| File: | src/gnu/usr.bin/clang/libLLVM/../../../llvm/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp |
| Warning: | line 363, column 11 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This pass eliminates allocas by either converting them into vectors or | ||||
| 10 | // by migrating them to local address space. | ||||
| 11 | // | ||||
| 12 | //===----------------------------------------------------------------------===// | ||||
| 13 | |||||
| 14 | #include "AMDGPU.h" | ||||
| 15 | #include "GCNSubtarget.h" | ||||
| 16 | #include "llvm/Analysis/CaptureTracking.h" | ||||
| 17 | #include "llvm/Analysis/ValueTracking.h" | ||||
| 18 | #include "llvm/CodeGen/TargetPassConfig.h" | ||||
| 19 | #include "llvm/IR/IRBuilder.h" | ||||
| 20 | #include "llvm/IR/IntrinsicsAMDGPU.h" | ||||
| 21 | #include "llvm/IR/IntrinsicsR600.h" | ||||
| 22 | #include "llvm/Pass.h" | ||||
| 23 | #include "llvm/Target/TargetMachine.h" | ||||
| 24 | |||||
| 25 | #define DEBUG_TYPE"amdgpu-promote-alloca" "amdgpu-promote-alloca" | ||||
| 26 | |||||
| 27 | using namespace llvm; | ||||
| 28 | |||||
| 29 | namespace { | ||||
| 30 | |||||
| 31 | static cl::opt<bool> DisablePromoteAllocaToVector( | ||||
| 32 | "disable-promote-alloca-to-vector", | ||||
| 33 | cl::desc("Disable promote alloca to vector"), | ||||
| 34 | cl::init(false)); | ||||
| 35 | |||||
| 36 | static cl::opt<bool> DisablePromoteAllocaToLDS( | ||||
| 37 | "disable-promote-alloca-to-lds", | ||||
| 38 | cl::desc("Disable promote alloca to LDS"), | ||||
| 39 | cl::init(false)); | ||||
| 40 | |||||
| 41 | static cl::opt<unsigned> PromoteAllocaToVectorLimit( | ||||
| 42 | "amdgpu-promote-alloca-to-vector-limit", | ||||
| 43 | cl::desc("Maximum byte size to consider promote alloca to vector"), | ||||
| 44 | cl::init(0)); | ||||
| 45 | |||||
| 46 | // FIXME: This can create globals so should be a module pass. | ||||
| 47 | class AMDGPUPromoteAlloca : public FunctionPass { | ||||
| 48 | public: | ||||
| 49 | static char ID; | ||||
| 50 | |||||
| 51 | AMDGPUPromoteAlloca() : FunctionPass(ID) {} | ||||
| 52 | |||||
| 53 | bool runOnFunction(Function &F) override; | ||||
| 54 | |||||
| 55 | StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } | ||||
| 56 | |||||
| 57 | bool handleAlloca(AllocaInst &I, bool SufficientLDS); | ||||
| 58 | |||||
| 59 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
| 60 | AU.setPreservesCFG(); | ||||
| 61 | FunctionPass::getAnalysisUsage(AU); | ||||
| 62 | } | ||||
| 63 | }; | ||||
| 64 | |||||
| 65 | class AMDGPUPromoteAllocaImpl { | ||||
| 66 | private: | ||||
| 67 | const TargetMachine &TM; | ||||
| 68 | Module *Mod = nullptr; | ||||
| 69 | const DataLayout *DL = nullptr; | ||||
| 70 | |||||
| 71 | // FIXME: This should be per-kernel. | ||||
| 72 | uint32_t LocalMemLimit = 0; | ||||
| 73 | uint32_t CurrentLocalMemUsage = 0; | ||||
| 74 | unsigned MaxVGPRs; | ||||
| 75 | |||||
| 76 | bool IsAMDGCN = false; | ||||
| 77 | bool IsAMDHSA = false; | ||||
| 78 | |||||
| 79 | std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); | ||||
| 80 | Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); | ||||
| 81 | |||||
| 82 | /// BaseAlloca is the alloca root the search started from. | ||||
| 83 | /// Val may be that alloca or a recursive user of it. | ||||
| 84 | bool collectUsesWithPtrTypes(Value *BaseAlloca, | ||||
| 85 | Value *Val, | ||||
| 86 | std::vector<Value*> &WorkList) const; | ||||
| 87 | |||||
| 88 | /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand | ||||
| 89 | /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). | ||||
| 90 | /// Returns true if both operands are derived from the same alloca. Val should | ||||
| 91 | /// be the same value as one of the input operands of UseInst. | ||||
| 92 | bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, | ||||
| 93 | Instruction *UseInst, | ||||
| 94 | int OpIdx0, int OpIdx1) const; | ||||
| 95 | |||||
| 96 | /// Check whether we have enough local memory for promotion. | ||||
| 97 | bool hasSufficientLocalMem(const Function &F); | ||||
| 98 | |||||
| 99 | bool handleAlloca(AllocaInst &I, bool SufficientLDS); | ||||
| 100 | |||||
| 101 | public: | ||||
| 102 | AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} | ||||
| 103 | bool run(Function &F); | ||||
| 104 | }; | ||||
| 105 | |||||
| 106 | class AMDGPUPromoteAllocaToVector : public FunctionPass { | ||||
| 107 | public: | ||||
| 108 | static char ID; | ||||
| 109 | |||||
| 110 | AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} | ||||
| 111 | |||||
| 112 | bool runOnFunction(Function &F) override; | ||||
| 113 | |||||
| 114 | StringRef getPassName() const override { | ||||
| 115 | return "AMDGPU Promote Alloca to vector"; | ||||
| 116 | } | ||||
| 117 | |||||
| 118 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
| 119 | AU.setPreservesCFG(); | ||||
| 120 | FunctionPass::getAnalysisUsage(AU); | ||||
| 121 | } | ||||
| 122 | }; | ||||
| 123 | |||||
| 124 | } // end anonymous namespace | ||||
| 125 | |||||
| 126 | char AMDGPUPromoteAlloca::ID = 0; | ||||
| 127 | char AMDGPUPromoteAllocaToVector::ID = 0; | ||||
| 128 | |||||
| 129 | INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,static void *initializeAMDGPUPromoteAllocaPassOnce(PassRegistry &Registry) { | ||||
| 130 | "AMDGPU promote alloca to vector or LDS", false, false)static void *initializeAMDGPUPromoteAllocaPassOnce(PassRegistry &Registry) { | ||||
| 131 | // Move LDS uses from functions to kernels before promote alloca for accurate | ||||
| 132 | // estimation of LDS available | ||||
| 133 | INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)initializeAMDGPULowerModuleLDSPass(Registry); | ||||
| 134 | INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,PassInfo *PI = new PassInfo( "AMDGPU promote alloca to vector or LDS" , "amdgpu-promote-alloca", &AMDGPUPromoteAlloca::ID, PassInfo ::NormalCtor_t(callDefaultCtor<AMDGPUPromoteAlloca>), false , false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeAMDGPUPromoteAllocaPassFlag; void llvm ::initializeAMDGPUPromoteAllocaPass(PassRegistry &Registry ) { llvm::call_once(InitializeAMDGPUPromoteAllocaPassFlag, initializeAMDGPUPromoteAllocaPassOnce , std::ref(Registry)); } | ||||
| 135 | "AMDGPU promote alloca to vector or LDS", false, false)PassInfo *PI = new PassInfo( "AMDGPU promote alloca to vector or LDS" , "amdgpu-promote-alloca", &AMDGPUPromoteAlloca::ID, PassInfo ::NormalCtor_t(callDefaultCtor<AMDGPUPromoteAlloca>), false , false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeAMDGPUPromoteAllocaPassFlag; void llvm ::initializeAMDGPUPromoteAllocaPass(PassRegistry &Registry ) { llvm::call_once(InitializeAMDGPUPromoteAllocaPassFlag, initializeAMDGPUPromoteAllocaPassOnce , std::ref(Registry)); } | ||||
| 136 | |||||
| 137 | INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",static void *initializeAMDGPUPromoteAllocaToVectorPassOnce(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AMDGPU promote alloca to vector" , "amdgpu-promote-alloca" "-to-vector", &AMDGPUPromoteAllocaToVector ::ID, PassInfo::NormalCtor_t(callDefaultCtor<AMDGPUPromoteAllocaToVector >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeAMDGPUPromoteAllocaToVectorPassFlag ; void llvm::initializeAMDGPUPromoteAllocaToVectorPass(PassRegistry &Registry) { llvm::call_once(InitializeAMDGPUPromoteAllocaToVectorPassFlag , initializeAMDGPUPromoteAllocaToVectorPassOnce, std::ref(Registry )); } | ||||
| 138 | "AMDGPU promote alloca to vector", false, false)static void *initializeAMDGPUPromoteAllocaToVectorPassOnce(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AMDGPU promote alloca to vector" , "amdgpu-promote-alloca" "-to-vector", &AMDGPUPromoteAllocaToVector ::ID, PassInfo::NormalCtor_t(callDefaultCtor<AMDGPUPromoteAllocaToVector >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeAMDGPUPromoteAllocaToVectorPassFlag ; void llvm::initializeAMDGPUPromoteAllocaToVectorPass(PassRegistry &Registry) { llvm::call_once(InitializeAMDGPUPromoteAllocaToVectorPassFlag , initializeAMDGPUPromoteAllocaToVectorPassOnce, std::ref(Registry )); } | ||||
| 139 | |||||
| 140 | char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; | ||||
| 141 | char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; | ||||
| 142 | |||||
| 143 | bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { | ||||
| 144 | if (skipFunction(F)) | ||||
| 145 | return false; | ||||
| 146 | |||||
| 147 | if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { | ||||
| 148 | return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); | ||||
| 149 | } | ||||
| 150 | return false; | ||||
| 151 | } | ||||
| 152 | |||||
| 153 | PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, | ||||
| 154 | FunctionAnalysisManager &AM) { | ||||
| 155 | bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); | ||||
| 156 | if (Changed) { | ||||
| 157 | PreservedAnalyses PA; | ||||
| 158 | PA.preserveSet<CFGAnalyses>(); | ||||
| 159 | return PA; | ||||
| 160 | } | ||||
| 161 | return PreservedAnalyses::all(); | ||||
| 162 | } | ||||
| 163 | |||||
| 164 | bool AMDGPUPromoteAllocaImpl::run(Function &F) { | ||||
| 165 | Mod = F.getParent(); | ||||
| 166 | DL = &Mod->getDataLayout(); | ||||
| 167 | |||||
| 168 | const Triple &TT = TM.getTargetTriple(); | ||||
| 169 | IsAMDGCN = TT.getArch() == Triple::amdgcn; | ||||
| 170 | IsAMDHSA = TT.getOS() == Triple::AMDHSA; | ||||
| 171 | |||||
| 172 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); | ||||
| 173 | if (!ST.isPromoteAllocaEnabled()) | ||||
| 174 | return false; | ||||
| 175 | |||||
| 176 | if (IsAMDGCN) { | ||||
| 177 | const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); | ||||
| 178 | MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); | ||||
| 179 | } else { | ||||
| 180 | MaxVGPRs = 128; | ||||
| 181 | } | ||||
| 182 | |||||
| 183 | bool SufficientLDS = hasSufficientLocalMem(F); | ||||
| 184 | bool Changed = false; | ||||
| 185 | BasicBlock &EntryBB = *F.begin(); | ||||
| 186 | |||||
| 187 | SmallVector<AllocaInst *, 16> Allocas; | ||||
| 188 | for (Instruction &I : EntryBB) { | ||||
| 189 | if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) | ||||
| 190 | Allocas.push_back(AI); | ||||
| 191 | } | ||||
| 192 | |||||
| 193 | for (AllocaInst *AI : Allocas) { | ||||
| 194 | if (handleAlloca(*AI, SufficientLDS)) | ||||
| 195 | Changed = true; | ||||
| 196 | } | ||||
| 197 | |||||
| 198 | return Changed; | ||||
| 199 | } | ||||
| 200 | |||||
| 201 | std::pair<Value *, Value *> | ||||
| 202 | AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { | ||||
| 203 | const Function &F = *Builder.GetInsertBlock()->getParent(); | ||||
| 204 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); | ||||
| 205 | |||||
| 206 | if (!IsAMDHSA) { | ||||
| 207 | Function *LocalSizeYFn | ||||
| 208 | = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); | ||||
| 209 | Function *LocalSizeZFn | ||||
| 210 | = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); | ||||
| 211 | |||||
| 212 | CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); | ||||
| 213 | CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); | ||||
| 214 | |||||
| 215 | ST.makeLIDRangeMetadata(LocalSizeY); | ||||
| 216 | ST.makeLIDRangeMetadata(LocalSizeZ); | ||||
| 217 | |||||
| 218 | return std::make_pair(LocalSizeY, LocalSizeZ); | ||||
| 219 | } | ||||
| 220 | |||||
| 221 | // We must read the size out of the dispatch pointer. | ||||
| 222 | assert(IsAMDGCN)((void)0); | ||||
| 223 | |||||
| 224 | // We are indexing into this struct, and want to extract the workgroup_size_* | ||||
| 225 | // fields. | ||||
| 226 | // | ||||
| 227 | // typedef struct hsa_kernel_dispatch_packet_s { | ||||
| 228 | // uint16_t header; | ||||
| 229 | // uint16_t setup; | ||||
| 230 | // uint16_t workgroup_size_x ; | ||||
| 231 | // uint16_t workgroup_size_y; | ||||
| 232 | // uint16_t workgroup_size_z; | ||||
| 233 | // uint16_t reserved0; | ||||
| 234 | // uint32_t grid_size_x ; | ||||
| 235 | // uint32_t grid_size_y ; | ||||
| 236 | // uint32_t grid_size_z; | ||||
| 237 | // | ||||
| 238 | // uint32_t private_segment_size; | ||||
| 239 | // uint32_t group_segment_size; | ||||
| 240 | // uint64_t kernel_object; | ||||
| 241 | // | ||||
| 242 | // #ifdef HSA_LARGE_MODEL | ||||
| 243 | // void *kernarg_address; | ||||
| 244 | // #elif defined HSA_LITTLE_ENDIAN | ||||
| 245 | // void *kernarg_address; | ||||
| 246 | // uint32_t reserved1; | ||||
| 247 | // #else | ||||
| 248 | // uint32_t reserved1; | ||||
| 249 | // void *kernarg_address; | ||||
| 250 | // #endif | ||||
| 251 | // uint64_t reserved2; | ||||
| 252 | // hsa_signal_t completion_signal; // uint64_t wrapper | ||||
| 253 | // } hsa_kernel_dispatch_packet_t | ||||
| 254 | // | ||||
| 255 | Function *DispatchPtrFn | ||||
| 256 | = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); | ||||
| 257 | |||||
| 258 | CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); | ||||
| 259 | DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); | ||||
