since NSConstantString is an interface. |
| 6608 | auto tagType = getTagDeclType(CFConstantStringTagDecl); |
| 6609 | CFConstantStringTypeDecl = |
| 6610 | buildImplicitTypedef(tagType, "__NSConstantString"); |
| 6611 | |
| 6612 | return CFConstantStringTypeDecl; |
| 6613 | } |
| 6614 | |
| 6615 | RecordDecl *ASTContext::getCFConstantStringTagDecl() const { |
| 6616 | if (!CFConstantStringTagDecl) |
| 6617 | getCFConstantStringDecl(); // Build the tag and the typedef. |
| 6618 | return CFConstantStringTagDecl; |
| 6619 | } |
| 6620 | |
| 6621 | // getCFConstantStringType - Return the type used for constant CFStrings. |
| 6622 | QualType ASTContext::getCFConstantStringType() const { |
| 6623 | return getTypedefType(getCFConstantStringDecl()); |
| 6624 | } |
| 6625 | |
| 6626 | QualType ASTContext::getObjCSuperType() const { |
| 6627 | if (ObjCSuperType.isNull()) { |
| 6628 | RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); |
| 6629 | getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl); |
| 6630 | ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl); |
| 6631 | } |
| 6632 | return ObjCSuperType; |
| 6633 | } |
| 6634 | |
| 6635 | void ASTContext::setCFConstantStringType(QualType T) { |
| 6636 | const auto *TD = T->castAs<TypedefType>(); |
| 6637 | CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl()); |
| 6638 | const auto *TagType = |
| 6639 | CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>(); |
| 6640 | CFConstantStringTagDecl = TagType->getDecl(); |
| 6641 | } |
| 6642 | |
| 6643 | QualType ASTContext::getBlockDescriptorType() const { |
| 6644 | if (BlockDescriptorType) |
| 6645 | return getTagDeclType(BlockDescriptorType); |
| 6646 | |
| 6647 | RecordDecl *RD; |
| 6648 | // FIXME: Needs the FlagAppleBlock bit. |
| 6649 | RD = buildImplicitRecord("__block_descriptor"); |
| 6650 | RD->startDefinition(); |
| 6651 | |
| 6652 | QualType FieldTypes[] = { |
| 6653 | UnsignedLongTy, |
| 6654 | UnsignedLongTy, |
| 6655 | }; |
| 6656 | |
| 6657 | static const char *const FieldNames[] = { |
| 6658 | "reserved", |
| 6659 | "Size" |
| 6660 | }; |
| 6661 | |
| 6662 | for (size_t i = 0; i < 2; ++i) { |
| 6663 | FieldDecl *Field = FieldDecl::Create( |
| 6664 | *this, RD, SourceLocation(), SourceLocation(), |
| 6665 | &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
| 6666 | /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); |
| 6667 | Field->setAccess(AS_public); |
| 6668 | RD->addDecl(Field); |
| 6669 | } |
| 6670 | |
| 6671 | RD->completeDefinition(); |
| 6672 | |
| 6673 | BlockDescriptorType = RD; |
| 6674 | |
| 6675 | return getTagDeclType(BlockDescriptorType); |
| 6676 | } |
| 6677 | |
| 6678 | QualType ASTContext::getBlockDescriptorExtendedType() const { |
| 6679 | if (BlockDescriptorExtendedType) |
| 6680 | return getTagDeclType(BlockDescriptorExtendedType); |
| 6681 | |
| 6682 | RecordDecl *RD; |
| 6683 | // FIXME: Needs the FlagAppleBlock bit. |
| 6684 | RD = buildImplicitRecord("__block_descriptor_withcopydispose"); |
| 6685 | RD->startDefinition(); |
| 6686 | |
| 6687 | QualType FieldTypes[] = { |
| 6688 | UnsignedLongTy, |
| 6689 | UnsignedLongTy, |
| 6690 | getPointerType(VoidPtrTy), |
| 6691 | getPointerType(VoidPtrTy) |
| 6692 | }; |
| 6693 | |
| 6694 | static const char *const FieldNames[] = { |
| 6695 | "reserved", |
| 6696 | "Size", |
| 6697 | "CopyFuncPtr", |
| 6698 | "DestroyFuncPtr" |
| 6699 | }; |
| 6700 | |
| 6701 | for (size_t i = 0; i < 4; ++i) { |
| 6702 | FieldDecl *Field = FieldDecl::Create( |
| 6703 | *this, RD, SourceLocation(), SourceLocation(), |
| 6704 | &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, |
| 6705 | /*BitWidth=*/nullptr, |
| 6706 | /*Mutable=*/false, ICIS_NoInit); |
| 6707 | Field->setAccess(AS_public); |
| 6708 | RD->addDecl(Field); |
| 6709 | } |
| 6710 | |
| 6711 | RD->completeDefinition(); |
| 6712 | |
| 6713 | BlockDescriptorExtendedType = RD; |
| 6714 | return getTagDeclType(BlockDescriptorExtendedType); |
| 6715 | } |
| 6716 | |
| 6717 | OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { |
| 6718 | const auto *BT = dyn_cast<BuiltinType>(T); |
| 6719 | |
| 6720 | if (!BT) { |
| 6721 | if (isa<PipeType>(T)) |
| 6722 | return OCLTK_Pipe; |
| 6723 | |
| 6724 | return OCLTK_Default; |
| 6725 | } |
| 6726 | |
| 6727 | switch (BT->getKind()) { |
| 6728 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 6729 | case BuiltinType::Id: \ |
| 6730 | return OCLTK_Image; |
| 6731 | #include "clang/Basic/OpenCLImageTypes.def" |
| 6732 | |
| 6733 | case BuiltinType::OCLClkEvent: |
| 6734 | return OCLTK_ClkEvent; |
| 6735 | |
| 6736 | case BuiltinType::OCLEvent: |
| 6737 | return OCLTK_Event; |
| 6738 | |
| 6739 | case BuiltinType::OCLQueue: |
| 6740 | return OCLTK_Queue; |
| 6741 | |
| 6742 | case BuiltinType::OCLReserveID: |
| 6743 | return OCLTK_ReserveID; |
| 6744 | |
| 6745 | case BuiltinType::OCLSampler: |
| 6746 | return OCLTK_Sampler; |
| 6747 | |
| 6748 | default: |
| 6749 | return OCLTK_Default; |
| 6750 | } |
| 6751 | } |
| 6752 | |
| 6753 | LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { |
| 6754 | return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); |
| 6755 | } |
| 6756 | |
| 6757 | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" |
| 6758 | /// requires copy/dispose. Note that this must match the logic |
| 6759 | /// in buildByrefHelpers. |
| 6760 | bool ASTContext::BlockRequiresCopying(QualType Ty, |
| 6761 | const VarDecl *D) { |
| 6762 | if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { |
| 6763 | const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr(); |
| 6764 | if (!copyExpr && record->hasTrivialDestructor()) return false; |
| 6765 | |
| 6766 | return true; |
| 6767 | } |
| 6768 | |
| 6769 | // The block needs copy/destroy helpers if Ty is non-trivial to destructively |
| 6770 | // move or destroy. |
| 6771 | if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) |
| 6772 | return true; |
| 6773 | |
| 6774 | if (!Ty->isObjCRetainableType()) return false; |
| 6775 | |
| 6776 | Qualifiers qs = Ty.getQualifiers(); |
| 6777 | |
| 6778 | // If we have lifetime, that dominates. |
| 6779 | if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { |
| 6780 | switch (lifetime) { |
| 6781 | case Qualifiers::OCL_None: llvm_unreachable("impossible")__builtin_unreachable(); |
| 6782 | |
| 6783 | // These are just bits as far as the runtime is concerned. |
| 6784 | case Qualifiers::OCL_ExplicitNone: |
| 6785 | case Qualifiers::OCL_Autoreleasing: |
| 6786 | return false; |
| 6787 | |
| 6788 | // These cases should have been taken care of when checking the type's |
| 6789 | // non-triviality. |
| 6790 | case Qualifiers::OCL_Weak: |
| 6791 | case Qualifiers::OCL_Strong: |
| 6792 | llvm_unreachable("impossible")__builtin_unreachable(); |
| 6793 | } |
| 6794 | llvm_unreachable("fell out of lifetime switch!")__builtin_unreachable(); |
| 6795 | } |
| 6796 | return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || |
| 6797 | Ty->isObjCObjectPointerType()); |
| 6798 | } |
| 6799 | |
| 6800 | bool ASTContext::getByrefLifetime(QualType Ty, |
| 6801 | Qualifiers::ObjCLifetime &LifeTime, |
| 6802 | bool &HasByrefExtendedLayout) const { |
| 6803 | if (!getLangOpts().ObjC || |
| 6804 | getLangOpts().getGC() != LangOptions::NonGC) |
| 6805 | return false; |
| 6806 | |
| 6807 | HasByrefExtendedLayout = false; |
| 6808 | if (Ty->isRecordType()) { |
| 6809 | HasByrefExtendedLayout = true; |
| 6810 | LifeTime = Qualifiers::OCL_None; |
| 6811 | } else if ((LifeTime = Ty.getObjCLifetime())) { |
| 6812 | // Honor the ARC qualifiers. |
| 6813 | } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { |
| 6814 | // The MRR rule. |
| 6815 | LifeTime = Qualifiers::OCL_ExplicitNone; |
| 6816 | } else { |
| 6817 | LifeTime = Qualifiers::OCL_None; |
| 6818 | } |
| 6819 | return true; |
| 6820 | } |
| 6821 | |
| 6822 | CanQualType ASTContext::getNSUIntegerType() const { |
| 6823 | assert(Target && "Expected target to be initialized")((void)0); |
| 6824 | const llvm::Triple &T = Target->getTriple(); |
| 6825 | // Windows is LLP64 rather than LP64 |
| 6826 | if (T.isOSWindows() && T.isArch64Bit()) |
| 6827 | return UnsignedLongLongTy; |
| 6828 | return UnsignedLongTy; |
| 6829 | } |
| 6830 | |
| 6831 | CanQualType ASTContext::getNSIntegerType() const { |
| 6832 | assert(Target && "Expected target to be initialized")((void)0); |
| 6833 | const llvm::Triple &T = Target->getTriple(); |
| 6834 | // Windows is LLP64 rather than LP64 |
| 6835 | if (T.isOSWindows() && T.isArch64Bit()) |
| 6836 | return LongLongTy; |
| 6837 | return LongTy; |
| 6838 | } |
| 6839 | |
| 6840 | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { |
| 6841 | if (!ObjCInstanceTypeDecl) |
| 6842 | ObjCInstanceTypeDecl = |
| 6843 | buildImplicitTypedef(getObjCIdType(), "instancetype"); |
| 6844 | return ObjCInstanceTypeDecl; |
| 6845 | } |
| 6846 | |
| 6847 | // This returns true if a type has been typedefed to BOOL: |
| 6848 | // typedef <type> BOOL; |
| 6849 | static bool isTypeTypedefedAsBOOL(QualType T) { |
| 6850 | if (const auto *TT = dyn_cast<TypedefType>(T)) |
| 6851 | if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) |
| 6852 | return II->isStr("BOOL"); |
| 6853 | |
| 6854 | return false; |
| 6855 | } |
| 6856 | |
| 6857 | /// getObjCEncodingTypeSize returns size of type for objective-c encoding |
| 6858 | /// purpose. |
| 6859 | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { |
| 6860 | if (!type->isIncompleteArrayType() && type->isIncompleteType()) |
| 6861 | return CharUnits::Zero(); |
| 6862 | |
| 6863 | CharUnits sz = getTypeSizeInChars(type); |
| 6864 | |
| 6865 | // Make all integer and enum types at least as large as an int |
| 6866 | if (sz.isPositive() && type->isIntegralOrEnumerationType()) |
| 6867 | sz = std::max(sz, getTypeSizeInChars(IntTy)); |
| 6868 | // Treat arrays as pointers, since that's how they're passed in. |
| 6869 | else if (type->isArrayType()) |
| 6870 | sz = getTypeSizeInChars(VoidPtrTy); |
| 6871 | return sz; |
| 6872 | } |
| 6873 | |
| 6874 | bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { |
| 6875 | return getTargetInfo().getCXXABI().isMicrosoft() && |
| 6876 | VD->isStaticDataMember() && |
| 6877 | VD->getType()->isIntegralOrEnumerationType() && |
| 6878 | !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); |
| 6879 | } |
| 6880 | |
| 6881 | ASTContext::InlineVariableDefinitionKind |
| 6882 | ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { |
| 6883 | if (!VD->isInline()) |
| 6884 | return InlineVariableDefinitionKind::None; |
| 6885 | |
| 6886 | // In almost all cases, it's a weak definition. |
| 6887 | auto *First = VD->getFirstDecl(); |
| 6888 | if (First->isInlineSpecified() || !First->isStaticDataMember()) |
| 6889 | return InlineVariableDefinitionKind::Weak; |
| 6890 | |
| 6891 | // If there's a file-context declaration in this translation unit, it's a |
| 6892 | // non-discardable definition. |
| 6893 | for (auto *D : VD->redecls()) |
| 6894 | if (D->getLexicalDeclContext()->isFileContext() && |
| 6895 | !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) |
| 6896 | return InlineVariableDefinitionKind::Strong; |
| 6897 | |
| 6898 | // If we've not seen one yet, we don't know. |
| 6899 | return InlineVariableDefinitionKind::WeakUnknown; |
| 6900 | } |
| 6901 | |
| 6902 | static std::string charUnitsToString(const CharUnits &CU) { |
| 6903 | return llvm::itostr(CU.getQuantity()); |
| 6904 | } |
| 6905 | |
| 6906 | /// getObjCEncodingForBlock - Return the encoded type for this block |
| 6907 | /// declaration. |
| 6908 | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { |
| 6909 | std::string S; |
| 6910 | |
| 6911 | const BlockDecl *Decl = Expr->getBlockDecl(); |
| 6912 | QualType BlockTy = |
| 6913 | Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); |
| 6914 | QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); |
| 6915 | // Encode result type. |
| 6916 | if (getLangOpts().EncodeExtendedBlockSig) |
| 6917 | getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S, |
| 6918 | true /*Extended*/); |
| 6919 | else |
| 6920 | getObjCEncodingForType(BlockReturnTy, S); |
| 6921 | // Compute size of all parameters. |
| 6922 | // Start with computing size of a pointer in number of bytes. |
| 6923 | // FIXME: There might(should) be a better way of doing this computation! |
| 6924 | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
| 6925 | CharUnits ParmOffset = PtrSize; |
| 6926 | for (auto PI : Decl->parameters()) { |
| 6927 | QualType PType = PI->getType(); |
| 6928 | CharUnits sz = getObjCEncodingTypeSize(PType); |
| 6929 | if (sz.isZero()) |
| 6930 | continue; |
| 6931 | assert(sz.isPositive() && "BlockExpr - Incomplete param type")((void)0); |
| 6932 | ParmOffset += sz; |
| 6933 | } |
| 6934 | // Size of the argument frame |
| 6935 | S += charUnitsToString(ParmOffset); |
| 6936 | // Block pointer and offset. |
| 6937 | S += "@?0"; |
| 6938 | |
| 6939 | // Argument types. |
| 6940 | ParmOffset = PtrSize; |
| 6941 | for (auto PVDecl : Decl->parameters()) { |
| 6942 | QualType PType = PVDecl->getOriginalType(); |
| 6943 | if (const auto *AT = |
| 6944 | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| 6945 | // Use array's original type only if it has known number of |
| 6946 | // elements. |
| 6947 | if (!isa<ConstantArrayType>(AT)) |
| 6948 | PType = PVDecl->getType(); |
| 6949 | } else if (PType->isFunctionType()) |
| 6950 | PType = PVDecl->getType(); |
| 6951 | if (getLangOpts().EncodeExtendedBlockSig) |
| 6952 | getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, |
| 6953 | S, true /*Extended*/); |
| 6954 | else |
| 6955 | getObjCEncodingForType(PType, S); |
| 6956 | S += charUnitsToString(ParmOffset); |
| 6957 | ParmOffset += getObjCEncodingTypeSize(PType); |
| 6958 | } |
| 6959 | |
| 6960 | return S; |
| 6961 | } |
| 6962 | |
| 6963 | std::string |
| 6964 | ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { |
| 6965 | std::string S; |
| 6966 | // Encode result type. |
| 6967 | getObjCEncodingForType(Decl->getReturnType(), S); |
| 6968 | CharUnits ParmOffset; |
| 6969 | // Compute size of all parameters. |
| 6970 | for (auto PI : Decl->parameters()) { |
| 6971 | QualType PType = PI->getType(); |
| 6972 | CharUnits sz = getObjCEncodingTypeSize(PType); |
| 6973 | if (sz.isZero()) |
| 6974 | continue; |
| 6975 | |
| 6976 | assert(sz.isPositive() &&((void)0) |
| 6977 | "getObjCEncodingForFunctionDecl - Incomplete param type")((void)0); |
| 6978 | ParmOffset += sz; |
| 6979 | } |
| 6980 | S += charUnitsToString(ParmOffset); |
| 6981 | ParmOffset = CharUnits::Zero(); |
| 6982 | |
| 6983 | // Argument types. |
| 6984 | for (auto PVDecl : Decl->parameters()) { |
| 6985 | QualType PType = PVDecl->getOriginalType(); |
| 6986 | if (const auto *AT = |
| 6987 | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| 6988 | // Use array's original type only if it has known number of |
| 6989 | // elements. |
| 6990 | if (!isa<ConstantArrayType>(AT)) |
| 6991 | PType = PVDecl->getType(); |
| 6992 | } else if (PType->isFunctionType()) |
| 6993 | PType = PVDecl->getType(); |
| 6994 | getObjCEncodingForType(PType, S); |
| 6995 | S += charUnitsToString(ParmOffset); |
| 6996 | ParmOffset += getObjCEncodingTypeSize(PType); |
| 6997 | } |
| 6998 | |
| 6999 | return S; |
| 7000 | } |
| 7001 | |
| 7002 | /// getObjCEncodingForMethodParameter - Return the encoded type for a single |
| 7003 | /// method parameter or return type. If Extended, include class names and |
| 7004 | /// block object types. |
| 7005 | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, |
| 7006 | QualType T, std::string& S, |
| 7007 | bool Extended) const { |
| 7008 | // Encode type qualifer, 'in', 'inout', etc. for the parameter. |
| 7009 | getObjCEncodingForTypeQualifier(QT, S); |
| 7010 | // Encode parameter type. |
| 7011 | ObjCEncOptions Options = ObjCEncOptions() |
| 7012 | .setExpandPointedToStructures() |
| 7013 | .setExpandStructures() |
| 7014 | .setIsOutermostType(); |
| 7015 | if (Extended) |
| 7016 | Options.setEncodeBlockParameters().setEncodeClassNames(); |
| 7017 | getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr); |
| 7018 | } |
| 7019 | |
| 7020 | /// getObjCEncodingForMethodDecl - Return the encoded type for this method |
| 7021 | /// declaration. |
| 7022 | std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, |
| 7023 | bool Extended) const { |
| 7024 | // FIXME: This is not very efficient. |
| 7025 | // Encode return type. |
| 7026 | std::string S; |
| 7027 | getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), |
| 7028 | Decl->getReturnType(), S, Extended); |
| 7029 | // Compute size of all parameters. |
| 7030 | // Start with computing size of a pointer in number of bytes. |
| 7031 | // FIXME: There might(should) be a better way of doing this computation! |
| 7032 | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); |
| 7033 | // The first two arguments (self and _cmd) are pointers; account for |
| 7034 | // their size. |
| 7035 | CharUnits ParmOffset = 2 * PtrSize; |
| 7036 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
| 7037 | E = Decl->sel_param_end(); PI != E; ++PI) { |
| 7038 | QualType PType = (*PI)->getType(); |
| 7039 | CharUnits sz = getObjCEncodingTypeSize(PType); |
| 7040 | if (sz.isZero()) |
| 7041 | continue; |
| 7042 | |
| 7043 | assert(sz.isPositive() &&((void)0) |
| 7044 | "getObjCEncodingForMethodDecl - Incomplete param type")((void)0); |
| 7045 | ParmOffset += sz; |
| 7046 | } |
| 7047 | S += charUnitsToString(ParmOffset); |
| 7048 | S += "@0:"; |
| 7049 | S += charUnitsToString(PtrSize); |
| 7050 | |
| 7051 | // Argument types. |
| 7052 | ParmOffset = 2 * PtrSize; |
| 7053 | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), |
| 7054 | E = Decl->sel_param_end(); PI != E; ++PI) { |
| 7055 | const ParmVarDecl *PVDecl = *PI; |
| 7056 | QualType PType = PVDecl->getOriginalType(); |
| 7057 | if (const auto *AT = |
| 7058 | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { |
| 7059 | // Use array's original type only if it has known number of |
| 7060 | // elements. |
| 7061 | if (!isa<ConstantArrayType>(AT)) |
| 7062 | PType = PVDecl->getType(); |
| 7063 | } else if (PType->isFunctionType()) |
| 7064 | PType = PVDecl->getType(); |
| 7065 | getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), |
| 7066 | PType, S, Extended); |
| 7067 | S += charUnitsToString(ParmOffset); |
| 7068 | ParmOffset += getObjCEncodingTypeSize(PType); |
| 7069 | } |
| 7070 | |
| 7071 | return S; |
| 7072 | } |
| 7073 | |
| 7074 | ObjCPropertyImplDecl * |
| 7075 | ASTContext::getObjCPropertyImplDeclForPropertyDecl( |
| 7076 | const ObjCPropertyDecl *PD, |
| 7077 | const Decl *Container) const { |
| 7078 | if (!Container) |
| 7079 | return nullptr; |
| 7080 | if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) { |
| 7081 | for (auto *PID : CID->property_impls()) |
| 7082 | if (PID->getPropertyDecl() == PD) |
| 7083 | return PID; |
| 7084 | } else { |
| 7085 | const auto *OID = cast<ObjCImplementationDecl>(Container); |
| 7086 | for (auto *PID : OID->property_impls()) |
| 7087 | if (PID->getPropertyDecl() == PD) |
| 7088 | return PID; |
| 7089 | } |
| 7090 | return nullptr; |
| 7091 | } |
| 7092 | |
| 7093 | /// getObjCEncodingForPropertyDecl - Return the encoded type for this |
| 7094 | /// property declaration. If non-NULL, Container must be either an |
| 7095 | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be |
| 7096 | /// NULL when getting encodings for protocol properties. |
| 7097 | /// Property attributes are stored as a comma-delimited C string. The simple |
| 7098 | /// attributes readonly and bycopy are encoded as single characters. The |
| 7099 | /// parametrized attributes, getter=name, setter=name, and ivar=name, are |
| 7100 | /// encoded as single characters, followed by an identifier. Property types |
| 7101 | /// are also encoded as a parametrized attribute. The characters used to encode |
| 7102 | /// these attributes are defined by the following enumeration: |
| 7103 | /// @code |
| 7104 | /// enum PropertyAttributes { |
| 7105 | /// kPropertyReadOnly = 'R', // property is read-only. |
| 7106 | /// kPropertyBycopy = 'C', // property is a copy of the value last assigned |
| 7107 | /// kPropertyByref = '&', // property is a reference to the value last assigned |
| 7108 | /// kPropertyDynamic = 'D', // property is dynamic |
| 7109 | /// kPropertyGetter = 'G', // followed by getter selector name |
| 7110 | /// kPropertySetter = 'S', // followed by setter selector name |
| 7111 | /// kPropertyInstanceVariable = 'V' // followed by instance variable name |
| 7112 | /// kPropertyType = 'T' // followed by old-style type encoding. |
| 7113 | /// kPropertyWeak = 'W' // 'weak' property |
| 7114 | /// kPropertyStrong = 'P' // property GC'able |
| 7115 | /// kPropertyNonAtomic = 'N' // property non-atomic |
| 7116 | /// }; |
| 7117 | /// @endcode |
| 7118 | std::string |
| 7119 | ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, |
| 7120 | const Decl *Container) const { |
| 7121 | // Collect information from the property implementation decl(s). |
| 7122 | bool Dynamic = false; |
| 7123 | ObjCPropertyImplDecl *SynthesizePID = nullptr; |
| 7124 | |
| 7125 | if (ObjCPropertyImplDecl *PropertyImpDecl = |
| 7126 | getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { |
| 7127 | if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) |
| 7128 | Dynamic = true; |
| 7129 | else |
| 7130 | SynthesizePID = PropertyImpDecl; |
| 7131 | } |
| 7132 | |
| 7133 | // FIXME: This is not very efficient. |
| 7134 | std::string S = "T"; |
| 7135 | |
| 7136 | // Encode result type. |
| 7137 | // GCC has some special rules regarding encoding of properties which |
| 7138 | // closely resembles encoding of ivars. |
| 7139 | getObjCEncodingForPropertyType(PD->getType(), S); |
| 7140 | |
| 7141 | if (PD->isReadOnly()) { |
| 7142 | S += ",R"; |
| 7143 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) |
| 7144 | S += ",C"; |
| 7145 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) |
| 7146 | S += ",&"; |
| 7147 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) |
| 7148 | S += ",W"; |
| 7149 | } else { |
| 7150 | switch (PD->getSetterKind()) { |
| 7151 | case ObjCPropertyDecl::Assign: break; |
| 7152 | case ObjCPropertyDecl::Copy: S += ",C"; break; |
| 7153 | case ObjCPropertyDecl::Retain: S += ",&"; break; |
| 7154 | case ObjCPropertyDecl::Weak: S += ",W"; break; |
| 7155 | } |
| 7156 | } |
| 7157 | |
| 7158 | // It really isn't clear at all what this means, since properties |
| 7159 | // are "dynamic by default". |
| 7160 | if (Dynamic) |
| 7161 | S += ",D"; |
| 7162 | |
| 7163 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) |
| 7164 | S += ",N"; |
| 7165 | |
| 7166 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { |
| 7167 | S += ",G"; |
| 7168 | S += PD->getGetterName().getAsString(); |
| 7169 | } |
| 7170 | |
| 7171 | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { |
| 7172 | S += ",S"; |
| 7173 | S += PD->getSetterName().getAsString(); |
| 7174 | } |
| 7175 | |
| 7176 | if (SynthesizePID) { |
| 7177 | const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); |
| 7178 | S += ",V"; |
| 7179 | S += OID->getNameAsString(); |
| 7180 | } |
| 7181 | |
| 7182 | // FIXME: OBJCGC: weak & strong |
| 7183 | return S; |
| 7184 | } |
| 7185 | |
| 7186 | /// getLegacyIntegralTypeEncoding - |
| 7187 | /// Another legacy compatibility encoding: 32-bit longs are encoded as |
| 7188 | /// 'l' or 'L' , but not always. For typedefs, we need to use |
| 7189 | /// 'i' or 'I' instead if encoding a struct field, or a pointer! |
| 7190 | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { |
| 7191 | if (isa<TypedefType>(PointeeTy.getTypePtr())) { |
| 7192 | if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { |
| 7193 | if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) |
| 7194 | PointeeTy = UnsignedIntTy; |
| 7195 | else |
| 7196 | if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) |
| 7197 | PointeeTy = IntTy; |
| 7198 | } |
| 7199 | } |
| 7200 | } |
| 7201 | |
| 7202 | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, |
| 7203 | const FieldDecl *Field, |
| 7204 | QualType *NotEncodedT) const { |
| 7205 | // We follow the behavior of gcc, expanding structures which are |
| 7206 | // directly pointed to, and expanding embedded structures. Note that |
| 7207 | // these rules are sufficient to prevent recursive encoding of the |
| 7208 | // same type. |
| 7209 | getObjCEncodingForTypeImpl(T, S, |
| 7210 | ObjCEncOptions() |
| 7211 | .setExpandPointedToStructures() |
| 7212 | .setExpandStructures() |
| 7213 | .setIsOutermostType(), |
| 7214 | Field, NotEncodedT); |
| 7215 | } |
| 7216 | |
| 7217 | void ASTContext::getObjCEncodingForPropertyType(QualType T, |
| 7218 | std::string& S) const { |
| 7219 | // Encode result type. |
| 7220 | // GCC has some special rules regarding encoding of properties which |
| 7221 | // closely resembles encoding of ivars. |
| 7222 | getObjCEncodingForTypeImpl(T, S, |
| 7223 | ObjCEncOptions() |
| 7224 | .setExpandPointedToStructures() |
| 7225 | .setExpandStructures() |
| 7226 | .setIsOutermostType() |
| 7227 | .setEncodingProperty(), |
| 7228 | /*Field=*/nullptr); |
| 7229 | } |
| 7230 | |
| 7231 | static char getObjCEncodingForPrimitiveType(const ASTContext *C, |
| 7232 | const BuiltinType *BT) { |
| 7233 | BuiltinType::Kind kind = BT->getKind(); |
| 7234 | switch (kind) { |
| 7235 | case BuiltinType::Void: return 'v'; |
| 7236 | case BuiltinType::Bool: return 'B'; |
| 7237 | case BuiltinType::Char8: |
| 7238 | case BuiltinType::Char_U: |
| 7239 | case BuiltinType::UChar: return 'C'; |
| 7240 | case BuiltinType::Char16: |
| 7241 | case BuiltinType::UShort: return 'S'; |
| 7242 | case BuiltinType::Char32: |
| 7243 | case BuiltinType::UInt: return 'I'; |
| 7244 | case BuiltinType::ULong: |
| 7245 | return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; |
| 7246 | case BuiltinType::UInt128: return 'T'; |
| 7247 | case BuiltinType::ULongLong: return 'Q'; |
| 7248 | case BuiltinType::Char_S: |
| 7249 | case BuiltinType::SChar: return 'c'; |
| 7250 | case BuiltinType::Short: return 's'; |
| 7251 | case BuiltinType::WChar_S: |
| 7252 | case BuiltinType::WChar_U: |
| 7253 | case BuiltinType::Int: return 'i'; |
| 7254 | case BuiltinType::Long: |
| 7255 | return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; |
| 7256 | case BuiltinType::LongLong: return 'q'; |
| 7257 | case BuiltinType::Int128: return 't'; |
| 7258 | case BuiltinType::Float: return 'f'; |
| 7259 | case BuiltinType::Double: return 'd'; |
| 7260 | case BuiltinType::LongDouble: return 'D'; |
| 7261 | case BuiltinType::NullPtr: return '*'; // like char* |
| 7262 | |
| 7263 | case BuiltinType::BFloat16: |
| 7264 | case BuiltinType::Float16: |
| 7265 | case BuiltinType::Float128: |
| 7266 | case BuiltinType::Half: |
| 7267 | case BuiltinType::ShortAccum: |
| 7268 | case BuiltinType::Accum: |
| 7269 | case BuiltinType::LongAccum: |
| 7270 | case BuiltinType::UShortAccum: |
| 7271 | case BuiltinType::UAccum: |
| 7272 | case BuiltinType::ULongAccum: |
