| File: | src/lib/libc/db/hash/hash_page.c |
| Warning: | line 330, column 4 Value stored to 'n' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: hash_page.c,v 1.23 2016/12/18 17:07:58 krw Exp $ */ |
| 2 | |
| 3 | /*- |
| 4 | * Copyright (c) 1990, 1993, 1994 |
| 5 | * The Regents of the University of California. All rights reserved. |
| 6 | * |
| 7 | * This code is derived from software contributed to Berkeley by |
| 8 | * Margo Seltzer. |
| 9 | * |
| 10 | * Redistribution and use in source and binary forms, with or without |
| 11 | * modification, are permitted provided that the following conditions |
| 12 | * are met: |
| 13 | * 1. Redistributions of source code must retain the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer. |
| 15 | * 2. Redistributions in binary form must reproduce the above copyright |
| 16 | * notice, this list of conditions and the following disclaimer in the |
| 17 | * documentation and/or other materials provided with the distribution. |
| 18 | * 3. Neither the name of the University nor the names of its contributors |
| 19 | * may be used to endorse or promote products derived from this software |
| 20 | * without specific prior written permission. |
| 21 | * |
| 22 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
| 23 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 24 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 25 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
| 26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 27 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 28 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 29 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 30 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 31 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 32 | * SUCH DAMAGE. |
| 33 | */ |
| 34 | |
| 35 | /* |
| 36 | * PACKAGE: hashing |
| 37 | * |
| 38 | * DESCRIPTION: |
| 39 | * Page manipulation for hashing package. |
| 40 | * |
| 41 | * ROUTINES: |
| 42 | * |
| 43 | * External |
| 44 | * __get_page |
| 45 | * __add_ovflpage |
| 46 | * Internal |
| 47 | * overflow_page |
| 48 | * open_temp |
| 49 | */ |
| 50 | |
| 51 | #include <errno(*__errno()).h> |
| 52 | #include <fcntl.h> |
| 53 | #include <limits.h> |
| 54 | #include <signal.h> |
| 55 | #include <stdio.h> |
| 56 | #include <stdlib.h> |
| 57 | #include <string.h> |
| 58 | #include <unistd.h> |
| 59 | #ifdef DEBUG |
| 60 | #include <assert.h> |
| 61 | #endif |
| 62 | |
| 63 | #include <db.h> |
| 64 | #include "hash.h" |
| 65 | #include "page.h" |
| 66 | #include "extern.h" |
| 67 | |
| 68 | static u_int32_t *fetch_bitmap(HTAB *, int); |
| 69 | static u_int32_t first_free(u_int32_t); |
| 70 | static int open_temp(HTAB *); |
| 71 | static u_int16_t overflow_page(HTAB *); |
| 72 | static void putpair(char *, const DBT *, const DBT *); |
| 73 | static void squeeze_key(u_int16_t *, const DBT *, const DBT *); |
| 74 | static int ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int); |
| 75 | |
| 76 | #define PAGE_INIT(P){ ((u_int16_t *)(P))[0] = 0; ((u_int16_t *)(P))[1] = hashp-> hdr.bsize - 3 * sizeof(u_int16_t); ((u_int16_t *)(P))[2] = hashp ->hdr.bsize; } { \ |
| 77 | ((u_int16_t *)(P))[0] = 0; \ |
| 78 | ((u_int16_t *)(P))[1] = hashp->BSIZEhdr.bsize - 3 * sizeof(u_int16_t); \ |
| 79 | ((u_int16_t *)(P))[2] = hashp->BSIZEhdr.bsize; \ |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | * This is called AFTER we have verified that there is room on the page for |
| 84 | * the pair (PAIRFITS has returned true) so we go right ahead and start moving |
| 85 | * stuff on. |
| 86 | */ |
| 87 | static void |
| 88 | putpair(char *p, const DBT *key, const DBT *val) |
| 89 | { |
| 90 | u_int16_t *bp, n, off; |
| 91 | |
| 92 | bp = (u_int16_t *)p; |
| 93 | |
| 94 | /* Enter the key first. */ |
| 95 | n = bp[0]; |
| 96 | |
| 97 | off = OFFSET(bp)((bp)[(bp)[0]+2]) - key->size; |
| 98 | memmove(p + off, key->data, key->size); |
| 99 | bp[++n] = off; |
| 100 | |
| 101 | /* Now the data. */ |
| 102 | off -= val->size; |
| 103 | memmove(p + off, val->data, val->size); |
| 104 | bp[++n] = off; |
| 105 | |
| 106 | /* Adjust page info. */ |
| 107 | bp[0] = n; |
| 108 | bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t)); |
| 109 | bp[n + 2] = off; |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | * Returns: |
| 114 | * 0 OK |
| 115 | * -1 error |
| 116 | */ |
| 117 | int |