| 260 | DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); | ||||
| 261 | |||||
| 262 | // Size of the dispatch packet struct. | ||||
| 263 | DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); | ||||
| 264 | |||||
| 265 | Type *I32Ty = Type::getInt32Ty(Mod->getContext()); | ||||
| 266 | Value *CastDispatchPtr = Builder.CreateBitCast( | ||||
| 267 | DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); | ||||
| 268 | |||||
| 269 | // We could do a single 64-bit load here, but it's likely that the basic | ||||
| 270 | // 32-bit and extract sequence is already present, and it is probably easier | ||||
| 271 | // to CSE this. The loads should be mergable later anyway. | ||||
| 272 | Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); | ||||
| 273 | LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); | ||||
| 274 | |||||
| 275 | Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); | ||||
| 276 | LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); | ||||
| 277 | |||||
| 278 | MDNode *MD = MDNode::get(Mod->getContext(), None); | ||||
| 279 | LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); | ||||
| 280 | LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); | ||||
| 281 | ST.makeLIDRangeMetadata(LoadZU); | ||||
| 282 | |||||
| 283 | // Extract y component. Upper half of LoadZU should be zero already. | ||||
| 284 | Value *Y = Builder.CreateLShr(LoadXY, 16); | ||||
| 285 | |||||
| 286 | return std::make_pair(Y, LoadZU); | ||||
| 287 | } | ||||
| 288 | |||||
| 289 | Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, | ||||
| 290 | unsigned N) { | ||||
| 291 | const AMDGPUSubtarget &ST = | ||||
| 292 | AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent()); | ||||
| 293 | Intrinsic::ID IntrID = Intrinsic::not_intrinsic; | ||||
| 294 | |||||
| 295 | switch (N) { | ||||
| 296 | case 0: | ||||
| 297 | IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x | ||||
| 298 | : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; | ||||
| 299 | break; | ||||
| 300 | case 1: | ||||
| 301 | IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y | ||||
| 302 | : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; | ||||
| 303 | break; | ||||
| 304 | |||||
| 305 | case 2: | ||||
| 306 | IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z | ||||
| 307 | : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; | ||||
| 308 | break; | ||||
| 309 | default: | ||||
| 310 | llvm_unreachable("invalid dimension")__builtin_unreachable(); | ||||
| 311 | } | ||||
| 312 | |||||
| 313 | Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); | ||||
| 314 | CallInst *CI = Builder.CreateCall(WorkitemIdFn); | ||||
| 315 | ST.makeLIDRangeMetadata(CI); | ||||
| 316 | |||||
| 317 | return CI; | ||||
| 318 | } | ||||
| 319 | |||||
| 320 | static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { | ||||
| 321 | return FixedVectorType::get(ArrayTy->getElementType(), | ||||
| 322 | ArrayTy->getNumElements()); | ||||
| 323 | } | ||||
| 324 | |||||
| 325 | static Value *stripBitcasts(Value *V) { | ||||
| 326 | while (Instruction *I = dyn_cast<Instruction>(V)) { | ||||
| 327 | if (I->getOpcode() != Instruction::BitCast) | ||||
| 328 | break; | ||||
| 329 | V = I->getOperand(0); | ||||
| 330 | } | ||||
| 331 | return V; | ||||
| 332 | } | ||||
| 333 | |||||
| 334 | static Value * | ||||
| 335 | calculateVectorIndex(Value *Ptr, | ||||
| 336 | const std::map<GetElementPtrInst *, Value *> &GEPIdx) { | ||||
| 337 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); | ||||
| 338 | if (!GEP) | ||||
| 339 | return nullptr; | ||||
| 340 | |||||
| 341 | auto I = GEPIdx.find(GEP); | ||||
| 342 | return I == GEPIdx.end() ? nullptr : I->second; | ||||
| 343 | } | ||||
| 344 | |||||
| 345 | static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { | ||||
| 346 | // FIXME we only support simple cases | ||||
| 347 | if (GEP->getNumOperands() != 3) | ||||
| 348 | return nullptr; | ||||
| 349 | |||||
| 350 | ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); | ||||
| 351 | if (!I0 || !I0->isZero()) | ||||
| 352 | return nullptr; | ||||
| 353 | |||||
| 354 | return GEP->getOperand(2); | ||||
| 355 | } | ||||
| 356 | |||||
| 357 | // Not an instruction handled below to turn into a vector. | ||||
| 358 | // | ||||
| 359 | // TODO: Check isTriviallyVectorizable for calls and handle other | ||||
| 360 | // instructions. | ||||
| 361 | static bool canVectorizeInst(Instruction *Inst, User *User, | ||||
| 362 | const DataLayout &DL) { | ||||
| 363 | switch (Inst->getOpcode()) { | ||||
| |||||
| 364 | case Instruction::Load: { | ||||
| 365 | // Currently only handle the case where the Pointer Operand is a GEP. | ||||
| 366 | // Also we could not vectorize volatile or atomic loads. | ||||
| 367 | LoadInst *LI = cast<LoadInst>(Inst); | ||||
| 368 | if (isa<AllocaInst>(User) && | ||||
| 369 | LI->getPointerOperandType() == User->getType() && | ||||
| 370 | isa<VectorType>(LI->getType())) | ||||
| 371 | return true; | ||||
| 372 | |||||
| 373 | Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); | ||||
| 374 | if (!PtrInst) | ||||
| 375 | return false; | ||||
| 376 | |||||
| 377 | return (PtrInst->getOpcode() == Instruction::GetElementPtr || | ||||
| 378 | PtrInst->getOpcode() == Instruction::BitCast) && | ||||
| 379 | LI->isSimple(); | ||||
| 380 | } | ||||
| 381 | case Instruction::BitCast: | ||||
| 382 | return true; | ||||
| 383 | case Instruction::Store: { | ||||
| 384 | // Must be the stored pointer operand, not a stored value, plus | ||||
| 385 | // since it should be canonical form, the User should be a GEP. | ||||
| 386 | // Also we could not vectorize volatile or atomic stores. | ||||
| 387 | StoreInst *SI = cast<StoreInst>(Inst); | ||||
| 388 | if (isa<AllocaInst>(User) && | ||||
| 389 | SI->getPointerOperandType() == User->getType() && | ||||
| 390 | isa<VectorType>(SI->getValueOperand()->getType())) | ||||
| 391 | return true; | ||||
| 392 | |||||
| 393 | Instruction *UserInst = dyn_cast<Instruction>(User); | ||||
| 394 | if (!UserInst) | ||||
| 395 | return false; | ||||
| 396 | |||||
| 397 | return (SI->getPointerOperand() == User) && | ||||
| 398 | (UserInst->getOpcode() == Instruction::GetElementPtr || | ||||
| 399 | UserInst->getOpcode() == Instruction::BitCast) && | ||||
| 400 | SI->isSimple(); | ||||
| 401 | } | ||||
| 402 | default: | ||||
| 403 | return false; | ||||
| 404 | } | ||||
| 405 | } | ||||
| 406 | |||||
| 407 | static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, | ||||
| 408 | unsigned MaxVGPRs) { | ||||
| 409 | |||||
| 410 | if (DisablePromoteAllocaToVector) { | ||||
| 411 | LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n")do { } while (false); | ||||
| 412 | return false; | ||||
| 413 | } | ||||
| 414 | |||||
| 415 | Type *AllocaTy = Alloca->getAllocatedType(); | ||||
| 416 | auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); | ||||
| 417 | if (auto *ArrayTy
| ||||
| 418 | if (VectorType::isValidElementType(ArrayTy->getElementType()) && | ||||
| 419 | ArrayTy->getNumElements() > 0) | ||||
| 420 | VectorTy = arrayTypeToVecType(ArrayTy); | ||||
| 421 | } | ||||
| 422 | |||||
| 423 | // Use up to 1/4 of available register budget for vectorization. | ||||
| 424 | unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 | ||||
| 425 | : (MaxVGPRs * 32); | ||||
| 426 | |||||
| 427 | if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { | ||||
| 428 | LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with "do { } while (false) | ||||
| 429 | << MaxVGPRs << " registers available\n")do { } while (false); | ||||
| 430 | return false; | ||||
| 431 | } | ||||
| 432 | |||||
| 433 | LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n")do { } while (false); | ||||
| 434 | |||||
| 435 | // FIXME: There is no reason why we can't support larger arrays, we | ||||
| 436 | // are just being conservative for now. | ||||
| 437 | // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these | ||||
| 438 | // could also be promoted but we don't currently handle this case | ||||
| 439 | if (!VectorTy || VectorTy->getNumElements() > 16 || | ||||
| 440 | VectorTy->getNumElements() < 2) { | ||||
| 441 | LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n")do { } while (false); | ||||
| 442 | return false; | ||||
| 443 | } | ||||
| 444 | |||||
| 445 | std::map<GetElementPtrInst*, Value*> GEPVectorIdx; | ||||
| 446 | std::vector<Value *> WorkList; | ||||
| 447 | SmallVector<User *, 8> Users(Alloca->users()); | ||||
| 448 | SmallVector<User *, 8> UseUsers(Users.size(), Alloca); | ||||
| 449 | Type *VecEltTy = VectorTy->getElementType(); | ||||
| 450 | while (!Users.empty()) { | ||||
| 451 | User *AllocaUser = Users.pop_back_val(); | ||||
| 452 | User *UseUser = UseUsers.pop_back_val(); | ||||
| 453 | Instruction *Inst = dyn_cast<Instruction>(AllocaUser); | ||||
| 454 | |||||
| 455 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); | ||||
| 456 | if (!GEP
| ||||
| 457 | if (!canVectorizeInst(Inst, UseUser, DL)) | ||||
| 458 | return false; | ||||
| 459 | |||||
| 460 | if (Inst->getOpcode() == Instruction::BitCast) { | ||||
| 461 | Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); | ||||
| 462 | Type *ToTy = Inst->getType()->getPointerElementType(); | ||||
| 463 | if (FromTy->isAggregateType() || ToTy->isAggregateType() || | ||||
| 464 | DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) | ||||
| 465 | continue; | ||||
| 466 | |||||
| 467 | for (User *CastUser : Inst->users()) { | ||||
| 468 | if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) | ||||
| 469 | continue; | ||||
| 470 | Users.push_back(CastUser); | ||||
| 471 | UseUsers.push_back(Inst); | ||||
| 472 | } | ||||
| 473 | |||||
| 474 | continue; | ||||
| 475 | } | ||||
| 476 | |||||
| 477 | WorkList.push_back(AllocaUser); | ||||
| 478 | continue; | ||||
| 479 | } | ||||
| 480 | |||||
| 481 | Value *Index = GEPToVectorIndex(GEP); | ||||
| 482 | |||||
| 483 | // If we can't compute a vector index from this GEP, then we can't | ||||
| 484 | // promote this alloca to vector. | ||||
| 485 | if (!Index) { | ||||
| 486 | LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEPdo { } while (false) | ||||
| 487 | << '\n')do { } while (false); | ||||
| 488 | return false; | ||||
| 489 | } | ||||
| 490 | |||||
| 491 | GEPVectorIdx[GEP] = Index; | ||||
| 492 | Users.append(GEP->user_begin(), GEP->user_end()); | ||||
| 493 | UseUsers.append(GEP->getNumUses(), GEP); | ||||
| 494 | } | ||||
| 495 | |||||
| 496 | LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "do { } while (false) | ||||
| 497 | << *VectorTy << '\n')do { } while (false); | ||||
| 498 | |||||
| 499 | for (Value *V : WorkList) { | ||||
| 500 | Instruction *Inst = cast<Instruction>(V); | ||||
| 501 | IRBuilder<> Builder(Inst); | ||||
| 502 | switch (Inst->getOpcode()) { | ||||
| 503 | case Instruction::Load: { | ||||
| 504 | if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) | ||||
| 505 | break; | ||||
| 506 | |||||
| 507 | Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); | ||||
| 508 | Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); | ||||
| 509 | if (!Index) | ||||
| 510 | break; | ||||
| 511 | |||||
| 512 | Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); | ||||
| 513 | Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); | ||||
| 514 | Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); | ||||
| 515 | Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); | ||||
| 516 | if (Inst->getType() != VecEltTy) | ||||
| 517 | ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); | ||||
| 518 | Inst->replaceAllUsesWith(ExtractElement); | ||||
| 519 | Inst->eraseFromParent(); | ||||
| 520 | break; | ||||
| 521 | } | ||||
| 522 | case Instruction::Store: { | ||||
| 523 | StoreInst *SI = cast<StoreInst>(Inst); | ||||
| 524 | if (SI->getValueOperand()->getType() == AllocaTy || | ||||
| 525 | SI->getValueOperand()->getType()->isVectorTy()) | ||||
| 526 | break; | ||||
| 527 | |||||
| 528 | Value *Ptr = SI->getPointerOperand(); | ||||
| 529 | Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); | ||||
| 530 | if (!Index) | ||||
| 531 | break; | ||||
| 532 | |||||
| 533 | Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); | ||||
| 534 | Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); | ||||
| 535 | Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); | ||||
| 536 | Value *Elt = SI->getValueOperand(); | ||||
| 537 | if (Elt->getType() != VecEltTy) | ||||
| 538 | Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); | ||||
| 539 | Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); | ||||
| 540 | Builder.CreateStore(NewVecValue, BitCast); | ||||
| 541 | Inst->eraseFromParent(); | ||||
| 542 | break; | ||||
| 543 | } | ||||
| 544 | |||||
| 545 | default: | ||||
| 546 | llvm_unreachable("Inconsistency in instructions promotable to vector")__builtin_unreachable(); | ||||
| 547 | } | ||||
| 548 | } | ||||
| 549 | return true; | ||||
| 550 | } | ||||
| 551 | |||||
| 552 | static bool isCallPromotable(CallInst *CI) { | ||||
