| File: | src/usr.sbin/unbound/services/outside_network.c |
| Warning: | line 2019, column 3 Value stored to 'my_port' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* |
| 2 | * services/outside_network.c - implement sending of queries and wait answer. |
| 3 | * |
| 4 | * Copyright (c) 2007, NLnet Labs. All rights reserved. |
| 5 | * |
| 6 | * This software is open source. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * |
| 12 | * Redistributions of source code must retain the above copyright notice, |
| 13 | * this list of conditions and the following disclaimer. |
| 14 | * |
| 15 | * Redistributions in binary form must reproduce the above copyright notice, |
| 16 | * this list of conditions and the following disclaimer in the documentation |
| 17 | * and/or other materials provided with the distribution. |
| 18 | * |
| 19 | * Neither the name of the NLNET LABS nor the names of its contributors may |
| 20 | * be used to endorse or promote products derived from this software without |
| 21 | * specific prior written permission. |
| 22 | * |
| 23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 24 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 25 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 26 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 27 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 28 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED |
| 29 | * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 30 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 31 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 32 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 33 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 34 | */ |
| 35 | |
| 36 | /** |
| 37 | * \file |
| 38 | * |
| 39 | * This file has functions to send queries to authoritative servers and |
| 40 | * wait for the pending answer events. |
| 41 | */ |
| 42 | #include "config.h" |
| 43 | #include <ctype.h> |
| 44 | #ifdef HAVE_SYS_TYPES_H1 |
| 45 | # include <sys/types.h> |
| 46 | #endif |
| 47 | #include <sys/time.h> |
| 48 | #include "services/outside_network.h" |
| 49 | #include "services/listen_dnsport.h" |
| 50 | #include "services/cache/infra.h" |
| 51 | #include "iterator/iterator.h" |
| 52 | #include "util/data/msgparse.h" |
| 53 | #include "util/data/msgreply.h" |
| 54 | #include "util/data/msgencode.h" |
| 55 | #include "util/data/dname.h" |
| 56 | #include "util/netevent.h" |
| 57 | #include "util/log.h" |
| 58 | #include "util/net_help.h" |
| 59 | #include "util/random.h" |
| 60 | #include "util/fptr_wlist.h" |
| 61 | #include "util/edns.h" |
| 62 | #include "sldns/sbuffer.h" |
| 63 | #include "dnstap/dnstap.h" |
| 64 | #ifdef HAVE_OPENSSL_SSL_H1 |
| 65 | #include <openssl/ssl.h> |
| 66 | #endif |
| 67 | #ifdef HAVE_X509_VERIFY_PARAM_SET1_HOST1 |
| 68 | #include <openssl/x509v3.h> |
| 69 | #endif |
| 70 | |
| 71 | #ifdef HAVE_NETDB_H1 |
| 72 | #include <netdb.h> |
| 73 | #endif |
| 74 | #include <fcntl.h> |
| 75 | |
| 76 | /** number of times to retry making a random ID that is unique. */ |
| 77 | #define MAX_ID_RETRY1000 1000 |
| 78 | /** number of times to retry finding interface, port that can be opened. */ |
| 79 | #define MAX_PORT_RETRY10000 10000 |
| 80 | /** number of retries on outgoing UDP queries */ |
| 81 | #define OUTBOUND_UDP_RETRY1 1 |
| 82 | |
| 83 | /** initiate TCP transaction for serviced query */ |
| 84 | static void serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff); |
| 85 | /** with a fd available, randomize and send UDP */ |
| 86 | static int randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, |
| 87 | int timeout); |
| 88 | |
| 89 | /** remove waiting tcp from the outnet waiting list */ |
| 90 | static void waiting_list_remove(struct outside_network* outnet, |
| 91 | struct waiting_tcp* w); |
| 92 | |
| 93 | /** select a DNS ID for a TCP stream */ |
| 94 | static uint16_t tcp_select_id(struct outside_network* outnet, |
| 95 | struct reuse_tcp* reuse); |
| 96 | |
| 97 | int |
| 98 | pending_cmp(const void* key1, const void* key2) |
| 99 | { |
| 100 | struct pending *p1 = (struct pending*)key1; |
| 101 | struct pending *p2 = (struct pending*)key2; |
| 102 | if(p1->id < p2->id) |
| 103 | return -1; |
| 104 | if(p1->id > p2->id) |
| 105 | return 1; |
| 106 | log_assert(p1->id == p2->id); |
| 107 | return sockaddr_cmp(&p1->addr, p1->addrlen, &p2->addr, p2->addrlen); |
| 108 | } |
| 109 | |
| 110 | int |
| 111 | serviced_cmp(const void* key1, const void* key2) |
| 112 | { |
| 113 | struct serviced_query* q1 = (struct serviced_query*)key1; |
| 114 | struct serviced_query* q2 = (struct serviced_query*)key2; |
| 115 | int r; |
| 116 | if(q1->qbuflen < q2->qbuflen) |
| 117 | return -1; |
| 118 | if(q1->qbuflen > q2->qbuflen) |
| 119 | return 1; |
| 120 | log_assert(q1->qbuflen == q2->qbuflen); |
| 121 | log_assert(q1->qbuflen >= 15 /* 10 header, root, type, class */); |
| 122 | /* alternate casing of qname is still the same query */ |
| 123 | if((r = memcmp(q1->qbuf, q2->qbuf, 10)) != 0) |
| 124 | return r; |
| 125 | if((r = memcmp(q1->qbuf+q1->qbuflen-4, q2->qbuf+q2->qbuflen-4, 4)) != 0) |
| 126 | return r; |
| 127 | if(q1->dnssec != q2->dnssec) { |
| 128 | if(q1->dnssec < q2->dnssec) |
| 129 | return -1; |
| 130 | return 1; |
| 131 | } |
| 132 | if((r = query_dname_compare(q1->qbuf+10, q2->qbuf+10)) != 0) |
| 133 | return r; |
| 134 | if((r = edns_opt_list_compare(q1->opt_list, q2->opt_list)) != 0) |
| 135 | return r; |
| 136 | return sockaddr_cmp(&q1->addr, q1->addrlen, &q2->addr, q2->addrlen); |
| 137 | } |
| 138 | |
| 139 | /** compare if the reuse element has the same address, port and same ssl-is |
| 140 | * used-for-it characteristic */ |
| 141 | static int |
| 142 | reuse_cmp_addrportssl(const void* key1, const void* key2) |
| 143 | { |
| 144 | struct reuse_tcp* r1 = (struct reuse_tcp*)key1; |
| 145 | struct reuse_tcp* r2 = (struct reuse_tcp*)key2; |
| 146 | int r; |
| 147 | /* compare address and port */ |
| 148 | r = sockaddr_cmp(&r1->addr, r1->addrlen, &r2->addr, r2->addrlen); |
| 149 | if(r != 0) |
| 150 | return r; |
| 151 | |
| 152 | /* compare if SSL-enabled */ |
| 153 | if(r1->is_ssl && !r2->is_ssl) |
| 154 | return 1; |
| 155 | if(!r1->is_ssl && r2->is_ssl) |
| 156 | return -1; |
| 157 | return 0; |
| 158 | } |
| 159 | |
| 160 | int |
| 161 | reuse_cmp(const void* key1, const void* key2) |
| 162 | { |
| 163 | int r; |
| 164 | r = reuse_cmp_addrportssl(key1, key2); |
| 165 | if(r != 0) |
| 166 | return r; |
| 167 | |
| 168 | /* compare ptr value */ |
| 169 | if(key1 < key2) return -1; |
| 170 | if(key1 > key2) return 1; |
| 171 | return 0; |
| 172 | } |
| 173 | |
| 174 | int reuse_id_cmp(const void* key1, const void* key2) |
| 175 | { |
| 176 | struct waiting_tcp* w1 = (struct waiting_tcp*)key1; |
| 177 | struct waiting_tcp* w2 = (struct waiting_tcp*)key2; |
| 178 | if(w1->id < w2->id) |
| 179 | return -1; |
| 180 | if(w1->id > w2->id) |
| 181 | return 1; |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | /** delete waiting_tcp entry. Does not unlink from waiting list. |
| 186 | * @param w: to delete. |
| 187 | */ |
| 188 | static void |
| 189 | waiting_tcp_delete(struct waiting_tcp* w) |
| 190 | { |
| 191 | if(!w) return; |
| 192 | if(w->timer) |
| 193 | comm_timer_delete(w->timer); |
| 194 | free(w); |
| 195 | } |
| 196 | |
| 197 | /** |
| 198 | * Pick random outgoing-interface of that family, and bind it. |
| 199 | * port set to 0 so OS picks a port number for us. |
| 200 | * if it is the ANY address, do not bind. |
| 201 | * @param pend: pending tcp structure, for storing the local address choice. |
| 202 | * @param w: tcp structure with destination address. |
| 203 | * @param s: socket fd. |
| 204 | * @return false on error, socket closed. |
| 205 | */ |
| 206 | static int |
| 207 | pick_outgoing_tcp(struct pending_tcp* pend, struct waiting_tcp* w, int s) |
| 208 | { |
| 209 | struct port_if* pi = NULL((void*)0); |
| 210 | int num; |
| 211 | pend->pi = NULL((void*)0); |
| 212 | #ifdef INET6 |
| 213 | if(addr_is_ip6(&w->addr, w->addrlen)) |
| 214 | num = w->outnet->num_ip6; |
| 215 | else |
| 216 | #endif |
| 217 | num = w->outnet->num_ip4; |
| 218 | if(num == 0) { |
| 219 | log_err("no TCP outgoing interfaces of family"); |
| 220 | log_addr(VERB_OPS, "for addr", &w->addr, w->addrlen); |
| 221 | sock_close(s); |
| 222 | return 0; |
| 223 | } |
| 224 | #ifdef INET6 |
| 225 | if(addr_is_ip6(&w->addr, w->addrlen)) |
| 226 | pi = &w->outnet->ip6_ifs[ub_random_max(w->outnet->rnd, num)]; |
| 227 | else |
| 228 | #endif |
| 229 | pi = &w->outnet->ip4_ifs[ub_random_max(w->outnet->rnd, num)]; |
| 230 | log_assert(pi); |
| 231 | pend->pi = pi; |
| 232 | if(addr_is_any(&pi->addr, pi->addrlen)) { |
| 233 | /* binding to the ANY interface is for listening sockets */ |
| 234 | return 1; |
| 235 | } |
| 236 | /* set port to 0 */ |
| 237 | if(addr_is_ip6(&pi->addr, pi->addrlen)) |
| 238 | ((struct sockaddr_in6*)&pi->addr)->sin6_port = 0; |
| 239 | else ((struct sockaddr_in*)&pi->addr)->sin_port = 0; |
| 240 | if(bind(s, (struct sockaddr*)&pi->addr, pi->addrlen) != 0) { |
| 241 | #ifndef USE_WINSOCK |
| 242 | #ifdef EADDRNOTAVAIL49 |
| 243 | if(!(verbosity < 4 && errno(*__errno()) == EADDRNOTAVAIL49)) |
| 244 | #endif |
| 245 | #else /* USE_WINSOCK */ |
| 246 | if(!(verbosity < 4 && WSAGetLastError() == WSAEADDRNOTAVAIL)) |
| 247 | #endif |
| 248 | log_err("outgoing tcp: bind: %s", sock_strerror(errno(*__errno()))); |
| 249 | sock_close(s); |
| 250 | return 0; |
| 251 | } |
| 252 | log_addr(VERB_ALGO, "tcp bound to src", &pi->addr, pi->addrlen); |
| 253 | return 1; |
| 254 | } |
| 255 | |
| 256 | /** get TCP file descriptor for address, returns -1 on failure, |
| 257 | * tcp_mss is 0 or maxseg size to set for TCP packets. */ |
| 258 | int |
| 259 | outnet_get_tcp_fd(struct sockaddr_storage* addr, socklen_t addrlen, int tcp_mss, int dscp) |
| 260 | { |
| 261 | int s; |
| 262 | int af; |
| 263 | char* err; |
| 264 | #ifdef SO_REUSEADDR0x0004 |
| 265 | int on = 1; |
| 266 | #endif |
| 267 | #ifdef INET6 |
| 268 | if(addr_is_ip6(addr, addrlen)){ |
| 269 | s = socket(PF_INET624, SOCK_STREAM1, IPPROTO_TCP6); |
| 270 | af = AF_INET624; |
| 271 | } else { |
| 272 | #else |
| 273 | { |
| 274 | #endif |
| 275 | af = AF_INET2; |
| 276 | s = socket(PF_INET2, SOCK_STREAM1, IPPROTO_TCP6); |
| 277 | } |
| 278 | if(s == -1) { |
| 279 | log_err_addr("outgoing tcp: socket", sock_strerror(errno(*__errno())), |
| 280 | addr, addrlen); |
| 281 | return -1; |
| 282 | } |
| 283 | |
| 284 | #ifdef SO_REUSEADDR0x0004 |
| 285 | if(setsockopt(s, SOL_SOCKET0xffff, SO_REUSEADDR0x0004, (void*)&on, |
| 286 | (socklen_t)sizeof(on)) < 0) { |
| 287 | verbose(VERB_ALGO, "outgoing tcp:" |
| 288 | " setsockopt(.. SO_REUSEADDR ..) failed"); |
| 289 | } |
| 290 | #endif |
| 291 | |
| 292 | err = set_ip_dscp(s, af, dscp); |
| 293 | if(err != NULL((void*)0)) { |
| 294 | verbose(VERB_ALGO, "outgoing tcp:" |
| 295 | "error setting IP DiffServ codepoint on socket"); |
| 296 | } |
| 297 | |
| 298 | if(tcp_mss > 0) { |
| 299 | #if defined(IPPROTO_TCP6) && defined(TCP_MAXSEG0x02) |
| 300 | if(setsockopt(s, IPPROTO_TCP6, TCP_MAXSEG0x02, |
| 301 | (void*)&tcp_mss, (socklen_t)sizeof(tcp_mss)) < 0) { |
| 302 | verbose(VERB_ALGO, "outgoing tcp:" |
| 303 | " setsockopt(.. TCP_MAXSEG ..) failed"); |
| 304 | } |
| 305 | #else |
| 306 | verbose(VERB_ALGO, "outgoing tcp:" |
| 307 | " setsockopt(TCP_MAXSEG) unsupported"); |
| 308 | #endif /* defined(IPPROTO_TCP) && defined(TCP_MAXSEG) */ |
| 309 | } |
| 310 | |
| 311 | return s; |
| 312 | } |
| 313 | |
| 314 | /** connect tcp connection to addr, 0 on failure */ |
| 315 | int |
| 316 | outnet_tcp_connect(int s, struct sockaddr_storage* addr, socklen_t addrlen) |
| 317 | { |
| 318 | if(connect(s, (struct sockaddr*)addr, addrlen) == -1) { |
| 319 | #ifndef USE_WINSOCK |
| 320 | #ifdef EINPROGRESS36 |
| 321 | if(errno(*__errno()) != EINPROGRESS36) { |
| 322 | #endif |
| 323 | if(tcp_connect_errno_needs_log( |
| 324 | (struct sockaddr*)addr, addrlen)) |
| 325 | log_err_addr("outgoing tcp: connect", |
| 326 | strerror(errno(*__errno())), addr, addrlen); |
| 327 | close(s); |
| 328 | return 0; |
| 329 | #ifdef EINPROGRESS36 |
| 330 | } |
| 331 | #endif |
| 332 | #else /* USE_WINSOCK */ |
| 333 | if(WSAGetLastError() != WSAEINPROGRESS && |
| 334 | WSAGetLastError() != WSAEWOULDBLOCK) { |
| 335 | closesocket(s); |
| 336 | return 0; |
| 337 | } |
| 338 | #endif |
| 339 | } |
| 340 | return 1; |
| 341 | } |
| 342 | |
| 343 | /** log reuse item addr and ptr with message */ |
| 344 | static void |
| 345 | log_reuse_tcp(enum verbosity_value v, const char* msg, struct reuse_tcp* reuse) |
| 346 | { |
| 347 | uint16_t port; |
| 348 | char addrbuf[128]; |
| 349 | if(verbosity < v) return; |
| 350 | if(!reuse || !reuse->pending || !reuse->pending->c) |
| 351 | return; |
| 352 | addr_to_str(&reuse->addr, reuse->addrlen, addrbuf, sizeof(addrbuf)); |
| 353 | port = ntohs(((struct sockaddr_in*)&reuse->addr)->sin_port)(__uint16_t)(__builtin_constant_p(((struct sockaddr_in*)& reuse->addr)->sin_port) ? (__uint16_t)(((__uint16_t)((( struct sockaddr_in*)&reuse->addr)->sin_port) & 0xffU ) << 8 | ((__uint16_t)(((struct sockaddr_in*)&reuse ->addr)->sin_port) & 0xff00U) >> 8) : __swap16md (((struct sockaddr_in*)&reuse->addr)->sin_port)); |
| 354 | verbose(v, "%s %s#%u fd %d", msg, addrbuf, (unsigned)port, |
| 355 | reuse->pending->c->fd); |
| 356 | } |
| 357 | |
| 358 | /** pop the first element from the writewait list */ |
| 359 | static struct waiting_tcp* reuse_write_wait_pop(struct reuse_tcp* reuse) |
| 360 | { |
| 361 | struct waiting_tcp* w = reuse->write_wait_first; |
| 362 | if(!w) |
| 363 | return NULL((void*)0); |
| 364 | log_assert(w->write_wait_queued); |
| 365 | log_assert(!w->write_wait_prev); |
| 366 | reuse->write_wait_first = w->write_wait_next; |
| 367 | if(w->write_wait_next) |
| 368 | w->write_wait_next->write_wait_prev = NULL((void*)0); |
| 369 | else reuse->write_wait_last = NULL((void*)0); |
| 370 | w->write_wait_queued = 0; |
| 371 | w->write_wait_next = NULL((void*)0); |
| 372 | w->write_wait_prev = NULL((void*)0); |
| 373 | return w; |
| 374 | } |
| 375 | |
| 376 | /** remove the element from the writewait list */ |
| 377 | static void reuse_write_wait_remove(struct reuse_tcp* reuse, |
| 378 | struct waiting_tcp* w) |
| 379 | { |
| 380 | log_assert(w); |
| 381 | log_assert(w->write_wait_queued); |
| 382 | if(!w) |
| 383 | return; |
| 384 | if(!w->write_wait_queued) |
| 385 | return; |
| 386 | if(w->write_wait_prev) |
| 387 | w->write_wait_prev->write_wait_next = w->write_wait_next; |
| 388 | else reuse->write_wait_first = w->write_wait_next; |
| 389 | log_assert(!w->write_wait_prev || |
| 390 | w->write_wait_prev->write_wait_next != w->write_wait_prev); |
| 391 | if(w->write_wait_next) |
| 392 | w->write_wait_next->write_wait_prev = w->write_wait_prev; |
| 393 | else reuse->write_wait_last = w->write_wait_prev; |
| 394 | log_assert(!w->write_wait_next |
| 395 | || w->write_wait_next->write_wait_prev != w->write_wait_next); |
| 396 | w->write_wait_queued = 0; |
| 397 | w->write_wait_next = NULL((void*)0); |
| 398 | w->write_wait_prev = NULL((void*)0); |
| 399 | } |
| 400 | |
| 401 | /** push the element after the last on the writewait list */ |
| 402 | static void reuse_write_wait_push_back(struct reuse_tcp* reuse, |
| 403 | struct waiting_tcp* w) |
| 404 | { |
| 405 | if(!w) return; |
| 406 | log_assert(!w->write_wait_queued); |
| 407 | if(reuse->write_wait_last) { |
| 408 | reuse->write_wait_last->write_wait_next = w; |
| 409 | log_assert(reuse->write_wait_last->write_wait_next != |
| 410 | reuse->write_wait_last); |
| 411 | w->write_wait_prev = reuse->write_wait_last; |
| 412 | } else { |
| 413 | reuse->write_wait_first = w; |
| 414 | } |
| 415 | reuse->write_wait_last = w; |
| 416 | w->write_wait_queued = 1; |
| 417 | } |
| 418 | |
| 419 | /** insert element in tree by id */ |
| 420 | void |
| 421 | reuse_tree_by_id_insert(struct reuse_tcp* reuse, struct waiting_tcp* w) |
| 422 | { |
| 423 | #ifdef UNBOUND_DEBUG |
| 424 | rbnode_type* added; |
| 425 | #endif |
| 426 | log_assert(w->id_node.key == NULL); |
| 427 | w->id_node.key = w; |
| 428 | #ifdef UNBOUND_DEBUG |
| 429 | added = |
| 430 | #else |
| 431 | (void) |
| 432 | #endif |
| 433 | rbtree_insert(&reuse->tree_by_id, &w->id_node); |
| 434 | log_assert(added); /* should have been added */ |
| 435 | } |
| 436 | |
| 437 | /** find element in tree by id */ |
| 438 | struct waiting_tcp* |
| 439 | reuse_tcp_by_id_find(struct reuse_tcp* reuse, uint16_t id) |
| 440 | { |
| 441 | struct waiting_tcp key_w; |
| 442 | rbnode_type* n; |
| 443 | memset(&key_w, 0, sizeof(key_w)); |
| 444 | key_w.id_node.key = &key_w; |
| 445 | key_w.id = id; |
| 446 | n = rbtree_search(&reuse->tree_by_id, &key_w); |
| 447 | if(!n) return NULL((void*)0); |
| 448 | return (struct waiting_tcp*)n->key; |
| 449 | } |
| 450 | |
| 451 | /** return ID value of rbnode in tree_by_id */ |
| 452 | static uint16_t |
| 453 | tree_by_id_get_id(rbnode_type* node) |
| 454 | { |
| 455 | struct waiting_tcp* w = (struct waiting_tcp*)node->key; |
| 456 | return w->id; |
| 457 | } |
| 458 | |
| 459 | /** insert into reuse tcp tree and LRU, false on failure (duplicate) */ |
| 460 | int |
| 461 | reuse_tcp_insert(struct outside_network* outnet, struct pending_tcp* pend_tcp) |
| 462 | { |
| 463 | log_reuse_tcp(VERB_CLIENT, "reuse_tcp_insert", &pend_tcp->reuse); |
| 464 | if(pend_tcp->reuse.item_on_lru_list) { |
| 465 | if(!pend_tcp->reuse.node.key) |
| 466 | log_err("internal error: reuse_tcp_insert: " |
| 467 | "in lru list without key"); |
| 468 | return 1; |
| 469 | } |
| 470 | pend_tcp->reuse.node.key = &pend_tcp->reuse; |
| 471 | pend_tcp->reuse.pending = pend_tcp; |
| 472 | if(!rbtree_insert(&outnet->tcp_reuse, &pend_tcp->reuse.node)) { |
| 473 | /* We are not in the LRU list but we are already in the |
| 474 | * tcp_reuse tree, strange. |
| 475 | * Continue to add ourselves to the LRU list. */ |
| 476 | log_err("internal error: reuse_tcp_insert: in lru list but " |
| 477 | "not in the tree"); |
| 478 | } |
| 479 | /* insert into LRU, first is newest */ |
| 480 | pend_tcp->reuse.lru_prev = NULL((void*)0); |
| 481 | if(outnet->tcp_reuse_first) { |
| 482 | pend_tcp->reuse.lru_next = outnet->tcp_reuse_first; |
| 483 | log_assert(pend_tcp->reuse.lru_next != &pend_tcp->reuse); |
| 484 | outnet->tcp_reuse_first->lru_prev = &pend_tcp->reuse; |
| 485 | log_assert(outnet->tcp_reuse_first->lru_prev != |
| 486 | outnet->tcp_reuse_first); |
| 487 | } else { |
| 488 | pend_tcp->reuse.lru_next = NULL((void*)0); |
| 489 | outnet->tcp_reuse_last = &pend_tcp->reuse; |
| 490 | } |
| 491 | outnet->tcp_reuse_first = &pend_tcp->reuse; |
| 492 | pend_tcp->reuse.item_on_lru_list = 1; |
| 493 | log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || |
| 494 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); |
| 495 | log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next && |
| 496 | outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev); |
| 497 | log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next && |
| 498 | outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev); |