| 118 | __delpair(HTAB *hashp, BUFHEAD *bufp, int ndx) |
| 119 | { |
| 120 | u_int16_t *bp, newoff, pairlen; |
| 121 | int n; |
| 122 | |
| 123 | bp = (u_int16_t *)bufp->page; |
| 124 | n = bp[0]; |
| 125 | |
| 126 | if (bp[ndx + 1] < REAL_KEY4) |
| 127 | return (__big_delete(hashp, bufp)); |
| 128 | if (ndx != 1) |
| 129 | newoff = bp[ndx - 1]; |
| 130 | else |
| 131 | newoff = hashp->BSIZEhdr.bsize; |
| 132 | pairlen = newoff - bp[ndx + 1]; |
| 133 | |
| 134 | if (ndx != (n - 1)) { |
| 135 | /* Hard Case -- need to shuffle keys */ |
| 136 | int i; |
| 137 | char *src = bufp->page + (int)OFFSET(bp)((bp)[(bp)[0]+2]); |
| 138 | char *dst = src + (int)pairlen; |
| 139 | memmove(dst, src, bp[ndx + 1] - OFFSET(bp)((bp)[(bp)[0]+2])); |
| 140 | |
| 141 | /* Now adjust the pointers */ |
| 142 | for (i = ndx + 2; i <= n; i += 2) { |
| 143 | if (bp[i + 1] == OVFLPAGE0) { |
| 144 | bp[i - 2] = bp[i]; |
| 145 | bp[i - 1] = bp[i + 1]; |
| 146 | } else { |
| 147 | bp[i - 2] = bp[i] + pairlen; |
| 148 | bp[i - 1] = bp[i + 1] + pairlen; |
| 149 | } |
| 150 | } |
| 151 | if (ndx == hashp->cndx) { |
| 152 | /* |
| 153 | * We just removed pair we were "pointing" to. |
| 154 | * By moving back the cndx we ensure subsequent |
| 155 | * hash_seq() calls won't skip over any entries. |
| 156 | */ |
| 157 | hashp->cndx -= 2; |
| 158 | } |
| 159 | } |
| 160 | /* Finally adjust the page data */ |
| 161 | bp[n] = OFFSET(bp)((bp)[(bp)[0]+2]) + pairlen; |
| 162 | bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t); |
| 163 | bp[0] = n - 2; |
| 164 | hashp->NKEYShdr.nkeys--; |
| 165 | |
| 166 | bufp->flags |= BUF_MOD0x0001; |
| 167 | return (0); |
| 168 | } |
| 169 | /* |
| 170 | * Returns: |
| 171 | * 0 ==> OK |
| 172 | * -1 ==> Error |
| 173 | */ |
| 174 | int |
| 175 | __split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket) |
| 176 | { |
| 177 | BUFHEAD *new_bufp, *old_bufp; |
| 178 | u_int16_t *ino; |
| 179 | char *np; |
| 180 | DBT key, val; |
| 181 | int n, ndx, retval; |
| 182 | u_int16_t copyto, diff, off, moved; |
| 183 | char *op; |
| 184 | |
| 185 | copyto = (u_int16_t)hashp->BSIZEhdr.bsize; |
| 186 | off = (u_int16_t)hashp->BSIZEhdr.bsize; |
| 187 | old_bufp = __get_buf(hashp, obucket, NULL((void *)0), 0); |
| 188 | if (old_bufp == NULL((void *)0)) |
| 189 | return (-1); |
| 190 | new_bufp = __get_buf(hashp, nbucket, NULL((void *)0), 0); |
| 191 | if (new_bufp == NULL((void *)0)) |
| 192 | return (-1); |
| 193 | |
| 194 | old_bufp->flags |= (BUF_MOD0x0001 | BUF_PIN0x0008); |
| 195 | new_bufp->flags |= (BUF_MOD0x0001 | BUF_PIN0x0008); |
| 196 | |
| 197 | ino = (u_int16_t *)(op = old_bufp->page); |
| 198 | np = new_bufp->page; |
| 199 | |
| 200 | moved = 0; |
| 201 | |
| 202 | for (n = 1, ndx = 1; n < ino[0]; n += 2) { |
| 203 | if (ino[n + 1] < REAL_KEY4) { |
| 204 | retval = ugly_split(hashp, obucket, old_bufp, new_bufp, |
| 205 | (int)copyto, (int)moved); |
| 206 | old_bufp->flags &= ~BUF_PIN0x0008; |
| 207 | new_bufp->flags &= ~BUF_PIN0x0008; |
| 208 | return (retval); |
| 209 | |
| 210 | } |
| 211 | key.data = (u_char *)op + ino[n]; |
| 212 | key.size = off - ino[n]; |
| 213 | |
| 214 | if (__call_hash(hashp, key.data, key.size) == obucket) { |
| 215 | /* Don't switch page */ |
| 216 | diff = copyto - off; |
| 217 | if (diff) { |
| 218 | copyto = ino[n + 1] + diff; |
| 219 | memmove(op + copyto, op + ino[n + 1], |
| 220 | off - ino[n + 1]); |
| 221 | ino[ndx] = copyto + ino[n] - ino[n + 1]; |
| 222 | ino[ndx + 1] = copyto; |
| 223 | } else |
| 224 | copyto = ino[n + 1]; |
| 225 | ndx += 2; |
| 226 | } else { |
| 227 | /* Switch page */ |
| 228 | val.data = (u_char *)op + ino[n + 1]; |
| 229 | val.size = ino[n] - ino[n + 1]; |
| 230 | putpair(np, &key, &val); |
| 231 | moved += 2; |
| 232 | } |
| 233 | |
| 234 | off = ino[n + 1]; |
| 235 | } |
| 236 | |
| 237 | /* Now clean up the page */ |
| 238 | ino[0] -= moved; |
| 239 | FREESPACE(ino)((ino)[(ino)[0]+1]) = copyto - sizeof(u_int16_t) * (ino[0] + 3); |
| 240 | OFFSET(ino)((ino)[(ino)[0]+2]) = copyto; |
| 241 | |
| 242 | #ifdef DEBUG3 |
| 243 | (void)fprintf(stderr(&__sF[2]), "split %d/%d\n", |
| 244 | ((u_int16_t *)np)[0] / 2, |
| 245 | ((u_int16_t *)op)[0] / 2); |
| 246 | #endif |
| 247 | /* unpin both pages */ |
| 248 | old_bufp->flags &= ~BUF_PIN0x0008; |
| 249 | new_bufp->flags &= ~BUF_PIN0x0008; |
| 250 | return (0); |
| 251 | } |
| 252 | |
| 253 | /* |
| 254 | * Called when we encounter an overflow or big key/data page during split |
