| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/CodeGen/InlineSpiller.cpp |
| Warning: | line 1348, column 14 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- InlineSpiller.cpp - Insert spills and restores inline --------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // The inline spiller modifies the machine function directly instead of | |||
| 10 | // inserting spills and restores in VirtRegMap. | |||
| 11 | // | |||
| 12 | //===----------------------------------------------------------------------===// | |||
| 13 | ||||
| 14 | #include "SplitKit.h" | |||
| 15 | #include "llvm/ADT/ArrayRef.h" | |||
| 16 | #include "llvm/ADT/DenseMap.h" | |||
| 17 | #include "llvm/ADT/MapVector.h" | |||
| 18 | #include "llvm/ADT/None.h" | |||
| 19 | #include "llvm/ADT/STLExtras.h" | |||
| 20 | #include "llvm/ADT/SetVector.h" | |||
| 21 | #include "llvm/ADT/SmallPtrSet.h" | |||
| 22 | #include "llvm/ADT/SmallVector.h" | |||
| 23 | #include "llvm/ADT/Statistic.h" | |||
| 24 | #include "llvm/Analysis/AliasAnalysis.h" | |||
| 25 | #include "llvm/CodeGen/LiveInterval.h" | |||
| 26 | #include "llvm/CodeGen/LiveIntervalCalc.h" | |||
| 27 | #include "llvm/CodeGen/LiveIntervals.h" | |||
| 28 | #include "llvm/CodeGen/LiveRangeEdit.h" | |||
| 29 | #include "llvm/CodeGen/LiveStacks.h" | |||
| 30 | #include "llvm/CodeGen/MachineBasicBlock.h" | |||
| 31 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | |||
| 32 | #include "llvm/CodeGen/MachineDominators.h" | |||
| 33 | #include "llvm/CodeGen/MachineFunction.h" | |||
| 34 | #include "llvm/CodeGen/MachineFunctionPass.h" | |||
| 35 | #include "llvm/CodeGen/MachineInstr.h" | |||
| 36 | #include "llvm/CodeGen/MachineInstrBuilder.h" | |||
| 37 | #include "llvm/CodeGen/MachineInstrBundle.h" | |||
| 38 | #include "llvm/CodeGen/MachineLoopInfo.h" | |||
| 39 | #include "llvm/CodeGen/MachineOperand.h" | |||
| 40 | #include "llvm/CodeGen/MachineRegisterInfo.h" | |||
| 41 | #include "llvm/CodeGen/SlotIndexes.h" | |||
| 42 | #include "llvm/CodeGen/Spiller.h" | |||
| 43 | #include "llvm/CodeGen/StackMaps.h" | |||
| 44 | #include "llvm/CodeGen/TargetInstrInfo.h" | |||
| 45 | #include "llvm/CodeGen/TargetOpcodes.h" | |||
| 46 | #include "llvm/CodeGen/TargetRegisterInfo.h" | |||
| 47 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | |||
| 48 | #include "llvm/CodeGen/VirtRegMap.h" | |||
| 49 | #include "llvm/Config/llvm-config.h" | |||
| 50 | #include "llvm/Support/BlockFrequency.h" | |||
| 51 | #include "llvm/Support/BranchProbability.h" | |||
| 52 | #include "llvm/Support/CommandLine.h" | |||
| 53 | #include "llvm/Support/Compiler.h" | |||
| 54 | #include "llvm/Support/Debug.h" | |||
| 55 | #include "llvm/Support/ErrorHandling.h" | |||
| 56 | #include "llvm/Support/raw_ostream.h" | |||
| 57 | #include <cassert> | |||
| 58 | #include <iterator> | |||
| 59 | #include <tuple> | |||
| 60 | #include <utility> | |||
| 61 | #include <vector> | |||
| 62 | ||||
| 63 | using namespace llvm; | |||
| 64 | ||||
| 65 | #define DEBUG_TYPE"regalloc" "regalloc" | |||
| 66 | ||||
| 67 | STATISTIC(NumSpilledRanges, "Number of spilled live ranges")static llvm::Statistic NumSpilledRanges = {"regalloc", "NumSpilledRanges" , "Number of spilled live ranges"}; | |||
| 68 | STATISTIC(NumSnippets, "Number of spilled snippets")static llvm::Statistic NumSnippets = {"regalloc", "NumSnippets" , "Number of spilled snippets"}; | |||
| 69 | STATISTIC(NumSpills, "Number of spills inserted")static llvm::Statistic NumSpills = {"regalloc", "NumSpills", "Number of spills inserted" }; | |||
| 70 | STATISTIC(NumSpillsRemoved, "Number of spills removed")static llvm::Statistic NumSpillsRemoved = {"regalloc", "NumSpillsRemoved" , "Number of spills removed"}; | |||
| 71 | STATISTIC(NumReloads, "Number of reloads inserted")static llvm::Statistic NumReloads = {"regalloc", "NumReloads" , "Number of reloads inserted"}; | |||
| 72 | STATISTIC(NumReloadsRemoved, "Number of reloads removed")static llvm::Statistic NumReloadsRemoved = {"regalloc", "NumReloadsRemoved" , "Number of reloads removed"}; | |||
| 73 | STATISTIC(NumFolded, "Number of folded stack accesses")static llvm::Statistic NumFolded = {"regalloc", "NumFolded", "Number of folded stack accesses" }; | |||
| 74 | STATISTIC(NumFoldedLoads, "Number of folded loads")static llvm::Statistic NumFoldedLoads = {"regalloc", "NumFoldedLoads" , "Number of folded loads"}; | |||
| 75 | STATISTIC(NumRemats, "Number of rematerialized defs for spilling")static llvm::Statistic NumRemats = {"regalloc", "NumRemats", "Number of rematerialized defs for spilling" }; | |||
| 76 | ||||
| 77 | static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden, | |||
| 78 | cl::desc("Disable inline spill hoisting")); | |||
| 79 | static cl::opt<bool> | |||
| 80 | RestrictStatepointRemat("restrict-statepoint-remat", | |||
| 81 | cl::init(false), cl::Hidden, | |||
| 82 | cl::desc("Restrict remat for statepoint operands")); | |||
| 83 | ||||
| 84 | namespace { | |||
| 85 | ||||
| 86 | class HoistSpillHelper : private LiveRangeEdit::Delegate { | |||
| 87 | MachineFunction &MF; | |||
| 88 | LiveIntervals &LIS; | |||
| 89 | LiveStacks &LSS; | |||
| 90 | AliasAnalysis *AA; | |||
| 91 | MachineDominatorTree &MDT; | |||
| 92 | MachineLoopInfo &Loops; | |||
| 93 | VirtRegMap &VRM; | |||
| 94 | MachineRegisterInfo &MRI; | |||
| 95 | const TargetInstrInfo &TII; | |||
| 96 | const TargetRegisterInfo &TRI; | |||
| 97 | const MachineBlockFrequencyInfo &MBFI; | |||
| 98 | ||||
| 99 | InsertPointAnalysis IPA; | |||
| 100 | ||||
| 101 | // Map from StackSlot to the LiveInterval of the original register. | |||
| 102 | // Note the LiveInterval of the original register may have been deleted | |||
| 103 | // after it is spilled. We keep a copy here to track the range where | |||
| 104 | // spills can be moved. | |||
| 105 | DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI; | |||
| 106 | ||||
| 107 | // Map from pair of (StackSlot and Original VNI) to a set of spills which | |||
| 108 | // have the same stackslot and have equal values defined by Original VNI. | |||
| 109 | // These spills are mergeable and are hoist candiates. | |||
| 110 | using MergeableSpillsMap = | |||
| 111 | MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>; | |||
| 112 | MergeableSpillsMap MergeableSpills; | |||
| 113 | ||||
| 114 | /// This is the map from original register to a set containing all its | |||
| 115 | /// siblings. To hoist a spill to another BB, we need to find out a live | |||
| 116 | /// sibling there and use it as the source of the new spill. | |||
| 117 | DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap; | |||
| 118 | ||||
| 119 | bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, | |||
| 120 | MachineBasicBlock &BB, Register &LiveReg); | |||
| 121 | ||||
| 122 | void rmRedundantSpills( | |||
| 123 | SmallPtrSet<MachineInstr *, 16> &Spills, | |||
| 124 | SmallVectorImpl<MachineInstr *> &SpillsToRm, | |||
| 125 | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); | |||
| 126 | ||||
| 127 | void getVisitOrders( | |||
| 128 | MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, | |||
| 129 | SmallVectorImpl<MachineDomTreeNode *> &Orders, | |||
| 130 | SmallVectorImpl<MachineInstr *> &SpillsToRm, | |||
| 131 | DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, | |||
| 132 | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill); | |||
| 133 | ||||
| 134 | void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI, | |||
| 135 | SmallPtrSet<MachineInstr *, 16> &Spills, | |||
| 136 | SmallVectorImpl<MachineInstr *> &SpillsToRm, | |||
| 137 | DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns); | |||
| 138 | ||||
| 139 | public: | |||
| 140 | HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf, | |||
| 141 | VirtRegMap &vrm) | |||
| 142 | : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()), | |||
| 143 | LSS(pass.getAnalysis<LiveStacks>()), | |||
| 144 | AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), | |||
| 145 | MDT(pass.getAnalysis<MachineDominatorTree>()), | |||
| 146 | Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm), | |||
| 147 | MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()), | |||
| 148 | TRI(*mf.getSubtarget().getRegisterInfo()), | |||
| 149 | MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()), | |||
| 150 | IPA(LIS, mf.getNumBlockIDs()) {} | |||
| 151 | ||||
| 152 | void addToMergeableSpills(MachineInstr &Spill, int StackSlot, | |||
| 153 | unsigned Original); | |||
| 154 | bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot); | |||
| 155 | void hoistAllSpills(); | |||
| 156 | void LRE_DidCloneVirtReg(Register, Register) override; | |||
| 157 | }; | |||
| 158 | ||||
| 159 | class InlineSpiller : public Spiller { | |||
| 160 | MachineFunction &MF; | |||
| 161 | LiveIntervals &LIS; | |||
| 162 | LiveStacks &LSS; | |||
| 163 | AliasAnalysis *AA; | |||
| 164 | MachineDominatorTree &MDT; | |||
| 165 | MachineLoopInfo &Loops; | |||
| 166 | VirtRegMap &VRM; | |||
| 167 | MachineRegisterInfo &MRI; | |||
| 168 | const TargetInstrInfo &TII; | |||
| 169 | const TargetRegisterInfo &TRI; | |||
| 170 | const MachineBlockFrequencyInfo &MBFI; | |||
| 171 | ||||
| 172 | // Variables that are valid during spill(), but used by multiple methods. | |||
| 173 | LiveRangeEdit *Edit; | |||
| 174 | LiveInterval *StackInt; | |||
| 175 | int StackSlot; | |||
| 176 | Register Original; | |||
| 177 | ||||
| 178 | // All registers to spill to StackSlot, including the main register. | |||
| 179 | SmallVector<Register, 8> RegsToSpill; | |||
| 180 | ||||
| 181 | // All COPY instructions to/from snippets. | |||
| 182 | // They are ignored since both operands refer to the same stack slot. | |||
| 183 | SmallPtrSet<MachineInstr*, 8> SnippetCopies; | |||
| 184 | ||||
| 185 | // Values that failed to remat at some point. | |||
| 186 | SmallPtrSet<VNInfo*, 8> UsedValues; | |||
| 187 | ||||
| 188 | // Dead defs generated during spilling. | |||
| 189 | SmallVector<MachineInstr*, 8> DeadDefs; | |||
| 190 | ||||
| 191 | // Object records spills information and does the hoisting. | |||
| 192 | HoistSpillHelper HSpiller; | |||
| 193 | ||||
| 194 | // Live range weight calculator. | |||
| 195 | VirtRegAuxInfo &VRAI; | |||
| 196 | ||||
| 197 | ~InlineSpiller() override = default; | |||
| 198 | ||||
| 199 | public: | |||
| 200 | InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM, | |||
| 201 | VirtRegAuxInfo &VRAI) | |||
| 202 | : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()), | |||
| 203 | LSS(Pass.getAnalysis<LiveStacks>()), | |||
| 204 | AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()), | |||
| 205 | MDT(Pass.getAnalysis<MachineDominatorTree>()), | |||
| 206 | Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM), | |||
| 207 | MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()), | |||
| 208 | TRI(*MF.getSubtarget().getRegisterInfo()), | |||
| 209 | MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()), | |||
| 210 | HSpiller(Pass, MF, VRM), VRAI(VRAI) {} | |||
| 211 | ||||
| 212 | void spill(LiveRangeEdit &) override; | |||
| 213 | void postOptimization() override; | |||
| 214 | ||||
| 215 | private: | |||
| 216 | bool isSnippet(const LiveInterval &SnipLI); | |||
| 217 | void collectRegsToSpill(); | |||
| 218 | ||||
| 219 | bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); } | |||
| 220 | ||||
| 221 | bool isSibling(Register Reg); | |||
| 222 | bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI); | |||
| 223 | void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI); | |||
| 224 | ||||
| 225 | void markValueUsed(LiveInterval*, VNInfo*); | |||
| 226 | bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI); | |||
| 227 | bool reMaterializeFor(LiveInterval &, MachineInstr &MI); | |||
| 228 | void reMaterializeAll(); | |||
| 229 | ||||
| 230 | bool coalesceStackAccess(MachineInstr *MI, Register Reg); | |||
| 231 | bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>, | |||
| 232 | MachineInstr *LoadMI = nullptr); | |||
| 233 | void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI); | |||
| 234 | void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI); | |||
| 235 | ||||
| 236 | void spillAroundUses(Register Reg); | |||
| 237 | void spillAll(); | |||
| 238 | }; | |||
| 239 | ||||
| 240 | } // end anonymous namespace | |||
| 241 | ||||
| 242 | Spiller::~Spiller() = default; | |||
| 243 | ||||
| 244 | void Spiller::anchor() {} | |||
| 245 | ||||
| 246 | Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass, | |||
| 247 | MachineFunction &MF, VirtRegMap &VRM, | |||
| 248 | VirtRegAuxInfo &VRAI) { | |||
| 249 | return new InlineSpiller(Pass, MF, VRM, VRAI); | |||
| 250 | } | |||
| 251 | ||||
| 252 | //===----------------------------------------------------------------------===// | |||
| 253 | // Snippets | |||
| 254 | //===----------------------------------------------------------------------===// | |||
| 255 | ||||
| 256 | // When spilling a virtual register, we also spill any snippets it is connected | |||
| 257 | // to. The snippets are small live ranges that only have a single real use, | |||
| 258 | // leftovers from live range splitting. Spilling them enables memory operand | |||
| 259 | // folding or tightens the live range around the single use. | |||
| 260 | // | |||
| 261 | // This minimizes register pressure and maximizes the store-to-load distance for | |||
| 262 | // spill slots which can be important in tight loops. | |||
| 263 | ||||
| 264 | /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register, | |||
| 265 | /// otherwise return 0. | |||
| 266 | static Register isFullCopyOf(const MachineInstr &MI, Register Reg) { | |||
| 267 | if (!MI.isFullCopy()) | |||
| 268 | return Register(); | |||
| 269 | if (MI.getOperand(0).getReg() == Reg) | |||
| 270 | return MI.getOperand(1).getReg(); | |||
| 271 | if (MI.getOperand(1).getReg() == Reg) | |||
| 272 | return MI.getOperand(0).getReg(); | |||
| 273 | return Register(); | |||
| 274 | } | |||
| 275 | ||||
| 276 | static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) { | |||
| 277 | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { | |||
| 278 | const MachineOperand &MO = MI.getOperand(I); | |||
| 279 | if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) | |||
| 280 | LIS.getInterval(MO.getReg()); | |||
| 281 | } | |||
| 282 | } | |||
| 283 | ||||
| 284 | /// isSnippet - Identify if a live interval is a snippet that should be spilled. | |||
| 285 | /// It is assumed that SnipLI is a virtual register with the same original as | |||
| 286 | /// Edit->getReg(). | |||
| 287 | bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) { | |||
| 288 | Register Reg = Edit->getReg(); | |||
| 289 | ||||
| 290 | // A snippet is a tiny live range with only a single instruction using it | |||
| 291 | // besides copies to/from Reg or spills/fills. We accept: | |||
| 292 | // | |||
| 293 | // %snip = COPY %Reg / FILL fi# | |||
| 294 | // %snip = USE %snip | |||
| 295 | // %Reg = COPY %snip / SPILL %snip, fi# | |||
| 296 | // | |||
| 297 | if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI)) | |||
| 298 | return false; | |||
| 299 | ||||
| 300 | MachineInstr *UseMI = nullptr; | |||
| 301 | ||||
| 302 | // Check that all uses satisfy our criteria. | |||
| 303 | for (MachineRegisterInfo::reg_instr_nodbg_iterator | |||
| 304 | RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()), | |||
| 305 | E = MRI.reg_instr_nodbg_end(); | |||
| 306 | RI != E;) { | |||
| 307 | MachineInstr &MI = *RI++; | |||
| 308 | ||||
| 309 | // Allow copies to/from Reg. | |||
| 310 | if (isFullCopyOf(MI, Reg)) | |||
| 311 | continue; | |||
| 312 | ||||
| 313 | // Allow stack slot loads. | |||
| 314 | int FI; | |||
| 315 | if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) | |||
| 316 | continue; | |||
| 317 | ||||
| 318 | // Allow stack slot stores. | |||
| 319 | if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) | |||
| 320 | continue; | |||
| 321 | ||||
| 322 | // Allow a single additional instruction. | |||
| 323 | if (UseMI && &MI != UseMI) | |||
| 324 | return false; | |||
| 325 | UseMI = &MI; | |||
| 326 | } | |||
| 327 | return true; | |||
| 328 | } | |||
| 329 | ||||
| 330 | /// collectRegsToSpill - Collect live range snippets that only have a single | |||
| 331 | /// real use. | |||
| 332 | void InlineSpiller::collectRegsToSpill() { | |||
| 333 | Register Reg = Edit->getReg(); | |||
| 334 | ||||
| 335 | // Main register always spills. | |||
| 336 | RegsToSpill.assign(1, Reg); | |||
| 337 | SnippetCopies.clear(); | |||
| 338 | ||||
| 339 | // Snippets all have the same original, so there can't be any for an original | |||
| 340 | // register. | |||
| 341 | if (Original == Reg) | |||
| 342 | return; | |||
| 343 | ||||
| 344 | for (MachineRegisterInfo::reg_instr_iterator | |||
| 345 | RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) { | |||
| 346 | MachineInstr &MI = *RI++; | |||
| 347 | Register SnipReg = isFullCopyOf(MI, Reg); | |||
| 348 | if (!isSibling(SnipReg)) | |||
| 349 | continue; | |||
| 350 | LiveInterval &SnipLI = LIS.getInterval(SnipReg); | |||
| 351 | if (!isSnippet(SnipLI)) | |||
| 352 | continue; | |||
| 353 | SnippetCopies.insert(&MI); | |||
| 354 | if (isRegToSpill(SnipReg)) | |||
| 355 | continue; | |||
| 356 | RegsToSpill.push_back(SnipReg); | |||
| 357 | LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n')do { } while (false); | |||
| 358 | ++NumSnippets; | |||
| 359 | } | |||
| 360 | } | |||
| 361 | ||||
| 362 | bool InlineSpiller::isSibling(Register Reg) { | |||
| 363 | return Reg.isVirtual() && VRM.getOriginal(Reg) == Original; | |||
| 364 | } | |||
| 365 | ||||
| 366 | /// It is beneficial to spill to earlier place in the same BB in case | |||
| 367 | /// as follows: | |||
| 368 | /// There is an alternative def earlier in the same MBB. | |||
| 369 | /// Hoist the spill as far as possible in SpillMBB. This can ease | |||
| 370 | /// register pressure: | |||
| 371 | /// | |||
| 372 | /// x = def | |||
| 373 | /// y = use x | |||
| 374 | /// s = copy x | |||
| 375 | /// | |||
| 376 | /// Hoisting the spill of s to immediately after the def removes the | |||
| 377 | /// interference between x and y: | |||
| 378 | /// | |||
| 379 | /// x = def | |||
| 380 | /// spill x | |||
| 381 | /// y = use killed x | |||
| 382 | /// | |||
| 383 | /// This hoist only helps when the copy kills its source. | |||
| 384 | /// | |||
| 385 | bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI, | |||
| 386 | MachineInstr &CopyMI) { | |||
| 387 | SlotIndex Idx = LIS.getInstructionIndex(CopyMI); | |||
| 388 | #ifndef NDEBUG1 | |||
| 389 | VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot()); | |||
| 390 | assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy")((void)0); | |||
| 391 | #endif | |||
| 392 | ||||
| 393 | Register SrcReg = CopyMI.getOperand(1).getReg(); | |||
| 394 | LiveInterval &SrcLI = LIS.getInterval(SrcReg); | |||
| 395 | VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx); | |||
| 396 | LiveQueryResult SrcQ = SrcLI.Query(Idx); | |||
| 397 | MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def); | |||
| 398 | if (DefMBB != CopyMI.getParent() || !SrcQ.isKill()) | |||
| 399 | return false; | |||
| 400 | ||||
| 401 | // Conservatively extend the stack slot range to the range of the original | |||
| 402 | // value. We may be able to do better with stack slot coloring by being more | |||
| 403 | // careful here. | |||
| 404 | assert(StackInt && "No stack slot assigned yet.")((void)0); | |||
| 405 | LiveInterval &OrigLI = LIS.getInterval(Original); | |||
| 406 | VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); | |||
| 407 | StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0)); | |||
| 408 | LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "do { } while (false) | |||
| 409 | << *StackInt << '\n')do { } while (false); | |||
| 410 | ||||
| 411 | // We are going to spill SrcVNI immediately after its def, so clear out | |||
| 412 | // any later spills of the same value. | |||
| 413 | eliminateRedundantSpills(SrcLI, SrcVNI); | |||
| 414 | ||||
| 415 | MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def); | |||
| 416 | MachineBasicBlock::iterator MII; | |||
| 417 | if (SrcVNI->isPHIDef()) | |||
| 418 | MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); | |||
| 419 | else { | |||
| 420 | MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def); | |||
| 421 | assert(DefMI && "Defining instruction disappeared")((void)0); | |||
| 422 | MII = DefMI; | |||
| 423 | ++MII; | |||
| 424 | } | |||
| 425 | MachineInstrSpan MIS(MII, MBB); | |||
| 426 | // Insert spill without kill flag immediately after def. | |||
| 427 | TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot, | |||
| 428 | MRI.getRegClass(SrcReg), &TRI); | |||
| 429 | LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); | |||
| 430 | for (const MachineInstr &MI : make_range(MIS.begin(), MII)) | |||
| 431 | getVDefInterval(MI, LIS); | |||
| 432 | --MII; // Point to store instruction. | |||
| 433 | LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII)do { } while (false); | |||
| 434 | ||||
| 435 | // If there is only 1 store instruction is required for spill, add it | |||
| 436 | // to mergeable list. In X86 AMX, 2 intructions are required to store. | |||
| 437 | // We disable the merge for this case. | |||
| 438 | if (MIS.begin() == MII) | |||
| 439 | HSpiller.addToMergeableSpills(*MII, StackSlot, Original); | |||
| 440 | ++NumSpills; | |||
| 441 | return true; | |||
| 442 | } | |||
| 443 | ||||
| 444 | /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any | |||
| 445 | /// redundant spills of this value in SLI.reg and sibling copies. | |||
| 446 | void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) { | |||
| 447 | assert(VNI && "Missing value")((void)0); | |||
| 448 | SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; | |||
| 449 | WorkList.push_back(std::make_pair(&SLI, VNI)); | |||
| 450 | assert(StackInt && "No stack slot assigned yet.")((void)0); | |||
| 451 | ||||
| 452 | do { | |||
| 453 | LiveInterval *LI; | |||
| 454 | std::tie(LI, VNI) = WorkList.pop_back_val(); | |||
| 455 | Register Reg = LI->reg(); | |||
| 456 | LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'do { } while (false) | |||
| 457 | << VNI->def << " in " << *LI << '\n')do { } while (false); | |||
| 458 | ||||
| 459 | // Regs to spill are taken care of. | |||
| 460 | if (isRegToSpill(Reg)) | |||