| 7273 | case BuiltinType::ShortFract: |
| 7274 | case BuiltinType::Fract: |
| 7275 | case BuiltinType::LongFract: |
| 7276 | case BuiltinType::UShortFract: |
| 7277 | case BuiltinType::UFract: |
| 7278 | case BuiltinType::ULongFract: |
| 7279 | case BuiltinType::SatShortAccum: |
| 7280 | case BuiltinType::SatAccum: |
| 7281 | case BuiltinType::SatLongAccum: |
| 7282 | case BuiltinType::SatUShortAccum: |
| 7283 | case BuiltinType::SatUAccum: |
| 7284 | case BuiltinType::SatULongAccum: |
| 7285 | case BuiltinType::SatShortFract: |
| 7286 | case BuiltinType::SatFract: |
| 7287 | case BuiltinType::SatLongFract: |
| 7288 | case BuiltinType::SatUShortFract: |
| 7289 | case BuiltinType::SatUFract: |
| 7290 | case BuiltinType::SatULongFract: |
| 7291 | // FIXME: potentially need @encodes for these! |
| 7292 | return ' '; |
| 7293 | |
| 7294 | #define SVE_TYPE(Name, Id, SingletonId) \ |
| 7295 | case BuiltinType::Id: |
| 7296 | #include "clang/Basic/AArch64SVEACLETypes.def" |
| 7297 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| 7298 | #include "clang/Basic/RISCVVTypes.def" |
| 7299 | { |
| 7300 | DiagnosticsEngine &Diags = C->getDiagnostics(); |
| 7301 | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| 7302 | "cannot yet @encode type %0"); |
| 7303 | Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy()); |
| 7304 | return ' '; |
| 7305 | } |
| 7306 | |
| 7307 | case BuiltinType::ObjCId: |
| 7308 | case BuiltinType::ObjCClass: |
| 7309 | case BuiltinType::ObjCSel: |
| 7310 | llvm_unreachable("@encoding ObjC primitive type")__builtin_unreachable(); |
| 7311 | |
| 7312 | // OpenCL and placeholder types don't need @encodings. |
| 7313 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| 7314 | case BuiltinType::Id: |
| 7315 | #include "clang/Basic/OpenCLImageTypes.def" |
| 7316 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| 7317 | case BuiltinType::Id: |
| 7318 | #include "clang/Basic/OpenCLExtensionTypes.def" |
| 7319 | case BuiltinType::OCLEvent: |
| 7320 | case BuiltinType::OCLClkEvent: |
| 7321 | case BuiltinType::OCLQueue: |
| 7322 | case BuiltinType::OCLReserveID: |
| 7323 | case BuiltinType::OCLSampler: |
| 7324 | case BuiltinType::Dependent: |
| 7325 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| 7326 | case BuiltinType::Id: |
| 7327 | #include "clang/Basic/PPCTypes.def" |
| 7328 | #define BUILTIN_TYPE(KIND, ID) |
| 7329 | #define PLACEHOLDER_TYPE(KIND, ID) \ |
| 7330 | case BuiltinType::KIND: |
| 7331 | #include "clang/AST/BuiltinTypes.def" |
| 7332 | llvm_unreachable("invalid builtin type for @encode")__builtin_unreachable(); |
| 7333 | } |
| 7334 | llvm_unreachable("invalid BuiltinType::Kind value")__builtin_unreachable(); |
| 7335 | } |
| 7336 | |
| 7337 | static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) { |
| 7338 | EnumDecl *Enum = ET->getDecl(); |
| 7339 | |
| 7340 | // The encoding of an non-fixed enum type is always 'i', regardless of size. |
| 7341 | if (!Enum->isFixed()) |
| 7342 | return 'i'; |
| 7343 | |
| 7344 | // The encoding of a fixed enum type matches its fixed underlying type. |
| 7345 | const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); |
| 7346 | return getObjCEncodingForPrimitiveType(C, BT); |
| 7347 | } |
| 7348 | |
| 7349 | static void EncodeBitField(const ASTContext *Ctx, std::string& S, |
| 7350 | QualType T, const FieldDecl *FD) { |
| 7351 | assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl")((void)0); |
| 7352 | S += 'b'; |
| 7353 | // The NeXT runtime encodes bit fields as b followed by the number of bits. |
| 7354 | // The GNU runtime requires more information; bitfields are encoded as b, |
| 7355 | // then the offset (in bits) of the first element, then the type of the |
| 7356 | // bitfield, then the size in bits. For example, in this structure: |
| 7357 | // |
| 7358 | // struct |
| 7359 | // { |
| 7360 | // int integer; |
| 7361 | // int flags:2; |
| 7362 | // }; |
| 7363 | // On a 32-bit system, the encoding for flags would be b2 for the NeXT |
| 7364 | // runtime, but b32i2 for the GNU runtime. The reason for this extra |
| 7365 | // information is not especially sensible, but we're stuck with it for |
| 7366 | // compatibility with GCC, although providing it breaks anything that |
| 7367 | // actually uses runtime introspection and wants to work on both runtimes... |
| 7368 | if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { |
| 7369 | uint64_t Offset; |
| 7370 | |
| 7371 | if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) { |
| 7372 | Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr, |
| 7373 | IVD); |
| 7374 | } else { |
| 7375 | const RecordDecl *RD = FD->getParent(); |
| 7376 | const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); |
| 7377 | Offset = RL.getFieldOffset(FD->getFieldIndex()); |
| 7378 | } |
| 7379 | |
| 7380 | S += llvm::utostr(Offset); |
| 7381 | |
| 7382 | if (const auto *ET = T->getAs<EnumType>()) |
| 7383 | S += ObjCEncodingForEnumType(Ctx, ET); |
| 7384 | else { |
| 7385 | const auto *BT = T->castAs<BuiltinType>(); |
| 7386 | S += getObjCEncodingForPrimitiveType(Ctx, BT); |
| 7387 | } |
| 7388 | } |
| 7389 | S += llvm::utostr(FD->getBitWidthValue(*Ctx)); |
| 7390 | } |
| 7391 | |
| 7392 | // Helper function for determining whether the encoded type string would include |
| 7393 | // a template specialization type. |
| 7394 | static bool hasTemplateSpecializationInEncodedString(const Type *T, |
| 7395 | bool VisitBasesAndFields) { |
| 7396 | T = T->getBaseElementTypeUnsafe(); |
| 7397 | |
| 7398 | if (auto *PT = T->getAs<PointerType>()) |
| 7399 | return hasTemplateSpecializationInEncodedString( |
| 7400 | PT->getPointeeType().getTypePtr(), false); |
| 7401 | |
| 7402 | auto *CXXRD = T->getAsCXXRecordDecl(); |
| 7403 | |
| 7404 | if (!CXXRD) |
| 7405 | return false; |
| 7406 | |
| 7407 | if (isa<ClassTemplateSpecializationDecl>(CXXRD)) |
| 7408 | return true; |
| 7409 | |
| 7410 | if (!CXXRD->hasDefinition() || !VisitBasesAndFields) |
| 7411 | return false; |
| 7412 | |
| 7413 | for (auto B : CXXRD->bases()) |
| 7414 | if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(), |
| 7415 | true)) |
| 7416 | return true; |
| 7417 | |
| 7418 | for (auto *FD : CXXRD->fields()) |
| 7419 | if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(), |
| 7420 | true)) |
| 7421 | return true; |
| 7422 | |
| 7423 | return false; |
| 7424 | } |
| 7425 | |
| 7426 | // FIXME: Use SmallString for accumulating string. |
| 7427 | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, |
| 7428 | const ObjCEncOptions Options, |
| 7429 | const FieldDecl *FD, |
| 7430 | QualType *NotEncodedT) const { |
| 7431 | CanQualType CT = getCanonicalType(T); |
| 7432 | switch (CT->getTypeClass()) { |
| 7433 | case Type::Builtin: |
| 7434 | case Type::Enum: |
| 7435 | if (FD && FD->isBitField()) |
| 7436 | return EncodeBitField(this, S, T, FD); |
| 7437 | if (const auto *BT = dyn_cast<BuiltinType>(CT)) |
| 7438 | S += getObjCEncodingForPrimitiveType(this, BT); |
| 7439 | else |
| 7440 | S += ObjCEncodingForEnumType(this, cast<EnumType>(CT)); |
| 7441 | return; |
| 7442 | |
| 7443 | case Type::Complex: |
| 7444 | S += 'j'; |
| 7445 | getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S, |
| 7446 | ObjCEncOptions(), |
| 7447 | /*Field=*/nullptr); |
| 7448 | return; |
| 7449 | |
| 7450 | case Type::Atomic: |
| 7451 | S += 'A'; |
| 7452 | getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S, |
| 7453 | ObjCEncOptions(), |
| 7454 | /*Field=*/nullptr); |
| 7455 | return; |
| 7456 | |
| 7457 | // encoding for pointer or reference types. |
| 7458 | case Type::Pointer: |
| 7459 | case Type::LValueReference: |
| 7460 | case Type::RValueReference: { |
| 7461 | QualType PointeeTy; |
| 7462 | if (isa<PointerType>(CT)) { |
| 7463 | const auto *PT = T->castAs<PointerType>(); |
| 7464 | if (PT->isObjCSelType()) { |
| 7465 | S += ':'; |
| 7466 | return; |
| 7467 | } |
| 7468 | PointeeTy = PT->getPointeeType(); |
| 7469 | } else { |
| 7470 | PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); |
| 7471 | } |
| 7472 | |
| 7473 | bool isReadOnly = false; |
| 7474 | // For historical/compatibility reasons, the read-only qualifier of the |
| 7475 | // pointee gets emitted _before_ the '^'. The read-only qualifier of |
| 7476 | // the pointer itself gets ignored, _unless_ we are looking at a typedef! |
| 7477 | // Also, do not emit the 'r' for anything but the outermost type! |
| 7478 | if (isa<TypedefType>(T.getTypePtr())) { |
| 7479 | if (Options.IsOutermostType() && T.isConstQualified()) { |
| 7480 | isReadOnly = true; |
| 7481 | S += 'r'; |
| 7482 | } |
| 7483 | } else if (Options.IsOutermostType()) { |
| 7484 | QualType P = PointeeTy; |
| 7485 | while (auto PT = P->getAs<PointerType>()) |
| 7486 | P = PT->getPointeeType(); |
| 7487 | if (P.isConstQualified()) { |
| 7488 | isReadOnly = true; |
| 7489 | S += 'r'; |
| 7490 | } |
| 7491 | } |
| 7492 | if (isReadOnly) { |
| 7493 | // Another legacy compatibility encoding. Some ObjC qualifier and type |
| 7494 | // combinations need to be rearranged. |
| 7495 | // Rewrite "in const" from "nr" to "rn" |
| 7496 | if (StringRef(S).endswith("nr")) |
| 7497 | S.replace(S.end()-2, S.end(), "rn"); |
| 7498 | } |
| 7499 | |
| 7500 | if (PointeeTy->isCharType()) { |
| 7501 | // char pointer types should be encoded as '*' unless it is a |
| 7502 | // type that has been typedef'd to 'BOOL'. |
| 7503 | if (!isTypeTypedefedAsBOOL(PointeeTy)) { |
| 7504 | S += '*'; |
| 7505 | return; |
| 7506 | } |
| 7507 | } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) { |
| 7508 | // GCC binary compat: Need to convert "struct objc_class *" to "#". |
| 7509 | if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) { |
| 7510 | S += '#'; |
| 7511 | return; |
| 7512 | } |
| 7513 | // GCC binary compat: Need to convert "struct objc_object *" to "@". |
| 7514 | if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) { |
| 7515 | S += '@'; |
| 7516 | return; |
| 7517 | } |
| 7518 | // If the encoded string for the class includes template names, just emit |
| 7519 | // "^v" for pointers to the class. |
| 7520 | if (getLangOpts().CPlusPlus && |
| 7521 | (!getLangOpts().EncodeCXXClassTemplateSpec && |
| 7522 | hasTemplateSpecializationInEncodedString( |
| 7523 | RTy, Options.ExpandPointedToStructures()))) { |
| 7524 | S += "^v"; |
| 7525 | return; |
| 7526 | } |
| 7527 | // fall through... |
| 7528 | } |
| 7529 | S += '^'; |
| 7530 | getLegacyIntegralTypeEncoding(PointeeTy); |
| 7531 | |
| 7532 | ObjCEncOptions NewOptions; |
| 7533 | if (Options.ExpandPointedToStructures()) |
| 7534 | NewOptions.setExpandStructures(); |
| 7535 | getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions, |
| 7536 | /*Field=*/nullptr, NotEncodedT); |
| 7537 | return; |
| 7538 | } |
| 7539 | |
| 7540 | case Type::ConstantArray: |
| 7541 | case Type::IncompleteArray: |
| 7542 | case Type::VariableArray: { |
| 7543 | const auto *AT = cast<ArrayType>(CT); |
| 7544 | |
| 7545 | if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) { |
| 7546 | // Incomplete arrays are encoded as a pointer to the array element. |
| 7547 | S += '^'; |
| 7548 | |
| 7549 | getObjCEncodingForTypeImpl( |
| 7550 | AT->getElementType(), S, |
| 7551 | Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD); |
| 7552 | } else { |
| 7553 | S += '['; |
| 7554 | |
| 7555 | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
| 7556 | S += llvm::utostr(CAT->getSize().getZExtValue()); |
| 7557 | else { |
| 7558 | //Variable length arrays are encoded as a regular array with 0 elements. |
| 7559 | assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&((void)0) |
| 7560 | "Unknown array type!")((void)0); |
| 7561 | S += '0'; |
| 7562 | } |
| 7563 | |
| 7564 | getObjCEncodingForTypeImpl( |
| 7565 | AT->getElementType(), S, |
| 7566 | Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD, |
| 7567 | NotEncodedT); |
| 7568 | S += ']'; |
| 7569 | } |
| 7570 | return; |
| 7571 | } |
| 7572 | |
| 7573 | case Type::FunctionNoProto: |
| 7574 | case Type::FunctionProto: |
| 7575 | S += '?'; |
| 7576 | return; |
| 7577 | |
| 7578 | case Type::Record: { |
| 7579 | RecordDecl *RDecl = cast<RecordType>(CT)->getDecl(); |
| 7580 | S += RDecl->isUnion() ? '(' : '{'; |
| 7581 | // Anonymous structures print as '?' |
| 7582 | if (const IdentifierInfo *II = RDecl->getIdentifier()) { |
| 7583 | S += II->getName(); |
| 7584 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { |
| 7585 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
| 7586 | llvm::raw_string_ostream OS(S); |
| 7587 | printTemplateArgumentList(OS, TemplateArgs.asArray(), |
| 7588 | getPrintingPolicy()); |
| 7589 | } |
| 7590 | } else { |
| 7591 | S += '?'; |
| 7592 | } |
| 7593 | if (Options.ExpandStructures()) { |
| 7594 | S += '='; |
| 7595 | if (!RDecl->isUnion()) { |
| 7596 | getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); |
| 7597 | } else { |
| 7598 | for (const auto *Field : RDecl->fields()) { |
| 7599 | if (FD) { |
| 7600 | S += '"'; |
| 7601 | S += Field->getNameAsString(); |
| 7602 | S += '"'; |
| 7603 | } |
| 7604 | |
| 7605 | // Special case bit-fields. |
| 7606 | if (Field->isBitField()) { |
| 7607 | getObjCEncodingForTypeImpl(Field->getType(), S, |
| 7608 | ObjCEncOptions().setExpandStructures(), |
| 7609 | Field); |
| 7610 | } else { |
| 7611 | QualType qt = Field->getType(); |
| 7612 | getLegacyIntegralTypeEncoding(qt); |
| 7613 | getObjCEncodingForTypeImpl( |
| 7614 | qt, S, |
| 7615 | ObjCEncOptions().setExpandStructures().setIsStructField(), FD, |
| 7616 | NotEncodedT); |
| 7617 | } |
| 7618 | } |
| 7619 | } |
| 7620 | } |
| 7621 | S += RDecl->isUnion() ? ')' : '}'; |
| 7622 | return; |
| 7623 | } |
| 7624 | |
| 7625 | case Type::BlockPointer: { |
| 7626 | const auto *BT = T->castAs<BlockPointerType>(); |
| 7627 | S += "@?"; // Unlike a pointer-to-function, which is "^?". |
| 7628 | if (Options.EncodeBlockParameters()) { |
| 7629 | const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); |
| 7630 | |
| 7631 | S += '<'; |
| 7632 | // Block return type |
| 7633 | getObjCEncodingForTypeImpl(FT->getReturnType(), S, |
| 7634 | Options.forComponentType(), FD, NotEncodedT); |
| 7635 | // Block self |
| 7636 | S += "@?"; |
| 7637 | // Block parameters |
| 7638 | if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) { |
| 7639 | for (const auto &I : FPT->param_types()) |
| 7640 | getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD, |
| 7641 | NotEncodedT); |
| 7642 | } |
| 7643 | S += '>'; |
| 7644 | } |
| 7645 | return; |
| 7646 | } |
| 7647 | |
| 7648 | case Type::ObjCObject: { |
| 7649 | // hack to match legacy encoding of *id and *Class |
| 7650 | QualType Ty = getObjCObjectPointerType(CT); |
| 7651 | if (Ty->isObjCIdType()) { |
| 7652 | S += "{objc_object=}"; |
| 7653 | return; |
| 7654 | } |
| 7655 | else if (Ty->isObjCClassType()) { |
| 7656 | S += "{objc_class=}"; |
| 7657 | return; |
| 7658 | } |
| 7659 | // TODO: Double check to make sure this intentionally falls through. |
| 7660 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; |
| 7661 | } |
| 7662 | |
| 7663 | case Type::ObjCInterface: { |
| 7664 | // Ignore protocol qualifiers when mangling at this level. |
| 7665 | // @encode(class_name) |
| 7666 | ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); |
| 7667 | S += '{'; |
| 7668 | S += OI->getObjCRuntimeNameAsString(); |
| 7669 | if (Options.ExpandStructures()) { |
| 7670 | S += '='; |
| 7671 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
| 7672 | DeepCollectObjCIvars(OI, true, Ivars); |
| 7673 | for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { |
| 7674 | const FieldDecl *Field = Ivars[i]; |
| 7675 | if (Field->isBitField()) |
| 7676 | getObjCEncodingForTypeImpl(Field->getType(), S, |
| 7677 | ObjCEncOptions().setExpandStructures(), |
| 7678 | Field); |
| 7679 | else |
| 7680 | getObjCEncodingForTypeImpl(Field->getType(), S, |
| 7681 | ObjCEncOptions().setExpandStructures(), FD, |
| 7682 | NotEncodedT); |
| 7683 | } |
| 7684 | } |
| 7685 | S += '}'; |
| 7686 | return; |
| 7687 | } |
| 7688 | |
| 7689 | case Type::ObjCObjectPointer: { |
| 7690 | const auto *OPT = T->castAs<ObjCObjectPointerType>(); |
| 7691 | if (OPT->isObjCIdType()) { |
| 7692 | S += '@'; |
| 7693 | return; |
| 7694 | } |
| 7695 | |
| 7696 | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { |
| 7697 | // FIXME: Consider if we need to output qualifiers for 'Class<p>'. |
| 7698 | // Since this is a binary compatibility issue, need to consult with |
| 7699 | // runtime folks. Fortunately, this is a *very* obscure construct. |
| 7700 | S += '#'; |
| 7701 | return; |
| 7702 | } |
| 7703 | |
| 7704 | if (OPT->isObjCQualifiedIdType()) { |
| 7705 | getObjCEncodingForTypeImpl( |
| 7706 | getObjCIdType(), S, |
| 7707 | Options.keepingOnly(ObjCEncOptions() |
| 7708 | .setExpandPointedToStructures() |
| 7709 | .setExpandStructures()), |
| 7710 | FD); |
| 7711 | if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { |
| 7712 | // Note that we do extended encoding of protocol qualifer list |
| 7713 | // Only when doing ivar or property encoding. |
| 7714 | S += '"'; |
| 7715 | for (const auto *I : OPT->quals()) { |
| 7716 | S += '<'; |
| 7717 | S += I->getObjCRuntimeNameAsString(); |
| 7718 | S += '>'; |
| 7719 | } |
| 7720 | S += '"'; |
| 7721 | } |
| 7722 | return; |
| 7723 | } |
| 7724 | |
| 7725 | S += '@'; |
| 7726 | if (OPT->getInterfaceDecl() && |
| 7727 | (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { |
| 7728 | S += '"'; |
| 7729 | S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); |
| 7730 | for (const auto *I : OPT->quals()) { |
| 7731 | S += '<'; |
| 7732 | S += I->getObjCRuntimeNameAsString(); |
| 7733 | S += '>'; |
| 7734 | } |
| 7735 | S += '"'; |
| 7736 | } |
| 7737 | return; |
| 7738 | } |
| 7739 | |
| 7740 | // gcc just blithely ignores member pointers. |
| 7741 | // FIXME: we should do better than that. 'M' is available. |
| 7742 | case Type::MemberPointer: |
| 7743 | // This matches gcc's encoding, even though technically it is insufficient. |
| 7744 | //FIXME. We should do a better job than gcc. |
| 7745 | case Type::Vector: |
| 7746 | case Type::ExtVector: |
| 7747 | // Until we have a coherent encoding of these three types, issue warning. |
| 7748 | if (NotEncodedT) |
| 7749 | *NotEncodedT = T; |
| 7750 | return; |
| 7751 | |
| 7752 | case Type::ConstantMatrix: |
| 7753 | if (NotEncodedT) |
| 7754 | *NotEncodedT = T; |
| 7755 | return; |
| 7756 | |
| 7757 | // We could see an undeduced auto type here during error recovery. |
| 7758 | // Just ignore it. |
| 7759 | case Type::Auto: |
| 7760 | case Type::DeducedTemplateSpecialization: |
| 7761 | return; |
| 7762 | |
| 7763 | case Type::Pipe: |
| 7764 | case Type::ExtInt: |
| 7765 | #define ABSTRACT_TYPE(KIND, BASE) |
| 7766 | #define TYPE(KIND, BASE) |
| 7767 | #define DEPENDENT_TYPE(KIND, BASE) \ |
| 7768 | case Type::KIND: |
| 7769 | #define NON_CANONICAL_TYPE(KIND, BASE) \ |
| 7770 | case Type::KIND: |
| 7771 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ |
| 7772 | case Type::KIND: |
| 7773 | #include "clang/AST/TypeNodes.inc" |
| 7774 | llvm_unreachable("@encode for dependent type!")__builtin_unreachable(); |
| 7775 | } |
| 7776 | llvm_unreachable("bad type kind!")__builtin_unreachable(); |
| 7777 | } |
| 7778 | |
| 7779 | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, |
| 7780 | std::string &S, |
| 7781 | const FieldDecl *FD, |
| 7782 | bool includeVBases, |
| 7783 | QualType *NotEncodedT) const { |
| 7784 | assert(RDecl && "Expected non-null RecordDecl")((void)0); |
| 7785 | assert(!RDecl->isUnion() && "Should not be called for unions")((void)0); |
| 7786 | if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) |
| 7787 | return; |
| 7788 | |
| 7789 | const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); |
| 7790 | std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; |
| 7791 | const ASTRecordLayout &layout = getASTRecordLayout(RDecl); |
| 7792 | |
| 7793 | if (CXXRec) { |
| 7794 | for (const auto &BI : CXXRec->bases()) { |
| 7795 | if (!BI.isVirtual()) { |
| 7796 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
| 7797 | if (base->isEmpty()) |
| 7798 | continue; |
| 7799 | uint64_t offs = toBits(layout.getBaseClassOffset(base)); |
| 7800 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| 7801 | std::make_pair(offs, base)); |
| 7802 | } |
| 7803 | } |
| 7804 | } |
| 7805 | |
| 7806 | unsigned i = 0; |
| 7807 | for (FieldDecl *Field : RDecl->fields()) { |
| 7808 | if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this)) |
| 7809 | continue; |
| 7810 | uint64_t offs = layout.getFieldOffset(i); |
| 7811 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| 7812 | std::make_pair(offs, Field)); |
| 7813 | ++i; |
| 7814 | } |
| 7815 | |
| 7816 | if (CXXRec && includeVBases) { |
| 7817 | for (const auto &BI : CXXRec->vbases()) { |
| 7818 | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); |
| 7819 | if (base->isEmpty()) |
| 7820 | continue; |
| 7821 | uint64_t offs = toBits(layout.getVBaseClassOffset(base)); |
| 7822 | if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && |
| 7823 | FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) |
| 7824 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), |
| 7825 | std::make_pair(offs, base)); |
| 7826 | } |
| 7827 | } |
| 7828 | |
| 7829 | CharUnits size; |
| 7830 | if (CXXRec) { |
| 7831 | size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); |
| 7832 | } else { |
| 7833 | size = layout.getSize(); |
| 7834 | } |
| 7835 | |
| 7836 | #ifndef NDEBUG1 |
| 7837 | uint64_t CurOffs = 0; |
| 7838 | #endif |
| 7839 | std::multimap<uint64_t, NamedDecl *>::iterator |
| 7840 | CurLayObj = FieldOrBaseOffsets.begin(); |
| 7841 | |
| 7842 | if (CXXRec && CXXRec->isDynamicClass() && |
| 7843 | (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { |
| 7844 | if (FD) { |
| 7845 | S += "\"_vptr$"; |
| 7846 | std::string recname = CXXRec->getNameAsString(); |
| 7847 | if (recname.empty()) recname = "?"; |
| 7848 | S += recname; |
| 7849 | S += '"'; |
| 7850 | } |
| 7851 | S += "^^?"; |
| 7852 | #ifndef NDEBUG1 |
| 7853 | CurOffs += getTypeSize(VoidPtrTy); |
| 7854 | #endif |
| 7855 | } |
| 7856 | |
| 7857 | if (!RDecl->hasFlexibleArrayMember()) { |
| 7858 | // Mark the end of the structure. |
| 7859 | uint64_t offs = toBits(size); |
| 7860 | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), |
| 7861 | std::make_pair(offs, nullptr)); |
| 7862 | } |
| 7863 | |
| 7864 | for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { |
| 7865 | #ifndef NDEBUG1 |
| 7866 | assert(CurOffs <= CurLayObj->first)((void)0); |
| 7867 | if (CurOffs < CurLayObj->first) { |
| 7868 | uint64_t padding = CurLayObj->first - CurOffs; |
| 7869 | // FIXME: There doesn't seem to be a way to indicate in the encoding that |
| 7870 | // packing/alignment of members is different that normal, in which case |
| 7871 | // the encoding will be out-of-sync with the real layout. |
| 7872 | // If the runtime switches to just consider the size of types without |
| 7873 | // taking into account alignment, we could make padding explicit in the |
| 7874 | // encoding (e.g. using arrays of chars). The encoding strings would be |
| 7875 | // longer then though. |
| 7876 | CurOffs += padding; |
| 7877 | } |
| 7878 | #endif |
| 7879 | |
| 7880 | NamedDecl *dcl = CurLayObj->second; |
| 7881 | if (!dcl) |
| 7882 | break; // reached end of structure. |
| 7883 | |
| 7884 | if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) { |
| 7885 | // We expand the bases without their virtual bases since those are going |
| 7886 | // in the initial structure. Note that this differs from gcc which |
| 7887 | // expands virtual bases each time one is encountered in the hierarchy, |
| 7888 | // making the encoding type bigger than it really is. |
| 7889 | getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, |
| 7890 | NotEncodedT); |
| 7891 | assert(!base->isEmpty())((void)0); |
| 7892 | #ifndef NDEBUG1 |
| 7893 | CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); |
| 7894 | #endif |
| 7895 | } else { |
| 7896 | const auto *field = cast<FieldDecl>(dcl); |
| 7897 | if (FD) { |
| 7898 | S += '"'; |
| 7899 | S += field->getNameAsString(); |
| 7900 | S += '"'; |
| 7901 | } |
| 7902 | |
| 7903 | if (field->isBitField()) { |
| 7904 | EncodeBitField(this, S, field->getType(), field); |
| 7905 | #ifndef NDEBUG1 |
| 7906 | CurOffs += field->getBitWidthValue(*this); |
| 7907 | #endif |
| 7908 | } else { |
| 7909 | QualType qt = field->getType(); |
| 7910 | getLegacyIntegralTypeEncoding(qt); |
| 7911 | getObjCEncodingForTypeImpl( |
| 7912 | qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(), |
| 7913 | FD, NotEncodedT); |
| 7914 | #ifndef NDEBUG1 |
| 7915 | CurOffs += getTypeSize(field->getType()); |
| 7916 | #endif |
| 7917 | } |
| 7918 | } |
| 7919 | } |
| 7920 | } |
| 7921 | |
| 7922 | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, |
| 7923 | std::string& S) const { |
| 7924 | if (QT & Decl::OBJC_TQ_In) |
| 7925 | S += 'n'; |
| 7926 | if (QT & Decl::OBJC_TQ_Inout) |
| 7927 | S += 'N'; |
| 7928 | if (QT & Decl::OBJC_TQ_Out) |
| 7929 | S += 'o'; |
| 7930 | if (QT & Decl::OBJC_TQ_Bycopy) |
| 7931 | S += 'O'; |
| 7932 | if (QT & Decl::OBJC_TQ_Byref) |
| 7933 | S += 'R'; |
| 7934 | if (QT & Decl::OBJC_TQ_Oneway) |
| 7935 | S += 'V'; |
| 7936 | } |
| 7937 | |
| 7938 | TypedefDecl *ASTContext::getObjCIdDecl() const { |
| 7939 | if (!ObjCIdDecl) { |
| 7940 | QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {}); |
| 7941 | T = getObjCObjectPointerType(T); |
| 7942 | ObjCIdDecl = buildImplicitTypedef(T, "id"); |
| 7943 | } |
| 7944 | return ObjCIdDecl; |
| 7945 | } |
| 7946 | |
| 7947 | TypedefDecl *ASTContext::getObjCSelDecl() const { |
| 7948 | if (!ObjCSelDecl) { |
| 7949 | QualType T = getPointerType(ObjCBuiltinSelTy); |
| 7950 | ObjCSelDecl = buildImplicitTypedef(T, "SEL"); |
| 7951 | } |
| 7952 | return ObjCSelDecl; |
| 7953 | } |
| 7954 | |
| 7955 | TypedefDecl *ASTContext::getObjCClassDecl() const { |
| 7956 | if (!ObjCClassDecl) { |
| 7957 | QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {}); |
| 7958 | T = getObjCObjectPointerType(T); |
| 7959 | ObjCClassDecl = buildImplicitTypedef(T, "Class"); |
| 7960 | } |
| 7961 | return ObjCClassDecl; |
| 7962 | } |
| 7963 | |
| 7964 | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { |
| 7965 | if (!ObjCProtocolClassDecl) { |
| 7966 | ObjCProtocolClassDecl |
| 7967 | = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), |
| 7968 | SourceLocation(), |
| 7969 | &Idents.get("Protocol"), |
| 7970 | /*typeParamList=*/nullptr, |
| 7971 | /*PrevDecl=*/nullptr, |
| 7972 | SourceLocation(), true); |
| 7973 | } |
| 7974 | |
| 7975 | return ObjCProtocolClassDecl; |
| 7976 | } |
| 7977 | |
| 7978 | //===----------------------------------------------------------------------===// |
| 7979 | // __builtin_va_list Construction Functions |
| 7980 | //===----------------------------------------------------------------------===// |
| 7981 | |
| 7982 | static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, |
| 7983 | StringRef Name) { |