| 553 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); | ||||
| 554 | if (!II) | ||||
| 555 | return false; | ||||
| 556 | |||||
| 557 | switch (II->getIntrinsicID()) { | ||||
| 558 | case Intrinsic::memcpy: | ||||
| 559 | case Intrinsic::memmove: | ||||
| 560 | case Intrinsic::memset: | ||||
| 561 | case Intrinsic::lifetime_start: | ||||
| 562 | case Intrinsic::lifetime_end: | ||||
| 563 | case Intrinsic::invariant_start: | ||||
| 564 | case Intrinsic::invariant_end: | ||||
| 565 | case Intrinsic::launder_invariant_group: | ||||
| 566 | case Intrinsic::strip_invariant_group: | ||||
| 567 | case Intrinsic::objectsize: | ||||
| 568 | return true; | ||||
| 569 | default: | ||||
| 570 | return false; | ||||
| 571 | } | ||||
| 572 | } | ||||
| 573 | |||||
| 574 | bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( | ||||
| 575 | Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, | ||||
| 576 | int OpIdx1) const { | ||||
| 577 | // Figure out which operand is the one we might not be promoting. | ||||
| 578 | Value *OtherOp = Inst->getOperand(OpIdx0); | ||||
| 579 | if (Val == OtherOp) | ||||
| 580 | OtherOp = Inst->getOperand(OpIdx1); | ||||
| 581 | |||||
| 582 | if (isa<ConstantPointerNull>(OtherOp)) | ||||
| 583 | return true; | ||||
| 584 | |||||
| 585 | Value *OtherObj = getUnderlyingObject(OtherOp); | ||||
| 586 | if (!isa<AllocaInst>(OtherObj)) | ||||
| 587 | return false; | ||||
| 588 | |||||
| 589 | // TODO: We should be able to replace undefs with the right pointer type. | ||||
| 590 | |||||
| 591 | // TODO: If we know the other base object is another promotable | ||||
| 592 | // alloca, not necessarily this alloca, we can do this. The | ||||
| 593 | // important part is both must have the same address space at | ||||
| 594 | // the end. | ||||
| 595 | if (OtherObj != BaseAlloca) { | ||||
| 596 | LLVM_DEBUG(do { } while (false) | ||||
| 597 | dbgs() << "Found a binary instruction with another alloca object\n")do { } while (false); | ||||
| 598 | return false; | ||||
| 599 | } | ||||
| 600 | |||||
| 601 | return true; | ||||
| 602 | } | ||||
| 603 | |||||
| 604 | bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( | ||||
| 605 | Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { | ||||
| 606 | |||||
| 607 | for (User *User : Val->users()) { | ||||
| 608 | if (is_contained(WorkList, User)) | ||||
| 609 | continue; | ||||
| 610 | |||||
| 611 | if (CallInst *CI = dyn_cast<CallInst>(User)) { | ||||
| 612 | if (!isCallPromotable(CI)) | ||||
| 613 | return false; | ||||
| 614 | |||||
| 615 | WorkList.push_back(User); | ||||
| 616 | continue; | ||||
| 617 | } | ||||
| 618 | |||||
| 619 | Instruction *UseInst = cast<Instruction>(User); | ||||
| 620 | if (UseInst->getOpcode() == Instruction::PtrToInt) | ||||
| 621 | return false; | ||||
| 622 | |||||
| 623 | if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { | ||||
| 624 | if (LI->isVolatile()) | ||||
| 625 | return false; | ||||
| 626 | |||||
| 627 | continue; | ||||
| 628 | } | ||||
| 629 | |||||
| 630 | if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { | ||||
| 631 | if (SI->isVolatile()) | ||||
| 632 | return false; | ||||
| 633 | |||||
| 634 | // Reject if the stored value is not the pointer operand. | ||||
| 635 | if (SI->getPointerOperand() != Val) | ||||
| 636 | return false; | ||||
| 637 | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { | ||||
| 638 | if (RMW->isVolatile()) | ||||
| 639 | return false; | ||||
| 640 | } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { | ||||
| 641 | if (CAS->isVolatile()) | ||||
| 642 | return false; | ||||
| 643 | } | ||||
| 644 | |||||
| 645 | // Only promote a select if we know that the other select operand | ||||
| 646 | // is from another pointer that will also be promoted. | ||||
| 647 | if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { | ||||
| 648 | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) | ||||
| 649 | return false; | ||||
| 650 | |||||
| 651 | // May need to rewrite constant operands. | ||||
| 652 | WorkList.push_back(ICmp); | ||||
| 653 | } | ||||
| 654 | |||||
| 655 | if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { | ||||
| 656 | // Give up if the pointer may be captured. | ||||
| 657 | if (PointerMayBeCaptured(UseInst, true, true)) | ||||
| 658 | return false; | ||||
| 659 | // Don't collect the users of this. | ||||
| 660 | WorkList.push_back(User); | ||||
| 661 | continue; | ||||
| 662 | } | ||||
| 663 | |||||
| 664 | // Do not promote vector/aggregate type instructions. It is hard to track | ||||
| 665 | // their users. | ||||
| 666 | if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) | ||||
| 667 | return false; | ||||
| 668 | |||||
| 669 | if (!User->getType()->isPointerTy()) | ||||
| 670 | continue; | ||||
| 671 | |||||
| 672 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { | ||||
| 673 | // Be conservative if an address could be computed outside the bounds of | ||||
| 674 | // the alloca. | ||||
| 675 | if (!GEP->isInBounds()) | ||||
| 676 | return false; | ||||
| 677 | } | ||||
| 678 | |||||
| 679 | // Only promote a select if we know that the other select operand is from | ||||
| 680 | // another pointer that will also be promoted. | ||||
| 681 | if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { | ||||
| 682 | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) | ||||
| 683 | return false; | ||||
| 684 | } | ||||
| 685 | |||||
| 686 | // Repeat for phis. | ||||
| 687 | if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { | ||||
| 688 | // TODO: Handle more complex cases. We should be able to replace loops | ||||
| 689 | // over arrays. | ||||
| 690 | switch (Phi->getNumIncomingValues()) { | ||||
| 691 | case 1: | ||||
| 692 | break; | ||||
| 693 | case 2: | ||||
| 694 | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) | ||||
| 695 | return false; | ||||
| 696 | break; | ||||
| 697 | default: | ||||
| 698 | return false; | ||||
| 699 | } | ||||
| 700 | } | ||||
| 701 | |||||
| 702 | WorkList.push_back(User); | ||||
| 703 | if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) | ||||
| 704 | return false; | ||||
| 705 | } | ||||
| 706 | |||||
| 707 | return true; | ||||
| 708 | } | ||||
| 709 | |||||
| 710 | bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { | ||||
| 711 | |||||
| 712 | FunctionType *FTy = F.getFunctionType(); | ||||
| 713 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); | ||||
| 714 | |||||
| 715 | // If the function has any arguments in the local address space, then it's | ||||
| 716 | // possible these arguments require the entire local memory space, so | ||||
| 717 | // we cannot use local memory in the pass. | ||||
| 718 | for (Type *ParamTy : FTy->params()) { | ||||
| 719 | PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); | ||||
| 720 | if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { | ||||
| 721 | LocalMemLimit = 0; | ||||
| 722 | LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "do { } while (false) | ||||
| 723 | "local memory disabled.\n")do { } while (false); | ||||
| 724 | return false; | ||||
| 725 | } | ||||
| 726 | } | ||||
| 727 | |||||
| 728 | LocalMemLimit = ST.getLocalMemorySize(); | ||||
| 729 | if (LocalMemLimit == 0) | ||||
| 730 | return false; | ||||
| 731 | |||||
| 732 | SmallVector<const Constant *, 16> Stack; | ||||
| 733 | SmallPtrSet<const Constant *, 8> VisitedConstants; | ||||
| 734 | SmallPtrSet<const GlobalVariable *, 8> UsedLDS; | ||||
| 735 | |||||
| 736 | auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { | ||||
| 737 | for (const User *U : Val->users()) { | ||||
| 738 | if (const Instruction *Use = dyn_cast<Instruction>(U)) { | ||||
| 739 | if (Use->getParent()->getParent() == &F) | ||||
| 740 | return true; | ||||
| 741 | } else { | ||||
| 742 | const Constant *C = cast<Constant>(U); | ||||
| 743 | if (VisitedConstants.insert(C).second) | ||||
| 744 | Stack.push_back(C); | ||||
| 745 | } | ||||
| 746 | } | ||||
| 747 | |||||
| 748 | return false; | ||||
| 749 | }; | ||||
| 750 | |||||
| 751 | for (GlobalVariable &GV : Mod->globals()) { | ||||
| 752 | if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) | ||||
| 753 | continue; | ||||
| 754 | |||||
| 755 | if (visitUsers(&GV, &GV)) { | ||||
| 756 | UsedLDS.insert(&GV); | ||||
| 757 | Stack.clear(); | ||||
| 758 | continue; | ||||
| 759 | } | ||||
| 760 | |||||
| 761 | // For any ConstantExpr uses, we need to recursively search the users until | ||||
| 762 | // we see a function. | ||||
| 763 | while (!Stack.empty()) { | ||||
| 764 | const Constant *C = Stack.pop_back_val(); | ||||
| 765 | if (visitUsers(&GV, C)) { | ||||
| 766 | UsedLDS.insert(&GV); | ||||
| 767 | Stack.clear(); | ||||
| 768 | break; | ||||
| 769 | } | ||||
| 770 | } | ||||
| 771 | } | ||||
| 772 | |||||
| 773 | const DataLayout &DL = Mod->getDataLayout(); | ||||
| 774 | SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; | ||||
| 775 | AllocatedSizes.reserve(UsedLDS.size()); | ||||
| 776 | |||||
| 777 | for (const GlobalVariable *GV : UsedLDS) { | ||||
| 778 | Align Alignment = | ||||
| 779 | DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); | ||||
| 780 | uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); | ||||
| 781 | AllocatedSizes.emplace_back(AllocSize, Alignment); | ||||
| 782 | } | ||||
| 783 | |||||
| 784 | // Sort to try to estimate the worst case alignment padding | ||||
| 785 | // | ||||
| 786 | // FIXME: We should really do something to fix the addresses to a more optimal | ||||
| 787 | // value instead | ||||
| 788 | llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS, | ||||
| 789 | std::pair<uint64_t, Align> RHS) { | ||||
| 790 | return LHS.second < RHS.second; | ||||
| 791 | }); | ||||
| 792 | |||||
| 793 | // Check how much local memory is being used by global objects | ||||
| 794 | CurrentLocalMemUsage = 0; | ||||
| 795 | |||||
| 796 | // FIXME: Try to account for padding here. The real padding and address is | ||||
| 797 | // currently determined from the inverse order of uses in the function when | ||||
| 798 | // legalizing, which could also potentially change. We try to estimate the | ||||
| 799 | // worst case here, but we probably should fix the addresses earlier. | ||||
| 800 | for (auto Alloc : AllocatedSizes) { | ||||
| 801 | CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); | ||||
| 802 | CurrentLocalMemUsage += Alloc.first; | ||||
| 803 | } | ||||
| 804 | |||||
| 805 | unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, | ||||
| 806 | F); | ||||
| 807 | |||||
| 808 | // Restrict local memory usage so that we don't drastically reduce occupancy, | ||||
| 809 | // unless it is already significantly reduced. | ||||
| 810 | |||||
| 811 | // TODO: Have some sort of hint or other heuristics to guess occupancy based | ||||
| 812 | // on other factors.. | ||||
| 813 | unsigned OccupancyHint = ST.getWavesPerEU(F).second; | ||||
| 814 | if (OccupancyHint == 0) | ||||
| 815 | OccupancyHint = 7; | ||||
| 816 | |||||
| 817 | // Clamp to max value. | ||||
| 818 | OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); | ||||
| 819 | |||||
| 820 | // Check the hint but ignore it if it's obviously wrong from the existing LDS | ||||
| 821 | // usage. | ||||
| 822 | MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); | ||||
| 823 | |||||
| 824 | |||||
| 825 | // Round up to the next tier of usage. | ||||
| 826 | unsigned MaxSizeWithWaveCount | ||||
| 827 | = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); | ||||
| 828 | |||||
| 829 | // Program is possibly broken by using more local mem than available. | ||||
| 830 | if (CurrentLocalMemUsage > MaxSizeWithWaveCount) | ||||
| 831 | return false; | ||||
| 832 | |||||
| 833 | LocalMemLimit = MaxSizeWithWaveCount; | ||||
| 834 | |||||
| 835 | LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsagedo { } while (false) | ||||
| 836 | << " bytes of LDS\n"do { } while (false) | ||||
| 837 | << " Rounding size to " << MaxSizeWithWaveCountdo { } while (false) | ||||
| 838 | << " with a maximum occupancy of " << MaxOccupancy << '\n'do { } while (false) | ||||
| 839 | << " and " << (LocalMemLimit - CurrentLocalMemUsage)do { } while (false) | ||||
| 840 | << " available for promotion\n")do { } while (false); | ||||
| 841 | |||||
| 842 | return true; | ||||
| 843 | } | ||||
| 844 | |||||
| 845 | // FIXME: Should try to pick the most likely to be profitable allocas first. | ||||
| 846 | bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { | ||||
| 847 | // Array allocations are probably not worth handling, since an allocation of | ||||
| 848 | // the array type is the canonical form. | ||||
| 849 | if (!I.isStaticAlloca() || I.isArrayAllocation()) | ||||
| 850 | return false; | ||||
| 851 | |||||
| 852 | const DataLayout &DL = Mod->getDataLayout(); | ||||
| 853 | IRBuilder<> Builder(&I); | ||||
| 854 | |||||
| 855 | // First try to replace the alloca with a vector | ||||
| 856 | Type *AllocaTy = I.getAllocatedType(); | ||||
| 857 | |||||
| 858 | LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n')do { } while (false); | ||||