| 499 | return 1; |
| 500 | } |
| 501 | |
| 502 | /** find reuse tcp stream to destination for query, or NULL if none */ |
| 503 | static struct reuse_tcp* |
| 504 | reuse_tcp_find(struct outside_network* outnet, struct sockaddr_storage* addr, |
| 505 | socklen_t addrlen, int use_ssl) |
| 506 | { |
| 507 | struct waiting_tcp key_w; |
| 508 | struct pending_tcp key_p; |
| 509 | struct comm_point c; |
| 510 | rbnode_type* result = NULL((void*)0), *prev; |
| 511 | verbose(VERB_CLIENT, "reuse_tcp_find"); |
| 512 | memset(&key_w, 0, sizeof(key_w)); |
| 513 | memset(&key_p, 0, sizeof(key_p)); |
| 514 | memset(&c, 0, sizeof(c)); |
| 515 | key_p.query = &key_w; |
| 516 | key_p.c = &c; |
| 517 | key_p.reuse.pending = &key_p; |
| 518 | key_p.reuse.node.key = &key_p.reuse; |
| 519 | if(use_ssl) |
| 520 | key_p.reuse.is_ssl = 1; |
| 521 | if(addrlen > (socklen_t)sizeof(key_p.reuse.addr)) |
| 522 | return NULL((void*)0); |
| 523 | memmove(&key_p.reuse.addr, addr, addrlen); |
| 524 | key_p.reuse.addrlen = addrlen; |
| 525 | |
| 526 | verbose(VERB_CLIENT, "reuse_tcp_find: num reuse streams %u", |
| 527 | (unsigned)outnet->tcp_reuse.count); |
| 528 | if(outnet->tcp_reuse.root == NULL((void*)0) || |
| 529 | outnet->tcp_reuse.root == RBTREE_NULL&rbtree_null_node) |
| 530 | return NULL((void*)0); |
| 531 | if(rbtree_find_less_equal(&outnet->tcp_reuse, &key_p.reuse, |
| 532 | &result)) { |
| 533 | /* exact match */ |
| 534 | /* but the key is on stack, and ptr is compared, impossible */ |
| 535 | log_assert(&key_p.reuse != (struct reuse_tcp*)result); |
| 536 | log_assert(&key_p != ((struct reuse_tcp*)result)->pending); |
| 537 | } |
| 538 | /* not found, return null */ |
| 539 | if(!result || result == RBTREE_NULL&rbtree_null_node) |
| 540 | return NULL((void*)0); |
| 541 | verbose(VERB_CLIENT, "reuse_tcp_find check inexact match"); |
| 542 | /* inexact match, find one of possibly several connections to the |
| 543 | * same destination address, with the correct port, ssl, and |
| 544 | * also less than max number of open queries, or else, fail to open |
| 545 | * a new one */ |
| 546 | /* rewind to start of sequence of same address,port,ssl */ |
| 547 | prev = rbtree_previous(result); |
| 548 | while(prev && prev != RBTREE_NULL&rbtree_null_node && |
| 549 | reuse_cmp_addrportssl(prev->key, &key_p.reuse) == 0) { |
| 550 | result = prev; |
| 551 | prev = rbtree_previous(result); |
| 552 | } |
| 553 | |
| 554 | /* loop to find first one that has correct characteristics */ |
| 555 | while(result && result != RBTREE_NULL&rbtree_null_node && |
| 556 | reuse_cmp_addrportssl(result->key, &key_p.reuse) == 0) { |
| 557 | if(((struct reuse_tcp*)result)->tree_by_id.count < |
| 558 | outnet->max_reuse_tcp_queries) { |
| 559 | /* same address, port, ssl-yes-or-no, and has |
| 560 | * space for another query */ |
| 561 | return (struct reuse_tcp*)result; |
| 562 | } |
| 563 | result = rbtree_next(result); |
| 564 | } |
| 565 | return NULL((void*)0); |
| 566 | } |
| 567 | |
| 568 | /** use the buffer to setup writing the query */ |
| 569 | static void |
| 570 | outnet_tcp_take_query_setup(int s, struct pending_tcp* pend, |
| 571 | struct waiting_tcp* w) |
| 572 | { |
| 573 | struct timeval tv; |
| 574 | verbose(VERB_CLIENT, "outnet_tcp_take_query_setup: setup packet to write " |
| 575 | "len %d timeout %d msec", |
| 576 | (int)w->pkt_len, w->timeout); |
| 577 | pend->c->tcp_write_pkt = w->pkt; |
| 578 | pend->c->tcp_write_pkt_len = w->pkt_len; |
| 579 | pend->c->tcp_write_and_read = 1; |
| 580 | pend->c->tcp_write_byte_count = 0; |
| 581 | pend->c->tcp_is_reading = 0; |
| 582 | comm_point_start_listening(pend->c, s, -1); |
| 583 | /* set timer on the waiting_tcp entry, this is the write timeout |
| 584 | * for the written packet. The timer on pend->c is the timer |
| 585 | * for when there is no written packet and we have readtimeouts */ |
| 586 | #ifndef S_SPLINT_S |
| 587 | tv.tv_sec = w->timeout/1000; |
| 588 | tv.tv_usec = (w->timeout%1000)*1000; |
| 589 | #endif |
| 590 | /* if the waiting_tcp was previously waiting for a buffer in the |
| 591 | * outside_network.tcpwaitlist, then the timer is reset now that |
| 592 | * we start writing it */ |
| 593 | comm_timer_set(w->timer, &tv); |
| 594 | } |
| 595 | |
| 596 | /** use next free buffer to service a tcp query */ |
| 597 | static int |
| 598 | outnet_tcp_take_into_use(struct waiting_tcp* w) |
| 599 | { |
| 600 | struct pending_tcp* pend = w->outnet->tcp_free; |
| 601 | int s; |
| 602 | log_assert(pend); |
| 603 | log_assert(w->pkt); |
| 604 | log_assert(w->pkt_len > 0); |
| 605 | log_assert(w->addrlen > 0); |
| 606 | pend->c->tcp_do_toggle_rw = 0; |
| 607 | pend->c->tcp_do_close = 0; |
| 608 | /* open socket */ |
| 609 | s = outnet_get_tcp_fd(&w->addr, w->addrlen, w->outnet->tcp_mss, w->outnet->ip_dscp); |
| 610 | |
| 611 | if(s == -1) |
| 612 | return 0; |
| 613 | |
| 614 | if(!pick_outgoing_tcp(pend, w, s)) |
| 615 | return 0; |
| 616 | |
| 617 | fd_set_nonblock(s); |
| 618 | #ifdef USE_OSX_MSG_FASTOPEN |
| 619 | /* API for fast open is different here. We use a connectx() function and |
| 620 | then writes can happen as normal even using SSL.*/ |
| 621 | /* connectx requires that the len be set in the sockaddr struct*/ |
| 622 | struct sockaddr_in *addr_in = (struct sockaddr_in *)&w->addr; |
| 623 | addr_in->sin_len = w->addrlen; |
| 624 | sa_endpoints_t endpoints; |
| 625 | endpoints.sae_srcif = 0; |
| 626 | endpoints.sae_srcaddr = NULL((void*)0); |
| 627 | endpoints.sae_srcaddrlen = 0; |
| 628 | endpoints.sae_dstaddr = (struct sockaddr *)&w->addr; |
| 629 | endpoints.sae_dstaddrlen = w->addrlen; |
| 630 | if (connectx(s, &endpoints, SAE_ASSOCID_ANY, |
| 631 | CONNECT_DATA_IDEMPOTENT | CONNECT_RESUME_ON_READ_WRITE, |
| 632 | NULL((void*)0), 0, NULL((void*)0), NULL((void*)0)) == -1) { |
| 633 | /* if fails, failover to connect for OSX 10.10 */ |
| 634 | #ifdef EINPROGRESS36 |
| 635 | if(errno(*__errno()) != EINPROGRESS36) { |
| 636 | #else |
| 637 | if(1) { |
| 638 | #endif |
| 639 | if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { |
| 640 | #else /* USE_OSX_MSG_FASTOPEN*/ |
| 641 | #ifdef USE_MSG_FASTOPEN |
| 642 | pend->c->tcp_do_fastopen = 1; |
| 643 | /* Only do TFO for TCP in which case no connect() is required here. |
| 644 | Don't combine client TFO with SSL, since OpenSSL can't |
| 645 | currently support doing a handshake on fd that already isn't connected*/ |
| 646 | if (w->outnet->sslctx && w->ssl_upstream) { |
| 647 | if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { |
| 648 | #else /* USE_MSG_FASTOPEN*/ |
| 649 | if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { |
| 650 | #endif /* USE_MSG_FASTOPEN*/ |
| 651 | #endif /* USE_OSX_MSG_FASTOPEN*/ |
| 652 | #ifndef USE_WINSOCK |
| 653 | #ifdef EINPROGRESS36 |
| 654 | if(errno(*__errno()) != EINPROGRESS36) { |
| 655 | #else |
| 656 | if(1) { |
| 657 | #endif |
| 658 | if(tcp_connect_errno_needs_log( |
| 659 | (struct sockaddr*)&w->addr, w->addrlen)) |
| 660 | log_err_addr("outgoing tcp: connect", |
| 661 | strerror(errno(*__errno())), &w->addr, w->addrlen); |
| 662 | close(s); |
| 663 | #else /* USE_WINSOCK */ |
| 664 | if(WSAGetLastError() != WSAEINPROGRESS && |
| 665 | WSAGetLastError() != WSAEWOULDBLOCK) { |
| 666 | closesocket(s); |
| 667 | #endif |
| 668 | return 0; |
| 669 | } |
| 670 | } |
| 671 | #ifdef USE_MSG_FASTOPEN |
| 672 | } |
| 673 | #endif /* USE_MSG_FASTOPEN */ |
| 674 | #ifdef USE_OSX_MSG_FASTOPEN |
| 675 | } |
| 676 | } |
| 677 | #endif /* USE_OSX_MSG_FASTOPEN */ |
| 678 | if(w->outnet->sslctx && w->ssl_upstream) { |
| 679 | pend->c->ssl = outgoing_ssl_fd(w->outnet->sslctx, s); |
| 680 | if(!pend->c->ssl) { |
| 681 | pend->c->fd = s; |
| 682 | comm_point_close(pend->c); |
| 683 | return 0; |
| 684 | } |
| 685 | verbose(VERB_ALGO, "the query is using TLS encryption, for %s", |
| 686 | (w->tls_auth_name?w->tls_auth_name:"an unauthenticated connection")); |
| 687 | #ifdef USE_WINSOCK |
| 688 | comm_point_tcp_win_bio_cb(pend->c, pend->c->ssl); |
| 689 | #endif |
| 690 | pend->c->ssl_shake_state = comm_ssl_shake_write; |
| 691 | if(!set_auth_name_on_ssl(pend->c->ssl, w->tls_auth_name, |
| 692 | w->outnet->tls_use_sni)) { |
| 693 | pend->c->fd = s; |
| 694 | #ifdef HAVE_SSL |
| 695 | SSL_free(pend->c->ssl); |
| 696 | #endif |
| 697 | pend->c->ssl = NULL((void*)0); |
| 698 | comm_point_close(pend->c); |
| 699 | return 0; |
| 700 | } |
| 701 | } |
| 702 | w->next_waiting = (void*)pend; |
| 703 | w->outnet->num_tcp_outgoing++; |
| 704 | w->outnet->tcp_free = pend->next_free; |
| 705 | pend->next_free = NULL((void*)0); |
| 706 | pend->query = w; |
| 707 | pend->reuse.outnet = w->outnet; |
| 708 | pend->c->repinfo.addrlen = w->addrlen; |
| 709 | pend->c->tcp_more_read_again = &pend->reuse.cp_more_read_again; |
| 710 | pend->c->tcp_more_write_again = &pend->reuse.cp_more_write_again; |
| 711 | pend->reuse.cp_more_read_again = 0; |
| 712 | pend->reuse.cp_more_write_again = 0; |
| 713 | memcpy(&pend->c->repinfo.addr, &w->addr, w->addrlen); |
| 714 | pend->reuse.pending = pend; |
| 715 | |
| 716 | /* Remove from tree in case the is_ssl will be different and causes the |
| 717 | * identity of the reuse_tcp to change; could result in nodes not being |
| 718 | * deleted from the tree (because the new identity does not match the |
| 719 | * previous node) but their ->key would be changed to NULL. */ |
| 720 | if(pend->reuse.node.key) |
| 721 | reuse_tcp_remove_tree_list(w->outnet, &pend->reuse); |
| 722 | |
| 723 | if(pend->c->ssl) |
| 724 | pend->reuse.is_ssl = 1; |
| 725 | else pend->reuse.is_ssl = 0; |
| 726 | /* insert in reuse by address tree if not already inserted there */ |
| 727 | (void)reuse_tcp_insert(w->outnet, pend); |
| 728 | reuse_tree_by_id_insert(&pend->reuse, w); |
| 729 | outnet_tcp_take_query_setup(s, pend, w); |
| 730 | return 1; |
| 731 | } |
| 732 | |
| 733 | /** Touch the lru of a reuse_tcp element, it is in use. |
| 734 | * This moves it to the front of the list, where it is not likely to |
| 735 | * be closed. Items at the back of the list are closed to make space. */ |
| 736 | void |
| 737 | reuse_tcp_lru_touch(struct outside_network* outnet, struct reuse_tcp* reuse) |
| 738 | { |
| 739 | if(!reuse->item_on_lru_list) { |
| 740 | log_err("internal error: we need to touch the lru_list but item not in list"); |
| 741 | return; /* not on the list, no lru to modify */ |
| 742 | } |
| 743 | log_assert(reuse->lru_prev || |
| 744 | (!reuse->lru_prev && outnet->tcp_reuse_first == reuse)); |
| 745 | if(!reuse->lru_prev) |
| 746 | return; /* already first in the list */ |
| 747 | /* remove at current position */ |
| 748 | /* since it is not first, there is a previous element */ |
| 749 | reuse->lru_prev->lru_next = reuse->lru_next; |
| 750 | log_assert(reuse->lru_prev->lru_next != reuse->lru_prev); |
| 751 | if(reuse->lru_next) |
| 752 | reuse->lru_next->lru_prev = reuse->lru_prev; |
| 753 | else outnet->tcp_reuse_last = reuse->lru_prev; |
| 754 | log_assert(!reuse->lru_next || reuse->lru_next->lru_prev != reuse->lru_next); |
| 755 | log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next && |
| 756 | outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev); |
| 757 | /* insert at the front */ |
| 758 | reuse->lru_prev = NULL((void*)0); |
| 759 | reuse->lru_next = outnet->tcp_reuse_first; |
| 760 | if(outnet->tcp_reuse_first) { |
| 761 | outnet->tcp_reuse_first->lru_prev = reuse; |
| 762 | } |
| 763 | log_assert(reuse->lru_next != reuse); |
| 764 | /* since it is not first, it is not the only element and |
| 765 | * lru_next is thus not NULL and thus reuse is now not the last in |
| 766 | * the list, so outnet->tcp_reuse_last does not need to be modified */ |
| 767 | outnet->tcp_reuse_first = reuse; |
| 768 | log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next && |
| 769 | outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev); |
| 770 | log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || |
| 771 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); |
| 772 | } |
| 773 | |
| 774 | /** Snip the last reuse_tcp element off of the LRU list */ |
| 775 | struct reuse_tcp* |
| 776 | reuse_tcp_lru_snip(struct outside_network* outnet) |
| 777 | { |
| 778 | struct reuse_tcp* reuse = outnet->tcp_reuse_last; |
| 779 | if(!reuse) return NULL((void*)0); |
| 780 | /* snip off of LRU */ |
| 781 | log_assert(reuse->lru_next == NULL); |
| 782 | if(reuse->lru_prev) { |
| 783 | outnet->tcp_reuse_last = reuse->lru_prev; |
| 784 | reuse->lru_prev->lru_next = NULL((void*)0); |
| 785 | } else { |
| 786 | outnet->tcp_reuse_last = NULL((void*)0); |
| 787 | outnet->tcp_reuse_first = NULL((void*)0); |
| 788 | } |
| 789 | log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || |
| 790 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); |
| 791 | reuse->item_on_lru_list = 0; |
| 792 | reuse->lru_next = NULL((void*)0); |
| 793 | reuse->lru_prev = NULL((void*)0); |
| 794 | return reuse; |
| 795 | } |
| 796 | |
| 797 | /** call callback on waiting_tcp, if not NULL */ |
| 798 | static void |
| 799 | waiting_tcp_callback(struct waiting_tcp* w, struct comm_point* c, int error, |
| 800 | struct comm_reply* reply_info) |
| 801 | { |
| 802 | if(w && w->cb) { |
| 803 | fptr_ok(fptr_whitelist_pending_tcp(w->cb)); |
| 804 | (void)(*w->cb)(c, w->cb_arg, error, reply_info); |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | /** add waiting_tcp element to the outnet tcp waiting list */ |
| 809 | static void |
| 810 | outnet_add_tcp_waiting(struct outside_network* outnet, struct waiting_tcp* w) |
| 811 | { |
| 812 | struct timeval tv; |
| 813 | log_assert(!w->on_tcp_waiting_list); |
| 814 | if(w->on_tcp_waiting_list) |
| 815 | return; |
| 816 | w->next_waiting = NULL((void*)0); |
| 817 | if(outnet->tcp_wait_last) |
| 818 | outnet->tcp_wait_last->next_waiting = w; |
| 819 | else outnet->tcp_wait_first = w; |
| 820 | outnet->tcp_wait_last = w; |
| 821 | w->on_tcp_waiting_list = 1; |
| 822 | #ifndef S_SPLINT_S |
| 823 | tv.tv_sec = w->timeout/1000; |
| 824 | tv.tv_usec = (w->timeout%1000)*1000; |
| 825 | #endif |
| 826 | comm_timer_set(w->timer, &tv); |
| 827 | } |
| 828 | |
| 829 | /** add waiting_tcp element as first to the outnet tcp waiting list */ |
| 830 | static void |
| 831 | outnet_add_tcp_waiting_first(struct outside_network* outnet, |
| 832 | struct waiting_tcp* w, int reset_timer) |
| 833 | { |
| 834 | struct timeval tv; |
| 835 | log_assert(!w->on_tcp_waiting_list); |
| 836 | if(w->on_tcp_waiting_list) |
| 837 | return; |
| 838 | w->next_waiting = outnet->tcp_wait_first; |
| 839 | if(!outnet->tcp_wait_last) |
| 840 | outnet->tcp_wait_last = w; |
| 841 | outnet->tcp_wait_first = w; |
| 842 | w->on_tcp_waiting_list = 1; |
| 843 | if(reset_timer) { |
| 844 | #ifndef S_SPLINT_S |
| 845 | tv.tv_sec = w->timeout/1000; |
| 846 | tv.tv_usec = (w->timeout%1000)*1000; |
| 847 | #endif |
| 848 | comm_timer_set(w->timer, &tv); |
| 849 | } |
| 850 | log_assert( |
| 851 | (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || |
| 852 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); |
| 853 | } |
| 854 | |
| 855 | /** see if buffers can be used to service TCP queries */ |
| 856 | static void |
| 857 | use_free_buffer(struct outside_network* outnet) |
| 858 | { |
| 859 | struct waiting_tcp* w; |
| 860 | while(outnet->tcp_wait_first && !outnet->want_to_quit) { |
| 861 | #ifdef USE_DNSTAP |
| 862 | struct pending_tcp* pend_tcp = NULL((void*)0); |
| 863 | #endif |
| 864 | struct reuse_tcp* reuse = NULL((void*)0); |
| 865 | w = outnet->tcp_wait_first; |
| 866 | log_assert(w->on_tcp_waiting_list); |
| 867 | outnet->tcp_wait_first = w->next_waiting; |
| 868 | if(outnet->tcp_wait_last == w) |
| 869 | outnet->tcp_wait_last = NULL((void*)0); |
| 870 | log_assert( |
| 871 | (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || |
| 872 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); |
| 873 | w->on_tcp_waiting_list = 0; |
| 874 | reuse = reuse_tcp_find(outnet, &w->addr, w->addrlen, |
| 875 | w->ssl_upstream); |
| 876 | /* re-select an ID when moving to a new TCP buffer */ |
| 877 | w->id = tcp_select_id(outnet, reuse); |
| 878 | LDNS_ID_SET(w->pkt, w->id)(sldns_write_uint16(w->pkt, w->id)); |
| 879 | if(reuse) { |
| 880 | log_reuse_tcp(VERB_CLIENT, "use free buffer for waiting tcp: " |
| 881 | "found reuse", reuse); |
| 882 | #ifdef USE_DNSTAP |
| 883 | pend_tcp = reuse->pending; |
| 884 | #endif |
| 885 | reuse_tcp_lru_touch(outnet, reuse); |
| 886 | comm_timer_disable(w->timer); |
| 887 | w->next_waiting = (void*)reuse->pending; |
| 888 | reuse_tree_by_id_insert(reuse, w); |
| 889 | if(reuse->pending->query) { |
| 890 | /* on the write wait list */ |
| 891 | reuse_write_wait_push_back(reuse, w); |
| 892 | } else { |
| 893 | /* write straight away */ |
| 894 | /* stop the timer on read of the fd */ |
| 895 | comm_point_stop_listening(reuse->pending->c); |
| 896 | reuse->pending->query = w; |
| 897 | outnet_tcp_take_query_setup( |
| 898 | reuse->pending->c->fd, reuse->pending, |
| 899 | w); |
| 900 | } |
| 901 | } else if(outnet->tcp_free) { |
| 902 | struct pending_tcp* pend = w->outnet->tcp_free; |
| 903 | rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); |
| 904 | pend->reuse.pending = pend; |
| 905 | memcpy(&pend->reuse.addr, &w->addr, w->addrlen); |
| 906 | pend->reuse.addrlen = w->addrlen; |
| 907 | if(!outnet_tcp_take_into_use(w)) { |
| 908 | waiting_tcp_callback(w, NULL((void*)0), NETEVENT_CLOSED-1, |
| 909 | NULL((void*)0)); |
| 910 | waiting_tcp_delete(w); |
| 911 | #ifdef USE_DNSTAP |
| 912 | w = NULL((void*)0); |
| 913 | #endif |
| 914 | } |
| 915 | #ifdef USE_DNSTAP |
| 916 | pend_tcp = pend; |
| 917 | #endif |
| 918 | } else { |
| 919 | /* no reuse and no free buffer, put back at the start */ |
| 920 | outnet_add_tcp_waiting_first(outnet, w, 0); |
| 921 | break; |
| 922 | } |
| 923 | #ifdef USE_DNSTAP |
| 924 | if(outnet->dtenv && pend_tcp && w && w->sq && |
| 925 | (outnet->dtenv->log_resolver_query_messages || |
| 926 | outnet->dtenv->log_forwarder_query_messages)) { |
| 927 | sldns_buffer tmp; |
| 928 | sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len); |
| 929 | dt_msg_send_outside_query(outnet->dtenv, &w->sq->addr, |
| 930 | &pend_tcp->pi->addr, comm_tcp, w->sq->zone, |
| 931 | w->sq->zonelen, &tmp); |
| 932 | } |
| 933 | #endif |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | /** delete element from tree by id */ |
| 938 | static void |
| 939 | reuse_tree_by_id_delete(struct reuse_tcp* reuse, struct waiting_tcp* w) |
| 940 | { |
| 941 | #ifdef UNBOUND_DEBUG |
| 942 | rbnode_type* rem; |
| 943 | #endif |
| 944 | log_assert(w->id_node.key != NULL); |
| 945 | #ifdef UNBOUND_DEBUG |
| 946 | rem = |
| 947 | #else |
| 948 | (void) |
| 949 | #endif |
| 950 | rbtree_delete(&reuse->tree_by_id, w); |
| 951 | log_assert(rem); /* should have been there */ |
| 952 | w->id_node.key = NULL((void*)0); |
| 953 | } |
| 954 | |
| 955 | /** move writewait list to go for another connection. */ |
| 956 | static void |
| 957 | reuse_move_writewait_away(struct outside_network* outnet, |
| 958 | struct pending_tcp* pend) |
| 959 | { |
| 960 | /* the writewait list has not been written yet, so if the |