| 7984 | // typedef char* __builtin[_ms]_va_list; |
| 7985 | QualType T = Context->getPointerType(Context->CharTy); |
| 7986 | return Context->buildImplicitTypedef(T, Name); |
| 7987 | } |
| 7988 | |
| 7989 | static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { |
| 7990 | return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); |
| 7991 | } |
| 7992 | |
| 7993 | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { |
| 7994 | return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); |
| 7995 | } |
| 7996 | |
| 7997 | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { |
| 7998 | // typedef void* __builtin_va_list; |
| 7999 | QualType T = Context->getPointerType(Context->VoidTy); |
| 8000 | return Context->buildImplicitTypedef(T, "__builtin_va_list"); |
| 8001 | } |
| 8002 | |
| 8003 | static TypedefDecl * |
| 8004 | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { |
| 8005 | RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); |
| 8006 | // namespace std { struct __va_list { |
| 8007 | // Note that we create the namespace even in C. This is intentional so that |
| 8008 | // the type is consistent between C and C++, which is important in cases where |
| 8009 | // the types need to match between translation units (e.g. with |
| 8010 | // -fsanitize=cfi-icall). Ideally we wouldn't have created this namespace at |
| 8011 | // all, but it's now part of the ABI (e.g. in mangled names), so we can't |
| 8012 | // change it. |
| 8013 | auto *NS = NamespaceDecl::Create( |
| 8014 | const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(), |
| 8015 | /*Inline*/ false, SourceLocation(), SourceLocation(), |
| 8016 | &Context->Idents.get("std"), |
| 8017 | /*PrevDecl*/ nullptr); |
| 8018 | NS->setImplicit(); |
| 8019 | VaListTagDecl->setDeclContext(NS); |
| 8020 | |
| 8021 | VaListTagDecl->startDefinition(); |
| 8022 | |
| 8023 | const size_t NumFields = 5; |
| 8024 | QualType FieldTypes[NumFields]; |
| 8025 | const char *FieldNames[NumFields]; |
| 8026 | |
| 8027 | // void *__stack; |
| 8028 | FieldTypes[0] = Context->getPointerType(Context->VoidTy); |
| 8029 | FieldNames[0] = "__stack"; |
| 8030 | |
| 8031 | // void *__gr_top; |
| 8032 | FieldTypes[1] = Context->getPointerType(Context->VoidTy); |
| 8033 | FieldNames[1] = "__gr_top"; |
| 8034 | |
| 8035 | // void *__vr_top; |
| 8036 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| 8037 | FieldNames[2] = "__vr_top"; |
| 8038 | |
| 8039 | // int __gr_offs; |
| 8040 | FieldTypes[3] = Context->IntTy; |
| 8041 | FieldNames[3] = "__gr_offs"; |
| 8042 | |
| 8043 | // int __vr_offs; |
| 8044 | FieldTypes[4] = Context->IntTy; |
| 8045 | FieldNames[4] = "__vr_offs"; |
| 8046 | |
| 8047 | // Create fields |
| 8048 | for (unsigned i = 0; i < NumFields; ++i) { |
| 8049 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| 8050 | VaListTagDecl, |
| 8051 | SourceLocation(), |
| 8052 | SourceLocation(), |
| 8053 | &Context->Idents.get(FieldNames[i]), |
| 8054 | FieldTypes[i], /*TInfo=*/nullptr, |
| 8055 | /*BitWidth=*/nullptr, |
| 8056 | /*Mutable=*/false, |
| 8057 | ICIS_NoInit); |
| 8058 | Field->setAccess(AS_public); |
| 8059 | VaListTagDecl->addDecl(Field); |
| 8060 | } |
| 8061 | VaListTagDecl->completeDefinition(); |
| 8062 | Context->VaListTagDecl = VaListTagDecl; |
| 8063 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| 8064 | |
| 8065 | // } __builtin_va_list; |
| 8066 | return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); |
| 8067 | } |
| 8068 | |
| 8069 | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { |
| 8070 | // typedef struct __va_list_tag { |
| 8071 | RecordDecl *VaListTagDecl; |
| 8072 | |
| 8073 | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
| 8074 | VaListTagDecl->startDefinition(); |
| 8075 | |
| 8076 | const size_t NumFields = 5; |
| 8077 | QualType FieldTypes[NumFields]; |
| 8078 | const char *FieldNames[NumFields]; |
| 8079 | |
| 8080 | // unsigned char gpr; |
| 8081 | FieldTypes[0] = Context->UnsignedCharTy; |
| 8082 | FieldNames[0] = "gpr"; |
| 8083 | |
| 8084 | // unsigned char fpr; |
| 8085 | FieldTypes[1] = Context->UnsignedCharTy; |
| 8086 | FieldNames[1] = "fpr"; |
| 8087 | |
| 8088 | // unsigned short reserved; |
| 8089 | FieldTypes[2] = Context->UnsignedShortTy; |
| 8090 | FieldNames[2] = "reserved"; |
| 8091 | |
| 8092 | // void* overflow_arg_area; |
| 8093 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| 8094 | FieldNames[3] = "overflow_arg_area"; |
| 8095 | |
| 8096 | // void* reg_save_area; |
| 8097 | FieldTypes[4] = Context->getPointerType(Context->VoidTy); |
| 8098 | FieldNames[4] = "reg_save_area"; |
| 8099 | |
| 8100 | // Create fields |
| 8101 | for (unsigned i = 0; i < NumFields; ++i) { |
| 8102 | FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, |
| 8103 | SourceLocation(), |
| 8104 | SourceLocation(), |
| 8105 | &Context->Idents.get(FieldNames[i]), |
| 8106 | FieldTypes[i], /*TInfo=*/nullptr, |
| 8107 | /*BitWidth=*/nullptr, |
| 8108 | /*Mutable=*/false, |
| 8109 | ICIS_NoInit); |
| 8110 | Field->setAccess(AS_public); |
| 8111 | VaListTagDecl->addDecl(Field); |
| 8112 | } |
| 8113 | VaListTagDecl->completeDefinition(); |
| 8114 | Context->VaListTagDecl = VaListTagDecl; |
| 8115 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| 8116 | |
| 8117 | // } __va_list_tag; |
| 8118 | TypedefDecl *VaListTagTypedefDecl = |
| 8119 | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); |
| 8120 | |
| 8121 | QualType VaListTagTypedefType = |
| 8122 | Context->getTypedefType(VaListTagTypedefDecl); |
| 8123 | |
| 8124 | // typedef __va_list_tag __builtin_va_list[1]; |
| 8125 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
| 8126 | QualType VaListTagArrayType |
| 8127 | = Context->getConstantArrayType(VaListTagTypedefType, |
| 8128 | Size, nullptr, ArrayType::Normal, 0); |
| 8129 | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
| 8130 | } |
| 8131 | |
| 8132 | static TypedefDecl * |
| 8133 | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { |
| 8134 | // struct __va_list_tag { |
| 8135 | RecordDecl *VaListTagDecl; |
| 8136 | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
| 8137 | VaListTagDecl->startDefinition(); |
| 8138 | |
| 8139 | const size_t NumFields = 4; |
| 8140 | QualType FieldTypes[NumFields]; |
| 8141 | const char *FieldNames[NumFields]; |
| 8142 | |
| 8143 | // unsigned gp_offset; |
| 8144 | FieldTypes[0] = Context->UnsignedIntTy; |
| 8145 | FieldNames[0] = "gp_offset"; |
| 8146 | |
| 8147 | // unsigned fp_offset; |
| 8148 | FieldTypes[1] = Context->UnsignedIntTy; |
| 8149 | FieldNames[1] = "fp_offset"; |
| 8150 | |
| 8151 | // void* overflow_arg_area; |
| 8152 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| 8153 | FieldNames[2] = "overflow_arg_area"; |
| 8154 | |
| 8155 | // void* reg_save_area; |
| 8156 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| 8157 | FieldNames[3] = "reg_save_area"; |
| 8158 | |
| 8159 | // Create fields |
| 8160 | for (unsigned i = 0; i < NumFields; ++i) { |
| 8161 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| 8162 | VaListTagDecl, |
| 8163 | SourceLocation(), |
| 8164 | SourceLocation(), |
| 8165 | &Context->Idents.get(FieldNames[i]), |
| 8166 | FieldTypes[i], /*TInfo=*/nullptr, |
| 8167 | /*BitWidth=*/nullptr, |
| 8168 | /*Mutable=*/false, |
| 8169 | ICIS_NoInit); |
| 8170 | Field->setAccess(AS_public); |
| 8171 | VaListTagDecl->addDecl(Field); |
| 8172 | } |
| 8173 | VaListTagDecl->completeDefinition(); |
| 8174 | Context->VaListTagDecl = VaListTagDecl; |
| 8175 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| 8176 | |
| 8177 | // }; |
| 8178 | |
| 8179 | // typedef struct __va_list_tag __builtin_va_list[1]; |
| 8180 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
| 8181 | QualType VaListTagArrayType = Context->getConstantArrayType( |
| 8182 | VaListTagType, Size, nullptr, ArrayType::Normal, 0); |
| 8183 | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
| 8184 | } |
| 8185 | |
| 8186 | static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) { |
| 8187 | // typedef int __builtin_va_list[4]; |
| 8188 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4); |
| 8189 | QualType IntArrayType = Context->getConstantArrayType( |
| 8190 | Context->IntTy, Size, nullptr, ArrayType::Normal, 0); |
| 8191 | return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list"); |
| 8192 | } |
| 8193 | |
| 8194 | static TypedefDecl * |
| 8195 | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { |
| 8196 | // struct __va_list |
| 8197 | RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); |
| 8198 | if (Context->getLangOpts().CPlusPlus) { |
| 8199 | // namespace std { struct __va_list { |
| 8200 | NamespaceDecl *NS; |
| 8201 | NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), |
| 8202 | Context->getTranslationUnitDecl(), |
| 8203 | /*Inline*/false, SourceLocation(), |
| 8204 | SourceLocation(), &Context->Idents.get("std"), |
| 8205 | /*PrevDecl*/ nullptr); |
| 8206 | NS->setImplicit(); |
| 8207 | VaListDecl->setDeclContext(NS); |
| 8208 | } |
| 8209 | |
| 8210 | VaListDecl->startDefinition(); |
| 8211 | |
| 8212 | // void * __ap; |
| 8213 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| 8214 | VaListDecl, |
| 8215 | SourceLocation(), |
| 8216 | SourceLocation(), |
| 8217 | &Context->Idents.get("__ap"), |
| 8218 | Context->getPointerType(Context->VoidTy), |
| 8219 | /*TInfo=*/nullptr, |
| 8220 | /*BitWidth=*/nullptr, |
| 8221 | /*Mutable=*/false, |
| 8222 | ICIS_NoInit); |
| 8223 | Field->setAccess(AS_public); |
| 8224 | VaListDecl->addDecl(Field); |
| 8225 | |
| 8226 | // }; |
| 8227 | VaListDecl->completeDefinition(); |
| 8228 | Context->VaListTagDecl = VaListDecl; |
| 8229 | |
| 8230 | // typedef struct __va_list __builtin_va_list; |
| 8231 | QualType T = Context->getRecordType(VaListDecl); |
| 8232 | return Context->buildImplicitTypedef(T, "__builtin_va_list"); |
| 8233 | } |
| 8234 | |
| 8235 | static TypedefDecl * |
| 8236 | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { |
| 8237 | // struct __va_list_tag { |
| 8238 | RecordDecl *VaListTagDecl; |
| 8239 | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
| 8240 | VaListTagDecl->startDefinition(); |
| 8241 | |
| 8242 | const size_t NumFields = 4; |
| 8243 | QualType FieldTypes[NumFields]; |
| 8244 | const char *FieldNames[NumFields]; |
| 8245 | |
| 8246 | // long __gpr; |
| 8247 | FieldTypes[0] = Context->LongTy; |
| 8248 | FieldNames[0] = "__gpr"; |
| 8249 | |
| 8250 | // long __fpr; |
| 8251 | FieldTypes[1] = Context->LongTy; |
| 8252 | FieldNames[1] = "__fpr"; |
| 8253 | |
| 8254 | // void *__overflow_arg_area; |
| 8255 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| 8256 | FieldNames[2] = "__overflow_arg_area"; |
| 8257 | |
| 8258 | // void *__reg_save_area; |
| 8259 | FieldTypes[3] = Context->getPointerType(Context->VoidTy); |
| 8260 | FieldNames[3] = "__reg_save_area"; |
| 8261 | |
| 8262 | // Create fields |
| 8263 | for (unsigned i = 0; i < NumFields; ++i) { |
| 8264 | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), |
| 8265 | VaListTagDecl, |
| 8266 | SourceLocation(), |
| 8267 | SourceLocation(), |
| 8268 | &Context->Idents.get(FieldNames[i]), |
| 8269 | FieldTypes[i], /*TInfo=*/nullptr, |
| 8270 | /*BitWidth=*/nullptr, |
| 8271 | /*Mutable=*/false, |
| 8272 | ICIS_NoInit); |
| 8273 | Field->setAccess(AS_public); |
| 8274 | VaListTagDecl->addDecl(Field); |
| 8275 | } |
| 8276 | VaListTagDecl->completeDefinition(); |
| 8277 | Context->VaListTagDecl = VaListTagDecl; |
| 8278 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| 8279 | |
| 8280 | // }; |
| 8281 | |
| 8282 | // typedef __va_list_tag __builtin_va_list[1]; |
| 8283 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
| 8284 | QualType VaListTagArrayType = Context->getConstantArrayType( |
| 8285 | VaListTagType, Size, nullptr, ArrayType::Normal, 0); |
| 8286 | |
| 8287 | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
| 8288 | } |
| 8289 | |
| 8290 | static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { |
| 8291 | // typedef struct __va_list_tag { |
| 8292 | RecordDecl *VaListTagDecl; |
| 8293 | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); |
| 8294 | VaListTagDecl->startDefinition(); |
| 8295 | |
| 8296 | const size_t NumFields = 3; |
| 8297 | QualType FieldTypes[NumFields]; |
| 8298 | const char *FieldNames[NumFields]; |
| 8299 | |
| 8300 | // void *CurrentSavedRegisterArea; |
| 8301 | FieldTypes[0] = Context->getPointerType(Context->VoidTy); |
| 8302 | FieldNames[0] = "__current_saved_reg_area_pointer"; |
| 8303 | |
| 8304 | // void *SavedRegAreaEnd; |
| 8305 | FieldTypes[1] = Context->getPointerType(Context->VoidTy); |
| 8306 | FieldNames[1] = "__saved_reg_area_end_pointer"; |
| 8307 | |
| 8308 | // void *OverflowArea; |
| 8309 | FieldTypes[2] = Context->getPointerType(Context->VoidTy); |
| 8310 | FieldNames[2] = "__overflow_area_pointer"; |
| 8311 | |
| 8312 | // Create fields |
| 8313 | for (unsigned i = 0; i < NumFields; ++i) { |
| 8314 | FieldDecl *Field = FieldDecl::Create( |
| 8315 | const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(), |
| 8316 | SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i], |
| 8317 | /*TInfo=*/0, |
| 8318 | /*BitWidth=*/0, |
| 8319 | /*Mutable=*/false, ICIS_NoInit); |
| 8320 | Field->setAccess(AS_public); |
| 8321 | VaListTagDecl->addDecl(Field); |
| 8322 | } |
| 8323 | VaListTagDecl->completeDefinition(); |
| 8324 | Context->VaListTagDecl = VaListTagDecl; |
| 8325 | QualType VaListTagType = Context->getRecordType(VaListTagDecl); |
| 8326 | |
| 8327 | // } __va_list_tag; |
| 8328 | TypedefDecl *VaListTagTypedefDecl = |
| 8329 | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); |
| 8330 | |
| 8331 | QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl); |
| 8332 | |
| 8333 | // typedef __va_list_tag __builtin_va_list[1]; |
| 8334 | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); |
| 8335 | QualType VaListTagArrayType = Context->getConstantArrayType( |
| 8336 | VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0); |
| 8337 | |
| 8338 | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); |
| 8339 | } |
| 8340 | |
| 8341 | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, |
| 8342 | TargetInfo::BuiltinVaListKind Kind) { |
| 8343 | switch (Kind) { |
| 8344 | case TargetInfo::CharPtrBuiltinVaList: |
| 8345 | return CreateCharPtrBuiltinVaListDecl(Context); |
| 8346 | case TargetInfo::VoidPtrBuiltinVaList: |
| 8347 | return CreateVoidPtrBuiltinVaListDecl(Context); |
| 8348 | case TargetInfo::AArch64ABIBuiltinVaList: |
| 8349 | return CreateAArch64ABIBuiltinVaListDecl(Context); |
| 8350 | case TargetInfo::PowerABIBuiltinVaList: |
| 8351 | return CreatePowerABIBuiltinVaListDecl(Context); |
| 8352 | case TargetInfo::X86_64ABIBuiltinVaList: |
| 8353 | return CreateX86_64ABIBuiltinVaListDecl(Context); |
| 8354 | case TargetInfo::PNaClABIBuiltinVaList: |
| 8355 | return CreatePNaClABIBuiltinVaListDecl(Context); |
| 8356 | case TargetInfo::AAPCSABIBuiltinVaList: |
| 8357 | return CreateAAPCSABIBuiltinVaListDecl(Context); |
| 8358 | case TargetInfo::SystemZBuiltinVaList: |
| 8359 | return CreateSystemZBuiltinVaListDecl(Context); |
| 8360 | case TargetInfo::HexagonBuiltinVaList: |
| 8361 | return CreateHexagonBuiltinVaListDecl(Context); |
| 8362 | } |
| 8363 | |
| 8364 | llvm_unreachable("Unhandled __builtin_va_list type kind")__builtin_unreachable(); |
| 8365 | } |
| 8366 | |
| 8367 | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { |
| 8368 | if (!BuiltinVaListDecl) { |
| 8369 | BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); |
| 8370 | assert(BuiltinVaListDecl->isImplicit())((void)0); |
| 8371 | } |
| 8372 | |
| 8373 | return BuiltinVaListDecl; |
| 8374 | } |
| 8375 | |
| 8376 | Decl *ASTContext::getVaListTagDecl() const { |
| 8377 | // Force the creation of VaListTagDecl by building the __builtin_va_list |
| 8378 | // declaration. |
| 8379 | if (!VaListTagDecl) |
| 8380 | (void)getBuiltinVaListDecl(); |
| 8381 | |
| 8382 | return VaListTagDecl; |
| 8383 | } |
| 8384 | |
| 8385 | TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { |
| 8386 | if (!BuiltinMSVaListDecl) |
| 8387 | BuiltinMSVaListDecl = CreateMSVaListDecl(this); |
| 8388 | |
| 8389 | return BuiltinMSVaListDecl; |
| 8390 | } |
| 8391 | |
| 8392 | bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { |
| 8393 | return BuiltinInfo.canBeRedeclared(FD->getBuiltinID()); |
| 8394 | } |
| 8395 | |
| 8396 | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { |
| 8397 | assert(ObjCConstantStringType.isNull() &&((void)0) |
| 8398 | "'NSConstantString' type already set!")((void)0); |
| 8399 | |
| 8400 | ObjCConstantStringType = getObjCInterfaceType(Decl); |
| 8401 | } |
| 8402 | |
| 8403 | /// Retrieve the template name that corresponds to a non-empty |
| 8404 | /// lookup. |
| 8405 | TemplateName |
| 8406 | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, |
| 8407 | UnresolvedSetIterator End) const { |
| 8408 | unsigned size = End - Begin; |
| 8409 | assert(size > 1 && "set is not overloaded!")((void)0); |
| 8410 | |
| 8411 | void *memory = Allocate(sizeof(OverloadedTemplateStorage) + |
| 8412 | size * sizeof(FunctionTemplateDecl*)); |
| 8413 | auto *OT = new (memory) OverloadedTemplateStorage(size); |
| 8414 | |
| 8415 | NamedDecl **Storage = OT->getStorage(); |
| 8416 | for (UnresolvedSetIterator I = Begin; I != End; ++I) { |
| 8417 | NamedDecl *D = *I; |
| 8418 | assert(isa<FunctionTemplateDecl>(D) ||((void)0) |
| 8419 | isa<UnresolvedUsingValueDecl>(D) ||((void)0) |
| 8420 | (isa<UsingShadowDecl>(D) &&((void)0) |
| 8421 | isa<FunctionTemplateDecl>(D->getUnderlyingDecl())))((void)0); |
| 8422 | *Storage++ = D; |
| 8423 | } |
| 8424 | |
| 8425 | return TemplateName(OT); |
| 8426 | } |
| 8427 | |
| 8428 | /// Retrieve a template name representing an unqualified-id that has been |
| 8429 | /// assumed to name a template for ADL purposes. |
| 8430 | TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { |
| 8431 | auto *OT = new (*this) AssumedTemplateStorage(Name); |
| 8432 | return TemplateName(OT); |
| 8433 | } |
| 8434 | |
| 8435 | /// Retrieve the template name that represents a qualified |
| 8436 | /// template name such as \c std::vector. |
| 8437 | TemplateName |
| 8438 | ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS, |
| 8439 | bool TemplateKeyword, |
| 8440 | TemplateDecl *Template) const { |
| 8441 | assert(NNS && "Missing nested-name-specifier in qualified template name")((void)0); |
| 8442 | |
| 8443 | // FIXME: Canonicalization? |
| 8444 | llvm::FoldingSetNodeID ID; |
| 8445 | QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template); |
| 8446 | |
| 8447 | void *InsertPos = nullptr; |
| 8448 | QualifiedTemplateName *QTN = |
| 8449 | QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| 8450 | if (!QTN) { |
| 8451 | QTN = new (*this, alignof(QualifiedTemplateName)) |
| 8452 | QualifiedTemplateName(NNS, TemplateKeyword, Template); |
| 8453 | QualifiedTemplateNames.InsertNode(QTN, InsertPos); |
| 8454 | } |
| 8455 | |
| 8456 | return TemplateName(QTN); |
| 8457 | } |
| 8458 | |
| 8459 | /// Retrieve the template name that represents a dependent |
| 8460 | /// template name such as \c MetaFun::template apply. |
| 8461 | TemplateName |
| 8462 | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
| 8463 | const IdentifierInfo *Name) const { |
| 8464 | assert((!NNS || NNS->isDependent()) &&((void)0) |
| 8465 | "Nested name specifier must be dependent")((void)0); |
| 8466 | |
| 8467 | llvm::FoldingSetNodeID ID; |
| 8468 | DependentTemplateName::Profile(ID, NNS, Name); |
| 8469 | |
| 8470 | void *InsertPos = nullptr; |
| 8471 | DependentTemplateName *QTN = |
| 8472 | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| 8473 | |
| 8474 | if (QTN) |
| 8475 | return TemplateName(QTN); |
| 8476 | |
| 8477 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| 8478 | if (CanonNNS == NNS) { |
| 8479 | QTN = new (*this, alignof(DependentTemplateName)) |
| 8480 | DependentTemplateName(NNS, Name); |
| 8481 | } else { |
| 8482 | TemplateName Canon = getDependentTemplateName(CanonNNS, Name); |
| 8483 | QTN = new (*this, alignof(DependentTemplateName)) |
| 8484 | DependentTemplateName(NNS, Name, Canon); |
| 8485 | DependentTemplateName *CheckQTN = |
| 8486 | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| 8487 | assert(!CheckQTN && "Dependent type name canonicalization broken")((void)0); |
| 8488 | (void)CheckQTN; |
| 8489 | } |
| 8490 | |
| 8491 | DependentTemplateNames.InsertNode(QTN, InsertPos); |
| 8492 | return TemplateName(QTN); |
| 8493 | } |
| 8494 | |
| 8495 | /// Retrieve the template name that represents a dependent |
| 8496 | /// template name such as \c MetaFun::template operator+. |
| 8497 | TemplateName |
| 8498 | ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS, |
| 8499 | OverloadedOperatorKind Operator) const { |
| 8500 | assert((!NNS || NNS->isDependent()) &&((void)0) |
| 8501 | "Nested name specifier must be dependent")((void)0); |
| 8502 | |
| 8503 | llvm::FoldingSetNodeID ID; |
| 8504 | DependentTemplateName::Profile(ID, NNS, Operator); |
| 8505 | |
| 8506 | void *InsertPos = nullptr; |
| 8507 | DependentTemplateName *QTN |
| 8508 | = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| 8509 | |
| 8510 | if (QTN) |
| 8511 | return TemplateName(QTN); |
| 8512 | |
| 8513 | NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS); |
| 8514 | if (CanonNNS == NNS) { |
| 8515 | QTN = new (*this, alignof(DependentTemplateName)) |
| 8516 | DependentTemplateName(NNS, Operator); |
| 8517 | } else { |
| 8518 | TemplateName Canon = getDependentTemplateName(CanonNNS, Operator); |
| 8519 | QTN = new (*this, alignof(DependentTemplateName)) |
| 8520 | DependentTemplateName(NNS, Operator, Canon); |
| 8521 | |
| 8522 | DependentTemplateName *CheckQTN |
| 8523 | = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos); |
| 8524 | assert(!CheckQTN && "Dependent template name canonicalization broken")((void)0); |
| 8525 | (void)CheckQTN; |
| 8526 | } |
| 8527 | |
| 8528 | DependentTemplateNames.InsertNode(QTN, InsertPos); |
| 8529 | return TemplateName(QTN); |
| 8530 | } |
| 8531 | |
| 8532 | TemplateName |
| 8533 | ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param, |
| 8534 | TemplateName replacement) const { |
| 8535 | llvm::FoldingSetNodeID ID; |
| 8536 | SubstTemplateTemplateParmStorage::Profile(ID, param, replacement); |
| 8537 | |
| 8538 | void *insertPos = nullptr; |
| 8539 | SubstTemplateTemplateParmStorage *subst |
| 8540 | = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); |
| 8541 | |
| 8542 | if (!subst) { |
| 8543 | subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement); |
| 8544 | SubstTemplateTemplateParms.InsertNode(subst, insertPos); |
| 8545 | } |
| 8546 | |
| 8547 | return TemplateName(subst); |
| 8548 | } |
| 8549 | |
| 8550 | TemplateName |
| 8551 | ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param, |
| 8552 | const TemplateArgument &ArgPack) const { |
| 8553 | auto &Self = const_cast<ASTContext &>(*this); |
| 8554 | llvm::FoldingSetNodeID ID; |
| 8555 | SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack); |
| 8556 | |
| 8557 | void *InsertPos = nullptr; |
| 8558 | SubstTemplateTemplateParmPackStorage *Subst |
| 8559 | = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); |
| 8560 | |
| 8561 | if (!Subst) { |
| 8562 | Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param, |
| 8563 | ArgPack.pack_size(), |
| 8564 | ArgPack.pack_begin()); |
| 8565 | SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); |
| 8566 | } |
| 8567 | |
| 8568 | return TemplateName(Subst); |
| 8569 | } |
| 8570 | |
| 8571 | /// getFromTargetType - Given one of the integer types provided by |
| 8572 | /// TargetInfo, produce the corresponding type. The unsigned @p Type |
| 8573 | /// is actually a value of type @c TargetInfo::IntType. |
| 8574 | CanQualType ASTContext::getFromTargetType(unsigned Type) const { |
| 8575 | switch (Type) { |
| 8576 | case TargetInfo::NoInt: return {}; |
| 8577 | case TargetInfo::SignedChar: return SignedCharTy; |
| 8578 | case TargetInfo::UnsignedChar: return UnsignedCharTy; |
| 8579 | case TargetInfo::SignedShort: return ShortTy; |
| 8580 | case TargetInfo::UnsignedShort: return UnsignedShortTy; |
| 8581 | case TargetInfo::SignedInt: return IntTy; |
| 8582 | case TargetInfo::UnsignedInt: return UnsignedIntTy; |
| 8583 | case TargetInfo::SignedLong: return LongTy; |
| 8584 | case TargetInfo::UnsignedLong: return UnsignedLongTy; |
| 8585 | case TargetInfo::SignedLongLong: return LongLongTy; |
| 8586 | case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; |
| 8587 | } |
| 8588 | |
| 8589 | llvm_unreachable("Unhandled TargetInfo::IntType value")__builtin_unreachable(); |
| 8590 | } |
| 8591 | |
| 8592 | //===----------------------------------------------------------------------===// |
| 8593 | // Type Predicates. |
| 8594 | //===----------------------------------------------------------------------===// |
| 8595 | |
| 8596 | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's |
| 8597 | /// garbage collection attribute. |
| 8598 | /// |
| 8599 | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { |
| 8600 | if (getLangOpts().getGC() == LangOptions::NonGC) |
| 8601 | return Qualifiers::GCNone; |
| 8602 | |
| 8603 | assert(getLangOpts().ObjC)((void)0); |
| 8604 | Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); |
| 8605 | |
| 8606 | // Default behaviour under objective-C's gc is for ObjC pointers |
| 8607 | // (or pointers to them) be treated as though they were declared |
| 8608 | // as __strong. |
| 8609 | if (GCAttrs == Qualifiers::GCNone) { |
| 8610 | if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) |
| 8611 | return Qualifiers::Strong; |
| 8612 | else if (Ty->isPointerType()) |
| 8613 | return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType()); |
| 8614 | } else { |
| 8615 | // It's not valid to set GC attributes on anything that isn't a |
| 8616 | // pointer. |
| 8617 | #ifndef NDEBUG1 |
| 8618 | QualType CT = Ty->getCanonicalTypeInternal(); |
| 8619 | while (const auto *AT = dyn_cast<ArrayType>(CT)) |
| 8620 | CT = AT->getElementType(); |
| 8621 | assert(CT->isAnyPointerType() || CT->isBlockPointerType())((void)0); |
| 8622 | #endif |
| 8623 | } |
| 8624 | return GCAttrs; |
| 8625 | } |
| 8626 | |
| 8627 | //===----------------------------------------------------------------------===// |
| 8628 | // Type Compatibility Testing |
| 8629 | //===----------------------------------------------------------------------===// |
| 8630 | |
| 8631 | /// areCompatVectorTypes - Return true if the two specified vector types are |
| 8632 | /// compatible. |
| 8633 | static bool areCompatVectorTypes(const VectorType *LHS, |
| 8634 | const VectorType *RHS) { |
| 8635 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified())((void)0); |
| 8636 | return LHS->getElementType() == RHS->getElementType() && |
| 8637 | LHS->getNumElements() == RHS->getNumElements(); |
| 8638 | } |
| 8639 | |
| 8640 | /// areCompatMatrixTypes - Return true if the two specified matrix types are |
| 8641 | /// compatible. |