| 461 | continue; | |||
| 462 | ||||
| 463 | // Add all of VNI's live range to StackInt. | |||
| 464 | StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0)); | |||
| 465 | LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n')do { } while (false); | |||
| 466 | ||||
| 467 | // Find all spills and copies of VNI. | |||
| 468 | for (MachineRegisterInfo::use_instr_nodbg_iterator | |||
| 469 | UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); | |||
| 470 | UI != E; ) { | |||
| 471 | MachineInstr &MI = *UI++; | |||
| 472 | if (!MI.isCopy() && !MI.mayStore()) | |||
| 473 | continue; | |||
| 474 | SlotIndex Idx = LIS.getInstructionIndex(MI); | |||
| 475 | if (LI->getVNInfoAt(Idx) != VNI) | |||
| 476 | continue; | |||
| 477 | ||||
| 478 | // Follow sibling copies down the dominator tree. | |||
| 479 | if (Register DstReg = isFullCopyOf(MI, Reg)) { | |||
| 480 | if (isSibling(DstReg)) { | |||
| 481 | LiveInterval &DstLI = LIS.getInterval(DstReg); | |||
| 482 | VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot()); | |||
| 483 | assert(DstVNI && "Missing defined value")((void)0); | |||
| 484 | assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot")((void)0); | |||
| 485 | WorkList.push_back(std::make_pair(&DstLI, DstVNI)); | |||
| 486 | } | |||
| 487 | continue; | |||
| 488 | } | |||
| 489 | ||||
| 490 | // Erase spills. | |||
| 491 | int FI; | |||
| 492 | if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) { | |||
| 493 | LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI)do { } while (false); | |||
| 494 | // eliminateDeadDefs won't normally remove stores, so switch opcode. | |||
| 495 | MI.setDesc(TII.get(TargetOpcode::KILL)); | |||
| 496 | DeadDefs.push_back(&MI); | |||
| 497 | ++NumSpillsRemoved; | |||
| 498 | if (HSpiller.rmFromMergeableSpills(MI, StackSlot)) | |||
| 499 | --NumSpills; | |||
| 500 | } | |||
| 501 | } | |||
| 502 | } while (!WorkList.empty()); | |||
| 503 | } | |||
| 504 | ||||
| 505 | //===----------------------------------------------------------------------===// | |||
| 506 | // Rematerialization | |||
| 507 | //===----------------------------------------------------------------------===// | |||
| 508 | ||||
| 509 | /// markValueUsed - Remember that VNI failed to rematerialize, so its defining | |||
| 510 | /// instruction cannot be eliminated. See through snippet copies | |||
| 511 | void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) { | |||
| 512 | SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList; | |||
| 513 | WorkList.push_back(std::make_pair(LI, VNI)); | |||
| 514 | do { | |||
| 515 | std::tie(LI, VNI) = WorkList.pop_back_val(); | |||
| 516 | if (!UsedValues.insert(VNI).second) | |||
| 517 | continue; | |||
| 518 | ||||
| 519 | if (VNI->isPHIDef()) { | |||
| 520 | MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); | |||
| 521 | for (MachineBasicBlock *P : MBB->predecessors()) { | |||
| 522 | VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P)); | |||
| 523 | if (PVNI) | |||
| 524 | WorkList.push_back(std::make_pair(LI, PVNI)); | |||
| 525 | } | |||
| 526 | continue; | |||
| 527 | } | |||
| 528 | ||||
| 529 | // Follow snippet copies. | |||
| 530 | MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); | |||
| 531 | if (!SnippetCopies.count(MI)) | |||
| 532 | continue; | |||
| 533 | LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg()); | |||
| 534 | assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy")((void)0); | |||
| 535 | VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true)); | |||
| 536 | assert(SnipVNI && "Snippet undefined before copy")((void)0); | |||
| 537 | WorkList.push_back(std::make_pair(&SnipLI, SnipVNI)); | |||
| 538 | } while (!WorkList.empty()); | |||
| 539 | } | |||
| 540 | ||||
| 541 | bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg, | |||
| 542 | MachineInstr &MI) { | |||
| 543 | if (!RestrictStatepointRemat) | |||
| 544 | return true; | |||
| 545 | // Here's a quick explanation of the problem we're trying to handle here: | |||
| 546 | // * There are some pseudo instructions with more vreg uses than there are | |||
| 547 | // physical registers on the machine. | |||
| 548 | // * This is normally handled by spilling the vreg, and folding the reload | |||
| 549 | // into the user instruction. (Thus decreasing the number of used vregs | |||
| 550 | // until the remainder can be assigned to physregs.) | |||
| 551 | // * However, since we may try to spill vregs in any order, we can end up | |||
| 552 | // trying to spill each operand to the instruction, and then rematting it | |||
| 553 | // instead. When that happens, the new live intervals (for the remats) are | |||
| 554 | // expected to be trivially assignable (i.e. RS_Done). However, since we | |||
| 555 | // may have more remats than physregs, we're guaranteed to fail to assign | |||
| 556 | // one. | |||
| 557 | // At the moment, we only handle this for STATEPOINTs since they're the only | |||
| 558 | // pseudo op where we've seen this. If we start seeing other instructions | |||
| 559 | // with the same problem, we need to revisit this. | |||
| 560 | if (MI.getOpcode() != TargetOpcode::STATEPOINT) | |||
| 561 | return true; | |||
| 562 | // For STATEPOINTs we allow re-materialization for fixed arguments only hoping | |||
| 563 | // that number of physical registers is enough to cover all fixed arguments. | |||
| 564 | // If it is not true we need to revisit it. | |||
| 565 | for (unsigned Idx = StatepointOpers(&MI).getVarIdx(), | |||
| 566 | EndIdx = MI.getNumOperands(); | |||
| 567 | Idx < EndIdx; ++Idx) { | |||
| 568 | MachineOperand &MO = MI.getOperand(Idx); | |||
| 569 | if (MO.isReg() && MO.getReg() == VReg) | |||
| 570 | return false; | |||
| 571 | } | |||
| 572 | return true; | |||
| 573 | } | |||
| 574 | ||||
| 575 | /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading. | |||
| 576 | bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) { | |||
| 577 | // Analyze instruction | |||
| 578 | SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops; | |||
| 579 | VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops); | |||
| 580 | ||||
| 581 | if (!RI.Reads) | |||
| 582 | return false; | |||
| 583 | ||||
| 584 | SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true); | |||
| 585 | VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex()); | |||
| 586 | ||||
| 587 | if (!ParentVNI) { | |||
| 588 | LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ")do { } while (false); | |||
| 589 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | |||
| 590 | MachineOperand &MO = MI.getOperand(i); | |||
| 591 | if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) | |||
| 592 | MO.setIsUndef(); | |||
| 593 | } | |||
| 594 | LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI)do { } while (false); | |||
| 595 | return true; | |||
| 596 | } | |||
| 597 | ||||
| 598 | if (SnippetCopies.count(&MI)) | |||
| 599 | return false; | |||
| 600 | ||||
| 601 | LiveInterval &OrigLI = LIS.getInterval(Original); | |||
| 602 | VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); | |||
| 603 | LiveRangeEdit::Remat RM(ParentVNI); | |||
| 604 | RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); | |||
| 605 | ||||
| 606 | if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) { | |||
| 607 | markValueUsed(&VirtReg, ParentVNI); | |||
| 608 | LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI)do { } while (false); | |||
| 609 | return false; | |||
| 610 | } | |||
| 611 | ||||
| 612 | // If the instruction also writes VirtReg.reg, it had better not require the | |||
| 613 | // same register for uses and defs. | |||
| 614 | if (RI.Tied) { | |||
| 615 | markValueUsed(&VirtReg, ParentVNI); | |||
| 616 | LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI)do { } while (false); | |||
| 617 | return false; | |||
| 618 | } | |||
| 619 | ||||
| 620 | // Before rematerializing into a register for a single instruction, try to | |||
| 621 | // fold a load into the instruction. That avoids allocating a new register. | |||
| 622 | if (RM.OrigMI->canFoldAsLoad() && | |||
| 623 | foldMemoryOperand(Ops, RM.OrigMI)) { | |||
| 624 | Edit->markRematerialized(RM.ParentVNI); | |||
| 625 | ++NumFoldedLoads; | |||
| 626 | return true; | |||
| 627 | } | |||
| 628 | ||||
| 629 | // If we can't guarantee that we'll be able to actually assign the new vreg, | |||
| 630 | // we can't remat. | |||
| 631 | if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) { | |||
| 632 | markValueUsed(&VirtReg, ParentVNI); | |||
| 633 | LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI)do { } while (false); | |||
| 634 | return false; | |||
| 635 | } | |||
| 636 | ||||
| 637 | // Allocate a new register for the remat. | |||
| 638 | Register NewVReg = Edit->createFrom(Original); | |||
| 639 | ||||
| 640 | // Finally we can rematerialize OrigMI before MI. | |||
| 641 | SlotIndex DefIdx = | |||
| 642 | Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI); | |||
| 643 | ||||
| 644 | // We take the DebugLoc from MI, since OrigMI may be attributed to a | |||
| 645 | // different source location. | |||
| 646 | auto *NewMI = LIS.getInstructionFromIndex(DefIdx); | |||
| 647 | NewMI->setDebugLoc(MI.getDebugLoc()); | |||
| 648 | ||||
| 649 | (void)DefIdx; | |||
| 650 | LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'do { } while (false) | |||
| 651 | << *LIS.getInstructionFromIndex(DefIdx))do { } while (false); | |||
| 652 | ||||
| 653 | // Replace operands | |||
| 654 | for (const auto &OpPair : Ops) { | |||
| 655 | MachineOperand &MO = OpPair.first->getOperand(OpPair.second); | |||
| 656 | if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) { | |||
| 657 | MO.setReg(NewVReg); | |||
| 658 | MO.setIsKill(); | |||
| 659 | } | |||
| 660 | } | |||
| 661 | LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n')do { } while (false); | |||
| 662 | ||||
| 663 | ++NumRemats; | |||
| 664 | return true; | |||
| 665 | } | |||
| 666 | ||||
| 667 | /// reMaterializeAll - Try to rematerialize as many uses as possible, | |||
| 668 | /// and trim the live ranges after. | |||
| 669 | void InlineSpiller::reMaterializeAll() { | |||
| 670 | if (!Edit->anyRematerializable(AA)) | |||
| 671 | return; | |||
| 672 | ||||
| 673 | UsedValues.clear(); | |||
| 674 | ||||
| 675 | // Try to remat before all uses of snippets. | |||
| 676 | bool anyRemat = false; | |||
| 677 | for (Register Reg : RegsToSpill) { | |||
| 678 | LiveInterval &LI = LIS.getInterval(Reg); | |||
| 679 | for (MachineRegisterInfo::reg_bundle_iterator | |||
| 680 | RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); | |||
| 681 | RegI != E; ) { | |||
| 682 | MachineInstr &MI = *RegI++; | |||
| 683 | ||||
| 684 | // Debug values are not allowed to affect codegen. | |||
| 685 | if (MI.isDebugValue()) | |||
| 686 | continue; | |||
| 687 | ||||
| 688 | assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "((void)0) | |||
| 689 | "instruction that isn't a DBG_VALUE")((void)0); | |||
| 690 | ||||
| 691 | anyRemat |= reMaterializeFor(LI, MI); | |||
| 692 | } | |||
| 693 | } | |||
| 694 | if (!anyRemat) | |||
| 695 | return; | |||
| 696 | ||||
| 697 | // Remove any values that were completely rematted. | |||
| 698 | for (Register Reg : RegsToSpill) { | |||
| 699 | LiveInterval &LI = LIS.getInterval(Reg); | |||
| 700 | for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end(); | |||
| 701 | I != E; ++I) { | |||
| 702 | VNInfo *VNI = *I; | |||
| 703 | if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI)) | |||
| 704 | continue; | |||
| 705 | MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def); | |||
| 706 | MI->addRegisterDead(Reg, &TRI); | |||
| 707 | if (!MI->allDefsAreDead()) | |||
| 708 | continue; | |||
| 709 | LLVM_DEBUG(dbgs() << "All defs dead: " << *MI)do { } while (false); | |||
| 710 | DeadDefs.push_back(MI); | |||
| 711 | } | |||
| 712 | } | |||
| 713 | ||||
| 714 | // Eliminate dead code after remat. Note that some snippet copies may be | |||
| 715 | // deleted here. | |||
| 716 | if (DeadDefs.empty()) | |||
| 717 | return; | |||
| 718 | LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n")do { } while (false); | |||
| 719 | Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); | |||
| 720 | ||||
| 721 | // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions | |||
| 722 | // after rematerialization. To remove a VNI for a vreg from its LiveInterval, | |||
| 723 | // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all | |||
| 724 | // removed, PHI VNI are still left in the LiveInterval. | |||
| 725 | // So to get rid of unused reg, we need to check whether it has non-dbg | |||
| 726 | // reference instead of whether it has non-empty interval. | |||
| 727 | unsigned ResultPos = 0; | |||
| 728 | for (Register Reg : RegsToSpill) { | |||
| 729 | if (MRI.reg_nodbg_empty(Reg)) { | |||
| 730 | Edit->eraseVirtReg(Reg); | |||
| 731 | continue; | |||
| 732 | } | |||
| 733 | ||||
| 734 | assert(LIS.hasInterval(Reg) &&((void)0) | |||
| 735 | (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&((void)0) | |||
| 736 | "Empty and not used live-range?!")((void)0); | |||
| 737 | ||||
| 738 | RegsToSpill[ResultPos++] = Reg; | |||
| 739 | } | |||
| 740 | RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end()); | |||
| 741 | LLVM_DEBUG(dbgs() << RegsToSpill.size()do { } while (false) | |||
| 742 | << " registers to spill after remat.\n")do { } while (false); | |||
| 743 | } | |||
| 744 | ||||
| 745 | //===----------------------------------------------------------------------===// | |||
| 746 | // Spilling | |||
| 747 | //===----------------------------------------------------------------------===// | |||
| 748 | ||||
| 749 | /// If MI is a load or store of StackSlot, it can be removed. | |||
| 750 | bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) { | |||
| 751 | int FI = 0; | |||
| 752 | Register InstrReg = TII.isLoadFromStackSlot(*MI, FI); | |||
| 753 | bool IsLoad = InstrReg; | |||
| 754 | if (!IsLoad) | |||
| 755 | InstrReg = TII.isStoreToStackSlot(*MI, FI); | |||
| 756 | ||||
| 757 | // We have a stack access. Is it the right register and slot? | |||
| 758 | if (InstrReg != Reg || FI != StackSlot) | |||
| 759 | return false; | |||
| 760 | ||||
| 761 | if (!IsLoad) | |||
| 762 | HSpiller.rmFromMergeableSpills(*MI, StackSlot); | |||
| 763 | ||||
| 764 | LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI)do { } while (false); | |||
| 765 | LIS.RemoveMachineInstrFromMaps(*MI); | |||
| 766 | MI->eraseFromParent(); | |||
| 767 | ||||
| 768 | if (IsLoad) { | |||
| 769 | ++NumReloadsRemoved; | |||
| 770 | --NumReloads; | |||
| 771 | } else { | |||
| 772 | ++NumSpillsRemoved; | |||
| 773 | --NumSpills; | |||
| 774 | } | |||
| 775 | ||||
| 776 | return true; | |||
| 777 | } | |||
| 778 | ||||
| 779 | #if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP) | |||
| 780 | LLVM_DUMP_METHOD__attribute__((noinline)) | |||
| 781 | // Dump the range of instructions from B to E with their slot indexes. | |||
| 782 | static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B, | |||
| 783 | MachineBasicBlock::iterator E, | |||
| 784 | LiveIntervals const &LIS, | |||
| 785 | const char *const header, | |||
| 786 | Register VReg = Register()) { | |||
| 787 | char NextLine = '\n'; | |||
| 788 | char SlotIndent = '\t'; | |||
| 789 | ||||
| 790 | if (std::next(B) == E) { | |||
| 791 | NextLine = ' '; | |||
| 792 | SlotIndent = ' '; | |||
| 793 | } | |||
| 794 | ||||
| 795 | dbgs() << '\t' << header << ": " << NextLine; | |||
| 796 | ||||
| 797 | for (MachineBasicBlock::iterator I = B; I != E; ++I) { | |||
| 798 | SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot(); | |||
| 799 | ||||
| 800 | // If a register was passed in and this instruction has it as a | |||
| 801 | // destination that is marked as an early clobber, print the | |||
| 802 | // early-clobber slot index. | |||
| 803 | if (VReg) { | |||
| 804 | MachineOperand *MO = I->findRegisterDefOperand(VReg); | |||
| 805 | if (MO && MO->isEarlyClobber()) | |||
| 806 | Idx = Idx.getRegSlot(true); | |||
| 807 | } | |||
| 808 | ||||
| 809 | dbgs() << SlotIndent << Idx << '\t' << *I; | |||
| 810 | } | |||
| 811 | } | |||
| 812 | #endif | |||
| 813 | ||||
| 814 | /// foldMemoryOperand - Try folding stack slot references in Ops into their | |||
| 815 | /// instructions. | |||
| 816 | /// | |||
| 817 | /// @param Ops Operand indices from AnalyzeVirtRegInBundle(). | |||
| 818 | /// @param LoadMI Load instruction to use instead of stack slot when non-null. | |||
| 819 | /// @return True on success. | |||
| 820 | bool InlineSpiller:: | |||
| 821 | foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops, | |||
| 822 | MachineInstr *LoadMI) { | |||
| 823 | if (Ops.empty()) | |||
| 824 | return false; | |||
| 825 | // Don't attempt folding in bundles. | |||
| 826 | MachineInstr *MI = Ops.front().first; | |||
| 827 | if (Ops.back().first != MI || MI->isBundled()) | |||
| 828 | return false; | |||
| 829 | ||||
| 830 | bool WasCopy = MI->isCopy(); | |||
| 831 | Register ImpReg; | |||
| 832 | ||||
| 833 | // TII::foldMemoryOperand will do what we need here for statepoint | |||
| 834 | // (fold load into use and remove corresponding def). We will replace | |||
| 835 | // uses of removed def with loads (spillAroundUses). | |||
| 836 | // For that to work we need to untie def and use to pass it through | |||
| 837 | // foldMemoryOperand and signal foldPatchpoint that it is allowed to | |||
| 838 | // fold them. | |||
| 839 | bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT; | |||
| 840 | ||||
| 841 | // Spill subregs if the target allows it. | |||
| 842 | // We always want to spill subregs for stackmap/patchpoint pseudos. | |||
| 843 | bool SpillSubRegs = TII.isSubregFoldable() || | |||
| 844 | MI->getOpcode() == TargetOpcode::STATEPOINT || | |||
| 845 | MI->getOpcode() == TargetOpcode::PATCHPOINT || | |||
| 846 | MI->getOpcode() == TargetOpcode::STACKMAP; | |||
| 847 | ||||
| 848 | // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied | |||
| 849 | // operands. | |||
| 850 | SmallVector<unsigned, 8> FoldOps; | |||
| 851 | for (const auto &OpPair : Ops) { | |||
| 852 | unsigned Idx = OpPair.second; | |||
| 853 | assert(MI == OpPair.first && "Instruction conflict during operand folding")((void)0); | |||
| 854 | MachineOperand &MO = MI->getOperand(Idx); | |||
| 855 | if (MO.isImplicit()) { | |||
| 856 | ImpReg = MO.getReg(); | |||
| 857 | continue; | |||
| 858 | } | |||
| 859 | ||||
| 860 | if (!SpillSubRegs && MO.getSubReg()) | |||
| 861 | return false; | |||
| 862 | // We cannot fold a load instruction into a def. | |||
| 863 | if (LoadMI && MO.isDef()) | |||
| 864 | return false; | |||
| 865 | // Tied use operands should not be passed to foldMemoryOperand. | |||
| 866 | if (UntieRegs || !MI->isRegTiedToDefOperand(Idx)) | |||
| 867 | FoldOps.push_back(Idx); | |||
| 868 | } | |||
| 869 | ||||
| 870 | // If we only have implicit uses, we won't be able to fold that. | |||
| 871 | // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try! | |||
| 872 | if (FoldOps.empty()) | |||
| 873 | return false; | |||
| 874 | ||||
| 875 | MachineInstrSpan MIS(MI, MI->getParent()); | |||
| 876 | ||||
| 877 | SmallVector<std::pair<unsigned, unsigned> > TiedOps; | |||
| 878 | if (UntieRegs) | |||
| 879 | for (unsigned Idx : FoldOps) { | |||
| 880 | MachineOperand &MO = MI->getOperand(Idx); | |||
| 881 | if (!MO.isTied()) | |||
| 882 | continue; | |||
| 883 | unsigned Tied = MI->findTiedOperandIdx(Idx); | |||
| 884 | if (MO.isUse()) | |||
| 885 | TiedOps.emplace_back(Tied, Idx); | |||
| 886 | else { | |||
| 887 | assert(MO.isDef() && "Tied to not use and def?")((void)0); | |||
| 888 | TiedOps.emplace_back(Idx, Tied); | |||
| 889 | } | |||
| 890 | MI->untieRegOperand(Idx); | |||
| 891 | } | |||
| 892 | ||||
| 893 | MachineInstr *FoldMI = | |||
| 894 | LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS) | |||
| 895 | : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM); | |||
| 896 | if (!FoldMI) { | |||
| 897 | // Re-tie operands. | |||
| 898 | for (auto Tied : TiedOps) | |||
| 899 | MI->tieOperands(Tied.first, Tied.second); | |||
| 900 | return false; | |||
| 901 | } | |||
| 902 | ||||
| 903 | // Remove LIS for any dead defs in the original MI not in FoldMI. | |||
| 904 | for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) { | |||
| 905 | if (!MO->isReg()) | |||
| 906 | continue; | |||
| 907 | Register Reg = MO->getReg(); | |||
| 908 | if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) { | |||
| 909 | continue; | |||
| 910 | } | |||
| 911 | // Skip non-Defs, including undef uses and internal reads. | |||
| 912 | if (MO->isUse()) | |||
| 913 | continue; | |||
| 914 | PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI); | |||
| 915 | if (RI.FullyDefined) | |||
| 916 | continue; | |||
| 917 | // FoldMI does not define this physreg. Remove the LI segment. | |||
| 918 | assert(MO->isDead() && "Cannot fold physreg def")((void)0); | |||
| 919 | SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); | |||
| 920 | LIS.removePhysRegDefAt(Reg.asMCReg(), Idx); | |||
| 921 | } | |||
| 922 | ||||
| 923 | int FI; | |||
| 924 | if (TII.isStoreToStackSlot(*MI, FI) && | |||
| 925 | HSpiller.rmFromMergeableSpills(*MI, FI)) | |||
| 926 | --NumSpills; | |||
| 927 | LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI); | |||
| 928 | // Update the call site info. | |||
| 929 | if (MI->isCandidateForCallSiteEntry()) | |||
| 930 | MI->getMF()->moveCallSiteInfo(MI, FoldMI); | |||
| 931 | MI->eraseFromParent(); | |||
| 932 | ||||
| 933 | // Insert any new instructions other than FoldMI into the LIS maps. | |||
| 934 | assert(!MIS.empty() && "Unexpected empty span of instructions!")((void)0); | |||
| 935 | for (MachineInstr &MI : MIS) | |||
| 936 | if (&MI != FoldMI) | |||
| 937 | LIS.InsertMachineInstrInMaps(MI); | |||
| 938 | ||||
| 939 | // TII.foldMemoryOperand may have left some implicit operands on the | |||
| 940 | // instruction. Strip them. | |||
| 941 | if (ImpReg) | |||
| 942 | for (unsigned i = FoldMI->getNumOperands(); i; --i) { | |||
| 943 | MachineOperand &MO = FoldMI->getOperand(i - 1); | |||
| 944 | if (!MO.isReg() || !MO.isImplicit()) | |||
| 945 | break; | |||
| 946 | if (MO.getReg() == ImpReg) | |||
| 947 | FoldMI->RemoveOperand(i - 1); | |||
| 948 | } | |||
| 949 | ||||
| 950 | LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,do { } while (false) | |||