| 255 | * handling. This is special cased since we have to begin checking whether |
| 256 | * the key/data pairs fit on their respective pages and because we may need |
| 257 | * overflow pages for both the old and new pages. |
| 258 | * |
| 259 | * The first page might be a page with regular key/data pairs in which case |
| 260 | * we have a regular overflow condition and just need to go on to the next |
| 261 | * page or it might be a big key/data pair in which case we need to fix the |
| 262 | * big key/data pair. |
| 263 | * |
| 264 | * Returns: |
| 265 | * 0 ==> success |
| 266 | * -1 ==> failure |
| 267 | */ |
| 268 | static int |
| 269 | ugly_split(HTAB *hashp, |
| 270 | u_int32_t obucket, /* Same as __split_page. */ |
| 271 | BUFHEAD *old_bufp, |
| 272 | BUFHEAD *new_bufp, |
| 273 | int copyto, /* First byte on page which contains key/data values. */ |
| 274 | int moved) /* Number of pairs moved to new page. */ |
| 275 | { |
| 276 | BUFHEAD *bufp; /* Buffer header for ino */ |
| 277 | u_int16_t *ino; /* Page keys come off of */ |
| 278 | u_int16_t *np; /* New page */ |
| 279 | u_int16_t *op; /* Page keys go on to if they aren't moving */ |
| 280 | |
| 281 | BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */ |
| 282 | DBT key, val; |
| 283 | SPLIT_RETURN ret; |
| 284 | u_int16_t n, off, ov_addr, scopyto; |
| 285 | char *cino; /* Character value of ino */ |
| 286 | |
| 287 | bufp = old_bufp; |
| 288 | ino = (u_int16_t *)old_bufp->page; |
| 289 | np = (u_int16_t *)new_bufp->page; |
| 290 | op = (u_int16_t *)old_bufp->page; |
| 291 | last_bfp = NULL((void *)0); |
| 292 | scopyto = (u_int16_t)copyto; /* ANSI */ |
| 293 | |
| 294 | n = ino[0] - 1; |
| 295 | while (n < ino[0]) { |
| 296 | if (ino[2] < REAL_KEY4 && ino[2] != OVFLPAGE0) { |
| 297 | if (__big_split(hashp, old_bufp, |
| 298 | new_bufp, bufp, bufp->addr, obucket, &ret)) |
| 299 | return (-1); |
| 300 | old_bufp = ret.oldp; |
| 301 | if (!old_bufp) |
| 302 | return (-1); |
| 303 | op = (u_int16_t *)old_bufp->page; |
| 304 | new_bufp = ret.newp; |
| 305 | if (!new_bufp) |
| 306 | return (-1); |
| 307 | np = (u_int16_t *)new_bufp->page; |
| 308 | bufp = ret.nextp; |
| 309 | if (!bufp) |
| 310 | return (0); |
| 311 | cino = (char *)bufp->page; |
| 312 | ino = (u_int16_t *)cino; |
| 313 | last_bfp = ret.nextp; |
| 314 | } else if (ino[n + 1] == OVFLPAGE0) { |
| 315 | ov_addr = ino[n]; |
| 316 | /* |
| 317 | * Fix up the old page -- the extra 2 are the fields |
| 318 | * which contained the overflow information. |
| 319 | */ |
| 320 | ino[0] -= (moved + 2); |
| 321 | FREESPACE(ino)((ino)[(ino)[0]+1]) = |
| 322 | scopyto - sizeof(u_int16_t) * (ino[0] + 3); |
| 323 | OFFSET(ino)((ino)[(ino)[0]+2]) = scopyto; |
| 324 | |
| 325 | bufp = __get_buf(hashp, ov_addr, bufp, 0); |
| 326 | if (!bufp) |
| 327 | return (-1); |
| 328 | |
| 329 | ino = (u_int16_t *)bufp->page; |
| 330 | n = 1; |
Value stored to 'n' is never read | |
| 331 | scopyto = hashp->BSIZEhdr.bsize; |
| 332 | moved = 0; |
| 333 | |
| 334 | if (last_bfp) |
| 335 | __free_ovflpage(hashp, last_bfp); |
| 336 | last_bfp = bufp; |
| 337 | } |
| 338 | /* Move regular sized pairs of there are any */ |
| 339 | off = hashp->BSIZEhdr.bsize; |
| 340 | for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY4); n += 2) { |
| 341 | cino = (char *)ino; |
| 342 | key.data = (u_char *)cino + ino[n]; |
| 343 | key.size = off - ino[n]; |
| 344 | val.data = (u_char *)cino + ino[n + 1]; |
| 345 | val.size = ino[n] - ino[n + 1]; |
| 346 | off = ino[n + 1]; |
| 347 | |
| 348 | if (__call_hash(hashp, key.data, key.size) == obucket) { |
| 349 | /* Keep on old page */ |
| 350 | if (PAIRFITS(op, (&key), (&val))(((op)[2] >= 4) && ((2*sizeof(u_int16_t) + (((& key)))->size + (((&val)))->size) + (2*sizeof(u_int16_t ))) <= (((op))[((op))[0]+1]))) |
| 351 | putpair((char *)op, &key, &val); |
| 352 | else { |
| 353 | old_bufp = |
| 354 | __add_ovflpage(hashp, old_bufp); |
| 355 | if (!old_bufp) |
| 356 | return (-1); |
| 357 | op = (u_int16_t *)old_bufp->page; |
| 358 | putpair((char *)op, &key, &val); |
| 359 | } |
| 360 | old_bufp->flags |= BUF_MOD0x0001; |
| 361 | } else { |
| 362 | /* Move to new page */ |
| 363 | if (PAIRFITS(np, (&key), (&val))(((np)[2] >= 4) && ((2*sizeof(u_int16_t) + (((& key)))->size + (((&val)))->size) + (2*sizeof(u_int16_t ))) <= (((np))[((np))[0]+1]))) |
| 364 | putpair((char *)np, &key, &val); |
| 365 | else { |
| 366 | new_bufp = |