| 859 | |||||
| 860 | if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) | ||||
| 861 | return true; // Promoted to vector. | ||||
| 862 | |||||
| 863 | if (DisablePromoteAllocaToLDS) | ||||
| 864 | return false; | ||||
| 865 | |||||
| 866 | const Function &ContainingFunction = *I.getParent()->getParent(); | ||||
| 867 | CallingConv::ID CC = ContainingFunction.getCallingConv(); | ||||
| 868 | |||||
| 869 | // Don't promote the alloca to LDS for shader calling conventions as the work | ||||
| 870 | // item ID intrinsics are not supported for these calling conventions. | ||||
| 871 | // Furthermore not all LDS is available for some of the stages. | ||||
| 872 | switch (CC) { | ||||
| 873 | case CallingConv::AMDGPU_KERNEL: | ||||
| 874 | case CallingConv::SPIR_KERNEL: | ||||
| 875 | break; | ||||
| 876 | default: | ||||
| 877 | LLVM_DEBUG(do { } while (false) | ||||
| 878 | dbgs()do { } while (false) | ||||
| 879 | << " promote alloca to LDS not supported with calling convention.\n")do { } while (false); | ||||
| 880 | return false; | ||||
| 881 | } | ||||
| 882 | |||||
| 883 | // Not likely to have sufficient local memory for promotion. | ||||
| 884 | if (!SufficientLDS) | ||||
| 885 | return false; | ||||
| 886 | |||||
| 887 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); | ||||
| 888 | unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; | ||||
| 889 | |||||
| 890 | Align Alignment = | ||||
| 891 | DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); | ||||
| 892 | |||||
| 893 | // FIXME: This computed padding is likely wrong since it depends on inverse | ||||
| 894 | // usage order. | ||||
| 895 | // | ||||
| 896 | // FIXME: It is also possible that if we're allowed to use all of the memory | ||||
| 897 | // could could end up using more than the maximum due to alignment padding. | ||||
| 898 | |||||
| 899 | uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); | ||||
| 900 | uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); | ||||
| 901 | NewSize += AllocSize; | ||||
| 902 | |||||
| 903 | if (NewSize > LocalMemLimit) { | ||||
| 904 | LLVM_DEBUG(dbgs() << " " << AllocSizedo { } while (false) | ||||
| 905 | << " bytes of local memory not available to promote\n")do { } while (false); | ||||
| 906 | return false; | ||||
| 907 | } | ||||
| 908 | |||||
| 909 | CurrentLocalMemUsage = NewSize; | ||||
| 910 | |||||
| 911 | std::vector<Value*> WorkList; | ||||
| 912 | |||||
| 913 | if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { | ||||
| 914 | LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n")do { } while (false); | ||||
| 915 | return false; | ||||
| 916 | } | ||||
| 917 | |||||
| 918 | LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n")do { } while (false); | ||||
| 919 | |||||
| 920 | Function *F = I.getParent()->getParent(); | ||||
| 921 | |||||
| 922 | Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); | ||||
| 923 | GlobalVariable *GV = new GlobalVariable( | ||||
| 924 | *Mod, GVTy, false, GlobalValue::InternalLinkage, | ||||
| 925 | UndefValue::get(GVTy), | ||||
| 926 | Twine(F->getName()) + Twine('.') + I.getName(), | ||||
| 927 | nullptr, | ||||
| 928 | GlobalVariable::NotThreadLocal, | ||||
| 929 | AMDGPUAS::LOCAL_ADDRESS); | ||||
| 930 | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); | ||||
| 931 | GV->setAlignment(MaybeAlign(I.getAlignment())); | ||||
| 932 | |||||
| 933 | Value *TCntY, *TCntZ; | ||||
| 934 | |||||
| 935 | std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); | ||||
| 936 | Value *TIdX = getWorkitemID(Builder, 0); | ||||
| 937 | Value *TIdY = getWorkitemID(Builder, 1); | ||||
| 938 | Value *TIdZ = getWorkitemID(Builder, 2); | ||||
| 939 | |||||
| 940 | Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); | ||||
| 941 | Tmp0 = Builder.CreateMul(Tmp0, TIdX); | ||||
| 942 | Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); | ||||
| 943 | Value *TID = Builder.CreateAdd(Tmp0, Tmp1); | ||||
| 944 | TID = Builder.CreateAdd(TID, TIdZ); | ||||
| 945 | |||||
| 946 | Value *Indices[] = { | ||||
| 947 | Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), | ||||
| 948 | TID | ||||
| 949 | }; | ||||
| 950 | |||||
| 951 | Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); | ||||
| 952 | I.mutateType(Offset->getType()); | ||||
| 953 | I.replaceAllUsesWith(Offset); | ||||
| 954 | I.eraseFromParent(); | ||||
| 955 | |||||
| 956 | SmallVector<IntrinsicInst *> DeferredIntrs; | ||||
| 957 | |||||
| 958 | for (Value *V : WorkList) { | ||||
| 959 | CallInst *Call = dyn_cast<CallInst>(V); | ||||
| 960 | if (!Call) { | ||||
| 961 | if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { | ||||
| 962 | Value *Src0 = CI->getOperand(0); | ||||
| 963 | PointerType *NewTy = PointerType::getWithSamePointeeType( | ||||
| 964 | cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); | ||||
| 965 | |||||
| 966 | if (isa<ConstantPointerNull>(CI->getOperand(0))) | ||||
| 967 | CI->setOperand(0, ConstantPointerNull::get(NewTy)); | ||||
| 968 | |||||
| 969 | if (isa<ConstantPointerNull>(CI->getOperand(1))) | ||||
| 970 | CI->setOperand(1, ConstantPointerNull::get(NewTy)); | ||||
| 971 | |||||
| 972 | continue; | ||||
| 973 | } | ||||
| 974 | |||||
| 975 | // The operand's value should be corrected on its own and we don't want to | ||||
| 976 | // touch the users. | ||||
| 977 | if (isa<AddrSpaceCastInst>(V)) | ||||
| 978 | continue; | ||||
| 979 | |||||
| 980 | PointerType *NewTy = PointerType::getWithSamePointeeType( | ||||
| 981 | cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS); | ||||
| 982 | |||||
| 983 | // FIXME: It doesn't really make sense to try to do this for all | ||||
| 984 | // instructions. | ||||
| 985 | V->mutateType(NewTy); | ||||
| 986 | |||||
| 987 | // Adjust the types of any constant operands. | ||||
| 988 | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | ||||
| 989 | if (isa<ConstantPointerNull>(SI->getOperand(1))) | ||||
| 990 | SI->setOperand(1, ConstantPointerNull::get(NewTy)); | ||||
| 991 | |||||
| 992 | if (isa<ConstantPointerNull>(SI->getOperand(2))) | ||||
| 993 | SI->setOperand(2, ConstantPointerNull::get(NewTy)); | ||||
| 994 | } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { | ||||
| 995 | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { | ||||
| 996 | if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) | ||||
| 997 | Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); | ||||
| 998 | } | ||||
| 999 | } | ||||
| 1000 | |||||
| 1001 | continue; | ||||
| 1002 | } | ||||
| 1003 | |||||
| 1004 | IntrinsicInst *Intr = cast<IntrinsicInst>(Call); | ||||
| 1005 | Builder.SetInsertPoint(Intr); | ||||
| 1006 | switch (Intr->getIntrinsicID()) { | ||||
| 1007 | case Intrinsic::lifetime_start: | ||||
| 1008 | case Intrinsic::lifetime_end: | ||||
| 1009 | // These intrinsics are for address space 0 only | ||||
| 1010 | Intr->eraseFromParent(); | ||||
| 1011 | continue; | ||||
| 1012 | case Intrinsic::memcpy: | ||||
| 1013 | case Intrinsic::memmove: | ||||
| 1014 | // These have 2 pointer operands. In case if second pointer also needs | ||||
| 1015 | // to be replaced we defer processing of these intrinsics until all | ||||
| 1016 | // other values are processed. | ||||
| 1017 | DeferredIntrs.push_back(Intr); | ||||
| 1018 | continue; | ||||
| 1019 | case Intrinsic::memset: { | ||||
| 1020 | MemSetInst *MemSet = cast<MemSetInst>(Intr); | ||||
| 1021 | Builder.CreateMemSet( | ||||
| 1022 | MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), | ||||
| 1023 | MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); | ||||
| 1024 | Intr->eraseFromParent(); | ||||
| 1025 | continue; | ||||
| 1026 | } | ||||
| 1027 | case Intrinsic::invariant_start: | ||||
| 1028 | case Intrinsic::invariant_end: | ||||
| 1029 | case Intrinsic::launder_invariant_group: | ||||
| 1030 | case Intrinsic::strip_invariant_group: | ||||
| 1031 | Intr->eraseFromParent(); | ||||
| 1032 | // FIXME: I think the invariant marker should still theoretically apply, | ||||
| 1033 | // but the intrinsics need to be changed to accept pointers with any | ||||
| 1034 | // address space. | ||||
| 1035 | continue; | ||||
| 1036 | case Intrinsic::objectsize: { | ||||
| 1037 | Value *Src = Intr->getOperand(0); | ||||
| 1038 | Function *ObjectSize = Intrinsic::getDeclaration( | ||||
| 1039 | Mod, Intrinsic::objectsize, | ||||
| 1040 | {Intr->getType(), | ||||
| 1041 | PointerType::getWithSamePointeeType( | ||||
| 1042 | cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); | ||||
| 1043 | |||||
| 1044 | CallInst *NewCall = Builder.CreateCall( | ||||
| 1045 | ObjectSize, | ||||
| 1046 | {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); | ||||
| 1047 | Intr->replaceAllUsesWith(NewCall); | ||||
| 1048 | Intr->eraseFromParent(); | ||||
| 1049 | continue; | ||||
| 1050 | } | ||||
| 1051 | default: | ||||
| 1052 | Intr->print(errs()); | ||||
| 1053 | llvm_unreachable("Don't know how to promote alloca intrinsic use.")__builtin_unreachable(); | ||||
| 1054 | } | ||||
| 1055 | } | ||||
| 1056 | |||||
| 1057 | for (IntrinsicInst *Intr : DeferredIntrs) { | ||||
| 1058 | Builder.SetInsertPoint(Intr); | ||||
| 1059 | Intrinsic::ID ID = Intr->getIntrinsicID(); | ||||
| 1060 | assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove)((void)0); | ||||
| 1061 | |||||
| 1062 | MemTransferInst *MI = cast<MemTransferInst>(Intr); | ||||
| 1063 | auto *B = | ||||
| 1064 | Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), | ||||
| 1065 | MI->getRawSource(), MI->getSourceAlign(), | ||||
| 1066 | MI->getLength(), MI->isVolatile()); | ||||
| 1067 | |||||
| 1068 | for (unsigned I = 1; I != 3; ++I) { | ||||
| 1069 | if (uint64_t Bytes = Intr->getDereferenceableBytes(I)) { | ||||
| 1070 | B->addDereferenceableAttr(I, Bytes); | ||||
| 1071 | } | ||||
| 1072 | } | ||||
| 1073 | |||||
| 1074 | Intr->eraseFromParent(); | ||||
| 1075 | } | ||||
| 1076 | |||||
| 1077 | return true; | ||||
| 1078 | } | ||||
| 1079 | |||||
| 1080 | bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { | ||||
| 1081 | // Array allocations are probably not worth handling, since an allocation of | ||||
| 1082 | // the array type is the canonical form. | ||||
| 1083 | if (!I.isStaticAlloca() || I.isArrayAllocation()) | ||||
| 1084 | return false; | ||||
| 1085 | |||||
| 1086 | LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n')do { } while (false); | ||||
| 1087 | |||||
| 1088 | Module *Mod = I.getParent()->getParent()->getParent(); | ||||
| 1089 | return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); | ||||
| 1090 | } | ||||
| 1091 | |||||
| 1092 | bool promoteAllocasToVector(Function &F, TargetMachine &TM) { | ||||
| 1093 | if (DisablePromoteAllocaToVector) | ||||
| 1094 | return false; | ||||
| 1095 | |||||
| 1096 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); | ||||
| 1097 | if (!ST.isPromoteAllocaEnabled()) | ||||
| 1098 | return false; | ||||
| 1099 | |||||
| 1100 | unsigned MaxVGPRs; | ||||
| 1101 | if (TM.getTargetTriple().getArch() == Triple::amdgcn) { | ||||
| 1102 | const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); | ||||
| 1103 | MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); | ||||
| 1104 | } else { | ||||
| 1105 | MaxVGPRs = 128; | ||||
| 1106 | } | ||||
| 1107 | |||||
| 1108 | bool Changed = false; | ||||
| 1109 | BasicBlock &EntryBB = *F.begin(); | ||||
| 1110 | |||||
| 1111 | SmallVector<AllocaInst *, 16> Allocas; | ||||
| 1112 | for (Instruction &I : EntryBB) { | ||||
| 1113 | if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) | ||||
| 1114 | Allocas.push_back(AI); | ||||
| 1115 | } | ||||
| 1116 | |||||
| 1117 | for (AllocaInst *AI : Allocas) { | ||||
| 1118 | if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) | ||||
| 1119 | Changed = true; | ||||
| 1120 | } | ||||
| 1121 | |||||
| 1122 | return Changed; | ||||
| 1123 | } | ||||
| 1124 | |||||
| 1125 | bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { | ||||
| 1126 | if (skipFunction(F)) | ||||
| 1127 | return false; | ||||
| 1128 | if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { | ||||
| 1129 | return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); | ||||
| 1130 | } | ||||
| 1131 | return false; | ||||
| 1132 | } | ||||
| 1133 | |||||
| 1134 | PreservedAnalyses | ||||
| 1135 | AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { | ||||
| 1136 | bool Changed = promoteAllocasToVector(F, TM); | ||||
| |||||
| 1137 | if (Changed) { | ||||
| 1138 | PreservedAnalyses PA; | ||||
| 1139 | PA.preserveSet<CFGAnalyses>(); | ||||
| 1140 | return PA; | ||||
| 1141 | } | ||||
| 1142 | return PreservedAnalyses::all(); | ||||
| 1143 | } | ||||
| 1144 | |||||
| 1145 | FunctionPass *llvm::createAMDGPUPromoteAlloca() { | ||||
| 1146 | return new AMDGPUPromoteAlloca(); | ||||
| 1147 | } | ||||
| 1148 | |||||
| 1149 | FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { | ||||
| 1150 | return new AMDGPUPromoteAllocaToVector(); | ||||
| 1151 | } |