| 961 | * stream was closed, they have not actually been failed, only |
| 962 | * the queries written. Other queries can get written to another |
| 963 | * stream. For upstreams that do not support multiple queries |
| 964 | * and answers, the stream can get closed, and then the queries |
| 965 | * can get written on a new socket */ |
| 966 | struct waiting_tcp* w; |
| 967 | if(pend->query && pend->query->error_count == 0 && |
| 968 | pend->c->tcp_write_pkt == pend->query->pkt && |
| 969 | pend->c->tcp_write_pkt_len == pend->query->pkt_len) { |
| 970 | /* since the current query is not written, it can also |
| 971 | * move to a free buffer */ |
| 972 | if(verbosity >= VERB_CLIENT && pend->query->pkt_len > 12+2+2 && |
| 973 | LDNS_QDCOUNT(pend->query->pkt)(sldns_read_uint16(pend->query->pkt+4)) > 0 && |
| 974 | dname_valid(pend->query->pkt+12, pend->query->pkt_len-12)) { |
| 975 | char buf[LDNS_MAX_DOMAINLEN255+1]; |
| 976 | dname_str(pend->query->pkt+12, buf); |
| 977 | verbose(VERB_CLIENT, "reuse_move_writewait_away current %s %d bytes were written", |
| 978 | buf, (int)pend->c->tcp_write_byte_count); |
| 979 | } |
| 980 | pend->c->tcp_write_pkt = NULL((void*)0); |
| 981 | pend->c->tcp_write_pkt_len = 0; |
| 982 | pend->c->tcp_write_and_read = 0; |
| 983 | pend->reuse.cp_more_read_again = 0; |
| 984 | pend->reuse.cp_more_write_again = 0; |
| 985 | pend->c->tcp_is_reading = 1; |
| 986 | w = pend->query; |
| 987 | pend->query = NULL((void*)0); |
| 988 | /* increase error count, so that if the next socket fails too |
| 989 | * the server selection is run again with this query failed |
| 990 | * and it can select a different server (if possible), or |
| 991 | * fail the query */ |
| 992 | w->error_count ++; |
| 993 | reuse_tree_by_id_delete(&pend->reuse, w); |
| 994 | outnet_add_tcp_waiting(outnet, w); |
| 995 | } |
| 996 | while((w = reuse_write_wait_pop(&pend->reuse)) != NULL((void*)0)) { |
| 997 | if(verbosity >= VERB_CLIENT && w->pkt_len > 12+2+2 && |
| 998 | LDNS_QDCOUNT(w->pkt)(sldns_read_uint16(w->pkt+4)) > 0 && |
| 999 | dname_valid(w->pkt+12, w->pkt_len-12)) { |
| 1000 | char buf[LDNS_MAX_DOMAINLEN255+1]; |
| 1001 | dname_str(w->pkt+12, buf); |
| 1002 | verbose(VERB_CLIENT, "reuse_move_writewait_away item %s", buf); |
| 1003 | } |
| 1004 | reuse_tree_by_id_delete(&pend->reuse, w); |
| 1005 | outnet_add_tcp_waiting(outnet, w); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | /** remove reused element from tree and lru list */ |
| 1010 | void |
| 1011 | reuse_tcp_remove_tree_list(struct outside_network* outnet, |
| 1012 | struct reuse_tcp* reuse) |
| 1013 | { |
| 1014 | verbose(VERB_CLIENT, "reuse_tcp_remove_tree_list"); |
| 1015 | if(reuse->node.key) { |
| 1016 | /* delete it from reuse tree */ |
| 1017 | if(!rbtree_delete(&outnet->tcp_reuse, reuse)) { |
| 1018 | /* should not be possible, it should be there */ |
| 1019 | char buf[256]; |
| 1020 | addr_to_str(&reuse->addr, reuse->addrlen, buf, |
| 1021 | sizeof(buf)); |
| 1022 | log_err("reuse tcp delete: node not present, internal error, %s ssl %d lru %d", buf, reuse->is_ssl, reuse->item_on_lru_list); |
| 1023 | } |
| 1024 | reuse->node.key = NULL((void*)0); |
| 1025 | /* defend against loops on broken tree by zeroing the |
| 1026 | * rbnode structure */ |
| 1027 | memset(&reuse->node, 0, sizeof(reuse->node)); |
| 1028 | } |
| 1029 | /* delete from reuse list */ |
| 1030 | if(reuse->item_on_lru_list) { |
| 1031 | if(reuse->lru_prev) { |
| 1032 | /* assert that members of the lru list are waiting |
| 1033 | * and thus have a pending pointer to the struct */ |
| 1034 | log_assert(reuse->lru_prev->pending); |
| 1035 | reuse->lru_prev->lru_next = reuse->lru_next; |
| 1036 | log_assert(reuse->lru_prev->lru_next != reuse->lru_prev); |
| 1037 | } else { |
| 1038 | log_assert(!reuse->lru_next || reuse->lru_next->pending); |
| 1039 | outnet->tcp_reuse_first = reuse->lru_next; |
| 1040 | log_assert(!outnet->tcp_reuse_first || |
| 1041 | (outnet->tcp_reuse_first != |
| 1042 | outnet->tcp_reuse_first->lru_next && |
| 1043 | outnet->tcp_reuse_first != |
| 1044 | outnet->tcp_reuse_first->lru_prev)); |
| 1045 | } |
| 1046 | if(reuse->lru_next) { |
| 1047 | /* assert that members of the lru list are waiting |
| 1048 | * and thus have a pending pointer to the struct */ |
| 1049 | log_assert(reuse->lru_next->pending); |
| 1050 | reuse->lru_next->lru_prev = reuse->lru_prev; |
| 1051 | log_assert(reuse->lru_next->lru_prev != reuse->lru_next); |
| 1052 | } else { |
| 1053 | log_assert(!reuse->lru_prev || reuse->lru_prev->pending); |
| 1054 | outnet->tcp_reuse_last = reuse->lru_prev; |
| 1055 | log_assert(!outnet->tcp_reuse_last || |
| 1056 | (outnet->tcp_reuse_last != |
| 1057 | outnet->tcp_reuse_last->lru_next && |
| 1058 | outnet->tcp_reuse_last != |
| 1059 | outnet->tcp_reuse_last->lru_prev)); |
| 1060 | } |
| 1061 | log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || |
| 1062 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); |
| 1063 | reuse->item_on_lru_list = 0; |
| 1064 | reuse->lru_next = NULL((void*)0); |
| 1065 | reuse->lru_prev = NULL((void*)0); |
| 1066 | } |
| 1067 | reuse->pending = NULL((void*)0); |
| 1068 | } |
| 1069 | |
| 1070 | /** helper function that deletes an element from the tree of readwait |
| 1071 | * elements in tcp reuse structure */ |
| 1072 | static void reuse_del_readwait_elem(rbnode_type* node, void* ATTR_UNUSED(arg)arg __attribute__((unused))) |
| 1073 | { |
| 1074 | struct waiting_tcp* w = (struct waiting_tcp*)node->key; |
| 1075 | waiting_tcp_delete(w); |
| 1076 | } |
| 1077 | |
| 1078 | /** delete readwait waiting_tcp elements, deletes the elements in the list */ |
| 1079 | void reuse_del_readwait(rbtree_type* tree_by_id) |
| 1080 | { |
| 1081 | if(tree_by_id->root == NULL((void*)0) || |
| 1082 | tree_by_id->root == RBTREE_NULL&rbtree_null_node) |
| 1083 | return; |
| 1084 | traverse_postorder(tree_by_id, &reuse_del_readwait_elem, NULL((void*)0)); |
| 1085 | rbtree_init(tree_by_id, reuse_id_cmp); |
| 1086 | } |
| 1087 | |
| 1088 | /** decommission a tcp buffer, closes commpoint and frees waiting_tcp entry */ |
| 1089 | static void |
| 1090 | decommission_pending_tcp(struct outside_network* outnet, |
| 1091 | struct pending_tcp* pend) |
| 1092 | { |
| 1093 | verbose(VERB_CLIENT, "decommission_pending_tcp"); |
| 1094 | /* A certain code path can lead here twice for the same pending_tcp |
| 1095 | * creating a loop in the free pending_tcp list. */ |
| 1096 | if(outnet->tcp_free != pend) { |
| 1097 | pend->next_free = outnet->tcp_free; |
| 1098 | outnet->tcp_free = pend; |
| 1099 | } |
| 1100 | if(pend->reuse.node.key) { |
| 1101 | /* needs unlink from the reuse tree to get deleted */ |
| 1102 | reuse_tcp_remove_tree_list(outnet, &pend->reuse); |
| 1103 | } |
| 1104 | /* free SSL structure after remove from outnet tcp reuse tree, |
| 1105 | * because the c->ssl null or not is used for sorting in the tree */ |
| 1106 | if(pend->c->ssl) { |
| 1107 | #ifdef HAVE_SSL |
| 1108 | SSL_shutdown(pend->c->ssl); |
| 1109 | SSL_free(pend->c->ssl); |
| 1110 | pend->c->ssl = NULL((void*)0); |
| 1111 | #endif |
| 1112 | } |
| 1113 | comm_point_close(pend->c); |
| 1114 | pend->reuse.cp_more_read_again = 0; |
| 1115 | pend->reuse.cp_more_write_again = 0; |
| 1116 | /* unlink the query and writewait list, it is part of the tree |
| 1117 | * nodes and is deleted */ |
| 1118 | pend->query = NULL((void*)0); |
| 1119 | pend->reuse.write_wait_first = NULL((void*)0); |
| 1120 | pend->reuse.write_wait_last = NULL((void*)0); |
| 1121 | reuse_del_readwait(&pend->reuse.tree_by_id); |
| 1122 | } |
| 1123 | |
| 1124 | /** perform failure callbacks for waiting queries in reuse read rbtree */ |
| 1125 | static void reuse_cb_readwait_for_failure(rbtree_type* tree_by_id, int err) |
| 1126 | { |
| 1127 | rbnode_type* node; |
| 1128 | if(tree_by_id->root == NULL((void*)0) || |
| 1129 | tree_by_id->root == RBTREE_NULL&rbtree_null_node) |
| 1130 | return; |
| 1131 | node = rbtree_first(tree_by_id); |
| 1132 | while(node && node != RBTREE_NULL&rbtree_null_node) { |
| 1133 | struct waiting_tcp* w = (struct waiting_tcp*)node->key; |
| 1134 | waiting_tcp_callback(w, NULL((void*)0), err, NULL((void*)0)); |
| 1135 | node = rbtree_next(node); |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | /** perform callbacks for failure and also decommission pending tcp. |
| 1140 | * the callbacks remove references in sq->pending to the waiting_tcp |
| 1141 | * members of the tree_by_id in the pending tcp. The pending_tcp is |
| 1142 | * removed before the callbacks, so that the callbacks do not modify |
| 1143 | * the pending_tcp due to its reference in the outside_network reuse tree */ |
| 1144 | static void reuse_cb_and_decommission(struct outside_network* outnet, |
| 1145 | struct pending_tcp* pend, int error) |
| 1146 | { |
| 1147 | rbtree_type store; |
| 1148 | store = pend->reuse.tree_by_id; |
| 1149 | pend->query = NULL((void*)0); |
| 1150 | rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); |
| 1151 | pend->reuse.write_wait_first = NULL((void*)0); |
| 1152 | pend->reuse.write_wait_last = NULL((void*)0); |
| 1153 | decommission_pending_tcp(outnet, pend); |
| 1154 | reuse_cb_readwait_for_failure(&store, error); |
| 1155 | reuse_del_readwait(&store); |
| 1156 | } |
| 1157 | |
| 1158 | /** set timeout on tcp fd and setup read event to catch incoming dns msgs */ |
| 1159 | static void |
| 1160 | reuse_tcp_setup_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout) |
| 1161 | { |
| 1162 | log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_timeout", &pend_tcp->reuse); |
| 1163 | comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout); |
| 1164 | } |
| 1165 | |
| 1166 | /** set timeout on tcp fd and setup read event to catch incoming dns msgs */ |
| 1167 | static void |
| 1168 | reuse_tcp_setup_read_and_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout) |
| 1169 | { |
| 1170 | log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_readtimeout", &pend_tcp->reuse); |
| 1171 | sldns_buffer_clear(pend_tcp->c->buffer); |
| 1172 | pend_tcp->c->tcp_is_reading = 1; |
| 1173 | pend_tcp->c->tcp_byte_count = 0; |
| 1174 | comm_point_stop_listening(pend_tcp->c); |
| 1175 | comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout); |
| 1176 | } |
| 1177 | |
| 1178 | int |
| 1179 | outnet_tcp_cb(struct comm_point* c, void* arg, int error, |
| 1180 | struct comm_reply *reply_info) |
| 1181 | { |
| 1182 | struct pending_tcp* pend = (struct pending_tcp*)arg; |
| 1183 | struct outside_network* outnet = pend->reuse.outnet; |
| 1184 | struct waiting_tcp* w = NULL((void*)0); |
| 1185 | log_assert(pend->reuse.item_on_lru_list && pend->reuse.node.key); |
| 1186 | verbose(VERB_ALGO, "outnettcp cb"); |
| 1187 | if(error == NETEVENT_TIMEOUT-2) { |
| 1188 | if(pend->c->tcp_write_and_read) { |
| 1189 | verbose(VERB_QUERY, "outnettcp got tcp timeout " |
| 1190 | "for read, ignored because write underway"); |
| 1191 | /* if we are writing, ignore readtimer, wait for write timer |
| 1192 | * or write is done */ |
| 1193 | return 0; |
| 1194 | } else { |
| 1195 | verbose(VERB_QUERY, "outnettcp got tcp timeout %s", |
| 1196 | (pend->reuse.tree_by_id.count?"for reading pkt": |
| 1197 | "for keepalive for reuse")); |
| 1198 | } |
| 1199 | /* must be timeout for reading or keepalive reuse, |
| 1200 | * close it. */ |
| 1201 | reuse_tcp_remove_tree_list(outnet, &pend->reuse); |
| 1202 | } else if(error == NETEVENT_PKT_WRITTEN-5) { |
| 1203 | /* the packet we want to write has been written. */ |
| 1204 | verbose(VERB_ALGO, "outnet tcp pkt was written event"); |
| 1205 | log_assert(c == pend->c); |
| 1206 | log_assert(pend->query->pkt == pend->c->tcp_write_pkt); |
| 1207 | log_assert(pend->query->pkt_len == pend->c->tcp_write_pkt_len); |
| 1208 | pend->c->tcp_write_pkt = NULL((void*)0); |
| 1209 | pend->c->tcp_write_pkt_len = 0; |
| 1210 | /* the pend.query is already in tree_by_id */ |
| 1211 | log_assert(pend->query->id_node.key); |
| 1212 | pend->query = NULL((void*)0); |
| 1213 | /* setup to write next packet or setup read timeout */ |
| 1214 | if(pend->reuse.write_wait_first) { |
| 1215 | verbose(VERB_ALGO, "outnet tcp setup next pkt"); |
| 1216 | /* we can write it straight away perhaps, set flag |
| 1217 | * because this callback called after a tcp write |
| 1218 | * succeeded and likely more buffer space is available |
| 1219 | * and we can write some more. */ |
| 1220 | pend->reuse.cp_more_write_again = 1; |
| 1221 | pend->query = reuse_write_wait_pop(&pend->reuse); |
| 1222 | comm_point_stop_listening(pend->c); |
| 1223 | outnet_tcp_take_query_setup(pend->c->fd, pend, |
| 1224 | pend->query); |
| 1225 | } else { |
| 1226 | verbose(VERB_ALGO, "outnet tcp writes done, wait"); |
| 1227 | pend->c->tcp_write_and_read = 0; |
| 1228 | pend->reuse.cp_more_read_again = 0; |
| 1229 | pend->reuse.cp_more_write_again = 0; |
| 1230 | pend->c->tcp_is_reading = 1; |
| 1231 | comm_point_stop_listening(pend->c); |
| 1232 | reuse_tcp_setup_timeout(pend, outnet->tcp_reuse_timeout); |
| 1233 | } |
| 1234 | return 0; |
| 1235 | } else if(error != NETEVENT_NOERROR0) { |
| 1236 | verbose(VERB_QUERY, "outnettcp got tcp error %d", error); |
| 1237 | reuse_move_writewait_away(outnet, pend); |
| 1238 | /* pass error below and exit */ |
| 1239 | } else { |
| 1240 | /* check ID */ |
| 1241 | if(sldns_buffer_limit(c->buffer) < sizeof(uint16_t)) { |
| 1242 | log_addr(VERB_QUERY, |
| 1243 | "outnettcp: bad ID in reply, too short, from:", |
| 1244 | &pend->reuse.addr, pend->reuse.addrlen); |
| 1245 | error = NETEVENT_CLOSED-1; |
| 1246 | } else { |
| 1247 | uint16_t id = LDNS_ID_WIRE(sldns_buffer_begin((sldns_read_uint16(sldns_buffer_begin( c->buffer))) |
| 1248 | c->buffer))(sldns_read_uint16(sldns_buffer_begin( c->buffer))); |
| 1249 | /* find the query the reply is for */ |
| 1250 | w = reuse_tcp_by_id_find(&pend->reuse, id); |
| 1251 | } |
| 1252 | } |
| 1253 | if(error == NETEVENT_NOERROR0 && !w) { |
| 1254 | /* no struct waiting found in tree, no reply to call */ |
| 1255 | log_addr(VERB_QUERY, "outnettcp: bad ID in reply, from:", |
| 1256 | &pend->reuse.addr, pend->reuse.addrlen); |
| 1257 | error = NETEVENT_CLOSED-1; |
| 1258 | } |
| 1259 | if(error == NETEVENT_NOERROR0) { |
| 1260 | /* add to reuse tree so it can be reused, if not a failure. |
| 1261 | * This is possible if the state machine wants to make a tcp |
| 1262 | * query again to the same destination. */ |
| 1263 | if(outnet->tcp_reuse.count < outnet->tcp_reuse_max) { |
| 1264 | (void)reuse_tcp_insert(outnet, pend); |
| 1265 | } |
| 1266 | } |
| 1267 | if(w) { |
| 1268 | reuse_tree_by_id_delete(&pend->reuse, w); |
| 1269 | verbose(VERB_CLIENT, "outnet tcp callback query err %d buflen %d", |
| 1270 | error, (int)sldns_buffer_limit(c->buffer)); |
| 1271 | waiting_tcp_callback(w, c, error, reply_info); |
| 1272 | waiting_tcp_delete(w); |
| 1273 | } |
| 1274 | verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb"); |
| 1275 | if(error == NETEVENT_NOERROR0 && pend->reuse.node.key) { |
| 1276 | verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: keep it"); |
| 1277 | /* it is in the reuse_tcp tree, with other queries, or |
| 1278 | * on the empty list. do not decommission it */ |
| 1279 | /* if there are more outstanding queries, we could try to |
| 1280 | * read again, to see if it is on the input, |
| 1281 | * because this callback called after a successful read |
| 1282 | * and there could be more bytes to read on the input */ |
| 1283 | if(pend->reuse.tree_by_id.count != 0) |
| 1284 | pend->reuse.cp_more_read_again = 1; |
| 1285 | reuse_tcp_setup_read_and_timeout(pend, outnet->tcp_reuse_timeout); |
| 1286 | return 0; |
| 1287 | } |
| 1288 | verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: decommission it"); |
| 1289 | /* no queries on it, no space to keep it. or timeout or closed due |
| 1290 | * to error. Close it */ |
| 1291 | reuse_cb_and_decommission(outnet, pend, (error==NETEVENT_TIMEOUT-2? |
| 1292 | NETEVENT_TIMEOUT-2:NETEVENT_CLOSED-1)); |
| 1293 | use_free_buffer(outnet); |
| 1294 | return 0; |
| 1295 | } |
| 1296 | |
| 1297 | /** lower use count on pc, see if it can be closed */ |
| 1298 | static void |
| 1299 | portcomm_loweruse(struct outside_network* outnet, struct port_comm* pc) |
| 1300 | { |
| 1301 | struct port_if* pif; |
| 1302 | pc->num_outstanding--; |
| 1303 | if(pc->num_outstanding > 0) { |
| 1304 | return; |
| 1305 | } |
| 1306 | /* close it and replace in unused list */ |
| 1307 | verbose(VERB_ALGO, "close of port %d", pc->number); |
| 1308 | comm_point_close(pc->cp); |
| 1309 | pif = pc->pif; |
| 1310 | log_assert(pif->inuse > 0); |
| 1311 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 |
| 1312 | pif->avail_ports[pif->avail_total - pif->inuse] = pc->number; |
| 1313 | #endif |
| 1314 | pif->inuse--; |
| 1315 | pif->out[pc->index] = pif->out[pif->inuse]; |
| 1316 | pif->out[pc->index]->index = pc->index; |
| 1317 | pc->next = outnet->unused_fds; |
| 1318 | outnet->unused_fds = pc; |
| 1319 | } |
| 1320 | |
| 1321 | /** try to send waiting UDP queries */ |
| 1322 | static void |
| 1323 | outnet_send_wait_udp(struct outside_network* outnet) |
| 1324 | { |
| 1325 | struct pending* pend; |
| 1326 | /* process waiting queries */ |
| 1327 | while(outnet->udp_wait_first && outnet->unused_fds |
| 1328 | && !outnet->want_to_quit) { |
| 1329 | pend = outnet->udp_wait_first; |
| 1330 | outnet->udp_wait_first = pend->next_waiting; |
| 1331 | if(!pend->next_waiting) outnet->udp_wait_last = NULL((void*)0); |
| 1332 | sldns_buffer_clear(outnet->udp_buff); |
| 1333 | sldns_buffer_write(outnet->udp_buff, pend->pkt, pend->pkt_len); |
| 1334 | sldns_buffer_flip(outnet->udp_buff); |
| 1335 | free(pend->pkt); /* freeing now makes get_mem correct */ |
| 1336 | pend->pkt = NULL((void*)0); |
| 1337 | pend->pkt_len = 0; |
| 1338 | if(!randomize_and_send_udp(pend, outnet->udp_buff, |
| 1339 | pend->timeout)) { |
| 1340 | /* callback error on pending */ |
| 1341 | if(pend->cb) { |
| 1342 | fptr_ok(fptr_whitelist_pending_udp(pend->cb)); |
| 1343 | (void)(*pend->cb)(outnet->unused_fds->cp, pend->cb_arg, |
| 1344 | NETEVENT_CLOSED-1, NULL((void*)0)); |
| 1345 | } |
| 1346 | pending_delete(outnet, pend); |
| 1347 | } |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | int |
| 1352 | outnet_udp_cb(struct comm_point* c, void* arg, int error, |
| 1353 | struct comm_reply *reply_info) |
| 1354 | { |
| 1355 | struct outside_network* outnet = (struct outside_network*)arg; |
| 1356 | struct pending key; |
| 1357 | struct pending* p; |
| 1358 | verbose(VERB_ALGO, "answer cb"); |
| 1359 | |
| 1360 | if(error != NETEVENT_NOERROR0) { |
| 1361 | verbose(VERB_QUERY, "outnetudp got udp error %d", error); |
| 1362 | return 0; |
| 1363 | } |
| 1364 | if(sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE12) { |
| 1365 | verbose(VERB_QUERY, "outnetudp udp too short"); |
| 1366 | return 0; |
| 1367 | } |
| 1368 | log_assert(reply_info); |
| 1369 | |
| 1370 | /* setup lookup key */ |
| 1371 | key.id = (unsigned)LDNS_ID_WIRE(sldns_buffer_begin(c->buffer))(sldns_read_uint16(sldns_buffer_begin(c->buffer))); |
| 1372 | memcpy(&key.addr, &reply_info->addr, reply_info->addrlen); |