| 367 | __add_ovflpage(hashp, new_bufp); |
| 368 | if (!new_bufp) |
| 369 | return (-1); |
| 370 | np = (u_int16_t *)new_bufp->page; |
| 371 | putpair((char *)np, &key, &val); |
| 372 | } |
| 373 | new_bufp->flags |= BUF_MOD0x0001; |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | if (last_bfp) |
| 378 | __free_ovflpage(hashp, last_bfp); |
| 379 | return (0); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Add the given pair to the page |
| 384 | * |
| 385 | * Returns: |
| 386 | * 0 ==> OK |
| 387 | * 1 ==> failure |
| 388 | */ |
| 389 | int |
| 390 | __addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val) |
| 391 | { |
| 392 | u_int16_t *bp, *sop; |
| 393 | int do_expand; |
| 394 | |
| 395 | bp = (u_int16_t *)bufp->page; |
| 396 | do_expand = 0; |
| 397 | while (bp[0] && (bp[2] < REAL_KEY4 || bp[bp[0]] < REAL_KEY4)) |
| 398 | /* Exception case */ |
| 399 | if (bp[2] == FULL_KEY_DATA3 && bp[0] == 2) |
| 400 | /* This is the last page of a big key/data pair |
| 401 | and we need to add another page */ |
| 402 | break; |
| 403 | else if (bp[2] < REAL_KEY4 && bp[bp[0]] != OVFLPAGE0) { |
| 404 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
| 405 | if (!bufp) |
| 406 | return (-1); |
| 407 | bp = (u_int16_t *)bufp->page; |
| 408 | } else if (bp[bp[0]] != OVFLPAGE0) { |
| 409 | /* Short key/data pairs, no more pages */ |
| 410 | break; |
| 411 | } else { |
| 412 | /* Try to squeeze key on this page */ |
| 413 | if (bp[2] >= REAL_KEY4 && |
| 414 | FREESPACE(bp)((bp)[(bp)[0]+1]) >= PAIRSIZE(key, val)(2*sizeof(u_int16_t) + (key)->size + (val)->size)) { |
| 415 | squeeze_key(bp, key, val); |
| 416 | goto stats; |
| 417 | } else { |
| 418 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); |
| 419 | if (!bufp) |
| 420 | return (-1); |
| 421 | bp = (u_int16_t *)bufp->page; |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | if (PAIRFITS(bp, key, val)(((bp)[2] >= 4) && ((2*sizeof(u_int16_t) + ((key)) ->size + ((val))->size) + (2*sizeof(u_int16_t))) <= ( ((bp))[((bp))[0]+1]))) |
| 426 | putpair(bufp->page, key, val); |
| 427 | else { |
| 428 | do_expand = 1; |
| 429 | bufp = __add_ovflpage(hashp, bufp); |
| 430 | if (!bufp) |
| 431 | return (-1); |
| 432 | sop = (u_int16_t *)bufp->page; |
| 433 | |
| 434 | if (PAIRFITS(sop, key, val)(((sop)[2] >= 4) && ((2*sizeof(u_int16_t) + ((key) )->size + ((val))->size) + (2*sizeof(u_int16_t))) <= (((sop))[((sop))[0]+1]))) |
| 435 | putpair((char *)sop, key, val); |
| 436 | else |
| 437 | if (__big_insert(hashp, bufp, key, val)) |
| 438 | return (-1); |
| 439 | } |
| 440 | stats: |
| 441 | bufp->flags |= BUF_MOD0x0001; |
| 442 | /* |
| 443 | * If the average number of keys per bucket exceeds the fill factor, |
| 444 | * expand the table. |
| 445 | */ |
| 446 | hashp->NKEYShdr.nkeys++; |
| 447 | if (do_expand || |
| 448 | (hashp->NKEYShdr.nkeys / (hashp->MAX_BUCKEThdr.max_bucket + 1) > hashp->FFACTORhdr.ffactor)) |
| 449 | return (__expand_table(hashp)); |
| 450 | return (0); |
| 451 | } |
| 452 | |
| 453 | /* |
| 454 | * |
| 455 | * Returns: |
| 456 | * pointer on success |
| 457 | * NULL on error |
| 458 | */ |
| 459 | BUFHEAD * |
| 460 | __add_ovflpage(HTAB *hashp, BUFHEAD *bufp) |
| 461 | { |
| 462 | u_int16_t *sp, ndx, ovfl_num; |
| 463 | #ifdef DEBUG1 |
| 464 | int tmp1, tmp2; |
| 465 | #endif |
| 466 | sp = (u_int16_t *)bufp->page; |
| 467 | |
| 468 | /* Check if we are dynamically determining the fill factor */ |
| 469 | if (hashp->FFACTORhdr.ffactor == DEF_FFACTOR65536) { |
| 470 | hashp->FFACTORhdr.ffactor = sp[0] >> 1; |
| 471 | if (hashp->FFACTORhdr.ffactor < MIN_FFACTOR4) |
| 472 | hashp->FFACTORhdr.ffactor = MIN_FFACTOR4; |
| 473 | } |
| 474 | bufp->flags |= BUF_MOD0x0001; |
| 475 | ovfl_num = overflow_page(hashp); |
| 476 | #ifdef DEBUG1 |
| 477 | tmp1 = bufp->addr; |
| 478 | tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0; |
| 479 | #endif |
| 480 | if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1))) |
| 481 | return (NULL((void *)0)); |
| 482 | bufp->ovfl->flags |= BUF_MOD0x0001; |
| 483 | #ifdef DEBUG1 |
| 484 | (void)fprintf(stderr(&__sF[2]), "ADDOVFLPAGE: %d->ovfl was %d is now %d\n", |
| 485 | tmp1, tmp2, bufp->ovfl->addr); |
| 486 | #endif |
| 487 | ndx = sp[0]; |
| 488 | /* |
| 489 | * Since a pair is allocated on a page only if there's room to add |
| 490 | * an overflow page, we know that the OVFL information will fit on |
| 491 | * the page. |
| 492 | */ |