| 8642 | static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, |
| 8643 | const ConstantMatrixType *RHS) { |
| 8644 | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified())((void)0); |
| 8645 | return LHS->getElementType() == RHS->getElementType() && |
| 8646 | LHS->getNumRows() == RHS->getNumRows() && |
| 8647 | LHS->getNumColumns() == RHS->getNumColumns(); |
| 8648 | } |
| 8649 | |
| 8650 | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, |
| 8651 | QualType SecondVec) { |
| 8652 | assert(FirstVec->isVectorType() && "FirstVec should be a vector type")((void)0); |
| 8653 | assert(SecondVec->isVectorType() && "SecondVec should be a vector type")((void)0); |
| 8654 | |
| 8655 | if (hasSameUnqualifiedType(FirstVec, SecondVec)) |
| 8656 | return true; |
| 8657 | |
| 8658 | // Treat Neon vector types and most AltiVec vector types as if they are the |
| 8659 | // equivalent GCC vector types. |
| 8660 | const auto *First = FirstVec->castAs<VectorType>(); |
| 8661 | const auto *Second = SecondVec->castAs<VectorType>(); |
| 8662 | if (First->getNumElements() == Second->getNumElements() && |
| 8663 | hasSameType(First->getElementType(), Second->getElementType()) && |
| 8664 | First->getVectorKind() != VectorType::AltiVecPixel && |
| 8665 | First->getVectorKind() != VectorType::AltiVecBool && |
| 8666 | Second->getVectorKind() != VectorType::AltiVecPixel && |
| 8667 | Second->getVectorKind() != VectorType::AltiVecBool && |
| 8668 | First->getVectorKind() != VectorType::SveFixedLengthDataVector && |
| 8669 | First->getVectorKind() != VectorType::SveFixedLengthPredicateVector && |
| 8670 | Second->getVectorKind() != VectorType::SveFixedLengthDataVector && |
| 8671 | Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector) |
| 8672 | return true; |
| 8673 | |
| 8674 | return false; |
| 8675 | } |
| 8676 | |
| 8677 | /// getSVETypeSize - Return SVE vector or predicate register size. |
| 8678 | static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) { |
| 8679 | assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type")((void)0); |
| 8680 | return Ty->getKind() == BuiltinType::SveBool |
| 8681 | ? Context.getLangOpts().ArmSveVectorBits / Context.getCharWidth() |
| 8682 | : Context.getLangOpts().ArmSveVectorBits; |
| 8683 | } |
| 8684 | |
| 8685 | bool ASTContext::areCompatibleSveTypes(QualType FirstType, |
| 8686 | QualType SecondType) { |
| 8687 | assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||((void)0) |
| 8688 | (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&((void)0) |
| 8689 | "Expected SVE builtin type and vector type!")((void)0); |
| 8690 | |
| 8691 | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { |
| 8692 | if (const auto *BT = FirstType->getAs<BuiltinType>()) { |
| 8693 | if (const auto *VT = SecondType->getAs<VectorType>()) { |
| 8694 | // Predicates have the same representation as uint8 so we also have to |
| 8695 | // check the kind to make these types incompatible. |
| 8696 | if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector) |
| 8697 | return BT->getKind() == BuiltinType::SveBool; |
| 8698 | else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector) |
| 8699 | return VT->getElementType().getCanonicalType() == |
| 8700 | FirstType->getSveEltType(*this); |
| 8701 | else if (VT->getVectorKind() == VectorType::GenericVector) |
| 8702 | return getTypeSize(SecondType) == getSVETypeSize(*this, BT) && |
| 8703 | hasSameType(VT->getElementType(), |
| 8704 | getBuiltinVectorTypeInfo(BT).ElementType); |
| 8705 | } |
| 8706 | } |
| 8707 | return false; |
| 8708 | }; |
| 8709 | |
| 8710 | return IsValidCast(FirstType, SecondType) || |
| 8711 | IsValidCast(SecondType, FirstType); |
| 8712 | } |
| 8713 | |
| 8714 | bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType, |
| 8715 | QualType SecondType) { |
| 8716 | assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||((void)0) |
| 8717 | (FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&((void)0) |
| 8718 | "Expected SVE builtin type and vector type!")((void)0); |
| 8719 | |
| 8720 | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { |
| 8721 | const auto *BT = FirstType->getAs<BuiltinType>(); |
| 8722 | if (!BT) |
| 8723 | return false; |
| 8724 | |
| 8725 | const auto *VecTy = SecondType->getAs<VectorType>(); |
| 8726 | if (VecTy && |
| 8727 | (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector || |
| 8728 | VecTy->getVectorKind() == VectorType::GenericVector)) { |
| 8729 | const LangOptions::LaxVectorConversionKind LVCKind = |
| 8730 | getLangOpts().getLaxVectorConversions(); |
| 8731 | |
| 8732 | // Can not convert between sve predicates and sve vectors because of |
| 8733 | // different size. |
| 8734 | if (BT->getKind() == BuiltinType::SveBool && |
| 8735 | VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector) |
| 8736 | return false; |
| 8737 | |
| 8738 | // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion. |
| 8739 | // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly |
| 8740 | // converts to VLAT and VLAT implicitly converts to GNUT." |
| 8741 | // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and |
| 8742 | // predicates. |
| 8743 | if (VecTy->getVectorKind() == VectorType::GenericVector && |
| 8744 | getTypeSize(SecondType) != getSVETypeSize(*this, BT)) |
| 8745 | return false; |
| 8746 | |
| 8747 | // If -flax-vector-conversions=all is specified, the types are |
| 8748 | // certainly compatible. |
| 8749 | if (LVCKind == LangOptions::LaxVectorConversionKind::All) |
| 8750 | return true; |
| 8751 | |
| 8752 | // If -flax-vector-conversions=integer is specified, the types are |
| 8753 | // compatible if the elements are integer types. |
| 8754 | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) |
| 8755 | return VecTy->getElementType().getCanonicalType()->isIntegerType() && |
| 8756 | FirstType->getSveEltType(*this)->isIntegerType(); |
| 8757 | } |
| 8758 | |
| 8759 | return false; |
| 8760 | }; |
| 8761 | |
| 8762 | return IsLaxCompatible(FirstType, SecondType) || |
| 8763 | IsLaxCompatible(SecondType, FirstType); |
| 8764 | } |
| 8765 | |
| 8766 | bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { |
| 8767 | while (true) { |
| 8768 | // __strong id |
| 8769 | if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) { |
| 8770 | if (Attr->getAttrKind() == attr::ObjCOwnership) |
| 8771 | return true; |
| 8772 | |
| 8773 | Ty = Attr->getModifiedType(); |
| 8774 | |
| 8775 | // X *__strong (...) |
| 8776 | } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) { |
| 8777 | Ty = Paren->getInnerType(); |
| 8778 | |
| 8779 | // We do not want to look through typedefs, typeof(expr), |
| 8780 | // typeof(type), or any other way that the type is somehow |
| 8781 | // abstracted. |
| 8782 | } else { |
| 8783 | return false; |
| 8784 | } |
| 8785 | } |
| 8786 | } |
| 8787 | |
| 8788 | //===----------------------------------------------------------------------===// |
| 8789 | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. |
| 8790 | //===----------------------------------------------------------------------===// |
| 8791 | |
| 8792 | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the |
| 8793 | /// inheritance hierarchy of 'rProto'. |
| 8794 | bool |
| 8795 | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, |
| 8796 | ObjCProtocolDecl *rProto) const { |
| 8797 | if (declaresSameEntity(lProto, rProto)) |
| 8798 | return true; |
| 8799 | for (auto *PI : rProto->protocols()) |
| 8800 | if (ProtocolCompatibleWithProtocol(lProto, PI)) |
| 8801 | return true; |
| 8802 | return false; |
| 8803 | } |
| 8804 | |
| 8805 | /// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and |
| 8806 | /// Class<pr1, ...>. |
| 8807 | bool ASTContext::ObjCQualifiedClassTypesAreCompatible( |
| 8808 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { |
| 8809 | for (auto *lhsProto : lhs->quals()) { |
| 8810 | bool match = false; |
| 8811 | for (auto *rhsProto : rhs->quals()) { |
| 8812 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { |
| 8813 | match = true; |
| 8814 | break; |
| 8815 | } |
| 8816 | } |
| 8817 | if (!match) |
| 8818 | return false; |
| 8819 | } |
| 8820 | return true; |
| 8821 | } |
| 8822 | |
| 8823 | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an |
| 8824 | /// ObjCQualifiedIDType. |
| 8825 | bool ASTContext::ObjCQualifiedIdTypesAreCompatible( |
| 8826 | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, |
| 8827 | bool compare) { |
| 8828 | // Allow id<P..> and an 'id' in all cases. |
| 8829 | if (lhs->isObjCIdType() || rhs->isObjCIdType()) |
| 8830 | return true; |
| 8831 | |
| 8832 | // Don't allow id<P..> to convert to Class or Class<P..> in either direction. |
| 8833 | if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || |
| 8834 | rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) |
| 8835 | return false; |
| 8836 | |
| 8837 | if (lhs->isObjCQualifiedIdType()) { |
| 8838 | if (rhs->qual_empty()) { |
| 8839 | // If the RHS is a unqualified interface pointer "NSString*", |
| 8840 | // make sure we check the class hierarchy. |
| 8841 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
| 8842 | for (auto *I : lhs->quals()) { |
| 8843 | // when comparing an id<P> on lhs with a static type on rhs, |
| 8844 | // see if static class implements all of id's protocols, directly or |
| 8845 | // through its super class and categories. |
| 8846 | if (!rhsID->ClassImplementsProtocol(I, true)) |
| 8847 | return false; |
| 8848 | } |
| 8849 | } |
| 8850 | // If there are no qualifiers and no interface, we have an 'id'. |
| 8851 | return true; |
| 8852 | } |
| 8853 | // Both the right and left sides have qualifiers. |
| 8854 | for (auto *lhsProto : lhs->quals()) { |
| 8855 | bool match = false; |
| 8856 | |
| 8857 | // when comparing an id<P> on lhs with a static type on rhs, |
| 8858 | // see if static class implements all of id's protocols, directly or |
| 8859 | // through its super class and categories. |
| 8860 | for (auto *rhsProto : rhs->quals()) { |
| 8861 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| 8862 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| 8863 | match = true; |
| 8864 | break; |
| 8865 | } |
| 8866 | } |
| 8867 | // If the RHS is a qualified interface pointer "NSString<P>*", |
| 8868 | // make sure we check the class hierarchy. |
| 8869 | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { |
| 8870 | for (auto *I : lhs->quals()) { |
| 8871 | // when comparing an id<P> on lhs with a static type on rhs, |
| 8872 | // see if static class implements all of id's protocols, directly or |
| 8873 | // through its super class and categories. |
| 8874 | if (rhsID->ClassImplementsProtocol(I, true)) { |
| 8875 | match = true; |
| 8876 | break; |
| 8877 | } |
| 8878 | } |
| 8879 | } |
| 8880 | if (!match) |
| 8881 | return false; |
| 8882 | } |
| 8883 | |
| 8884 | return true; |
| 8885 | } |
| 8886 | |
| 8887 | assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>")((void)0); |
| 8888 | |
| 8889 | if (lhs->getInterfaceType()) { |
| 8890 | // If both the right and left sides have qualifiers. |
| 8891 | for (auto *lhsProto : lhs->quals()) { |
| 8892 | bool match = false; |
| 8893 | |
| 8894 | // when comparing an id<P> on rhs with a static type on lhs, |
| 8895 | // see if static class implements all of id's protocols, directly or |
| 8896 | // through its super class and categories. |
| 8897 | // First, lhs protocols in the qualifier list must be found, direct |
| 8898 | // or indirect in rhs's qualifier list or it is a mismatch. |
| 8899 | for (auto *rhsProto : rhs->quals()) { |
| 8900 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| 8901 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| 8902 | match = true; |
| 8903 | break; |
| 8904 | } |
| 8905 | } |
| 8906 | if (!match) |
| 8907 | return false; |
| 8908 | } |
| 8909 | |
| 8910 | // Static class's protocols, or its super class or category protocols |
| 8911 | // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. |
| 8912 | if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { |
| 8913 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; |
| 8914 | CollectInheritedProtocols(lhsID, LHSInheritedProtocols); |
| 8915 | // This is rather dubious but matches gcc's behavior. If lhs has |
| 8916 | // no type qualifier and its class has no static protocol(s) |
| 8917 | // assume that it is mismatch. |
| 8918 | if (LHSInheritedProtocols.empty() && lhs->qual_empty()) |
| 8919 | return false; |
| 8920 | for (auto *lhsProto : LHSInheritedProtocols) { |
| 8921 | bool match = false; |
| 8922 | for (auto *rhsProto : rhs->quals()) { |
| 8923 | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || |
| 8924 | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { |
| 8925 | match = true; |
| 8926 | break; |
| 8927 | } |
| 8928 | } |
| 8929 | if (!match) |
| 8930 | return false; |
| 8931 | } |
| 8932 | } |
| 8933 | return true; |
| 8934 | } |
| 8935 | return false; |
| 8936 | } |
| 8937 | |
| 8938 | /// canAssignObjCInterfaces - Return true if the two interface types are |
| 8939 | /// compatible for assignment from RHS to LHS. This handles validation of any |
| 8940 | /// protocol qualifiers on the LHS or RHS. |
| 8941 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, |
| 8942 | const ObjCObjectPointerType *RHSOPT) { |
| 8943 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
| 8944 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
| 8945 | |
| 8946 | // If either type represents the built-in 'id' type, return true. |
| 8947 | if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) |
| 8948 | return true; |
| 8949 | |
| 8950 | // Function object that propagates a successful result or handles |
| 8951 | // __kindof types. |
| 8952 | auto finish = [&](bool succeeded) -> bool { |
| 8953 | if (succeeded) |
| 8954 | return true; |
| 8955 | |
| 8956 | if (!RHS->isKindOfType()) |
| 8957 | return false; |
| 8958 | |
| 8959 | // Strip off __kindof and protocol qualifiers, then check whether |
| 8960 | // we can assign the other way. |
| 8961 | return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), |
| 8962 | LHSOPT->stripObjCKindOfTypeAndQuals(*this)); |
| 8963 | }; |
| 8964 | |
| 8965 | // Casts from or to id<P> are allowed when the other side has compatible |
| 8966 | // protocols. |
| 8967 | if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { |
| 8968 | return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false)); |
| 8969 | } |
| 8970 | |
| 8971 | // Verify protocol compatibility for casts from Class<P1> to Class<P2>. |
| 8972 | if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { |
| 8973 | return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT)); |
| 8974 | } |
| 8975 | |
| 8976 | // Casts from Class to Class<Foo>, or vice-versa, are allowed. |
| 8977 | if (LHS->isObjCClass() && RHS->isObjCClass()) { |
| 8978 | return true; |
| 8979 | } |
| 8980 | |
| 8981 | // If we have 2 user-defined types, fall into that path. |
| 8982 | if (LHS->getInterface() && RHS->getInterface()) { |
| 8983 | return finish(canAssignObjCInterfaces(LHS, RHS)); |
| 8984 | } |
| 8985 | |
| 8986 | return false; |
| 8987 | } |
| 8988 | |
| 8989 | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written |
| 8990 | /// for providing type-safety for objective-c pointers used to pass/return |
| 8991 | /// arguments in block literals. When passed as arguments, passing 'A*' where |
| 8992 | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is |
| 8993 | /// not OK. For the return type, the opposite is not OK. |
| 8994 | bool ASTContext::canAssignObjCInterfacesInBlockPointer( |
| 8995 | const ObjCObjectPointerType *LHSOPT, |
| 8996 | const ObjCObjectPointerType *RHSOPT, |
| 8997 | bool BlockReturnType) { |
| 8998 | |
| 8999 | // Function object that propagates a successful result or handles |
| 9000 | // __kindof types. |
| 9001 | auto finish = [&](bool succeeded) -> bool { |
| 9002 | if (succeeded) |
| 9003 | return true; |
| 9004 | |
| 9005 | const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; |
| 9006 | if (!Expected->isKindOfType()) |
| 9007 | return false; |
| 9008 | |
| 9009 | // Strip off __kindof and protocol qualifiers, then check whether |
| 9010 | // we can assign the other way. |
| 9011 | return canAssignObjCInterfacesInBlockPointer( |
| 9012 | RHSOPT->stripObjCKindOfTypeAndQuals(*this), |
| 9013 | LHSOPT->stripObjCKindOfTypeAndQuals(*this), |
| 9014 | BlockReturnType); |
| 9015 | }; |
| 9016 | |
| 9017 | if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) |
| 9018 | return true; |
| 9019 | |
| 9020 | if (LHSOPT->isObjCBuiltinType()) { |
| 9021 | return finish(RHSOPT->isObjCBuiltinType() || |
| 9022 | RHSOPT->isObjCQualifiedIdType()); |
| 9023 | } |
| 9024 | |
| 9025 | if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { |
| 9026 | if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) |
| 9027 | // Use for block parameters previous type checking for compatibility. |
| 9028 | return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) || |
| 9029 | // Or corrected type checking as in non-compat mode. |
| 9030 | (!BlockReturnType && |
| 9031 | ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false))); |
| 9032 | else |
| 9033 | return finish(ObjCQualifiedIdTypesAreCompatible( |
| 9034 | (BlockReturnType ? LHSOPT : RHSOPT), |
| 9035 | (BlockReturnType ? RHSOPT : LHSOPT), false)); |
| 9036 | } |
| 9037 | |
| 9038 | const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); |
| 9039 | const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); |
| 9040 | if (LHS && RHS) { // We have 2 user-defined types. |
| 9041 | if (LHS != RHS) { |
| 9042 | if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) |
| 9043 | return finish(BlockReturnType); |
| 9044 | if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) |
| 9045 | return finish(!BlockReturnType); |
| 9046 | } |
| 9047 | else |
| 9048 | return true; |
| 9049 | } |
| 9050 | return false; |
| 9051 | } |
| 9052 | |
| 9053 | /// Comparison routine for Objective-C protocols to be used with |
| 9054 | /// llvm::array_pod_sort. |
| 9055 | static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, |
| 9056 | ObjCProtocolDecl * const *rhs) { |
| 9057 | return (*lhs)->getName().compare((*rhs)->getName()); |
| 9058 | } |
| 9059 | |
| 9060 | /// getIntersectionOfProtocols - This routine finds the intersection of set |
| 9061 | /// of protocols inherited from two distinct objective-c pointer objects with |
| 9062 | /// the given common base. |
| 9063 | /// It is used to build composite qualifier list of the composite type of |
| 9064 | /// the conditional expression involving two objective-c pointer objects. |
| 9065 | static |
| 9066 | void getIntersectionOfProtocols(ASTContext &Context, |
| 9067 | const ObjCInterfaceDecl *CommonBase, |
| 9068 | const ObjCObjectPointerType *LHSOPT, |
| 9069 | const ObjCObjectPointerType *RHSOPT, |
| 9070 | SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { |
| 9071 | |
| 9072 | const ObjCObjectType* LHS = LHSOPT->getObjectType(); |
| 9073 | const ObjCObjectType* RHS = RHSOPT->getObjectType(); |
| 9074 | assert(LHS->getInterface() && "LHS must have an interface base")((void)0); |
| 9075 | assert(RHS->getInterface() && "RHS must have an interface base")((void)0); |
| 9076 | |
| 9077 | // Add all of the protocols for the LHS. |
| 9078 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; |
| 9079 | |
| 9080 | // Start with the protocol qualifiers. |
| 9081 | for (auto proto : LHS->quals()) { |
| 9082 | Context.CollectInheritedProtocols(proto, LHSProtocolSet); |
| 9083 | } |
| 9084 | |
| 9085 | // Also add the protocols associated with the LHS interface. |
| 9086 | Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); |
| 9087 | |
| 9088 | // Add all of the protocols for the RHS. |
| 9089 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; |
| 9090 | |
| 9091 | // Start with the protocol qualifiers. |
| 9092 | for (auto proto : RHS->quals()) { |
| 9093 | Context.CollectInheritedProtocols(proto, RHSProtocolSet); |
| 9094 | } |
| 9095 | |
| 9096 | // Also add the protocols associated with the RHS interface. |
| 9097 | Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); |
| 9098 | |
| 9099 | // Compute the intersection of the collected protocol sets. |
| 9100 | for (auto proto : LHSProtocolSet) { |
| 9101 | if (RHSProtocolSet.count(proto)) |
| 9102 | IntersectionSet.push_back(proto); |
| 9103 | } |
| 9104 | |
| 9105 | // Compute the set of protocols that is implied by either the common type or |
| 9106 | // the protocols within the intersection. |
| 9107 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; |
| 9108 | Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); |
| 9109 | |
| 9110 | // Remove any implied protocols from the list of inherited protocols. |
| 9111 | if (!ImpliedProtocols.empty()) { |
| 9112 | IntersectionSet.erase( |
| 9113 | std::remove_if(IntersectionSet.begin(), |
| 9114 | IntersectionSet.end(), |
| 9115 | [&](ObjCProtocolDecl *proto) -> bool { |
| 9116 | return ImpliedProtocols.count(proto) > 0; |
| 9117 | }), |
| 9118 | IntersectionSet.end()); |
| 9119 | } |
| 9120 | |
| 9121 | // Sort the remaining protocols by name. |
| 9122 | llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), |
| 9123 | compareObjCProtocolsByName); |
| 9124 | } |
| 9125 | |
| 9126 | /// Determine whether the first type is a subtype of the second. |
| 9127 | static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, |
| 9128 | QualType rhs) { |
| 9129 | // Common case: two object pointers. |
| 9130 | const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); |
| 9131 | const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); |
| 9132 | if (lhsOPT && rhsOPT) |
| 9133 | return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); |
| 9134 | |
| 9135 | // Two block pointers. |
| 9136 | const auto *lhsBlock = lhs->getAs<BlockPointerType>(); |
| 9137 | const auto *rhsBlock = rhs->getAs<BlockPointerType>(); |
| 9138 | if (lhsBlock && rhsBlock) |
| 9139 | return ctx.typesAreBlockPointerCompatible(lhs, rhs); |
| 9140 | |
| 9141 | // If either is an unqualified 'id' and the other is a block, it's |
| 9142 | // acceptable. |
| 9143 | if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || |
| 9144 | (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) |
| 9145 | return true; |
| 9146 | |
| 9147 | return false; |
| 9148 | } |
| 9149 | |
| 9150 | // Check that the given Objective-C type argument lists are equivalent. |
| 9151 | static bool sameObjCTypeArgs(ASTContext &ctx, |
| 9152 | const ObjCInterfaceDecl *iface, |
| 9153 | ArrayRef<QualType> lhsArgs, |
| 9154 | ArrayRef<QualType> rhsArgs, |
| 9155 | bool stripKindOf) { |
| 9156 | if (lhsArgs.size() != rhsArgs.size()) |
| 9157 | return false; |
| 9158 | |
| 9159 | ObjCTypeParamList *typeParams = iface->getTypeParamList(); |
| 9160 | for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { |
| 9161 | if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) |
| 9162 | continue; |
| 9163 | |
| 9164 | switch (typeParams->begin()[i]->getVariance()) { |
| 9165 | case ObjCTypeParamVariance::Invariant: |
| 9166 | if (!stripKindOf || |
| 9167 | !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), |
| 9168 | rhsArgs[i].stripObjCKindOfType(ctx))) { |
| 9169 | return false; |
| 9170 | } |
| 9171 | break; |
| 9172 | |
| 9173 | case ObjCTypeParamVariance::Covariant: |
| 9174 | if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) |
| 9175 | return false; |
| 9176 | break; |
| 9177 | |
| 9178 | case ObjCTypeParamVariance::Contravariant: |
| 9179 | if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) |
| 9180 | return false; |
| 9181 | break; |
| 9182 | } |
| 9183 | } |
| 9184 | |
| 9185 | return true; |
| 9186 | } |
| 9187 | |
| 9188 | QualType ASTContext::areCommonBaseCompatible( |
| 9189 | const ObjCObjectPointerType *Lptr, |
| 9190 | const ObjCObjectPointerType *Rptr) { |
| 9191 | const ObjCObjectType *LHS = Lptr->getObjectType(); |
| 9192 | const ObjCObjectType *RHS = Rptr->getObjectType(); |
| 9193 | const ObjCInterfaceDecl* LDecl = LHS->getInterface(); |
| 9194 | const ObjCInterfaceDecl* RDecl = RHS->getInterface(); |
| 9195 | |
| 9196 | if (!LDecl || !RDecl) |
| 9197 | return {}; |
| 9198 | |
| 9199 | // When either LHS or RHS is a kindof type, we should return a kindof type. |
| 9200 | // For example, for common base of kindof(ASub1) and kindof(ASub2), we return |
| 9201 | // kindof(A). |
| 9202 | bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); |
| 9203 | |
| 9204 | // Follow the left-hand side up the class hierarchy until we either hit a |
| 9205 | // root or find the RHS. Record the ancestors in case we don't find it. |
| 9206 | llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> |
| 9207 | LHSAncestors; |
| 9208 | while (true) { |
| 9209 | // Record this ancestor. We'll need this if the common type isn't in the |
| 9210 | // path from the LHS to the root. |
| 9211 | LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; |
| 9212 | |
| 9213 | if (declaresSameEntity(LHS->getInterface(), RDecl)) { |
| 9214 | // Get the type arguments. |
| 9215 | ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); |
| 9216 | bool anyChanges = false; |
| 9217 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
| 9218 | // Both have type arguments, compare them. |
| 9219 | if (!sameObjCTypeArgs(*this, LHS->getInterface(), |
| 9220 | LHS->getTypeArgs(), RHS->getTypeArgs(), |
| 9221 | /*stripKindOf=*/true)) |
| 9222 | return {}; |
| 9223 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
| 9224 | // If only one has type arguments, the result will not have type |
| 9225 | // arguments. |
| 9226 | LHSTypeArgs = {}; |
| 9227 | anyChanges = true; |
| 9228 | } |
| 9229 | |
| 9230 | // Compute the intersection of protocols. |
| 9231 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
| 9232 | getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, |
| 9233 | Protocols); |
| 9234 | if (!Protocols.empty()) |
| 9235 | anyChanges = true; |
| 9236 | |
| 9237 | // If anything in the LHS will have changed, build a new result type. |
| 9238 | // If we need to return a kindof type but LHS is not a kindof type, we |
| 9239 | // build a new result type. |
| 9240 | if (anyChanges || LHS->isKindOfType() != anyKindOf) { |
| 9241 | QualType Result = getObjCInterfaceType(LHS->getInterface()); |
| 9242 | Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, |
| 9243 | anyKindOf || LHS->isKindOfType()); |
| 9244 | return getObjCObjectPointerType(Result); |
| 9245 | } |
| 9246 | |
| 9247 | return getObjCObjectPointerType(QualType(LHS, 0)); |
| 9248 | } |
| 9249 | |
| 9250 | // Find the superclass. |
| 9251 | QualType LHSSuperType = LHS->getSuperClassType(); |
| 9252 | if (LHSSuperType.isNull()) |
| 9253 | break; |
| 9254 | |
| 9255 | LHS = LHSSuperType->castAs<ObjCObjectType>(); |
| 9256 | } |
| 9257 | |
| 9258 | // We didn't find anything by following the LHS to its root; now check |
| 9259 | // the RHS against the cached set of ancestors. |
| 9260 | while (true) { |
| 9261 | auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); |