| 1373 | key.addrlen = reply_info->addrlen; |
| 1374 | verbose(VERB_ALGO, "Incoming reply id = %4.4x", key.id); |
| 1375 | log_addr(VERB_ALGO, "Incoming reply addr =", |
| 1376 | &reply_info->addr, reply_info->addrlen); |
| 1377 | |
| 1378 | /* find it, see if this thing is a valid query response */ |
| 1379 | verbose(VERB_ALGO, "lookup size is %d entries", (int)outnet->pending->count); |
| 1380 | p = (struct pending*)rbtree_search(outnet->pending, &key); |
| 1381 | if(!p) { |
| 1382 | verbose(VERB_QUERY, "received unwanted or unsolicited udp reply dropped."); |
| 1383 | log_buf(VERB_ALGO, "dropped message", c->buffer); |
| 1384 | outnet->unwanted_replies++; |
| 1385 | if(outnet->unwanted_threshold && ++outnet->unwanted_total |
| 1386 | >= outnet->unwanted_threshold) { |
| 1387 | log_warn("unwanted reply total reached threshold (%u)" |
| 1388 | " you may be under attack." |
| 1389 | " defensive action: clearing the cache", |
| 1390 | (unsigned)outnet->unwanted_threshold); |
| 1391 | fptr_ok(fptr_whitelist_alloc_cleanup( |
| 1392 | outnet->unwanted_action)); |
| 1393 | (*outnet->unwanted_action)(outnet->unwanted_param); |
| 1394 | outnet->unwanted_total = 0; |
| 1395 | } |
| 1396 | return 0; |
| 1397 | } |
| 1398 | |
| 1399 | verbose(VERB_ALGO, "received udp reply."); |
| 1400 | log_buf(VERB_ALGO, "udp message", c->buffer); |
| 1401 | if(p->pc->cp != c) { |
| 1402 | verbose(VERB_QUERY, "received reply id,addr on wrong port. " |
| 1403 | "dropped."); |
| 1404 | outnet->unwanted_replies++; |
| 1405 | if(outnet->unwanted_threshold && ++outnet->unwanted_total |
| 1406 | >= outnet->unwanted_threshold) { |
| 1407 | log_warn("unwanted reply total reached threshold (%u)" |
| 1408 | " you may be under attack." |
| 1409 | " defensive action: clearing the cache", |
| 1410 | (unsigned)outnet->unwanted_threshold); |
| 1411 | fptr_ok(fptr_whitelist_alloc_cleanup( |
| 1412 | outnet->unwanted_action)); |
| 1413 | (*outnet->unwanted_action)(outnet->unwanted_param); |
| 1414 | outnet->unwanted_total = 0; |
| 1415 | } |
| 1416 | return 0; |
| 1417 | } |
| 1418 | comm_timer_disable(p->timer); |
| 1419 | verbose(VERB_ALGO, "outnet handle udp reply"); |
| 1420 | /* delete from tree first in case callback creates a retry */ |
| 1421 | (void)rbtree_delete(outnet->pending, p->node.key); |
| 1422 | if(p->cb) { |
| 1423 | fptr_ok(fptr_whitelist_pending_udp(p->cb)); |
| 1424 | (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_NOERROR0, reply_info); |
| 1425 | } |
| 1426 | portcomm_loweruse(outnet, p->pc); |
| 1427 | pending_delete(NULL((void*)0), p); |
| 1428 | outnet_send_wait_udp(outnet); |
| 1429 | return 0; |
| 1430 | } |
| 1431 | |
| 1432 | /** calculate number of ip4 and ip6 interfaces*/ |
| 1433 | static void |
| 1434 | calc_num46(char** ifs, int num_ifs, int do_ip4, int do_ip6, |
| 1435 | int* num_ip4, int* num_ip6) |
| 1436 | { |
| 1437 | int i; |
| 1438 | *num_ip4 = 0; |
| 1439 | *num_ip6 = 0; |
| 1440 | if(num_ifs <= 0) { |
| 1441 | if(do_ip4) |
| 1442 | *num_ip4 = 1; |
| 1443 | if(do_ip6) |
| 1444 | *num_ip6 = 1; |
| 1445 | return; |
| 1446 | } |
| 1447 | for(i=0; i<num_ifs; i++) |
| 1448 | { |
| 1449 | if(str_is_ip6(ifs[i])) { |
| 1450 | if(do_ip6) |
| 1451 | (*num_ip6)++; |
| 1452 | } else { |
| 1453 | if(do_ip4) |
| 1454 | (*num_ip4)++; |
| 1455 | } |
| 1456 | } |
| 1457 | |
| 1458 | } |
| 1459 | |
| 1460 | void |
| 1461 | pending_udp_timer_delay_cb(void* arg) |
| 1462 | { |
| 1463 | struct pending* p = (struct pending*)arg; |
| 1464 | struct outside_network* outnet = p->outnet; |
| 1465 | verbose(VERB_ALGO, "timeout udp with delay"); |
| 1466 | portcomm_loweruse(outnet, p->pc); |
| 1467 | pending_delete(outnet, p); |
| 1468 | outnet_send_wait_udp(outnet); |
| 1469 | } |
| 1470 | |
| 1471 | void |
| 1472 | pending_udp_timer_cb(void *arg) |
| 1473 | { |
| 1474 | struct pending* p = (struct pending*)arg; |
| 1475 | struct outside_network* outnet = p->outnet; |
| 1476 | /* it timed out */ |
| 1477 | verbose(VERB_ALGO, "timeout udp"); |
| 1478 | if(p->cb) { |
| 1479 | fptr_ok(fptr_whitelist_pending_udp(p->cb)); |
| 1480 | (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_TIMEOUT-2, NULL((void*)0)); |
| 1481 | } |
| 1482 | /* if delayclose, keep port open for a longer time. |
| 1483 | * But if the udpwaitlist exists, then we are struggling to |
| 1484 | * keep up with demand for sockets, so do not wait, but service |
| 1485 | * the customer (customer service more important than portICMPs) */ |
| 1486 | if(outnet->delayclose && !outnet->udp_wait_first) { |
| 1487 | p->cb = NULL((void*)0); |
| 1488 | p->timer->callback = &pending_udp_timer_delay_cb; |
| 1489 | comm_timer_set(p->timer, &outnet->delay_tv); |
| 1490 | return; |
| 1491 | } |
| 1492 | portcomm_loweruse(outnet, p->pc); |
| 1493 | pending_delete(outnet, p); |
| 1494 | outnet_send_wait_udp(outnet); |
| 1495 | } |
| 1496 | |
| 1497 | /** create pending_tcp buffers */ |
| 1498 | static int |
| 1499 | create_pending_tcp(struct outside_network* outnet, size_t bufsize) |
| 1500 | { |
| 1501 | size_t i; |
| 1502 | if(outnet->num_tcp == 0) |
| 1503 | return 1; /* no tcp needed, nothing to do */ |
| 1504 | if(!(outnet->tcp_conns = (struct pending_tcp **)calloc( |
| 1505 | outnet->num_tcp, sizeof(struct pending_tcp*)))) |
| 1506 | return 0; |
| 1507 | for(i=0; i<outnet->num_tcp; i++) { |
| 1508 | if(!(outnet->tcp_conns[i] = (struct pending_tcp*)calloc(1, |
| 1509 | sizeof(struct pending_tcp)))) |
| 1510 | return 0; |
| 1511 | outnet->tcp_conns[i]->next_free = outnet->tcp_free; |
| 1512 | outnet->tcp_free = outnet->tcp_conns[i]; |
| 1513 | outnet->tcp_conns[i]->c = comm_point_create_tcp_out( |
| 1514 | outnet->base, bufsize, outnet_tcp_cb, |
| 1515 | outnet->tcp_conns[i]); |
| 1516 | if(!outnet->tcp_conns[i]->c) |
| 1517 | return 0; |
| 1518 | } |
| 1519 | return 1; |
| 1520 | } |
| 1521 | |
| 1522 | /** setup an outgoing interface, ready address */ |
| 1523 | static int setup_if(struct port_if* pif, const char* addrstr, |
| 1524 | int* avail, int numavail, size_t numfd) |
| 1525 | { |
| 1526 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 |
| 1527 | pif->avail_total = numavail; |
| 1528 | pif->avail_ports = (int*)memdup(avail, (size_t)numavail*sizeof(int)); |
| 1529 | if(!pif->avail_ports) |
| 1530 | return 0; |
| 1531 | #endif |
| 1532 | if(!ipstrtoaddr(addrstr, UNBOUND_DNS_PORT53, &pif->addr, &pif->addrlen) && |
| 1533 | !netblockstrtoaddr(addrstr, UNBOUND_DNS_PORT53, |
| 1534 | &pif->addr, &pif->addrlen, &pif->pfxlen)) |
| 1535 | return 0; |
| 1536 | pif->maxout = (int)numfd; |
| 1537 | pif->inuse = 0; |
| 1538 | pif->out = (struct port_comm**)calloc(numfd, |
| 1539 | sizeof(struct port_comm*)); |
| 1540 | if(!pif->out) |
| 1541 | return 0; |
| 1542 | return 1; |
| 1543 | } |
| 1544 | |
| 1545 | struct outside_network* |
| 1546 | outside_network_create(struct comm_base *base, size_t bufsize, |
| 1547 | size_t num_ports, char** ifs, int num_ifs, int do_ip4, |
| 1548 | int do_ip6, size_t num_tcp, int dscp, struct infra_cache* infra, |
| 1549 | struct ub_randstate* rnd, int use_caps_for_id, int* availports, |
| 1550 | int numavailports, size_t unwanted_threshold, int tcp_mss, |
| 1551 | void (*unwanted_action)(void*), void* unwanted_param, int do_udp, |
| 1552 | void* sslctx, int delayclose, int tls_use_sni, struct dt_env* dtenv, |
| 1553 | int udp_connect, int max_reuse_tcp_queries, int tcp_reuse_timeout, |
| 1554 | int tcp_auth_query_timeout) |
| 1555 | { |
| 1556 | struct outside_network* outnet = (struct outside_network*) |
| 1557 | calloc(1, sizeof(struct outside_network)); |
| 1558 | size_t k; |
| 1559 | if(!outnet) { |
| 1560 | log_err("malloc failed"); |
| 1561 | return NULL((void*)0); |
| 1562 | } |
| 1563 | comm_base_timept(base, &outnet->now_secs, &outnet->now_tv); |
| 1564 | outnet->base = base; |
| 1565 | outnet->num_tcp = num_tcp; |
| 1566 | outnet->max_reuse_tcp_queries = max_reuse_tcp_queries; |
| 1567 | outnet->tcp_reuse_timeout= tcp_reuse_timeout; |
| 1568 | outnet->tcp_auth_query_timeout = tcp_auth_query_timeout; |
| 1569 | outnet->num_tcp_outgoing = 0; |
| 1570 | outnet->infra = infra; |
| 1571 | outnet->rnd = rnd; |
| 1572 | outnet->sslctx = sslctx; |
| 1573 | outnet->tls_use_sni = tls_use_sni; |
| 1574 | #ifdef USE_DNSTAP |
| 1575 | outnet->dtenv = dtenv; |
| 1576 | #else |
| 1577 | (void)dtenv; |
| 1578 | #endif |
| 1579 | outnet->svcd_overhead = 0; |
| 1580 | outnet->want_to_quit = 0; |
| 1581 | outnet->unwanted_threshold = unwanted_threshold; |
| 1582 | outnet->unwanted_action = unwanted_action; |
| 1583 | outnet->unwanted_param = unwanted_param; |
| 1584 | outnet->use_caps_for_id = use_caps_for_id; |
| 1585 | outnet->do_udp = do_udp; |
| 1586 | outnet->tcp_mss = tcp_mss; |
| 1587 | outnet->ip_dscp = dscp; |
| 1588 | #ifndef S_SPLINT_S |
| 1589 | if(delayclose) { |
| 1590 | outnet->delayclose = 1; |
| 1591 | outnet->delay_tv.tv_sec = delayclose/1000; |
| 1592 | outnet->delay_tv.tv_usec = (delayclose%1000)*1000; |
| 1593 | } |
| 1594 | #endif |
| 1595 | if(udp_connect) { |
| 1596 | outnet->udp_connect = 1; |
| 1597 | } |
| 1598 | if(numavailports == 0 || num_ports == 0) { |
| 1599 | log_err("no outgoing ports available"); |
| 1600 | outside_network_delete(outnet); |
| 1601 | return NULL((void*)0); |
| 1602 | } |
| 1603 | #ifndef INET6 |
| 1604 | do_ip6 = 0; |
| 1605 | #endif |
| 1606 | calc_num46(ifs, num_ifs, do_ip4, do_ip6, |
| 1607 | &outnet->num_ip4, &outnet->num_ip6); |
| 1608 | if(outnet->num_ip4 != 0) { |
| 1609 | if(!(outnet->ip4_ifs = (struct port_if*)calloc( |
| 1610 | (size_t)outnet->num_ip4, sizeof(struct port_if)))) { |
| 1611 | log_err("malloc failed"); |
| 1612 | outside_network_delete(outnet); |
| 1613 | return NULL((void*)0); |
| 1614 | } |
| 1615 | } |
| 1616 | if(outnet->num_ip6 != 0) { |
| 1617 | if(!(outnet->ip6_ifs = (struct port_if*)calloc( |
| 1618 | (size_t)outnet->num_ip6, sizeof(struct port_if)))) { |
| 1619 | log_err("malloc failed"); |
| 1620 | outside_network_delete(outnet); |
| 1621 | return NULL((void*)0); |
| 1622 | } |
| 1623 | } |
| 1624 | if( !(outnet->udp_buff = sldns_buffer_new(bufsize)) || |
| 1625 | !(outnet->pending = rbtree_create(pending_cmp)) || |
| 1626 | !(outnet->serviced = rbtree_create(serviced_cmp)) || |
| 1627 | !create_pending_tcp(outnet, bufsize)) { |
| 1628 | log_err("malloc failed"); |
| 1629 | outside_network_delete(outnet); |
| 1630 | return NULL((void*)0); |
| 1631 | } |
| 1632 | rbtree_init(&outnet->tcp_reuse, reuse_cmp); |
| 1633 | outnet->tcp_reuse_max = num_tcp; |
| 1634 | |
| 1635 | /* allocate commpoints */ |
| 1636 | for(k=0; k<num_ports; k++) { |
| 1637 | struct port_comm* pc; |
| 1638 | pc = (struct port_comm*)calloc(1, sizeof(*pc)); |
| 1639 | if(!pc) { |
| 1640 | log_err("malloc failed"); |
| 1641 | outside_network_delete(outnet); |
| 1642 | return NULL((void*)0); |
| 1643 | } |
| 1644 | pc->cp = comm_point_create_udp(outnet->base, -1, |
| 1645 | outnet->udp_buff, outnet_udp_cb, outnet, NULL((void*)0)); |
| 1646 | if(!pc->cp) { |
| 1647 | log_err("malloc failed"); |
| 1648 | free(pc); |
| 1649 | outside_network_delete(outnet); |
| 1650 | return NULL((void*)0); |
| 1651 | } |
| 1652 | pc->next = outnet->unused_fds; |
| 1653 | outnet->unused_fds = pc; |
| 1654 | } |
| 1655 | |
| 1656 | /* allocate interfaces */ |
| 1657 | if(num_ifs == 0) { |
| 1658 | if(do_ip4 && !setup_if(&outnet->ip4_ifs[0], "0.0.0.0", |
| 1659 | availports, numavailports, num_ports)) { |
| 1660 | log_err("malloc failed"); |
| 1661 | outside_network_delete(outnet); |
| 1662 | return NULL((void*)0); |
| 1663 | } |
| 1664 | if(do_ip6 && !setup_if(&outnet->ip6_ifs[0], "::", |
| 1665 | availports, numavailports, num_ports)) { |
| 1666 | log_err("malloc failed"); |
| 1667 | outside_network_delete(outnet); |
| 1668 | return NULL((void*)0); |
| 1669 | } |
| 1670 | } else { |
| 1671 | size_t done_4 = 0, done_6 = 0; |
| 1672 | int i; |
| 1673 | for(i=0; i<num_ifs; i++) { |
| 1674 | if(str_is_ip6(ifs[i]) && do_ip6) { |
| 1675 | if(!setup_if(&outnet->ip6_ifs[done_6], ifs[i], |
| 1676 | availports, numavailports, num_ports)){ |
| 1677 | log_err("malloc failed"); |
| 1678 | outside_network_delete(outnet); |
| 1679 | return NULL((void*)0); |
| 1680 | } |
| 1681 | done_6++; |
| 1682 | } |
| 1683 | if(!str_is_ip6(ifs[i]) && do_ip4) { |
| 1684 | if(!setup_if(&outnet->ip4_ifs[done_4], ifs[i], |
| 1685 | availports, numavailports, num_ports)){ |
| 1686 | log_err("malloc failed"); |
| 1687 | outside_network_delete(outnet); |
| 1688 | return NULL((void*)0); |
| 1689 | } |
| 1690 | done_4++; |
| 1691 | } |
| 1692 | } |
| 1693 | } |
| 1694 | return outnet; |
| 1695 | } |
| 1696 | |
| 1697 | /** helper pending delete */ |
| 1698 | static void |
| 1699 | pending_node_del(rbnode_type* node, void* arg) |
| 1700 | { |
| 1701 | struct pending* pend = (struct pending*)node; |
| 1702 | struct outside_network* outnet = (struct outside_network*)arg; |
| 1703 | pending_delete(outnet, pend); |
| 1704 | } |
| 1705 | |
| 1706 | /** helper serviced delete */ |
| 1707 | static void |
| 1708 | serviced_node_del(rbnode_type* node, void* ATTR_UNUSED(arg)arg __attribute__((unused))) |
| 1709 | { |
| 1710 | struct serviced_query* sq = (struct serviced_query*)node; |
| 1711 | struct service_callback* p = sq->cblist, *np; |
| 1712 | free(sq->qbuf); |
| 1713 | free(sq->zone); |
| 1714 | free(sq->tls_auth_name); |
| 1715 | edns_opt_list_free(sq->opt_list); |
| 1716 | while(p) { |
| 1717 | np = p->next; |
| 1718 | free(p); |
| 1719 | p = np; |
| 1720 | } |
| 1721 | free(sq); |
| 1722 | } |
| 1723 | |
| 1724 | void |
| 1725 | outside_network_quit_prepare(struct outside_network* outnet) |
| 1726 | { |
| 1727 | if(!outnet) |
| 1728 | return; |
| 1729 | /* prevent queued items from being sent */ |
| 1730 | outnet->want_to_quit = 1; |
| 1731 | } |
| 1732 | |
| 1733 | void |
| 1734 | outside_network_delete(struct outside_network* outnet) |
| 1735 | { |
| 1736 | if(!outnet) |
| 1737 | return; |
| 1738 | outnet->want_to_quit = 1; |
| 1739 | /* check every element, since we can be called on malloc error */ |
| 1740 | if(outnet->pending) { |
| 1741 | /* free pending elements, but do no unlink from tree. */ |
| 1742 | traverse_postorder(outnet->pending, pending_node_del, NULL((void*)0)); |
| 1743 | free(outnet->pending); |
| 1744 | } |
| 1745 | if(outnet->serviced) { |
| 1746 | traverse_postorder(outnet->serviced, serviced_node_del, NULL((void*)0)); |
| 1747 | free(outnet->serviced); |
| 1748 | } |
| 1749 | if(outnet->udp_buff) |
| 1750 | sldns_buffer_free(outnet->udp_buff); |
| 1751 | if(outnet->unused_fds) { |
| 1752 | struct port_comm* p = outnet->unused_fds, *np; |
| 1753 | while(p) { |
| 1754 | np = p->next; |
| 1755 | comm_point_delete(p->cp); |
| 1756 | free(p); |
| 1757 | p = np; |
| 1758 | } |
| 1759 | outnet->unused_fds = NULL((void*)0); |
| 1760 | } |
| 1761 | if(outnet->ip4_ifs) { |
| 1762 | int i, k; |
| 1763 | for(i=0; i<outnet->num_ip4; i++) { |
| 1764 | for(k=0; k<outnet->ip4_ifs[i].inuse; k++) { |
| 1765 | struct port_comm* pc = outnet->ip4_ifs[i]. |
| 1766 | out[k]; |
| 1767 | comm_point_delete(pc->cp); |
| 1768 | free(pc); |
| 1769 | } |
| 1770 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 |
| 1771 | free(outnet->ip4_ifs[i].avail_ports); |
| 1772 | #endif |
| 1773 | free(outnet->ip4_ifs[i].out); |
| 1774 | } |
| 1775 | free(outnet->ip4_ifs); |
| 1776 | } |
| 1777 | if(outnet->ip6_ifs) { |
| 1778 | int i, k; |
| 1779 | for(i=0; i<outnet->num_ip6; i++) { |
| 1780 | for(k=0; k<outnet->ip6_ifs[i].inuse; k++) { |
| 1781 | struct port_comm* pc = outnet->ip6_ifs[i]. |
| 1782 | out[k]; |
| 1783 | comm_point_delete(pc->cp); |
| 1784 | free(pc); |
| 1785 | } |
| 1786 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 |
| 1787 | free(outnet->ip6_ifs[i].avail_ports); |
| 1788 | #endif |
| 1789 | free(outnet->ip6_ifs[i].out); |
| 1790 | } |
| 1791 | free(outnet->ip6_ifs); |
| 1792 | } |
| 1793 | if(outnet->tcp_conns) { |
| 1794 | size_t i; |
| 1795 | for(i=0; i<outnet->num_tcp; i++) |
| 1796 | if(outnet->tcp_conns[i]) { |
| 1797 | struct pending_tcp* pend; |
| 1798 | pend = outnet->tcp_conns[i]; |
| 1799 | if(pend->reuse.item_on_lru_list) { |
| 1800 | /* delete waiting_tcp elements that |
| 1801 | * the tcp conn is working on */ |
| 1802 | decommission_pending_tcp(outnet, pend); |
| 1803 | } |
| 1804 | comm_point_delete(outnet->tcp_conns[i]->c); |
| 1805 | free(outnet->tcp_conns[i]); |
| 1806 | outnet->tcp_conns[i] = NULL((void*)0); |
| 1807 | } |
| 1808 | free(outnet->tcp_conns); |
| 1809 | outnet->tcp_conns = NULL((void*)0); |
| 1810 | } |
| 1811 | if(outnet->tcp_wait_first) { |
| 1812 | struct waiting_tcp* p = outnet->tcp_wait_first, *np; |
| 1813 | while(p) { |
| 1814 | np = p->next_waiting; |
| 1815 | waiting_tcp_delete(p); |
| 1816 | p = np; |
| 1817 | } |
| 1818 | } |
| 1819 | /* was allocated in struct pending that was deleted above */ |
| 1820 | rbtree_init(&outnet->tcp_reuse, reuse_cmp); |
| 1821 | outnet->tcp_reuse_first = NULL((void*)0); |
| 1822 | outnet->tcp_reuse_last = NULL((void*)0); |
| 1823 | if(outnet->udp_wait_first) { |
| 1824 | struct pending* p = outnet->udp_wait_first, *np; |
| 1825 | while(p) { |
| 1826 | np = p->next_waiting; |
| 1827 | pending_delete(NULL((void*)0), p); |
| 1828 | p = np; |
| 1829 | } |
| 1830 | } |
| 1831 | free(outnet); |
| 1832 | } |
| 1833 | |
| 1834 | void |
| 1835 | pending_delete(struct outside_network* outnet, struct pending* p) |
| 1836 | { |
| 1837 | if(!p) |
| 1838 | return; |
| 1839 | if(outnet && outnet->udp_wait_first && |
| 1840 | (p->next_waiting || p == outnet->udp_wait_last) ) { |
| 1841 | /* delete from waiting list, if it is in the waiting list */ |
| 1842 | struct pending* prev = NULL((void*)0), *x = outnet->udp_wait_first; |
| 1843 | while(x && x != p) { |
| 1844 | prev = x; |
| 1845 | x = x->next_waiting; |
| 1846 | } |
| 1847 | if(x) { |
| 1848 | log_assert(x == p); |
| 1849 | if(prev) |
| 1850 | prev->next_waiting = p->next_waiting; |
| 1851 | else outnet->udp_wait_first = p->next_waiting; |
| 1852 | if(outnet->udp_wait_last == p) |
| 1853 | outnet->udp_wait_last = prev; |
| 1854 | } |
| 1855 | } |
| 1856 | if(outnet) { |
| 1857 | (void)rbtree_delete(outnet->pending, p->node.key); |
| 1858 | } |
| 1859 | if(p->timer) |
| 1860 | comm_timer_delete(p->timer); |
| 1861 | free(p->pkt); |
| 1862 | free(p); |
| 1863 | } |
| 1864 | |
| 1865 | static void |
| 1866 | sai6_putrandom(struct sockaddr_in6 *sa, int pfxlen, struct ub_randstate *rnd) |
| 1867 | { |
| 1868 | int i, last; |
| 1869 | if(!(pfxlen > 0 && pfxlen < 128)) |
| 1870 | return; |
| 1871 | for(i = 0; i < (128 - pfxlen) / 8; i++) { |
| 1872 | sa->sin6_addr.s6_addr__u6_addr.__u6_addr8[15-i] = (uint8_t)ub_random_max(rnd, 256); |
| 1873 | } |
| 1874 | last = pfxlen & 7; |
| 1875 | if(last != 0) { |
| 1876 | sa->sin6_addr.s6_addr__u6_addr.__u6_addr8[15-i] |= |
| 1877 | ((0xFF >> last) & ub_random_max(rnd, 256)); |
| 1878 | } |
| 1879 | } |
| 1880 | |
| 1881 | /** |
| 1882 | * Try to open a UDP socket for outgoing communication. |
| 1883 | * Sets sockets options as needed. |
| 1884 | * @param addr: socket address. |
| 1885 | * @param addrlen: length of address. |
| 1886 | * @param pfxlen: length of network prefix (for address randomisation). |
| 1887 | * @param port: port override for addr. |