| 1 | //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the SmallVector class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #ifndef LLVM_ADT_SMALLVECTOR_H |
| 14 | #define LLVM_ADT_SMALLVECTOR_H |
| 15 | |
| 16 | #include "llvm/ADT/iterator_range.h" |
| 17 | #include "llvm/Support/Compiler.h" |
| 18 | #include "llvm/Support/ErrorHandling.h" |
| 19 | #include "llvm/Support/MemAlloc.h" |
| 20 | #include "llvm/Support/type_traits.h" |
| 21 | #include <algorithm> |
| 22 | #include <cassert> |
| 23 | #include <cstddef> |
| 24 | #include <cstdlib> |
| 25 | #include <cstring> |
| 26 | #include <functional> |
| 27 | #include <initializer_list> |
| 28 | #include <iterator> |
| 29 | #include <limits> |
| 30 | #include <memory> |
| 31 | #include <new> |
| 32 | #include <type_traits> |
| 33 | #include <utility> |
| 34 | |
| 35 | namespace llvm { |
| 36 | |
| 37 | /// This is all the stuff common to all SmallVectors. |
| 38 | /// |
| 39 | /// The template parameter specifies the type which should be used to hold the |
| 40 | /// Size and Capacity of the SmallVector, so it can be adjusted. |
| 41 | /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
| 42 | /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
| 43 | /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
| 44 | /// buffering bitcode output - which can exceed 4GB. |
| 45 | template <class Size_T> class SmallVectorBase { |
| 46 | protected: |
| 47 | void *BeginX; |
| 48 | Size_T Size = 0, Capacity; |
| 49 | |
| 50 | /// The maximum value of the Size_T used. |
| 51 | static constexpr size_t SizeTypeMax() { |
| 52 | return std::numeric_limits<Size_T>::max(); |
| 53 | } |
| 54 | |
| 55 | SmallVectorBase() = delete; |
| 56 | SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
| 57 | : BeginX(FirstEl), Capacity(TotalCapacity) {} |
| 58 | |
| 59 | /// This is a helper for \a grow() that's out of line to reduce code |
| 60 | /// duplication. This function will report a fatal error if it can't grow at |
| 61 | /// least to \p MinSize. |
| 62 | void *mallocForGrow(size_t MinSize, size_t TSize, size_t &NewCapacity); |
| 63 | |
| 64 | /// This is an implementation of the grow() method which only works |
| 65 | /// on POD-like data types and is out of line to reduce code duplication. |
| 66 | /// This function will report a fatal error if it cannot increase capacity. |
| 67 | void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
| 68 | |
| 69 | public: |
| 70 | size_t size() const { return Size; } |
| 71 | size_t capacity() const { return Capacity; } |
| 72 | |
| 73 | LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size; } |
| 74 | |
| 75 | /// Set the array size to \p N, which the current array must have enough |
| 76 | /// capacity for. |
| 77 | /// |
| 78 | /// This does not construct or destroy any elements in the vector. |
| 79 | /// |
| 80 | /// Clients can use this in conjunction with capacity() to write past the end |
| 81 | /// of the buffer when they know that more elements are available, and only |
| 82 | /// update the size later. This avoids the cost of value initializing elements |
| 83 | /// which will only be overwritten. |
| 84 | void set_size(size_t N) { |
| 85 | assert(N <= capacity())((void)0); |
| 86 | Size = N; |
| 87 | } |
| 88 | }; |
| 89 | |
| 90 | template <class T> |
| 91 | using SmallVectorSizeType = |
| 92 | typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
| 93 | uint32_t>::type; |
| 94 | |
| 95 | /// Figure out the offset of the first element. |
| 96 | template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
| 97 | alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
| 98 | SmallVectorBase<SmallVectorSizeType<T>>)]; |
| 99 | alignas(T) char FirstEl[sizeof(T)]; |
| 100 | }; |
| 101 | |
| 102 | /// This is the part of SmallVectorTemplateBase which does not depend on whether |
| 103 | /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
| 104 | /// to avoid unnecessarily requiring T to be complete. |
| 105 | template <typename T, typename = void> |
| 106 | class SmallVectorTemplateCommon |
| 107 | : public SmallVectorBase<SmallVectorSizeType<T>> { |
| 108 | using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
| 109 | |
| 110 | /// Find the address of the first element. For this pointer math to be valid |
| 111 | /// with small-size of 0 for T with lots of alignment, it's important that |
| 112 | /// SmallVectorStorage is properly-aligned even for small-size of 0. |
| 113 | void *getFirstEl() const { |
| 114 | return const_cast<void *>(reinterpret_cast<const void *>( |
| 115 | reinterpret_cast<const char *>(this) + |
| 116 | offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl ))); |
| 117 | } |
| 118 | // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
| 119 | |
| 120 | protected: |
| 121 | SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
| 122 | |
| 123 | void grow_pod(size_t MinSize, size_t TSize) { |
| 124 | Base::grow_pod(getFirstEl(), MinSize, TSize); |
| 125 | } |
| 126 | |
| 127 | /// Return true if this is a smallvector which has not had dynamic |
| 128 | /// memory allocated for it. |
| 129 | bool isSmall() const { return this->BeginX == getFirstEl(); } |
| 130 | |
| 131 | /// Put this vector in a state of being small. |
| 132 | void resetToSmall() { |
| 133 | this->BeginX = getFirstEl(); |
| 134 | this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
| 135 | } |
| 136 | |
| 137 | /// Return true if V is an internal reference to the given range. |
| 138 | bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
| 139 | // Use std::less to avoid UB. |
| 140 | std::less<> LessThan; |
| 141 | return !LessThan(V, First) && LessThan(V, Last); |
| 142 | } |
| 143 | |
| 144 | /// Return true if V is an internal reference to this vector. |
| 145 | bool isReferenceToStorage(const void *V) const { |
| 146 | return isReferenceToRange(V, this->begin(), this->end()); |
| 147 | } |
| 148 | |
| 149 | /// Return true if First and Last form a valid (possibly empty) range in this |
| 150 | /// vector's storage. |
| 151 | bool isRangeInStorage(const void *First, const void *Last) const { |
| 152 | // Use std::less to avoid UB. |
| 153 | std::less<> LessThan; |
| 154 | return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
| 155 | !LessThan(this->end(), Last); |
| 156 | } |
| 157 | |
| 158 | /// Return true unless Elt will be invalidated by resizing the vector to |
| 159 | /// NewSize. |
| 160 | bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| 161 | // Past the end. |
| 162 | if (LLVM_LIKELY(!isReferenceToStorage(Elt))__builtin_expect((bool)(!isReferenceToStorage(Elt)), true)) |
| 163 | return true; |
| 164 | |
| 165 | // Return false if Elt will be destroyed by shrinking. |
| 166 | if (NewSize <= this->size()) |
| 167 | return Elt < this->begin() + NewSize; |
| 168 | |
| 169 | // Return false if we need to grow. |
| 170 | return NewSize <= this->capacity(); |
| 171 | } |
| 172 | |
| 173 | /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
| 174 | void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| 175 | assert(isSafeToReferenceAfterResize(Elt, NewSize) &&((void)0) |
| 176 | "Attempting to reference an element of the vector in an operation "((void)0) |
| 177 | "that invalidates it")((void)0); |
| 178 | } |
| 179 | |
| 180 | /// Check whether Elt will be invalidated by increasing the size of the |
| 181 | /// vector by N. |
| 182 | void assertSafeToAdd(const void *Elt, size_t N = 1) { |
| 183 | this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
| 184 | } |
| 185 | |
| 186 | /// Check whether any part of the range will be invalidated by clearing. |
| 187 | void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
| 188 | if (From == To) |
| 189 | return; |
| 190 | this->assertSafeToReferenceAfterResize(From, 0); |
| 191 | this->assertSafeToReferenceAfterResize(To - 1, 0); |
| 192 | } |
| 193 | template < |
| 194 | class ItTy, |
| 195 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| 196 | bool> = false> |
| 197 | void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
| 198 | |
| 199 | /// Check whether any part of the range will be invalidated by growing. |
| 200 | void assertSafeToAddRange(const T *From, const T *To) { |
| 201 | if (From == To) |
| 202 | return; |
| 203 | this->assertSafeToAdd(From, To - From); |
| 204 | this->assertSafeToAdd(To - 1, To - From); |
| 205 | } |
| 206 | template < |
| 207 | class ItTy, |
| 208 | std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| 209 | bool> = false> |
| 210 | void assertSafeToAddRange(ItTy, ItTy) {} |
| 211 | |
| 212 | /// Reserve enough space to add one element, and return the updated element |
| 213 | /// pointer in case it was a reference to the storage. |
| 214 | template <class U> |
| 215 | static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
| 216 | size_t N) { |
| 217 | size_t NewSize = This->size() + N; |
| 218 | if (LLVM_LIKELY(NewSize <= This->capacity())__builtin_expect((bool)(NewSize <= This->capacity()), true )) |
| 219 | return &Elt; |
| 220 | |
| 221 | bool ReferencesStorage = false; |
| 222 | int64_t Index = -1; |
| 223 | if (!U::TakesParamByValue) { |
| 224 | if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))__builtin_expect((bool)(This->isReferenceToStorage(&Elt )), false)) { |
| 225 | ReferencesStorage = true; |
| 226 | Index = &Elt - This->begin(); |
| 227 | } |
| 228 | } |
| 229 | This->grow(NewSize); |
| 230 | return ReferencesStorage ? This->begin() + Index : &Elt; |
| 231 | } |
| 232 | |
| 233 | public: |
| 234 | using size_type = size_t; |
| 235 | using difference_type = ptrdiff_t; |
| 236 | using value_type = T; |
| 237 | using iterator = T *; |
| 238 | using const_iterator = const T *; |
| 239 | |
| 240 | using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| 241 | using reverse_iterator = std::reverse_iterator<iterator>; |
| 242 | |
| 243 | using reference = T &; |
| 244 | using const_reference = const T &; |
| 245 | using pointer = T *; |
| 246 | using const_pointer = const T *; |
| 247 | |
| 248 | using Base::capacity; |
| 249 | using Base::empty; |
| 250 | using Base::size; |
| 251 | |
| 252 | // forward iterator creation methods. |
| 253 | iterator begin() { return (iterator)this->BeginX; } |
| 254 | const_iterator begin() const { return (const_iterator)this->BeginX; } |
| 255 | iterator end() { return begin() + size(); } |
| 256 | const_iterator end() const { return begin() + size(); } |
| 257 | |
| 258 | // reverse iterator creation methods. |
| 259 | reverse_iterator rbegin() { return reverse_iterator(end()); } |
| 260 | const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
| 261 | reverse_iterator rend() { return reverse_iterator(begin()); } |
| 262 | const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
| 263 | |
| 264 | size_type size_in_bytes() const { return size() * sizeof(T); } |
| 265 | size_type max_size() const { |
| 266 | return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
| 267 | } |
| 268 | |
| 269 | size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
| 270 | |
| 271 | /// Return a pointer to the vector's buffer, even if empty(). |
| 272 | pointer data() { return pointer(begin()); } |
| 273 | /// Return a pointer to the vector's buffer, even if empty(). |
| 274 | const_pointer data() const { return const_pointer(begin()); } |
| 275 | |
| 276 | reference operator[](size_type idx) { |
| 277 | assert(idx < size())((void)0); |
| 278 | return begin()[idx]; |
| 279 | } |
| 280 | const_reference operator[](size_type idx) const { |
| 281 | assert(idx < size())((void)0); |
| 282 | return begin()[idx]; |
| 283 | } |
| 284 | |
| 285 | reference front() { |
| 286 | assert(!empty())((void)0); |
| 287 | return begin()[0]; |
| 288 | } |
| 289 | const_reference front() const { |
| 290 | assert(!empty())((void)0); |
| 291 | return begin()[0]; |
| 292 | } |
| 293 | |
| 294 | reference back() { |
| 295 | assert(!empty())((void)0); |
| 296 | return end()[-1]; |
| 297 | } |
| 298 | const_reference back() const { |
| 299 | assert(!empty())((void)0); |
| 300 | return end()[-1]; |
| 301 | } |
| 302 | }; |
| 303 | |
| 304 | /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
| 305 | /// method implementations that are designed to work with non-trivial T's. |
| 306 | /// |
| 307 | /// We approximate is_trivially_copyable with trivial move/copy construction and |
| 308 | /// trivial destruction. While the standard doesn't specify that you're allowed |
| 309 | /// copy these types with memcpy, there is no way for the type to observe this. |
| 310 | /// This catches the important case of std::pair<POD, POD>, which is not |
| 311 | /// trivially assignable. |
| 312 | template <typename T, bool = (is_trivially_copy_constructible<T>::value) && |
| 313 | (is_trivially_move_constructible<T>::value) && |
| 314 | std::is_trivially_destructible<T>::value> |
| 315 | class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
| 316 | friend class SmallVectorTemplateCommon<T>; |
| 317 | |
| 318 | protected: |
| 319 | static constexpr bool TakesParamByValue = false; |
| 320 | using ValueParamT = const T &; |
| 321 | |