| 9262 | if (KnownLHS != LHSAncestors.end()) { |
| 9263 | LHS = KnownLHS->second; |
| 9264 | |
| 9265 | // Get the type arguments. |
| 9266 | ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); |
| 9267 | bool anyChanges = false; |
| 9268 | if (LHS->isSpecialized() && RHS->isSpecialized()) { |
| 9269 | // Both have type arguments, compare them. |
| 9270 | if (!sameObjCTypeArgs(*this, LHS->getInterface(), |
| 9271 | LHS->getTypeArgs(), RHS->getTypeArgs(), |
| 9272 | /*stripKindOf=*/true)) |
| 9273 | return {}; |
| 9274 | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { |
| 9275 | // If only one has type arguments, the result will not have type |
| 9276 | // arguments. |
| 9277 | RHSTypeArgs = {}; |
| 9278 | anyChanges = true; |
| 9279 | } |
| 9280 | |
| 9281 | // Compute the intersection of protocols. |
| 9282 | SmallVector<ObjCProtocolDecl *, 8> Protocols; |
| 9283 | getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, |
| 9284 | Protocols); |
| 9285 | if (!Protocols.empty()) |
| 9286 | anyChanges = true; |
| 9287 | |
| 9288 | // If we need to return a kindof type but RHS is not a kindof type, we |
| 9289 | // build a new result type. |
| 9290 | if (anyChanges || RHS->isKindOfType() != anyKindOf) { |
| 9291 | QualType Result = getObjCInterfaceType(RHS->getInterface()); |
| 9292 | Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, |
| 9293 | anyKindOf || RHS->isKindOfType()); |
| 9294 | return getObjCObjectPointerType(Result); |
| 9295 | } |
| 9296 | |
| 9297 | return getObjCObjectPointerType(QualType(RHS, 0)); |
| 9298 | } |
| 9299 | |
| 9300 | // Find the superclass of the RHS. |
| 9301 | QualType RHSSuperType = RHS->getSuperClassType(); |
| 9302 | if (RHSSuperType.isNull()) |
| 9303 | break; |
| 9304 | |
| 9305 | RHS = RHSSuperType->castAs<ObjCObjectType>(); |
| 9306 | } |
| 9307 | |
| 9308 | return {}; |
| 9309 | } |
| 9310 | |
| 9311 | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, |
| 9312 | const ObjCObjectType *RHS) { |
| 9313 | assert(LHS->getInterface() && "LHS is not an interface type")((void)0); |
| 9314 | assert(RHS->getInterface() && "RHS is not an interface type")((void)0); |
| 9315 | |
| 9316 | // Verify that the base decls are compatible: the RHS must be a subclass of |
| 9317 | // the LHS. |
| 9318 | ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); |
| 9319 | bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); |
| 9320 | if (!IsSuperClass) |
| 9321 | return false; |
| 9322 | |
| 9323 | // If the LHS has protocol qualifiers, determine whether all of them are |
| 9324 | // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the |
| 9325 | // LHS). |
| 9326 | if (LHS->getNumProtocols() > 0) { |
| 9327 | // OK if conversion of LHS to SuperClass results in narrowing of types |
| 9328 | // ; i.e., SuperClass may implement at least one of the protocols |
| 9329 | // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. |
| 9330 | // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. |
| 9331 | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; |
| 9332 | CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); |
| 9333 | // Also, if RHS has explicit quelifiers, include them for comparing with LHS's |
| 9334 | // qualifiers. |
| 9335 | for (auto *RHSPI : RHS->quals()) |
| 9336 | CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); |
| 9337 | // If there is no protocols associated with RHS, it is not a match. |
| 9338 | if (SuperClassInheritedProtocols.empty()) |
| 9339 | return false; |
| 9340 | |
| 9341 | for (const auto *LHSProto : LHS->quals()) { |
| 9342 | bool SuperImplementsProtocol = false; |
| 9343 | for (auto *SuperClassProto : SuperClassInheritedProtocols) |
| 9344 | if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { |
| 9345 | SuperImplementsProtocol = true; |
| 9346 | break; |
| 9347 | } |
| 9348 | if (!SuperImplementsProtocol) |
| 9349 | return false; |
| 9350 | } |
| 9351 | } |
| 9352 | |
| 9353 | // If the LHS is specialized, we may need to check type arguments. |
| 9354 | if (LHS->isSpecialized()) { |
| 9355 | // Follow the superclass chain until we've matched the LHS class in the |
| 9356 | // hierarchy. This substitutes type arguments through. |
| 9357 | const ObjCObjectType *RHSSuper = RHS; |
| 9358 | while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) |
| 9359 | RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); |
| 9360 | |
| 9361 | // If the RHS is specializd, compare type arguments. |
| 9362 | if (RHSSuper->isSpecialized() && |
| 9363 | !sameObjCTypeArgs(*this, LHS->getInterface(), |
| 9364 | LHS->getTypeArgs(), RHSSuper->getTypeArgs(), |
| 9365 | /*stripKindOf=*/true)) { |
| 9366 | return false; |
| 9367 | } |
| 9368 | } |
| 9369 | |
| 9370 | return true; |
| 9371 | } |
| 9372 | |
| 9373 | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { |
| 9374 | // get the "pointed to" types |
| 9375 | const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); |
| 9376 | const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); |
| 9377 | |
| 9378 | if (!LHSOPT || !RHSOPT) |
| 9379 | return false; |
| 9380 | |
| 9381 | return canAssignObjCInterfaces(LHSOPT, RHSOPT) || |
| 9382 | canAssignObjCInterfaces(RHSOPT, LHSOPT); |
| 9383 | } |
| 9384 | |
| 9385 | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { |
| 9386 | return canAssignObjCInterfaces( |
| 9387 | getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(), |
| 9388 | getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>()); |
| 9389 | } |
| 9390 | |
| 9391 | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, |
| 9392 | /// both shall have the identically qualified version of a compatible type. |
| 9393 | /// C99 6.2.7p1: Two types have compatible types if their types are the |
| 9394 | /// same. See 6.7.[2,3,5] for additional rules. |
| 9395 | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, |
| 9396 | bool CompareUnqualified) { |
| 9397 | if (getLangOpts().CPlusPlus) |
| 9398 | return hasSameType(LHS, RHS); |
| 9399 | |
| 9400 | return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); |
| 9401 | } |
| 9402 | |
| 9403 | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { |
| 9404 | return typesAreCompatible(LHS, RHS); |
| 9405 | } |
| 9406 | |
| 9407 | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { |
| 9408 | return !mergeTypes(LHS, RHS, true).isNull(); |
| 9409 | } |
| 9410 | |
| 9411 | /// mergeTransparentUnionType - if T is a transparent union type and a member |
| 9412 | /// of T is compatible with SubType, return the merged type, else return |
| 9413 | /// QualType() |
| 9414 | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, |
| 9415 | bool OfBlockPointer, |
| 9416 | bool Unqualified) { |
| 9417 | if (const RecordType *UT = T->getAsUnionType()) { |
| 9418 | RecordDecl *UD = UT->getDecl(); |
| 9419 | if (UD->hasAttr<TransparentUnionAttr>()) { |
| 9420 | for (const auto *I : UD->fields()) { |
| 9421 | QualType ET = I->getType().getUnqualifiedType(); |
| 9422 | QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); |
| 9423 | if (!MT.isNull()) |
| 9424 | return MT; |
| 9425 | } |
| 9426 | } |
| 9427 | } |
| 9428 | |
| 9429 | return {}; |
| 9430 | } |
| 9431 | |
| 9432 | /// mergeFunctionParameterTypes - merge two types which appear as function |
| 9433 | /// parameter types |
| 9434 | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, |
| 9435 | bool OfBlockPointer, |
| 9436 | bool Unqualified) { |
| 9437 | // GNU extension: two types are compatible if they appear as a function |
| 9438 | // argument, one of the types is a transparent union type and the other |
| 9439 | // type is compatible with a union member |
| 9440 | QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, |
| 9441 | Unqualified); |
| 9442 | if (!lmerge.isNull()) |
| 9443 | return lmerge; |
| 9444 | |
| 9445 | QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, |
| 9446 | Unqualified); |
| 9447 | if (!rmerge.isNull()) |
| 9448 | return rmerge; |
| 9449 | |
| 9450 | return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); |
| 9451 | } |
| 9452 | |
| 9453 | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, |
| 9454 | bool OfBlockPointer, bool Unqualified, |
| 9455 | bool AllowCXX) { |
| 9456 | const auto *lbase = lhs->castAs<FunctionType>(); |
| 9457 | const auto *rbase = rhs->castAs<FunctionType>(); |
| 9458 | const auto *lproto = dyn_cast<FunctionProtoType>(lbase); |
| 9459 | const auto *rproto = dyn_cast<FunctionProtoType>(rbase); |
| 9460 | bool allLTypes = true; |
| 9461 | bool allRTypes = true; |
| 9462 | |
| 9463 | // Check return type |
| 9464 | QualType retType; |
| 9465 | if (OfBlockPointer) { |
| 9466 | QualType RHS = rbase->getReturnType(); |
| 9467 | QualType LHS = lbase->getReturnType(); |
| 9468 | bool UnqualifiedResult = Unqualified; |
| 9469 | if (!UnqualifiedResult) |
| 9470 | UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); |
| 9471 | retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); |
| 9472 | } |
| 9473 | else |
| 9474 | retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, |
| 9475 | Unqualified); |
| 9476 | if (retType.isNull()) |
| 9477 | return {}; |
| 9478 | |
| 9479 | if (Unqualified) |
| 9480 | retType = retType.getUnqualifiedType(); |
| 9481 | |
| 9482 | CanQualType LRetType = getCanonicalType(lbase->getReturnType()); |
| 9483 | CanQualType RRetType = getCanonicalType(rbase->getReturnType()); |
| 9484 | if (Unqualified) { |
| 9485 | LRetType = LRetType.getUnqualifiedType(); |
| 9486 | RRetType = RRetType.getUnqualifiedType(); |
| 9487 | } |
| 9488 | |
| 9489 | if (getCanonicalType(retType) != LRetType) |
| 9490 | allLTypes = false; |
| 9491 | if (getCanonicalType(retType) != RRetType) |
| 9492 | allRTypes = false; |
| 9493 | |
| 9494 | // FIXME: double check this |
| 9495 | // FIXME: should we error if lbase->getRegParmAttr() != 0 && |
| 9496 | // rbase->getRegParmAttr() != 0 && |
| 9497 | // lbase->getRegParmAttr() != rbase->getRegParmAttr()? |
| 9498 | FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); |
| 9499 | FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); |
| 9500 | |
| 9501 | // Compatible functions must have compatible calling conventions |
| 9502 | if (lbaseInfo.getCC() != rbaseInfo.getCC()) |
| 9503 | return {}; |
| 9504 | |
| 9505 | // Regparm is part of the calling convention. |
| 9506 | if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) |
| 9507 | return {}; |
| 9508 | if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) |
| 9509 | return {}; |
| 9510 | |
| 9511 | if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) |
| 9512 | return {}; |
| 9513 | if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) |
| 9514 | return {}; |
| 9515 | if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) |
| 9516 | return {}; |
| 9517 | |
| 9518 | // FIXME: some uses, e.g. conditional exprs, really want this to be 'both'. |
| 9519 | bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); |
| 9520 | |
| 9521 | if (lbaseInfo.getNoReturn() != NoReturn) |
| 9522 | allLTypes = false; |
| 9523 | if (rbaseInfo.getNoReturn() != NoReturn) |
| 9524 | allRTypes = false; |
| 9525 | |
| 9526 | FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); |
| 9527 | |
| 9528 | if (lproto && rproto) { // two C99 style function prototypes |
| 9529 | assert((AllowCXX ||((void)0) |
| 9530 | (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&((void)0) |
| 9531 | "C++ shouldn't be here")((void)0); |
| 9532 | // Compatible functions must have the same number of parameters |
| 9533 | if (lproto->getNumParams() != rproto->getNumParams()) |
| 9534 | return {}; |
| 9535 | |
| 9536 | // Variadic and non-variadic functions aren't compatible |
| 9537 | if (lproto->isVariadic() != rproto->isVariadic()) |
| 9538 | return {}; |
| 9539 | |
| 9540 | if (lproto->getMethodQuals() != rproto->getMethodQuals()) |
| 9541 | return {}; |
| 9542 | |
| 9543 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; |
| 9544 | bool canUseLeft, canUseRight; |
| 9545 | if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight, |
| 9546 | newParamInfos)) |
| 9547 | return {}; |
| 9548 | |
| 9549 | if (!canUseLeft) |
| 9550 | allLTypes = false; |
| 9551 | if (!canUseRight) |
| 9552 | allRTypes = false; |
| 9553 | |
| 9554 | // Check parameter type compatibility |
| 9555 | SmallVector<QualType, 10> types; |
| 9556 | for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { |
| 9557 | QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); |
| 9558 | QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); |
| 9559 | QualType paramType = mergeFunctionParameterTypes( |
| 9560 | lParamType, rParamType, OfBlockPointer, Unqualified); |
| 9561 | if (paramType.isNull()) |
| 9562 | return {}; |
| 9563 | |
| 9564 | if (Unqualified) |
| 9565 | paramType = paramType.getUnqualifiedType(); |
| 9566 | |
| 9567 | types.push_back(paramType); |
| 9568 | if (Unqualified) { |
| 9569 | lParamType = lParamType.getUnqualifiedType(); |
| 9570 | rParamType = rParamType.getUnqualifiedType(); |
| 9571 | } |
| 9572 | |
| 9573 | if (getCanonicalType(paramType) != getCanonicalType(lParamType)) |
| 9574 | allLTypes = false; |
| 9575 | if (getCanonicalType(paramType) != getCanonicalType(rParamType)) |
| 9576 | allRTypes = false; |
| 9577 | } |
| 9578 | |
| 9579 | if (allLTypes) return lhs; |
| 9580 | if (allRTypes) return rhs; |
| 9581 | |
| 9582 | FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); |
| 9583 | EPI.ExtInfo = einfo; |
| 9584 | EPI.ExtParameterInfos = |
| 9585 | newParamInfos.empty() ? nullptr : newParamInfos.data(); |
| 9586 | return getFunctionType(retType, types, EPI); |
| 9587 | } |
| 9588 | |
| 9589 | if (lproto) allRTypes = false; |
| 9590 | if (rproto) allLTypes = false; |
| 9591 | |
| 9592 | const FunctionProtoType *proto = lproto ? lproto : rproto; |
| 9593 | if (proto) { |
| 9594 | assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here")((void)0); |
| 9595 | if (proto->isVariadic()) |
| 9596 | return {}; |
| 9597 | // Check that the types are compatible with the types that |
| 9598 | // would result from default argument promotions (C99 6.7.5.3p15). |
| 9599 | // The only types actually affected are promotable integer |
| 9600 | // types and floats, which would be passed as a different |
| 9601 | // type depending on whether the prototype is visible. |
| 9602 | for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { |
| 9603 | QualType paramTy = proto->getParamType(i); |
| 9604 | |
| 9605 | // Look at the converted type of enum types, since that is the type used |
| 9606 | // to pass enum values. |
| 9607 | if (const auto *Enum = paramTy->getAs<EnumType>()) { |
| 9608 | paramTy = Enum->getDecl()->getIntegerType(); |
| 9609 | if (paramTy.isNull()) |
| 9610 | return {}; |
| 9611 | } |
| 9612 | |
| 9613 | if (paramTy->isPromotableIntegerType() || |
| 9614 | getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) |
| 9615 | return {}; |
| 9616 | } |
| 9617 | |
| 9618 | if (allLTypes) return lhs; |
| 9619 | if (allRTypes) return rhs; |
| 9620 | |
| 9621 | FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); |
| 9622 | EPI.ExtInfo = einfo; |
| 9623 | return getFunctionType(retType, proto->getParamTypes(), EPI); |
| 9624 | } |
| 9625 | |
| 9626 | if (allLTypes) return lhs; |
| 9627 | if (allRTypes) return rhs; |
| 9628 | return getFunctionNoProtoType(retType, einfo); |
| 9629 | } |
| 9630 | |
| 9631 | /// Given that we have an enum type and a non-enum type, try to merge them. |
| 9632 | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, |
| 9633 | QualType other, bool isBlockReturnType) { |
| 9634 | // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, |
| 9635 | // a signed integer type, or an unsigned integer type. |
| 9636 | // Compatibility is based on the underlying type, not the promotion |
| 9637 | // type. |
| 9638 | QualType underlyingType = ET->getDecl()->getIntegerType(); |
| 9639 | if (underlyingType.isNull()) |
| 9640 | return {}; |
| 9641 | if (Context.hasSameType(underlyingType, other)) |
| 9642 | return other; |
| 9643 | |
| 9644 | // In block return types, we're more permissive and accept any |
| 9645 | // integral type of the same size. |
| 9646 | if (isBlockReturnType && other->isIntegerType() && |
| 9647 | Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) |
| 9648 | return other; |
| 9649 | |
| 9650 | return {}; |
| 9651 | } |
| 9652 | |
| 9653 | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, |
| 9654 | bool OfBlockPointer, |
| 9655 | bool Unqualified, bool BlockReturnType) { |
| 9656 | // For C++ we will not reach this code with reference types (see below), |
| 9657 | // for OpenMP variant call overloading we might. |
| 9658 | // |
| 9659 | // C++ [expr]: If an expression initially has the type "reference to T", the |
| 9660 | // type is adjusted to "T" prior to any further analysis, the expression |
| 9661 | // designates the object or function denoted by the reference, and the |
| 9662 | // expression is an lvalue unless the reference is an rvalue reference and |
| 9663 | // the expression is a function call (possibly inside parentheses). |
| 9664 | if (LangOpts.OpenMP && LHS->getAs<ReferenceType>() && |
| 9665 | RHS->getAs<ReferenceType>() && LHS->getTypeClass() == RHS->getTypeClass()) |
| 9666 | return mergeTypes(LHS->getAs<ReferenceType>()->getPointeeType(), |
| 9667 | RHS->getAs<ReferenceType>()->getPointeeType(), |
| 9668 | OfBlockPointer, Unqualified, BlockReturnType); |
| 9669 | if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>()) |
| 9670 | return {}; |
| 9671 | |
| 9672 | if (Unqualified) { |
| 9673 | LHS = LHS.getUnqualifiedType(); |
| 9674 | RHS = RHS.getUnqualifiedType(); |
| 9675 | } |
| 9676 | |
| 9677 | QualType LHSCan = getCanonicalType(LHS), |
| 9678 | RHSCan = getCanonicalType(RHS); |
| 9679 | |
| 9680 | // If two types are identical, they are compatible. |
| 9681 | if (LHSCan == RHSCan) |
| 9682 | return LHS; |
| 9683 | |
| 9684 | // If the qualifiers are different, the types aren't compatible... mostly. |
| 9685 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
| 9686 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
| 9687 | if (LQuals != RQuals) { |
| 9688 | // If any of these qualifiers are different, we have a type |
| 9689 | // mismatch. |
| 9690 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
| 9691 | LQuals.getAddressSpace() != RQuals.getAddressSpace() || |
| 9692 | LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || |
| 9693 | LQuals.hasUnaligned() != RQuals.hasUnaligned()) |
| 9694 | return {}; |
| 9695 | |
| 9696 | // Exactly one GC qualifier difference is allowed: __strong is |
| 9697 | // okay if the other type has no GC qualifier but is an Objective |
| 9698 | // C object pointer (i.e. implicitly strong by default). We fix |
| 9699 | // this by pretending that the unqualified type was actually |
| 9700 | // qualified __strong. |
| 9701 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
| 9702 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
| 9703 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements")((void)0); |
| 9704 | |
| 9705 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
| 9706 | return {}; |
| 9707 | |
| 9708 | if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { |
| 9709 | return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); |
| 9710 | } |
| 9711 | if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { |
| 9712 | return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); |
| 9713 | } |
| 9714 | return {}; |
| 9715 | } |
| 9716 | |
| 9717 | // Okay, qualifiers are equal. |
| 9718 | |
| 9719 | Type::TypeClass LHSClass = LHSCan->getTypeClass(); |
| 9720 | Type::TypeClass RHSClass = RHSCan->getTypeClass(); |
| 9721 | |
| 9722 | // We want to consider the two function types to be the same for these |
| 9723 | // comparisons, just force one to the other. |
| 9724 | if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; |
| 9725 | if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; |
| 9726 | |
| 9727 | // Same as above for arrays |
| 9728 | if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) |
| 9729 | LHSClass = Type::ConstantArray; |
| 9730 | if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) |
| 9731 | RHSClass = Type::ConstantArray; |
| 9732 | |
| 9733 | // ObjCInterfaces are just specialized ObjCObjects. |
| 9734 | if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; |
| 9735 | if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; |
| 9736 | |
| 9737 | // Canonicalize ExtVector -> Vector. |
| 9738 | if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; |
| 9739 | if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; |
| 9740 | |
| 9741 | // If the canonical type classes don't match. |
| 9742 | if (LHSClass != RHSClass) { |
| 9743 | // Note that we only have special rules for turning block enum |
| 9744 | // returns into block int returns, not vice-versa. |
| 9745 | if (const auto *ETy = LHS->getAs<EnumType>()) { |
| 9746 | return mergeEnumWithInteger(*this, ETy, RHS, false); |
| 9747 | } |
| 9748 | if (const EnumType* ETy = RHS->getAs<EnumType>()) { |
| 9749 | return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); |
| 9750 | } |
| 9751 | // allow block pointer type to match an 'id' type. |
| 9752 | if (OfBlockPointer && !BlockReturnType) { |
| 9753 | if (LHS->isObjCIdType() && RHS->isBlockPointerType()) |
| 9754 | return LHS; |
| 9755 | if (RHS->isObjCIdType() && LHS->isBlockPointerType()) |
| 9756 | return RHS; |
| 9757 | } |
| 9758 | |
| 9759 | return {}; |
| 9760 | } |
| 9761 | |
| 9762 | // The canonical type classes match. |
| 9763 | switch (LHSClass) { |
| 9764 | #define TYPE(Class, Base) |
| 9765 | #define ABSTRACT_TYPE(Class, Base) |
| 9766 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 9767 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
| 9768 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| 9769 | #include "clang/AST/TypeNodes.inc" |
| 9770 | llvm_unreachable("Non-canonical and dependent types shouldn't get here")__builtin_unreachable(); |
| 9771 | |
| 9772 | case Type::Auto: |
| 9773 | case Type::DeducedTemplateSpecialization: |
| 9774 | case Type::LValueReference: |
| 9775 | case Type::RValueReference: |
| 9776 | case Type::MemberPointer: |
| 9777 | llvm_unreachable("C++ should never be in mergeTypes")__builtin_unreachable(); |
| 9778 | |
| 9779 | case Type::ObjCInterface: |
| 9780 | case Type::IncompleteArray: |
| 9781 | case Type::VariableArray: |
| 9782 | case Type::FunctionProto: |
| 9783 | case Type::ExtVector: |
| 9784 | llvm_unreachable("Types are eliminated above")__builtin_unreachable(); |
| 9785 | |
| 9786 | case Type::Pointer: |
| 9787 | { |
| 9788 | // Merge two pointer types, while trying to preserve typedef info |
| 9789 | QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); |
| 9790 | QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); |
| 9791 | if (Unqualified) { |
| 9792 | LHSPointee = LHSPointee.getUnqualifiedType(); |
| 9793 | RHSPointee = RHSPointee.getUnqualifiedType(); |
| 9794 | } |
| 9795 | QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, |
| 9796 | Unqualified); |
| 9797 | if (ResultType.isNull()) |
| 9798 | return {}; |
| 9799 | if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
| 9800 | return LHS; |
| 9801 | if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
| 9802 | return RHS; |
| 9803 | return getPointerType(ResultType); |
| 9804 | } |
| 9805 | case Type::BlockPointer: |
| 9806 | { |
| 9807 | // Merge two block pointer types, while trying to preserve typedef info |
| 9808 | QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); |
| 9809 | QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); |
| 9810 | if (Unqualified) { |
| 9811 | LHSPointee = LHSPointee.getUnqualifiedType(); |
| 9812 | RHSPointee = RHSPointee.getUnqualifiedType(); |
| 9813 | } |
| 9814 | if (getLangOpts().OpenCL) { |
| 9815 | Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); |
| 9816 | Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); |
| 9817 | // Blocks can't be an expression in a ternary operator (OpenCL v2.0 |
| 9818 | // 6.12.5) thus the following check is asymmetric. |
| 9819 | if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual)) |
| 9820 | return {}; |
| 9821 | LHSPteeQual.removeAddressSpace(); |
| 9822 | RHSPteeQual.removeAddressSpace(); |
| 9823 | LHSPointee = |
| 9824 | QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); |
| 9825 | RHSPointee = |
| 9826 | QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); |
| 9827 | } |
| 9828 | QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, |
| 9829 | Unqualified); |
| 9830 | if (ResultType.isNull()) |
| 9831 | return {}; |
| 9832 | if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) |
| 9833 | return LHS; |
| 9834 | if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) |
| 9835 | return RHS; |
| 9836 | return getBlockPointerType(ResultType); |
| 9837 | } |
| 9838 | case Type::Atomic: |
| 9839 | { |
| 9840 | // Merge two pointer types, while trying to preserve typedef info |
| 9841 | QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); |
| 9842 | QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); |
| 9843 | if (Unqualified) { |
| 9844 | LHSValue = LHSValue.getUnqualifiedType(); |
| 9845 | RHSValue = RHSValue.getUnqualifiedType(); |
| 9846 | } |
| 9847 | QualType ResultType = mergeTypes(LHSValue, RHSValue, false, |
| 9848 | Unqualified); |
| 9849 | if (ResultType.isNull()) |
| 9850 | return {}; |
| 9851 | if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) |
| 9852 | return LHS; |
| 9853 | if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) |
| 9854 | return RHS; |
| 9855 | return getAtomicType(ResultType); |
| 9856 | } |
| 9857 | case Type::ConstantArray: |
| 9858 | { |
| 9859 | const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); |
| 9860 | const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); |
| 9861 | if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize()) |
| 9862 | return {}; |
| 9863 | |
| 9864 | QualType LHSElem = getAsArrayType(LHS)->getElementType(); |
| 9865 | QualType RHSElem = getAsArrayType(RHS)->getElementType(); |
| 9866 | if (Unqualified) { |
| 9867 | LHSElem = LHSElem.getUnqualifiedType(); |
| 9868 | RHSElem = RHSElem.getUnqualifiedType(); |
| 9869 | } |
| 9870 | |
| 9871 | QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); |
| 9872 | if (ResultType.isNull()) |
| 9873 | return {}; |
| 9874 | |
| 9875 | const VariableArrayType* LVAT = getAsVariableArrayType(LHS); |
| 9876 | const VariableArrayType* RVAT = getAsVariableArrayType(RHS); |
| 9877 | |
| 9878 | // If either side is a variable array, and both are complete, check whether |
| 9879 | // the current dimension is definite. |
| 9880 | if (LVAT || RVAT) { |
| 9881 | auto SizeFetch = [this](const VariableArrayType* VAT, |
| 9882 | const ConstantArrayType* CAT) |
| 9883 | -> std::pair<bool,llvm::APInt> { |
| 9884 | if (VAT) { |
| 9885 | Optional<llvm::APSInt> TheInt; |
| 9886 | Expr *E = VAT->getSizeExpr(); |
| 9887 | if (E && (TheInt = E->getIntegerConstantExpr(*this))) |