| 493 | sp[ndx + 4] = OFFSET(sp)((sp)[(sp)[0]+2]); |
| 494 | sp[ndx + 3] = FREESPACE(sp)((sp)[(sp)[0]+1]) - OVFLSIZE(2*sizeof(u_int16_t)); |
| 495 | sp[ndx + 1] = ovfl_num; |
| 496 | sp[ndx + 2] = OVFLPAGE0; |
| 497 | sp[0] = ndx + 2; |
| 498 | #ifdef HASH_STATISTICS |
| 499 | hash_overflows++; |
| 500 | #endif |
| 501 | return (bufp->ovfl); |
| 502 | } |
| 503 | |
| 504 | /* |
| 505 | * Returns: |
| 506 | * 0 indicates SUCCESS |
| 507 | * -1 indicates FAILURE |
| 508 | */ |
| 509 | int |
| 510 | __get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk, |
| 511 | int is_bitmap) |
| 512 | { |
| 513 | int fd, page, size, rsize; |
| 514 | u_int16_t *bp; |
| 515 | |
| 516 | fd = hashp->fp; |
| 517 | size = hashp->BSIZEhdr.bsize; |
| 518 | |
| 519 | if ((fd == -1) || !is_disk) { |
| 520 | PAGE_INIT(p){ ((u_int16_t *)(p))[0] = 0; ((u_int16_t *)(p))[1] = hashp-> hdr.bsize - 3 * sizeof(u_int16_t); ((u_int16_t *)(p))[2] = hashp ->hdr.bsize; }; |
| 521 | return (0); |
| 522 | } |
| 523 | if (is_bucket) |
| 524 | page = BUCKET_TO_PAGE(bucket)(bucket) + hashp->hdr.hdrpages + ((bucket) ? hashp->hdr .spares[__log2((bucket)+1)-1] : 0); |
| 525 | else |
| 526 | page = OADDR_TO_PAGE(bucket)((1 << (((u_int32_t)((bucket))) >> 11)) -1) + hashp ->hdr.hdrpages + (((1 << (((u_int32_t)((bucket))) >> 11)) -1) ? hashp->hdr.spares[__log2(((1 << (((u_int32_t )((bucket))) >> 11)) -1)+1)-1] : 0) + (((bucket)) & 0x7FF);; |
| 527 | if ((rsize = pread(fd, p, size, (off_t)page << hashp->BSHIFThdr.bshift)) == -1) |
| 528 | return (-1); |
| 529 | bp = (u_int16_t *)p; |
| 530 | if (!rsize) |
| 531 | bp[0] = 0; /* We hit the EOF, so initialize a new page */ |
| 532 | else |
| 533 | if (rsize != size) { |
| 534 | errno(*__errno()) = EFTYPE79; |
| 535 | return (-1); |
| 536 | } |
| 537 | if (!is_bitmap && !bp[0]) { |
| 538 | PAGE_INIT(p){ ((u_int16_t *)(p))[0] = 0; ((u_int16_t *)(p))[1] = hashp-> hdr.bsize - 3 * sizeof(u_int16_t); ((u_int16_t *)(p))[2] = hashp ->hdr.bsize; }; |
| 539 | } else |
| 540 | if (hashp->LORDERhdr.lorder != BYTE_ORDER1234) { |
| 541 | int i, max; |
| 542 | |
| 543 | if (is_bitmap) { |
| 544 | max = hashp->BSIZEhdr.bsize >> 2; /* divide by 4 */ |
| 545 | for (i = 0; i < max; i++) |
| 546 | M_32_SWAP(((int *)p)[i]){ u_int32_t _tmp = ((int *)p)[i]; ((char *)&((int *)p)[i] )[0] = ((char *)&_tmp)[3]; ((char *)&((int *)p)[i])[1 ] = ((char *)&_tmp)[2]; ((char *)&((int *)p)[i])[2] = ((char *)&_tmp)[1]; ((char *)&((int *)p)[i])[3] = (( char *)&_tmp)[0]; }; |
| 547 | } else { |
| 548 | M_16_SWAP(bp[0]){ u_int16_t _tmp = bp[0]; ((char *)&bp[0])[0] = ((char *) &_tmp)[1]; ((char *)&bp[0])[1] = ((char *)&_tmp)[ 0]; }; |
| 549 | max = bp[0] + 2; |
| 550 | for (i = 1; i <= max; i++) |
| 551 | M_16_SWAP(bp[i]){ u_int16_t _tmp = bp[i]; ((char *)&bp[i])[0] = ((char *) &_tmp)[1]; ((char *)&bp[i])[1] = ((char *)&_tmp)[ 0]; }; |
| 552 | } |
| 553 | } |
| 554 | return (0); |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | * Write page p to disk |
| 559 | * |
| 560 | * Returns: |
| 561 | * 0 ==> OK |
| 562 | * -1 ==>failure |
| 563 | */ |
| 564 | int |
| 565 | __put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap) |
| 566 | { |
| 567 | int fd, page, size, wsize; |
| 568 | |
| 569 | size = hashp->BSIZEhdr.bsize; |
| 570 | if ((hashp->fp == -1) && open_temp(hashp)) |
| 571 | return (-1); |
| 572 | fd = hashp->fp; |
| 573 | |
| 574 | if (hashp->LORDERhdr.lorder != BYTE_ORDER1234) { |
| 575 | int i, max; |
| 576 | |
| 577 | if (is_bitmap) { |
| 578 | max = hashp->BSIZEhdr.bsize >> 2; /* divide by 4 */ |
| 579 | for (i = 0; i < max; i++) |
| 580 | M_32_SWAP(((int *)p)[i]){ u_int32_t _tmp = ((int *)p)[i]; ((char *)&((int *)p)[i] )[0] = ((char *)&_tmp)[3]; ((char *)&((int *)p)[i])[1 ] = ((char *)&_tmp)[2]; ((char *)&((int *)p)[i])[2] = ((char *)&_tmp)[1]; ((char *)&((int *)p)[i])[3] = (( char *)&_tmp)[0]; }; |
| 581 | } else { |
| 582 | max = ((u_int16_t *)p)[0] + 2; |
| 583 | for (i = 0; i <= max; i++) |
| 584 | M_16_SWAP(((u_int16_t *)p)[i]){ u_int16_t _tmp = ((u_int16_t *)p)[i]; ((char *)&((u_int16_t *)p)[i])[0] = ((char *)&_tmp)[1]; ((char *)&((u_int16_t *)p)[i])[1] = ((char *)&_tmp)[0]; }; |
| 585 | } |
| 586 | } |
| 587 | if (is_bucket) |
| 588 | page = BUCKET_TO_PAGE(bucket)(bucket) + hashp->hdr.hdrpages + ((bucket) ? hashp->hdr .spares[__log2((bucket)+1)-1] : 0); |
| 589 | else |