| 322 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| 323 | |
| 324 | static void destroy_range(T *S, T *E) { |
| 325 | while (S != E) { |
| 326 | --E; |
| 327 | E->~T(); |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
| 332 | /// constructing elements as needed. |
| 333 | template<typename It1, typename It2> |
| 334 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| 335 | std::uninitialized_copy(std::make_move_iterator(I), |
| 336 | std::make_move_iterator(E), Dest); |
| 337 | } |
| 338 | |
| 339 | /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
| 340 | /// constructing elements as needed. |
| 341 | template<typename It1, typename It2> |
| 342 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| 343 | std::uninitialized_copy(I, E, Dest); |
| 344 | } |
| 345 | |
| 346 | /// Grow the allocated memory (without initializing new elements), doubling |
| 347 | /// the size of the allocated memory. Guarantees space for at least one more |
| 348 | /// element, or MinSize more elements if specified. |
| 349 | void grow(size_t MinSize = 0); |
| 350 | |
| 351 | /// Create a new allocation big enough for \p MinSize and pass back its size |
| 352 | /// in \p NewCapacity. This is the first section of \a grow(). |
| 353 | T *mallocForGrow(size_t MinSize, size_t &NewCapacity) { |
| 354 | return static_cast<T *>( |
| 355 | SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
| 356 | MinSize, sizeof(T), NewCapacity)); |
| 357 | } |
| 358 | |
| 359 | /// Move existing elements over to the new allocation \p NewElts, the middle |
| 360 | /// section of \a grow(). |
| 361 | void moveElementsForGrow(T *NewElts); |
| 362 | |
| 363 | /// Transfer ownership of the allocation, finishing up \a grow(). |
| 364 | void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
| 365 | |
| 366 | /// Reserve enough space to add one element, and return the updated element |
| 367 | /// pointer in case it was a reference to the storage. |
| 368 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| 369 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| 370 | } |
| 371 | |
| 372 | /// Reserve enough space to add one element, and return the updated element |
| 373 | /// pointer in case it was a reference to the storage. |
| 374 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| 375 | return const_cast<T *>( |
| 376 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| 377 | } |
| 378 | |
| 379 | static T &&forward_value_param(T &&V) { return std::move(V); } |
| 380 | static const T &forward_value_param(const T &V) { return V; } |
| 381 | |
| 382 | void growAndAssign(size_t NumElts, const T &Elt) { |
| 383 | // Grow manually in case Elt is an internal reference. |
| 384 | size_t NewCapacity; |
| 385 | T *NewElts = mallocForGrow(NumElts, NewCapacity); |
| 386 | std::uninitialized_fill_n(NewElts, NumElts, Elt); |
| 387 | this->destroy_range(this->begin(), this->end()); |
| 388 | takeAllocationForGrow(NewElts, NewCapacity); |
| 389 | this->set_size(NumElts); |
| 390 | } |
| 391 | |
| 392 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| 393 | // Grow manually in case one of Args is an internal reference. |
| 394 | size_t NewCapacity; |
| 395 | T *NewElts = mallocForGrow(0, NewCapacity); |
| 396 | ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
| 397 | moveElementsForGrow(NewElts); |
| 398 | takeAllocationForGrow(NewElts, NewCapacity); |
| 399 | this->set_size(this->size() + 1); |
| 400 | return this->back(); |
| 401 | } |
| 402 | |
| 403 | public: |
| 404 | void push_back(const T &Elt) { |
| 405 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 406 | ::new ((void *)this->end()) T(*EltPtr); |
| 407 | this->set_size(this->size() + 1); |
| 408 | } |
| 409 | |
| 410 | void push_back(T &&Elt) { |
| 411 | T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 412 | ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
| 413 | this->set_size(this->size() + 1); |
| 414 | } |
| 415 | |
| 416 | void pop_back() { |
| 417 | this->set_size(this->size() - 1); |
| 418 | this->end()->~T(); |
| 419 | } |
| 420 | }; |
| 421 | |
| 422 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 423 | template <typename T, bool TriviallyCopyable> |
| 424 | void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
| 425 | size_t NewCapacity; |
| 426 | T *NewElts = mallocForGrow(MinSize, NewCapacity); |
| 427 | moveElementsForGrow(NewElts); |
| 428 | takeAllocationForGrow(NewElts, NewCapacity); |
| 429 | } |
| 430 | |
| 431 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 432 | template <typename T, bool TriviallyCopyable> |
| 433 | void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
| 434 | T *NewElts) { |
| 435 | // Move the elements over. |
| 436 | this->uninitialized_move(this->begin(), this->end(), NewElts); |
| 437 | |
| 438 | // Destroy the original elements. |
| 439 | destroy_range(this->begin(), this->end()); |
| 440 | } |
| 441 | |
| 442 | // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| 443 | template <typename T, bool TriviallyCopyable> |
| 444 | void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
| 445 | T *NewElts, size_t NewCapacity) { |
| 446 | // If this wasn't grown from the inline copy, deallocate the old space. |
| 447 | if (!this->isSmall()) |
| 448 | free(this->begin()); |
| 449 | |
| 450 | this->BeginX = NewElts; |
| 451 | this->Capacity = NewCapacity; |
| 452 | } |
| 453 | |
| 454 | /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
| 455 | /// method implementations that are designed to work with trivially copyable |
| 456 | /// T's. This allows using memcpy in place of copy/move construction and |
| 457 | /// skipping destruction. |
| 458 | template <typename T> |
| 459 | class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
| 460 | friend class SmallVectorTemplateCommon<T>; |
| 461 | |
| 462 | protected: |
| 463 | /// True if it's cheap enough to take parameters by value. Doing so avoids |
| 464 | /// overhead related to mitigations for reference invalidation. |
| 465 | static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
| 466 | |
| 467 | /// Either const T& or T, depending on whether it's cheap enough to take |
| 468 | /// parameters by value. |
| 469 | using ValueParamT = |
| 470 | typename std::conditional<TakesParamByValue, T, const T &>::type; |
| 471 | |
| 472 | SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| 473 | |
| 474 | // No need to do a destroy loop for POD's. |
| 475 | static void destroy_range(T *, T *) {} |
| 476 | |
| 477 | /// Move the range [I, E) onto the uninitialized memory |
| 478 | /// starting with "Dest", constructing elements into it as needed. |
| 479 | template<typename It1, typename It2> |
| 480 | static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| 481 | // Just do a copy. |
| 482 | uninitialized_copy(I, E, Dest); |
| 483 | } |
| 484 | |
| 485 | /// Copy the range [I, E) onto the uninitialized memory |
| 486 | /// starting with "Dest", constructing elements into it as needed. |
| 487 | template<typename It1, typename It2> |
| 488 | static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| 489 | // Arbitrary iterator types; just use the basic implementation. |
| 490 | std::uninitialized_copy(I, E, Dest); |
| 491 | } |
| 492 | |
| 493 | /// Copy the range [I, E) onto the uninitialized memory |
| 494 | /// starting with "Dest", constructing elements into it as needed. |
| 495 | template <typename T1, typename T2> |
| 496 | static void uninitialized_copy( |
| 497 | T1 *I, T1 *E, T2 *Dest, |
| 498 | std::enable_if_t<std::is_same<typename std::remove_const<T1>::type, |
| 499 | T2>::value> * = nullptr) { |
| 500 | // Use memcpy for PODs iterated by pointers (which includes SmallVector |
| 501 | // iterators): std::uninitialized_copy optimizes to memmove, but we can |
| 502 | // use memcpy here. Note that I and E are iterators and thus might be |
| 503 | // invalid for memcpy if they are equal. |
| 504 | if (I != E) |
| 505 | memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
| 506 | } |
| 507 | |
| 508 | /// Double the size of the allocated memory, guaranteeing space for at |
| 509 | /// least one more element or MinSize if specified. |
| 510 | void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
| 511 | |
| 512 | /// Reserve enough space to add one element, and return the updated element |
| 513 | /// pointer in case it was a reference to the storage. |
| 514 | const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| 515 | return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| 516 | } |
| 517 | |
| 518 | /// Reserve enough space to add one element, and return the updated element |
| 519 | /// pointer in case it was a reference to the storage. |
| 520 | T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| 521 | return const_cast<T *>( |
| 522 | this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| 523 | } |
| 524 | |
| 525 | /// Copy \p V or return a reference, depending on \a ValueParamT. |
| 526 | static ValueParamT forward_value_param(ValueParamT V) { return V; } |
| 527 | |
| 528 | void growAndAssign(size_t NumElts, T Elt) { |
| 529 | // Elt has been copied in case it's an internal reference, side-stepping |
| 530 | // reference invalidation problems without losing the realloc optimization. |
| 531 | this->set_size(0); |
| 532 | this->grow(NumElts); |
| 533 | std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
| 534 | this->set_size(NumElts); |
| 535 | } |
| 536 | |
| 537 | template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| 538 | // Use push_back with a copy in case Args has an internal reference, |
| 539 | // side-stepping reference invalidation problems without losing the realloc |
| 540 | // optimization. |
| 541 | push_back(T(std::forward<ArgTypes>(Args)...)); |
| 542 | return this->back(); |
| 543 | } |
| 544 | |
| 545 | public: |
| 546 | void push_back(ValueParamT Elt) { |
| 547 | const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| 548 | memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
| 549 | this->set_size(this->size() + 1); |
| 550 | } |
| 551 | |
| 552 | void pop_back() { this->set_size(this->size() - 1); } |
| 553 | }; |
| 554 | |
| 555 | /// This class consists of common code factored out of the SmallVector class to |
| 556 | /// reduce code duplication based on the SmallVector 'N' template parameter. |
| 557 | template <typename T> |
| 558 | class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
| 559 | using SuperClass = SmallVectorTemplateBase<T>; |
| 560 | |
| 561 | public: |
| 562 | using iterator = typename SuperClass::iterator; |
| 563 | using const_iterator = typename SuperClass::const_iterator; |
| 564 | using reference = typename SuperClass::reference; |
| 565 | using size_type = typename SuperClass::size_type; |
| 566 | |
| 567 | protected: |
| 568 | using SmallVectorTemplateBase<T>::TakesParamByValue; |
| 569 | using ValueParamT = typename SuperClass::ValueParamT; |
| 570 | |
| 571 | // Default ctor - Initialize to empty. |
| 572 | explicit SmallVectorImpl(unsigned N) |
| 573 | : SmallVectorTemplateBase<T>(N) {} |
| 574 | |
| 575 | public: |
| 576 | SmallVectorImpl(const SmallVectorImpl &) = delete; |
| 577 | |
| 578 | ~SmallVectorImpl() { |
| 579 | // Subclass has already destructed this vector's elements. |
| 580 | // If this wasn't grown from the inline copy, deallocate the old space. |
| 581 | if (!this->isSmall()) |
| 582 | free(this->begin()); |
| 583 | } |
| 584 | |
| 585 | void clear() { |
| 586 | this->destroy_range(this->begin(), this->end()); |
| 587 | this->Size = 0; |
| 588 | } |
| 589 | |
| 590 | private: |
| 591 | template <bool ForOverwrite> void resizeImpl(size_type N) { |
| 592 | if (N < this->size()) { |
| 593 | this->pop_back_n(this->size() - N); |
| 594 | } else if (N > this->size()) { |
| 595 | this->reserve(N); |
| 596 | for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
| 597 | if (ForOverwrite) |
| 598 | new (&*I) T; |
| 599 | else |
| 600 | new (&*I) T(); |
| 601 | this->set_size(N); |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | public: |
| 606 | void resize(size_type N) { resizeImpl<false>(N); } |
| 607 | |
| 608 | /// Like resize, but \ref T is POD, the new values won't be initialized. |
| 609 | void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
| 610 | |
| 611 | void resize(size_type N, ValueParamT NV) { |
| 612 | if (N == this->size()) |
| 613 | return; |
| 614 | |
| 615 | if (N < this->size()) { |
| 616 | this->pop_back_n(this->size() - N); |
| 617 | return; |
| 618 | } |
| 619 | |
| 620 | // N > this->size(). Defer to append. |
| 621 | this->append(N - this->size(), NV); |
| 622 | } |
| 623 | |
| 624 | void reserve(size_type N) { |
| 625 | if (this->capacity() < N) |
| 626 | this->grow(N); |
| 627 | } |
| 628 | |
| 629 | void pop_back_n(size_type NumItems) { |
| 630 | assert(this->size() >= NumItems)((void)0); |
| 631 | this->destroy_range(this->end() - NumItems, this->end()); |
| 632 | this->set_size(this->size() - NumItems); |
| 633 | } |
| 634 | |
| 635 | LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() { |