| 9888 | return std::make_pair(true, *TheInt); |
| 9889 | return std::make_pair(false, llvm::APSInt()); |
| 9890 | } |
| 9891 | if (CAT) |
| 9892 | return std::make_pair(true, CAT->getSize()); |
| 9893 | return std::make_pair(false, llvm::APInt()); |
| 9894 | }; |
| 9895 | |
| 9896 | bool HaveLSize, HaveRSize; |
| 9897 | llvm::APInt LSize, RSize; |
| 9898 | std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT); |
| 9899 | std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT); |
| 9900 | if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize)) |
| 9901 | return {}; // Definite, but unequal, array dimension |
| 9902 | } |
| 9903 | |
| 9904 | if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
| 9905 | return LHS; |
| 9906 | if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
| 9907 | return RHS; |
| 9908 | if (LCAT) |
| 9909 | return getConstantArrayType(ResultType, LCAT->getSize(), |
| 9910 | LCAT->getSizeExpr(), |
| 9911 | ArrayType::ArraySizeModifier(), 0); |
| 9912 | if (RCAT) |
| 9913 | return getConstantArrayType(ResultType, RCAT->getSize(), |
| 9914 | RCAT->getSizeExpr(), |
| 9915 | ArrayType::ArraySizeModifier(), 0); |
| 9916 | if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) |
| 9917 | return LHS; |
| 9918 | if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) |
| 9919 | return RHS; |
| 9920 | if (LVAT) { |
| 9921 | // FIXME: This isn't correct! But tricky to implement because |
| 9922 | // the array's size has to be the size of LHS, but the type |
| 9923 | // has to be different. |
| 9924 | return LHS; |
| 9925 | } |
| 9926 | if (RVAT) { |
| 9927 | // FIXME: This isn't correct! But tricky to implement because |
| 9928 | // the array's size has to be the size of RHS, but the type |
| 9929 | // has to be different. |
| 9930 | return RHS; |
| 9931 | } |
| 9932 | if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; |
| 9933 | if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; |
| 9934 | return getIncompleteArrayType(ResultType, |
| 9935 | ArrayType::ArraySizeModifier(), 0); |
| 9936 | } |
| 9937 | case Type::FunctionNoProto: |
| 9938 | return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified); |
| 9939 | case Type::Record: |
| 9940 | case Type::Enum: |
| 9941 | return {}; |
| 9942 | case Type::Builtin: |
| 9943 | // Only exactly equal builtin types are compatible, which is tested above. |
| 9944 | return {}; |
| 9945 | case Type::Complex: |
| 9946 | // Distinct complex types are incompatible. |
| 9947 | return {}; |
| 9948 | case Type::Vector: |
| 9949 | // FIXME: The merged type should be an ExtVector! |
| 9950 | if (areCompatVectorTypes(LHSCan->castAs<VectorType>(), |
| 9951 | RHSCan->castAs<VectorType>())) |
| 9952 | return LHS; |
| 9953 | return {}; |
| 9954 | case Type::ConstantMatrix: |
| 9955 | if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(), |
| 9956 | RHSCan->castAs<ConstantMatrixType>())) |
| 9957 | return LHS; |
| 9958 | return {}; |
| 9959 | case Type::ObjCObject: { |
| 9960 | // Check if the types are assignment compatible. |
| 9961 | // FIXME: This should be type compatibility, e.g. whether |
| 9962 | // "LHS x; RHS x;" at global scope is legal. |
| 9963 | if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(), |
| 9964 | RHS->castAs<ObjCObjectType>())) |
| 9965 | return LHS; |
| 9966 | return {}; |
| 9967 | } |
| 9968 | case Type::ObjCObjectPointer: |
| 9969 | if (OfBlockPointer) { |
| 9970 | if (canAssignObjCInterfacesInBlockPointer( |
| 9971 | LHS->castAs<ObjCObjectPointerType>(), |
| 9972 | RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) |
| 9973 | return LHS; |
| 9974 | return {}; |
| 9975 | } |
| 9976 | if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(), |
| 9977 | RHS->castAs<ObjCObjectPointerType>())) |
| 9978 | return LHS; |
| 9979 | return {}; |
| 9980 | case Type::Pipe: |
| 9981 | assert(LHS != RHS &&((void)0) |
| 9982 | "Equivalent pipe types should have already been handled!")((void)0); |
| 9983 | return {}; |
| 9984 | case Type::ExtInt: { |
| 9985 | // Merge two ext-int types, while trying to preserve typedef info. |
| 9986 | bool LHSUnsigned = LHS->castAs<ExtIntType>()->isUnsigned(); |
| 9987 | bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned(); |
| 9988 | unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits(); |
| 9989 | unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits(); |
| 9990 | |
| 9991 | // Like unsigned/int, shouldn't have a type if they dont match. |
| 9992 | if (LHSUnsigned != RHSUnsigned) |
| 9993 | return {}; |
| 9994 | |
| 9995 | if (LHSBits != RHSBits) |
| 9996 | return {}; |
| 9997 | return LHS; |
| 9998 | } |
| 9999 | } |
| 10000 | |
| 10001 | llvm_unreachable("Invalid Type::Class!")__builtin_unreachable(); |
| 10002 | } |
| 10003 | |
| 10004 | bool ASTContext::mergeExtParameterInfo( |
| 10005 | const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, |
| 10006 | bool &CanUseFirst, bool &CanUseSecond, |
| 10007 | SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { |
| 10008 | assert(NewParamInfos.empty() && "param info list not empty")((void)0); |
| 10009 | CanUseFirst = CanUseSecond = true; |
| 10010 | bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); |
| 10011 | bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); |
| 10012 | |
| 10013 | // Fast path: if the first type doesn't have ext parameter infos, |
| 10014 | // we match if and only if the second type also doesn't have them. |
| 10015 | if (!FirstHasInfo && !SecondHasInfo) |
| 10016 | return true; |
| 10017 | |
| 10018 | bool NeedParamInfo = false; |
| 10019 | size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() |
| 10020 | : SecondFnType->getExtParameterInfos().size(); |
| 10021 | |
| 10022 | for (size_t I = 0; I < E; ++I) { |
| 10023 | FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; |
| 10024 | if (FirstHasInfo) |
| 10025 | FirstParam = FirstFnType->getExtParameterInfo(I); |
| 10026 | if (SecondHasInfo) |
| 10027 | SecondParam = SecondFnType->getExtParameterInfo(I); |
| 10028 | |
| 10029 | // Cannot merge unless everything except the noescape flag matches. |
| 10030 | if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false)) |
| 10031 | return false; |
| 10032 | |
| 10033 | bool FirstNoEscape = FirstParam.isNoEscape(); |
| 10034 | bool SecondNoEscape = SecondParam.isNoEscape(); |
| 10035 | bool IsNoEscape = FirstNoEscape && SecondNoEscape; |
| 10036 | NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape)); |
| 10037 | if (NewParamInfos.back().getOpaqueValue()) |
| 10038 | NeedParamInfo = true; |
| 10039 | if (FirstNoEscape != IsNoEscape) |
| 10040 | CanUseFirst = false; |
| 10041 | if (SecondNoEscape != IsNoEscape) |
| 10042 | CanUseSecond = false; |
| 10043 | } |
| 10044 | |
| 10045 | if (!NeedParamInfo) |
| 10046 | NewParamInfos.clear(); |
| 10047 | |
| 10048 | return true; |
| 10049 | } |
| 10050 | |
| 10051 | void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) { |
| 10052 | ObjCLayouts[CD] = nullptr; |
| 10053 | } |
| 10054 | |
| 10055 | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and |
| 10056 | /// 'RHS' attributes and returns the merged version; including for function |
| 10057 | /// return types. |
| 10058 | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { |
| 10059 | QualType LHSCan = getCanonicalType(LHS), |
| 10060 | RHSCan = getCanonicalType(RHS); |
| 10061 | // If two types are identical, they are compatible. |
| 10062 | if (LHSCan == RHSCan) |
| 10063 | return LHS; |
| 10064 | if (RHSCan->isFunctionType()) { |
| 10065 | if (!LHSCan->isFunctionType()) |
| 10066 | return {}; |
| 10067 | QualType OldReturnType = |
| 10068 | cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); |
| 10069 | QualType NewReturnType = |
| 10070 | cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); |
| 10071 | QualType ResReturnType = |
| 10072 | mergeObjCGCQualifiers(NewReturnType, OldReturnType); |
| 10073 | if (ResReturnType.isNull()) |
| 10074 | return {}; |
| 10075 | if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { |
| 10076 | // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); |
| 10077 | // In either case, use OldReturnType to build the new function type. |
| 10078 | const auto *F = LHS->castAs<FunctionType>(); |
| 10079 | if (const auto *FPT = cast<FunctionProtoType>(F)) { |
| 10080 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 10081 | EPI.ExtInfo = getFunctionExtInfo(LHS); |
| 10082 | QualType ResultType = |
| 10083 | getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); |
| 10084 | return ResultType; |
| 10085 | } |
| 10086 | } |
| 10087 | return {}; |
| 10088 | } |
| 10089 | |
| 10090 | // If the qualifiers are different, the types can still be merged. |
| 10091 | Qualifiers LQuals = LHSCan.getLocalQualifiers(); |
| 10092 | Qualifiers RQuals = RHSCan.getLocalQualifiers(); |
| 10093 | if (LQuals != RQuals) { |
| 10094 | // If any of these qualifiers are different, we have a type mismatch. |
| 10095 | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || |
| 10096 | LQuals.getAddressSpace() != RQuals.getAddressSpace()) |
| 10097 | return {}; |
| 10098 | |
| 10099 | // Exactly one GC qualifier difference is allowed: __strong is |
| 10100 | // okay if the other type has no GC qualifier but is an Objective |
| 10101 | // C object pointer (i.e. implicitly strong by default). We fix |
| 10102 | // this by pretending that the unqualified type was actually |
| 10103 | // qualified __strong. |
| 10104 | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); |
| 10105 | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); |
| 10106 | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements")((void)0); |
| 10107 | |
| 10108 | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) |
| 10109 | return {}; |
| 10110 | |
| 10111 | if (GC_L == Qualifiers::Strong) |
| 10112 | return LHS; |
| 10113 | if (GC_R == Qualifiers::Strong) |
| 10114 | return RHS; |
| 10115 | return {}; |
| 10116 | } |
| 10117 | |
| 10118 | if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { |
| 10119 | QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
| 10120 | QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); |
| 10121 | QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); |
| 10122 | if (ResQT == LHSBaseQT) |
| 10123 | return LHS; |
| 10124 | if (ResQT == RHSBaseQT) |
| 10125 | return RHS; |
| 10126 | } |
| 10127 | return {}; |
| 10128 | } |
| 10129 | |
| 10130 | //===----------------------------------------------------------------------===// |
| 10131 | // Integer Predicates |
| 10132 | //===----------------------------------------------------------------------===// |
| 10133 | |
| 10134 | unsigned ASTContext::getIntWidth(QualType T) const { |
| 10135 | if (const auto *ET = T->getAs<EnumType>()) |
| 10136 | T = ET->getDecl()->getIntegerType(); |
| 10137 | if (T->isBooleanType()) |
| 10138 | return 1; |
| 10139 | if(const auto *EIT = T->getAs<ExtIntType>()) |
| 10140 | return EIT->getNumBits(); |
| 10141 | // For builtin types, just use the standard type sizing method |
| 10142 | return (unsigned)getTypeSize(T); |
| 10143 | } |
| 10144 | |
| 10145 | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { |
| 10146 | assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&((void)0) |
| 10147 | "Unexpected type")((void)0); |
| 10148 | |
| 10149 | // Turn <4 x signed int> -> <4 x unsigned int> |
| 10150 | if (const auto *VTy = T->getAs<VectorType>()) |
| 10151 | return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), |
| 10152 | VTy->getNumElements(), VTy->getVectorKind()); |
| 10153 | |
| 10154 | // For _ExtInt, return an unsigned _ExtInt with same width. |
| 10155 | if (const auto *EITy = T->getAs<ExtIntType>()) |
| 10156 | return getExtIntType(/*IsUnsigned=*/true, EITy->getNumBits()); |
| 10157 | |
| 10158 | // For enums, get the underlying integer type of the enum, and let the general |
| 10159 | // integer type signchanging code handle it. |
| 10160 | if (const auto *ETy = T->getAs<EnumType>()) |
| 10161 | T = ETy->getDecl()->getIntegerType(); |
| 10162 | |
| 10163 | switch (T->castAs<BuiltinType>()->getKind()) { |
| 10164 | case BuiltinType::Char_S: |
| 10165 | case BuiltinType::SChar: |
| 10166 | return UnsignedCharTy; |
| 10167 | case BuiltinType::Short: |
| 10168 | return UnsignedShortTy; |
| 10169 | case BuiltinType::Int: |
| 10170 | return UnsignedIntTy; |
| 10171 | case BuiltinType::Long: |
| 10172 | return UnsignedLongTy; |
| 10173 | case BuiltinType::LongLong: |
| 10174 | return UnsignedLongLongTy; |
| 10175 | case BuiltinType::Int128: |
| 10176 | return UnsignedInt128Ty; |
| 10177 | // wchar_t is special. It is either signed or not, but when it's signed, |
| 10178 | // there's no matching "unsigned wchar_t". Therefore we return the unsigned |
| 10179 | // version of it's underlying type instead. |
| 10180 | case BuiltinType::WChar_S: |
| 10181 | return getUnsignedWCharType(); |
| 10182 | |
| 10183 | case BuiltinType::ShortAccum: |
| 10184 | return UnsignedShortAccumTy; |
| 10185 | case BuiltinType::Accum: |
| 10186 | return UnsignedAccumTy; |
| 10187 | case BuiltinType::LongAccum: |
| 10188 | return UnsignedLongAccumTy; |
| 10189 | case BuiltinType::SatShortAccum: |
| 10190 | return SatUnsignedShortAccumTy; |
| 10191 | case BuiltinType::SatAccum: |
| 10192 | return SatUnsignedAccumTy; |
| 10193 | case BuiltinType::SatLongAccum: |
| 10194 | return SatUnsignedLongAccumTy; |
| 10195 | case BuiltinType::ShortFract: |
| 10196 | return UnsignedShortFractTy; |
| 10197 | case BuiltinType::Fract: |
| 10198 | return UnsignedFractTy; |
| 10199 | case BuiltinType::LongFract: |
| 10200 | return UnsignedLongFractTy; |
| 10201 | case BuiltinType::SatShortFract: |
| 10202 | return SatUnsignedShortFractTy; |
| 10203 | case BuiltinType::SatFract: |
| 10204 | return SatUnsignedFractTy; |
| 10205 | case BuiltinType::SatLongFract: |
| 10206 | return SatUnsignedLongFractTy; |
| 10207 | default: |
| 10208 | llvm_unreachable("Unexpected signed integer or fixed point type")__builtin_unreachable(); |
| 10209 | } |
| 10210 | } |
| 10211 | |
| 10212 | QualType ASTContext::getCorrespondingSignedType(QualType T) const { |
| 10213 | assert((T->hasUnsignedIntegerRepresentation() ||((void)0) |
| 10214 | T->isUnsignedFixedPointType()) &&((void)0) |
| 10215 | "Unexpected type")((void)0); |
| 10216 | |
| 10217 | // Turn <4 x unsigned int> -> <4 x signed int> |
| 10218 | if (const auto *VTy = T->getAs<VectorType>()) |
| 10219 | return getVectorType(getCorrespondingSignedType(VTy->getElementType()), |
| 10220 | VTy->getNumElements(), VTy->getVectorKind()); |
| 10221 | |
| 10222 | // For _ExtInt, return a signed _ExtInt with same width. |
| 10223 | if (const auto *EITy = T->getAs<ExtIntType>()) |
| 10224 | return getExtIntType(/*IsUnsigned=*/false, EITy->getNumBits()); |
| 10225 | |
| 10226 | // For enums, get the underlying integer type of the enum, and let the general |
| 10227 | // integer type signchanging code handle it. |
| 10228 | if (const auto *ETy = T->getAs<EnumType>()) |
| 10229 | T = ETy->getDecl()->getIntegerType(); |
| 10230 | |
| 10231 | switch (T->castAs<BuiltinType>()->getKind()) { |
| 10232 | case BuiltinType::Char_U: |
| 10233 | case BuiltinType::UChar: |
| 10234 | return SignedCharTy; |
| 10235 | case BuiltinType::UShort: |
| 10236 | return ShortTy; |
| 10237 | case BuiltinType::UInt: |
| 10238 | return IntTy; |
| 10239 | case BuiltinType::ULong: |
| 10240 | return LongTy; |
| 10241 | case BuiltinType::ULongLong: |
| 10242 | return LongLongTy; |
| 10243 | case BuiltinType::UInt128: |
| 10244 | return Int128Ty; |
| 10245 | // wchar_t is special. It is either unsigned or not, but when it's unsigned, |
| 10246 | // there's no matching "signed wchar_t". Therefore we return the signed |
| 10247 | // version of it's underlying type instead. |
| 10248 | case BuiltinType::WChar_U: |
| 10249 | return getSignedWCharType(); |
| 10250 | |
| 10251 | case BuiltinType::UShortAccum: |
| 10252 | return ShortAccumTy; |
| 10253 | case BuiltinType::UAccum: |
| 10254 | return AccumTy; |
| 10255 | case BuiltinType::ULongAccum: |
| 10256 | return LongAccumTy; |
| 10257 | case BuiltinType::SatUShortAccum: |
| 10258 | return SatShortAccumTy; |
| 10259 | case BuiltinType::SatUAccum: |
| 10260 | return SatAccumTy; |
| 10261 | case BuiltinType::SatULongAccum: |
| 10262 | return SatLongAccumTy; |
| 10263 | case BuiltinType::UShortFract: |
| 10264 | return ShortFractTy; |
| 10265 | case BuiltinType::UFract: |
| 10266 | return FractTy; |
| 10267 | case BuiltinType::ULongFract: |
| 10268 | return LongFractTy; |
| 10269 | case BuiltinType::SatUShortFract: |
| 10270 | return SatShortFractTy; |
| 10271 | case BuiltinType::SatUFract: |
| 10272 | return SatFractTy; |
| 10273 | case BuiltinType::SatULongFract: |
| 10274 | return SatLongFractTy; |
| 10275 | default: |
| 10276 | llvm_unreachable("Unexpected unsigned integer or fixed point type")__builtin_unreachable(); |
| 10277 | } |
| 10278 | } |
| 10279 | |
| 10280 | ASTMutationListener::~ASTMutationListener() = default; |
| 10281 | |
| 10282 | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, |
| 10283 | QualType ReturnType) {} |
| 10284 | |
| 10285 | //===----------------------------------------------------------------------===// |
| 10286 | // Builtin Type Computation |
| 10287 | //===----------------------------------------------------------------------===// |
| 10288 | |
| 10289 | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the |
| 10290 | /// pointer over the consumed characters. This returns the resultant type. If |
| 10291 | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic |
| 10292 | /// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of |
| 10293 | /// a vector of "i*". |
| 10294 | /// |
| 10295 | /// RequiresICE is filled in on return to indicate whether the value is required |
| 10296 | /// to be an Integer Constant Expression. |
| 10297 | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, |
| 10298 | ASTContext::GetBuiltinTypeError &Error, |
| 10299 | bool &RequiresICE, |
| 10300 | bool AllowTypeModifiers) { |
| 10301 | // Modifiers. |
| 10302 | int HowLong = 0; |
| 10303 | bool Signed = false, Unsigned = false; |
| 10304 | RequiresICE = false; |
| 10305 | |
| 10306 | // Read the prefixed modifiers first. |
| 10307 | bool Done = false; |
| 10308 | #ifndef NDEBUG1 |
| 10309 | bool IsSpecial = false; |
| 10310 | #endif |
| 10311 | while (!Done) { |
| 10312 | switch (*Str++) { |
| 10313 | default: Done = true; --Str; break; |
| 10314 | case 'I': |
| 10315 | RequiresICE = true; |
| 10316 | break; |
| 10317 | case 'S': |
| 10318 | assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!")((void)0); |
| 10319 | assert(!Signed && "Can't use 'S' modifier multiple times!")((void)0); |
| 10320 | Signed = true; |
| 10321 | break; |
| 10322 | case 'U': |
| 10323 | assert(!Signed && "Can't use both 'S' and 'U' modifiers!")((void)0); |
| 10324 | assert(!Unsigned && "Can't use 'U' modifier multiple times!")((void)0); |
| 10325 | Unsigned = true; |
| 10326 | break; |
| 10327 | case 'L': |
| 10328 | assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers")((void)0); |
| 10329 | assert(HowLong <= 2 && "Can't have LLLL modifier")((void)0); |
| 10330 | ++HowLong; |
| 10331 | break; |
| 10332 | case 'N': |
| 10333 | // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. |
| 10334 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!")((void)0); |
| 10335 | assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!")((void)0); |
| 10336 | #ifndef NDEBUG1 |
| 10337 | IsSpecial = true; |
| 10338 | #endif |
| 10339 | if (Context.getTargetInfo().getLongWidth() == 32) |
| 10340 | ++HowLong; |
| 10341 | break; |
| 10342 | case 'W': |
| 10343 | // This modifier represents int64 type. |
| 10344 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!")((void)0); |
| 10345 | assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!")((void)0); |
| 10346 | #ifndef NDEBUG1 |
| 10347 | IsSpecial = true; |
| 10348 | #endif |
| 10349 | switch (Context.getTargetInfo().getInt64Type()) { |
| 10350 | default: |
| 10351 | llvm_unreachable("Unexpected integer type")__builtin_unreachable(); |
| 10352 | case TargetInfo::SignedLong: |
| 10353 | HowLong = 1; |
| 10354 | break; |
| 10355 | case TargetInfo::SignedLongLong: |
| 10356 | HowLong = 2; |
| 10357 | break; |
| 10358 | } |
| 10359 | break; |
| 10360 | case 'Z': |
| 10361 | // This modifier represents int32 type. |
| 10362 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!")((void)0); |
| 10363 | assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!")((void)0); |
| 10364 | #ifndef NDEBUG1 |
| 10365 | IsSpecial = true; |
| 10366 | #endif |
| 10367 | switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) { |
| 10368 | default: |
| 10369 | llvm_unreachable("Unexpected integer type")__builtin_unreachable(); |
| 10370 | case TargetInfo::SignedInt: |
| 10371 | HowLong = 0; |
| 10372 | break; |
| 10373 | case TargetInfo::SignedLong: |
| 10374 | HowLong = 1; |
| 10375 | break; |
| 10376 | case TargetInfo::SignedLongLong: |
| 10377 | HowLong = 2; |
| 10378 | break; |
| 10379 | } |
| 10380 | break; |
| 10381 | case 'O': |
| 10382 | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!")((void)0); |
| 10383 | assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!")((void)0); |
| 10384 | #ifndef NDEBUG1 |
| 10385 | IsSpecial = true; |
| 10386 | #endif |
| 10387 | if (Context.getLangOpts().OpenCL) |
| 10388 | HowLong = 1; |
| 10389 | else |
| 10390 | HowLong = 2; |
| 10391 | break; |
| 10392 | } |
| 10393 | } |
| 10394 | |
| 10395 | QualType Type; |
| 10396 | |
| 10397 | // Read the base type. |
| 10398 | switch (*Str++) { |
| 10399 | default: llvm_unreachable("Unknown builtin type letter!")__builtin_unreachable(); |
| 10400 | case 'x': |
| 10401 | assert(HowLong == 0 && !Signed && !Unsigned &&((void)0) |
| 10402 | "Bad modifiers used with 'x'!")((void)0); |
| 10403 | Type = Context.Float16Ty; |
| 10404 | break; |
| 10405 | case 'y': |
| 10406 | assert(HowLong == 0 && !Signed && !Unsigned &&((void)0) |
| 10407 | "Bad modifiers used with 'y'!")((void)0); |
| 10408 | Type = Context.BFloat16Ty; |
| 10409 | break; |
| 10410 | case 'v': |
| 10411 | assert(HowLong == 0 && !Signed && !Unsigned &&((void)0) |
| 10412 | "Bad modifiers used with 'v'!")((void)0); |
| 10413 | Type = Context.VoidTy; |
| 10414 | break; |
| 10415 | case 'h': |
| 10416 | assert(HowLong == 0 && !Signed && !Unsigned &&((void)0) |
| 10417 | "Bad modifiers used with 'h'!")((void)0); |
| 10418 | Type = Context.HalfTy; |
| 10419 | break; |
| 10420 | case 'f': |
| 10421 | assert(HowLong == 0 && !Signed && !Unsigned &&((void)0) |
| 10422 | "Bad modifiers used with 'f'!")((void)0); |
| 10423 | Type = Context.FloatTy; |
| 10424 | break; |
| 10425 | case 'd': |
| 10426 | assert(HowLong < 3 && !Signed && !Unsigned &&((void)0) |
| 10427 | "Bad modifiers used with 'd'!")((void)0); |
| 10428 | if (HowLong == 1) |
| 10429 | Type = Context.LongDoubleTy; |
| 10430 | else if (HowLong == 2) |
| 10431 | Type = Context.Float128Ty; |
| 10432 | else |
| 10433 | Type = Context.DoubleTy; |
| 10434 | break; |
| 10435 | case 's': |
| 10436 | assert(HowLong == 0 && "Bad modifiers used with 's'!")((void)0); |
| 10437 | if (Unsigned) |
| 10438 | Type = Context.UnsignedShortTy; |
| 10439 | else |
| 10440 | Type = Context.ShortTy; |
| 10441 | break; |
| 10442 | case 'i': |
| 10443 | if (HowLong == 3) |
| 10444 | Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; |
| 10445 | else if (HowLong == 2) |
| 10446 | Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; |
| 10447 | else if (HowLong == 1) |
| 10448 | Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; |
| 10449 | else |
| 10450 | Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; |
| 10451 | break; |
| 10452 | case 'c': |
| 10453 | assert(HowLong == 0 && "Bad modifiers used with 'c'!")((void)0); |
| 10454 | if (Signed) |
| 10455 | Type = Context.SignedCharTy; |
| 10456 | else if (Unsigned) |
| 10457 | Type = Context.UnsignedCharTy; |
| 10458 | else |
| 10459 | Type = Context.CharTy; |
| 10460 | break; |
| 10461 | case 'b': // boolean |
| 10462 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!")((void)0); |
| 10463 | Type = Context.BoolTy; |
| 10464 | break; |
| 10465 | case 'z': // size_t. |
| 10466 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!")((void)0); |
| 10467 | Type = Context.getSizeType(); |
| 10468 | break; |
| 10469 | case 'w': // wchar_t. |
| 10470 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!")((void)0); |
| 10471 | Type = Context.getWideCharType(); |
| 10472 | break; |
| 10473 | case 'F': |
| 10474 | Type = Context.getCFConstantStringType(); |
| 10475 | break; |
| 10476 | case 'G': |
| 10477 | Type = Context.getObjCIdType(); |
| 10478 | break; |
| 10479 | case 'H': |
| 10480 | Type = Context.getObjCSelType(); |
| 10481 | break; |
| 10482 | case 'M': |
| 10483 | Type = Context.getObjCSuperType(); |
| 10484 | break; |
| 10485 | case 'a': |
| 10486 | Type = Context.getBuiltinVaListType(); |
| 10487 | assert(!Type.isNull() && "builtin va list type not initialized!")((void)0); |
| 10488 | break; |
| 10489 | case 'A': |
| 10490 | // This is a "reference" to a va_list; however, what exactly |
| 10491 | // this means depends on how va_list is defined. There are two |
| 10492 | // different kinds of va_list: ones passed by value, and ones |
| 10493 | // passed by reference. An example of a by-value va_list is |
| 10494 | // x86, where va_list is a char*. An example of by-ref va_list |
| 10495 | // is x86-64, where va_list is a __va_list_tag[1]. For x86, |
| 10496 | // we want this argument to be a char*&; for x86-64, we want |
| 10497 | // it to be a __va_list_tag*. |
| 10498 | Type = Context.getBuiltinVaListType(); |
| 10499 | assert(!Type.isNull() && "builtin va list type not initialized!")((void)0); |
| 10500 | if (Type->isArrayType()) |
| 10501 | Type = Context.getArrayDecayedType(Type); |
| 10502 | else |
| 10503 | Type = Context.getLValueReferenceType(Type); |
| 10504 | break; |
| 10505 | case 'q': { |
| 10506 | char *End; |
| 10507 | unsigned NumElements = strtoul(Str, &End, 10); |
| 10508 | assert(End != Str && "Missing vector size")((void)0); |
| 10509 | Str = End; |
| 10510 | |
| 10511 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
| 10512 | RequiresICE, false); |
| 10513 | assert(!RequiresICE && "Can't require vector ICE")((void)0); |
| 10514 | |
| 10515 | Type = Context.getScalableVectorType(ElementType, NumElements); |
| 10516 | break; |
| 10517 | } |
| 10518 | case 'V': { |
| 10519 | char *End; |
| 10520 | unsigned NumElements = strtoul(Str, &End, 10); |
| 10521 | assert(End != Str && "Missing vector size")((void)0); |
| 10522 | Str = End; |
| 10523 | |
| 10524 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, |
| 10525 | RequiresICE, false); |
| 10526 | assert(!RequiresICE && "Can't require vector ICE")((void)0); |
| 10527 | |
| 10528 | // TODO: No way to make AltiVec vectors in builtins yet. |
| 10529 | Type = Context.getVectorType(ElementType, NumElements, |
| 10530 | VectorType::GenericVector); |
| 10531 | break; |
| 10532 | } |
| 10533 | case 'E': { |