| 590 | page = OADDR_TO_PAGE(bucket)((1 << (((u_int32_t)((bucket))) >> 11)) -1) + hashp ->hdr.hdrpages + (((1 << (((u_int32_t)((bucket))) >> 11)) -1) ? hashp->hdr.spares[__log2(((1 << (((u_int32_t )((bucket))) >> 11)) -1)+1)-1] : 0) + (((bucket)) & 0x7FF);; |
| 591 | if ((wsize = pwrite(fd, p, size, (off_t)page << hashp->BSHIFThdr.bshift)) == -1) |
| 592 | /* Errno is set */ |
| 593 | return (-1); |
| 594 | if (wsize != size) { |
| 595 | errno(*__errno()) = EFTYPE79; |
| 596 | return (-1); |
| 597 | } |
| 598 | return (0); |
| 599 | } |
| 600 | |
| 601 | #define BYTE_MASK((1 << 5) -1) ((1 << INT_BYTE_SHIFT5) -1) |
| 602 | /* |
| 603 | * Initialize a new bitmap page. Bitmap pages are left in memory |
| 604 | * once they are read in. |
| 605 | */ |
| 606 | int |
| 607 | __ibitmap(HTAB *hashp, int pnum, int nbits, int ndx) |
| 608 | { |
| 609 | u_int32_t *ip; |
| 610 | int clearbytes, clearints; |
| 611 | |
| 612 | if ((ip = (u_int32_t *)malloc(hashp->BSIZEhdr.bsize)) == NULL((void *)0)) |
| 613 | return (1); |
| 614 | hashp->nmaps++; |
| 615 | clearints = ((nbits - 1) >> INT_BYTE_SHIFT5) + 1; |
| 616 | clearbytes = clearints << INT_TO_BYTE2; |
| 617 | (void)memset((char *)ip, 0, clearbytes); |
| 618 | (void)memset(((char *)ip) + clearbytes, 0xFF, |
| 619 | hashp->BSIZEhdr.bsize - clearbytes); |
| 620 | ip[clearints - 1] = ALL_SET((u_int32_t)0xFFFFFFFF) << (nbits & BYTE_MASK((1 << 5) -1)); |
| 621 | SETBIT(ip, 0)((ip)[(0)/32] |= (1<<((0)%32))); |
| 622 | hashp->BITMAPShdr.bitmaps[ndx] = (u_int16_t)pnum; |
| 623 | hashp->mapp[ndx] = ip; |
| 624 | return (0); |
| 625 | } |
| 626 | |
| 627 | static u_int32_t |
| 628 | first_free(u_int32_t map) |
| 629 | { |
| 630 | u_int32_t i, mask; |
| 631 | |
| 632 | mask = 0x1; |
| 633 | for (i = 0; i < BITS_PER_MAP32; i++) { |
| 634 | if (!(mask & map)) |
| 635 | return (i); |
| 636 | mask = mask << 1; |
| 637 | } |
| 638 | return (i); |
| 639 | } |
| 640 | |
| 641 | static u_int16_t |
| 642 | overflow_page(HTAB *hashp) |
| 643 | { |
| 644 | u_int32_t *freep; |
| 645 | int max_free, offset, splitnum; |
| 646 | u_int16_t addr; |
| 647 | int bit, first_page, free_bit, free_page, i, in_use_bits, j; |
| 648 | #ifdef DEBUG2 |
| 649 | int tmp1, tmp2; |
| 650 | #endif |
| 651 | splitnum = hashp->OVFL_POINThdr.ovfl_point; |
| 652 | max_free = hashp->SPAREShdr.spares[splitnum]; |
| 653 | |
| 654 | free_page = (max_free - 1) >> (hashp->BSHIFThdr.bshift + BYTE_SHIFT3); |
| 655 | free_bit = (max_free - 1) & ((hashp->BSIZEhdr.bsize << BYTE_SHIFT3) - 1); |
| 656 | |
| 657 | /* Look through all the free maps to find the first free block */ |
| 658 | first_page = hashp->LAST_FREEDhdr.last_freed >>(hashp->BSHIFThdr.bshift + BYTE_SHIFT3); |
| 659 | for ( i = first_page; i <= free_page; i++ ) { |
| 660 | if (!(freep = (u_int32_t *)hashp->mapp[i]) && |
| 661 | !(freep = fetch_bitmap(hashp, i))) |
| 662 | return (0); |
| 663 | if (i == free_page) |
| 664 | in_use_bits = free_bit; |
| 665 | else |
| 666 | in_use_bits = (hashp->BSIZEhdr.bsize << BYTE_SHIFT3) - 1; |
| 667 | |
| 668 | if (i == first_page) { |
| 669 | bit = hashp->LAST_FREEDhdr.last_freed & |
| 670 | ((hashp->BSIZEhdr.bsize << BYTE_SHIFT3) - 1); |
| 671 | j = bit / BITS_PER_MAP32; |
| 672 | bit = bit & ~(BITS_PER_MAP32 - 1); |
| 673 | } else { |
| 674 | bit = 0; |
| 675 | j = 0; |
| 676 | } |
| 677 | for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP32) |
| 678 | if (freep[j] != ALL_SET((u_int32_t)0xFFFFFFFF)) |
| 679 | goto found; |
| 680 | } |
| 681 | |
| 682 | /* No Free Page Found */ |
| 683 | hashp->LAST_FREEDhdr.last_freed = hashp->SPAREShdr.spares[splitnum]; |
| 684 | hashp->SPAREShdr.spares[splitnum]++; |
| 685 | offset = hashp->SPAREShdr.spares[splitnum] - |
| 686 | (splitnum ? hashp->SPAREShdr.spares[splitnum - 1] : 0); |
| 687 | |
| 688 | #define OVMSG"HASH: Out of overflow pages. Increase page size\n" "HASH: Out of overflow pages. Increase page size\n" |
| 689 | if (offset > SPLITMASK0x7FF) { |
| 690 | if (++splitnum >= NCACHED32) { |
| 691 | (void)write(STDERR_FILENO2, OVMSG"HASH: Out of overflow pages. Increase page size\n", sizeof(OVMSG"HASH: Out of overflow pages. Increase page size\n") - 1); |
| 692 | errno(*__errno()) = EFBIG27; |
| 693 | return (0); |
| 694 | } |
| 695 | hashp->OVFL_POINThdr.ovfl_point = splitnum; |
| 696 | hashp->SPAREShdr.spares[splitnum] = hashp->SPAREShdr.spares[splitnum-1]; |
| 697 | hashp->SPAREShdr.spares[splitnum-1]--; |
| 698 | offset = 1; |
| 699 | } |
| 700 | |
| 701 | /* Check if we need to allocate a new bitmap page */ |