| 951 | "folded"))do { } while (false); | |||
| 952 | ||||
| 953 | if (!WasCopy) | |||
| 954 | ++NumFolded; | |||
| 955 | else if (Ops.front().second == 0) { | |||
| 956 | ++NumSpills; | |||
| 957 | // If there is only 1 store instruction is required for spill, add it | |||
| 958 | // to mergeable list. In X86 AMX, 2 intructions are required to store. | |||
| 959 | // We disable the merge for this case. | |||
| 960 | if (std::distance(MIS.begin(), MIS.end()) <= 1) | |||
| 961 | HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original); | |||
| 962 | } else | |||
| 963 | ++NumReloads; | |||
| 964 | return true; | |||
| 965 | } | |||
| 966 | ||||
| 967 | void InlineSpiller::insertReload(Register NewVReg, | |||
| 968 | SlotIndex Idx, | |||
| 969 | MachineBasicBlock::iterator MI) { | |||
| 970 | MachineBasicBlock &MBB = *MI->getParent(); | |||
| 971 | ||||
| 972 | MachineInstrSpan MIS(MI, &MBB); | |||
| 973 | TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot, | |||
| 974 | MRI.getRegClass(NewVReg), &TRI); | |||
| 975 | ||||
| 976 | LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI); | |||
| 977 | ||||
| 978 | LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",do { } while (false) | |||
| 979 | NewVReg))do { } while (false); | |||
| 980 | ++NumReloads; | |||
| 981 | } | |||
| 982 | ||||
| 983 | /// Check if \p Def fully defines a VReg with an undefined value. | |||
| 984 | /// If that's the case, that means the value of VReg is actually | |||
| 985 | /// not relevant. | |||
| 986 | static bool isRealSpill(const MachineInstr &Def) { | |||
| 987 | if (!Def.isImplicitDef()) | |||
| 988 | return true; | |||
| 989 | assert(Def.getNumOperands() == 1 &&((void)0) | |||
| 990 | "Implicit def with more than one definition")((void)0); | |||
| 991 | // We can say that the VReg defined by Def is undef, only if it is | |||
| 992 | // fully defined by Def. Otherwise, some of the lanes may not be | |||
| 993 | // undef and the value of the VReg matters. | |||
| 994 | return Def.getOperand(0).getSubReg(); | |||
| 995 | } | |||
| 996 | ||||
| 997 | /// insertSpill - Insert a spill of NewVReg after MI. | |||
| 998 | void InlineSpiller::insertSpill(Register NewVReg, bool isKill, | |||
| 999 | MachineBasicBlock::iterator MI) { | |||
| 1000 | // Spill are not terminators, so inserting spills after terminators will | |||
| 1001 | // violate invariants in MachineVerifier. | |||
| 1002 | assert(!MI->isTerminator() && "Inserting a spill after a terminator")((void)0); | |||
| 1003 | MachineBasicBlock &MBB = *MI->getParent(); | |||
| 1004 | ||||
| 1005 | MachineInstrSpan MIS(MI, &MBB); | |||
| 1006 | MachineBasicBlock::iterator SpillBefore = std::next(MI); | |||
| 1007 | bool IsRealSpill = isRealSpill(*MI); | |||
| 1008 | ||||
| 1009 | if (IsRealSpill) | |||
| 1010 | TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot, | |||
| 1011 | MRI.getRegClass(NewVReg), &TRI); | |||
| 1012 | else | |||
| 1013 | // Don't spill undef value. | |||
| 1014 | // Anything works for undef, in particular keeping the memory | |||
| 1015 | // uninitialized is a viable option and it saves code size and | |||
| 1016 | // run time. | |||
| 1017 | BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL)) | |||
| 1018 | .addReg(NewVReg, getKillRegState(isKill)); | |||
| 1019 | ||||
| 1020 | MachineBasicBlock::iterator Spill = std::next(MI); | |||
| 1021 | LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end()); | |||
| 1022 | for (const MachineInstr &MI : make_range(Spill, MIS.end())) | |||
| 1023 | getVDefInterval(MI, LIS); | |||
| 1024 | ||||
| 1025 | LLVM_DEBUG(do { } while (false) | |||
| 1026 | dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"))do { } while (false); | |||
| 1027 | ++NumSpills; | |||
| 1028 | // If there is only 1 store instruction is required for spill, add it | |||
| 1029 | // to mergeable list. In X86 AMX, 2 intructions are required to store. | |||
| 1030 | // We disable the merge for this case. | |||
| 1031 | if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1) | |||
| 1032 | HSpiller.addToMergeableSpills(*Spill, StackSlot, Original); | |||
| 1033 | } | |||
| 1034 | ||||
| 1035 | /// spillAroundUses - insert spill code around each use of Reg. | |||
| 1036 | void InlineSpiller::spillAroundUses(Register Reg) { | |||
| 1037 | LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n')do { } while (false); | |||
| 1038 | LiveInterval &OldLI = LIS.getInterval(Reg); | |||
| 1039 | ||||
| 1040 | // Iterate over instructions using Reg. | |||
| 1041 | for (MachineRegisterInfo::reg_bundle_iterator | |||
| 1042 | RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end(); | |||
| 1043 | RegI != E; ) { | |||
| 1044 | MachineInstr *MI = &*(RegI++); | |||
| 1045 | ||||
| 1046 | // Debug values are not allowed to affect codegen. | |||
| 1047 | if (MI->isDebugValue()) { | |||
| 1048 | // Modify DBG_VALUE now that the value is in a spill slot. | |||
| 1049 | MachineBasicBlock *MBB = MI->getParent(); | |||
| 1050 | LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI)do { } while (false); | |||
| 1051 | buildDbgValueForSpill(*MBB, MI, *MI, StackSlot, Reg); | |||
| 1052 | MBB->erase(MI); | |||
| 1053 | continue; | |||
| 1054 | } | |||
| 1055 | ||||
| 1056 | assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "((void)0) | |||
| 1057 | "instruction that isn't a DBG_VALUE")((void)0); | |||
| 1058 | ||||
| 1059 | // Ignore copies to/from snippets. We'll delete them. | |||
| 1060 | if (SnippetCopies.count(MI)) | |||
| 1061 | continue; | |||
| 1062 | ||||
| 1063 | // Stack slot accesses may coalesce away. | |||
| 1064 | if (coalesceStackAccess(MI, Reg)) | |||
| 1065 | continue; | |||
| 1066 | ||||
| 1067 | // Analyze instruction. | |||
| 1068 | SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops; | |||
| 1069 | VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops); | |||
| 1070 | ||||
| 1071 | // Find the slot index where this instruction reads and writes OldLI. | |||
| 1072 | // This is usually the def slot, except for tied early clobbers. | |||
| 1073 | SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); | |||
| 1074 | if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true))) | |||
| 1075 | if (SlotIndex::isSameInstr(Idx, VNI->def)) | |||
| 1076 | Idx = VNI->def; | |||
| 1077 | ||||
| 1078 | // Check for a sibling copy. | |||
| 1079 | Register SibReg = isFullCopyOf(*MI, Reg); | |||
| 1080 | if (SibReg && isSibling(SibReg)) { | |||
| 1081 | // This may actually be a copy between snippets. | |||
| 1082 | if (isRegToSpill(SibReg)) { | |||
| 1083 | LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI)do { } while (false); | |||
| 1084 | SnippetCopies.insert(MI); | |||
| 1085 | continue; | |||
| 1086 | } | |||
| 1087 | if (RI.Writes) { | |||
| 1088 | if (hoistSpillInsideBB(OldLI, *MI)) { | |||
| 1089 | // This COPY is now dead, the value is already in the stack slot. | |||
| 1090 | MI->getOperand(0).setIsDead(); | |||
| 1091 | DeadDefs.push_back(MI); | |||
| 1092 | continue; | |||
| 1093 | } | |||
| 1094 | } else { | |||
| 1095 | // This is a reload for a sib-reg copy. Drop spills downstream. | |||
| 1096 | LiveInterval &SibLI = LIS.getInterval(SibReg); | |||
| 1097 | eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx)); | |||
| 1098 | // The COPY will fold to a reload below. | |||
| 1099 | } | |||
| 1100 | } | |||
| 1101 | ||||
| 1102 | // Attempt to fold memory ops. | |||
| 1103 | if (foldMemoryOperand(Ops)) | |||
| 1104 | continue; | |||
| 1105 | ||||
| 1106 | // Create a new virtual register for spill/fill. | |||
| 1107 | // FIXME: Infer regclass from instruction alone. | |||
| 1108 | Register NewVReg = Edit->createFrom(Reg); | |||
| 1109 | ||||
| 1110 | if (RI.Reads) | |||
| 1111 | insertReload(NewVReg, Idx, MI); | |||
| 1112 | ||||
| 1113 | // Rewrite instruction operands. | |||
| 1114 | bool hasLiveDef = false; | |||
| 1115 | for (const auto &OpPair : Ops) { | |||
| 1116 | MachineOperand &MO = OpPair.first->getOperand(OpPair.second); | |||
| 1117 | MO.setReg(NewVReg); | |||
| 1118 | if (MO.isUse()) { | |||
| 1119 | if (!OpPair.first->isRegTiedToDefOperand(OpPair.second)) | |||
| 1120 | MO.setIsKill(); | |||
| 1121 | } else { | |||
| 1122 | if (!MO.isDead()) | |||
| 1123 | hasLiveDef = true; | |||
| 1124 | } | |||
| 1125 | } | |||
| 1126 | LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n')do { } while (false); | |||
| 1127 | ||||
| 1128 | // FIXME: Use a second vreg if instruction has no tied ops. | |||
| 1129 | if (RI.Writes) | |||
| 1130 | if (hasLiveDef) | |||
| 1131 | insertSpill(NewVReg, true, MI); | |||
| 1132 | } | |||
| 1133 | } | |||
| 1134 | ||||
| 1135 | /// spillAll - Spill all registers remaining after rematerialization. | |||
| 1136 | void InlineSpiller::spillAll() { | |||
| 1137 | // Update LiveStacks now that we are committed to spilling. | |||
| 1138 | if (StackSlot == VirtRegMap::NO_STACK_SLOT) { | |||
| 1139 | StackSlot = VRM.assignVirt2StackSlot(Original); | |||
| 1140 | StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original)); | |||
| 1141 | StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator()); | |||
| 1142 | } else | |||
| 1143 | StackInt = &LSS.getInterval(StackSlot); | |||
| 1144 | ||||
| 1145 | if (Original != Edit->getReg()) | |||
| 1146 | VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot); | |||
| 1147 | ||||
| 1148 | assert(StackInt->getNumValNums() == 1 && "Bad stack interval values")((void)0); | |||
| 1149 | for (Register Reg : RegsToSpill) | |||
| 1150 | StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg), | |||
| 1151 | StackInt->getValNumInfo(0)); | |||
| 1152 | LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n')do { } while (false); | |||
| 1153 | ||||
| 1154 | // Spill around uses of all RegsToSpill. | |||
| 1155 | for (Register Reg : RegsToSpill) | |||
| 1156 | spillAroundUses(Reg); | |||
| 1157 | ||||
| 1158 | // Hoisted spills may cause dead code. | |||
| 1159 | if (!DeadDefs.empty()) { | |||
| 1160 | LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n")do { } while (false); | |||
| 1161 | Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA); | |||
| 1162 | } | |||
| 1163 | ||||
| 1164 | // Finally delete the SnippetCopies. | |||
| 1165 | for (Register Reg : RegsToSpill) { | |||
| 1166 | for (MachineRegisterInfo::reg_instr_iterator | |||
| 1167 | RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); | |||
| 1168 | RI != E; ) { | |||
| 1169 | MachineInstr &MI = *(RI++); | |||
| 1170 | assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy")((void)0); | |||
| 1171 | // FIXME: Do this with a LiveRangeEdit callback. | |||
| 1172 | LIS.RemoveMachineInstrFromMaps(MI); | |||
| 1173 | MI.eraseFromParent(); | |||
| 1174 | } | |||
| 1175 | } | |||
| 1176 | ||||
| 1177 | // Delete all spilled registers. | |||
| 1178 | for (Register Reg : RegsToSpill) | |||
| 1179 | Edit->eraseVirtReg(Reg); | |||
| 1180 | } | |||
| 1181 | ||||
| 1182 | void InlineSpiller::spill(LiveRangeEdit &edit) { | |||
| 1183 | ++NumSpilledRanges; | |||
| 1184 | Edit = &edit; | |||
| 1185 | assert(!Register::isStackSlot(edit.getReg()) &&((void)0) | |||
| 1186 | "Trying to spill a stack slot.")((void)0); | |||
| 1187 | // Share a stack slot among all descendants of Original. | |||
| 1188 | Original = VRM.getOriginal(edit.getReg()); | |||
| 1189 | StackSlot = VRM.getStackSlot(Original); | |||
| 1190 | StackInt = nullptr; | |||
| 1191 | ||||
| 1192 | LLVM_DEBUG(dbgs() << "Inline spilling "do { } while (false) | |||
| 1193 | << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))do { } while (false) | |||
| 1194 | << ':' << edit.getParent() << "\nFrom original "do { } while (false) | |||
| 1195 | << printReg(Original) << '\n')do { } while (false); | |||
| 1196 | assert(edit.getParent().isSpillable() &&((void)0) | |||
| 1197 | "Attempting to spill already spilled value.")((void)0); | |||
| 1198 | assert(DeadDefs.empty() && "Previous spill didn't remove dead defs")((void)0); | |||
| 1199 | ||||
| 1200 | collectRegsToSpill(); | |||
| 1201 | reMaterializeAll(); | |||
| 1202 | ||||
| 1203 | // Remat may handle everything. | |||
| 1204 | if (!RegsToSpill.empty()) | |||
| 1205 | spillAll(); | |||
| 1206 | ||||
| 1207 | Edit->calculateRegClassAndHint(MF, VRAI); | |||
| 1208 | } | |||
| 1209 | ||||
| 1210 | /// Optimizations after all the reg selections and spills are done. | |||
| 1211 | void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); } | |||
| ||||
| 1212 | ||||
| 1213 | /// When a spill is inserted, add the spill to MergeableSpills map. | |||
| 1214 | void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot, | |||
| 1215 | unsigned Original) { | |||
| 1216 | BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); | |||
| 1217 | LiveInterval &OrigLI = LIS.getInterval(Original); | |||
| 1218 | // save a copy of LiveInterval in StackSlotToOrigLI because the original | |||
| 1219 | // LiveInterval may be cleared after all its references are spilled. | |||
| 1220 | if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) { | |||
| 1221 | auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight()); | |||
| 1222 | LI->assign(OrigLI, Allocator); | |||
| 1223 | StackSlotToOrigLI[StackSlot] = std::move(LI); | |||
| 1224 | } | |||
| 1225 | SlotIndex Idx = LIS.getInstructionIndex(Spill); | |||
| 1226 | VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot()); | |||
| 1227 | std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); | |||
| 1228 | MergeableSpills[MIdx].insert(&Spill); | |||
| 1229 | } | |||
| 1230 | ||||
| 1231 | /// When a spill is removed, remove the spill from MergeableSpills map. | |||
| 1232 | /// Return true if the spill is removed successfully. | |||
| 1233 | bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill, | |||
| 1234 | int StackSlot) { | |||
| 1235 | auto It = StackSlotToOrigLI.find(StackSlot); | |||
| 1236 | if (It == StackSlotToOrigLI.end()) | |||
| 1237 | return false; | |||
| 1238 | SlotIndex Idx = LIS.getInstructionIndex(Spill); | |||
| 1239 | VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot()); | |||
| 1240 | std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI); | |||
| 1241 | return MergeableSpills[MIdx].erase(&Spill); | |||
| 1242 | } | |||
| 1243 | ||||
| 1244 | /// Check BB to see if it is a possible target BB to place a hoisted spill, | |||
| 1245 | /// i.e., there should be a living sibling of OrigReg at the insert point. | |||
| 1246 | bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI, | |||
| 1247 | MachineBasicBlock &BB, Register &LiveReg) { | |||
| 1248 | SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB); | |||
| 1249 | // The original def could be after the last insert point in the root block, | |||
| 1250 | // we can't hoist to here. | |||
| 1251 | if (Idx < OrigVNI.def) { | |||
| 1252 | // TODO: We could be better here. If LI is not alive in landing pad | |||
| 1253 | // we could hoist spill after LIP. | |||
| 1254 | LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n")do { } while (false); | |||
| 1255 | return false; | |||
| 1256 | } | |||
| 1257 | Register OrigReg = OrigLI.reg(); | |||
| 1258 | SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg]; | |||
| 1259 | assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI")((void)0); | |||
| 1260 | ||||
| 1261 | for (const Register &SibReg : Siblings) { | |||
| 1262 | LiveInterval &LI = LIS.getInterval(SibReg); | |||
| 1263 | VNInfo *VNI = LI.getVNInfoAt(Idx); | |||
| 1264 | if (VNI) { | |||
| 1265 | LiveReg = SibReg; | |||
| 1266 | return true; | |||
| 1267 | } | |||
| 1268 | } | |||
| 1269 | return false; | |||
| 1270 | } | |||
| 1271 | ||||
| 1272 | /// Remove redundant spills in the same BB. Save those redundant spills in | |||
| 1273 | /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map. | |||
| 1274 | void HoistSpillHelper::rmRedundantSpills( | |||
| 1275 | SmallPtrSet<MachineInstr *, 16> &Spills, | |||
| 1276 | SmallVectorImpl<MachineInstr *> &SpillsToRm, | |||
| 1277 | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { | |||
| 1278 | // For each spill saw, check SpillBBToSpill[] and see if its BB already has | |||
| 1279 | // another spill inside. If a BB contains more than one spill, only keep the | |||
| 1280 | // earlier spill with smaller SlotIndex. | |||
| 1281 | for (const auto CurrentSpill : Spills) { | |||
| 1282 | MachineBasicBlock *Block = CurrentSpill->getParent(); | |||
| 1283 | MachineDomTreeNode *Node = MDT.getBase().getNode(Block); | |||
| 1284 | MachineInstr *PrevSpill = SpillBBToSpill[Node]; | |||
| 1285 | if (PrevSpill) { | |||
| 1286 | SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill); | |||
| 1287 | SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill); | |||
| 1288 | MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill; | |||
| 1289 | MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill; | |||
| 1290 | SpillsToRm.push_back(SpillToRm); | |||
| 1291 | SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep; | |||
| 1292 | } else { | |||
| 1293 | SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill; | |||
| 1294 | } | |||
| 1295 | } | |||
| 1296 | for (const auto SpillToRm : SpillsToRm) | |||
| 1297 | Spills.erase(SpillToRm); | |||
| 1298 | } | |||
| 1299 | ||||
| 1300 | /// Starting from \p Root find a top-down traversal order of the dominator | |||
| 1301 | /// tree to visit all basic blocks containing the elements of \p Spills. | |||
| 1302 | /// Redundant spills will be found and put into \p SpillsToRm at the same | |||
| 1303 | /// time. \p SpillBBToSpill will be populated as part of the process and | |||
| 1304 | /// maps a basic block to the first store occurring in the basic block. | |||
| 1305 | /// \post SpillsToRm.union(Spills\@post) == Spills\@pre | |||
| 1306 | void HoistSpillHelper::getVisitOrders( | |||
| 1307 | MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills, | |||
| 1308 | SmallVectorImpl<MachineDomTreeNode *> &Orders, | |||
| 1309 | SmallVectorImpl<MachineInstr *> &SpillsToRm, | |||
| 1310 | DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep, | |||
| 1311 | DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) { | |||
| 1312 | // The set contains all the possible BB nodes to which we may hoist | |||
| 1313 | // original spills. | |||
| 1314 | SmallPtrSet<MachineDomTreeNode *, 8> WorkSet; | |||
| 1315 | // Save the BB nodes on the path from the first BB node containing | |||
| 1316 | // non-redundant spill to the Root node. | |||
| 1317 | SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath; | |||
| 1318 | // All the spills to be hoisted must originate from a single def instruction | |||
| 1319 | // to the OrigReg. It means the def instruction should dominate all the spills | |||
| 1320 | // to be hoisted. We choose the BB where the def instruction is located as | |||
| 1321 | // the Root. | |||
| 1322 | MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom(); | |||
| 1323 | // For every node on the dominator tree with spill, walk up on the dominator | |||
| 1324 | // tree towards the Root node until it is reached. If there is other node | |||
| 1325 | // containing spill in the middle of the path, the previous spill saw will | |||
| 1326 | // be redundant and the node containing it will be removed. All the nodes on | |||
| 1327 | // the path starting from the first node with non-redundant spill to the Root | |||
| 1328 | // node will be added to the WorkSet, which will contain all the possible | |||
| 1329 | // locations where spills may be hoisted to after the loop below is done. | |||
| 1330 | for (const auto Spill : Spills) { | |||
| 1331 | MachineBasicBlock *Block = Spill->getParent(); | |||
| 1332 | MachineDomTreeNode *Node = MDT[Block]; | |||
| 1333 | MachineInstr *SpillToRm = nullptr; | |||
| 1334 | while (Node != RootIDomNode) { | |||
| 1335 | // If Node dominates Block, and it already contains a spill, the spill in | |||
| 1336 | // Block will be redundant. | |||
| 1337 | if (Node != MDT[Block] && SpillBBToSpill[Node]) { | |||
| 1338 | SpillToRm = SpillBBToSpill[MDT[Block]]; | |||
| 1339 | break; | |||
| 1340 | /// If we see the Node already in WorkSet, the path from the Node to | |||
| 1341 | /// the Root node must already be traversed by another spill. | |||
| 1342 | /// Then no need to repeat. | |||
| 1343 | } else if (WorkSet.count(Node)) { | |||
| 1344 | break; | |||
| 1345 | } else { | |||
| 1346 | NodesOnPath.insert(Node); | |||
| 1347 | } | |||
| 1348 | Node = Node->getIDom(); | |||
| ||||
| 1349 | } | |||
| 1350 | if (SpillToRm) { | |||
| 1351 | SpillsToRm.push_back(SpillToRm); | |||
| 1352 | } else { | |||
| 1353 | // Add a BB containing the original spills to SpillsToKeep -- i.e., | |||
| 1354 | // set the initial status before hoisting start. The value of BBs | |||
| 1355 | // containing original spills is set to 0, in order to descriminate | |||
| 1356 | // with BBs containing hoisted spills which will be inserted to | |||
| 1357 | // SpillsToKeep later during hoisting. | |||
| 1358 | SpillsToKeep[MDT[Block]] = 0; | |||
| 1359 | WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end()); | |||
| 1360 | } | |||
| 1361 | NodesOnPath.clear(); | |||
| 1362 | } | |||
| 1363 | ||||
| 1364 | // Sort the nodes in WorkSet in top-down order and save the nodes | |||
| 1365 | // in Orders. Orders will be used for hoisting in runHoistSpills. | |||
| 1366 | unsigned idx = 0; | |||
| 1367 | Orders.push_back(MDT.getBase().getNode(Root)); | |||
| 1368 | do { | |||
| 1369 | MachineDomTreeNode *Node = Orders[idx++]; | |||
| 1370 | for (MachineDomTreeNode *Child : Node->children()) { | |||
| 1371 | if (WorkSet.count(Child)) | |||
| 1372 | Orders.push_back(Child); | |||
| 1373 | } | |||
| 1374 | } while (idx != Orders.size()); | |||
| 1375 | assert(Orders.size() == WorkSet.size() &&((void)0) | |||
| 1376 | "Orders have different size with WorkSet")((void)0); | |||
| 1377 | ||||
| 1378 | #ifndef NDEBUG1 | |||
| 1379 | LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n")do { } while (false); | |||
| 1380 | SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); | |||
| 1381 | for (; RIt != Orders.rend(); RIt++) | |||
| 1382 | LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",")do { } while (false); | |||
| 1383 | LLVM_DEBUG(dbgs() << "\n")do { } while (false); | |||
| 1384 | #endif | |||
| 1385 | } | |||
| 1386 | ||||
| 1387 | /// Try to hoist spills according to BB hotness. The spills to removed will | |||
| 1388 | /// be saved in \p SpillsToRm. The spills to be inserted will be saved in | |||