| 10534 | char *End; |
| 10535 | |
| 10536 | unsigned NumElements = strtoul(Str, &End, 10); |
| 10537 | assert(End != Str && "Missing vector size")((void)0); |
| 10538 | |
| 10539 | Str = End; |
| 10540 | |
| 10541 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
| 10542 | false); |
| 10543 | Type = Context.getExtVectorType(ElementType, NumElements); |
| 10544 | break; |
| 10545 | } |
| 10546 | case 'X': { |
| 10547 | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, |
| 10548 | false); |
| 10549 | assert(!RequiresICE && "Can't require complex ICE")((void)0); |
| 10550 | Type = Context.getComplexType(ElementType); |
| 10551 | break; |
| 10552 | } |
| 10553 | case 'Y': |
| 10554 | Type = Context.getPointerDiffType(); |
| 10555 | break; |
| 10556 | case 'P': |
| 10557 | Type = Context.getFILEType(); |
| 10558 | if (Type.isNull()) { |
| 10559 | Error = ASTContext::GE_Missing_stdio; |
| 10560 | return {}; |
| 10561 | } |
| 10562 | break; |
| 10563 | case 'J': |
| 10564 | if (Signed) |
| 10565 | Type = Context.getsigjmp_bufType(); |
| 10566 | else |
| 10567 | Type = Context.getjmp_bufType(); |
| 10568 | |
| 10569 | if (Type.isNull()) { |
| 10570 | Error = ASTContext::GE_Missing_setjmp; |
| 10571 | return {}; |
| 10572 | } |
| 10573 | break; |
| 10574 | case 'K': |
| 10575 | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!")((void)0); |
| 10576 | Type = Context.getucontext_tType(); |
| 10577 | |
| 10578 | if (Type.isNull()) { |
| 10579 | Error = ASTContext::GE_Missing_ucontext; |
| 10580 | return {}; |
| 10581 | } |
| 10582 | break; |
| 10583 | case 'p': |
| 10584 | Type = Context.getProcessIDType(); |
| 10585 | break; |
| 10586 | } |
| 10587 | |
| 10588 | // If there are modifiers and if we're allowed to parse them, go for it. |
| 10589 | Done = !AllowTypeModifiers; |
| 10590 | while (!Done) { |
| 10591 | switch (char c = *Str++) { |
| 10592 | default: Done = true; --Str; break; |
| 10593 | case '*': |
| 10594 | case '&': { |
| 10595 | // Both pointers and references can have their pointee types |
| 10596 | // qualified with an address space. |
| 10597 | char *End; |
| 10598 | unsigned AddrSpace = strtoul(Str, &End, 10); |
| 10599 | if (End != Str) { |
| 10600 | // Note AddrSpace == 0 is not the same as an unspecified address space. |
| 10601 | Type = Context.getAddrSpaceQualType( |
| 10602 | Type, |
| 10603 | Context.getLangASForBuiltinAddressSpace(AddrSpace)); |
| 10604 | Str = End; |
| 10605 | } |
| 10606 | if (c == '*') |
| 10607 | Type = Context.getPointerType(Type); |
| 10608 | else |
| 10609 | Type = Context.getLValueReferenceType(Type); |
| 10610 | break; |
| 10611 | } |
| 10612 | // FIXME: There's no way to have a built-in with an rvalue ref arg. |
| 10613 | case 'C': |
| 10614 | Type = Type.withConst(); |
| 10615 | break; |
| 10616 | case 'D': |
| 10617 | Type = Context.getVolatileType(Type); |
| 10618 | break; |
| 10619 | case 'R': |
| 10620 | Type = Type.withRestrict(); |
| 10621 | break; |
| 10622 | } |
| 10623 | } |
| 10624 | |
| 10625 | assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&((void)0) |
| 10626 | "Integer constant 'I' type must be an integer")((void)0); |
| 10627 | |
| 10628 | return Type; |
| 10629 | } |
| 10630 | |
| 10631 | // On some targets such as PowerPC, some of the builtins are defined with custom |
| 10632 | // type decriptors for target-dependent types. These descriptors are decoded in |
| 10633 | // other functions, but it may be useful to be able to fall back to default |
| 10634 | // descriptor decoding to define builtins mixing target-dependent and target- |
| 10635 | // independent types. This function allows decoding one type descriptor with |
| 10636 | // default decoding. |
| 10637 | QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, |
| 10638 | GetBuiltinTypeError &Error, bool &RequireICE, |
| 10639 | bool AllowTypeModifiers) const { |
| 10640 | return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers); |
| 10641 | } |
| 10642 | |
| 10643 | /// GetBuiltinType - Return the type for the specified builtin. |
| 10644 | QualType ASTContext::GetBuiltinType(unsigned Id, |
| 10645 | GetBuiltinTypeError &Error, |
| 10646 | unsigned *IntegerConstantArgs) const { |
| 10647 | const char *TypeStr = BuiltinInfo.getTypeString(Id); |
| 10648 | if (TypeStr[0] == '\0') { |
| 10649 | Error = GE_Missing_type; |
| 10650 | return {}; |
| 10651 | } |
| 10652 | |
| 10653 | SmallVector<QualType, 8> ArgTypes; |
| 10654 | |
| 10655 | bool RequiresICE = false; |
| 10656 | Error = GE_None; |
| 10657 | QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, |
| 10658 | RequiresICE, true); |
| 10659 | if (Error != GE_None) |
| 10660 | return {}; |
| 10661 | |
| 10662 | assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE")((void)0); |
| 10663 | |
| 10664 | while (TypeStr[0] && TypeStr[0] != '.') { |
| 10665 | QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); |
| 10666 | if (Error != GE_None) |
| 10667 | return {}; |
| 10668 | |
| 10669 | // If this argument is required to be an IntegerConstantExpression and the |
| 10670 | // caller cares, fill in the bitmask we return. |
| 10671 | if (RequiresICE && IntegerConstantArgs) |
| 10672 | *IntegerConstantArgs |= 1 << ArgTypes.size(); |
| 10673 | |
| 10674 | // Do array -> pointer decay. The builtin should use the decayed type. |
| 10675 | if (Ty->isArrayType()) |
| 10676 | Ty = getArrayDecayedType(Ty); |
| 10677 | |
| 10678 | ArgTypes.push_back(Ty); |
| 10679 | } |
| 10680 | |
| 10681 | if (Id == Builtin::BI__GetExceptionInfo) |
| 10682 | return {}; |
| 10683 | |
| 10684 | assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&((void)0) |
| 10685 | "'.' should only occur at end of builtin type list!")((void)0); |
| 10686 | |
| 10687 | bool Variadic = (TypeStr[0] == '.'); |
| 10688 | |
| 10689 | FunctionType::ExtInfo EI(getDefaultCallingConvention( |
| 10690 | Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); |
| 10691 | if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true); |
| 10692 | |
| 10693 | |
| 10694 | // We really shouldn't be making a no-proto type here. |
| 10695 | if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus) |
| 10696 | return getFunctionNoProtoType(ResType, EI); |
| 10697 | |
| 10698 | FunctionProtoType::ExtProtoInfo EPI; |
| 10699 | EPI.ExtInfo = EI; |
| 10700 | EPI.Variadic = Variadic; |
| 10701 | if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id)) |
| 10702 | EPI.ExceptionSpec.Type = |
| 10703 | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; |
| 10704 | |
| 10705 | return getFunctionType(ResType, ArgTypes, EPI); |
| 10706 | } |
| 10707 | |
| 10708 | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, |
| 10709 | const FunctionDecl *FD) { |
| 10710 | if (!FD->isExternallyVisible()) |
| 10711 | return GVA_Internal; |
| 10712 | |
| 10713 | // Non-user-provided functions get emitted as weak definitions with every |
| 10714 | // use, no matter whether they've been explicitly instantiated etc. |
| 10715 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
| 10716 | if (!MD->isUserProvided()) |
| 10717 | return GVA_DiscardableODR; |
| 10718 | |
| 10719 | GVALinkage External; |
| 10720 | switch (FD->getTemplateSpecializationKind()) { |
| 10721 | case TSK_Undeclared: |
| 10722 | case TSK_ExplicitSpecialization: |
| 10723 | External = GVA_StrongExternal; |
| 10724 | break; |
| 10725 | |
| 10726 | case TSK_ExplicitInstantiationDefinition: |
| 10727 | return GVA_StrongODR; |
| 10728 | |
| 10729 | // C++11 [temp.explicit]p10: |
| 10730 | // [ Note: The intent is that an inline function that is the subject of |
| 10731 | // an explicit instantiation declaration will still be implicitly |
| 10732 | // instantiated when used so that the body can be considered for |
| 10733 | // inlining, but that no out-of-line copy of the inline function would be |
| 10734 | // generated in the translation unit. -- end note ] |
| 10735 | case TSK_ExplicitInstantiationDeclaration: |
| 10736 | return GVA_AvailableExternally; |
| 10737 | |
| 10738 | case TSK_ImplicitInstantiation: |
| 10739 | External = GVA_DiscardableODR; |
| 10740 | break; |
| 10741 | } |
| 10742 | |
| 10743 | if (!FD->isInlined()) |
| 10744 | return External; |
| 10745 | |
| 10746 | if ((!Context.getLangOpts().CPlusPlus && |
| 10747 | !Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| 10748 | !FD->hasAttr<DLLExportAttr>()) || |
| 10749 | FD->hasAttr<GNUInlineAttr>()) { |
| 10750 | // FIXME: This doesn't match gcc's behavior for dllexport inline functions. |
| 10751 | |
| 10752 | // GNU or C99 inline semantics. Determine whether this symbol should be |
| 10753 | // externally visible. |
| 10754 | if (FD->isInlineDefinitionExternallyVisible()) |
| 10755 | return External; |
| 10756 | |
| 10757 | // C99 inline semantics, where the symbol is not externally visible. |
| 10758 | return GVA_AvailableExternally; |
| 10759 | } |
| 10760 | |
| 10761 | // Functions specified with extern and inline in -fms-compatibility mode |
| 10762 | // forcibly get emitted. While the body of the function cannot be later |
| 10763 | // replaced, the function definition cannot be discarded. |
| 10764 | if (FD->isMSExternInline()) |
| 10765 | return GVA_StrongODR; |
| 10766 | |
| 10767 | return GVA_DiscardableODR; |
| 10768 | } |
| 10769 | |
| 10770 | static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, |
| 10771 | const Decl *D, GVALinkage L) { |
| 10772 | // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx |
| 10773 | // dllexport/dllimport on inline functions. |
| 10774 | if (D->hasAttr<DLLImportAttr>()) { |
| 10775 | if (L == GVA_DiscardableODR || L == GVA_StrongODR) |
| 10776 | return GVA_AvailableExternally; |
| 10777 | } else if (D->hasAttr<DLLExportAttr>()) { |
| 10778 | if (L == GVA_DiscardableODR) |
| 10779 | return GVA_StrongODR; |
| 10780 | } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { |
| 10781 | // Device-side functions with __global__ attribute must always be |
| 10782 | // visible externally so they can be launched from host. |
| 10783 | if (D->hasAttr<CUDAGlobalAttr>() && |
| 10784 | (L == GVA_DiscardableODR || L == GVA_Internal)) |
| 10785 | return GVA_StrongODR; |
| 10786 | // Single source offloading languages like CUDA/HIP need to be able to |
| 10787 | // access static device variables from host code of the same compilation |
| 10788 | // unit. This is done by externalizing the static variable with a shared |
| 10789 | // name between the host and device compilation which is the same for the |
| 10790 | // same compilation unit whereas different among different compilation |
| 10791 | // units. |
| 10792 | if (Context.shouldExternalizeStaticVar(D)) |
| 10793 | return GVA_StrongExternal; |
| 10794 | } |
| 10795 | return L; |
| 10796 | } |
| 10797 | |
| 10798 | /// Adjust the GVALinkage for a declaration based on what an external AST source |
| 10799 | /// knows about whether there can be other definitions of this declaration. |
| 10800 | static GVALinkage |
| 10801 | adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, |
| 10802 | GVALinkage L) { |
| 10803 | ExternalASTSource *Source = Ctx.getExternalSource(); |
| 10804 | if (!Source) |
| 10805 | return L; |
| 10806 | |
| 10807 | switch (Source->hasExternalDefinitions(D)) { |
| 10808 | case ExternalASTSource::EK_Never: |
| 10809 | // Other translation units rely on us to provide the definition. |
| 10810 | if (L == GVA_DiscardableODR) |
| 10811 | return GVA_StrongODR; |
| 10812 | break; |
| 10813 | |
| 10814 | case ExternalASTSource::EK_Always: |
| 10815 | return GVA_AvailableExternally; |
| 10816 | |
| 10817 | case ExternalASTSource::EK_ReplyHazy: |
| 10818 | break; |
| 10819 | } |
| 10820 | return L; |
| 10821 | } |
| 10822 | |
| 10823 | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { |
| 10824 | return adjustGVALinkageForExternalDefinitionKind(*this, FD, |
| 10825 | adjustGVALinkageForAttributes(*this, FD, |
| 10826 | basicGVALinkageForFunction(*this, FD))); |
| 10827 | } |
| 10828 | |
| 10829 | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, |
| 10830 | const VarDecl *VD) { |
| 10831 | if (!VD->isExternallyVisible()) |
| 10832 | return GVA_Internal; |
| 10833 | |
| 10834 | if (VD->isStaticLocal()) { |
| 10835 | const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); |
| 10836 | while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) |
| 10837 | LexicalContext = LexicalContext->getLexicalParent(); |
| 10838 | |
| 10839 | // ObjC Blocks can create local variables that don't have a FunctionDecl |
| 10840 | // LexicalContext. |
| 10841 | if (!LexicalContext) |
| 10842 | return GVA_DiscardableODR; |
| 10843 | |
| 10844 | // Otherwise, let the static local variable inherit its linkage from the |
| 10845 | // nearest enclosing function. |
| 10846 | auto StaticLocalLinkage = |
| 10847 | Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); |
| 10848 | |
| 10849 | // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must |
| 10850 | // be emitted in any object with references to the symbol for the object it |
| 10851 | // contains, whether inline or out-of-line." |
| 10852 | // Similar behavior is observed with MSVC. An alternative ABI could use |
| 10853 | // StrongODR/AvailableExternally to match the function, but none are |
| 10854 | // known/supported currently. |
| 10855 | if (StaticLocalLinkage == GVA_StrongODR || |
| 10856 | StaticLocalLinkage == GVA_AvailableExternally) |
| 10857 | return GVA_DiscardableODR; |
| 10858 | return StaticLocalLinkage; |
| 10859 | } |
| 10860 | |
| 10861 | // MSVC treats in-class initialized static data members as definitions. |
| 10862 | // By giving them non-strong linkage, out-of-line definitions won't |
| 10863 | // cause link errors. |
| 10864 | if (Context.isMSStaticDataMemberInlineDefinition(VD)) |
| 10865 | return GVA_DiscardableODR; |
| 10866 | |
| 10867 | // Most non-template variables have strong linkage; inline variables are |
| 10868 | // linkonce_odr or (occasionally, for compatibility) weak_odr. |
| 10869 | GVALinkage StrongLinkage; |
| 10870 | switch (Context.getInlineVariableDefinitionKind(VD)) { |
| 10871 | case ASTContext::InlineVariableDefinitionKind::None: |
| 10872 | StrongLinkage = GVA_StrongExternal; |
| 10873 | break; |
| 10874 | case ASTContext::InlineVariableDefinitionKind::Weak: |
| 10875 | case ASTContext::InlineVariableDefinitionKind::WeakUnknown: |
| 10876 | StrongLinkage = GVA_DiscardableODR; |
| 10877 | break; |
| 10878 | case ASTContext::InlineVariableDefinitionKind::Strong: |
| 10879 | StrongLinkage = GVA_StrongODR; |
| 10880 | break; |
| 10881 | } |
| 10882 | |
| 10883 | switch (VD->getTemplateSpecializationKind()) { |
| 10884 | case TSK_Undeclared: |
| 10885 | return StrongLinkage; |
| 10886 | |
| 10887 | case TSK_ExplicitSpecialization: |
| 10888 | return Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| 10889 | VD->isStaticDataMember() |
| 10890 | ? GVA_StrongODR |
| 10891 | : StrongLinkage; |
| 10892 | |
| 10893 | case TSK_ExplicitInstantiationDefinition: |
| 10894 | return GVA_StrongODR; |
| 10895 | |
| 10896 | case TSK_ExplicitInstantiationDeclaration: |
| 10897 | return GVA_AvailableExternally; |
| 10898 | |
| 10899 | case TSK_ImplicitInstantiation: |
| 10900 | return GVA_DiscardableODR; |
| 10901 | } |
| 10902 | |
| 10903 | llvm_unreachable("Invalid Linkage!")__builtin_unreachable(); |
| 10904 | } |
| 10905 | |
| 10906 | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) { |
| 10907 | return adjustGVALinkageForExternalDefinitionKind(*this, VD, |
| 10908 | adjustGVALinkageForAttributes(*this, VD, |
| 10909 | basicGVALinkageForVariable(*this, VD))); |
| 10910 | } |
| 10911 | |
| 10912 | bool ASTContext::DeclMustBeEmitted(const Decl *D) { |
| 10913 | if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| 10914 | if (!VD->isFileVarDecl()) |
| 10915 | return false; |
| 10916 | // Global named register variables (GNU extension) are never emitted. |
| 10917 | if (VD->getStorageClass() == SC_Register) |
| 10918 | return false; |
| 10919 | if (VD->getDescribedVarTemplate() || |
| 10920 | isa<VarTemplatePartialSpecializationDecl>(VD)) |
| 10921 | return false; |
| 10922 | } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| 10923 | // We never need to emit an uninstantiated function template. |
| 10924 | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
| 10925 | return false; |
| 10926 | } else if (isa<PragmaCommentDecl>(D)) |
| 10927 | return true; |
| 10928 | else if (isa<PragmaDetectMismatchDecl>(D)) |
| 10929 | return true; |
| 10930 | else if (isa<OMPRequiresDecl>(D)) |
| 10931 | return true; |
| 10932 | else if (isa<OMPThreadPrivateDecl>(D)) |
| 10933 | return !D->getDeclContext()->isDependentContext(); |
| 10934 | else if (isa<OMPAllocateDecl>(D)) |
| 10935 | return !D->getDeclContext()->isDependentContext(); |
| 10936 | else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D)) |
| 10937 | return !D->getDeclContext()->isDependentContext(); |
| 10938 | else if (isa<ImportDecl>(D)) |
| 10939 | return true; |
| 10940 | else |
| 10941 | return false; |
| 10942 | |
| 10943 | // If this is a member of a class template, we do not need to emit it. |
| 10944 | if (D->getDeclContext()->isDependentContext()) |
| 10945 | return false; |
| 10946 | |
| 10947 | // Weak references don't produce any output by themselves. |
| 10948 | if (D->hasAttr<WeakRefAttr>()) |
| 10949 | return false; |
| 10950 | |
| 10951 | // Aliases and used decls are required. |
| 10952 | if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) |
| 10953 | return true; |
| 10954 | |
| 10955 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| 10956 | // Forward declarations aren't required. |
| 10957 | if (!FD->doesThisDeclarationHaveABody()) |
| 10958 | return FD->doesDeclarationForceExternallyVisibleDefinition(); |
| 10959 | |
| 10960 | // Constructors and destructors are required. |
| 10961 | if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) |
| 10962 | return true; |
| 10963 | |
| 10964 | // The key function for a class is required. This rule only comes |
| 10965 | // into play when inline functions can be key functions, though. |
| 10966 | if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
| 10967 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| 10968 | const CXXRecordDecl *RD = MD->getParent(); |
| 10969 | if (MD->isOutOfLine() && RD->isDynamicClass()) { |
| 10970 | const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); |
| 10971 | if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) |
| 10972 | return true; |
| 10973 | } |
| 10974 | } |
| 10975 | } |
| 10976 | |
| 10977 | GVALinkage Linkage = GetGVALinkageForFunction(FD); |
| 10978 | |
| 10979 | // static, static inline, always_inline, and extern inline functions can |
| 10980 | // always be deferred. Normal inline functions can be deferred in C99/C++. |
| 10981 | // Implicit template instantiations can also be deferred in C++. |
| 10982 | return !isDiscardableGVALinkage(Linkage); |
| 10983 | } |
| 10984 | |
| 10985 | const auto *VD = cast<VarDecl>(D); |
| 10986 | assert(VD->isFileVarDecl() && "Expected file scoped var")((void)0); |
| 10987 | |
| 10988 | // If the decl is marked as `declare target to`, it should be emitted for the |
| 10989 | // host and for the device. |
| 10990 | if (LangOpts.OpenMP && |
| 10991 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
| 10992 | return true; |
| 10993 | |
| 10994 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && |
| 10995 | !isMSStaticDataMemberInlineDefinition(VD)) |
| 10996 | return false; |
| 10997 | |
| 10998 | // Variables that can be needed in other TUs are required. |
| 10999 | auto Linkage = GetGVALinkageForVariable(VD); |
| 11000 | if (!isDiscardableGVALinkage(Linkage)) |
| 11001 | return true; |
| 11002 | |
| 11003 | // We never need to emit a variable that is available in another TU. |
| 11004 | if (Linkage == GVA_AvailableExternally) |
| 11005 | return false; |
| 11006 | |
| 11007 | // Variables that have destruction with side-effects are required. |
| 11008 | if (VD->needsDestruction(*this)) |
| 11009 | return true; |
| 11010 | |
| 11011 | // Variables that have initialization with side-effects are required. |
| 11012 | if (VD->getInit() && VD->getInit()->HasSideEffects(*this) && |
| 11013 | // We can get a value-dependent initializer during error recovery. |
| 11014 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
| 11015 | return true; |
| 11016 | |
| 11017 | // Likewise, variables with tuple-like bindings are required if their |
| 11018 | // bindings have side-effects. |
| 11019 | if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) |
| 11020 | for (const auto *BD : DD->bindings()) |
| 11021 | if (const auto *BindingVD = BD->getHoldingVar()) |
| 11022 | if (DeclMustBeEmitted(BindingVD)) |
| 11023 | return true; |
| 11024 | |
| 11025 | return false; |
| 11026 | } |
| 11027 | |
| 11028 | void ASTContext::forEachMultiversionedFunctionVersion( |
| 11029 | const FunctionDecl *FD, |
| 11030 | llvm::function_ref<void(FunctionDecl *)> Pred) const { |
| 11031 | assert(FD->isMultiVersion() && "Only valid for multiversioned functions")((void)0); |
| 11032 | llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; |
| 11033 | FD = FD->getMostRecentDecl(); |
| 11034 | // FIXME: The order of traversal here matters and depends on the order of |
| 11035 | // lookup results, which happens to be (mostly) oldest-to-newest, but we |
| 11036 | // shouldn't rely on that. |
| 11037 | for (auto *CurDecl : |
| 11038 | FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) { |
| 11039 | FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); |
| 11040 | if (CurFD && hasSameType(CurFD->getType(), FD->getType()) && |
| 11041 | std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) { |
| 11042 | SeenDecls.insert(CurFD); |
| 11043 | Pred(CurFD); |
| 11044 | } |
| 11045 | } |
| 11046 | } |
| 11047 | |
| 11048 | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, |
| 11049 | bool IsCXXMethod, |
| 11050 | bool IsBuiltin) const { |
| 11051 | // Pass through to the C++ ABI object |
| 11052 | if (IsCXXMethod) |
| 11053 | return ABI->getDefaultMethodCallConv(IsVariadic); |
| 11054 | |
| 11055 | // Builtins ignore user-specified default calling convention and remain the |
| 11056 | // Target's default calling convention. |
| 11057 | if (!IsBuiltin) { |
| 11058 | switch (LangOpts.getDefaultCallingConv()) { |
| 11059 | case LangOptions::DCC_None: |
| 11060 | break; |
| 11061 | case LangOptions::DCC_CDecl: |
| 11062 | return CC_C; |
| 11063 | case LangOptions::DCC_FastCall: |
| 11064 | if (getTargetInfo().hasFeature("sse2") && !IsVariadic) |
| 11065 | return CC_X86FastCall; |
| 11066 | break; |
| 11067 | case LangOptions::DCC_StdCall: |
| 11068 | if (!IsVariadic) |
| 11069 | return CC_X86StdCall; |
| 11070 | break; |
| 11071 | case LangOptions::DCC_VectorCall: |
| 11072 | // __vectorcall cannot be applied to variadic functions. |
| 11073 | if (!IsVariadic) |
| 11074 | return CC_X86VectorCall; |
| 11075 | break; |
| 11076 | case LangOptions::DCC_RegCall: |
| 11077 | // __regcall cannot be applied to variadic functions. |
| 11078 | if (!IsVariadic) |
| 11079 | return CC_X86RegCall; |
| 11080 | break; |
| 11081 | } |
| 11082 | } |
| 11083 | return Target->getDefaultCallingConv(); |
| 11084 | } |
| 11085 | |
| 11086 | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { |
| 11087 | // Pass through to the C++ ABI object |
| 11088 | return ABI->isNearlyEmpty(RD); |
| 11089 | } |
| 11090 | |
| 11091 | VTableContextBase *ASTContext::getVTableContext() { |
| 11092 | if (!VTContext.get()) { |
| 11093 | auto ABI = Target->getCXXABI(); |
| 11094 | if (ABI.isMicrosoft()) |
| 11095 | VTContext.reset(new MicrosoftVTableContext(*this)); |
| 11096 | else { |
| 11097 | auto ComponentLayout = getLangOpts().RelativeCXXABIVTables |
| 11098 | ? ItaniumVTableContext::Relative |
| 11099 | : ItaniumVTableContext::Pointer; |
| 11100 | VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout)); |
| 11101 | } |
| 11102 | } |
| 11103 | return VTContext.get(); |
| 11104 | } |
| 11105 | |
| 11106 | MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { |
| 11107 | if (!T) |
| 11108 | T = Target; |
| 11109 | switch (T->getCXXABI().getKind()) { |
| 11110 | case TargetCXXABI::AppleARM64: |
| 11111 | case TargetCXXABI::Fuchsia: |
| 11112 | case TargetCXXABI::GenericAArch64: |
| 11113 | case TargetCXXABI::GenericItanium: |
| 11114 | case TargetCXXABI::GenericARM: |
| 11115 | case TargetCXXABI::GenericMIPS: |
| 11116 | case TargetCXXABI::iOS: |
| 11117 | case TargetCXXABI::WebAssembly: |
| 11118 | case TargetCXXABI::WatchOS: |
| 11119 | case TargetCXXABI::XL: |
| 11120 | return ItaniumMangleContext::create(*this, getDiagnostics()); |
| 11121 | case TargetCXXABI::Microsoft: |
| 11122 | return MicrosoftMangleContext::create(*this, getDiagnostics()); |
| 11123 | } |
| 11124 | llvm_unreachable("Unsupported ABI")__builtin_unreachable(); |
| 11125 | } |
| 11126 | |
| 11127 | MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) { |
| 11128 | assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&((void)0) |
| 11129 | "Device mangle context does not support Microsoft mangling.")((void)0); |
| 11130 | switch (T.getCXXABI().getKind()) { |
| 11131 | case TargetCXXABI::AppleARM64: |
| 11132 | case TargetCXXABI::Fuchsia: |
| 11133 | case TargetCXXABI::GenericAArch64: |
| 11134 | case TargetCXXABI::GenericItanium: |
| 11135 | case TargetCXXABI::GenericARM: |
| 11136 | case TargetCXXABI::GenericMIPS: |
| 11137 | case TargetCXXABI::iOS: |
| 11138 | case TargetCXXABI::WebAssembly: |
| 11139 | case TargetCXXABI::WatchOS: |
| 11140 | case TargetCXXABI::XL: |
| 11141 | return ItaniumMangleContext::create( |
| 11142 | *this, getDiagnostics(), |
| 11143 | [](ASTContext &, const NamedDecl *ND) -> llvm::Optional<unsigned> { |
| 11144 | if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) |
| 11145 | return RD->getDeviceLambdaManglingNumber(); |
| 11146 | return llvm::None; |
| 11147 | }); |
| 11148 | case TargetCXXABI::Microsoft: |
| 11149 | return MicrosoftMangleContext::create(*this, getDiagnostics()); |
| 11150 | } |
| 11151 | llvm_unreachable("Unsupported ABI")__builtin_unreachable(); |
| 11152 | } |
| 11153 | |
| 11154 | CXXABI::~CXXABI() = default; |
| 11155 | |
| 11156 | size_t ASTContext::getSideTableAllocatedMemory() const { |
| 11157 | return ASTRecordLayouts.getMemorySize() + |
| 11158 | llvm::capacity_in_bytes(ObjCLayouts) + |
| 11159 | llvm::capacity_in_bytes(KeyFunctions) + |
| 11160 | llvm::capacity_in_bytes(ObjCImpls) + |
| 11161 | llvm::capacity_in_bytes(BlockVarCopyInits) + |
| 11162 | llvm::capacity_in_bytes(DeclAttrs) + |
| 11163 | llvm::capacity_in_bytes(TemplateOrInstantiation) + |
| 11164 | llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + |
| 11165 | llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + |
| 11166 | llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + |
| 11167 | llvm::capacity_in_bytes(OverriddenMethods) + |
| 11168 | llvm::capacity_in_bytes(Types) + |
| 11169 | llvm::capacity_in_bytes(VariableArrayTypes); |
| 11170 | } |
| 11171 | |
| 11172 | /// getIntTypeForBitwidth - |