| 702 | if (free_bit == (hashp->BSIZEhdr.bsize << BYTE_SHIFT3) - 1) { |
| 703 | free_page++; |
| 704 | if (free_page >= NCACHED32) { |
| 705 | (void)write(STDERR_FILENO2, OVMSG"HASH: Out of overflow pages. Increase page size\n", sizeof(OVMSG"HASH: Out of overflow pages. Increase page size\n") - 1); |
| 706 | errno(*__errno()) = EFBIG27; |
| 707 | return (0); |
| 708 | } |
| 709 | /* |
| 710 | * This is tricky. The 1 indicates that you want the new page |
| 711 | * allocated with 1 clear bit. Actually, you are going to |
| 712 | * allocate 2 pages from this map. The first is going to be |
| 713 | * the map page, the second is the overflow page we were |
| 714 | * looking for. The init_bitmap routine automatically, sets |
| 715 | * the first bit of itself to indicate that the bitmap itself |
| 716 | * is in use. We would explicitly set the second bit, but |
| 717 | * don't have to if we tell init_bitmap not to leave it clear |
| 718 | * in the first place. |
| 719 | */ |
| 720 | if (__ibitmap(hashp, |
| 721 | (int)OADDR_OF(splitnum, offset)((u_int32_t)((u_int32_t)(splitnum) << 11) + (offset)), 1, free_page)) |
| 722 | return (0); |
| 723 | hashp->SPAREShdr.spares[splitnum]++; |
| 724 | #ifdef DEBUG2 |
| 725 | free_bit = 2; |
| 726 | #endif |
| 727 | offset++; |
| 728 | if (offset > SPLITMASK0x7FF) { |
| 729 | if (++splitnum >= NCACHED32) { |
| 730 | (void)write(STDERR_FILENO2, OVMSG"HASH: Out of overflow pages. Increase page size\n", |
| 731 | sizeof(OVMSG"HASH: Out of overflow pages. Increase page size\n") - 1); |
| 732 | errno(*__errno()) = EFBIG27; |
| 733 | return (0); |
| 734 | } |
| 735 | hashp->OVFL_POINThdr.ovfl_point = splitnum; |
| 736 | hashp->SPAREShdr.spares[splitnum] = hashp->SPAREShdr.spares[splitnum-1]; |
| 737 | hashp->SPAREShdr.spares[splitnum-1]--; |
| 738 | offset = 0; |
| 739 | } |
| 740 | } else { |
| 741 | /* |
| 742 | * Free_bit addresses the last used bit. Bump it to address |
| 743 | * the first available bit. |
| 744 | */ |
| 745 | free_bit++; |
| 746 | SETBIT(freep, free_bit)((freep)[(free_bit)/32] |= (1<<((free_bit)%32))); |
| 747 | } |
| 748 | |
| 749 | /* Calculate address of the new overflow page */ |
| 750 | addr = OADDR_OF(splitnum, offset)((u_int32_t)((u_int32_t)(splitnum) << 11) + (offset)); |
| 751 | #ifdef DEBUG2 |
| 752 | (void)fprintf(stderr(&__sF[2]), "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", |
| 753 | addr, free_bit, free_page); |
| 754 | #endif |
| 755 | return (addr); |
| 756 | |
| 757 | found: |
| 758 | bit = bit + first_free(freep[j]); |
| 759 | SETBIT(freep, bit)((freep)[(bit)/32] |= (1<<((bit)%32))); |
| 760 | #ifdef DEBUG2 |
| 761 | tmp1 = bit; |
| 762 | tmp2 = i; |
| 763 | #endif |
| 764 | /* |
| 765 | * Bits are addressed starting with 0, but overflow pages are addressed |
| 766 | * beginning at 1. Bit is a bit addressnumber, so we need to increment |
| 767 | * it to convert it to a page number. |
| 768 | */ |
| 769 | bit = 1 + bit + (i * (hashp->BSIZEhdr.bsize << BYTE_SHIFT3)); |
| 770 | if (bit >= hashp->LAST_FREEDhdr.last_freed) |
| 771 | hashp->LAST_FREEDhdr.last_freed = bit - 1; |
| 772 | |
| 773 | /* Calculate the split number for this page */ |
| 774 | for (i = 0; (i < splitnum) && (bit > hashp->SPAREShdr.spares[i]); i++); |
| 775 | offset = (i ? bit - hashp->SPAREShdr.spares[i - 1] : bit); |
| 776 | if (offset >= SPLITMASK0x7FF) { |
| 777 | (void)write(STDERR_FILENO2, OVMSG"HASH: Out of overflow pages. Increase page size\n", sizeof(OVMSG"HASH: Out of overflow pages. Increase page size\n") - 1); |
| 778 | errno(*__errno()) = EFBIG27; |
| 779 | return (0); /* Out of overflow pages */ |
| 780 | } |
| 781 | addr = OADDR_OF(i, offset)((u_int32_t)((u_int32_t)(i) << 11) + (offset)); |
| 782 | #ifdef DEBUG2 |
| 783 | (void)fprintf(stderr(&__sF[2]), "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n", |
| 784 | addr, tmp1, tmp2); |
| 785 | #endif |
| 786 | |
| 787 | /* Allocate and return the overflow page */ |
| 788 | return (addr); |
| 789 | } |
| 790 | |
| 791 | /* |
| 792 | * Mark this overflow page as free. |
| 793 | */ |
| 794 | void |
| 795 | __free_ovflpage(HTAB *hashp, BUFHEAD *obufp) |
| 796 | { |
| 797 | u_int16_t addr; |
| 798 | u_int32_t *freep; |
| 799 | int bit_address, free_page, free_bit; |
| 800 | u_int16_t ndx; |
| 801 | |
| 802 | addr = obufp->addr; |
| 803 | #ifdef DEBUG1 |
| 804 | (void)fprintf(stderr(&__sF[2]), "Freeing %d\n", addr); |
| 805 | #endif |