| 636 | T Result = ::std::move(this->back()); |
| 637 | this->pop_back(); |
| 638 | return Result; |
| 639 | } |
| 640 | |
| 641 | void swap(SmallVectorImpl &RHS); |
| 642 | |
| 643 | /// Add the specified range to the end of the SmallVector. |
| 644 | template <typename in_iter, |
| 645 | typename = std::enable_if_t<std::is_convertible< |
| 646 | typename std::iterator_traits<in_iter>::iterator_category, |
| 647 | std::input_iterator_tag>::value>> |
| 648 | void append(in_iter in_start, in_iter in_end) { |
| 649 | this->assertSafeToAddRange(in_start, in_end); |
| 650 | size_type NumInputs = std::distance(in_start, in_end); |
| 651 | this->reserve(this->size() + NumInputs); |
| 652 | this->uninitialized_copy(in_start, in_end, this->end()); |
| 653 | this->set_size(this->size() + NumInputs); |
| 654 | } |
| 655 | |
| 656 | /// Append \p NumInputs copies of \p Elt to the end. |
| 657 | void append(size_type NumInputs, ValueParamT Elt) { |
| 658 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
| 659 | std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
| 660 | this->set_size(this->size() + NumInputs); |
| 661 | } |
| 662 | |
| 663 | void append(std::initializer_list<T> IL) { |
| 664 | append(IL.begin(), IL.end()); |
| 665 | } |
| 666 | |
| 667 | void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
| 668 | |
| 669 | void assign(size_type NumElts, ValueParamT Elt) { |
| 670 | // Note that Elt could be an internal reference. |
| 671 | if (NumElts > this->capacity()) { |
| 672 | this->growAndAssign(NumElts, Elt); |
| 673 | return; |
| 674 | } |
| 675 | |
| 676 | // Assign over existing elements. |
| 677 | std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
| 678 | if (NumElts > this->size()) |
| 679 | std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
| 680 | else if (NumElts < this->size()) |
| 681 | this->destroy_range(this->begin() + NumElts, this->end()); |
| 682 | this->set_size(NumElts); |
| 683 | } |
| 684 | |
| 685 | // FIXME: Consider assigning over existing elements, rather than clearing & |
| 686 | // re-initializing them - for all assign(...) variants. |
| 687 | |
| 688 | template <typename in_iter, |
| 689 | typename = std::enable_if_t<std::is_convertible< |
| 690 | typename std::iterator_traits<in_iter>::iterator_category, |
| 691 | std::input_iterator_tag>::value>> |
| 692 | void assign(in_iter in_start, in_iter in_end) { |
| 693 | this->assertSafeToReferenceAfterClear(in_start, in_end); |
| 694 | clear(); |
| 695 | append(in_start, in_end); |
| 696 | } |
| 697 | |
| 698 | void assign(std::initializer_list<T> IL) { |
| 699 | clear(); |
| 700 | append(IL); |
| 701 | } |
| 702 | |
| 703 | void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
| 704 | |
| 705 | iterator erase(const_iterator CI) { |
| 706 | // Just cast away constness because this is a non-const member function. |
| 707 | iterator I = const_cast<iterator>(CI); |
| 708 | |
| 709 | assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds.")((void)0); |
| 710 | |
| 711 | iterator N = I; |
| 712 | // Shift all elts down one. |
| 713 | std::move(I+1, this->end(), I); |
| 714 | // Drop the last elt. |
| 715 | this->pop_back(); |
| 716 | return(N); |
| 717 | } |
| 718 | |
| 719 | iterator erase(const_iterator CS, const_iterator CE) { |
| 720 | // Just cast away constness because this is a non-const member function. |
| 721 | iterator S = const_cast<iterator>(CS); |
| 722 | iterator E = const_cast<iterator>(CE); |
| 723 | |
| 724 | assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds.")((void)0); |
| 725 | |
| 726 | iterator N = S; |
| 727 | // Shift all elts down. |
| 728 | iterator I = std::move(E, this->end(), S); |
| 729 | // Drop the last elts. |
| 730 | this->destroy_range(I, this->end()); |
| 731 | this->set_size(I - this->begin()); |
| 732 | return(N); |
| 733 | } |
| 734 | |
| 735 | private: |
| 736 | template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
| 737 | // Callers ensure that ArgType is derived from T. |
| 738 | static_assert( |
| 739 | std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
| 740 | T>::value, |
| 741 | "ArgType must be derived from T!"); |
| 742 | |
| 743 | if (I == this->end()) { // Important special case for empty vector. |
| 744 | this->push_back(::std::forward<ArgType>(Elt)); |
| 745 | return this->end()-1; |
| 746 | } |
| 747 | |
| 748 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 749 | |
| 750 | // Grow if necessary. |
| 751 | size_t Index = I - this->begin(); |
| 752 | std::remove_reference_t<ArgType> *EltPtr = |
| 753 | this->reserveForParamAndGetAddress(Elt); |
| 754 | I = this->begin() + Index; |
| 755 | |
| 756 | ::new ((void*) this->end()) T(::std::move(this->back())); |
| 757 | // Push everything else over. |
| 758 | std::move_backward(I, this->end()-1, this->end()); |
| 759 | this->set_size(this->size() + 1); |
| 760 | |
| 761 | // If we just moved the element we're inserting, be sure to update |
| 762 | // the reference (never happens if TakesParamByValue). |
| 763 | static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
| 764 | "ArgType must be 'T' when taking by value!"); |
| 765 | if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
| 766 | ++EltPtr; |
| 767 | |
| 768 | *I = ::std::forward<ArgType>(*EltPtr); |
| 769 | return I; |
| 770 | } |
| 771 | |
| 772 | public: |
| 773 | iterator insert(iterator I, T &&Elt) { |
| 774 | return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
| 775 | } |
| 776 | |
| 777 | iterator insert(iterator I, const T &Elt) { |
| 778 | return insert_one_impl(I, this->forward_value_param(Elt)); |
| 779 | } |
| 780 | |
| 781 | iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
| 782 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| 783 | size_t InsertElt = I - this->begin(); |
| 784 | |
| 785 | if (I == this->end()) { // Important special case for empty vector. |
| 786 | append(NumToInsert, Elt); |
| 787 | return this->begin()+InsertElt; |
| 788 | } |
| 789 | |
| 790 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 791 | |
| 792 | // Ensure there is enough space, and get the (maybe updated) address of |
| 793 | // Elt. |
| 794 | const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
| 795 | |
| 796 | // Uninvalidate the iterator. |
| 797 | I = this->begin()+InsertElt; |
| 798 | |
| 799 | // If there are more elements between the insertion point and the end of the |
| 800 | // range than there are being inserted, we can use a simple approach to |
| 801 | // insertion. Since we already reserved space, we know that this won't |
| 802 | // reallocate the vector. |
| 803 | if (size_t(this->end()-I) >= NumToInsert) { |
| 804 | T *OldEnd = this->end(); |
| 805 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| 806 | std::move_iterator<iterator>(this->end())); |
| 807 | |
| 808 | // Copy the existing elements that get replaced. |
| 809 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| 810 | |
| 811 | // If we just moved the element we're inserting, be sure to update |
| 812 | // the reference (never happens if TakesParamByValue). |
| 813 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| 814 | EltPtr += NumToInsert; |
| 815 | |
| 816 | std::fill_n(I, NumToInsert, *EltPtr); |
| 817 | return I; |
| 818 | } |
| 819 | |
| 820 | // Otherwise, we're inserting more elements than exist already, and we're |
| 821 | // not inserting at the end. |
| 822 | |
| 823 | // Move over the elements that we're about to overwrite. |
| 824 | T *OldEnd = this->end(); |
| 825 | this->set_size(this->size() + NumToInsert); |
| 826 | size_t NumOverwritten = OldEnd-I; |
| 827 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| 828 | |
| 829 | // If we just moved the element we're inserting, be sure to update |
| 830 | // the reference (never happens if TakesParamByValue). |
| 831 | if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| 832 | EltPtr += NumToInsert; |
| 833 | |
| 834 | // Replace the overwritten part. |
| 835 | std::fill_n(I, NumOverwritten, *EltPtr); |
| 836 | |
| 837 | // Insert the non-overwritten middle part. |
| 838 | std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
| 839 | return I; |
| 840 | } |
| 841 | |
| 842 | template <typename ItTy, |
| 843 | typename = std::enable_if_t<std::is_convertible< |
| 844 | typename std::iterator_traits<ItTy>::iterator_category, |
| 845 | std::input_iterator_tag>::value>> |
| 846 | iterator insert(iterator I, ItTy From, ItTy To) { |
| 847 | // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| 848 | size_t InsertElt = I - this->begin(); |
| 849 | |
| 850 | if (I == this->end()) { // Important special case for empty vector. |
| 851 | append(From, To); |
| 852 | return this->begin()+InsertElt; |
| 853 | } |
| 854 | |
| 855 | assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds.")((void)0); |
| 856 | |
| 857 | // Check that the reserve that follows doesn't invalidate the iterators. |
| 858 | this->assertSafeToAddRange(From, To); |
| 859 | |
| 860 | size_t NumToInsert = std::distance(From, To); |
| 861 | |
| 862 | // Ensure there is enough space. |
| 863 | reserve(this->size() + NumToInsert); |
| 864 | |
| 865 | // Uninvalidate the iterator. |
| 866 | I = this->begin()+InsertElt; |
| 867 | |
| 868 | // If there are more elements between the insertion point and the end of the |
| 869 | // range than there are being inserted, we can use a simple approach to |
| 870 | // insertion. Since we already reserved space, we know that this won't |
| 871 | // reallocate the vector. |
| 872 | if (size_t(this->end()-I) >= NumToInsert) { |
| 873 | T *OldEnd = this->end(); |
| 874 | append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| 875 | std::move_iterator<iterator>(this->end())); |
| 876 | |
| 877 | // Copy the existing elements that get replaced. |
| 878 | std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| 879 | |
| 880 | std::copy(From, To, I); |
| 881 | return I; |
| 882 | } |
| 883 | |
| 884 | // Otherwise, we're inserting more elements than exist already, and we're |
| 885 | // not inserting at the end. |
| 886 | |
| 887 | // Move over the elements that we're about to overwrite. |
| 888 | T *OldEnd = this->end(); |
| 889 | this->set_size(this->size() + NumToInsert); |
| 890 | size_t NumOverwritten = OldEnd-I; |
| 891 | this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| 892 | |
| 893 | // Replace the overwritten part. |
| 894 | for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
| 895 | *J = *From; |
| 896 | ++J; ++From; |
| 897 | } |
| 898 | |
| 899 | // Insert the non-overwritten middle part. |
| 900 | this->uninitialized_copy(From, To, OldEnd); |
| 901 | return I; |
| 902 | } |
| 903 | |
| 904 | void insert(iterator I, std::initializer_list<T> IL) { |
| 905 | insert(I, IL.begin(), IL.end()); |
| 906 | } |
| 907 | |
| 908 | template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
| 909 | if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity ()), false)) |
| 910 | return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
| 911 | |
| 912 | ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
| 913 | this->set_size(this->size() + 1); |
| 914 | return this->back(); |
| 915 | } |
| 916 | |
| 917 | SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
| 918 | |
| 919 | SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
| 920 | |
| 921 | bool operator==(const SmallVectorImpl &RHS) const { |
| 922 | if (this->size() != RHS.size()) return false; |
| 923 | return std::equal(this->begin(), this->end(), RHS.begin()); |
| 924 | } |
| 925 | bool operator!=(const SmallVectorImpl &RHS) const { |
| 926 | return !(*this == RHS); |
| 927 | } |
| 928 | |
| 929 | bool operator<(const SmallVectorImpl &RHS) const { |
| 930 | return std::lexicographical_compare(this->begin(), this->end(), |
| 931 | RHS.begin(), RHS.end()); |
| 932 | } |
| 933 | }; |
| 934 | |
| 935 | template <typename T> |
| 936 | void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
| 937 | if (this == &RHS) return; |
| 938 | |
| 939 | // We can only avoid copying elements if neither vector is small. |
| 940 | if (!this->isSmall() && !RHS.isSmall()) { |
| 941 | std::swap(this->BeginX, RHS.BeginX); |
| 942 | std::swap(this->Size, RHS.Size); |
| 943 | std::swap(this->Capacity, RHS.Capacity); |
| 944 | return; |
| 945 | } |
| 946 | this->reserve(RHS.size()); |
| 947 | RHS.reserve(this->size()); |
| 948 | |
| 949 | // Swap the shared elements. |
| 950 | size_t NumShared = this->size(); |
| 951 | if (NumShared > RHS.size()) NumShared = RHS.size(); |
| 952 | for (size_type i = 0; i != NumShared; ++i) |
| 953 | std::swap((*this)[i], RHS[i]); |
| 954 | |
| 955 | // Copy over the extra elts. |
| 956 | if (this->size() > RHS.size()) { |
| 957 | size_t EltDiff = this->size() - RHS.size(); |
| 958 | this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
| 959 | RHS.set_size(RHS.size() + EltDiff); |
| 960 | this->destroy_range(this->begin()+NumShared, this->end()); |
| 961 | this->set_size(NumShared); |
| 962 | } else if (RHS.size() > this->size()) { |