| 1389 | /// \p SpillsToIns. | |||
| 1390 | void HoistSpillHelper::runHoistSpills( | |||
| 1391 | LiveInterval &OrigLI, VNInfo &OrigVNI, | |||
| 1392 | SmallPtrSet<MachineInstr *, 16> &Spills, | |||
| 1393 | SmallVectorImpl<MachineInstr *> &SpillsToRm, | |||
| 1394 | DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) { | |||
| 1395 | // Visit order of dominator tree nodes. | |||
| 1396 | SmallVector<MachineDomTreeNode *, 32> Orders; | |||
| 1397 | // SpillsToKeep contains all the nodes where spills are to be inserted | |||
| 1398 | // during hoisting. If the spill to be inserted is an original spill | |||
| 1399 | // (not a hoisted one), the value of the map entry is 0. If the spill | |||
| 1400 | // is a hoisted spill, the value of the map entry is the VReg to be used | |||
| 1401 | // as the source of the spill. | |||
| 1402 | DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep; | |||
| 1403 | // Map from BB to the first spill inside of it. | |||
| 1404 | DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill; | |||
| 1405 | ||||
| 1406 | rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill); | |||
| 1407 | ||||
| 1408 | MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def); | |||
| 1409 | getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep, | |||
| 1410 | SpillBBToSpill); | |||
| 1411 | ||||
| 1412 | // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of | |||
| 1413 | // nodes set and the cost of all the spills inside those nodes. | |||
| 1414 | // The nodes set are the locations where spills are to be inserted | |||
| 1415 | // in the subtree of current node. | |||
| 1416 | using NodesCostPair = | |||
| 1417 | std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>; | |||
| 1418 | DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap; | |||
| 1419 | ||||
| 1420 | // Iterate Orders set in reverse order, which will be a bottom-up order | |||
| 1421 | // in the dominator tree. Once we visit a dom tree node, we know its | |||
| 1422 | // children have already been visited and the spill locations in the | |||
| 1423 | // subtrees of all the children have been determined. | |||
| 1424 | SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin(); | |||
| 1425 | for (; RIt != Orders.rend(); RIt++) { | |||
| 1426 | MachineBasicBlock *Block = (*RIt)->getBlock(); | |||
| 1427 | ||||
| 1428 | // If Block contains an original spill, simply continue. | |||
| 1429 | if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) { | |||
| 1430 | SpillsInSubTreeMap[*RIt].first.insert(*RIt); | |||
| 1431 | // SpillsInSubTreeMap[*RIt].second contains the cost of spill. | |||
| 1432 | SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block); | |||
| 1433 | continue; | |||
| 1434 | } | |||
| 1435 | ||||
| 1436 | // Collect spills in subtree of current node (*RIt) to | |||
| 1437 | // SpillsInSubTreeMap[*RIt].first. | |||
| 1438 | for (MachineDomTreeNode *Child : (*RIt)->children()) { | |||
| 1439 | if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end()) | |||
| 1440 | continue; | |||
| 1441 | // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below | |||
| 1442 | // should be placed before getting the begin and end iterators of | |||
| 1443 | // SpillsInSubTreeMap[Child].first, or else the iterators may be | |||
| 1444 | // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time | |||
| 1445 | // and the map grows and then the original buckets in the map are moved. | |||
| 1446 | SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = | |||
| 1447 | SpillsInSubTreeMap[*RIt].first; | |||
| 1448 | BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; | |||
| 1449 | SubTreeCost += SpillsInSubTreeMap[Child].second; | |||
| 1450 | auto BI = SpillsInSubTreeMap[Child].first.begin(); | |||
| 1451 | auto EI = SpillsInSubTreeMap[Child].first.end(); | |||
| 1452 | SpillsInSubTree.insert(BI, EI); | |||
| 1453 | SpillsInSubTreeMap.erase(Child); | |||
| 1454 | } | |||
| 1455 | ||||
| 1456 | SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree = | |||
| 1457 | SpillsInSubTreeMap[*RIt].first; | |||
| 1458 | BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second; | |||
| 1459 | // No spills in subtree, simply continue. | |||
| 1460 | if (SpillsInSubTree.empty()) | |||
| 1461 | continue; | |||
| 1462 | ||||
| 1463 | // Check whether Block is a possible candidate to insert spill. | |||
| 1464 | Register LiveReg; | |||
| 1465 | if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg)) | |||
| 1466 | continue; | |||
| 1467 | ||||
| 1468 | // If there are multiple spills that could be merged, bias a little | |||
| 1469 | // to hoist the spill. | |||
| 1470 | BranchProbability MarginProb = (SpillsInSubTree.size() > 1) | |||
| 1471 | ? BranchProbability(9, 10) | |||
| 1472 | : BranchProbability(1, 1); | |||
| 1473 | if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) { | |||
| 1474 | // Hoist: Move spills to current Block. | |||
| 1475 | for (const auto SpillBB : SpillsInSubTree) { | |||
| 1476 | // When SpillBB is a BB contains original spill, insert the spill | |||
| 1477 | // to SpillsToRm. | |||
| 1478 | if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() && | |||
| 1479 | !SpillsToKeep[SpillBB]) { | |||
| 1480 | MachineInstr *SpillToRm = SpillBBToSpill[SpillBB]; | |||
| 1481 | SpillsToRm.push_back(SpillToRm); | |||
| 1482 | } | |||
| 1483 | // SpillBB will not contain spill anymore, remove it from SpillsToKeep. | |||
| 1484 | SpillsToKeep.erase(SpillBB); | |||
| 1485 | } | |||
| 1486 | // Current Block is the BB containing the new hoisted spill. Add it to | |||
| 1487 | // SpillsToKeep. LiveReg is the source of the new spill. | |||
| 1488 | SpillsToKeep[*RIt] = LiveReg; | |||
| 1489 | LLVM_DEBUG({do { } while (false) | |||
| 1490 | dbgs() << "spills in BB: ";do { } while (false) | |||
| 1491 | for (const auto Rspill : SpillsInSubTree)do { } while (false) | |||
| 1492 | dbgs() << Rspill->getBlock()->getNumber() << " ";do { } while (false) | |||
| 1493 | dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()do { } while (false) | |||
| 1494 | << "\n";do { } while (false) | |||
| 1495 | })do { } while (false); | |||
| 1496 | SpillsInSubTree.clear(); | |||
| 1497 | SpillsInSubTree.insert(*RIt); | |||
| 1498 | SubTreeCost = MBFI.getBlockFreq(Block); | |||
| 1499 | } | |||
| 1500 | } | |||
| 1501 | // For spills in SpillsToKeep with LiveReg set (i.e., not original spill), | |||
| 1502 | // save them to SpillsToIns. | |||
| 1503 | for (const auto &Ent : SpillsToKeep) { | |||
| 1504 | if (Ent.second) | |||
| 1505 | SpillsToIns[Ent.first->getBlock()] = Ent.second; | |||
| 1506 | } | |||
| 1507 | } | |||
| 1508 | ||||
| 1509 | /// For spills with equal values, remove redundant spills and hoist those left | |||
| 1510 | /// to less hot spots. | |||
| 1511 | /// | |||
| 1512 | /// Spills with equal values will be collected into the same set in | |||
| 1513 | /// MergeableSpills when spill is inserted. These equal spills are originated | |||
| 1514 | /// from the same defining instruction and are dominated by the instruction. | |||
| 1515 | /// Before hoisting all the equal spills, redundant spills inside in the same | |||
| 1516 | /// BB are first marked to be deleted. Then starting from the spills left, walk | |||
| 1517 | /// up on the dominator tree towards the Root node where the define instruction | |||
| 1518 | /// is located, mark the dominated spills to be deleted along the way and | |||
| 1519 | /// collect the BB nodes on the path from non-dominated spills to the define | |||
| 1520 | /// instruction into a WorkSet. The nodes in WorkSet are the candidate places | |||
| 1521 | /// where we are considering to hoist the spills. We iterate the WorkSet in | |||
| 1522 | /// bottom-up order, and for each node, we will decide whether to hoist spills | |||
| 1523 | /// inside its subtree to that node. In this way, we can get benefit locally | |||
| 1524 | /// even if hoisting all the equal spills to one cold place is impossible. | |||
| 1525 | void HoistSpillHelper::hoistAllSpills() { | |||
| 1526 | SmallVector<Register, 4> NewVRegs; | |||
| 1527 | LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this); | |||
| 1528 | ||||
| 1529 | for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) { | |||
| 1530 | Register Reg = Register::index2VirtReg(i); | |||
| 1531 | Register Original = VRM.getPreSplitReg(Reg); | |||
| 1532 | if (!MRI.def_empty(Reg)) | |||
| 1533 | Virt2SiblingsMap[Original].insert(Reg); | |||
| 1534 | } | |||
| 1535 | ||||
| 1536 | // Each entry in MergeableSpills contains a spill set with equal values. | |||
| 1537 | for (auto &Ent : MergeableSpills) { | |||
| 1538 | int Slot = Ent.first.first; | |||
| 1539 | LiveInterval &OrigLI = *StackSlotToOrigLI[Slot]; | |||
| 1540 | VNInfo *OrigVNI = Ent.first.second; | |||
| 1541 | SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second; | |||
| 1542 | if (Ent.second.empty()) | |||
| 1543 | continue; | |||
| 1544 | ||||
| 1545 | LLVM_DEBUG({do { } while (false) | |||
| 1546 | dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"do { } while (false) | |||
| 1547 | << "Equal spills in BB: ";do { } while (false) | |||
| 1548 | for (const auto spill : EqValSpills)do { } while (false) | |||
| 1549 | dbgs() << spill->getParent()->getNumber() << " ";do { } while (false) | |||
| 1550 | dbgs() << "\n";do { } while (false) | |||
| 1551 | })do { } while (false); | |||
| 1552 | ||||
| 1553 | // SpillsToRm is the spill set to be removed from EqValSpills. | |||
| 1554 | SmallVector<MachineInstr *, 16> SpillsToRm; | |||
| 1555 | // SpillsToIns is the spill set to be newly inserted after hoisting. | |||
| 1556 | DenseMap<MachineBasicBlock *, unsigned> SpillsToIns; | |||
| 1557 | ||||
| 1558 | runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns); | |||
| 1559 | ||||
| 1560 | LLVM_DEBUG({do { } while (false) | |||
| 1561 | dbgs() << "Finally inserted spills in BB: ";do { } while (false) | |||
| 1562 | for (const auto &Ispill : SpillsToIns)do { } while (false) | |||
| 1563 | dbgs() << Ispill.first->getNumber() << " ";do { } while (false) | |||
| 1564 | dbgs() << "\nFinally removed spills in BB: ";do { } while (false) | |||
| 1565 | for (const auto Rspill : SpillsToRm)do { } while (false) | |||
| 1566 | dbgs() << Rspill->getParent()->getNumber() << " ";do { } while (false) | |||
| 1567 | dbgs() << "\n";do { } while (false) | |||
| 1568 | })do { } while (false); | |||
| 1569 | ||||
| 1570 | // Stack live range update. | |||
| 1571 | LiveInterval &StackIntvl = LSS.getInterval(Slot); | |||
| 1572 | if (!SpillsToIns.empty() || !SpillsToRm.empty()) | |||
| 1573 | StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI, | |||
| 1574 | StackIntvl.getValNumInfo(0)); | |||
| 1575 | ||||
| 1576 | // Insert hoisted spills. | |||
| 1577 | for (auto const &Insert : SpillsToIns) { | |||
| 1578 | MachineBasicBlock *BB = Insert.first; | |||
| 1579 | Register LiveReg = Insert.second; | |||
| 1580 | MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB); | |||
| 1581 | MachineInstrSpan MIS(MII, BB); | |||
| 1582 | TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot, | |||
| 1583 | MRI.getRegClass(LiveReg), &TRI); | |||
| 1584 | LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII); | |||
| 1585 | for (const MachineInstr &MI : make_range(MIS.begin(), MII)) | |||
| 1586 | getVDefInterval(MI, LIS); | |||
| 1587 | ++NumSpills; | |||
| 1588 | } | |||
| 1589 | ||||
| 1590 | // Remove redundant spills or change them to dead instructions. | |||
| 1591 | NumSpills -= SpillsToRm.size(); | |||
| 1592 | for (auto const RMEnt : SpillsToRm) { | |||
| 1593 | RMEnt->setDesc(TII.get(TargetOpcode::KILL)); | |||
| 1594 | for (unsigned i = RMEnt->getNumOperands(); i; --i) { | |||
| 1595 | MachineOperand &MO = RMEnt->getOperand(i - 1); | |||
| 1596 | if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead()) | |||
| 1597 | RMEnt->RemoveOperand(i - 1); | |||
| 1598 | } | |||
| 1599 | } | |||
| 1600 | Edit.eliminateDeadDefs(SpillsToRm, None, AA); | |||
| 1601 | } | |||
| 1602 | } | |||
| 1603 | ||||
| 1604 | /// For VirtReg clone, the \p New register should have the same physreg or | |||
| 1605 | /// stackslot as the \p old register. | |||
| 1606 | void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) { | |||
| 1607 | if (VRM.hasPhys(Old)) | |||
| 1608 | VRM.assignVirt2Phys(New, VRM.getPhys(Old)); | |||
| 1609 | else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT) | |||
| 1610 | VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old)); | |||
| 1611 | else | |||
| 1612 | llvm_unreachable("VReg should be assigned either physreg or stackslot")__builtin_unreachable(); | |||
| 1613 | if (VRM.hasShape(Old)) | |||
| 1614 | VRM.assignVirt2Shape(New, VRM.getShape(Old)); | |||
| 1615 | } |
| 1 | //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines classes mirroring those in llvm/Analysis/Dominators.h, |
| 10 | // but for target-specific code rather than target-independent IR. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H |
| 15 | #define LLVM_CODEGEN_MACHINEDOMINATORS_H |
| 16 | |
| 17 | #include "llvm/ADT/SmallSet.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 20 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 21 | #include "llvm/CodeGen/MachineInstr.h" |
| 22 | #include "llvm/Support/GenericDomTree.h" |
| 23 | #include "llvm/Support/GenericDomTreeConstruction.h" |
| 24 | #include <cassert> |
| 25 | #include <memory> |
| 26 | |
| 27 | namespace llvm { |
| 28 | |
| 29 | template <> |
| 30 | inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot( |
| 31 | MachineBasicBlock *MBB) { |
| 32 | this->Roots.push_back(MBB); |
| 33 | } |
| 34 | |
| 35 | extern template class DomTreeNodeBase<MachineBasicBlock>; |
| 36 | extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree |
| 37 | extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree |
| 38 | |
| 39 | using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>; |
| 40 | |
| 41 | //===------------------------------------- |
| 42 | /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to |
| 43 | /// compute a normal dominator tree. |
| 44 | /// |
| 45 | class MachineDominatorTree : public MachineFunctionPass { |
| 46 | using DomTreeT = DomTreeBase<MachineBasicBlock>; |
| 47 | |
| 48 | /// Helper structure used to hold all the basic blocks |
| 49 | /// involved in the split of a critical edge. |
| 50 | struct CriticalEdge { |
| 51 | MachineBasicBlock *FromBB; |
| 52 | MachineBasicBlock *ToBB; |
| 53 | MachineBasicBlock *NewBB; |
| 54 | }; |
| 55 | |
| 56 | /// Pile up all the critical edges to be split. |
| 57 | /// The splitting of a critical edge is local and thus, it is possible |
| 58 | /// to apply several of those changes at the same time. |
| 59 | mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit; |
| 60 | |
| 61 | /// Remember all the basic blocks that are inserted during |
| 62 | /// edge splitting. |
| 63 | /// Invariant: NewBBs == all the basic blocks contained in the NewBB |
| 64 | /// field of all the elements of CriticalEdgesToSplit. |
| 65 | /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs |
| 66 | /// such as BB == elt.NewBB. |
| 67 | mutable SmallSet<MachineBasicBlock *, 32> NewBBs; |
| 68 | |
| 69 | /// The DominatorTreeBase that is used to compute a normal dominator tree. |
| 70 | std::unique_ptr<DomTreeT> DT; |
| 71 | |
| 72 | /// Apply all the recorded critical edges to the DT. |
| 73 | /// This updates the underlying DT information in a way that uses |
| 74 | /// the fast query path of DT as much as possible. |
| 75 | /// |
| 76 | /// \post CriticalEdgesToSplit.empty(). |
| 77 | void applySplitCriticalEdges() const; |
| 78 | |
| 79 | public: |
| 80 | static char ID; // Pass ID, replacement for typeid |
| 81 | |
| 82 | MachineDominatorTree(); |
| 83 | explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) { |
| 84 | calculate(MF); |
| 85 | } |
| 86 | |
| 87 | DomTreeT &getBase() { |
| 88 | if (!DT) DT.reset(new DomTreeT()); |
| 89 | applySplitCriticalEdges(); |
| 90 | return *DT; |
| 91 | } |
| 92 | |
| 93 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 94 | |
| 95 | MachineBasicBlock *getRoot() const { |
| 96 | applySplitCriticalEdges(); |
| 97 | return DT->getRoot(); |
| 98 | } |
| 99 | |
| 100 | MachineDomTreeNode *getRootNode() const { |
| 101 | applySplitCriticalEdges(); |
| 102 | return DT->getRootNode(); |
| 103 | } |
| 104 | |
| 105 | bool runOnMachineFunction(MachineFunction &F) override; |
| 106 | |
| 107 | void calculate(MachineFunction &F); |
| 108 | |
| 109 | bool dominates(const MachineDomTreeNode *A, |
| 110 | const MachineDomTreeNode *B) const { |
| 111 | applySplitCriticalEdges(); |
| 112 | return DT->dominates(A, B); |
| 113 | } |
| 114 | |
| 115 | bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const { |
| 116 | applySplitCriticalEdges(); |
| 117 | return DT->dominates(A, B); |
| 118 | } |
| 119 | |
| 120 | // dominates - Return true if A dominates B. This performs the |
| 121 | // special checks necessary if A and B are in the same basic block. |
| 122 | bool dominates(const MachineInstr *A, const MachineInstr *B) const { |
| 123 | applySplitCriticalEdges(); |
| 124 | const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent(); |
| 125 | if (BBA != BBB) return DT->dominates(BBA, BBB); |
| 126 | |
| 127 | // Loop through the basic block until we find A or B. |
| 128 | MachineBasicBlock::const_iterator I = BBA->begin(); |
| 129 | for (; &*I != A && &*I != B; ++I) |
| 130 | /*empty*/ ; |
| 131 | |
| 132 | return &*I == A; |
| 133 | } |
| 134 | |
| 135 | bool properlyDominates(const MachineDomTreeNode *A, |
| 136 | const MachineDomTreeNode *B) const { |
| 137 | applySplitCriticalEdges(); |
| 138 | return DT->properlyDominates(A, B); |
| 139 | } |
| 140 | |
| 141 | bool properlyDominates(const MachineBasicBlock *A, |
| 142 | const MachineBasicBlock *B) const { |
| 143 | applySplitCriticalEdges(); |
| 144 | return DT->properlyDominates(A, B); |
| 145 | } |
| 146 | |
| 147 | /// findNearestCommonDominator - Find nearest common dominator basic block |
| 148 | /// for basic block A and B. If there is no such block then return NULL. |
| 149 | MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A, |
| 150 | MachineBasicBlock *B) { |
| 151 | applySplitCriticalEdges(); |
| 152 | return DT->findNearestCommonDominator(A, B); |
| 153 | } |
| 154 | |
| 155 | MachineDomTreeNode *operator[](MachineBasicBlock *BB) const { |
| 156 | applySplitCriticalEdges(); |
| 157 | return DT->getNode(BB); |
| 158 | } |
| 159 | |
| 160 | /// getNode - return the (Post)DominatorTree node for the specified basic |
| 161 | /// block. This is the same as using operator[] on this class. |
| 162 | /// |
| 163 | MachineDomTreeNode *getNode(MachineBasicBlock *BB) const { |
| 164 | applySplitCriticalEdges(); |
| 165 | return DT->getNode(BB); |
| 166 | } |
| 167 | |
| 168 | /// addNewBlock - Add a new node to the dominator tree information. This |
| 169 | /// creates a new node as a child of DomBB dominator node,linking it into |
| 170 | /// the children list of the immediate dominator. |
| 171 | MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB, |
| 172 | MachineBasicBlock *DomBB) { |
| 173 | applySplitCriticalEdges(); |
| 174 | return DT->addNewBlock(BB, DomBB); |
| 175 | } |
| 176 | |
| 177 | /// changeImmediateDominator - This method is used to update the dominator |
| 178 | /// tree information when a node's immediate dominator changes. |
| 179 | /// |
| 180 | void changeImmediateDominator(MachineBasicBlock *N, |
| 181 | MachineBasicBlock *NewIDom) { |
| 182 | applySplitCriticalEdges(); |
| 183 | DT->changeImmediateDominator(N, NewIDom); |
| 184 | } |
| 185 | |
| 186 | void changeImmediateDominator(MachineDomTreeNode *N, |
| 187 | MachineDomTreeNode *NewIDom) { |
| 188 | applySplitCriticalEdges(); |
| 189 | DT->changeImmediateDominator(N, NewIDom); |
| 190 | } |
| 191 | |
| 192 | /// eraseNode - Removes a node from the dominator tree. Block must not |
| 193 | /// dominate any other blocks. Removes node from its immediate dominator's |
| 194 | /// children list. Deletes dominator node associated with basic block BB. |
| 195 | void eraseNode(MachineBasicBlock *BB) { |
| 196 | applySplitCriticalEdges(); |
| 197 | DT->eraseNode(BB); |
| 198 | } |
| 199 | |
| 200 | /// splitBlock - BB is split and now it has one successor. Update dominator |
| 201 | /// tree to reflect this change. |
| 202 | void splitBlock(MachineBasicBlock* NewBB) { |
| 203 | applySplitCriticalEdges(); |
| 204 | DT->splitBlock(NewBB); |
| 205 | } |
| 206 | |
| 207 | /// isReachableFromEntry - Return true if A is dominated by the entry |
| 208 | /// block of the function containing it. |
| 209 | bool isReachableFromEntry(const MachineBasicBlock *A) { |
| 210 | applySplitCriticalEdges(); |
| 211 | return DT->isReachableFromEntry(A); |
| 212 | } |
| 213 | |
| 214 | void releaseMemory() override; |
| 215 | |
| 216 | void verifyAnalysis() const override; |
| 217 | |
| 218 | void print(raw_ostream &OS, const Module*) const override; |
| 219 | |
| 220 | /// Record that the critical edge (FromBB, ToBB) has been |
| 221 | /// split with NewBB. |
| 222 | /// This is best to use this method instead of directly update the |
| 223 | /// underlying information, because this helps mitigating the |
| 224 | /// number of time the DT information is invalidated. |
| 225 | /// |
| 226 | /// \note Do not use this method with regular edges. |
| 227 | /// |
| 228 | /// \note To benefit from the compile time improvement incurred by this |
| 229 | /// method, the users of this method have to limit the queries to the DT |
| 230 | /// interface between two edges splitting. In other words, they have to |
| 231 | /// pack the splitting of critical edges as much as possible. |
| 232 | void recordSplitCriticalEdge(MachineBasicBlock *FromBB, |
| 233 | MachineBasicBlock *ToBB, |
| 234 | MachineBasicBlock *NewBB) { |
| 235 | bool Inserted = NewBBs.insert(NewBB).second; |
| 236 | (void)Inserted; |
| 237 | assert(Inserted &&((void)0) |
| 238 | "A basic block inserted via edge splitting cannot appear twice")((void)0); |
| 239 | CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB}); |
| 240 | } |
| 241 | }; |
| 242 | |
| 243 | //===------------------------------------- |
| 244 | /// DominatorTree GraphTraits specialization so the DominatorTree can be |
| 245 | /// iterable by generic graph iterators. |
| 246 | /// |