| 806 | ndx = (((u_int16_t)addr) >> SPLITSHIFT11); |
| 807 | bit_address = |
| 808 | (ndx ? hashp->SPAREShdr.spares[ndx - 1] : 0) + (addr & SPLITMASK0x7FF) - 1; |
| 809 | if (bit_address < hashp->LAST_FREEDhdr.last_freed) |
| 810 | hashp->LAST_FREEDhdr.last_freed = bit_address; |
| 811 | free_page = (bit_address >> (hashp->BSHIFThdr.bshift + BYTE_SHIFT3)); |
| 812 | free_bit = bit_address & ((hashp->BSIZEhdr.bsize << BYTE_SHIFT3) - 1); |
| 813 | |
| 814 | if (!(freep = hashp->mapp[free_page])) |
| 815 | freep = fetch_bitmap(hashp, free_page); |
| 816 | #ifdef DEBUG |
| 817 | /* |
| 818 | * This had better never happen. It means we tried to read a bitmap |
| 819 | * that has already had overflow pages allocated off it, and we |
| 820 | * failed to read it from the file. |
| 821 | */ |
| 822 | if (!freep) |
| 823 | assert(0); |
| 824 | #endif |
| 825 | CLRBIT(freep, free_bit)((freep)[(free_bit)/32] &= ~(1<<((free_bit)%32))); |
| 826 | #ifdef DEBUG2 |
| 827 | (void)fprintf(stderr(&__sF[2]), "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n", |
| 828 | obufp->addr, free_bit, free_page); |
| 829 | #endif |
| 830 | __reclaim_buf(hashp, obufp); |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * Returns: |
| 835 | * 0 success |
| 836 | * -1 failure |
| 837 | */ |
| 838 | static int |
| 839 | open_temp(HTAB *hashp) |
| 840 | { |
| 841 | sigset_t set, oset; |
| 842 | int len; |
| 843 | char *envtmp = NULL((void *)0); |
| 844 | char path[PATH_MAX1024]; |
| 845 | |
| 846 | if (issetugid() == 0) |
| 847 | envtmp = getenv("TMPDIR"); |
| 848 | len = snprintf(path, |
| 849 | sizeof(path), "%s/_hash.XXXXXX", envtmp ? envtmp : "/tmp"); |
| 850 | if (len < 0 || len >= sizeof(path)) { |
| 851 | errno(*__errno()) = ENAMETOOLONG63; |
| 852 | return (-1); |
| 853 | } |
| 854 | |
| 855 | /* Block signals; make sure file goes away at process exit. */ |
| 856 | (void)sigfillset(&set); |
| 857 | (void)sigprocmask(SIG_BLOCK1, &set, &oset); |
| 858 | if ((hashp->fp = mkostemp(path, O_CLOEXEC0x10000)) != -1) { |
| 859 | (void)unlink(path); |
| 860 | } |
| 861 | (void)sigprocmask(SIG_SETMASK3, &oset, (sigset_t *)NULL((void *)0)); |
| 862 | return (hashp->fp != -1 ? 0 : -1); |
| 863 | } |
| 864 | |
| 865 | /* |
| 866 | * We have to know that the key will fit, but the last entry on the page is |
| 867 | * an overflow pair, so we need to shift things. |
| 868 | */ |
| 869 | static void |
| 870 | squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val) |
| 871 | { |
| 872 | char *p; |
| 873 | u_int16_t free_space, n, off, pageno; |
| 874 | |
| 875 | p = (char *)sp; |
| 876 | n = sp[0]; |
| 877 | free_space = FREESPACE(sp)((sp)[(sp)[0]+1]); |
| 878 | off = OFFSET(sp)((sp)[(sp)[0]+2]); |
| 879 | |
| 880 | pageno = sp[n - 1]; |
| 881 | off -= key->size; |
| 882 | sp[n - 1] = off; |
| 883 | memmove(p + off, key->data, key->size); |
| 884 | off -= val->size; |
| 885 | sp[n] = off; |
| 886 | memmove(p + off, val->data, val->size); |
| 887 | sp[0] = n + 2; |
| 888 | sp[n + 1] = pageno; |
| 889 | sp[n + 2] = OVFLPAGE0; |
| 890 | FREESPACE(sp)((sp)[(sp)[0]+1]) = free_space - PAIRSIZE(key, val)(2*sizeof(u_int16_t) + (key)->size + (val)->size); |
| 891 | OFFSET(sp)((sp)[(sp)[0]+2]) = off; |
| 892 | } |
| 893 | |
| 894 | static u_int32_t * |
| 895 | fetch_bitmap(HTAB *hashp, int ndx) |
| 896 | { |
| 897 | if (ndx >= hashp->nmaps) |
| 898 | return (NULL((void *)0)); |
| 899 | if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZEhdr.bsize)) == NULL((void *)0)) |
| 900 | return (NULL((void *)0)); |
| 901 | if (__get_page(hashp, |
| 902 | (char *)hashp->mapp[ndx], hashp->BITMAPShdr.bitmaps[ndx], 0, 1, 1)) { |
| 903 | free(hashp->mapp[ndx]); |
| 904 | return (NULL((void *)0)); |
| 905 | } |
| 906 | return (hashp->mapp[ndx]); |
| 907 | } |
| 908 | |
| 909 | #ifdef DEBUG4 |
| 910 | int |
| 911 | print_chain(int addr) |
| 912 | { |
| 913 | BUFHEAD *bufp; |
| 914 | short *bp, oaddr; |
| 915 | |
| 916 | (void)fprintf(stderr(&__sF[2]), "%d ", addr); |
| 917 | bufp = __get_buf(hashp, addr, NULL((void *)0), 0); |
| 918 | bp = (short *)bufp->page; |
| 919 | while (bp[0] && ((bp[bp[0]] == OVFLPAGE0) || |
| 920 | ((bp[0] > 2) && bp[2] < REAL_KEY4))) { |
| 921 | oaddr = bp[bp[0] - 1]; |
| 922 | (void)fprintf(stderr(&__sF[2]), "%d ", (int)oaddr); |
| 923 | bufp = __get_buf(hashp, (int)oaddr, bufp, 0); |
| 924 | bp = (short *)bufp->page; |
| 925 | } |
| 926 | (void)fprintf(stderr(&__sF[2]), "\n"); |
| 927 | } |
| 928 | #endif |