| 1888 | * @param inuse: if -1 is returned, this bool means the port was in use. |
| 1889 | * @param rnd: random state (for address randomisation). |
| 1890 | * @param dscp: DSCP to use. |
| 1891 | * @return fd or -1 |
| 1892 | */ |
| 1893 | static int |
| 1894 | udp_sockport(struct sockaddr_storage* addr, socklen_t addrlen, int pfxlen, |
| 1895 | int port, int* inuse, struct ub_randstate* rnd, int dscp) |
| 1896 | { |
| 1897 | int fd, noproto; |
| 1898 | if(addr_is_ip6(addr, addrlen)) { |
| 1899 | int freebind = 0; |
| 1900 | struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr; |
| 1901 | sa.sin6_port = (in_port_t)htons((uint16_t)port)(__uint16_t)(__builtin_constant_p((uint16_t)port) ? (__uint16_t )(((__uint16_t)((uint16_t)port) & 0xffU) << 8 | ((__uint16_t )((uint16_t)port) & 0xff00U) >> 8) : __swap16md((uint16_t )port)); |
| 1902 | sa.sin6_flowinfo = 0; |
| 1903 | sa.sin6_scope_id = 0; |
| 1904 | if(pfxlen != 0) { |
| 1905 | freebind = 1; |
| 1906 | sai6_putrandom(&sa, pfxlen, rnd); |
| 1907 | } |
| 1908 | fd = create_udp_sock(AF_INET624, SOCK_DGRAM2, |
| 1909 | (struct sockaddr*)&sa, addrlen, 1, inuse, &noproto, |
| 1910 | 0, 0, 0, NULL((void*)0), 0, freebind, 0, dscp); |
| 1911 | } else { |
| 1912 | struct sockaddr_in* sa = (struct sockaddr_in*)addr; |
| 1913 | sa->sin_port = (in_port_t)htons((uint16_t)port)(__uint16_t)(__builtin_constant_p((uint16_t)port) ? (__uint16_t )(((__uint16_t)((uint16_t)port) & 0xffU) << 8 | ((__uint16_t )((uint16_t)port) & 0xff00U) >> 8) : __swap16md((uint16_t )port)); |
| 1914 | fd = create_udp_sock(AF_INET2, SOCK_DGRAM2, |
| 1915 | (struct sockaddr*)addr, addrlen, 1, inuse, &noproto, |
| 1916 | 0, 0, 0, NULL((void*)0), 0, 0, 0, dscp); |
| 1917 | } |
| 1918 | return fd; |
| 1919 | } |
| 1920 | |
| 1921 | /** Select random ID */ |
| 1922 | static int |
| 1923 | select_id(struct outside_network* outnet, struct pending* pend, |
| 1924 | sldns_buffer* packet) |
| 1925 | { |
| 1926 | int id_tries = 0; |
| 1927 | pend->id = GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); |
| 1928 | LDNS_ID_SET(sldns_buffer_begin(packet), pend->id)(sldns_write_uint16(sldns_buffer_begin(packet), pend->id)); |
| 1929 | |
| 1930 | /* insert in tree */ |
| 1931 | pend->node.key = pend; |
| 1932 | while(!rbtree_insert(outnet->pending, &pend->node)) { |
| 1933 | /* change ID to avoid collision */ |
| 1934 | pend->id = GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); |
| 1935 | LDNS_ID_SET(sldns_buffer_begin(packet), pend->id)(sldns_write_uint16(sldns_buffer_begin(packet), pend->id)); |
| 1936 | id_tries++; |
| 1937 | if(id_tries == MAX_ID_RETRY1000) { |
| 1938 | pend->id=99999; /* non existant ID */ |
| 1939 | log_err("failed to generate unique ID, drop msg"); |
| 1940 | return 0; |
| 1941 | } |
| 1942 | } |
| 1943 | verbose(VERB_ALGO, "inserted new pending reply id=%4.4x", pend->id); |
| 1944 | return 1; |
| 1945 | } |
| 1946 | |
| 1947 | /** return true is UDP connect error needs to be logged */ |
| 1948 | static int udp_connect_needs_log(int err) |
| 1949 | { |
| 1950 | switch(err) { |
| 1951 | case ECONNREFUSED61: |
| 1952 | # ifdef ENETUNREACH51 |
| 1953 | case ENETUNREACH51: |
| 1954 | # endif |
| 1955 | # ifdef EHOSTDOWN64 |
| 1956 | case EHOSTDOWN64: |
| 1957 | # endif |
| 1958 | # ifdef EHOSTUNREACH65 |
| 1959 | case EHOSTUNREACH65: |
| 1960 | # endif |
| 1961 | # ifdef ENETDOWN50 |
| 1962 | case ENETDOWN50: |
| 1963 | # endif |
| 1964 | case EPERM1: |
| 1965 | if(verbosity >= VERB_ALGO) |
| 1966 | return 1; |
| 1967 | return 0; |
| 1968 | default: |
| 1969 | break; |
| 1970 | } |
| 1971 | return 1; |
| 1972 | } |
| 1973 | |
| 1974 | |
| 1975 | /** Select random interface and port */ |
| 1976 | static int |
| 1977 | select_ifport(struct outside_network* outnet, struct pending* pend, |
| 1978 | int num_if, struct port_if* ifs) |
| 1979 | { |
| 1980 | int my_if, my_port, fd, portno, inuse, tries=0; |
| 1981 | struct port_if* pif; |
| 1982 | /* randomly select interface and port */ |
| 1983 | if(num_if == 0) { |
| 1984 | verbose(VERB_QUERY, "Need to send query but have no " |
| 1985 | "outgoing interfaces of that family"); |
| 1986 | return 0; |
| 1987 | } |
| 1988 | log_assert(outnet->unused_fds); |
| 1989 | tries = 0; |
| 1990 | while(1) { |
| 1991 | my_if = ub_random_max(outnet->rnd, num_if); |
| 1992 | pif = &ifs[my_if]; |
| 1993 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 |
| 1994 | if(outnet->udp_connect) { |
| 1995 | /* if we connect() we cannot reuse fds for a port */ |
| 1996 | if(pif->inuse >= pif->avail_total) { |
| 1997 | tries++; |
| 1998 | if(tries < MAX_PORT_RETRY10000) |
| 1999 | continue; |
| 2000 | log_err("failed to find an open port, drop msg"); |
| 2001 | return 0; |
| 2002 | } |
| 2003 | my_port = pif->inuse + ub_random_max(outnet->rnd, |
| 2004 | pif->avail_total - pif->inuse); |
| 2005 | } else { |
| 2006 | my_port = ub_random_max(outnet->rnd, pif->avail_total); |
| 2007 | if(my_port < pif->inuse) { |
| 2008 | /* port already open */ |
| 2009 | pend->pc = pif->out[my_port]; |
| 2010 | verbose(VERB_ALGO, "using UDP if=%d port=%d", |
| 2011 | my_if, pend->pc->number); |
| 2012 | break; |
| 2013 | } |
| 2014 | } |
| 2015 | /* try to open new port, if fails, loop to try again */ |
| 2016 | log_assert(pif->inuse < pif->maxout); |
| 2017 | portno = pif->avail_ports[my_port - pif->inuse]; |
| 2018 | #else |
| 2019 | my_port = portno = 0; |
Value stored to 'my_port' is never read | |
| 2020 | #endif |
| 2021 | fd = udp_sockport(&pif->addr, pif->addrlen, pif->pfxlen, |
| 2022 | portno, &inuse, outnet->rnd, outnet->ip_dscp); |
| 2023 | if(fd == -1 && !inuse) { |
| 2024 | /* nonrecoverable error making socket */ |
| 2025 | return 0; |
| 2026 | } |
| 2027 | if(fd != -1) { |
| 2028 | verbose(VERB_ALGO, "opened UDP if=%d port=%d", |
| 2029 | my_if, portno); |
| 2030 | if(outnet->udp_connect) { |
| 2031 | /* connect() to the destination */ |
| 2032 | if(connect(fd, (struct sockaddr*)&pend->addr, |
| 2033 | pend->addrlen) < 0) { |
| 2034 | if(udp_connect_needs_log(errno(*__errno()))) { |
| 2035 | log_err_addr("udp connect failed", |
| 2036 | strerror(errno(*__errno())), &pend->addr, |
| 2037 | pend->addrlen); |
| 2038 | } |
| 2039 | sock_close(fd); |
| 2040 | return 0; |
| 2041 | } |
| 2042 | } |
| 2043 | /* grab fd */ |
| 2044 | pend->pc = outnet->unused_fds; |
| 2045 | outnet->unused_fds = pend->pc->next; |
| 2046 | |
| 2047 | /* setup portcomm */ |
| 2048 | pend->pc->next = NULL((void*)0); |
| 2049 | pend->pc->number = portno; |
| 2050 | pend->pc->pif = pif; |
| 2051 | pend->pc->index = pif->inuse; |
| 2052 | pend->pc->num_outstanding = 0; |
| 2053 | comm_point_start_listening(pend->pc->cp, fd, -1); |
| 2054 | |
| 2055 | /* grab port in interface */ |
| 2056 | pif->out[pif->inuse] = pend->pc; |
| 2057 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 |
| 2058 | pif->avail_ports[my_port - pif->inuse] = |
| 2059 | pif->avail_ports[pif->avail_total-pif->inuse-1]; |
| 2060 | #endif |
| 2061 | pif->inuse++; |
| 2062 | break; |
| 2063 | } |
| 2064 | /* failed, already in use */ |
| 2065 | verbose(VERB_QUERY, "port %d in use, trying another", portno); |
| 2066 | tries++; |
| 2067 | if(tries == MAX_PORT_RETRY10000) { |
| 2068 | log_err("failed to find an open port, drop msg"); |
| 2069 | return 0; |
| 2070 | } |
| 2071 | } |
| 2072 | log_assert(pend->pc); |
| 2073 | pend->pc->num_outstanding++; |
| 2074 | |
| 2075 | return 1; |
| 2076 | } |
| 2077 | |
| 2078 | static int |
| 2079 | randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, int timeout) |
| 2080 | { |
| 2081 | struct timeval tv; |
| 2082 | struct outside_network* outnet = pend->sq->outnet; |
| 2083 | |
| 2084 | /* select id */ |
| 2085 | if(!select_id(outnet, pend, packet)) { |
| 2086 | return 0; |
| 2087 | } |
| 2088 | |
| 2089 | /* select src_if, port */ |
| 2090 | if(addr_is_ip6(&pend->addr, pend->addrlen)) { |
| 2091 | if(!select_ifport(outnet, pend, |
| 2092 | outnet->num_ip6, outnet->ip6_ifs)) |
| 2093 | return 0; |
| 2094 | } else { |
| 2095 | if(!select_ifport(outnet, pend, |
| 2096 | outnet->num_ip4, outnet->ip4_ifs)) |
| 2097 | return 0; |
| 2098 | } |
| 2099 | log_assert(pend->pc && pend->pc->cp); |
| 2100 | |
| 2101 | /* send it over the commlink */ |
| 2102 | if(!comm_point_send_udp_msg(pend->pc->cp, packet, |
| 2103 | (struct sockaddr*)&pend->addr, pend->addrlen, outnet->udp_connect)) { |
| 2104 | portcomm_loweruse(outnet, pend->pc); |
| 2105 | return 0; |
| 2106 | } |
| 2107 | |
| 2108 | /* system calls to set timeout after sending UDP to make roundtrip |
| 2109 | smaller. */ |
| 2110 | #ifndef S_SPLINT_S |
| 2111 | tv.tv_sec = timeout/1000; |
| 2112 | tv.tv_usec = (timeout%1000)*1000; |
| 2113 | #endif |
| 2114 | comm_timer_set(pend->timer, &tv); |
| 2115 | |
| 2116 | #ifdef USE_DNSTAP |
| 2117 | /* |
| 2118 | * sending src (local service)/dst (upstream) addresses over DNSTAP |
| 2119 | * There are no chances to get the src (local service) addr if unbound |
| 2120 | * is not configured with specific outgoing IP-addresses. So we will |
| 2121 | * pass 0.0.0.0 (::) to argument for |
| 2122 | * dt_msg_send_outside_query()/dt_msg_send_outside_response() calls. |
| 2123 | */ |
| 2124 | if(outnet->dtenv && |
| 2125 | (outnet->dtenv->log_resolver_query_messages || |
| 2126 | outnet->dtenv->log_forwarder_query_messages)) { |
| 2127 | log_addr(VERB_ALGO, "from local addr", &pend->pc->pif->addr, pend->pc->pif->addrlen); |
| 2128 | log_addr(VERB_ALGO, "request to upstream", &pend->addr, pend->addrlen); |
| 2129 | dt_msg_send_outside_query(outnet->dtenv, &pend->addr, &pend->pc->pif->addr, comm_udp, |
| 2130 | pend->sq->zone, pend->sq->zonelen, packet); |
| 2131 | } |
| 2132 | #endif |
| 2133 | return 1; |
| 2134 | } |
| 2135 | |
| 2136 | struct pending* |
| 2137 | pending_udp_query(struct serviced_query* sq, struct sldns_buffer* packet, |
| 2138 | int timeout, comm_point_callback_type* cb, void* cb_arg) |
| 2139 | { |
| 2140 | struct pending* pend = (struct pending*)calloc(1, sizeof(*pend)); |
| 2141 | if(!pend) return NULL((void*)0); |
| 2142 | pend->outnet = sq->outnet; |
| 2143 | pend->sq = sq; |
| 2144 | pend->addrlen = sq->addrlen; |
| 2145 | memmove(&pend->addr, &sq->addr, sq->addrlen); |
| 2146 | pend->cb = cb; |
| 2147 | pend->cb_arg = cb_arg; |
| 2148 | pend->node.key = pend; |
| 2149 | pend->timer = comm_timer_create(sq->outnet->base, pending_udp_timer_cb, |
| 2150 | pend); |
| 2151 | if(!pend->timer) { |
| 2152 | free(pend); |
| 2153 | return NULL((void*)0); |
| 2154 | } |
| 2155 | |
| 2156 | if(sq->outnet->unused_fds == NULL((void*)0)) { |
| 2157 | /* no unused fd, cannot create a new port (randomly) */ |
| 2158 | verbose(VERB_ALGO, "no fds available, udp query waiting"); |
| 2159 | pend->timeout = timeout; |
| 2160 | pend->pkt_len = sldns_buffer_limit(packet); |
| 2161 | pend->pkt = (uint8_t*)memdup(sldns_buffer_begin(packet), |
| 2162 | pend->pkt_len); |
| 2163 | if(!pend->pkt) { |
| 2164 | comm_timer_delete(pend->timer); |
| 2165 | free(pend); |
| 2166 | return NULL((void*)0); |
| 2167 | } |
| 2168 | /* put at end of waiting list */ |
| 2169 | if(sq->outnet->udp_wait_last) |
| 2170 | sq->outnet->udp_wait_last->next_waiting = pend; |
| 2171 | else |
| 2172 | sq->outnet->udp_wait_first = pend; |
| 2173 | sq->outnet->udp_wait_last = pend; |
| 2174 | return pend; |
| 2175 | } |
| 2176 | if(!randomize_and_send_udp(pend, packet, timeout)) { |
| 2177 | pending_delete(sq->outnet, pend); |
| 2178 | return NULL((void*)0); |
| 2179 | } |
| 2180 | return pend; |
| 2181 | } |
| 2182 | |
| 2183 | void |
| 2184 | outnet_tcptimer(void* arg) |
| 2185 | { |
| 2186 | struct waiting_tcp* w = (struct waiting_tcp*)arg; |
| 2187 | struct outside_network* outnet = w->outnet; |
| 2188 | verbose(VERB_CLIENT, "outnet_tcptimer"); |
| 2189 | if(w->on_tcp_waiting_list) { |
| 2190 | /* it is on the waiting list */ |
| 2191 | waiting_list_remove(outnet, w); |
| 2192 | waiting_tcp_callback(w, NULL((void*)0), NETEVENT_TIMEOUT-2, NULL((void*)0)); |
| 2193 | waiting_tcp_delete(w); |
| 2194 | } else { |
| 2195 | /* it was in use */ |
| 2196 | struct pending_tcp* pend=(struct pending_tcp*)w->next_waiting; |
| 2197 | reuse_cb_and_decommission(outnet, pend, NETEVENT_TIMEOUT-2); |
| 2198 | } |
| 2199 | use_free_buffer(outnet); |
| 2200 | } |
| 2201 | |
| 2202 | /** close the oldest reuse_tcp connection to make a fd and struct pend |
| 2203 | * available for a new stream connection */ |
| 2204 | static void |
| 2205 | reuse_tcp_close_oldest(struct outside_network* outnet) |
| 2206 | { |
| 2207 | struct reuse_tcp* reuse; |
| 2208 | verbose(VERB_CLIENT, "reuse_tcp_close_oldest"); |
| 2209 | reuse = reuse_tcp_lru_snip(outnet); |
| 2210 | if(!reuse) return; |
| 2211 | /* free up */ |
| 2212 | reuse_cb_and_decommission(outnet, reuse->pending, NETEVENT_CLOSED-1); |
| 2213 | } |
| 2214 | |
| 2215 | static uint16_t |
| 2216 | tcp_select_id(struct outside_network* outnet, struct reuse_tcp* reuse) |
| 2217 | { |
| 2218 | if(reuse) |
| 2219 | return reuse_tcp_select_id(reuse, outnet); |
| 2220 | return GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); |
| 2221 | } |
| 2222 | |
| 2223 | /** find spare ID value for reuse tcp stream. That is random and also does |
| 2224 | * not collide with an existing query ID that is in use or waiting */ |
| 2225 | uint16_t |
| 2226 | reuse_tcp_select_id(struct reuse_tcp* reuse, struct outside_network* outnet) |
| 2227 | { |
| 2228 | uint16_t id = 0, curid, nextid; |
| 2229 | const int try_random = 2000; |
| 2230 | int i; |
| 2231 | unsigned select, count, space; |
| 2232 | rbnode_type* node; |
| 2233 | |
| 2234 | /* make really sure the tree is not empty */ |
| 2235 | if(reuse->tree_by_id.count == 0) { |
| 2236 | id = GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); |
| 2237 | return id; |
| 2238 | } |
| 2239 | |
| 2240 | /* try to find random empty spots by picking them */ |
| 2241 | for(i = 0; i<try_random; i++) { |
| 2242 | id = GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); |
| 2243 | if(!reuse_tcp_by_id_find(reuse, id)) { |
| 2244 | return id; |
| 2245 | } |
| 2246 | } |
| 2247 | |
| 2248 | /* equally pick a random unused element from the tree that is |
| 2249 | * not in use. Pick a the n-th index of an ununused number, |
| 2250 | * then loop over the empty spaces in the tree and find it */ |
| 2251 | log_assert(reuse->tree_by_id.count < 0xffff); |
| 2252 | select = ub_random_max(outnet->rnd, 0xffff - reuse->tree_by_id.count); |
| 2253 | /* select value now in 0 .. num free - 1 */ |
| 2254 | |
| 2255 | count = 0; /* number of free spaces passed by */ |
| 2256 | node = rbtree_first(&reuse->tree_by_id); |
| 2257 | log_assert(node && node != RBTREE_NULL); /* tree not empty */ |
| 2258 | /* see if select is before first node */ |
| 2259 | if(select < tree_by_id_get_id(node)) |
| 2260 | return select; |
| 2261 | count += tree_by_id_get_id(node); |
| 2262 | /* perhaps select is between nodes */ |
| 2263 | while(node && node != RBTREE_NULL&rbtree_null_node) { |
| 2264 | rbnode_type* next = rbtree_next(node); |
| 2265 | if(next && next != RBTREE_NULL&rbtree_null_node) { |
| 2266 | curid = tree_by_id_get_id(node); |
| 2267 | nextid = tree_by_id_get_id(next); |
| 2268 | log_assert(curid < nextid); |
| 2269 | if(curid != 0xffff && curid + 1 < nextid) { |
| 2270 | /* space between nodes */ |
| 2271 | space = nextid - curid - 1; |
| 2272 | log_assert(select >= count); |
| 2273 | if(select < count + space) { |
| 2274 | /* here it is */ |
| 2275 | return curid + 1 + (select - count); |
| 2276 | } |
| 2277 | count += space; |
| 2278 | } |
| 2279 | } |
| 2280 | node = next; |
| 2281 | } |
| 2282 | |
| 2283 | /* select is after the last node */ |
| 2284 | /* count is the number of free positions before the nodes in the |
| 2285 | * tree */ |
| 2286 | node = rbtree_last(&reuse->tree_by_id); |
| 2287 | log_assert(node && node != RBTREE_NULL); /* tree not empty */ |
| 2288 | curid = tree_by_id_get_id(node); |
| 2289 | log_assert(count + (0xffff-curid) + reuse->tree_by_id.count == 0xffff); |
| 2290 | return curid + 1 + (select - count); |
| 2291 | } |
| 2292 | |
| 2293 | struct waiting_tcp* |
| 2294 | pending_tcp_query(struct serviced_query* sq, sldns_buffer* packet, |
| 2295 | int timeout, comm_point_callback_type* callback, void* callback_arg) |
| 2296 | { |
| 2297 | struct pending_tcp* pend = sq->outnet->tcp_free; |
| 2298 | struct reuse_tcp* reuse = NULL((void*)0); |
| 2299 | struct waiting_tcp* w; |
| 2300 | |
| 2301 | verbose(VERB_CLIENT, "pending_tcp_query"); |
| 2302 | if(sldns_buffer_limit(packet) < sizeof(uint16_t)) { |
| 2303 | verbose(VERB_ALGO, "pending tcp query with too short buffer < 2"); |
| 2304 | return NULL((void*)0); |
| 2305 | } |
| 2306 | |
| 2307 | /* find out if a reused stream to the target exists */ |
| 2308 | /* if so, take it into use */ |
| 2309 | reuse = reuse_tcp_find(sq->outnet, &sq->addr, sq->addrlen, |
| 2310 | sq->ssl_upstream); |
| 2311 | if(reuse) { |
| 2312 | log_reuse_tcp(VERB_CLIENT, "pending_tcp_query: found reuse", reuse); |
| 2313 | log_assert(reuse->pending); |
| 2314 | pend = reuse->pending; |
| 2315 | reuse_tcp_lru_touch(sq->outnet, reuse); |
| 2316 | } |
| 2317 | |
| 2318 | log_assert(!reuse || (reuse && pend)); |
| 2319 | /* if !pend but we have reuse streams, close a reuse stream |
| 2320 | * to be able to open a new one to this target, no use waiting |
| 2321 | * to reuse a file descriptor while another query needs to use |
| 2322 | * that buffer and file descriptor now. */ |
| 2323 | if(!pend) { |
| 2324 | reuse_tcp_close_oldest(sq->outnet); |
| 2325 | pend = sq->outnet->tcp_free; |
| 2326 | log_assert(!reuse || (pend == reuse->pending)); |
| 2327 | } |
| 2328 | |
| 2329 | /* allocate space to store query */ |
| 2330 | w = (struct waiting_tcp*)malloc(sizeof(struct waiting_tcp) |
| 2331 | + sldns_buffer_limit(packet)); |
| 2332 | if(!w) { |
| 2333 | return NULL((void*)0); |
| 2334 | } |
| 2335 | if(!(w->timer = comm_timer_create(sq->outnet->base, outnet_tcptimer, w))) { |
| 2336 | free(w); |
| 2337 | return NULL((void*)0); |
| 2338 | } |
| 2339 | w->pkt = (uint8_t*)w + sizeof(struct waiting_tcp); |
| 2340 | w->pkt_len = sldns_buffer_limit(packet); |
| 2341 | memmove(w->pkt, sldns_buffer_begin(packet), w->pkt_len); |
| 2342 | w->id = tcp_select_id(sq->outnet, reuse); |
| 2343 | LDNS_ID_SET(w->pkt, w->id)(sldns_write_uint16(w->pkt, w->id)); |
| 2344 | memcpy(&w->addr, &sq->addr, sq->addrlen); |
| 2345 | w->addrlen = sq->addrlen; |
| 2346 | w->outnet = sq->outnet; |
| 2347 | w->on_tcp_waiting_list = 0; |
| 2348 | w->next_waiting = NULL((void*)0); |
| 2349 | w->cb = callback; |
| 2350 | w->cb_arg = callback_arg; |
| 2351 | w->ssl_upstream = sq->ssl_upstream; |
| 2352 | w->tls_auth_name = sq->tls_auth_name; |
| 2353 | w->timeout = timeout; |
| 2354 | w->id_node.key = NULL((void*)0); |
| 2355 | w->write_wait_prev = NULL((void*)0); |
| 2356 | w->write_wait_next = NULL((void*)0); |
| 2357 | w->write_wait_queued = 0; |
| 2358 | w->error_count = 0; |
| 2359 | #ifdef USE_DNSTAP |
| 2360 | w->sq = NULL((void*)0); |
| 2361 | #endif |
| 2362 | if(pend) { |
| 2363 | /* we have a buffer available right now */ |
| 2364 | if(reuse) { |
| 2365 | log_assert(reuse == &pend->reuse); |