| 247 | |
| 248 | template <class Node, class ChildIterator> |
| 249 | struct MachineDomTreeGraphTraitsBase { |
| 250 | using NodeRef = Node *; |
| 251 | using ChildIteratorType = ChildIterator; |
| 252 | |
| 253 | static NodeRef getEntryNode(NodeRef N) { return N; } |
| 254 | static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } |
| 255 | static ChildIteratorType child_end(NodeRef N) { return N->end(); } |
| 256 | }; |
| 257 | |
| 258 | template <class T> struct GraphTraits; |
| 259 | |
| 260 | template <> |
| 261 | struct GraphTraits<MachineDomTreeNode *> |
| 262 | : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode, |
| 263 | MachineDomTreeNode::const_iterator> { |
| 264 | }; |
| 265 | |
| 266 | template <> |
| 267 | struct GraphTraits<const MachineDomTreeNode *> |
| 268 | : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode, |
| 269 | MachineDomTreeNode::const_iterator> { |
| 270 | }; |
| 271 | |
| 272 | template <> struct GraphTraits<MachineDominatorTree*> |
| 273 | : public GraphTraits<MachineDomTreeNode *> { |
| 274 | static NodeRef getEntryNode(MachineDominatorTree *DT) { |
| 275 | return DT->getRootNode(); |
| 276 | } |
| 277 | }; |
| 278 | |
| 279 | } // end namespace llvm |
| 280 | |
| 281 | #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H |
| 1 | //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// |
| 10 | /// This file defines a set of templates that efficiently compute a dominator |
| 11 | /// tree over a generic graph. This is used typically in LLVM for fast |
| 12 | /// dominance queries on the CFG, but is fully generic w.r.t. the underlying |
| 13 | /// graph types. |
| 14 | /// |
| 15 | /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements |
| 16 | /// on the graph's NodeRef. The NodeRef should be a pointer and, |
| 17 | /// NodeRef->getParent() must return the parent node that is also a pointer. |
| 18 | /// |
| 19 | /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. |
| 20 | /// |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | #ifndef LLVM_SUPPORT_GENERICDOMTREE_H |
| 24 | #define LLVM_SUPPORT_GENERICDOMTREE_H |
| 25 | |
| 26 | #include "llvm/ADT/DenseMap.h" |
| 27 | #include "llvm/ADT/GraphTraits.h" |
| 28 | #include "llvm/ADT/STLExtras.h" |
| 29 | #include "llvm/ADT/SmallPtrSet.h" |
| 30 | #include "llvm/ADT/SmallVector.h" |
| 31 | #include "llvm/Support/CFGDiff.h" |
| 32 | #include "llvm/Support/CFGUpdate.h" |
| 33 | #include "llvm/Support/raw_ostream.h" |
| 34 | #include <algorithm> |
| 35 | #include <cassert> |
| 36 | #include <cstddef> |
| 37 | #include <iterator> |
| 38 | #include <memory> |
| 39 | #include <type_traits> |
| 40 | #include <utility> |
| 41 | |
| 42 | namespace llvm { |
| 43 | |
| 44 | template <typename NodeT, bool IsPostDom> |
| 45 | class DominatorTreeBase; |
| 46 | |
| 47 | namespace DomTreeBuilder { |
| 48 | template <typename DomTreeT> |
| 49 | struct SemiNCAInfo; |
| 50 | } // namespace DomTreeBuilder |
| 51 | |
| 52 | /// Base class for the actual dominator tree node. |
| 53 | template <class NodeT> class DomTreeNodeBase { |
| 54 | friend class PostDominatorTree; |
| 55 | friend class DominatorTreeBase<NodeT, false>; |
| 56 | friend class DominatorTreeBase<NodeT, true>; |
| 57 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>; |
| 58 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>; |
| 59 | |
| 60 | NodeT *TheBB; |
| 61 | DomTreeNodeBase *IDom; |
| 62 | unsigned Level; |
| 63 | SmallVector<DomTreeNodeBase *, 4> Children; |
| 64 | mutable unsigned DFSNumIn = ~0; |
| 65 | mutable unsigned DFSNumOut = ~0; |
| 66 | |
| 67 | public: |
| 68 | DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) |
| 69 | : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {} |
| 70 | |
| 71 | using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator; |
| 72 | using const_iterator = |
| 73 | typename SmallVector<DomTreeNodeBase *, 4>::const_iterator; |
| 74 | |
| 75 | iterator begin() { return Children.begin(); } |
| 76 | iterator end() { return Children.end(); } |
| 77 | const_iterator begin() const { return Children.begin(); } |
| 78 | const_iterator end() const { return Children.end(); } |
| 79 | |
| 80 | DomTreeNodeBase *const &back() const { return Children.back(); } |
| 81 | DomTreeNodeBase *&back() { return Children.back(); } |
| 82 | |
| 83 | iterator_range<iterator> children() { return make_range(begin(), end()); } |
| 84 | iterator_range<const_iterator> children() const { |
| 85 | return make_range(begin(), end()); |
| 86 | } |
| 87 | |
| 88 | NodeT *getBlock() const { return TheBB; } |
| 89 | DomTreeNodeBase *getIDom() const { return IDom; } |
| 90 | unsigned getLevel() const { return Level; } |
| 91 | |
| 92 | std::unique_ptr<DomTreeNodeBase> addChild( |
| 93 | std::unique_ptr<DomTreeNodeBase> C) { |
| 94 | Children.push_back(C.get()); |
| 95 | return C; |
| 96 | } |
| 97 | |
| 98 | bool isLeaf() const { return Children.empty(); } |
| 99 | size_t getNumChildren() const { return Children.size(); } |
| 100 | |
| 101 | void clearAllChildren() { Children.clear(); } |
| 102 | |
| 103 | bool compare(const DomTreeNodeBase *Other) const { |
| 104 | if (getNumChildren() != Other->getNumChildren()) |
| 105 | return true; |
| 106 | |
| 107 | if (Level != Other->Level) return true; |
| 108 | |
| 109 | SmallPtrSet<const NodeT *, 4> OtherChildren; |
| 110 | for (const DomTreeNodeBase *I : *Other) { |
| 111 | const NodeT *Nd = I->getBlock(); |
| 112 | OtherChildren.insert(Nd); |
| 113 | } |
| 114 | |
| 115 | for (const DomTreeNodeBase *I : *this) { |
| 116 | const NodeT *N = I->getBlock(); |
| 117 | if (OtherChildren.count(N) == 0) |
| 118 | return true; |
| 119 | } |
| 120 | return false; |
| 121 | } |
| 122 | |
| 123 | void setIDom(DomTreeNodeBase *NewIDom) { |
| 124 | assert(IDom && "No immediate dominator?")((void)0); |
| 125 | if (IDom == NewIDom) return; |
| 126 | |
| 127 | auto I = find(IDom->Children, this); |
| 128 | assert(I != IDom->Children.end() &&((void)0) |
| 129 | "Not in immediate dominator children set!")((void)0); |
| 130 | // I am no longer your child... |
| 131 | IDom->Children.erase(I); |
| 132 | |
| 133 | // Switch to new dominator |
| 134 | IDom = NewIDom; |
| 135 | IDom->Children.push_back(this); |
| 136 | |
| 137 | UpdateLevel(); |
| 138 | } |
| 139 | |
| 140 | /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes |
| 141 | /// in the dominator tree. They are only guaranteed valid if |
| 142 | /// updateDFSNumbers() has been called. |
| 143 | unsigned getDFSNumIn() const { return DFSNumIn; } |
| 144 | unsigned getDFSNumOut() const { return DFSNumOut; } |
| 145 | |
| 146 | private: |
| 147 | // Return true if this node is dominated by other. Use this only if DFS info |
| 148 | // is valid. |
| 149 | bool DominatedBy(const DomTreeNodeBase *other) const { |
| 150 | return this->DFSNumIn >= other->DFSNumIn && |
| 151 | this->DFSNumOut <= other->DFSNumOut; |
| 152 | } |
| 153 | |
| 154 | void UpdateLevel() { |
| 155 | assert(IDom)((void)0); |
| 156 | if (Level == IDom->Level + 1) return; |
| 157 | |
| 158 | SmallVector<DomTreeNodeBase *, 64> WorkStack = {this}; |
| 159 | |
| 160 | while (!WorkStack.empty()) { |
| 161 | DomTreeNodeBase *Current = WorkStack.pop_back_val(); |
| 162 | Current->Level = Current->IDom->Level + 1; |
| 163 | |
| 164 | for (DomTreeNodeBase *C : *Current) { |
| 165 | assert(C->IDom)((void)0); |
| 166 | if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C); |
| 167 | } |
| 168 | } |
| 169 | } |
| 170 | }; |
| 171 | |
| 172 | template <class NodeT> |
| 173 | raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) { |
| 174 | if (Node->getBlock()) |
| 175 | Node->getBlock()->printAsOperand(O, false); |
| 176 | else |
| 177 | O << " <<exit node>>"; |
| 178 | |
| 179 | O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} [" |
| 180 | << Node->getLevel() << "]\n"; |
| 181 | |
| 182 | return O; |
| 183 | } |
| 184 | |
| 185 | template <class NodeT> |
| 186 | void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O, |
| 187 | unsigned Lev) { |
| 188 | O.indent(2 * Lev) << "[" << Lev << "] " << N; |
| 189 | for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), |
| 190 | E = N->end(); |
| 191 | I != E; ++I) |
| 192 | PrintDomTree<NodeT>(*I, O, Lev + 1); |
| 193 | } |
| 194 | |
| 195 | namespace DomTreeBuilder { |
| 196 | // The routines below are provided in a separate header but referenced here. |
| 197 | template <typename DomTreeT> |
| 198 | void Calculate(DomTreeT &DT); |
| 199 | |
| 200 | template <typename DomTreeT> |
| 201 | void CalculateWithUpdates(DomTreeT &DT, |
| 202 | ArrayRef<typename DomTreeT::UpdateType> Updates); |
| 203 | |
| 204 | template <typename DomTreeT> |
| 205 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
| 206 | typename DomTreeT::NodePtr To); |
| 207 | |
| 208 | template <typename DomTreeT> |
| 209 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
| 210 | typename DomTreeT::NodePtr To); |
| 211 | |
| 212 | template <typename DomTreeT> |
| 213 | void ApplyUpdates(DomTreeT &DT, |
| 214 | GraphDiff<typename DomTreeT::NodePtr, |
| 215 | DomTreeT::IsPostDominator> &PreViewCFG, |
| 216 | GraphDiff<typename DomTreeT::NodePtr, |
| 217 | DomTreeT::IsPostDominator> *PostViewCFG); |
| 218 | |
| 219 | template <typename DomTreeT> |
| 220 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL); |
| 221 | } // namespace DomTreeBuilder |
| 222 | |
| 223 | /// Core dominator tree base class. |
| 224 | /// |
| 225 | /// This class is a generic template over graph nodes. It is instantiated for |
| 226 | /// various graphs in the LLVM IR or in the code generator. |
| 227 | template <typename NodeT, bool IsPostDom> |
| 228 | class DominatorTreeBase { |
| 229 | public: |
| 230 | static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value, |
| 231 | "Currently DominatorTreeBase supports only pointer nodes"); |
| 232 | using NodeType = NodeT; |
| 233 | using NodePtr = NodeT *; |
| 234 | using ParentPtr = decltype(std::declval<NodeT *>()->getParent()); |
| 235 | static_assert(std::is_pointer<ParentPtr>::value, |
| 236 | "Currently NodeT's parent must be a pointer type"); |
| 237 | using ParentType = std::remove_pointer_t<ParentPtr>; |
| 238 | static constexpr bool IsPostDominator = IsPostDom; |
| 239 | |
| 240 | using UpdateType = cfg::Update<NodePtr>; |
| 241 | using UpdateKind = cfg::UpdateKind; |
| 242 | static constexpr UpdateKind Insert = UpdateKind::Insert; |
| 243 | static constexpr UpdateKind Delete = UpdateKind::Delete; |
| 244 | |
| 245 | enum class VerificationLevel { Fast, Basic, Full }; |
| 246 | |
| 247 | protected: |
| 248 | // Dominators always have a single root, postdominators can have more. |
| 249 | SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots; |
| 250 | |
| 251 | using DomTreeNodeMapType = |
| 252 | DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>; |
| 253 | DomTreeNodeMapType DomTreeNodes; |
| 254 | DomTreeNodeBase<NodeT> *RootNode = nullptr; |
| 255 | ParentPtr Parent = nullptr; |
| 256 | |
| 257 | mutable bool DFSInfoValid = false; |
| 258 | mutable unsigned int SlowQueries = 0; |
| 259 | |
| 260 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>; |
| 261 | |
| 262 | public: |
| 263 | DominatorTreeBase() {} |
| 264 | |
| 265 | DominatorTreeBase(DominatorTreeBase &&Arg) |
| 266 | : Roots(std::move(Arg.Roots)), |
| 267 | DomTreeNodes(std::move(Arg.DomTreeNodes)), |
| 268 | RootNode(Arg.RootNode), |
| 269 | Parent(Arg.Parent), |
| 270 | DFSInfoValid(Arg.DFSInfoValid), |
| 271 | SlowQueries(Arg.SlowQueries) { |
| 272 | Arg.wipe(); |
| 273 | } |
| 274 | |
| 275 | DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { |
| 276 | Roots = std::move(RHS.Roots); |
| 277 | DomTreeNodes = std::move(RHS.DomTreeNodes); |
| 278 | RootNode = RHS.RootNode; |
| 279 | Parent = RHS.Parent; |
| 280 | DFSInfoValid = RHS.DFSInfoValid; |
| 281 | SlowQueries = RHS.SlowQueries; |
| 282 | RHS.wipe(); |
| 283 | return *this; |
| 284 | } |
| 285 | |
| 286 | DominatorTreeBase(const DominatorTreeBase &) = delete; |
| 287 | DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; |
| 288 | |
| 289 | /// Iteration over roots. |
| 290 | /// |
| 291 | /// This may include multiple blocks if we are computing post dominators. |
| 292 | /// For forward dominators, this will always be a single block (the entry |
| 293 | /// block). |
| 294 | using root_iterator = typename SmallVectorImpl<NodeT *>::iterator; |
| 295 | using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator; |
| 296 | |
| 297 | root_iterator root_begin() { return Roots.begin(); } |
| 298 | const_root_iterator root_begin() const { return Roots.begin(); } |
| 299 | root_iterator root_end() { return Roots.end(); } |
| 300 | const_root_iterator root_end() const { return Roots.end(); } |
| 301 | |
| 302 | size_t root_size() const { return Roots.size(); } |
| 303 | |
| 304 | iterator_range<root_iterator> roots() { |
| 305 | return make_range(root_begin(), root_end()); |
| 306 | } |
| 307 | iterator_range<const_root_iterator> roots() const { |
| 308 | return make_range(root_begin(), root_end()); |
| 309 | } |
| 310 | |
| 311 | /// isPostDominator - Returns true if analysis based of postdoms |
| 312 | /// |
| 313 | bool isPostDominator() const { return IsPostDominator; } |
| 314 | |
| 315 | /// compare - Return false if the other dominator tree base matches this |
| 316 | /// dominator tree base. Otherwise return true. |
| 317 | bool compare(const DominatorTreeBase &Other) const { |
| 318 | if (Parent != Other.Parent) return true; |
| 319 | |
| 320 | if (Roots.size() != Other.Roots.size()) |
| 321 | return true; |
| 322 | |
| 323 | if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin())) |
| 324 | return true; |
| 325 | |
| 326 | const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; |
| 327 | if (DomTreeNodes.size() != OtherDomTreeNodes.size()) |
| 328 | return true; |
| 329 | |
| 330 | for (const auto &DomTreeNode : DomTreeNodes) { |
| 331 | NodeT *BB = DomTreeNode.first; |
| 332 | typename DomTreeNodeMapType::const_iterator OI = |
| 333 | OtherDomTreeNodes.find(BB); |
| 334 | if (OI == OtherDomTreeNodes.end()) |
| 335 | return true; |
| 336 | |
| 337 | DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second; |
| 338 | DomTreeNodeBase<NodeT> &OtherNd = *OI->second; |
| 339 | |
| 340 | if (MyNd.compare(&OtherNd)) |
| 341 | return true; |
| 342 | } |
| 343 | |
| 344 | return false; |
| 345 | } |
| 346 | |
| 347 | /// getNode - return the (Post)DominatorTree node for the specified basic |
| 348 | /// block. This is the same as using operator[] on this class. The result |
| 349 | /// may (but is not required to) be null for a forward (backwards) |
| 350 | /// statically unreachable block. |
| 351 | DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const { |
| 352 | auto I = DomTreeNodes.find(BB); |
| 353 | if (I != DomTreeNodes.end()) |
| 354 | return I->second.get(); |
| 355 | return nullptr; |
| 356 | } |
| 357 | |
| 358 | /// See getNode. |
| 359 | DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const { |
| 360 | return getNode(BB); |
| 361 | } |
| 362 | |
| 363 | /// getRootNode - This returns the entry node for the CFG of the function. If |
| 364 | /// this tree represents the post-dominance relations for a function, however, |
| 365 | /// this root may be a node with the block == NULL. This is the case when |
| 366 | /// there are multiple exit nodes from a particular function. Consumers of |
| 367 | /// post-dominance information must be capable of dealing with this |
| 368 | /// possibility. |
| 369 | /// |
| 370 | DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } |
| 371 | const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } |
| 372 | |
| 373 | /// Get all nodes dominated by R, including R itself. |
| 374 | void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { |
| 375 | Result.clear(); |
| 376 | const DomTreeNodeBase<NodeT> *RN = getNode(R); |
| 377 | if (!RN) |
| 378 | return; // If R is unreachable, it will not be present in the DOM tree. |
| 379 | SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; |
| 380 | WL.push_back(RN); |
| 381 | |
| 382 | while (!WL.empty()) { |
| 383 | const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); |
| 384 | Result.push_back(N->getBlock()); |
| 385 | WL.append(N->begin(), N->end()); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | /// properlyDominates - Returns true iff A dominates B and A != B. |
| 390 | /// Note that this is not a constant time operation! |
| 391 | /// |
| 392 | bool properlyDominates(const DomTreeNodeBase<NodeT> *A, |
| 393 | const DomTreeNodeBase<NodeT> *B) const { |
| 394 | if (!A || !B) |
| 395 | return false; |
| 396 | if (A == B) |
| 397 | return false; |
| 398 | return dominates(A, B); |
| 399 | } |
| 400 | |
| 401 | bool properlyDominates(const NodeT *A, const NodeT *B) const; |
| 402 | |
| 403 | /// isReachableFromEntry - Return true if A is dominated by the entry |
| 404 | /// block of the function containing it. |
| 405 | bool isReachableFromEntry(const NodeT *A) const { |
| 406 | assert(!this->isPostDominator() &&((void)0) |
| 407 | "This is not implemented for post dominators")((void)0); |
| 408 | return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); |
| 409 | } |
| 410 | |
| 411 | bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } |
| 412 | |
| 413 | /// dominates - Returns true iff A dominates B. Note that this is not a |
| 414 | /// constant time operation! |
| 415 | /// |
| 416 | bool dominates(const DomTreeNodeBase<NodeT> *A, |
| 417 | const DomTreeNodeBase<NodeT> *B) const { |
| 418 | // A node trivially dominates itself. |
| 419 | if (B == A) |
| 420 | return true; |
| 421 | |
| 422 | // An unreachable node is dominated by anything. |
| 423 | if (!isReachableFromEntry(B)) |
| 424 | return true; |
| 425 | |
| 426 | // And dominates nothing. |
| 427 | if (!isReachableFromEntry(A)) |
| 428 | return false; |
| 429 | |
| 430 | if (B->getIDom() == A) return true; |
| 431 | |
| 432 | if (A->getIDom() == B) return false; |
| 433 | |
| 434 | // A can only dominate B if it is higher in the tree. |
| 435 | if (A->getLevel() >= B->getLevel()) return false; |
| 436 | |
| 437 | // Compare the result of the tree walk and the dfs numbers, if expensive |
| 438 | // checks are enabled. |
| 439 | #ifdef EXPENSIVE_CHECKS |
| 440 | assert((!DFSInfoValid ||((void)0) |
| 441 | (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&((void)0) |
| 442 | "Tree walk disagrees with dfs numbers!")((void)0); |
| 443 | #endif |
| 444 | |
| 445 | if (DFSInfoValid) |
| 446 | return B->DominatedBy(A); |
| 447 | |
| 448 | // If we end up with too many slow queries, just update the |
| 449 | // DFS numbers on the theory that we are going to keep querying. |
| 450 | SlowQueries++; |
| 451 | if (SlowQueries > 32) { |
| 452 | updateDFSNumbers(); |
| 453 | return B->DominatedBy(A); |
| 454 | } |
| 455 | |
| 456 | return dominatedBySlowTreeWalk(A, B); |
| 457 | } |
| 458 | |
| 459 | bool dominates(const NodeT *A, const NodeT *B) const; |
| 460 | |
| 461 | NodeT *getRoot() const { |
| 462 | assert(this->Roots.size() == 1 && "Should always have entry node!")((void)0); |
| 463 | return this->Roots[0]; |
| 464 | } |
| 465 | |
| 466 | /// Find nearest common dominator basic block for basic block A and B. A and B |
| 467 | /// must have tree nodes. |
| 468 | NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const { |
| 469 | assert(A && B && "Pointers are not valid")((void)0); |
| 470 | assert(A->getParent() == B->getParent() &&((void)0) |
| 471 | "Two blocks are not in same function")((void)0); |
| 472 | |
| 473 | // If either A or B is a entry block then it is nearest common dominator |
| 474 | // (for forward-dominators). |
| 475 | if (!isPostDominator()) { |
| 476 | NodeT &Entry = A->getParent()->front(); |
| 477 | if (A == &Entry || B == &Entry) |
| 478 | return &Entry; |
| 479 | } |
| 480 | |
| 481 | DomTreeNodeBase<NodeT> *NodeA = getNode(A); |
| 482 | DomTreeNodeBase<NodeT> *NodeB = getNode(B); |
| 483 | assert(NodeA && "A must be in the tree")((void)0); |
| 484 | assert(NodeB && "B must be in the tree")((void)0); |
| 485 | |
| 486 | // Use level information to go up the tree until the levels match. Then |
| 487 | // continue going up til we arrive at the same node. |
| 488 | while (NodeA != NodeB) { |
| 489 | if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB); |
| 490 | |
| 491 | NodeA = NodeA->IDom; |
| 492 | } |
| 493 | |
| 494 | return NodeA->getBlock(); |
| 495 | } |
| 496 | |
| 497 | const NodeT *findNearestCommonDominator(const NodeT *A, |
| 498 | const NodeT *B) const { |
| 499 | // Cast away the const qualifiers here. This is ok since |
| 500 | // const is re-introduced on the return type. |
| 501 | return findNearestCommonDominator(const_cast<NodeT *>(A), |
| 502 | const_cast<NodeT *>(B)); |
| 503 | } |
| 504 | |
| 505 | bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const { |
| 506 | return isPostDominator() && !A->getBlock(); |
| 507 | } |
| 508 | |
| 509 | //===--------------------------------------------------------------------===// |
| 510 | // API to update (Post)DominatorTree information based on modifications to |
| 511 | // the CFG... |
| 512 | |
| 513 | /// Inform the dominator tree about a sequence of CFG edge insertions and |
| 514 | /// deletions and perform a batch update on the tree. |
| 515 | /// |
| 516 | /// This function should be used when there were multiple CFG updates after |
| 517 | /// the last dominator tree update. It takes care of performing the updates |
| 518 | /// in sync with the CFG and optimizes away the redundant operations that |
| 519 | /// cancel each other. |
| 520 | /// The functions expects the sequence of updates to be balanced. Eg.: |
| 521 | /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because |
| 522 | /// logically it results in a single insertions. |
| 523 | /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make |
| 524 | /// sense to insert the same edge twice. |
| 525 | /// |
| 526 | /// What's more, the functions assumes that it's safe to ask every node in the |
| 527 | /// CFG about its children and inverse children. This implies that deletions |
| 528 | /// of CFG edges must not delete the CFG nodes before calling this function. |
| 529 | /// |
| 530 | /// The applyUpdates function can reorder the updates and remove redundant |
| 531 | /// ones internally. The batch updater is also able to detect sequences of |