| 963 | size_t EltDiff = RHS.size() - this->size(); |
| 964 | this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
| 965 | this->set_size(this->size() + EltDiff); |
| 966 | this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
| 967 | RHS.set_size(NumShared); |
| 968 | } |
| 969 | } |
| 970 | |
| 971 | template <typename T> |
| 972 | SmallVectorImpl<T> &SmallVectorImpl<T>:: |
| 973 | operator=(const SmallVectorImpl<T> &RHS) { |
| 974 | // Avoid self-assignment. |
| 975 | if (this == &RHS) return *this; |
| 976 | |
| 977 | // If we already have sufficient space, assign the common elements, then |
| 978 | // destroy any excess. |
| 979 | size_t RHSSize = RHS.size(); |
| 980 | size_t CurSize = this->size(); |
| 981 | if (CurSize >= RHSSize) { |
| 982 | // Assign common elements. |
| 983 | iterator NewEnd; |
| 984 | if (RHSSize) |
| 985 | NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
| 986 | else |
| 987 | NewEnd = this->begin(); |
| 988 | |
| 989 | // Destroy excess elements. |
| 990 | this->destroy_range(NewEnd, this->end()); |
| 991 | |
| 992 | // Trim. |
| 993 | this->set_size(RHSSize); |
| 994 | return *this; |
| 995 | } |
| 996 | |
| 997 | // If we have to grow to have enough elements, destroy the current elements. |
| 998 | // This allows us to avoid copying them during the grow. |
| 999 | // FIXME: don't do this if they're efficiently moveable. |
| 1000 | if (this->capacity() < RHSSize) { |
| 1001 | // Destroy current elements. |
| 1002 | this->clear(); |
| 1003 | CurSize = 0; |
| 1004 | this->grow(RHSSize); |
| 1005 | } else if (CurSize) { |
| 1006 | // Otherwise, use assignment for the already-constructed elements. |
| 1007 | std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| 1008 | } |
| 1009 | |
| 1010 | // Copy construct the new elements in place. |
| 1011 | this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
| 1012 | this->begin()+CurSize); |
| 1013 | |
| 1014 | // Set end. |
| 1015 | this->set_size(RHSSize); |
| 1016 | return *this; |
| 1017 | } |
| 1018 | |
| 1019 | template <typename T> |
| 1020 | SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
| 1021 | // Avoid self-assignment. |
| 1022 | if (this == &RHS) return *this; |
| 1023 | |
| 1024 | // If the RHS isn't small, clear this vector and then steal its buffer. |
| 1025 | if (!RHS.isSmall()) { |
| 1026 | this->destroy_range(this->begin(), this->end()); |
| 1027 | if (!this->isSmall()) free(this->begin()); |
| 1028 | this->BeginX = RHS.BeginX; |
| 1029 | this->Size = RHS.Size; |
| 1030 | this->Capacity = RHS.Capacity; |
| 1031 | RHS.resetToSmall(); |
| 1032 | return *this; |
| 1033 | } |
| 1034 | |
| 1035 | // If we already have sufficient space, assign the common elements, then |
| 1036 | // destroy any excess. |
| 1037 | size_t RHSSize = RHS.size(); |
| 1038 | size_t CurSize = this->size(); |
| 1039 | if (CurSize >= RHSSize) { |
| 1040 | // Assign common elements. |
| 1041 | iterator NewEnd = this->begin(); |
| 1042 | if (RHSSize) |
| 1043 | NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
| 1044 | |
| 1045 | // Destroy excess elements and trim the bounds. |
| 1046 | this->destroy_range(NewEnd, this->end()); |
| 1047 | this->set_size(RHSSize); |
| 1048 | |
| 1049 | // Clear the RHS. |
| 1050 | RHS.clear(); |
| 1051 | |
| 1052 | return *this; |
| 1053 | } |
| 1054 | |
| 1055 | // If we have to grow to have enough elements, destroy the current elements. |
| 1056 | // This allows us to avoid copying them during the grow. |
| 1057 | // FIXME: this may not actually make any sense if we can efficiently move |
| 1058 | // elements. |
| 1059 | if (this->capacity() < RHSSize) { |
| 1060 | // Destroy current elements. |
| 1061 | this->clear(); |
| 1062 | CurSize = 0; |
| 1063 | this->grow(RHSSize); |
| 1064 | } else if (CurSize) { |
| 1065 | // Otherwise, use assignment for the already-constructed elements. |
| 1066 | std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| 1067 | } |
| 1068 | |
| 1069 | // Move-construct the new elements in place. |
| 1070 | this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
| 1071 | this->begin()+CurSize); |
| 1072 | |
| 1073 | // Set end. |
| 1074 | this->set_size(RHSSize); |
| 1075 | |
| 1076 | RHS.clear(); |
| 1077 | return *this; |
| 1078 | } |
| 1079 | |
| 1080 | /// Storage for the SmallVector elements. This is specialized for the N=0 case |
| 1081 | /// to avoid allocating unnecessary storage. |
| 1082 | template <typename T, unsigned N> |
| 1083 | struct SmallVectorStorage { |
| 1084 | alignas(T) char InlineElts[N * sizeof(T)]; |
| 1085 | }; |
| 1086 | |
| 1087 | /// We need the storage to be properly aligned even for small-size of 0 so that |
| 1088 | /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
| 1089 | /// well-defined. |
| 1090 | template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
| 1091 | |
| 1092 | /// Forward declaration of SmallVector so that |
| 1093 | /// calculateSmallVectorDefaultInlinedElements can reference |
| 1094 | /// `sizeof(SmallVector<T, 0>)`. |
| 1095 | template <typename T, unsigned N> class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector; |
| 1096 | |
| 1097 | /// Helper class for calculating the default number of inline elements for |
| 1098 | /// `SmallVector<T>`. |
| 1099 | /// |
| 1100 | /// This should be migrated to a constexpr function when our minimum |
| 1101 | /// compiler support is enough for multi-statement constexpr functions. |
| 1102 | template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
| 1103 | // Parameter controlling the default number of inlined elements |
| 1104 | // for `SmallVector<T>`. |
| 1105 | // |
| 1106 | // The default number of inlined elements ensures that |
| 1107 | // 1. There is at least one inlined element. |
| 1108 | // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
| 1109 | // it contradicts 1. |
| 1110 | static constexpr size_t kPreferredSmallVectorSizeof = 64; |
| 1111 | |
| 1112 | // static_assert that sizeof(T) is not "too big". |
| 1113 | // |
| 1114 | // Because our policy guarantees at least one inlined element, it is possible |
| 1115 | // for an arbitrarily large inlined element to allocate an arbitrarily large |
| 1116 | // amount of inline storage. We generally consider it an antipattern for a |
| 1117 | // SmallVector to allocate an excessive amount of inline storage, so we want |
| 1118 | // to call attention to these cases and make sure that users are making an |
| 1119 | // intentional decision if they request a lot of inline storage. |
| 1120 | // |
| 1121 | // We want this assertion to trigger in pathological cases, but otherwise |
| 1122 | // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
| 1123 | // larger than kPreferredSmallVectorSizeof (otherwise, |
| 1124 | // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
| 1125 | // pattern seems useful in practice). |
| 1126 | // |
| 1127 | // One wrinkle is that this assertion is in theory non-portable, since |
| 1128 | // sizeof(T) is in general platform-dependent. However, we don't expect this |
| 1129 | // to be much of an issue, because most LLVM development happens on 64-bit |
| 1130 | // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
| 1131 | // 32-bit hosts, dodging the issue. The reverse situation, where development |
| 1132 | // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
| 1133 | // 64-bit host, is expected to be very rare. |
| 1134 | static_assert( |
| 1135 | sizeof(T) <= 256, |
| 1136 | "You are trying to use a default number of inlined elements for " |
| 1137 | "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
| 1138 | "explicit number of inlined elements with `SmallVector<T, N>` to make " |
| 1139 | "sure you really want that much inline storage."); |
| 1140 | |
| 1141 | // Discount the size of the header itself when calculating the maximum inline |
| 1142 | // bytes. |
| 1143 | static constexpr size_t PreferredInlineBytes = |
| 1144 | kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
| 1145 | static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
| 1146 | static constexpr size_t value = |
| 1147 | NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
| 1148 | }; |
| 1149 | |
| 1150 | /// This is a 'vector' (really, a variable-sized array), optimized |
| 1151 | /// for the case when the array is small. It contains some number of elements |
| 1152 | /// in-place, which allows it to avoid heap allocation when the actual number of |
| 1153 | /// elements is below that threshold. This allows normal "small" cases to be |
| 1154 | /// fast without losing generality for large inputs. |
| 1155 | /// |
| 1156 | /// \note |
| 1157 | /// In the absence of a well-motivated choice for the number of inlined |
| 1158 | /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
| 1159 | /// omitting the \p N). This will choose a default number of inlined elements |
| 1160 | /// reasonable for allocation on the stack (for example, trying to keep \c |
| 1161 | /// sizeof(SmallVector<T>) around 64 bytes). |
| 1162 | /// |
| 1163 | /// \warning This does not attempt to be exception safe. |
| 1164 | /// |
| 1165 | /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
| 1166 | template <typename T, |
| 1167 | unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
| 1168 | class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>, |
| 1169 | SmallVectorStorage<T, N> { |
| 1170 | public: |
| 1171 | SmallVector() : SmallVectorImpl<T>(N) {} |
| 1172 | |
| 1173 | ~SmallVector() { |
| 1174 | // Destroy the constructed elements in the vector. |
| 1175 | this->destroy_range(this->begin(), this->end()); |
| 1176 | } |
| 1177 | |
| 1178 | explicit SmallVector(size_t Size, const T &Value = T()) |
| 1179 | : SmallVectorImpl<T>(N) { |
| 1180 | this->assign(Size, Value); |
| 1181 | } |
| 1182 | |
| 1183 | template <typename ItTy, |
| 1184 | typename = std::enable_if_t<std::is_convertible< |
| 1185 | typename std::iterator_traits<ItTy>::iterator_category, |
| 1186 | std::input_iterator_tag>::value>> |
| 1187 | SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
| 1188 | this->append(S, E); |
| 1189 | } |
| 1190 | |
| 1191 | template <typename RangeTy> |
| 1192 | explicit SmallVector(const iterator_range<RangeTy> &R) |
| 1193 | : SmallVectorImpl<T>(N) { |
| 1194 | this->append(R.begin(), R.end()); |
| 1195 | } |
| 1196 | |
| 1197 | SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
| 1198 | this->assign(IL); |
| 1199 | } |
| 1200 | |
| 1201 | SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
| 1202 | if (!RHS.empty()) |
| 1203 | SmallVectorImpl<T>::operator=(RHS); |
| 1204 | } |
| 1205 | |
| 1206 | SmallVector &operator=(const SmallVector &RHS) { |
| 1207 | SmallVectorImpl<T>::operator=(RHS); |
| 1208 | return *this; |
| 1209 | } |
| 1210 | |
| 1211 | SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
| 1212 | if (!RHS.empty()) |
| 1213 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1214 | } |
| 1215 | |
| 1216 | SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
| 1217 | if (!RHS.empty()) |
| 1218 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1219 | } |
| 1220 | |
| 1221 | SmallVector &operator=(SmallVector &&RHS) { |
| 1222 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1223 | return *this; |
| 1224 | } |
| 1225 | |
| 1226 | SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
| 1227 | SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| 1228 | return *this; |
| 1229 | } |
| 1230 | |
| 1231 | SmallVector &operator=(std::initializer_list<T> IL) { |
| 1232 | this->assign(IL); |
| 1233 | return *this; |
| 1234 | } |
| 1235 | }; |
| 1236 | |
| 1237 | template <typename T, unsigned N> |
| 1238 | inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
| 1239 | return X.capacity_in_bytes(); |
| 1240 | } |
| 1241 | |
| 1242 | /// Given a range of type R, iterate the entire range and return a |
| 1243 | /// SmallVector with elements of the vector. This is useful, for example, |
| 1244 | /// when you want to iterate a range and then sort the results. |
| 1245 | template <unsigned Size, typename R> |
| 1246 | SmallVector<typename std::remove_const<typename std::remove_reference< |
| 1247 | decltype(*std::begin(std::declval<R &>()))>::type>::type, |
| 1248 | Size> |
| 1249 | to_vector(R &&Range) { |
| 1250 | return {std::begin(Range), std::end(Range)}; |
| 1251 | } |
| 1252 | |
| 1253 | } // end namespace llvm |
| 1254 | |
| 1255 | namespace std { |
| 1256 | |
| 1257 | /// Implement std::swap in terms of SmallVector swap. |
| 1258 | template<typename T> |
| 1259 | inline void |
| 1260 | swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
| 1261 | LHS.swap(RHS); |
| 1262 | } |
| 1263 | |
| 1264 | /// Implement std::swap in terms of SmallVector swap. |
| 1265 | template<typename T, unsigned N> |
| 1266 | inline void |
| 1267 | swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
| 1268 | LHS.swap(RHS); |
| 1269 | } |
| 1270 | |
| 1271 | } // end namespace std |
| 1272 | |
| 1273 | #endif // LLVM_ADT_SMALLVECTOR_H |