| 2366 | /* reuse existing fd, write query and continue */ |
| 2367 | /* store query in tree by id */ |
| 2368 | verbose(VERB_CLIENT, "pending_tcp_query: reuse, store"); |
| 2369 | w->next_waiting = (void*)pend; |
| 2370 | reuse_tree_by_id_insert(&pend->reuse, w); |
| 2371 | /* can we write right now? */ |
| 2372 | if(pend->query == NULL((void*)0)) { |
| 2373 | /* write straight away */ |
| 2374 | /* stop the timer on read of the fd */ |
| 2375 | comm_point_stop_listening(pend->c); |
| 2376 | pend->query = w; |
| 2377 | outnet_tcp_take_query_setup(pend->c->fd, pend, |
| 2378 | w); |
| 2379 | } else { |
| 2380 | /* put it in the waiting list for |
| 2381 | * this stream */ |
| 2382 | reuse_write_wait_push_back(&pend->reuse, w); |
| 2383 | } |
| 2384 | } else { |
| 2385 | /* create new fd and connect to addr, setup to |
| 2386 | * write query */ |
| 2387 | verbose(VERB_CLIENT, "pending_tcp_query: new fd, connect"); |
| 2388 | rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); |
| 2389 | pend->reuse.pending = pend; |
| 2390 | memcpy(&pend->reuse.addr, &sq->addr, sq->addrlen); |
| 2391 | pend->reuse.addrlen = sq->addrlen; |
| 2392 | if(!outnet_tcp_take_into_use(w)) { |
| 2393 | waiting_tcp_delete(w); |
| 2394 | return NULL((void*)0); |
| 2395 | } |
| 2396 | } |
| 2397 | #ifdef USE_DNSTAP |
| 2398 | if(sq->outnet->dtenv && |
| 2399 | (sq->outnet->dtenv->log_resolver_query_messages || |
| 2400 | sq->outnet->dtenv->log_forwarder_query_messages)) { |
| 2401 | /* use w->pkt, because it has the ID value */ |
| 2402 | sldns_buffer tmp; |
| 2403 | sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len); |
| 2404 | dt_msg_send_outside_query(sq->outnet->dtenv, &sq->addr, |
| 2405 | &pend->pi->addr, comm_tcp, sq->zone, |
| 2406 | sq->zonelen, &tmp); |
| 2407 | } |
| 2408 | #endif |
| 2409 | } else { |
| 2410 | /* queue up */ |
| 2411 | /* waiting for a buffer on the outside network buffer wait |
| 2412 | * list */ |
| 2413 | verbose(VERB_CLIENT, "pending_tcp_query: queue to wait"); |
| 2414 | #ifdef USE_DNSTAP |
| 2415 | w->sq = sq; |
| 2416 | #endif |
| 2417 | outnet_add_tcp_waiting(sq->outnet, w); |
| 2418 | } |
| 2419 | return w; |
| 2420 | } |
| 2421 | |
| 2422 | /** create query for serviced queries */ |
| 2423 | static void |
| 2424 | serviced_gen_query(sldns_buffer* buff, uint8_t* qname, size_t qnamelen, |
| 2425 | uint16_t qtype, uint16_t qclass, uint16_t flags) |
| 2426 | { |
| 2427 | sldns_buffer_clear(buff); |
| 2428 | /* skip id */ |
| 2429 | sldns_buffer_write_u16(buff, flags); |
| 2430 | sldns_buffer_write_u16(buff, 1); /* qdcount */ |
| 2431 | sldns_buffer_write_u16(buff, 0); /* ancount */ |
| 2432 | sldns_buffer_write_u16(buff, 0); /* nscount */ |
| 2433 | sldns_buffer_write_u16(buff, 0); /* arcount */ |
| 2434 | sldns_buffer_write(buff, qname, qnamelen); |
| 2435 | sldns_buffer_write_u16(buff, qtype); |
| 2436 | sldns_buffer_write_u16(buff, qclass); |
| 2437 | sldns_buffer_flip(buff); |
| 2438 | } |
| 2439 | |
| 2440 | /** lookup serviced query in serviced query rbtree */ |
| 2441 | static struct serviced_query* |
| 2442 | lookup_serviced(struct outside_network* outnet, sldns_buffer* buff, int dnssec, |
| 2443 | struct sockaddr_storage* addr, socklen_t addrlen, |
| 2444 | struct edns_option* opt_list) |
| 2445 | { |
| 2446 | struct serviced_query key; |
| 2447 | key.node.key = &key; |
| 2448 | key.qbuf = sldns_buffer_begin(buff); |
| 2449 | key.qbuflen = sldns_buffer_limit(buff); |
| 2450 | key.dnssec = dnssec; |
| 2451 | memcpy(&key.addr, addr, addrlen); |
| 2452 | key.addrlen = addrlen; |
| 2453 | key.outnet = outnet; |
| 2454 | key.opt_list = opt_list; |
| 2455 | return (struct serviced_query*)rbtree_search(outnet->serviced, &key); |
| 2456 | } |
| 2457 | |
| 2458 | /** Create new serviced entry */ |
| 2459 | static struct serviced_query* |
| 2460 | serviced_create(struct outside_network* outnet, sldns_buffer* buff, int dnssec, |
| 2461 | int want_dnssec, int nocaps, int tcp_upstream, int ssl_upstream, |
| 2462 | char* tls_auth_name, struct sockaddr_storage* addr, socklen_t addrlen, |
| 2463 | uint8_t* zone, size_t zonelen, int qtype, struct edns_option* opt_list, |
| 2464 | size_t pad_queries_block_size) |
| 2465 | { |
| 2466 | struct serviced_query* sq = (struct serviced_query*)malloc(sizeof(*sq)); |
| 2467 | #ifdef UNBOUND_DEBUG |
| 2468 | rbnode_type* ins; |
| 2469 | #endif |
| 2470 | if(!sq) |
| 2471 | return NULL((void*)0); |
| 2472 | sq->node.key = sq; |
| 2473 | sq->qbuf = memdup(sldns_buffer_begin(buff), sldns_buffer_limit(buff)); |
| 2474 | if(!sq->qbuf) { |
| 2475 | free(sq); |
| 2476 | return NULL((void*)0); |
| 2477 | } |
| 2478 | sq->qbuflen = sldns_buffer_limit(buff); |
| 2479 | sq->zone = memdup(zone, zonelen); |
| 2480 | if(!sq->zone) { |
| 2481 | free(sq->qbuf); |
| 2482 | free(sq); |
| 2483 | return NULL((void*)0); |
| 2484 | } |
| 2485 | sq->zonelen = zonelen; |
| 2486 | sq->qtype = qtype; |
| 2487 | sq->dnssec = dnssec; |
| 2488 | sq->want_dnssec = want_dnssec; |
| 2489 | sq->nocaps = nocaps; |
| 2490 | sq->tcp_upstream = tcp_upstream; |
| 2491 | sq->ssl_upstream = ssl_upstream; |
| 2492 | if(tls_auth_name) { |
| 2493 | sq->tls_auth_name = strdup(tls_auth_name); |
| 2494 | if(!sq->tls_auth_name) { |
| 2495 | free(sq->zone); |
| 2496 | free(sq->qbuf); |
| 2497 | free(sq); |
| 2498 | return NULL((void*)0); |
| 2499 | } |
| 2500 | } else { |
| 2501 | sq->tls_auth_name = NULL((void*)0); |
| 2502 | } |
| 2503 | memcpy(&sq->addr, addr, addrlen); |
| 2504 | sq->addrlen = addrlen; |
| 2505 | sq->opt_list = NULL((void*)0); |
| 2506 | if(opt_list) { |
| 2507 | sq->opt_list = edns_opt_copy_alloc(opt_list); |
| 2508 | if(!sq->opt_list) { |
| 2509 | free(sq->tls_auth_name); |
| 2510 | free(sq->zone); |
| 2511 | free(sq->qbuf); |
| 2512 | free(sq); |
| 2513 | return NULL((void*)0); |
| 2514 | } |
| 2515 | } |
| 2516 | sq->outnet = outnet; |
| 2517 | sq->cblist = NULL((void*)0); |
| 2518 | sq->pending = NULL((void*)0); |
| 2519 | sq->status = serviced_initial; |
| 2520 | sq->retry = 0; |
| 2521 | sq->to_be_deleted = 0; |
| 2522 | sq->padding_block_size = pad_queries_block_size; |
| 2523 | #ifdef UNBOUND_DEBUG |
| 2524 | ins = |
| 2525 | #else |
| 2526 | (void) |
| 2527 | #endif |
| 2528 | rbtree_insert(outnet->serviced, &sq->node); |
| 2529 | log_assert(ins != NULL); /* must not be already present */ |
| 2530 | return sq; |
| 2531 | } |
| 2532 | |
| 2533 | /** remove waiting tcp from the outnet waiting list */ |
| 2534 | static void |
| 2535 | waiting_list_remove(struct outside_network* outnet, struct waiting_tcp* w) |
| 2536 | { |
| 2537 | struct waiting_tcp* p = outnet->tcp_wait_first, *prev = NULL((void*)0); |
| 2538 | w->on_tcp_waiting_list = 0; |
| 2539 | while(p) { |
| 2540 | if(p == w) { |
| 2541 | /* remove w */ |
| 2542 | if(prev) |
| 2543 | prev->next_waiting = w->next_waiting; |
| 2544 | else outnet->tcp_wait_first = w->next_waiting; |
| 2545 | if(outnet->tcp_wait_last == w) |
| 2546 | outnet->tcp_wait_last = prev; |
| 2547 | return; |
| 2548 | } |
| 2549 | prev = p; |
| 2550 | p = p->next_waiting; |
| 2551 | } |
| 2552 | /* waiting_list_remove is currently called only with items that are |
| 2553 | * already in the waiting list. */ |
| 2554 | log_assert(0); |
| 2555 | } |
| 2556 | |
| 2557 | /** reuse tcp stream, remove serviced query from stream, |
| 2558 | * return true if the stream is kept, false if it is to be closed */ |
| 2559 | static int |
| 2560 | reuse_tcp_remove_serviced_keep(struct waiting_tcp* w, |
| 2561 | struct serviced_query* sq) |
| 2562 | { |
| 2563 | struct pending_tcp* pend_tcp = (struct pending_tcp*)w->next_waiting; |
| 2564 | verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep"); |
| 2565 | /* remove the callback. let query continue to write to not cancel |
| 2566 | * the stream itself. also keep it as an entry in the tree_by_id, |
| 2567 | * in case the answer returns (that we no longer want), but we cannot |
| 2568 | * pick the same ID number meanwhile */ |
| 2569 | w->cb = NULL((void*)0); |
| 2570 | /* see if can be entered in reuse tree |
| 2571 | * for that the FD has to be non-1 */ |
| 2572 | if(pend_tcp->c->fd == -1) { |
| 2573 | verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: -1 fd"); |
| 2574 | return 0; |
| 2575 | } |
| 2576 | /* if in tree and used by other queries */ |
| 2577 | if(pend_tcp->reuse.node.key) { |
| 2578 | verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: in use by other queries"); |
| 2579 | /* do not reset the keepalive timer, for that |
| 2580 | * we'd need traffic, and this is where the serviced is |
| 2581 | * removed due to state machine internal reasons, |
| 2582 | * eg. iterator no longer interested in this query */ |
| 2583 | return 1; |
| 2584 | } |
| 2585 | /* if still open and want to keep it open */ |
| 2586 | if(pend_tcp->c->fd != -1 && sq->outnet->tcp_reuse.count < |
| 2587 | sq->outnet->tcp_reuse_max) { |
| 2588 | verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: keep open"); |
| 2589 | /* set a keepalive timer on it */ |
| 2590 | if(!reuse_tcp_insert(sq->outnet, pend_tcp)) { |
| 2591 | return 0; |
| 2592 | } |
| 2593 | reuse_tcp_setup_timeout(pend_tcp, sq->outnet->tcp_reuse_timeout); |
| 2594 | return 1; |
| 2595 | } |
| 2596 | return 0; |
| 2597 | } |
| 2598 | |
| 2599 | /** cleanup serviced query entry */ |
| 2600 | static void |
| 2601 | serviced_delete(struct serviced_query* sq) |
| 2602 | { |
| 2603 | verbose(VERB_CLIENT, "serviced_delete"); |
| 2604 | if(sq->pending) { |
| 2605 | /* clear up the pending query */ |
| 2606 | if(sq->status == serviced_query_UDP_EDNS || |
| 2607 | sq->status == serviced_query_UDP || |
| 2608 | sq->status == serviced_query_UDP_EDNS_FRAG || |
| 2609 | sq->status == serviced_query_UDP_EDNS_fallback) { |
| 2610 | struct pending* p = (struct pending*)sq->pending; |
| 2611 | verbose(VERB_CLIENT, "serviced_delete: UDP"); |
| 2612 | if(p->pc) |
| 2613 | portcomm_loweruse(sq->outnet, p->pc); |
| 2614 | pending_delete(sq->outnet, p); |
| 2615 | /* this call can cause reentrant calls back into the |
| 2616 | * mesh */ |
| 2617 | outnet_send_wait_udp(sq->outnet); |
| 2618 | } else { |
| 2619 | struct waiting_tcp* w = (struct waiting_tcp*) |
| 2620 | sq->pending; |
| 2621 | verbose(VERB_CLIENT, "serviced_delete: TCP"); |
| 2622 | /* if on stream-write-waiting list then |
| 2623 | * remove from waiting list and waiting_tcp_delete */ |
| 2624 | if(w->write_wait_queued) { |
| 2625 | struct pending_tcp* pend = |
| 2626 | (struct pending_tcp*)w->next_waiting; |
| 2627 | verbose(VERB_CLIENT, "serviced_delete: writewait"); |
| 2628 | reuse_tree_by_id_delete(&pend->reuse, w); |
| 2629 | reuse_write_wait_remove(&pend->reuse, w); |
| 2630 | waiting_tcp_delete(w); |
| 2631 | } else if(!w->on_tcp_waiting_list) { |
| 2632 | struct pending_tcp* pend = |
| 2633 | (struct pending_tcp*)w->next_waiting; |
| 2634 | verbose(VERB_CLIENT, "serviced_delete: tcpreusekeep"); |
| 2635 | if(!reuse_tcp_remove_serviced_keep(w, sq)) { |
| 2636 | reuse_cb_and_decommission(sq->outnet, |
| 2637 | pend, NETEVENT_CLOSED-1); |
| 2638 | use_free_buffer(sq->outnet); |
| 2639 | } |
| 2640 | sq->pending = NULL((void*)0); |
| 2641 | } else { |
| 2642 | verbose(VERB_CLIENT, "serviced_delete: tcpwait"); |
| 2643 | waiting_list_remove(sq->outnet, w); |
| 2644 | waiting_tcp_delete(w); |
| 2645 | } |
| 2646 | } |
| 2647 | } |
| 2648 | /* does not delete from tree, caller has to do that */ |
| 2649 | serviced_node_del(&sq->node, NULL((void*)0)); |
| 2650 | } |
| 2651 | |
| 2652 | /** perturb a dname capitalization randomly */ |
| 2653 | static void |
| 2654 | serviced_perturb_qname(struct ub_randstate* rnd, uint8_t* qbuf, size_t len) |
| 2655 | { |
| 2656 | uint8_t lablen; |
| 2657 | uint8_t* d = qbuf + 10; |
| 2658 | long int random = 0; |
| 2659 | int bits = 0; |
| 2660 | log_assert(len >= 10 + 5 /* offset qname, root, qtype, qclass */); |
| 2661 | (void)len; |
| 2662 | lablen = *d++; |
| 2663 | while(lablen) { |
| 2664 | while(lablen--) { |
| 2665 | /* only perturb A-Z, a-z */ |
| 2666 | if(isalpha((unsigned char)*d)) { |
| 2667 | /* get a random bit */ |
| 2668 | if(bits == 0) { |
| 2669 | random = ub_random(rnd); |
| 2670 | bits = 30; |
| 2671 | } |
| 2672 | if(random & 0x1) { |
| 2673 | *d = (uint8_t)toupper((unsigned char)*d); |
| 2674 | } else { |
| 2675 | *d = (uint8_t)tolower((unsigned char)*d); |
| 2676 | } |
| 2677 | random >>= 1; |
| 2678 | bits--; |
| 2679 | } |
| 2680 | d++; |
| 2681 | } |
| 2682 | lablen = *d++; |
| 2683 | } |
| 2684 | if(verbosity >= VERB_ALGO) { |
| 2685 | char buf[LDNS_MAX_DOMAINLEN255+1]; |
| 2686 | dname_str(qbuf+10, buf); |
| 2687 | verbose(VERB_ALGO, "qname perturbed to %s", buf); |
| 2688 | } |
| 2689 | } |
| 2690 | |
| 2691 | /** put serviced query into a buffer */ |
| 2692 | static void |
| 2693 | serviced_encode(struct serviced_query* sq, sldns_buffer* buff, int with_edns) |
| 2694 | { |
| 2695 | /* if we are using 0x20 bits for ID randomness, perturb them */ |
| 2696 | if(sq->outnet->use_caps_for_id && !sq->nocaps) { |
| 2697 | serviced_perturb_qname(sq->outnet->rnd, sq->qbuf, sq->qbuflen); |
| 2698 | } |
| 2699 | /* generate query */ |
| 2700 | sldns_buffer_clear(buff); |
| 2701 | sldns_buffer_write_u16(buff, 0); /* id placeholder */ |
| 2702 | sldns_buffer_write(buff, sq->qbuf, sq->qbuflen); |
| 2703 | sldns_buffer_flip(buff); |
| 2704 | if(with_edns) { |
| 2705 | /* add edns section */ |
| 2706 | struct edns_data edns; |
| 2707 | struct edns_option padding_option; |
| 2708 | edns.edns_present = 1; |
| 2709 | edns.ext_rcode = 0; |
| 2710 | edns.edns_version = EDNS_ADVERTISED_VERSION0; |
| 2711 | edns.opt_list = sq->opt_list; |
| 2712 | if(sq->status == serviced_query_UDP_EDNS_FRAG) { |
| 2713 | if(addr_is_ip6(&sq->addr, sq->addrlen)) { |
| 2714 | if(EDNS_FRAG_SIZE_IP61232 < EDNS_ADVERTISED_SIZE) |
| 2715 | edns.udp_size = EDNS_FRAG_SIZE_IP61232; |
| 2716 | else edns.udp_size = EDNS_ADVERTISED_SIZE; |
| 2717 | } else { |
| 2718 | if(EDNS_FRAG_SIZE_IP41472 < EDNS_ADVERTISED_SIZE) |
| 2719 | edns.udp_size = EDNS_FRAG_SIZE_IP41472; |
| 2720 | else edns.udp_size = EDNS_ADVERTISED_SIZE; |
| 2721 | } |
| 2722 | } else { |
| 2723 | edns.udp_size = EDNS_ADVERTISED_SIZE; |
| 2724 | } |
| 2725 | edns.bits = 0; |
| 2726 | if(sq->dnssec & EDNS_DO0x8000) |
| 2727 | edns.bits = EDNS_DO0x8000; |
| 2728 | if(sq->dnssec & BIT_CD0x0010) |
| 2729 | LDNS_CD_SET(sldns_buffer_begin(buff))(*(sldns_buffer_begin(buff)+3) |= 0x10U); |
| 2730 | if (sq->ssl_upstream && sq->padding_block_size) { |
| 2731 | padding_option.opt_code = LDNS_EDNS_PADDING; |
| 2732 | padding_option.opt_len = 0; |
| 2733 | padding_option.opt_data = NULL((void*)0); |
| 2734 | padding_option.next = edns.opt_list; |
| 2735 | edns.opt_list = &padding_option; |
| 2736 | edns.padding_block_size = sq->padding_block_size; |
| 2737 | } |
| 2738 | attach_edns_record(buff, &edns); |
| 2739 | } |
| 2740 | } |
| 2741 | |
| 2742 | /** |
| 2743 | * Perform serviced query UDP sending operation. |
| 2744 | * Sends UDP with EDNS, unless infra host marked non EDNS. |
| 2745 | * @param sq: query to send. |
| 2746 | * @param buff: buffer scratch space. |
| 2747 | * @return 0 on error. |
| 2748 | */ |
| 2749 | static int |
| 2750 | serviced_udp_send(struct serviced_query* sq, sldns_buffer* buff) |
| 2751 | { |
| 2752 | int rtt, vs; |
| 2753 | uint8_t edns_lame_known; |
| 2754 | time_t now = *sq->outnet->now_secs; |
| 2755 | |
| 2756 | if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone, |
| 2757 | sq->zonelen, now, &vs, &edns_lame_known, &rtt)) |
| 2758 | return 0; |
| 2759 | sq->last_rtt = rtt; |
| 2760 | verbose(VERB_ALGO, "EDNS lookup known=%d vs=%d", edns_lame_known, vs); |
| 2761 | if(sq->status == serviced_initial) { |
| 2762 | if(vs != -1) { |
| 2763 | sq->status = serviced_query_UDP_EDNS; |
| 2764 | } else { |
| 2765 | sq->status = serviced_query_UDP; |
| 2766 | } |
| 2767 | } |
| 2768 | serviced_encode(sq, buff, (sq->status == serviced_query_UDP_EDNS) || |
| 2769 | (sq->status == serviced_query_UDP_EDNS_FRAG)); |
| 2770 | sq->last_sent_time = *sq->outnet->now_tv; |
| 2771 | sq->edns_lame_known = (int)edns_lame_known; |
| 2772 | verbose(VERB_ALGO, "serviced query UDP timeout=%d msec", rtt); |
| 2773 | sq->pending = pending_udp_query(sq, buff, rtt, |
| 2774 | serviced_udp_callback, sq); |
| 2775 | if(!sq->pending) |
| 2776 | return 0; |
| 2777 | return 1; |
| 2778 | } |
| 2779 | |
| 2780 | /** check that perturbed qname is identical */ |
| 2781 | static int |
| 2782 | serviced_check_qname(sldns_buffer* pkt, uint8_t* qbuf, size_t qbuflen) |
| 2783 | { |
| 2784 | uint8_t* d1 = sldns_buffer_begin(pkt)+12; |
| 2785 | uint8_t* d2 = qbuf+10; |
| 2786 | uint8_t len1, len2; |
| 2787 | int count = 0; |
| 2788 | if(sldns_buffer_limit(pkt) < 12+1+4) /* packet too small for qname */ |
| 2789 | return 0; |
| 2790 | log_assert(qbuflen >= 15 /* 10 header, root, type, class */); |
| 2791 | len1 = *d1++; |
| 2792 | len2 = *d2++; |
| 2793 | while(len1 != 0 || len2 != 0) { |
| 2794 | if(LABEL_IS_PTR(len1)( ((len1)&0xc0) == 0xc0 )) { |
| 2795 | /* check if we can read *d1 with compression ptr rest */ |
| 2796 | if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) |
| 2797 | return 0; |
| 2798 | d1 = sldns_buffer_begin(pkt)+PTR_OFFSET(len1, *d1)( ((len1)&0x3f)<<8 | (*d1) ); |
| 2799 | /* check if we can read the destination *d1 */ |
| 2800 | if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) |
| 2801 | return 0; |
| 2802 | len1 = *d1++; |
| 2803 | if(count++ > MAX_COMPRESS_PTRS256) |
| 2804 | return 0; |
| 2805 | continue; |
| 2806 | } |
| 2807 | if(d2 > qbuf+qbuflen) |
| 2808 | return 0; |
| 2809 | if(len1 != len2) |
| 2810 | return 0; |
| 2811 | if(len1 > LDNS_MAX_LABELLEN63) |
| 2812 | return 0; |
| 2813 | /* check len1 + 1(next length) are okay to read */ |
| 2814 | if(d1+len1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) |
| 2815 | return 0; |
| 2816 | log_assert(len1 <= LDNS_MAX_LABELLEN); |
| 2817 | log_assert(len2 <= LDNS_MAX_LABELLEN); |
| 2818 | log_assert(len1 == len2 && len1 != 0); |
| 2819 | /* compare the labels - bitwise identical */ |
| 2820 | if(memcmp(d1, d2, len1) != 0) |
| 2821 | return 0; |
| 2822 | d1 += len1; |
| 2823 | d2 += len2; |
| 2824 | len1 = *d1++; |
| 2825 | len2 = *d2++; |
| 2826 | } |
| 2827 | return 1; |
| 2828 | } |
| 2829 | |
| 2830 | /** call the callbacks for a serviced query */ |
| 2831 | static void |
| 2832 | serviced_callbacks(struct serviced_query* sq, int error, struct comm_point* c, |
| 2833 | struct comm_reply* rep) |
| 2834 | { |
| 2835 | struct service_callback* p; |
| 2836 | int dobackup = (sq->cblist && sq->cblist->next); /* >1 cb*/ |
| 2837 | uint8_t *backup_p = NULL((void*)0); |
| 2838 | size_t backlen = 0; |
| 2839 | #ifdef UNBOUND_DEBUG |
| 2840 | rbnode_type* rem = |
| 2841 | #else |
| 2842 | (void) |
| 2843 | #endif |
| 2844 | /* remove from tree, and schedule for deletion, so that callbacks |
| 2845 | * can safely deregister themselves and even create new serviced |
| 2846 | * queries that are identical to this one. */ |
| 2847 | rbtree_delete(sq->outnet->serviced, sq); |
| 2848 | log_assert(rem); /* should have been present */ |
| 2849 | sq->to_be_deleted = 1; |
| 2850 | verbose(VERB_ALGO, "svcd callbacks start"); |