| 532 | /// zero and exactly one update -- it's optimized to do less work in these |
| 533 | /// cases. |
| 534 | /// |
| 535 | /// Note that for postdominators it automatically takes care of applying |
| 536 | /// updates on reverse edges internally (so there's no need to swap the |
| 537 | /// From and To pointers when constructing DominatorTree::UpdateType). |
| 538 | /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T> |
| 539 | /// with the same template parameter T. |
| 540 | /// |
| 541 | /// \param Updates An unordered sequence of updates to perform. The current |
| 542 | /// CFG and the reverse of these updates provides the pre-view of the CFG. |
| 543 | /// |
| 544 | void applyUpdates(ArrayRef<UpdateType> Updates) { |
| 545 | GraphDiff<NodePtr, IsPostDominator> PreViewCFG( |
| 546 | Updates, /*ReverseApplyUpdates=*/true); |
| 547 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr); |
| 548 | } |
| 549 | |
| 550 | /// \param Updates An unordered sequence of updates to perform. The current |
| 551 | /// CFG and the reverse of these updates provides the pre-view of the CFG. |
| 552 | /// \param PostViewUpdates An unordered sequence of update to perform in order |
| 553 | /// to obtain a post-view of the CFG. The DT will be updated assuming the |
| 554 | /// obtained PostViewCFG is the desired end state. |
| 555 | void applyUpdates(ArrayRef<UpdateType> Updates, |
| 556 | ArrayRef<UpdateType> PostViewUpdates) { |
| 557 | if (Updates.empty()) { |
| 558 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); |
| 559 | DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG); |
| 560 | } else { |
| 561 | // PreViewCFG needs to merge Updates and PostViewCFG. The updates in |
| 562 | // Updates need to be reversed, and match the direction in PostViewCFG. |
| 563 | // The PostViewCFG is created with updates reversed (equivalent to changes |
| 564 | // made to the CFG), so the PreViewCFG needs all the updates reverse |
| 565 | // applied. |
| 566 | SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end()); |
| 567 | append_range(AllUpdates, PostViewUpdates); |
| 568 | GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates, |
| 569 | /*ReverseApplyUpdates=*/true); |
| 570 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); |
| 571 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG); |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | /// Inform the dominator tree about a CFG edge insertion and update the tree. |
| 576 | /// |
| 577 | /// This function has to be called just before or just after making the update |
| 578 | /// on the actual CFG. There cannot be any other updates that the dominator |
| 579 | /// tree doesn't know about. |
| 580 | /// |
| 581 | /// Note that for postdominators it automatically takes care of inserting |
| 582 | /// a reverse edge internally (so there's no need to swap the parameters). |
| 583 | /// |
| 584 | void insertEdge(NodeT *From, NodeT *To) { |
| 585 | assert(From)((void)0); |
| 586 | assert(To)((void)0); |
| 587 | assert(From->getParent() == Parent)((void)0); |
| 588 | assert(To->getParent() == Parent)((void)0); |
| 589 | DomTreeBuilder::InsertEdge(*this, From, To); |
| 590 | } |
| 591 | |
| 592 | /// Inform the dominator tree about a CFG edge deletion and update the tree. |
| 593 | /// |
| 594 | /// This function has to be called just after making the update on the actual |
| 595 | /// CFG. An internal functions checks if the edge doesn't exist in the CFG in |
| 596 | /// DEBUG mode. There cannot be any other updates that the |
| 597 | /// dominator tree doesn't know about. |
| 598 | /// |
| 599 | /// Note that for postdominators it automatically takes care of deleting |
| 600 | /// a reverse edge internally (so there's no need to swap the parameters). |
| 601 | /// |
| 602 | void deleteEdge(NodeT *From, NodeT *To) { |
| 603 | assert(From)((void)0); |
| 604 | assert(To)((void)0); |
| 605 | assert(From->getParent() == Parent)((void)0); |
| 606 | assert(To->getParent() == Parent)((void)0); |
| 607 | DomTreeBuilder::DeleteEdge(*this, From, To); |
| 608 | } |
| 609 | |
| 610 | /// Add a new node to the dominator tree information. |
| 611 | /// |
| 612 | /// This creates a new node as a child of DomBB dominator node, linking it |
| 613 | /// into the children list of the immediate dominator. |
| 614 | /// |
| 615 | /// \param BB New node in CFG. |
| 616 | /// \param DomBB CFG node that is dominator for BB. |
| 617 | /// \returns New dominator tree node that represents new CFG node. |
| 618 | /// |
| 619 | DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { |
| 620 | assert(getNode(BB) == nullptr && "Block already in dominator tree!")((void)0); |
| 621 | DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); |
| 622 | assert(IDomNode && "Not immediate dominator specified for block!")((void)0); |
| 623 | DFSInfoValid = false; |
| 624 | return createChild(BB, IDomNode); |
| 625 | } |
| 626 | |
| 627 | /// Add a new node to the forward dominator tree and make it a new root. |
| 628 | /// |
| 629 | /// \param BB New node in CFG. |
| 630 | /// \returns New dominator tree node that represents new CFG node. |
| 631 | /// |
| 632 | DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) { |
| 633 | assert(getNode(BB) == nullptr && "Block already in dominator tree!")((void)0); |
| 634 | assert(!this->isPostDominator() &&((void)0) |
| 635 | "Cannot change root of post-dominator tree")((void)0); |
| 636 | DFSInfoValid = false; |
| 637 | DomTreeNodeBase<NodeT> *NewNode = createNode(BB); |
| 638 | if (Roots.empty()) { |
| 639 | addRoot(BB); |
| 640 | } else { |
| 641 | assert(Roots.size() == 1)((void)0); |
| 642 | NodeT *OldRoot = Roots.front(); |
| 643 | auto &OldNode = DomTreeNodes[OldRoot]; |
| 644 | OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); |
| 645 | OldNode->IDom = NewNode; |
| 646 | OldNode->UpdateLevel(); |
| 647 | Roots[0] = BB; |
| 648 | } |
| 649 | return RootNode = NewNode; |
| 650 | } |
| 651 | |
| 652 | /// changeImmediateDominator - This method is used to update the dominator |
| 653 | /// tree information when a node's immediate dominator changes. |
| 654 | /// |
| 655 | void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, |
| 656 | DomTreeNodeBase<NodeT> *NewIDom) { |
| 657 | assert(N && NewIDom && "Cannot change null node pointers!")((void)0); |
| 658 | DFSInfoValid = false; |
| 659 | N->setIDom(NewIDom); |
| 660 | } |
| 661 | |
| 662 | void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { |
| 663 | changeImmediateDominator(getNode(BB), getNode(NewBB)); |
| 664 | } |
| 665 | |
| 666 | /// eraseNode - Removes a node from the dominator tree. Block must not |
| 667 | /// dominate any other blocks. Removes node from its immediate dominator's |
| 668 | /// children list. Deletes dominator node associated with basic block BB. |
| 669 | void eraseNode(NodeT *BB) { |
| 670 | DomTreeNodeBase<NodeT> *Node = getNode(BB); |
| 671 | assert(Node && "Removing node that isn't in dominator tree.")((void)0); |
| 672 | assert(Node->isLeaf() && "Node is not a leaf node.")((void)0); |
| 673 | |
| 674 | DFSInfoValid = false; |
| 675 | |
| 676 | // Remove node from immediate dominator's children list. |
| 677 | DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); |
| 678 | if (IDom) { |
| 679 | const auto I = find(IDom->Children, Node); |
| 680 | assert(I != IDom->Children.end() &&((void)0) |
| 681 | "Not in immediate dominator children set!")((void)0); |
| 682 | // I am no longer your child... |
| 683 | IDom->Children.erase(I); |
| 684 | } |
| 685 | |
| 686 | DomTreeNodes.erase(BB); |
| 687 | |
| 688 | if (!IsPostDom) return; |
| 689 | |
| 690 | // Remember to update PostDominatorTree roots. |
| 691 | auto RIt = llvm::find(Roots, BB); |
| 692 | if (RIt != Roots.end()) { |
| 693 | std::swap(*RIt, Roots.back()); |
| 694 | Roots.pop_back(); |
| 695 | } |
| 696 | } |
| 697 | |
| 698 | /// splitBlock - BB is split and now it has one successor. Update dominator |
| 699 | /// tree to reflect this change. |
| 700 | void splitBlock(NodeT *NewBB) { |
| 701 | if (IsPostDominator) |
| 702 | Split<Inverse<NodeT *>>(NewBB); |
| 703 | else |
| 704 | Split<NodeT *>(NewBB); |
| 705 | } |
| 706 | |
| 707 | /// print - Convert to human readable form |
| 708 | /// |
| 709 | void print(raw_ostream &O) const { |
| 710 | O << "=============================--------------------------------\n"; |
| 711 | if (IsPostDominator) |
| 712 | O << "Inorder PostDominator Tree: "; |
| 713 | else |
| 714 | O << "Inorder Dominator Tree: "; |
| 715 | if (!DFSInfoValid) |
| 716 | O << "DFSNumbers invalid: " << SlowQueries << " slow queries."; |
| 717 | O << "\n"; |
| 718 | |
| 719 | // The postdom tree can have a null root if there are no returns. |
| 720 | if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1); |
| 721 | O << "Roots: "; |
| 722 | for (const NodePtr Block : Roots) { |
| 723 | Block->printAsOperand(O, false); |
| 724 | O << " "; |
| 725 | } |
| 726 | O << "\n"; |
| 727 | } |
| 728 | |
| 729 | public: |
| 730 | /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking |
| 731 | /// dominator tree in dfs order. |
| 732 | void updateDFSNumbers() const { |
| 733 | if (DFSInfoValid) { |
| 734 | SlowQueries = 0; |
| 735 | return; |
| 736 | } |
| 737 | |
| 738 | SmallVector<std::pair<const DomTreeNodeBase<NodeT> *, |
| 739 | typename DomTreeNodeBase<NodeT>::const_iterator>, |
| 740 | 32> WorkStack; |
| 741 | |
| 742 | const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); |
| 743 | assert((!Parent || ThisRoot) && "Empty constructed DomTree")((void)0); |
| 744 | if (!ThisRoot) |
| 745 | return; |
| 746 | |
| 747 | // Both dominators and postdominators have a single root node. In the case |
| 748 | // case of PostDominatorTree, this node is a virtual root. |
| 749 | WorkStack.push_back({ThisRoot, ThisRoot->begin()}); |
| 750 | |
| 751 | unsigned DFSNum = 0; |
| 752 | ThisRoot->DFSNumIn = DFSNum++; |
| 753 | |
| 754 | while (!WorkStack.empty()) { |
| 755 | const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; |
| 756 | const auto ChildIt = WorkStack.back().second; |
| 757 | |
| 758 | // If we visited all of the children of this node, "recurse" back up the |
| 759 | // stack setting the DFOutNum. |
| 760 | if (ChildIt == Node->end()) { |
| 761 | Node->DFSNumOut = DFSNum++; |
| 762 | WorkStack.pop_back(); |
| 763 | } else { |
| 764 | // Otherwise, recursively visit this child. |
| 765 | const DomTreeNodeBase<NodeT> *Child = *ChildIt; |
| 766 | ++WorkStack.back().second; |
| 767 | |
| 768 | WorkStack.push_back({Child, Child->begin()}); |
| 769 | Child->DFSNumIn = DFSNum++; |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | SlowQueries = 0; |
| 774 | DFSInfoValid = true; |
| 775 | } |
| 776 | |
| 777 | /// recalculate - compute a dominator tree for the given function |
| 778 | void recalculate(ParentType &Func) { |
| 779 | Parent = &Func; |
| 780 | DomTreeBuilder::Calculate(*this); |
| 781 | } |
| 782 | |
| 783 | void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) { |
| 784 | Parent = &Func; |
| 785 | DomTreeBuilder::CalculateWithUpdates(*this, Updates); |
| 786 | } |
| 787 | |
| 788 | /// verify - checks if the tree is correct. There are 3 level of verification: |
| 789 | /// - Full -- verifies if the tree is correct by making sure all the |
| 790 | /// properties (including the parent and the sibling property) |
| 791 | /// hold. |
| 792 | /// Takes O(N^3) time. |
| 793 | /// |
| 794 | /// - Basic -- checks if the tree is correct, but compares it to a freshly |
| 795 | /// constructed tree instead of checking the sibling property. |
| 796 | /// Takes O(N^2) time. |
| 797 | /// |
| 798 | /// - Fast -- checks basic tree structure and compares it with a freshly |
| 799 | /// constructed tree. |
| 800 | /// Takes O(N^2) time worst case, but is faster in practise (same |
| 801 | /// as tree construction). |
| 802 | bool verify(VerificationLevel VL = VerificationLevel::Full) const { |
| 803 | return DomTreeBuilder::Verify(*this, VL); |
| 804 | } |
| 805 | |
| 806 | void reset() { |
| 807 | DomTreeNodes.clear(); |
| 808 | Roots.clear(); |
| 809 | RootNode = nullptr; |
| 810 | Parent = nullptr; |
| 811 | DFSInfoValid = false; |
| 812 | SlowQueries = 0; |
| 813 | } |
| 814 | |
| 815 | protected: |
| 816 | void addRoot(NodeT *BB) { this->Roots.push_back(BB); } |
| 817 | |
| 818 | DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) { |
| 819 | return (DomTreeNodes[BB] = IDom->addChild( |
| 820 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom))) |
| 821 | .get(); |
| 822 | } |
| 823 | |
| 824 | DomTreeNodeBase<NodeT> *createNode(NodeT *BB) { |
| 825 | return (DomTreeNodes[BB] = |
| 826 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)) |
| 827 | .get(); |
| 828 | } |
| 829 | |
| 830 | // NewBB is split and now it has one successor. Update dominator tree to |
| 831 | // reflect this change. |
| 832 | template <class N> |
| 833 | void Split(typename GraphTraits<N>::NodeRef NewBB) { |
| 834 | using GraphT = GraphTraits<N>; |
| 835 | using NodeRef = typename GraphT::NodeRef; |
| 836 | assert(std::distance(GraphT::child_begin(NewBB),((void)0) |
| 837 | GraphT::child_end(NewBB)) == 1 &&((void)0) |
| 838 | "NewBB should have a single successor!")((void)0); |
| 839 | NodeRef NewBBSucc = *GraphT::child_begin(NewBB); |
| 840 | |
| 841 | SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB)); |
| 842 | |
| 843 | assert(!PredBlocks.empty() && "No predblocks?")((void)0); |
| 844 | |
| 845 | bool NewBBDominatesNewBBSucc = true; |
| 846 | for (auto Pred : children<Inverse<N>>(NewBBSucc)) { |
| 847 | if (Pred != NewBB && !dominates(NewBBSucc, Pred) && |
| 848 | isReachableFromEntry(Pred)) { |
| 849 | NewBBDominatesNewBBSucc = false; |
| 850 | break; |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | // Find NewBB's immediate dominator and create new dominator tree node for |
| 855 | // NewBB. |
| 856 | NodeT *NewBBIDom = nullptr; |
| 857 | unsigned i = 0; |
| 858 | for (i = 0; i < PredBlocks.size(); ++i) |
| 859 | if (isReachableFromEntry(PredBlocks[i])) { |
| 860 | NewBBIDom = PredBlocks[i]; |
| 861 | break; |
| 862 | } |
| 863 | |
| 864 | // It's possible that none of the predecessors of NewBB are reachable; |
| 865 | // in that case, NewBB itself is unreachable, so nothing needs to be |
| 866 | // changed. |
| 867 | if (!NewBBIDom) return; |
| 868 | |
| 869 | for (i = i + 1; i < PredBlocks.size(); ++i) { |
| 870 | if (isReachableFromEntry(PredBlocks[i])) |
| 871 | NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); |
| 872 | } |
| 873 | |
| 874 | // Create the new dominator tree node... and set the idom of NewBB. |
| 875 | DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom); |
| 876 | |
| 877 | // If NewBB strictly dominates other blocks, then it is now the immediate |
| 878 | // dominator of NewBBSucc. Update the dominator tree as appropriate. |
| 879 | if (NewBBDominatesNewBBSucc) { |
| 880 | DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc); |
| 881 | changeImmediateDominator(NewBBSuccNode, NewBBNode); |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | private: |
| 886 | bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, |
| 887 | const DomTreeNodeBase<NodeT> *B) const { |
| 888 | assert(A != B)((void)0); |
| 889 | assert(isReachableFromEntry(B))((void)0); |
| 890 | assert(isReachableFromEntry(A))((void)0); |
| 891 | |
| 892 | const unsigned ALevel = A->getLevel(); |
| 893 | const DomTreeNodeBase<NodeT> *IDom; |
| 894 | |
| 895 | // Don't walk nodes above A's subtree. When we reach A's level, we must |
| 896 | // either find A or be in some other subtree not dominated by A. |
| 897 | while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel) |
| 898 | B = IDom; // Walk up the tree |
| 899 | |
| 900 | return B == A; |
| 901 | } |
| 902 | |
| 903 | /// Wipe this tree's state without releasing any resources. |
| 904 | /// |
| 905 | /// This is essentially a post-move helper only. It leaves the object in an |
| 906 | /// assignable and destroyable state, but otherwise invalid. |
| 907 | void wipe() { |
| 908 | DomTreeNodes.clear(); |
| 909 | RootNode = nullptr; |
| 910 | Parent = nullptr; |
| 911 | } |
| 912 | }; |
| 913 | |
| 914 | template <typename T> |
| 915 | using DomTreeBase = DominatorTreeBase<T, false>; |
| 916 | |
| 917 | template <typename T> |
| 918 | using PostDomTreeBase = DominatorTreeBase<T, true>; |
| 919 | |
| 920 | // These two functions are declared out of line as a workaround for building |
| 921 | // with old (< r147295) versions of clang because of pr11642. |
| 922 | template <typename NodeT, bool IsPostDom> |
| 923 | bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A, |
| 924 | const NodeT *B) const { |
| 925 | if (A == B) |
| 926 | return true; |
| 927 | |
| 928 | // Cast away the const qualifiers here. This is ok since |
| 929 | // this function doesn't actually return the values returned |
| 930 | // from getNode. |
| 931 | return dominates(getNode(const_cast<NodeT *>(A)), |
| 932 | getNode(const_cast<NodeT *>(B))); |
| 933 | } |
| 934 | template <typename NodeT, bool IsPostDom> |
| 935 | bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates( |
| 936 | const NodeT *A, const NodeT *B) const { |
| 937 | if (A == B) |
| 938 | return false; |
| 939 | |
| 940 | // Cast away the const qualifiers here. This is ok since |
| 941 | // this function doesn't actually return the values returned |
| 942 | // from getNode. |
| 943 | return dominates(getNode(const_cast<NodeT *>(A)), |
| 944 | getNode(const_cast<NodeT *>(B))); |
| 945 | } |
| 946 | |
| 947 | } // end namespace llvm |
| 948 | |
| 949 | #endif // LLVM_SUPPORT_GENERICDOMTREE_H |
| 1 | //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the DenseMap class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_ADT_DENSEMAP_H |
| 14 | #define LLVM_ADT_DENSEMAP_H |
| 15 | |
| 16 | #include "llvm/ADT/DenseMapInfo.h" |
| 17 | #include "llvm/ADT/EpochTracker.h" |
| 18 | #include "llvm/Support/AlignOf.h" |
| 19 | #include "llvm/Support/Compiler.h" |
| 20 | #include "llvm/Support/MathExtras.h" |
| 21 | #include "llvm/Support/MemAlloc.h" |
| 22 | #include "llvm/Support/ReverseIteration.h" |
| 23 | #include "llvm/Support/type_traits.h" |
| 24 | #include <algorithm> |
| 25 | #include <cassert> |
| 26 | #include <cstddef> |
| 27 | #include <cstring> |
| 28 | #include <initializer_list> |
| 29 | #include <iterator> |
| 30 | #include <new> |
| 31 | #include <type_traits> |
| 32 | #include <utility> |
| 33 | |
| 34 | namespace llvm { |
| 35 | |
| 36 | namespace detail { |
| 37 | |
| 38 | // We extend a pair to allow users to override the bucket type with their own |
| 39 | // implementation without requiring two members. |
| 40 | template <typename KeyT, typename ValueT> |
| 41 | struct DenseMapPair : public std::pair<KeyT, ValueT> { |
| 42 | using std::pair<KeyT, ValueT>::pair; |
| 43 | |
| 44 | KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } |
| 45 | const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } |
| 46 | ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } |
| 47 | const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } |
| 48 | }; |
| 49 | |
| 50 | } // end namespace detail |
| 51 | |
| 52 | template <typename KeyT, typename ValueT, |
| 53 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 54 | typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>, |
| 55 | bool IsConst = false> |
| 56 | class DenseMapIterator; |
| 57 | |
| 58 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 59 | typename BucketT> |
| 60 | class DenseMapBase : public DebugEpochBase { |
| 61 | template <typename T> |
| 62 | using const_arg_type_t = typename const_pointer_or_const_ref<T>::type; |
| 63 | |
| 64 | public: |
| 65 | using size_type = unsigned; |
| 66 | using key_type = KeyT; |
| 67 | using mapped_type = ValueT; |
| 68 | using value_type = BucketT; |
| 69 | |
| 70 | using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>; |
| 71 | using const_iterator = |
| 72 | DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>; |
| 73 | |
| 74 | inline iterator begin() { |
| 75 | // When the map is empty, avoid the overhead of advancing/retreating past |
| 76 | // empty buckets. |
| 77 | if (empty()) |
| 78 | return end(); |
| 79 | if (shouldReverseIterate<KeyT>()) |
| 80 | return makeIterator(getBucketsEnd() - 1, getBuckets(), *this); |
| 81 | return makeIterator(getBuckets(), getBucketsEnd(), *this); |
| 82 | } |
| 83 | inline iterator end() { |
| 84 | return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
| 85 | } |
| 86 | inline const_iterator begin() const { |
| 87 | if (empty()) |
| 88 | return end(); |
| 89 | if (shouldReverseIterate<KeyT>()) |
| 90 | return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this); |
| 91 | return makeConstIterator(getBuckets(), getBucketsEnd(), *this); |
| 92 | } |
| 93 | inline const_iterator end() const { |
| 94 | return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
| 95 | } |
| 96 | |
| 97 | LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { |
| 98 | return getNumEntries() == 0; |
| 99 | } |
| 100 | unsigned size() const { return getNumEntries(); } |
| 101 | |
| 102 | /// Grow the densemap so that it can contain at least \p NumEntries items |
| 103 | /// before resizing again. |
| 104 | void reserve(size_type NumEntries) { |
| 105 | auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); |
| 106 | incrementEpoch(); |
| 107 | if (NumBuckets > getNumBuckets()) |
| 108 | grow(NumBuckets); |
| 109 | } |
| 110 | |
| 111 | void clear() { |
| 112 | incrementEpoch(); |
| 113 | if (getNumEntries() == 0 && getNumTombstones() == 0) return; |
| 114 | |
| 115 | // If the capacity of the array is huge, and the # elements used is small, |
| 116 | // shrink the array. |
| 117 | if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { |
| 118 | shrink_and_clear(); |
| 119 | return; |
| 120 | } |
| 121 | |
| 122 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| 123 | if (std::is_trivially_destructible<ValueT>::value) { |
| 124 | // Use a simpler loop when values don't need destruction. |
| 125 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) |
| 126 | P->getFirst() = EmptyKey; |
| 127 | } else { |
| 128 | unsigned NumEntries = getNumEntries(); |
| 129 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| 130 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { |
| 131 | if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| 132 | P->getSecond().~ValueT(); |