| 11173 | /// sets integer QualTy according to specified details: |
| 11174 | /// bitwidth, signed/unsigned. |
| 11175 | /// Returns empty type if there is no appropriate target types. |
| 11176 | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, |
| 11177 | unsigned Signed) const { |
| 11178 | TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); |
| 11179 | CanQualType QualTy = getFromTargetType(Ty); |
| 11180 | if (!QualTy && DestWidth == 128) |
| 11181 | return Signed ? Int128Ty : UnsignedInt128Ty; |
| 11182 | return QualTy; |
| 11183 | } |
| 11184 | |
| 11185 | /// getRealTypeForBitwidth - |
| 11186 | /// sets floating point QualTy according to specified bitwidth. |
| 11187 | /// Returns empty type if there is no appropriate target types. |
| 11188 | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, |
| 11189 | bool ExplicitIEEE) const { |
| 11190 | TargetInfo::RealType Ty = |
| 11191 | getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE); |
| 11192 | switch (Ty) { |
| 11193 | case TargetInfo::Float: |
| 11194 | return FloatTy; |
| 11195 | case TargetInfo::Double: |
| 11196 | return DoubleTy; |
| 11197 | case TargetInfo::LongDouble: |
| 11198 | return LongDoubleTy; |
| 11199 | case TargetInfo::Float128: |
| 11200 | return Float128Ty; |
| 11201 | case TargetInfo::NoFloat: |
| 11202 | return {}; |
| 11203 | } |
| 11204 | |
| 11205 | llvm_unreachable("Unhandled TargetInfo::RealType value")__builtin_unreachable(); |
| 11206 | } |
| 11207 | |
| 11208 | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { |
| 11209 | if (Number > 1) |
| 11210 | MangleNumbers[ND] = Number; |
| 11211 | } |
| 11212 | |
| 11213 | unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const { |
| 11214 | auto I = MangleNumbers.find(ND); |
| 11215 | return I != MangleNumbers.end() ? I->second : 1; |
| 11216 | } |
| 11217 | |
| 11218 | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { |
| 11219 | if (Number > 1) |
| 11220 | StaticLocalNumbers[VD] = Number; |
| 11221 | } |
| 11222 | |
| 11223 | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { |
| 11224 | auto I = StaticLocalNumbers.find(VD); |
| 11225 | return I != StaticLocalNumbers.end() ? I->second : 1; |
| 11226 | } |
| 11227 | |
| 11228 | MangleNumberingContext & |
| 11229 | ASTContext::getManglingNumberContext(const DeclContext *DC) { |
| 11230 | assert(LangOpts.CPlusPlus)((void)0); // We don't need mangling numbers for plain C. |
| 11231 | std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; |
| 11232 | if (!MCtx) |
| 11233 | MCtx = createMangleNumberingContext(); |
| 11234 | return *MCtx; |
| 11235 | } |
| 11236 | |
| 11237 | MangleNumberingContext & |
| 11238 | ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) { |
| 11239 | assert(LangOpts.CPlusPlus)((void)0); // We don't need mangling numbers for plain C. |
| 11240 | std::unique_ptr<MangleNumberingContext> &MCtx = |
| 11241 | ExtraMangleNumberingContexts[D]; |
| 11242 | if (!MCtx) |
| 11243 | MCtx = createMangleNumberingContext(); |
| 11244 | return *MCtx; |
| 11245 | } |
| 11246 | |
| 11247 | std::unique_ptr<MangleNumberingContext> |
| 11248 | ASTContext::createMangleNumberingContext() const { |
| 11249 | return ABI->createMangleNumberingContext(); |
| 11250 | } |
| 11251 | |
| 11252 | const CXXConstructorDecl * |
| 11253 | ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { |
| 11254 | return ABI->getCopyConstructorForExceptionObject( |
| 11255 | cast<CXXRecordDecl>(RD->getFirstDecl())); |
| 11256 | } |
| 11257 | |
| 11258 | void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, |
| 11259 | CXXConstructorDecl *CD) { |
| 11260 | return ABI->addCopyConstructorForExceptionObject( |
| 11261 | cast<CXXRecordDecl>(RD->getFirstDecl()), |
| 11262 | cast<CXXConstructorDecl>(CD->getFirstDecl())); |
| 11263 | } |
| 11264 | |
| 11265 | void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, |
| 11266 | TypedefNameDecl *DD) { |
| 11267 | return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); |
| 11268 | } |
| 11269 | |
| 11270 | TypedefNameDecl * |
| 11271 | ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { |
| 11272 | return ABI->getTypedefNameForUnnamedTagDecl(TD); |
| 11273 | } |
| 11274 | |
| 11275 | void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, |
| 11276 | DeclaratorDecl *DD) { |
| 11277 | return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); |
| 11278 | } |
| 11279 | |
| 11280 | DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { |
| 11281 | return ABI->getDeclaratorForUnnamedTagDecl(TD); |
| 11282 | } |
| 11283 | |
| 11284 | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { |
| 11285 | ParamIndices[D] = index; |
| 11286 | } |
| 11287 | |
| 11288 | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { |
| 11289 | ParameterIndexTable::const_iterator I = ParamIndices.find(D); |
| 11290 | assert(I != ParamIndices.end() &&((void)0) |
| 11291 | "ParmIndices lacks entry set by ParmVarDecl")((void)0); |
| 11292 | return I->second; |
| 11293 | } |
| 11294 | |
| 11295 | QualType ASTContext::getStringLiteralArrayType(QualType EltTy, |
| 11296 | unsigned Length) const { |
| 11297 | // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). |
| 11298 | if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) |
| 11299 | EltTy = EltTy.withConst(); |
| 11300 | |
| 11301 | EltTy = adjustStringLiteralBaseType(EltTy); |
| 11302 | |
| 11303 | // Get an array type for the string, according to C99 6.4.5. This includes |
| 11304 | // the null terminator character. |
| 11305 | return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr, |
| 11306 | ArrayType::Normal, /*IndexTypeQuals*/ 0); |
| 11307 | } |
| 11308 | |
| 11309 | StringLiteral * |
| 11310 | ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { |
| 11311 | StringLiteral *&Result = StringLiteralCache[Key]; |
| 11312 | if (!Result) |
| 11313 | Result = StringLiteral::Create( |
| 11314 | *this, Key, StringLiteral::Ascii, |
| 11315 | /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()), |
| 11316 | SourceLocation()); |
| 11317 | return Result; |
| 11318 | } |
| 11319 | |
| 11320 | MSGuidDecl * |
| 11321 | ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { |
| 11322 | assert(MSGuidTagDecl && "building MS GUID without MS extensions?")((void)0); |
| 11323 | |
| 11324 | llvm::FoldingSetNodeID ID; |
| 11325 | MSGuidDecl::Profile(ID, Parts); |
| 11326 | |
| 11327 | void *InsertPos; |
| 11328 | if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) |
| 11329 | return Existing; |
| 11330 | |
| 11331 | QualType GUIDType = getMSGuidType().withConst(); |
| 11332 | MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts); |
| 11333 | MSGuidDecls.InsertNode(New, InsertPos); |
| 11334 | return New; |
| 11335 | } |
| 11336 | |
| 11337 | TemplateParamObjectDecl * |
| 11338 | ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { |
| 11339 | assert(T->isRecordType() && "template param object of unexpected type")((void)0); |
| 11340 | |
| 11341 | // C++ [temp.param]p8: |
| 11342 | // [...] a static storage duration object of type 'const T' [...] |
| 11343 | T.addConst(); |
| 11344 | |
| 11345 | llvm::FoldingSetNodeID ID; |
| 11346 | TemplateParamObjectDecl::Profile(ID, T, V); |
| 11347 | |
| 11348 | void *InsertPos; |
| 11349 | if (TemplateParamObjectDecl *Existing = |
| 11350 | TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) |
| 11351 | return Existing; |
| 11352 | |
| 11353 | TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V); |
| 11354 | TemplateParamObjectDecls.InsertNode(New, InsertPos); |
| 11355 | return New; |
| 11356 | } |
| 11357 | |
| 11358 | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { |
| 11359 | const llvm::Triple &T = getTargetInfo().getTriple(); |
| 11360 | if (!T.isOSDarwin()) |
| 11361 | return false; |
| 11362 | |
| 11363 | if (!(T.isiOS() && T.isOSVersionLT(7)) && |
| 11364 | !(T.isMacOSX() && T.isOSVersionLT(10, 9))) |
| 11365 | return false; |
| 11366 | |
| 11367 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
| 11368 | CharUnits sizeChars = getTypeSizeInChars(AtomicTy); |
| 11369 | uint64_t Size = sizeChars.getQuantity(); |
| 11370 | CharUnits alignChars = getTypeAlignInChars(AtomicTy); |
| 11371 | unsigned Align = alignChars.getQuantity(); |
| 11372 | unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); |
| 11373 | return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); |
| 11374 | } |
| 11375 | |
| 11376 | bool |
| 11377 | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, |
| 11378 | const ObjCMethodDecl *MethodImpl) { |
| 11379 | // No point trying to match an unavailable/deprecated mothod. |
| 11380 | if (MethodDecl->hasAttr<UnavailableAttr>() |
| 11381 | || MethodDecl->hasAttr<DeprecatedAttr>()) |
| 11382 | return false; |
| 11383 | if (MethodDecl->getObjCDeclQualifier() != |
| 11384 | MethodImpl->getObjCDeclQualifier()) |
| 11385 | return false; |
| 11386 | if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) |
| 11387 | return false; |
| 11388 | |
| 11389 | if (MethodDecl->param_size() != MethodImpl->param_size()) |
| 11390 | return false; |
| 11391 | |
| 11392 | for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), |
| 11393 | IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), |
| 11394 | EF = MethodDecl->param_end(); |
| 11395 | IM != EM && IF != EF; ++IM, ++IF) { |
| 11396 | const ParmVarDecl *DeclVar = (*IF); |
| 11397 | const ParmVarDecl *ImplVar = (*IM); |
| 11398 | if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) |
| 11399 | return false; |
| 11400 | if (!hasSameType(DeclVar->getType(), ImplVar->getType())) |
| 11401 | return false; |
| 11402 | } |
| 11403 | |
| 11404 | return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); |
| 11405 | } |
| 11406 | |
| 11407 | uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { |
| 11408 | LangAS AS; |
| 11409 | if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) |
| 11410 | AS = LangAS::Default; |
| 11411 | else |
| 11412 | AS = QT->getPointeeType().getAddressSpace(); |
| 11413 | |
| 11414 | return getTargetInfo().getNullPointerValue(AS); |
| 11415 | } |
| 11416 | |
| 11417 | unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { |
| 11418 | if (isTargetAddressSpace(AS)) |
| 11419 | return toTargetAddressSpace(AS); |
| 11420 | else |
| 11421 | return (*AddrSpaceMap)[(unsigned)AS]; |
| 11422 | } |
| 11423 | |
| 11424 | QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { |
| 11425 | assert(Ty->isFixedPointType())((void)0); |
| 11426 | |
| 11427 | if (Ty->isSaturatedFixedPointType()) return Ty; |
| 11428 | |
| 11429 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 11430 | default: |
| 11431 | llvm_unreachable("Not a fixed point type!")__builtin_unreachable(); |
| 11432 | case BuiltinType::ShortAccum: |
| 11433 | return SatShortAccumTy; |
| 11434 | case BuiltinType::Accum: |
| 11435 | return SatAccumTy; |
| 11436 | case BuiltinType::LongAccum: |
| 11437 | return SatLongAccumTy; |
| 11438 | case BuiltinType::UShortAccum: |
| 11439 | return SatUnsignedShortAccumTy; |
| 11440 | case BuiltinType::UAccum: |
| 11441 | return SatUnsignedAccumTy; |
| 11442 | case BuiltinType::ULongAccum: |
| 11443 | return SatUnsignedLongAccumTy; |
| 11444 | case BuiltinType::ShortFract: |
| 11445 | return SatShortFractTy; |
| 11446 | case BuiltinType::Fract: |
| 11447 | return SatFractTy; |
| 11448 | case BuiltinType::LongFract: |
| 11449 | return SatLongFractTy; |
| 11450 | case BuiltinType::UShortFract: |
| 11451 | return SatUnsignedShortFractTy; |
| 11452 | case BuiltinType::UFract: |
| 11453 | return SatUnsignedFractTy; |
| 11454 | case BuiltinType::ULongFract: |
| 11455 | return SatUnsignedLongFractTy; |
| 11456 | } |
| 11457 | } |
| 11458 | |
| 11459 | LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { |
| 11460 | if (LangOpts.OpenCL) |
| 11461 | return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); |
| 11462 | |
| 11463 | if (LangOpts.CUDA) |
| 11464 | return getTargetInfo().getCUDABuiltinAddressSpace(AS); |
| 11465 | |
| 11466 | return getLangASFromTargetAS(AS); |
| 11467 | } |
| 11468 | |
| 11469 | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that |
| 11470 | // doesn't include ASTContext.h |
| 11471 | template |
| 11472 | clang::LazyGenerationalUpdatePtr< |
| 11473 | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType |
| 11474 | clang::LazyGenerationalUpdatePtr< |
| 11475 | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( |
| 11476 | const clang::ASTContext &Ctx, Decl *Value); |
| 11477 | |
| 11478 | unsigned char ASTContext::getFixedPointScale(QualType Ty) const { |
| 11479 | assert(Ty->isFixedPointType())((void)0); |
| 11480 | |
| 11481 | const TargetInfo &Target = getTargetInfo(); |
| 11482 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 11483 | default: |
| 11484 | llvm_unreachable("Not a fixed point type!")__builtin_unreachable(); |
| 11485 | case BuiltinType::ShortAccum: |
| 11486 | case BuiltinType::SatShortAccum: |
| 11487 | return Target.getShortAccumScale(); |
| 11488 | case BuiltinType::Accum: |
| 11489 | case BuiltinType::SatAccum: |
| 11490 | return Target.getAccumScale(); |
| 11491 | case BuiltinType::LongAccum: |
| 11492 | case BuiltinType::SatLongAccum: |
| 11493 | return Target.getLongAccumScale(); |
| 11494 | case BuiltinType::UShortAccum: |
| 11495 | case BuiltinType::SatUShortAccum: |
| 11496 | return Target.getUnsignedShortAccumScale(); |
| 11497 | case BuiltinType::UAccum: |
| 11498 | case BuiltinType::SatUAccum: |
| 11499 | return Target.getUnsignedAccumScale(); |
| 11500 | case BuiltinType::ULongAccum: |
| 11501 | case BuiltinType::SatULongAccum: |
| 11502 | return Target.getUnsignedLongAccumScale(); |
| 11503 | case BuiltinType::ShortFract: |
| 11504 | case BuiltinType::SatShortFract: |
| 11505 | return Target.getShortFractScale(); |
| 11506 | case BuiltinType::Fract: |
| 11507 | case BuiltinType::SatFract: |
| 11508 | return Target.getFractScale(); |
| 11509 | case BuiltinType::LongFract: |
| 11510 | case BuiltinType::SatLongFract: |
| 11511 | return Target.getLongFractScale(); |
| 11512 | case BuiltinType::UShortFract: |
| 11513 | case BuiltinType::SatUShortFract: |
| 11514 | return Target.getUnsignedShortFractScale(); |
| 11515 | case BuiltinType::UFract: |
| 11516 | case BuiltinType::SatUFract: |
| 11517 | return Target.getUnsignedFractScale(); |
| 11518 | case BuiltinType::ULongFract: |
| 11519 | case BuiltinType::SatULongFract: |
| 11520 | return Target.getUnsignedLongFractScale(); |
| 11521 | } |
| 11522 | } |
| 11523 | |
| 11524 | unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { |
| 11525 | assert(Ty->isFixedPointType())((void)0); |
| 11526 | |
| 11527 | const TargetInfo &Target = getTargetInfo(); |
| 11528 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 11529 | default: |
| 11530 | llvm_unreachable("Not a fixed point type!")__builtin_unreachable(); |
| 11531 | case BuiltinType::ShortAccum: |
| 11532 | case BuiltinType::SatShortAccum: |
| 11533 | return Target.getShortAccumIBits(); |
| 11534 | case BuiltinType::Accum: |
| 11535 | case BuiltinType::SatAccum: |
| 11536 | return Target.getAccumIBits(); |
| 11537 | case BuiltinType::LongAccum: |
| 11538 | case BuiltinType::SatLongAccum: |
| 11539 | return Target.getLongAccumIBits(); |
| 11540 | case BuiltinType::UShortAccum: |
| 11541 | case BuiltinType::SatUShortAccum: |
| 11542 | return Target.getUnsignedShortAccumIBits(); |
| 11543 | case BuiltinType::UAccum: |
| 11544 | case BuiltinType::SatUAccum: |
| 11545 | return Target.getUnsignedAccumIBits(); |
| 11546 | case BuiltinType::ULongAccum: |
| 11547 | case BuiltinType::SatULongAccum: |
| 11548 | return Target.getUnsignedLongAccumIBits(); |
| 11549 | case BuiltinType::ShortFract: |
| 11550 | case BuiltinType::SatShortFract: |
| 11551 | case BuiltinType::Fract: |
| 11552 | case BuiltinType::SatFract: |
| 11553 | case BuiltinType::LongFract: |
| 11554 | case BuiltinType::SatLongFract: |
| 11555 | case BuiltinType::UShortFract: |
| 11556 | case BuiltinType::SatUShortFract: |
| 11557 | case BuiltinType::UFract: |
| 11558 | case BuiltinType::SatUFract: |
| 11559 | case BuiltinType::ULongFract: |
| 11560 | case BuiltinType::SatULongFract: |
| 11561 | return 0; |
| 11562 | } |
| 11563 | } |
| 11564 | |
| 11565 | llvm::FixedPointSemantics |
| 11566 | ASTContext::getFixedPointSemantics(QualType Ty) const { |
| 11567 | assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&((void)0) |
| 11568 | "Can only get the fixed point semantics for a "((void)0) |
| 11569 | "fixed point or integer type.")((void)0); |
| 11570 | if (Ty->isIntegerType()) |
| 11571 | return llvm::FixedPointSemantics::GetIntegerSemantics( |
| 11572 | getIntWidth(Ty), Ty->isSignedIntegerType()); |
| 11573 | |
| 11574 | bool isSigned = Ty->isSignedFixedPointType(); |
| 11575 | return llvm::FixedPointSemantics( |
| 11576 | static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned, |
| 11577 | Ty->isSaturatedFixedPointType(), |
| 11578 | !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); |
| 11579 | } |
| 11580 | |
| 11581 | llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { |
| 11582 | assert(Ty->isFixedPointType())((void)0); |
| 11583 | return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty)); |
| 11584 | } |
| 11585 | |
| 11586 | llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { |
| 11587 | assert(Ty->isFixedPointType())((void)0); |
| 11588 | return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty)); |
| 11589 | } |
| 11590 | |
| 11591 | QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { |
| 11592 | assert(Ty->isUnsignedFixedPointType() &&((void)0) |
| 11593 | "Expected unsigned fixed point type")((void)0); |
| 11594 | |
| 11595 | switch (Ty->castAs<BuiltinType>()->getKind()) { |
| 11596 | case BuiltinType::UShortAccum: |
| 11597 | return ShortAccumTy; |
| 11598 | case BuiltinType::UAccum: |
| 11599 | return AccumTy; |
| 11600 | case BuiltinType::ULongAccum: |
| 11601 | return LongAccumTy; |
| 11602 | case BuiltinType::SatUShortAccum: |
| 11603 | return SatShortAccumTy; |
| 11604 | case BuiltinType::SatUAccum: |
| 11605 | return SatAccumTy; |
| 11606 | case BuiltinType::SatULongAccum: |
| 11607 | return SatLongAccumTy; |
| 11608 | case BuiltinType::UShortFract: |
| 11609 | return ShortFractTy; |
| 11610 | case BuiltinType::UFract: |
| 11611 | return FractTy; |
| 11612 | case BuiltinType::ULongFract: |
| 11613 | return LongFractTy; |
| 11614 | case BuiltinType::SatUShortFract: |
| 11615 | return SatShortFractTy; |
| 11616 | case BuiltinType::SatUFract: |
| 11617 | return SatFractTy; |
| 11618 | case BuiltinType::SatULongFract: |
| 11619 | return SatLongFractTy; |
| 11620 | default: |
| 11621 | llvm_unreachable("Unexpected unsigned fixed point type")__builtin_unreachable(); |
| 11622 | } |
| 11623 | } |
| 11624 | |
| 11625 | ParsedTargetAttr |
| 11626 | ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { |
| 11627 | assert(TD != nullptr)((void)0); |
| 11628 | ParsedTargetAttr ParsedAttr = TD->parse(); |
| 11629 | |
| 11630 | ParsedAttr.Features.erase( |
| 11631 | llvm::remove_if(ParsedAttr.Features, |
| 11632 | [&](const std::string &Feat) { |
| 11633 | return !Target->isValidFeatureName( |
| 11634 | StringRef{Feat}.substr(1)); |
| 11635 | }), |
| 11636 | ParsedAttr.Features.end()); |
| 11637 | return ParsedAttr; |
| 11638 | } |
| 11639 | |
| 11640 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
| 11641 | const FunctionDecl *FD) const { |
| 11642 | if (FD) |
| 11643 | getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD)); |
| 11644 | else |
| 11645 | Target->initFeatureMap(FeatureMap, getDiagnostics(), |
| 11646 | Target->getTargetOpts().CPU, |
| 11647 | Target->getTargetOpts().Features); |
| 11648 | } |
| 11649 | |
| 11650 | // Fills in the supplied string map with the set of target features for the |
| 11651 | // passed in function. |
| 11652 | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, |
| 11653 | GlobalDecl GD) const { |
| 11654 | StringRef TargetCPU = Target->getTargetOpts().CPU; |
| 11655 | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); |
| 11656 | if (const auto *TD = FD->getAttr<TargetAttr>()) { |
| 11657 | ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); |
| 11658 | |
| 11659 | // Make a copy of the features as passed on the command line into the |
| 11660 | // beginning of the additional features from the function to override. |
| 11661 | ParsedAttr.Features.insert( |
| 11662 | ParsedAttr.Features.begin(), |
| 11663 | Target->getTargetOpts().FeaturesAsWritten.begin(), |
| 11664 | Target->getTargetOpts().FeaturesAsWritten.end()); |
| 11665 | |
| 11666 | if (ParsedAttr.Architecture != "" && |
| 11667 | Target->isValidCPUName(ParsedAttr.Architecture)) |
| 11668 | TargetCPU = ParsedAttr.Architecture; |
| 11669 | |
| 11670 | // Now populate the feature map, first with the TargetCPU which is either |
| 11671 | // the default or a new one from the target attribute string. Then we'll use |
| 11672 | // the passed in features (FeaturesAsWritten) along with the new ones from |
| 11673 | // the attribute. |
| 11674 | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, |
| 11675 | ParsedAttr.Features); |
| 11676 | } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { |
| 11677 | llvm::SmallVector<StringRef, 32> FeaturesTmp; |
| 11678 | Target->getCPUSpecificCPUDispatchFeatures( |
| 11679 | SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); |
| 11680 | std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); |
| 11681 | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); |
| 11682 | } else { |
| 11683 | FeatureMap = Target->getTargetOpts().FeatureMap; |
| 11684 | } |
| 11685 | } |
| 11686 | |
| 11687 | OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { |
| 11688 | OMPTraitInfoVector.emplace_back(new OMPTraitInfo()); |
| 11689 | return *OMPTraitInfoVector.back(); |
| 11690 | } |
| 11691 | |
| 11692 | const StreamingDiagnostic &clang:: |
| 11693 | operator<<(const StreamingDiagnostic &DB, |
| 11694 | const ASTContext::SectionInfo &Section) { |
| 11695 | if (Section.Decl) |
| 11696 | return DB << Section.Decl; |
| 11697 | return DB << "a prior #pragma section"; |
| 11698 | } |
| 11699 | |
| 11700 | bool ASTContext::mayExternalizeStaticVar(const Decl *D) const { |
| 11701 | bool IsStaticVar = |
| 11702 | isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static; |
| 11703 | bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() && |
| 11704 | !D->getAttr<CUDADeviceAttr>()->isImplicit()) || |
| 11705 | (D->hasAttr<CUDAConstantAttr>() && |
| 11706 | !D->getAttr<CUDAConstantAttr>()->isImplicit()); |
| 11707 | // CUDA/HIP: static managed variables need to be externalized since it is |
| 11708 | // a declaration in IR, therefore cannot have internal linkage. |
| 11709 | return IsStaticVar && |
| 11710 | (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar); |
| 11711 | } |
| 11712 | |
| 11713 | bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const { |
| 11714 | return mayExternalizeStaticVar(D) && |
| 11715 | (D->hasAttr<HIPManagedAttr>() || |
| 11716 | CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D))); |
| 11717 | } |
| 11718 | |
| 11719 | StringRef ASTContext::getCUIDHash() const { |
| 11720 | if (!CUIDHash.empty()) |
| 11721 | return CUIDHash; |
| 11722 | if (LangOpts.CUID.empty()) |
| 11723 | return StringRef(); |
| 11724 | CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true); |
| 11725 | return CUIDHash; |
| 11726 | } |
| 11727 | |
| 11728 | // Get the closest named parent, so we can order the sycl naming decls somewhere |
| 11729 | // that mangling is meaningful. |
| 11730 | static const DeclContext *GetNamedParent(const CXXRecordDecl *RD) { |
| 11731 | const DeclContext *DC = RD->getDeclContext(); |
| 11732 | |
| 11733 | while (!isa<NamedDecl, TranslationUnitDecl>(DC)) |
| 11734 | DC = DC->getParent(); |
| 11735 | return DC; |
| 11736 | } |
| 11737 | |
| 11738 | void ASTContext::AddSYCLKernelNamingDecl(const CXXRecordDecl *RD) { |
| 11739 | assert(getLangOpts().isSYCL() && "Only valid for SYCL programs")((void)0); |
| 11740 | RD = RD->getCanonicalDecl(); |
| 11741 | const DeclContext *DC = GetNamedParent(RD); |
| 11742 | |
| 11743 | assert(RD->getLocation().isValid() &&((void)0) |
| 11744 | "Invalid location on kernel naming decl")((void)0); |
| 11745 | |
| 11746 | (void)SYCLKernelNamingTypes[DC].insert(RD); |
| 11747 | } |
| 11748 | |
| 11749 | bool ASTContext::IsSYCLKernelNamingDecl(const NamedDecl *ND) const { |
| 11750 | assert(getLangOpts().isSYCL() && "Only valid for SYCL programs")((void)0); |
| 11751 | const auto *RD = dyn_cast<CXXRecordDecl>(ND); |
| 11752 | if (!RD) |
| 11753 | return false; |
| 11754 | RD = RD->getCanonicalDecl(); |
| 11755 | const DeclContext *DC = GetNamedParent(RD); |
| 11756 | |
| 11757 | auto Itr = SYCLKernelNamingTypes.find(DC); |
| 11758 | |
| 11759 | if (Itr == SYCLKernelNamingTypes.end()) |
| 11760 | return false; |
| 11761 | |
| 11762 | return Itr->getSecond().count(RD); |
| 11763 | } |
| 11764 | |
| 11765 | // Filters the Decls list to those that share the lambda mangling with the |
| 11766 | // passed RD. |
| 11767 | void ASTContext::FilterSYCLKernelNamingDecls( |
| 11768 | const CXXRecordDecl *RD, |
| 11769 | llvm::SmallVectorImpl<const CXXRecordDecl *> &Decls) { |
| 11770 | |
| 11771 | if (!SYCLKernelFilterContext) |
| 11772 | SYCLKernelFilterContext.reset( |
| 11773 | ItaniumMangleContext::create(*this, getDiagnostics())); |
| 11774 | |
| 11775 | llvm::SmallString<128> LambdaSig; |
| 11776 | llvm::raw_svector_ostream Out(LambdaSig); |
| 11777 | SYCLKernelFilterContext->mangleLambdaSig(RD, Out); |
| 11778 | |
| 11779 | llvm::erase_if(Decls, [this, &LambdaSig](const CXXRecordDecl *LocalRD) { |
| 11780 | llvm::SmallString<128> LocalLambdaSig; |
| 11781 | llvm::raw_svector_ostream LocalOut(LocalLambdaSig); |
| 11782 | SYCLKernelFilterContext->mangleLambdaSig(LocalRD, LocalOut); |
| 11783 | return LambdaSig != LocalLambdaSig; |
| 11784 | }); |
| 11785 | } |
| 11786 | |
| 11787 | unsigned ASTContext::GetSYCLKernelNamingIndex(const NamedDecl *ND) { |
| 11788 | assert(getLangOpts().isSYCL() && "Only valid for SYCL programs")((void)0); |
| 11789 | assert(IsSYCLKernelNamingDecl(ND) &&((void)0) |
| 11790 | "Lambda not involved in mangling asked for a naming index?")((void)0); |
| 11791 | |
| 11792 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(ND)->getCanonicalDecl(); |
| 11793 | const DeclContext *DC = GetNamedParent(RD); |
| 11794 | |
| 11795 | auto Itr = SYCLKernelNamingTypes.find(DC); |
| 11796 | assert(Itr != SYCLKernelNamingTypes.end() && "Not a valid DeclContext?")((void)0); |
| 11797 | |
| 11798 | const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &Set = Itr->getSecond(); |
| 11799 | |
| 11800 | llvm::SmallVector<const CXXRecordDecl *> Decls{Set.begin(), Set.end()}; |
| 11801 | |
| 11802 | FilterSYCLKernelNamingDecls(RD, Decls); |
| 11803 | |
| 11804 | llvm::sort(Decls, [](const CXXRecordDecl *LHS, const CXXRecordDecl *RHS) { |
| 11805 | return LHS->getLambdaManglingNumber() < RHS->getLambdaManglingNumber(); |
| 11806 | }); |
| 11807 | |
| 11808 | return llvm::find(Decls, RD) - Decls.begin(); |
| 11809 | } |