| 2851 | if(sq->outnet->use_caps_for_id && error == NETEVENT_NOERROR0 && c && |
| 2852 | !sq->nocaps && sq->qtype != LDNS_RR_TYPE_PTR) { |
| 2853 | /* for type PTR do not check perturbed name in answer, |
| 2854 | * compatibility with cisco dns guard boxes that mess up |
| 2855 | * reverse queries 0x20 contents */ |
| 2856 | /* noerror and nxdomain must have a qname in reply */ |
| 2857 | if(sldns_buffer_read_u16_at(c->buffer, 4) == 0 && |
| 2858 | (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) |
| 2859 | == LDNS_RCODE_NOERROR || |
| 2860 | LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) |
| 2861 | == LDNS_RCODE_NXDOMAIN)) { |
| 2862 | verbose(VERB_DETAIL, "no qname in reply to check 0x20ID"); |
| 2863 | log_addr(VERB_DETAIL, "from server", |
| 2864 | &sq->addr, sq->addrlen); |
| 2865 | log_buf(VERB_DETAIL, "for packet", c->buffer); |
| 2866 | error = NETEVENT_CLOSED-1; |
| 2867 | c = NULL((void*)0); |
| 2868 | } else if(sldns_buffer_read_u16_at(c->buffer, 4) > 0 && |
| 2869 | !serviced_check_qname(c->buffer, sq->qbuf, |
| 2870 | sq->qbuflen)) { |
| 2871 | verbose(VERB_DETAIL, "wrong 0x20-ID in reply qname"); |
| 2872 | log_addr(VERB_DETAIL, "from server", |
| 2873 | &sq->addr, sq->addrlen); |
| 2874 | log_buf(VERB_DETAIL, "for packet", c->buffer); |
| 2875 | error = NETEVENT_CAPSFAIL-3; |
| 2876 | /* and cleanup too */ |
| 2877 | pkt_dname_tolower(c->buffer, |
| 2878 | sldns_buffer_at(c->buffer, 12)); |
| 2879 | } else { |
| 2880 | verbose(VERB_ALGO, "good 0x20-ID in reply qname"); |
| 2881 | /* cleanup caps, prettier cache contents. */ |
| 2882 | pkt_dname_tolower(c->buffer, |
| 2883 | sldns_buffer_at(c->buffer, 12)); |
| 2884 | } |
| 2885 | } |
| 2886 | if(dobackup && c) { |
| 2887 | /* make a backup of the query, since the querystate processing |
| 2888 | * may send outgoing queries that overwrite the buffer. |
| 2889 | * use secondary buffer to store the query. |
| 2890 | * This is a data copy, but faster than packet to server */ |
| 2891 | backlen = sldns_buffer_limit(c->buffer); |
| 2892 | backup_p = memdup(sldns_buffer_begin(c->buffer), backlen); |
| 2893 | if(!backup_p) { |
| 2894 | log_err("malloc failure in serviced query callbacks"); |
| 2895 | error = NETEVENT_CLOSED-1; |
| 2896 | c = NULL((void*)0); |
| 2897 | } |
| 2898 | sq->outnet->svcd_overhead = backlen; |
| 2899 | } |
| 2900 | /* test the actual sq->cblist, because the next elem could be deleted*/ |
| 2901 | while((p=sq->cblist) != NULL((void*)0)) { |
| 2902 | sq->cblist = p->next; /* remove this element */ |
| 2903 | if(dobackup && c) { |
| 2904 | sldns_buffer_clear(c->buffer); |
| 2905 | sldns_buffer_write(c->buffer, backup_p, backlen); |
| 2906 | sldns_buffer_flip(c->buffer); |
| 2907 | } |
| 2908 | fptr_ok(fptr_whitelist_serviced_query(p->cb)); |
| 2909 | (void)(*p->cb)(c, p->cb_arg, error, rep); |
| 2910 | free(p); |
| 2911 | } |
| 2912 | if(backup_p) { |
| 2913 | free(backup_p); |
| 2914 | sq->outnet->svcd_overhead = 0; |
| 2915 | } |
| 2916 | verbose(VERB_ALGO, "svcd callbacks end"); |
| 2917 | log_assert(sq->cblist == NULL); |
| 2918 | serviced_delete(sq); |
| 2919 | } |
| 2920 | |
| 2921 | int |
| 2922 | serviced_tcp_callback(struct comm_point* c, void* arg, int error, |
| 2923 | struct comm_reply* rep) |
| 2924 | { |
| 2925 | struct serviced_query* sq = (struct serviced_query*)arg; |
| 2926 | struct comm_reply r2; |
| 2927 | #ifdef USE_DNSTAP |
| 2928 | struct waiting_tcp* w = (struct waiting_tcp*)sq->pending; |
| 2929 | struct pending_tcp* pend_tcp = NULL((void*)0); |
| 2930 | struct port_if* pi = NULL((void*)0); |
| 2931 | if(!w->on_tcp_waiting_list && w->next_waiting) { |
| 2932 | pend_tcp = (struct pending_tcp*)w->next_waiting; |
| 2933 | pi = pend_tcp->pi; |
| 2934 | } |
| 2935 | #endif |
| 2936 | sq->pending = NULL((void*)0); /* removed after this callback */ |
| 2937 | if(error != NETEVENT_NOERROR0) |
| 2938 | log_addr(VERB_QUERY, "tcp error for address", |
| 2939 | &sq->addr, sq->addrlen); |
| 2940 | if(error==NETEVENT_NOERROR0) |
| 2941 | infra_update_tcp_works(sq->outnet->infra, &sq->addr, |
| 2942 | sq->addrlen, sq->zone, sq->zonelen); |
| 2943 | #ifdef USE_DNSTAP |
| 2944 | /* |
| 2945 | * sending src (local service)/dst (upstream) addresses over DNSTAP |
| 2946 | */ |
| 2947 | if(error==NETEVENT_NOERROR0 && pi && sq->outnet->dtenv && |
| 2948 | (sq->outnet->dtenv->log_resolver_response_messages || |
| 2949 | sq->outnet->dtenv->log_forwarder_response_messages)) { |
| 2950 | log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen); |
| 2951 | log_addr(VERB_ALGO, "to local addr", &pi->addr, pi->addrlen); |
| 2952 | dt_msg_send_outside_response(sq->outnet->dtenv, &sq->addr, |
| 2953 | &pi->addr, c->type, sq->zone, sq->zonelen, sq->qbuf, |
| 2954 | sq->qbuflen, &sq->last_sent_time, sq->outnet->now_tv, |
| 2955 | c->buffer); |
| 2956 | } |
| 2957 | #endif |
| 2958 | if(error==NETEVENT_NOERROR0 && sq->status == serviced_query_TCP_EDNS && |
| 2959 | (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == |
| 2960 | LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE(sldns_buffer_begin((*(sldns_buffer_begin( c->buffer)+3) & 0x0fU) |
| 2961 | c->buffer))(*(sldns_buffer_begin( c->buffer)+3) & 0x0fU) == LDNS_RCODE_NOTIMPL) ) { |
| 2962 | /* attempt to fallback to nonEDNS */ |
| 2963 | sq->status = serviced_query_TCP_EDNS_fallback; |
| 2964 | serviced_tcp_initiate(sq, c->buffer); |
| 2965 | return 0; |
| 2966 | } else if(error==NETEVENT_NOERROR0 && |
| 2967 | sq->status == serviced_query_TCP_EDNS_fallback && |
| 2968 | (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == |
| 2969 | LDNS_RCODE_NOERROR || LDNS_RCODE_WIRE((*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) |
| 2970 | sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == LDNS_RCODE_NXDOMAIN |
| 2971 | || LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) |
| 2972 | == LDNS_RCODE_YXDOMAIN)) { |
| 2973 | /* the fallback produced a result that looks promising, note |
| 2974 | * that this server should be approached without EDNS */ |
| 2975 | /* only store noEDNS in cache if domain is noDNSSEC */ |
| 2976 | if(!sq->want_dnssec) |
| 2977 | if(!infra_edns_update(sq->outnet->infra, &sq->addr, |
| 2978 | sq->addrlen, sq->zone, sq->zonelen, -1, |
| 2979 | *sq->outnet->now_secs)) |
| 2980 | log_err("Out of memory caching no edns for host"); |
| 2981 | sq->status = serviced_query_TCP; |
| 2982 | } |
| 2983 | if(sq->tcp_upstream || sq->ssl_upstream) { |
| 2984 | struct timeval now = *sq->outnet->now_tv; |
| 2985 | if(error!=NETEVENT_NOERROR0) { |
| 2986 | if(!infra_rtt_update(sq->outnet->infra, &sq->addr, |
| 2987 | sq->addrlen, sq->zone, sq->zonelen, sq->qtype, |
| 2988 | -1, sq->last_rtt, (time_t)now.tv_sec)) |
| 2989 | log_err("out of memory in TCP exponential backoff."); |
| 2990 | } else if(now.tv_sec > sq->last_sent_time.tv_sec || |
| 2991 | (now.tv_sec == sq->last_sent_time.tv_sec && |
| 2992 | now.tv_usec > sq->last_sent_time.tv_usec)) { |
| 2993 | /* convert from microseconds to milliseconds */ |
| 2994 | int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000 |
| 2995 | + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000; |
| 2996 | verbose(VERB_ALGO, "measured TCP-time at %d msec", roundtime); |
| 2997 | log_assert(roundtime >= 0); |
| 2998 | /* only store if less then AUTH_TIMEOUT seconds, it could be |
| 2999 | * huge due to system-hibernated and we woke up */ |
| 3000 | if(roundtime < 60000) { |
| 3001 | if(!infra_rtt_update(sq->outnet->infra, &sq->addr, |
| 3002 | sq->addrlen, sq->zone, sq->zonelen, sq->qtype, |
| 3003 | roundtime, sq->last_rtt, (time_t)now.tv_sec)) |
| 3004 | log_err("out of memory noting rtt."); |
| 3005 | } |
| 3006 | } |
| 3007 | } |
| 3008 | /* insert address into reply info */ |
| 3009 | if(!rep) { |
| 3010 | /* create one if there isn't (on errors) */ |
| 3011 | rep = &r2; |
| 3012 | r2.c = c; |
| 3013 | } |
| 3014 | memcpy(&rep->addr, &sq->addr, sq->addrlen); |
| 3015 | rep->addrlen = sq->addrlen; |
| 3016 | serviced_callbacks(sq, error, c, rep); |
| 3017 | return 0; |
| 3018 | } |
| 3019 | |
| 3020 | static void |
| 3021 | serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff) |
| 3022 | { |
| 3023 | verbose(VERB_ALGO, "initiate TCP query %s", |
| 3024 | sq->status==serviced_query_TCP_EDNS?"EDNS":""); |
| 3025 | serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS); |
| 3026 | sq->last_sent_time = *sq->outnet->now_tv; |
| 3027 | sq->pending = pending_tcp_query(sq, buff, sq->outnet->tcp_auth_query_timeout, |
| 3028 | serviced_tcp_callback, sq); |
| 3029 | if(!sq->pending) { |
| 3030 | /* delete from tree so that a retry by above layer does not |
| 3031 | * clash with this entry */ |
| 3032 | verbose(VERB_ALGO, "serviced_tcp_initiate: failed to send tcp query"); |
| 3033 | serviced_callbacks(sq, NETEVENT_CLOSED-1, NULL((void*)0), NULL((void*)0)); |
| 3034 | } |
| 3035 | } |
| 3036 | |
| 3037 | /** Send serviced query over TCP return false on initial failure */ |
| 3038 | static int |
| 3039 | serviced_tcp_send(struct serviced_query* sq, sldns_buffer* buff) |
| 3040 | { |
| 3041 | int vs, rtt, timeout; |
| 3042 | uint8_t edns_lame_known; |
| 3043 | if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone, |
| 3044 | sq->zonelen, *sq->outnet->now_secs, &vs, &edns_lame_known, |
| 3045 | &rtt)) |
| 3046 | return 0; |
| 3047 | sq->last_rtt = rtt; |
| 3048 | if(vs != -1) |
| 3049 | sq->status = serviced_query_TCP_EDNS; |
| 3050 | else sq->status = serviced_query_TCP; |
| 3051 | serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS); |
| 3052 | sq->last_sent_time = *sq->outnet->now_tv; |
| 3053 | if(sq->tcp_upstream || sq->ssl_upstream) { |
| 3054 | timeout = rtt; |
| 3055 | if(rtt >= UNKNOWN_SERVER_NICENESS && rtt < sq->outnet->tcp_auth_query_timeout) |
| 3056 | timeout = sq->outnet->tcp_auth_query_timeout; |
| 3057 | } else { |
| 3058 | timeout = sq->outnet->tcp_auth_query_timeout; |
| 3059 | } |
| 3060 | sq->pending = pending_tcp_query(sq, buff, timeout, |
| 3061 | serviced_tcp_callback, sq); |
| 3062 | return sq->pending != NULL((void*)0); |
| 3063 | } |
| 3064 | |
| 3065 | /* see if packet is edns malformed; got zeroes at start. |
| 3066 | * This is from servers that return malformed packets to EDNS0 queries, |
| 3067 | * but they return good packets for nonEDNS0 queries. |
| 3068 | * We try to detect their output; without resorting to a full parse or |
| 3069 | * check for too many bytes after the end of the packet. */ |
| 3070 | static int |
| 3071 | packet_edns_malformed(struct sldns_buffer* buf, int qtype) |
| 3072 | { |
| 3073 | size_t len; |
| 3074 | if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE12) |
| 3075 | return 1; /* malformed */ |
| 3076 | /* they have NOERROR rcode, 1 answer. */ |
| 3077 | if(LDNS_RCODE_WIRE(sldns_buffer_begin(buf))(*(sldns_buffer_begin(buf)+3) & 0x0fU) != LDNS_RCODE_NOERROR) |
| 3078 | return 0; |
| 3079 | /* one query (to skip) and answer records */ |
| 3080 | if(LDNS_QDCOUNT(sldns_buffer_begin(buf))(sldns_read_uint16(sldns_buffer_begin(buf)+4)) != 1 || |
| 3081 | LDNS_ANCOUNT(sldns_buffer_begin(buf))(sldns_read_uint16(sldns_buffer_begin(buf)+6)) == 0) |
| 3082 | return 0; |
| 3083 | /* skip qname */ |
| 3084 | len = dname_valid(sldns_buffer_at(buf, LDNS_HEADER_SIZE12), |
| 3085 | sldns_buffer_limit(buf)-LDNS_HEADER_SIZE12); |
| 3086 | if(len == 0) |
| 3087 | return 0; |
| 3088 | if(len == 1 && qtype == 0) |
| 3089 | return 0; /* we asked for '.' and type 0 */ |
| 3090 | /* and then 4 bytes (type and class of query) */ |
| 3091 | if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE12 + len + 4 + 3) |
| 3092 | return 0; |
| 3093 | |
| 3094 | /* and start with 11 zeroes as the answer RR */ |
| 3095 | /* so check the qtype of the answer record, qname=0, type=0 */ |
| 3096 | if(sldns_buffer_at(buf, LDNS_HEADER_SIZE12+len+4)[0] == 0 && |
| 3097 | sldns_buffer_at(buf, LDNS_HEADER_SIZE12+len+4)[1] == 0 && |
| 3098 | sldns_buffer_at(buf, LDNS_HEADER_SIZE12+len+4)[2] == 0) |
| 3099 | return 1; |
| 3100 | return 0; |
| 3101 | } |
| 3102 | |
| 3103 | int |
| 3104 | serviced_udp_callback(struct comm_point* c, void* arg, int error, |
| 3105 | struct comm_reply* rep) |
| 3106 | { |
| 3107 | struct serviced_query* sq = (struct serviced_query*)arg; |
| 3108 | struct outside_network* outnet = sq->outnet; |
| 3109 | struct timeval now = *sq->outnet->now_tv; |
| 3110 | #ifdef USE_DNSTAP |
| 3111 | struct pending* p = (struct pending*)sq->pending; |
| 3112 | struct port_if* pi = p->pc->pif; |
| 3113 | #endif |
| 3114 | |
| 3115 | sq->pending = NULL((void*)0); /* removed after callback */ |
| 3116 | if(error == NETEVENT_TIMEOUT-2) { |
| 3117 | if(sq->status == serviced_query_UDP_EDNS && sq->last_rtt < 5000) { |
| 3118 | /* fallback to 1480/1280 */ |
| 3119 | sq->status = serviced_query_UDP_EDNS_FRAG; |
| 3120 | log_name_addr(VERB_ALGO, "try edns1xx0", sq->qbuf+10, |
| 3121 | &sq->addr, sq->addrlen); |
| 3122 | if(!serviced_udp_send(sq, c->buffer)) { |
| 3123 | serviced_callbacks(sq, NETEVENT_CLOSED-1, c, rep); |
| 3124 | } |
| 3125 | return 0; |
| 3126 | } |
| 3127 | if(sq->status == serviced_query_UDP_EDNS_FRAG) { |
| 3128 | /* fragmentation size did not fix it */ |
| 3129 | sq->status = serviced_query_UDP_EDNS; |
| 3130 | } |
| 3131 | sq->retry++; |
| 3132 | if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen, |
| 3133 | sq->zone, sq->zonelen, sq->qtype, -1, sq->last_rtt, |
| 3134 | (time_t)now.tv_sec)) |
| 3135 | log_err("out of memory in UDP exponential backoff"); |
| 3136 | if(sq->retry < OUTBOUND_UDP_RETRY1) { |
| 3137 | log_name_addr(VERB_ALGO, "retry query", sq->qbuf+10, |
| 3138 | &sq->addr, sq->addrlen); |
| 3139 | if(!serviced_udp_send(sq, c->buffer)) { |
| 3140 | serviced_callbacks(sq, NETEVENT_CLOSED-1, c, rep); |
| 3141 | } |
| 3142 | return 0; |
| 3143 | } |
| 3144 | } |
| 3145 | if(error != NETEVENT_NOERROR0) { |
| 3146 | /* udp returns error (due to no ID or interface available) */ |
| 3147 | serviced_callbacks(sq, error, c, rep); |
| 3148 | return 0; |
| 3149 | } |
| 3150 | #ifdef USE_DNSTAP |
| 3151 | /* |
| 3152 | * sending src (local service)/dst (upstream) addresses over DNSTAP |
| 3153 | */ |
| 3154 | if(error == NETEVENT_NOERROR0 && outnet->dtenv && |
| 3155 | (outnet->dtenv->log_resolver_response_messages || |
| 3156 | outnet->dtenv->log_forwarder_response_messages)) { |
| 3157 | log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen); |
| 3158 | log_addr(VERB_ALGO, "to local addr", &pi->addr, pi->addrlen); |
| 3159 | dt_msg_send_outside_response(outnet->dtenv, &sq->addr, &pi->addr, c->type, |
| 3160 | sq->zone, sq->zonelen, sq->qbuf, sq->qbuflen, |
| 3161 | &sq->last_sent_time, sq->outnet->now_tv, c->buffer); |
| 3162 | } |
| 3163 | #endif |
| 3164 | if( (sq->status == serviced_query_UDP_EDNS |
| 3165 | ||sq->status == serviced_query_UDP_EDNS_FRAG) |
| 3166 | && (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) |
| 3167 | == LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE((*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) |
| 3168 | sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == LDNS_RCODE_NOTIMPL |
| 3169 | || packet_edns_malformed(c->buffer, sq->qtype) |
| 3170 | )) { |
| 3171 | /* try to get an answer by falling back without EDNS */ |
| 3172 | verbose(VERB_ALGO, "serviced query: attempt without EDNS"); |
| 3173 | sq->status = serviced_query_UDP_EDNS_fallback; |
| 3174 | sq->retry = 0; |
| 3175 | if(!serviced_udp_send(sq, c->buffer)) { |
| 3176 | serviced_callbacks(sq, NETEVENT_CLOSED-1, c, rep); |
| 3177 | } |
| 3178 | return 0; |
| 3179 | } else if(sq->status == serviced_query_UDP_EDNS && |
| 3180 | !sq->edns_lame_known) { |
| 3181 | /* now we know that edns queries received answers store that */ |
| 3182 | log_addr(VERB_ALGO, "serviced query: EDNS works for", |
| 3183 | &sq->addr, sq->addrlen); |
| 3184 | if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen, |
| 3185 | sq->zone, sq->zonelen, 0, (time_t)now.tv_sec)) { |
| 3186 | log_err("Out of memory caching edns works"); |
| 3187 | } |
| 3188 | sq->edns_lame_known = 1; |
| 3189 | } else if(sq->status == serviced_query_UDP_EDNS_fallback && |
| 3190 | !sq->edns_lame_known && (LDNS_RCODE_WIRE((*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) |
| 3191 | sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == LDNS_RCODE_NOERROR || |
| 3192 | LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == |
| 3193 | LDNS_RCODE_NXDOMAIN || LDNS_RCODE_WIRE(sldns_buffer_begin((*(sldns_buffer_begin( c->buffer)+3) & 0x0fU) |
| 3194 | c->buffer))(*(sldns_buffer_begin( c->buffer)+3) & 0x0fU) == LDNS_RCODE_YXDOMAIN)) { |
| 3195 | /* the fallback produced a result that looks promising, note |
| 3196 | * that this server should be approached without EDNS */ |
| 3197 | /* only store noEDNS in cache if domain is noDNSSEC */ |
| 3198 | if(!sq->want_dnssec) { |
| 3199 | log_addr(VERB_ALGO, "serviced query: EDNS fails for", |
| 3200 | &sq->addr, sq->addrlen); |
| 3201 | if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen, |
| 3202 | sq->zone, sq->zonelen, -1, (time_t)now.tv_sec)) { |
| 3203 | log_err("Out of memory caching no edns for host"); |
| 3204 | } |
| 3205 | } else { |
| 3206 | log_addr(VERB_ALGO, "serviced query: EDNS fails, but " |
| 3207 | "not stored because need DNSSEC for", &sq->addr, |
| 3208 | sq->addrlen); |
| 3209 | } |
| 3210 | sq->status = serviced_query_UDP; |
| 3211 | } |
| 3212 | if(now.tv_sec > sq->last_sent_time.tv_sec || |
| 3213 | (now.tv_sec == sq->last_sent_time.tv_sec && |
| 3214 | now.tv_usec > sq->last_sent_time.tv_usec)) { |
| 3215 | /* convert from microseconds to milliseconds */ |
| 3216 | int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000 |
| 3217 | + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000; |
| 3218 | verbose(VERB_ALGO, "measured roundtrip at %d msec", roundtime); |
| 3219 | log_assert(roundtime >= 0); |
| 3220 | /* in case the system hibernated, do not enter a huge value, |
| 3221 | * above this value gives trouble with server selection */ |
| 3222 | if(roundtime < 60000) { |
| 3223 | if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen, |
| 3224 | sq->zone, sq->zonelen, sq->qtype, roundtime, |
| 3225 | sq->last_rtt, (time_t)now.tv_sec)) |
| 3226 | log_err("out of memory noting rtt."); |
| 3227 | } |
| 3228 | } |
| 3229 | /* perform TC flag check and TCP fallback after updating our |
| 3230 | * cache entries for EDNS status and RTT times */ |
| 3231 | if(LDNS_TC_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+2) & 0x02U)) { |
| 3232 | /* fallback to TCP */ |
| 3233 | /* this discards partial UDP contents */ |
| 3234 | if(sq->status == serviced_query_UDP_EDNS || |
| 3235 | sq->status == serviced_query_UDP_EDNS_FRAG || |
| 3236 | sq->status == serviced_query_UDP_EDNS_fallback) |
| 3237 | /* if we have unfinished EDNS_fallback, start again */ |
| 3238 | sq->status = serviced_query_TCP_EDNS; |
| 3239 | else sq->status = serviced_query_TCP; |
| 3240 | serviced_tcp_initiate(sq, c->buffer); |
| 3241 | return 0; |
| 3242 | } |
| 3243 | /* yay! an answer */ |
| 3244 | serviced_callbacks(sq, error, c, rep); |
| 3245 | return 0; |
| 3246 | } |
| 3247 | |
| 3248 | struct serviced_query* |
| 3249 | outnet_serviced_query(struct outside_network* outnet, |