| 133 | --NumEntries; |
| 134 | } |
| 135 | P->getFirst() = EmptyKey; |
| 136 | } |
| 137 | } |
| 138 | assert(NumEntries == 0 && "Node count imbalance!")((void)0); |
| 139 | } |
| 140 | setNumEntries(0); |
| 141 | setNumTombstones(0); |
| 142 | } |
| 143 | |
| 144 | /// Return 1 if the specified key is in the map, 0 otherwise. |
| 145 | size_type count(const_arg_type_t<KeyT> Val) const { |
| 146 | const BucketT *TheBucket; |
| 147 | return LookupBucketFor(Val, TheBucket) ? 1 : 0; |
| 148 | } |
| 149 | |
| 150 | iterator find(const_arg_type_t<KeyT> Val) { |
| 151 | BucketT *TheBucket; |
| 152 | if (LookupBucketFor(Val, TheBucket)) |
| 153 | return makeIterator(TheBucket, |
| 154 | shouldReverseIterate<KeyT>() ? getBuckets() |
| 155 | : getBucketsEnd(), |
| 156 | *this, true); |
| 157 | return end(); |
| 158 | } |
| 159 | const_iterator find(const_arg_type_t<KeyT> Val) const { |
| 160 | const BucketT *TheBucket; |
| 161 | if (LookupBucketFor(Val, TheBucket)) |
| 162 | return makeConstIterator(TheBucket, |
| 163 | shouldReverseIterate<KeyT>() ? getBuckets() |
| 164 | : getBucketsEnd(), |
| 165 | *this, true); |
| 166 | return end(); |
| 167 | } |
| 168 | |
| 169 | /// Alternate version of find() which allows a different, and possibly |
| 170 | /// less expensive, key type. |
| 171 | /// The DenseMapInfo is responsible for supplying methods |
| 172 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| 173 | /// type used. |
| 174 | template<class LookupKeyT> |
| 175 | iterator find_as(const LookupKeyT &Val) { |
| 176 | BucketT *TheBucket; |
| 177 | if (LookupBucketFor(Val, TheBucket)) |
| 178 | return makeIterator(TheBucket, |
| 179 | shouldReverseIterate<KeyT>() ? getBuckets() |
| 180 | : getBucketsEnd(), |
| 181 | *this, true); |
| 182 | return end(); |
| 183 | } |
| 184 | template<class LookupKeyT> |
| 185 | const_iterator find_as(const LookupKeyT &Val) const { |
| 186 | const BucketT *TheBucket; |
| 187 | if (LookupBucketFor(Val, TheBucket)) |
| 188 | return makeConstIterator(TheBucket, |
| 189 | shouldReverseIterate<KeyT>() ? getBuckets() |
| 190 | : getBucketsEnd(), |
| 191 | *this, true); |
| 192 | return end(); |
| 193 | } |
| 194 | |
| 195 | /// lookup - Return the entry for the specified key, or a default |
| 196 | /// constructed value if no such entry exists. |
| 197 | ValueT lookup(const_arg_type_t<KeyT> Val) const { |
| 198 | const BucketT *TheBucket; |
| 199 | if (LookupBucketFor(Val, TheBucket)) |
| 200 | return TheBucket->getSecond(); |
| 201 | return ValueT(); |
| 202 | } |
| 203 | |
| 204 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 205 | // If the key is already in the map, it returns false and doesn't update the |
| 206 | // value. |
| 207 | std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { |
| 208 | return try_emplace(KV.first, KV.second); |
| 209 | } |
| 210 | |
| 211 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 212 | // If the key is already in the map, it returns false and doesn't update the |
| 213 | // value. |
| 214 | std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { |
| 215 | return try_emplace(std::move(KV.first), std::move(KV.second)); |
| 216 | } |
| 217 | |
| 218 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 219 | // The value is constructed in-place if the key is not in the map, otherwise |
| 220 | // it is not moved. |
| 221 | template <typename... Ts> |
| 222 | std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) { |
| 223 | BucketT *TheBucket; |
| 224 | if (LookupBucketFor(Key, TheBucket)) |
| 225 | return std::make_pair(makeIterator(TheBucket, |
| 226 | shouldReverseIterate<KeyT>() |
| 227 | ? getBuckets() |
| 228 | : getBucketsEnd(), |
| 229 | *this, true), |
| 230 | false); // Already in map. |
| 231 | |
| 232 | // Otherwise, insert the new element. |
| 233 | TheBucket = |
| 234 | InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); |
| 235 | return std::make_pair(makeIterator(TheBucket, |
| 236 | shouldReverseIterate<KeyT>() |
| 237 | ? getBuckets() |
| 238 | : getBucketsEnd(), |
| 239 | *this, true), |
| 240 | true); |
| 241 | } |
| 242 | |
| 243 | // Inserts key,value pair into the map if the key isn't already in the map. |
| 244 | // The value is constructed in-place if the key is not in the map, otherwise |
| 245 | // it is not moved. |
| 246 | template <typename... Ts> |
| 247 | std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) { |
| 248 | BucketT *TheBucket; |
| 249 | if (LookupBucketFor(Key, TheBucket)) |
| 250 | return std::make_pair(makeIterator(TheBucket, |
| 251 | shouldReverseIterate<KeyT>() |
| 252 | ? getBuckets() |
| 253 | : getBucketsEnd(), |
| 254 | *this, true), |
| 255 | false); // Already in map. |
| 256 | |
| 257 | // Otherwise, insert the new element. |
| 258 | TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); |
| 259 | return std::make_pair(makeIterator(TheBucket, |
| 260 | shouldReverseIterate<KeyT>() |
| 261 | ? getBuckets() |
| 262 | : getBucketsEnd(), |
| 263 | *this, true), |
| 264 | true); |
| 265 | } |
| 266 | |
| 267 | /// Alternate version of insert() which allows a different, and possibly |
| 268 | /// less expensive, key type. |
| 269 | /// The DenseMapInfo is responsible for supplying methods |
| 270 | /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| 271 | /// type used. |
| 272 | template <typename LookupKeyT> |
| 273 | std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, |
| 274 | const LookupKeyT &Val) { |
| 275 | BucketT *TheBucket; |
| 276 | if (LookupBucketFor(Val, TheBucket)) |
| 277 | return std::make_pair(makeIterator(TheBucket, |
| 278 | shouldReverseIterate<KeyT>() |
| 279 | ? getBuckets() |
| 280 | : getBucketsEnd(), |
| 281 | *this, true), |
| 282 | false); // Already in map. |
| 283 | |
| 284 | // Otherwise, insert the new element. |
| 285 | TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), |
| 286 | std::move(KV.second), Val); |
| 287 | return std::make_pair(makeIterator(TheBucket, |
| 288 | shouldReverseIterate<KeyT>() |
| 289 | ? getBuckets() |
| 290 | : getBucketsEnd(), |
| 291 | *this, true), |
| 292 | true); |
| 293 | } |
| 294 | |
| 295 | /// insert - Range insertion of pairs. |
| 296 | template<typename InputIt> |
| 297 | void insert(InputIt I, InputIt E) { |
| 298 | for (; I != E; ++I) |
| 299 | insert(*I); |
| 300 | } |
| 301 | |
| 302 | bool erase(const KeyT &Val) { |
| 303 | BucketT *TheBucket; |
| 304 | if (!LookupBucketFor(Val, TheBucket)) |
| 305 | return false; // not in map. |
| 306 | |
| 307 | TheBucket->getSecond().~ValueT(); |
| 308 | TheBucket->getFirst() = getTombstoneKey(); |
| 309 | decrementNumEntries(); |
| 310 | incrementNumTombstones(); |
| 311 | return true; |
| 312 | } |
| 313 | void erase(iterator I) { |
| 314 | BucketT *TheBucket = &*I; |
| 315 | TheBucket->getSecond().~ValueT(); |
| 316 | TheBucket->getFirst() = getTombstoneKey(); |
| 317 | decrementNumEntries(); |
| 318 | incrementNumTombstones(); |
| 319 | } |
| 320 | |
| 321 | value_type& FindAndConstruct(const KeyT &Key) { |
| 322 | BucketT *TheBucket; |
| 323 | if (LookupBucketFor(Key, TheBucket)) |
| 324 | return *TheBucket; |
| 325 | |
| 326 | return *InsertIntoBucket(TheBucket, Key); |
| 327 | } |
| 328 | |
| 329 | ValueT &operator[](const KeyT &Key) { |
| 330 | return FindAndConstruct(Key).second; |
| 331 | } |
| 332 | |
| 333 | value_type& FindAndConstruct(KeyT &&Key) { |
| 334 | BucketT *TheBucket; |
| 335 | if (LookupBucketFor(Key, TheBucket)) |
| 336 | return *TheBucket; |
| 337 | |
| 338 | return *InsertIntoBucket(TheBucket, std::move(Key)); |
| 339 | } |
| 340 | |
| 341 | ValueT &operator[](KeyT &&Key) { |
| 342 | return FindAndConstruct(std::move(Key)).second; |
| 343 | } |
| 344 | |
| 345 | /// isPointerIntoBucketsArray - Return true if the specified pointer points |
| 346 | /// somewhere into the DenseMap's array of buckets (i.e. either to a key or |
| 347 | /// value in the DenseMap). |
| 348 | bool isPointerIntoBucketsArray(const void *Ptr) const { |
| 349 | return Ptr >= getBuckets() && Ptr < getBucketsEnd(); |
| 350 | } |
| 351 | |
| 352 | /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets |
| 353 | /// array. In conjunction with the previous method, this can be used to |
| 354 | /// determine whether an insertion caused the DenseMap to reallocate. |
| 355 | const void *getPointerIntoBucketsArray() const { return getBuckets(); } |
| 356 | |
| 357 | protected: |
| 358 | DenseMapBase() = default; |
| 359 | |
| 360 | void destroyAll() { |
| 361 | if (getNumBuckets() == 0) // Nothing to do. |
| 362 | return; |
| 363 | |
| 364 | const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| 365 | for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| 366 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| 367 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) |
| 368 | P->getSecond().~ValueT(); |
| 369 | P->getFirst().~KeyT(); |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | void initEmpty() { |
| 374 | setNumEntries(0); |
| 375 | setNumTombstones(0); |
| 376 | |
| 377 | assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&((void)0) |
| 378 | "# initial buckets must be a power of two!")((void)0); |
| 379 | const KeyT EmptyKey = getEmptyKey(); |
| 380 | for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) |
| 381 | ::new (&B->getFirst()) KeyT(EmptyKey); |
| 382 | } |
| 383 | |
| 384 | /// Returns the number of buckets to allocate to ensure that the DenseMap can |
| 385 | /// accommodate \p NumEntries without need to grow(). |
| 386 | unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
| 387 | // Ensure that "NumEntries * 4 < NumBuckets * 3" |
| 388 | if (NumEntries == 0) |
| 389 | return 0; |
| 390 | // +1 is required because of the strict equality. |
| 391 | // For example if NumEntries is 48, we need to return 401. |
| 392 | return NextPowerOf2(NumEntries * 4 / 3 + 1); |
| 393 | } |
| 394 | |
| 395 | void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { |
| 396 | initEmpty(); |
| 397 | |
| 398 | // Insert all the old elements. |
| 399 | const KeyT EmptyKey = getEmptyKey(); |
| 400 | const KeyT TombstoneKey = getTombstoneKey(); |
| 401 | for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { |
| 402 | if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && |
| 403 | !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { |
| 404 | // Insert the key/value into the new table. |
| 405 | BucketT *DestBucket; |
| 406 | bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); |
| 407 | (void)FoundVal; // silence warning. |
| 408 | assert(!FoundVal && "Key already in new map?")((void)0); |
| 409 | DestBucket->getFirst() = std::move(B->getFirst()); |
| 410 | ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); |
| 411 | incrementNumEntries(); |
| 412 | |
| 413 | // Free the value. |
| 414 | B->getSecond().~ValueT(); |
| 415 | } |
| 416 | B->getFirst().~KeyT(); |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | template <typename OtherBaseT> |
| 421 | void copyFrom( |
| 422 | const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { |
| 423 | assert(&other != this)((void)0); |
| 424 | assert(getNumBuckets() == other.getNumBuckets())((void)0); |
| 425 | |
| 426 | setNumEntries(other.getNumEntries()); |
| 427 | setNumTombstones(other.getNumTombstones()); |
| 428 | |
| 429 | if (std::is_trivially_copyable<KeyT>::value && |
| 430 | std::is_trivially_copyable<ValueT>::value) |
| 431 | memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(), |
| 432 | getNumBuckets() * sizeof(BucketT)); |
| 433 | else |
| 434 | for (size_t i = 0; i < getNumBuckets(); ++i) { |
| 435 | ::new (&getBuckets()[i].getFirst()) |
| 436 | KeyT(other.getBuckets()[i].getFirst()); |
| 437 | if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) && |
| 438 | !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey())) |
| 439 | ::new (&getBuckets()[i].getSecond()) |
| 440 | ValueT(other.getBuckets()[i].getSecond()); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | static unsigned getHashValue(const KeyT &Val) { |
| 445 | return KeyInfoT::getHashValue(Val); |
| 446 | } |
| 447 | |
| 448 | template<typename LookupKeyT> |
| 449 | static unsigned getHashValue(const LookupKeyT &Val) { |
| 450 | return KeyInfoT::getHashValue(Val); |
| 451 | } |
| 452 | |
| 453 | static const KeyT getEmptyKey() { |
| 454 | static_assert(std::is_base_of<DenseMapBase, DerivedT>::value, |
| 455 | "Must pass the derived type to this template!"); |
| 456 | return KeyInfoT::getEmptyKey(); |
| 457 | } |
| 458 | |
| 459 | static const KeyT getTombstoneKey() { |
| 460 | return KeyInfoT::getTombstoneKey(); |
| 461 | } |
| 462 | |
| 463 | private: |
| 464 | iterator makeIterator(BucketT *P, BucketT *E, |
| 465 | DebugEpochBase &Epoch, |
| 466 | bool NoAdvance=false) { |
| 467 | if (shouldReverseIterate<KeyT>()) { |
| 468 | BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| 469 | return iterator(B, E, Epoch, NoAdvance); |
| 470 | } |
| 471 | return iterator(P, E, Epoch, NoAdvance); |
| 472 | } |
| 473 | |
| 474 | const_iterator makeConstIterator(const BucketT *P, const BucketT *E, |
| 475 | const DebugEpochBase &Epoch, |
| 476 | const bool NoAdvance=false) const { |
| 477 | if (shouldReverseIterate<KeyT>()) { |
| 478 | const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| 479 | return const_iterator(B, E, Epoch, NoAdvance); |
| 480 | } |
| 481 | return const_iterator(P, E, Epoch, NoAdvance); |
| 482 | } |
| 483 | |
| 484 | unsigned getNumEntries() const { |
| 485 | return static_cast<const DerivedT *>(this)->getNumEntries(); |
| 486 | } |
| 487 | |
| 488 | void setNumEntries(unsigned Num) { |
| 489 | static_cast<DerivedT *>(this)->setNumEntries(Num); |
| 490 | } |
| 491 | |
| 492 | void incrementNumEntries() { |
| 493 | setNumEntries(getNumEntries() + 1); |
| 494 | } |
| 495 | |
| 496 | void decrementNumEntries() { |
| 497 | setNumEntries(getNumEntries() - 1); |
| 498 | } |
| 499 | |
| 500 | unsigned getNumTombstones() const { |
| 501 | return static_cast<const DerivedT *>(this)->getNumTombstones(); |
| 502 | } |
| 503 | |
| 504 | void setNumTombstones(unsigned Num) { |
| 505 | static_cast<DerivedT *>(this)->setNumTombstones(Num); |
| 506 | } |
| 507 | |
| 508 | void incrementNumTombstones() { |
| 509 | setNumTombstones(getNumTombstones() + 1); |
| 510 | } |
| 511 | |
| 512 | void decrementNumTombstones() { |
| 513 | setNumTombstones(getNumTombstones() - 1); |
| 514 | } |
| 515 | |
| 516 | const BucketT *getBuckets() const { |
| 517 | return static_cast<const DerivedT *>(this)->getBuckets(); |
| 518 | } |
| 519 | |
| 520 | BucketT *getBuckets() { |
| 521 | return static_cast<DerivedT *>(this)->getBuckets(); |
| 522 | } |
| 523 | |
| 524 | unsigned getNumBuckets() const { |
| 525 | return static_cast<const DerivedT *>(this)->getNumBuckets(); |
| 526 | } |
| 527 | |
| 528 | BucketT *getBucketsEnd() { |
| 529 | return getBuckets() + getNumBuckets(); |
| 530 | } |
| 531 | |
| 532 | const BucketT *getBucketsEnd() const { |
| 533 | return getBuckets() + getNumBuckets(); |
| 534 | } |
| 535 | |
| 536 | void grow(unsigned AtLeast) { |
| 537 | static_cast<DerivedT *>(this)->grow(AtLeast); |
| 538 | } |
| 539 | |
| 540 | void shrink_and_clear() { |
| 541 | static_cast<DerivedT *>(this)->shrink_and_clear(); |
| 542 | } |
| 543 | |
| 544 | template <typename KeyArg, typename... ValueArgs> |
| 545 | BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, |
| 546 | ValueArgs &&... Values) { |
| 547 | TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket); |
| 548 | |
| 549 | TheBucket->getFirst() = std::forward<KeyArg>(Key); |
| 550 | ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); |
| 551 | return TheBucket; |
| 552 | } |
| 553 | |
| 554 | template <typename LookupKeyT> |
| 555 | BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, |
| 556 | ValueT &&Value, LookupKeyT &Lookup) { |
| 557 | TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket); |
| 558 | |
| 559 | TheBucket->getFirst() = std::move(Key); |
| 560 | ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); |
| 561 | return TheBucket; |
| 562 | } |
| 563 | |
| 564 | template <typename LookupKeyT> |
| 565 | BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup, |
| 566 | BucketT *TheBucket) { |
| 567 | incrementEpoch(); |
| 568 | |
| 569 | // If the load of the hash table is more than 3/4, or if fewer than 1/8 of |
| 570 | // the buckets are empty (meaning that many are filled with tombstones), |
| 571 | // grow the table. |
| 572 | // |
| 573 | // The later case is tricky. For example, if we had one empty bucket with |
| 574 | // tons of tombstones, failing lookups (e.g. for insertion) would have to |
| 575 | // probe almost the entire table until it found the empty bucket. If the |
| 576 | // table completely filled with tombstones, no lookup would ever succeed, |
| 577 | // causing infinite loops in lookup. |
| 578 | unsigned NewNumEntries = getNumEntries() + 1; |
| 579 | unsigned NumBuckets = getNumBuckets(); |
| 580 | if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)__builtin_expect((bool)(NewNumEntries * 4 >= NumBuckets * 3 ), false)) { |
| 581 | this->grow(NumBuckets * 2); |
| 582 | LookupBucketFor(Lookup, TheBucket); |
| 583 | NumBuckets = getNumBuckets(); |
| 584 | } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=__builtin_expect((bool)(NumBuckets-(NewNumEntries+getNumTombstones ()) <= NumBuckets/8), false) |
| 585 | NumBuckets/8)__builtin_expect((bool)(NumBuckets-(NewNumEntries+getNumTombstones ()) <= NumBuckets/8), false)) { |
| 586 | this->grow(NumBuckets); |
| 587 | LookupBucketFor(Lookup, TheBucket); |
| 588 | } |
| 589 | assert(TheBucket)((void)0); |
| 590 | |
| 591 | // Only update the state after we've grown our bucket space appropriately |
| 592 | // so that when growing buckets we have self-consistent entry count. |
| 593 | incrementNumEntries(); |
| 594 | |
| 595 | // If we are writing over a tombstone, remember this. |
| 596 | const KeyT EmptyKey = getEmptyKey(); |
| 597 | if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) |
| 598 | decrementNumTombstones(); |
| 599 | |
| 600 | return TheBucket; |
| 601 | } |
| 602 | |
| 603 | /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in |
| 604 | /// FoundBucket. If the bucket contains the key and a value, this returns |
| 605 | /// true, otherwise it returns a bucket with an empty marker or tombstone and |
| 606 | /// returns false. |
| 607 | template<typename LookupKeyT> |
| 608 | bool LookupBucketFor(const LookupKeyT &Val, |
| 609 | const BucketT *&FoundBucket) const { |
| 610 | const BucketT *BucketsPtr = getBuckets(); |
| 611 | const unsigned NumBuckets = getNumBuckets(); |
| 612 | |
| 613 | if (NumBuckets == 0) { |
| 614 | FoundBucket = nullptr; |
| 615 | return false; |
| 616 | } |
| 617 | |
| 618 | // FoundTombstone - Keep track of whether we find a tombstone while probing. |
| 619 | const BucketT *FoundTombstone = nullptr; |
| 620 | const KeyT EmptyKey = getEmptyKey(); |
| 621 | const KeyT TombstoneKey = getTombstoneKey(); |
| 622 | assert(!KeyInfoT::isEqual(Val, EmptyKey) &&((void)0) |
| 623 | !KeyInfoT::isEqual(Val, TombstoneKey) &&((void)0) |
| 624 | "Empty/Tombstone value shouldn't be inserted into map!")((void)0); |
| 625 | |
| 626 | unsigned BucketNo = getHashValue(Val) & (NumBuckets-1); |
| 627 | unsigned ProbeAmt = 1; |
| 628 | while (true) { |
| 629 | const BucketT *ThisBucket = BucketsPtr + BucketNo; |
| 630 | // Found Val's bucket? If so, return it. |
| 631 | if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))__builtin_expect((bool)(KeyInfoT::isEqual(Val, ThisBucket-> getFirst())), true)) { |
| 632 | FoundBucket = ThisBucket; |
| 633 | return true; |
| 634 | } |
| 635 | |
| 636 | // If we found an empty bucket, the key doesn't exist in the set. |
| 637 | // Insert it and return the default value. |
| 638 | if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))__builtin_expect((bool)(KeyInfoT::isEqual(ThisBucket->getFirst (), EmptyKey)), true)) { |
| 639 | // If we've already seen a tombstone while probing, fill it in instead |
| 640 | // of the empty bucket we eventually probed to. |
| 641 | FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; |
| 642 | return false; |
| 643 | } |
| 644 | |
| 645 | // If this is a tombstone, remember it. If Val ends up not in the map, we |
| 646 | // prefer to return it than something that would require more probing. |
| 647 | if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && |
| 648 | !FoundTombstone) |
| 649 | FoundTombstone = ThisBucket; // Remember the first tombstone found. |
| 650 | |
| 651 | // Otherwise, it's a hash collision or a tombstone, continue quadratic |
| 652 | // probing. |
| 653 | BucketNo += ProbeAmt++; |
| 654 | BucketNo &= (NumBuckets-1); |
| 655 | } |
| 656 | } |
| 657 | |
| 658 | template <typename LookupKeyT> |
| 659 | bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { |
| 660 | const BucketT *ConstFoundBucket; |
| 661 | bool Result = const_cast<const DenseMapBase *>(this) |
| 662 | ->LookupBucketFor(Val, ConstFoundBucket); |
| 663 | FoundBucket = const_cast<BucketT *>(ConstFoundBucket); |
| 664 | return Result; |
| 665 | } |
| 666 | |
| 667 | public: |
| 668 | /// Return the approximate size (in bytes) of the actual map. |
| 669 | /// This is just the raw memory used by DenseMap. |
| 670 | /// If entries are pointers to objects, the size of the referenced objects |
| 671 | /// are not included. |
| 672 | size_t getMemorySize() const { |
| 673 | return getNumBuckets() * sizeof(BucketT); |
| 674 | } |
| 675 | }; |
| 676 | |
| 677 | /// Equality comparison for DenseMap. |
| 678 | /// |
| 679 | /// Iterates over elements of LHS confirming that each (key, value) pair in LHS |
| 680 | /// is also in RHS, and that no additional pairs are in RHS. |
| 681 | /// Equivalent to N calls to RHS.find and N value comparisons. Amortized |
| 682 | /// complexity is linear, worst case is O(N^2) (if every hash collides). |
| 683 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 684 | typename BucketT> |
| 685 | bool operator==( |
| 686 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
| 687 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
| 688 | if (LHS.size() != RHS.size()) |
| 689 | return false; |
| 690 | |
| 691 | for (auto &KV : LHS) { |
| 692 | auto I = RHS.find(KV.first); |
| 693 | if (I == RHS.end() || I->second != KV.second) |
| 694 | return false; |
| 695 | } |
| 696 | |
| 697 | return true; |
| 698 | } |
| 699 | |
| 700 | /// Inequality comparison for DenseMap. |