| 3250 | struct query_info* qinfo, uint16_t flags, int dnssec, int want_dnssec, |
| 3251 | int nocaps, int tcp_upstream, int ssl_upstream, char* tls_auth_name, |
| 3252 | struct sockaddr_storage* addr, socklen_t addrlen, uint8_t* zone, |
| 3253 | size_t zonelen, struct module_qstate* qstate, |
| 3254 | comm_point_callback_type* callback, void* callback_arg, sldns_buffer* buff, |
| 3255 | struct module_env* env) |
| 3256 | { |
| 3257 | struct serviced_query* sq; |
| 3258 | struct service_callback* cb; |
| 3259 | struct edns_string_addr* client_string_addr; |
| 3260 | |
| 3261 | if(!inplace_cb_query_call(env, qinfo, flags, addr, addrlen, zone, zonelen, |
| 3262 | qstate, qstate->region)) |
| 3263 | return NULL((void*)0); |
| 3264 | |
| 3265 | if((client_string_addr = edns_string_addr_lookup( |
| 3266 | &env->edns_strings->client_strings, addr, addrlen))) { |
| 3267 | edns_opt_list_append(&qstate->edns_opts_back_out, |
| 3268 | env->edns_strings->client_string_opcode, |
| 3269 | client_string_addr->string_len, |
| 3270 | client_string_addr->string, qstate->region); |
| 3271 | } |
| 3272 | |
| 3273 | serviced_gen_query(buff, qinfo->qname, qinfo->qname_len, qinfo->qtype, |
| 3274 | qinfo->qclass, flags); |
| 3275 | sq = lookup_serviced(outnet, buff, dnssec, addr, addrlen, |
| 3276 | qstate->edns_opts_back_out); |
| 3277 | /* duplicate entries are included in the callback list, because |
| 3278 | * there is a counterpart registration by our caller that needs to |
| 3279 | * be doubly-removed (with callbacks perhaps). */ |
| 3280 | if(!(cb = (struct service_callback*)malloc(sizeof(*cb)))) |
| 3281 | return NULL((void*)0); |
| 3282 | if(!sq) { |
| 3283 | /* make new serviced query entry */ |
| 3284 | sq = serviced_create(outnet, buff, dnssec, want_dnssec, nocaps, |
| 3285 | tcp_upstream, ssl_upstream, tls_auth_name, addr, |
| 3286 | addrlen, zone, zonelen, (int)qinfo->qtype, |
| 3287 | qstate->edns_opts_back_out, |
| 3288 | ( ssl_upstream && env->cfg->pad_queries |
| 3289 | ? env->cfg->pad_queries_block_size : 0 )); |
| 3290 | if(!sq) { |
| 3291 | free(cb); |
| 3292 | return NULL((void*)0); |
| 3293 | } |
| 3294 | /* perform first network action */ |
| 3295 | if(outnet->do_udp && !(tcp_upstream || ssl_upstream)) { |
| 3296 | if(!serviced_udp_send(sq, buff)) { |
| 3297 | (void)rbtree_delete(outnet->serviced, sq); |
| 3298 | serviced_node_del(&sq->node, NULL((void*)0)); |
| 3299 | free(cb); |
| 3300 | return NULL((void*)0); |
| 3301 | } |
| 3302 | } else { |
| 3303 | if(!serviced_tcp_send(sq, buff)) { |
| 3304 | (void)rbtree_delete(outnet->serviced, sq); |
| 3305 | serviced_node_del(&sq->node, NULL((void*)0)); |
| 3306 | free(cb); |
| 3307 | return NULL((void*)0); |
| 3308 | } |
| 3309 | } |
| 3310 | } |
| 3311 | /* add callback to list of callbacks */ |
| 3312 | cb->cb = callback; |
| 3313 | cb->cb_arg = callback_arg; |
| 3314 | cb->next = sq->cblist; |
| 3315 | sq->cblist = cb; |
| 3316 | return sq; |
| 3317 | } |
| 3318 | |
| 3319 | /** remove callback from list */ |
| 3320 | static void |
| 3321 | callback_list_remove(struct serviced_query* sq, void* cb_arg) |
| 3322 | { |
| 3323 | struct service_callback** pp = &sq->cblist; |
| 3324 | while(*pp) { |
| 3325 | if((*pp)->cb_arg == cb_arg) { |
| 3326 | struct service_callback* del = *pp; |
| 3327 | *pp = del->next; |
| 3328 | free(del); |
| 3329 | return; |
| 3330 | } |
| 3331 | pp = &(*pp)->next; |
| 3332 | } |
| 3333 | } |
| 3334 | |
| 3335 | void outnet_serviced_query_stop(struct serviced_query* sq, void* cb_arg) |
| 3336 | { |
| 3337 | if(!sq) |
| 3338 | return; |
| 3339 | callback_list_remove(sq, cb_arg); |
| 3340 | /* if callbacks() routine scheduled deletion, let it do that */ |
| 3341 | if(!sq->cblist && !sq->to_be_deleted) { |
| 3342 | (void)rbtree_delete(sq->outnet->serviced, sq); |
| 3343 | serviced_delete(sq); |
| 3344 | } |
| 3345 | } |
| 3346 | |
| 3347 | /** create fd to send to this destination */ |
| 3348 | static int |
| 3349 | fd_for_dest(struct outside_network* outnet, struct sockaddr_storage* to_addr, |
| 3350 | socklen_t to_addrlen) |
| 3351 | { |
| 3352 | struct sockaddr_storage* addr; |
| 3353 | socklen_t addrlen; |
| 3354 | int i, try, pnum, dscp; |
| 3355 | struct port_if* pif; |
| 3356 | |
| 3357 | /* create fd */ |
| 3358 | dscp = outnet->ip_dscp; |
| 3359 | for(try = 0; try<1000; try++) { |
| 3360 | int port = 0; |
| 3361 | int freebind = 0; |
| 3362 | int noproto = 0; |
| 3363 | int inuse = 0; |
| 3364 | int fd = -1; |
| 3365 | |
| 3366 | /* select interface */ |
| 3367 | if(addr_is_ip6(to_addr, to_addrlen)) { |
| 3368 | if(outnet->num_ip6 == 0) { |
| 3369 | char to[64]; |
| 3370 | addr_to_str(to_addr, to_addrlen, to, sizeof(to)); |
| 3371 | verbose(VERB_QUERY, "need ipv6 to send, but no ipv6 outgoing interfaces, for %s", to); |
| 3372 | return -1; |
| 3373 | } |
| 3374 | i = ub_random_max(outnet->rnd, outnet->num_ip6); |
| 3375 | pif = &outnet->ip6_ifs[i]; |
| 3376 | } else { |
| 3377 | if(outnet->num_ip4 == 0) { |
| 3378 | char to[64]; |
| 3379 | addr_to_str(to_addr, to_addrlen, to, sizeof(to)); |
| 3380 | verbose(VERB_QUERY, "need ipv4 to send, but no ipv4 outgoing interfaces, for %s", to); |
| 3381 | return -1; |
| 3382 | } |
| 3383 | i = ub_random_max(outnet->rnd, outnet->num_ip4); |
| 3384 | pif = &outnet->ip4_ifs[i]; |
| 3385 | } |
| 3386 | addr = &pif->addr; |
| 3387 | addrlen = pif->addrlen; |
| 3388 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 |
| 3389 | pnum = ub_random_max(outnet->rnd, pif->avail_total); |
| 3390 | if(pnum < pif->inuse) { |
| 3391 | /* port already open */ |
| 3392 | port = pif->out[pnum]->number; |
| 3393 | } else { |
| 3394 | /* unused ports in start part of array */ |
| 3395 | port = pif->avail_ports[pnum - pif->inuse]; |
| 3396 | } |
| 3397 | #else |
| 3398 | pnum = port = 0; |
| 3399 | #endif |
| 3400 | if(addr_is_ip6(to_addr, to_addrlen)) { |
| 3401 | struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr; |
| 3402 | sa.sin6_port = (in_port_t)htons((uint16_t)port)(__uint16_t)(__builtin_constant_p((uint16_t)port) ? (__uint16_t )(((__uint16_t)((uint16_t)port) & 0xffU) << 8 | ((__uint16_t )((uint16_t)port) & 0xff00U) >> 8) : __swap16md((uint16_t )port)); |
| 3403 | fd = create_udp_sock(AF_INET624, SOCK_DGRAM2, |
| 3404 | (struct sockaddr*)&sa, addrlen, 1, &inuse, &noproto, |
| 3405 | 0, 0, 0, NULL((void*)0), 0, freebind, 0, dscp); |
| 3406 | } else { |
| 3407 | struct sockaddr_in* sa = (struct sockaddr_in*)addr; |
| 3408 | sa->sin_port = (in_port_t)htons((uint16_t)port)(__uint16_t)(__builtin_constant_p((uint16_t)port) ? (__uint16_t )(((__uint16_t)((uint16_t)port) & 0xffU) << 8 | ((__uint16_t )((uint16_t)port) & 0xff00U) >> 8) : __swap16md((uint16_t )port)); |
| 3409 | fd = create_udp_sock(AF_INET2, SOCK_DGRAM2, |
| 3410 | (struct sockaddr*)addr, addrlen, 1, &inuse, &noproto, |
| 3411 | 0, 0, 0, NULL((void*)0), 0, freebind, 0, dscp); |
| 3412 | } |
| 3413 | if(fd != -1) { |
| 3414 | return fd; |
| 3415 | } |
| 3416 | if(!inuse) { |
| 3417 | return -1; |
| 3418 | } |
| 3419 | } |
| 3420 | /* too many tries */ |
| 3421 | log_err("cannot send probe, ports are in use"); |
| 3422 | return -1; |
| 3423 | } |
| 3424 | |
| 3425 | struct comm_point* |
| 3426 | outnet_comm_point_for_udp(struct outside_network* outnet, |
| 3427 | comm_point_callback_type* cb, void* cb_arg, |
| 3428 | struct sockaddr_storage* to_addr, socklen_t to_addrlen) |
| 3429 | { |
| 3430 | struct comm_point* cp; |
| 3431 | int fd = fd_for_dest(outnet, to_addr, to_addrlen); |
| 3432 | if(fd == -1) { |
| 3433 | return NULL((void*)0); |
| 3434 | } |
| 3435 | cp = comm_point_create_udp(outnet->base, fd, outnet->udp_buff, |
| 3436 | cb, cb_arg, NULL((void*)0)); |
| 3437 | if(!cp) { |
| 3438 | log_err("malloc failure"); |
| 3439 | close(fd); |
| 3440 | return NULL((void*)0); |
| 3441 | } |
| 3442 | return cp; |
| 3443 | } |
| 3444 | |
| 3445 | /** setup SSL for comm point */ |
| 3446 | static int |
| 3447 | setup_comm_ssl(struct comm_point* cp, struct outside_network* outnet, |
| 3448 | int fd, char* host) |
| 3449 | { |
| 3450 | cp->ssl = outgoing_ssl_fd(outnet->sslctx, fd); |
| 3451 | if(!cp->ssl) { |
| 3452 | log_err("cannot create SSL object"); |
| 3453 | return 0; |
| 3454 | } |
| 3455 | #ifdef USE_WINSOCK |
| 3456 | comm_point_tcp_win_bio_cb(cp, cp->ssl); |
| 3457 | #endif |
| 3458 | cp->ssl_shake_state = comm_ssl_shake_write; |
| 3459 | /* https verification */ |
| 3460 | #ifdef HAVE_SSL |
| 3461 | if(outnet->tls_use_sni) { |
| 3462 | (void)SSL_set_tlsext_host_name(cp->ssl, host)SSL_ctrl(cp->ssl,55,0,(char *)host); |
| 3463 | } |
| 3464 | #endif |
| 3465 | #ifdef HAVE_SSL_SET1_HOST1 |
| 3466 | if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER0x01)) { |
| 3467 | /* because we set SSL_VERIFY_PEER, in netevent in |
| 3468 | * ssl_handshake, it'll check if the certificate |
| 3469 | * verification has succeeded */ |
| 3470 | /* SSL_VERIFY_PEER is set on the sslctx */ |
| 3471 | /* and the certificates to verify with are loaded into |
| 3472 | * it with SSL_load_verify_locations or |
| 3473 | * SSL_CTX_set_default_verify_paths */ |
| 3474 | /* setting the hostname makes openssl verify the |
| 3475 | * host name in the x509 certificate in the |
| 3476 | * SSL connection*/ |
| 3477 | if(!SSL_set1_host(cp->ssl, host)) { |
| 3478 | log_err("SSL_set1_host failed"); |
| 3479 | return 0; |
| 3480 | } |
| 3481 | } |
| 3482 | #elif defined(HAVE_X509_VERIFY_PARAM_SET1_HOST1) |
| 3483 | /* openssl 1.0.2 has this function that can be used for |
| 3484 | * set1_host like verification */ |
| 3485 | if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER0x01)) { |
| 3486 | X509_VERIFY_PARAM* param = SSL_get0_param(cp->ssl); |
| 3487 | # ifdef X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS0x4 |
| 3488 | X509_VERIFY_PARAM_set_hostflags(param, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS0x4); |
| 3489 | # endif |
| 3490 | if(!X509_VERIFY_PARAM_set1_host(param, host, strlen(host))) { |
| 3491 | log_err("X509_VERIFY_PARAM_set1_host failed"); |
| 3492 | return 0; |
| 3493 | } |
| 3494 | } |
| 3495 | #else |
| 3496 | (void)host; |
| 3497 | #endif /* HAVE_SSL_SET1_HOST */ |
| 3498 | return 1; |
| 3499 | } |
| 3500 | |
| 3501 | struct comm_point* |
| 3502 | outnet_comm_point_for_tcp(struct outside_network* outnet, |
| 3503 | comm_point_callback_type* cb, void* cb_arg, |
| 3504 | struct sockaddr_storage* to_addr, socklen_t to_addrlen, |
| 3505 | sldns_buffer* query, int timeout, int ssl, char* host) |
| 3506 | { |
| 3507 | struct comm_point* cp; |
| 3508 | int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss, outnet->ip_dscp); |
| 3509 | if(fd == -1) { |
| 3510 | return 0; |
| 3511 | } |
| 3512 | fd_set_nonblock(fd); |
| 3513 | if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) { |
| 3514 | /* outnet_tcp_connect has closed fd on error for us */ |
| 3515 | return 0; |
| 3516 | } |
| 3517 | cp = comm_point_create_tcp_out(outnet->base, 65552, cb, cb_arg); |
| 3518 | if(!cp) { |
| 3519 | log_err("malloc failure"); |
| 3520 | close(fd); |
| 3521 | return 0; |
| 3522 | } |
| 3523 | cp->repinfo.addrlen = to_addrlen; |
| 3524 | memcpy(&cp->repinfo.addr, to_addr, to_addrlen); |
| 3525 | |
| 3526 | /* setup for SSL (if needed) */ |
| 3527 | if(ssl) { |
| 3528 | if(!setup_comm_ssl(cp, outnet, fd, host)) { |
| 3529 | log_err("cannot setup XoT"); |
| 3530 | comm_point_delete(cp); |
| 3531 | return NULL((void*)0); |
| 3532 | } |
| 3533 | } |
| 3534 | |
| 3535 | /* set timeout on TCP connection */ |
| 3536 | comm_point_start_listening(cp, fd, timeout); |
| 3537 | /* copy scratch buffer to cp->buffer */ |
| 3538 | sldns_buffer_copy(cp->buffer, query); |
| 3539 | return cp; |
| 3540 | } |
| 3541 | |
| 3542 | /** setup the User-Agent HTTP header based on http-user-agent configuration */ |
| 3543 | static void |
| 3544 | setup_http_user_agent(sldns_buffer* buf, struct config_file* cfg) |
| 3545 | { |
| 3546 | if(cfg->hide_http_user_agent) return; |
| 3547 | if(cfg->http_user_agent==NULL((void*)0) || cfg->http_user_agent[0] == 0) { |
| 3548 | sldns_buffer_printf(buf, "User-Agent: %s/%s\r\n", PACKAGE_NAME"unbound", |
| 3549 | PACKAGE_VERSION"1.13.2"); |
| 3550 | } else { |
| 3551 | sldns_buffer_printf(buf, "User-Agent: %s\r\n", cfg->http_user_agent); |
| 3552 | } |
| 3553 | } |
| 3554 | |
| 3555 | /** setup http request headers in buffer for sending query to destination */ |
| 3556 | static int |
| 3557 | setup_http_request(sldns_buffer* buf, char* host, char* path, |
| 3558 | struct config_file* cfg) |
| 3559 | { |
| 3560 | sldns_buffer_clear(buf); |
| 3561 | sldns_buffer_printf(buf, "GET /%s HTTP/1.1\r\n", path); |
| 3562 | sldns_buffer_printf(buf, "Host: %s\r\n", host); |
| 3563 | setup_http_user_agent(buf, cfg); |
| 3564 | /* We do not really do multiple queries per connection, |
| 3565 | * but this header setting is also not needed. |
| 3566 | * sldns_buffer_printf(buf, "Connection: close\r\n") */ |
| 3567 | sldns_buffer_printf(buf, "\r\n"); |
| 3568 | if(sldns_buffer_position(buf)+10 > sldns_buffer_capacity(buf)) |
| 3569 | return 0; /* somehow buffer too short, but it is about 60K |
| 3570 | and the request is only a couple bytes long. */ |
| 3571 | sldns_buffer_flip(buf); |
| 3572 | return 1; |
| 3573 | } |
| 3574 | |
| 3575 | struct comm_point* |
| 3576 | outnet_comm_point_for_http(struct outside_network* outnet, |
| 3577 | comm_point_callback_type* cb, void* cb_arg, |
| 3578 | struct sockaddr_storage* to_addr, socklen_t to_addrlen, int timeout, |
| 3579 | int ssl, char* host, char* path, struct config_file* cfg) |
| 3580 | { |
| 3581 | /* cp calls cb with err=NETEVENT_DONE when transfer is done */ |
| 3582 | struct comm_point* cp; |
| 3583 | int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss, outnet->ip_dscp); |
| 3584 | if(fd == -1) { |
| 3585 | return 0; |
| 3586 | } |
| 3587 | fd_set_nonblock(fd); |
| 3588 | if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) { |
| 3589 | /* outnet_tcp_connect has closed fd on error for us */ |
| 3590 | return 0; |
| 3591 | } |
| 3592 | cp = comm_point_create_http_out(outnet->base, 65552, cb, cb_arg, |
| 3593 | outnet->udp_buff); |
| 3594 | if(!cp) { |
| 3595 | log_err("malloc failure"); |
| 3596 | close(fd); |
| 3597 | return 0; |
| 3598 | } |
| 3599 | cp->repinfo.addrlen = to_addrlen; |
| 3600 | memcpy(&cp->repinfo.addr, to_addr, to_addrlen); |
| 3601 | |
| 3602 | /* setup for SSL (if needed) */ |
| 3603 | if(ssl) { |
| 3604 | if(!setup_comm_ssl(cp, outnet, fd, host)) { |
| 3605 | log_err("cannot setup https"); |
| 3606 | comm_point_delete(cp); |
| 3607 | return NULL((void*)0); |
| 3608 | } |
| 3609 | } |
| 3610 | |
| 3611 | /* set timeout on TCP connection */ |
| 3612 | comm_point_start_listening(cp, fd, timeout); |
| 3613 | |
| 3614 | /* setup http request in cp->buffer */ |
| 3615 | if(!setup_http_request(cp->buffer, host, path, cfg)) { |
| 3616 | log_err("error setting up http request"); |
| 3617 | comm_point_delete(cp); |
| 3618 | return NULL((void*)0); |
| 3619 | } |
| 3620 | return cp; |
| 3621 | } |
| 3622 | |
| 3623 | /** get memory used by waiting tcp entry (in use or not) */ |
| 3624 | static size_t |
| 3625 | waiting_tcp_get_mem(struct waiting_tcp* w) |
| 3626 | { |
| 3627 | size_t s; |
| 3628 | if(!w) return 0; |
| 3629 | s = sizeof(*w) + w->pkt_len; |
| 3630 | if(w->timer) |
| 3631 | s += comm_timer_get_mem(w->timer); |
| 3632 | return s; |
| 3633 | } |
| 3634 | |
| 3635 | /** get memory used by port if */ |
| 3636 | static size_t |
| 3637 | if_get_mem(struct port_if* pif) |
| 3638 | { |
| 3639 | size_t s; |
| 3640 | int i; |
| 3641 | s = sizeof(*pif) + |
| 3642 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 |
| 3643 | sizeof(int)*pif->avail_total + |
| 3644 | #endif |
| 3645 | sizeof(struct port_comm*)*pif->maxout; |
| 3646 | for(i=0; i<pif->inuse; i++) |
| 3647 | s += sizeof(*pif->out[i]) + |
| 3648 | comm_point_get_mem(pif->out[i]->cp); |
| 3649 | return s; |
| 3650 | } |
| 3651 | |
| 3652 | /** get memory used by waiting udp */ |
| 3653 | static size_t |
| 3654 | waiting_udp_get_mem(struct pending* w) |
| 3655 | { |
| 3656 | size_t s; |
| 3657 | s = sizeof(*w) + comm_timer_get_mem(w->timer) + w->pkt_len; |
| 3658 | return s; |
| 3659 | } |
| 3660 | |
| 3661 | size_t outnet_get_mem(struct outside_network* outnet) |
| 3662 | { |
| 3663 | size_t i; |
| 3664 | int k; |
| 3665 | struct waiting_tcp* w; |
| 3666 | struct pending* u; |
| 3667 | struct serviced_query* sq; |
| 3668 | struct service_callback* sb; |
| 3669 | struct port_comm* pc; |
| 3670 | size_t s = sizeof(*outnet) + sizeof(*outnet->base) + |
| 3671 | sizeof(*outnet->udp_buff) + |
| 3672 | sldns_buffer_capacity(outnet->udp_buff); |
| 3673 | /* second buffer is not ours */ |
| 3674 | for(pc = outnet->unused_fds; pc; pc = pc->next) { |
| 3675 | s += sizeof(*pc) + comm_point_get_mem(pc->cp); |
| 3676 | } |
| 3677 | for(k=0; k<outnet->num_ip4; k++) |
| 3678 | s += if_get_mem(&outnet->ip4_ifs[k]); |
| 3679 | for(k=0; k<outnet->num_ip6; k++) |
| 3680 | s += if_get_mem(&outnet->ip6_ifs[k]); |
| 3681 | for(u=outnet->udp_wait_first; u; u=u->next_waiting) |
| 3682 | s += waiting_udp_get_mem(u); |
| 3683 | |
| 3684 | s += sizeof(struct pending_tcp*)*outnet->num_tcp; |
| 3685 | for(i=0; i<outnet->num_tcp; i++) { |
| 3686 | s += sizeof(struct pending_tcp); |
| 3687 | s += comm_point_get_mem(outnet->tcp_conns[i]->c); |
| 3688 | if(outnet->tcp_conns[i]->query) |
| 3689 | s += waiting_tcp_get_mem(outnet->tcp_conns[i]->query); |
| 3690 | } |
| 3691 | for(w=outnet->tcp_wait_first; w; w = w->next_waiting) |
| 3692 | s += waiting_tcp_get_mem(w); |
| 3693 | s += sizeof(*outnet->pending); |
| 3694 | s += (sizeof(struct pending) + comm_timer_get_mem(NULL((void*)0))) * |
| 3695 | outnet->pending->count; |
| 3696 | s += sizeof(*outnet->serviced); |
| 3697 | s += outnet->svcd_overhead; |
| 3698 | RBTREE_FOR(sq, struct serviced_query*, outnet->serviced)for(sq=(struct serviced_query*)rbtree_first(outnet->serviced ); (rbnode_type*)sq != &rbtree_null_node; sq = (struct serviced_query *)rbtree_next((rbnode_type*)sq)) { |
| 3699 | s += sizeof(*sq) + sq->qbuflen; |
| 3700 | for(sb = sq->cblist; sb; sb = sb->next) |
| 3701 | s += sizeof(*sb); |
| 3702 | } |
| 3703 | return s; |
| 3704 | } |
| 3705 | |
| 3706 | size_t |
| 3707 | serviced_get_mem(struct serviced_query* sq) |
| 3708 | { |
| 3709 | struct service_callback* sb; |
| 3710 | size_t s; |
| 3711 | s = sizeof(*sq) + sq->qbuflen; |
| 3712 | for(sb = sq->cblist; sb; sb = sb->next) |
| 3713 | s += sizeof(*sb); |
| 3714 | if(sq->status == serviced_query_UDP_EDNS || |
| 3715 | sq->status == serviced_query_UDP || |
| 3716 | sq->status == serviced_query_UDP_EDNS_FRAG || |
| 3717 | sq->status == serviced_query_UDP_EDNS_fallback) { |
| 3718 | s += sizeof(struct pending); |
| 3719 | s += comm_timer_get_mem(NULL((void*)0)); |
| 3720 | } else { |
| 3721 | /* does not have size of the pkt pointer */ |
| 3722 | /* always has a timer except on malloc failures */ |
| 3723 | |
| 3724 | /* these sizes are part of the main outside network mem */ |
| 3725 | /* |
| 3726 | s += sizeof(struct waiting_tcp); |
| 3727 | s += comm_timer_get_mem(NULL); |
| 3728 | */ |
| 3729 | } |
| 3730 | return s; |
| 3731 | } |
| 3732 |