| 701 | /// |
| 702 | /// Equivalent to !(LHS == RHS). See operator== for performance notes. |
| 703 | template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| 704 | typename BucketT> |
| 705 | bool operator!=( |
| 706 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
| 707 | const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
| 708 | return !(LHS == RHS); |
| 709 | } |
| 710 | |
| 711 | template <typename KeyT, typename ValueT, |
| 712 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 713 | typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
| 714 | class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, |
| 715 | KeyT, ValueT, KeyInfoT, BucketT> { |
| 716 | friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 717 | |
| 718 | // Lift some types from the dependent base class into this class for |
| 719 | // simplicity of referring to them. |
| 720 | using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 721 | |
| 722 | BucketT *Buckets; |
| 723 | unsigned NumEntries; |
| 724 | unsigned NumTombstones; |
| 725 | unsigned NumBuckets; |
| 726 | |
| 727 | public: |
| 728 | /// Create a DenseMap with an optional \p InitialReserve that guarantee that |
| 729 | /// this number of elements can be inserted in the map without grow() |
| 730 | explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); } |
| 731 | |
| 732 | DenseMap(const DenseMap &other) : BaseT() { |
| 733 | init(0); |
| 734 | copyFrom(other); |
| 735 | } |
| 736 | |
| 737 | DenseMap(DenseMap &&other) : BaseT() { |
| 738 | init(0); |
| 739 | swap(other); |
| 740 | } |
| 741 | |
| 742 | template<typename InputIt> |
| 743 | DenseMap(const InputIt &I, const InputIt &E) { |
| 744 | init(std::distance(I, E)); |
| 745 | this->insert(I, E); |
| 746 | } |
| 747 | |
| 748 | DenseMap(std::initializer_list<typename BaseT::value_type> Vals) { |
| 749 | init(Vals.size()); |
| 750 | this->insert(Vals.begin(), Vals.end()); |
| 751 | } |
| 752 | |
| 753 | ~DenseMap() { |
| 754 | this->destroyAll(); |
| 755 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 756 | } |
| 757 | |
| 758 | void swap(DenseMap& RHS) { |
| 759 | this->incrementEpoch(); |
| 760 | RHS.incrementEpoch(); |
| 761 | std::swap(Buckets, RHS.Buckets); |
| 762 | std::swap(NumEntries, RHS.NumEntries); |
| 763 | std::swap(NumTombstones, RHS.NumTombstones); |
| 764 | std::swap(NumBuckets, RHS.NumBuckets); |
| 765 | } |
| 766 | |
| 767 | DenseMap& operator=(const DenseMap& other) { |
| 768 | if (&other != this) |
| 769 | copyFrom(other); |
| 770 | return *this; |
| 771 | } |
| 772 | |
| 773 | DenseMap& operator=(DenseMap &&other) { |
| 774 | this->destroyAll(); |
| 775 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 776 | init(0); |
| 777 | swap(other); |
| 778 | return *this; |
| 779 | } |
| 780 | |
| 781 | void copyFrom(const DenseMap& other) { |
| 782 | this->destroyAll(); |
| 783 | deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT)); |
| 784 | if (allocateBuckets(other.NumBuckets)) { |
| 785 | this->BaseT::copyFrom(other); |
| 786 | } else { |
| 787 | NumEntries = 0; |
| 788 | NumTombstones = 0; |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | void init(unsigned InitNumEntries) { |
| 793 | auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); |
| 794 | if (allocateBuckets(InitBuckets)) { |
| 795 | this->BaseT::initEmpty(); |
| 796 | } else { |
| 797 | NumEntries = 0; |
| 798 | NumTombstones = 0; |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | void grow(unsigned AtLeast) { |
| 803 | unsigned OldNumBuckets = NumBuckets; |
| 804 | BucketT *OldBuckets = Buckets; |
| 805 | |
| 806 | allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1)))); |
| 807 | assert(Buckets)((void)0); |
| 808 | if (!OldBuckets) { |
| 809 | this->BaseT::initEmpty(); |
| 810 | return; |
| 811 | } |
| 812 | |
| 813 | this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets); |
| 814 | |
| 815 | // Free the old table. |
| 816 | deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets, |
| 817 | alignof(BucketT)); |
| 818 | } |
| 819 | |
| 820 | void shrink_and_clear() { |
| 821 | unsigned OldNumBuckets = NumBuckets; |
| 822 | unsigned OldNumEntries = NumEntries; |
| 823 | this->destroyAll(); |
| 824 | |
| 825 | // Reduce the number of buckets. |
| 826 | unsigned NewNumBuckets = 0; |
| 827 | if (OldNumEntries) |
| 828 | NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1)); |
| 829 | if (NewNumBuckets == NumBuckets) { |
| 830 | this->BaseT::initEmpty(); |
| 831 | return; |
| 832 | } |
| 833 | |
| 834 | deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets, |
| 835 | alignof(BucketT)); |
| 836 | init(NewNumBuckets); |
| 837 | } |
| 838 | |
| 839 | private: |
| 840 | unsigned getNumEntries() const { |
| 841 | return NumEntries; |
| 842 | } |
| 843 | |
| 844 | void setNumEntries(unsigned Num) { |
| 845 | NumEntries = Num; |
| 846 | } |
| 847 | |
| 848 | unsigned getNumTombstones() const { |
| 849 | return NumTombstones; |
| 850 | } |
| 851 | |
| 852 | void setNumTombstones(unsigned Num) { |
| 853 | NumTombstones = Num; |
| 854 | } |
| 855 | |
| 856 | BucketT *getBuckets() const { |
| 857 | return Buckets; |
| 858 | } |
| 859 | |
| 860 | unsigned getNumBuckets() const { |
| 861 | return NumBuckets; |
| 862 | } |
| 863 | |
| 864 | bool allocateBuckets(unsigned Num) { |
| 865 | NumBuckets = Num; |
| 866 | if (NumBuckets == 0) { |
| 867 | Buckets = nullptr; |
| 868 | return false; |
| 869 | } |
| 870 | |
| 871 | Buckets = static_cast<BucketT *>( |
| 872 | allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT))); |
| 873 | return true; |
| 874 | } |
| 875 | }; |
| 876 | |
| 877 | template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, |
| 878 | typename KeyInfoT = DenseMapInfo<KeyT>, |
| 879 | typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
| 880 | class SmallDenseMap |
| 881 | : public DenseMapBase< |
| 882 | SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, |
| 883 | ValueT, KeyInfoT, BucketT> { |
| 884 | friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 885 | |
| 886 | // Lift some types from the dependent base class into this class for |
| 887 | // simplicity of referring to them. |
| 888 | using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| 889 | |
| 890 | static_assert(isPowerOf2_64(InlineBuckets), |
| 891 | "InlineBuckets must be a power of 2."); |
| 892 | |
| 893 | unsigned Small : 1; |
| 894 | unsigned NumEntries : 31; |
| 895 | unsigned NumTombstones; |
| 896 | |
| 897 | struct LargeRep { |
| 898 | BucketT *Buckets; |
| 899 | unsigned NumBuckets; |
| 900 | }; |
| 901 | |
| 902 | /// A "union" of an inline bucket array and the struct representing |
| 903 | /// a large bucket. This union will be discriminated by the 'Small' bit. |
| 904 | AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; |
| 905 | |
| 906 | public: |
| 907 | explicit SmallDenseMap(unsigned NumInitBuckets = 0) { |
| 908 | init(NumInitBuckets); |
| 909 | } |
| 910 | |
| 911 | SmallDenseMap(const SmallDenseMap &other) : BaseT() { |
| 912 | init(0); |
| 913 | copyFrom(other); |
| 914 | } |
| 915 | |
| 916 | SmallDenseMap(SmallDenseMap &&other) : BaseT() { |
| 917 | init(0); |
| 918 | swap(other); |
| 919 | } |
| 920 | |
| 921 | template<typename InputIt> |
| 922 | SmallDenseMap(const InputIt &I, const InputIt &E) { |
| 923 | init(NextPowerOf2(std::distance(I, E))); |
| 924 | this->insert(I, E); |
| 925 | } |
| 926 | |
| 927 | SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals) |
| 928 | : SmallDenseMap(Vals.begin(), Vals.end()) {} |
| 929 | |
| 930 | ~SmallDenseMap() { |
| 931 | this->destroyAll(); |
| 932 | deallocateBuckets(); |
| 933 | } |
| 934 | |
| 935 | void swap(SmallDenseMap& RHS) { |
| 936 | unsigned TmpNumEntries = RHS.NumEntries; |
| 937 | RHS.NumEntries = NumEntries; |
| 938 | NumEntries = TmpNumEntries; |
| 939 | std::swap(NumTombstones, RHS.NumTombstones); |
| 940 | |
| 941 | const KeyT EmptyKey = this->getEmptyKey(); |
| 942 | const KeyT TombstoneKey = this->getTombstoneKey(); |
| 943 | if (Small && RHS.Small) { |
| 944 | // If we're swapping inline bucket arrays, we have to cope with some of |
| 945 | // the tricky bits of DenseMap's storage system: the buckets are not |
| 946 | // fully initialized. Thus we swap every key, but we may have |
| 947 | // a one-directional move of the value. |
| 948 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| 949 | BucketT *LHSB = &getInlineBuckets()[i], |
| 950 | *RHSB = &RHS.getInlineBuckets()[i]; |
| 951 | bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && |
| 952 | !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); |
| 953 | bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && |
| 954 | !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); |
| 955 | if (hasLHSValue && hasRHSValue) { |
| 956 | // Swap together if we can... |
| 957 | std::swap(*LHSB, *RHSB); |
| 958 | continue; |
| 959 | } |
| 960 | // Swap separately and handle any asymmetry. |
| 961 | std::swap(LHSB->getFirst(), RHSB->getFirst()); |
| 962 | if (hasLHSValue) { |
| 963 | ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); |
| 964 | LHSB->getSecond().~ValueT(); |
| 965 | } else if (hasRHSValue) { |
| 966 | ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); |
| 967 | RHSB->getSecond().~ValueT(); |
| 968 | } |
| 969 | } |
| 970 | return; |
| 971 | } |
| 972 | if (!Small && !RHS.Small) { |
| 973 | std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); |
| 974 | std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); |
| 975 | return; |
| 976 | } |
| 977 | |
| 978 | SmallDenseMap &SmallSide = Small ? *this : RHS; |
| 979 | SmallDenseMap &LargeSide = Small ? RHS : *this; |
| 980 | |
| 981 | // First stash the large side's rep and move the small side across. |
| 982 | LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); |
| 983 | LargeSide.getLargeRep()->~LargeRep(); |
| 984 | LargeSide.Small = true; |
| 985 | // This is similar to the standard move-from-old-buckets, but the bucket |
| 986 | // count hasn't actually rotated in this case. So we have to carefully |
| 987 | // move construct the keys and values into their new locations, but there |
| 988 | // is no need to re-hash things. |
| 989 | for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| 990 | BucketT *NewB = &LargeSide.getInlineBuckets()[i], |
| 991 | *OldB = &SmallSide.getInlineBuckets()[i]; |
| 992 | ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); |
| 993 | OldB->getFirst().~KeyT(); |
| 994 | if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && |
| 995 | !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { |
| 996 | ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); |
| 997 | OldB->getSecond().~ValueT(); |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | // The hard part of moving the small buckets across is done, just move |
| 1002 | // the TmpRep into its new home. |
| 1003 | SmallSide.Small = false; |
| 1004 | new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); |
| 1005 | } |
| 1006 | |
| 1007 | SmallDenseMap& operator=(const SmallDenseMap& other) { |
| 1008 | if (&other != this) |
| 1009 | copyFrom(other); |
| 1010 | return *this; |
| 1011 | } |
| 1012 | |
| 1013 | SmallDenseMap& operator=(SmallDenseMap &&other) { |
| 1014 | this->destroyAll(); |
| 1015 | deallocateBuckets(); |
| 1016 | init(0); |
| 1017 | swap(other); |
| 1018 | return *this; |
| 1019 | } |
| 1020 | |
| 1021 | void copyFrom(const SmallDenseMap& other) { |
| 1022 | this->destroyAll(); |
| 1023 | deallocateBuckets(); |
| 1024 | Small = true; |
| 1025 | if (other.getNumBuckets() > InlineBuckets) { |
| 1026 | Small = false; |
| 1027 | new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets())); |
| 1028 | } |
| 1029 | this->BaseT::copyFrom(other); |
| 1030 | } |
| 1031 | |
| 1032 | void init(unsigned InitBuckets) { |
| 1033 | Small = true; |
| 1034 | if (InitBuckets > InlineBuckets) { |
| 1035 | Small = false; |
| 1036 | new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets)); |
| 1037 | } |
| 1038 | this->BaseT::initEmpty(); |
| 1039 | } |
| 1040 | |
| 1041 | void grow(unsigned AtLeast) { |
| 1042 | if (AtLeast > InlineBuckets) |
| 1043 | AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1)); |
| 1044 | |
| 1045 | if (Small) { |
| 1046 | // First move the inline buckets into a temporary storage. |
| 1047 | AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; |
| 1048 | BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage); |
| 1049 | BucketT *TmpEnd = TmpBegin; |
| 1050 | |
| 1051 | // Loop over the buckets, moving non-empty, non-tombstones into the |
| 1052 | // temporary storage. Have the loop move the TmpEnd forward as it goes. |
| 1053 | const KeyT EmptyKey = this->getEmptyKey(); |
| 1054 | const KeyT TombstoneKey = this->getTombstoneKey(); |
| 1055 | for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { |
| 1056 | if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| 1057 | !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| 1058 | assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&((void)0) |
| 1059 | "Too many inline buckets!")((void)0); |
| 1060 | ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); |
| 1061 | ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); |
| 1062 | ++TmpEnd; |
| 1063 | P->getSecond().~ValueT(); |
| 1064 | } |
| 1065 | P->getFirst().~KeyT(); |
| 1066 | } |
| 1067 | |
| 1068 | // AtLeast == InlineBuckets can happen if there are many tombstones, |
| 1069 | // and grow() is used to remove them. Usually we always switch to the |
| 1070 | // large rep here. |
| 1071 | if (AtLeast > InlineBuckets) { |
| 1072 | Small = false; |
| 1073 | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
| 1074 | } |
| 1075 | this->moveFromOldBuckets(TmpBegin, TmpEnd); |
| 1076 | return; |
| 1077 | } |
| 1078 | |
| 1079 | LargeRep OldRep = std::move(*getLargeRep()); |
| 1080 | getLargeRep()->~LargeRep(); |
| 1081 | if (AtLeast <= InlineBuckets) { |
| 1082 | Small = true; |
| 1083 | } else { |
| 1084 | new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
| 1085 | } |
| 1086 | |
| 1087 | this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets); |
| 1088 | |
| 1089 | // Free the old table. |
| 1090 | deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets, |
| 1091 | alignof(BucketT)); |
| 1092 | } |
| 1093 | |
| 1094 | void shrink_and_clear() { |
| 1095 | unsigned OldSize = this->size(); |
| 1096 | this->destroyAll(); |
| 1097 | |
| 1098 | // Reduce the number of buckets. |
| 1099 | unsigned NewNumBuckets = 0; |
| 1100 | if (OldSize) { |
| 1101 | NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1); |
| 1102 | if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) |
| 1103 | NewNumBuckets = 64; |
| 1104 | } |
| 1105 | if ((Small && NewNumBuckets <= InlineBuckets) || |
| 1106 | (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { |
| 1107 | this->BaseT::initEmpty(); |
| 1108 | return; |
| 1109 | } |
| 1110 | |
| 1111 | deallocateBuckets(); |
| 1112 | init(NewNumBuckets); |
| 1113 | } |
| 1114 | |
| 1115 | private: |
| 1116 | unsigned getNumEntries() const { |
| 1117 | return NumEntries; |
| 1118 | } |
| 1119 | |
| 1120 | void setNumEntries(unsigned Num) { |
| 1121 | // NumEntries is hardcoded to be 31 bits wide. |
| 1122 | assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries")((void)0); |
| 1123 | NumEntries = Num; |
| 1124 | } |
| 1125 | |
| 1126 | unsigned getNumTombstones() const { |
| 1127 | return NumTombstones; |
| 1128 | } |
| 1129 | |
| 1130 | void setNumTombstones(unsigned Num) { |
| 1131 | NumTombstones = Num; |
| 1132 | } |
| 1133 | |
| 1134 | const BucketT *getInlineBuckets() const { |
| 1135 | assert(Small)((void)0); |
| 1136 | // Note that this cast does not violate aliasing rules as we assert that |
| 1137 | // the memory's dynamic type is the small, inline bucket buffer, and the |
| 1138 | // 'storage' is a POD containing a char buffer. |
| 1139 | return reinterpret_cast<const BucketT *>(&storage); |
| 1140 | } |
| 1141 | |
| 1142 | BucketT *getInlineBuckets() { |
| 1143 | return const_cast<BucketT *>( |
| 1144 | const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); |
| 1145 | } |
| 1146 | |
| 1147 | const LargeRep *getLargeRep() const { |
| 1148 | assert(!Small)((void)0); |
| 1149 | // Note, same rule about aliasing as with getInlineBuckets. |
| 1150 | return reinterpret_cast<const LargeRep *>(&storage); |
| 1151 | } |
| 1152 | |
| 1153 | LargeRep *getLargeRep() { |
| 1154 | return const_cast<LargeRep *>( |
| 1155 | const_cast<const SmallDenseMap *>(this)->getLargeRep()); |
| 1156 | } |
| 1157 | |
| 1158 | const BucketT *getBuckets() const { |
| 1159 | return Small ? getInlineBuckets() : getLargeRep()->Buckets; |
| 1160 | } |
| 1161 | |
| 1162 | BucketT *getBuckets() { |
| 1163 | return const_cast<BucketT *>( |
| 1164 | const_cast<const SmallDenseMap *>(this)->getBuckets()); |
| 1165 | } |
| 1166 | |
| 1167 | unsigned getNumBuckets() const { |
| 1168 | return Small ? InlineBuckets : getLargeRep()->NumBuckets; |
| 1169 | } |
| 1170 | |
| 1171 | void deallocateBuckets() { |
| 1172 | if (Small) |
| 1173 | return; |
| 1174 | |
| 1175 | deallocate_buffer(getLargeRep()->Buckets, |
| 1176 | sizeof(BucketT) * getLargeRep()->NumBuckets, |
| 1177 | alignof(BucketT)); |
| 1178 | getLargeRep()->~LargeRep(); |
| 1179 | } |
| 1180 | |
| 1181 | LargeRep allocateBuckets(unsigned Num) { |
| 1182 | assert(Num > InlineBuckets && "Must allocate more buckets than are inline")((void)0); |
| 1183 | LargeRep Rep = {static_cast<BucketT *>(allocate_buffer( |
| 1184 | sizeof(BucketT) * Num, alignof(BucketT))), |
| 1185 | Num}; |
| 1186 | return Rep; |
| 1187 | } |
| 1188 | }; |
| 1189 | |
| 1190 | template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, |
| 1191 | bool IsConst> |
| 1192 | class DenseMapIterator : DebugEpochBase::HandleBase { |
| 1193 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
| 1194 | friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; |
| 1195 | |
| 1196 | public: |
| 1197 | using difference_type = ptrdiff_t; |
| 1198 | using value_type = |
| 1199 | typename std::conditional<IsConst, const Bucket, Bucket>::type; |
| 1200 | using pointer = value_type *; |
| 1201 | using reference = value_type &; |
| 1202 | using iterator_category = std::forward_iterator_tag; |
| 1203 | |
| 1204 | private: |
| 1205 | pointer Ptr = nullptr; |
| 1206 | pointer End = nullptr; |
| 1207 | |
| 1208 | public: |
| 1209 | DenseMapIterator() = default; |
| 1210 | |
| 1211 | DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, |
| 1212 | bool NoAdvance = false) |
| 1213 | : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { |
| 1214 | assert(isHandleInSync() && "invalid construction!")((void)0); |
| 1215 | |
| 1216 | if (NoAdvance) return; |
| 1217 | if (shouldReverseIterate<KeyT>()) { |
| 1218 | RetreatPastEmptyBuckets(); |
| 1219 | return; |
| 1220 | } |
| 1221 | AdvancePastEmptyBuckets(); |
| 1222 | } |
| 1223 | |
| 1224 | // Converting ctor from non-const iterators to const iterators. SFINAE'd out |
| 1225 | // for const iterator destinations so it doesn't end up as a user defined copy |
| 1226 | // constructor. |
| 1227 | template <bool IsConstSrc, |
| 1228 | typename = std::enable_if_t<!IsConstSrc && IsConst>> |
| 1229 | DenseMapIterator( |
| 1230 | const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) |
| 1231 | : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} |
| 1232 | |
| 1233 | reference operator*() const { |
| 1234 | assert(isHandleInSync() && "invalid iterator access!")((void)0); |
| 1235 | assert(Ptr != End && "dereferencing end() iterator")((void)0); |
| 1236 | if (shouldReverseIterate<KeyT>()) |
| 1237 | return Ptr[-1]; |
| 1238 | return *Ptr; |
| 1239 | } |
| 1240 | pointer operator->() const { |
| 1241 | assert(isHandleInSync() && "invalid iterator access!")((void)0); |
| 1242 | assert(Ptr != End && "dereferencing end() iterator")((void)0); |
| 1243 | if (shouldReverseIterate<KeyT>()) |
| 1244 | return &(Ptr[-1]); |
| 1245 | return Ptr; |
| 1246 | } |
| 1247 | |
| 1248 | friend bool operator==(const DenseMapIterator &LHS, |
| 1249 | const DenseMapIterator &RHS) { |
| 1250 | assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!")((void)0); |
| 1251 | assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!")((void)0); |
| 1252 | assert(LHS.getEpochAddress() == RHS.getEpochAddress() &&((void)0) |
| 1253 | "comparing incomparable iterators!")((void)0); |
| 1254 | return LHS.Ptr == RHS.Ptr; |
| 1255 | } |
| 1256 | |
| 1257 | friend bool operator!=(const DenseMapIterator &LHS, |
| 1258 | const DenseMapIterator &RHS) { |
| 1259 | return !(LHS == RHS); |
| 1260 | } |
| 1261 | |
| 1262 | inline DenseMapIterator& operator++() { // Preincrement |
| 1263 | assert(isHandleInSync() && "invalid iterator access!")((void)0); |
| 1264 | assert(Ptr != End && "incrementing end() iterator")((void)0); |
| 1265 | if (shouldReverseIterate<KeyT>()) { |
| 1266 | --Ptr; |
| 1267 | RetreatPastEmptyBuckets(); |
| 1268 | return *this; |
| 1269 | } |
| 1270 | ++Ptr; |
| 1271 | AdvancePastEmptyBuckets(); |
| 1272 | return *this; |
| 1273 | } |
| 1274 | DenseMapIterator operator++(int) { // Postincrement |
| 1275 | assert(isHandleInSync() && "invalid iterator access!")((void)0); |
| 1276 | DenseMapIterator tmp = *this; ++*this; return tmp; |
| 1277 | } |
| 1278 | |
| 1279 | private: |
| 1280 | void AdvancePastEmptyBuckets() { |
| 1281 | assert(Ptr <= End)((void)0); |
| 1282 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
| 1283 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| 1284 | |
| 1285 | while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || |
| 1286 | KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) |
| 1287 | ++Ptr; |
| 1288 | } |
| 1289 | |
| 1290 | void RetreatPastEmptyBuckets() { |
| 1291 | assert(Ptr >= End)((void)0); |
| 1292 | const KeyT Empty = KeyInfoT::getEmptyKey(); |
| 1293 | const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| 1294 | |
| 1295 | while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) || |
| 1296 | KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone))) |
| 1297 | --Ptr; |
| 1298 | } |
| 1299 | }; |
| 1300 | |
| 1301 | template <typename KeyT, typename ValueT, typename KeyInfoT> |
| 1302 | inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { |
| 1303 | return X.getMemorySize(); |
| 1304 | } |
| 1305 | |
| 1306 | } // end namespace llvm |
| 1307 | |
| 1308 | #endif // LLVM_ADT_DENSEMAP_H |