File: | src/usr.bin/ssh/ssh/../umac.c |
Warning: | line 516, column 29 Value stored to 'k10' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: umac.c,v 1.23 2023/03/07 01:30:52 djm Exp $ */ |
2 | /* ----------------------------------------------------------------------- |
3 | * |
4 | * umac.c -- C Implementation UMAC Message Authentication |
5 | * |
6 | * Version 0.93b of rfc4418.txt -- 2006 July 18 |
7 | * |
8 | * For a full description of UMAC message authentication see the UMAC |
9 | * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac |
10 | * Please report bugs and suggestions to the UMAC webpage. |
11 | * |
12 | * Copyright (c) 1999-2006 Ted Krovetz |
13 | * |
14 | * Permission to use, copy, modify, and distribute this software and |
15 | * its documentation for any purpose and with or without fee, is hereby |
16 | * granted provided that the above copyright notice appears in all copies |
17 | * and in supporting documentation, and that the name of the copyright |
18 | * holder not be used in advertising or publicity pertaining to |
19 | * distribution of the software without specific, written prior permission. |
20 | * |
21 | * Comments should be directed to Ted Krovetz (tdk@acm.org) |
22 | * |
23 | * ---------------------------------------------------------------------- */ |
24 | |
25 | /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// |
26 | * |
27 | * 1) This version does not work properly on messages larger than 16MB |
28 | * |
29 | * 2) If you set the switch to use SSE2, then all data must be 16-byte |
30 | * aligned |
31 | * |
32 | * 3) When calling the function umac(), it is assumed that msg is in |
33 | * a writable buffer of length divisible by 32 bytes. The message itself |
34 | * does not have to fill the entire buffer, but bytes beyond msg may be |
35 | * zeroed. |
36 | * |
37 | * 4) Three free AES implementations are supported by this implementation of |
38 | * UMAC. Paulo Barreto's version is in the public domain and can be found |
39 | * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for |
40 | * "Barreto"). The only two files needed are rijndael-alg-fst.c and |
41 | * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU |
42 | * Public license at http://fp.gladman.plus.com/AES/index.htm. It |
43 | * includes a fast IA-32 assembly version. The OpenSSL crypo library is |
44 | * the third. |
45 | * |
46 | * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes |
47 | * produced under gcc with optimizations set -O3 or higher. Dunno why. |
48 | * |
49 | /////////////////////////////////////////////////////////////////////// */ |
50 | |
51 | /* ---------------------------------------------------------------------- */ |
52 | /* --- User Switches ---------------------------------------------------- */ |
53 | /* ---------------------------------------------------------------------- */ |
54 | |
55 | #ifndef UMAC_OUTPUT_LEN16 |
56 | #define UMAC_OUTPUT_LEN16 8 /* Alowable: 4, 8, 12, 16 */ |
57 | #endif |
58 | /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ |
59 | /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ |
60 | /* #define SSE2 0 Is SSE2 is available? */ |
61 | /* #define RUN_TESTS 0 Run basic correctness/speed tests */ |
62 | /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */ |
63 | |
64 | /* ---------------------------------------------------------------------- */ |
65 | /* -- Global Includes --------------------------------------------------- */ |
66 | /* ---------------------------------------------------------------------- */ |
67 | |
68 | #include <sys/types.h> |
69 | #include <endian.h> |
70 | #include <string.h> |
71 | #include <stdarg.h> |
72 | #include <stdio.h> |
73 | #include <stdlib.h> |
74 | #include <stddef.h> |
75 | |
76 | #include "xmalloc.h" |
77 | #include "umac.h" |
78 | #include "misc.h" |
79 | |
80 | /* ---------------------------------------------------------------------- */ |
81 | /* --- Primitive Data Types --- */ |
82 | /* ---------------------------------------------------------------------- */ |
83 | |
84 | /* The following assumptions may need change on your system */ |
85 | typedef u_int8_t UINT8; /* 1 byte */ |
86 | typedef u_int16_t UINT16; /* 2 byte */ |
87 | typedef u_int32_t UINT32; /* 4 byte */ |
88 | typedef u_int64_t UINT64; /* 8 bytes */ |
89 | typedef unsigned int UWORD; /* Register */ |
90 | |
91 | /* ---------------------------------------------------------------------- */ |
92 | /* --- Constants -------------------------------------------------------- */ |
93 | /* ---------------------------------------------------------------------- */ |
94 | |
95 | #define UMAC_KEY_LEN16 16 /* UMAC takes 16 bytes of external key */ |
96 | |
97 | /* Message "words" are read from memory in an endian-specific manner. */ |
98 | /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ |
99 | /* be set true if the host computer is little-endian. */ |
100 | |
101 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
102 | #define __LITTLE_ENDIAN__1 1 |
103 | #else |
104 | #define __LITTLE_ENDIAN__1 0 |
105 | #endif |
106 | |
107 | /* ---------------------------------------------------------------------- */ |
108 | /* ---------------------------------------------------------------------- */ |
109 | /* ----- Architecture Specific ------------------------------------------ */ |
110 | /* ---------------------------------------------------------------------- */ |
111 | /* ---------------------------------------------------------------------- */ |
112 | |
113 | |
114 | /* ---------------------------------------------------------------------- */ |
115 | /* ---------------------------------------------------------------------- */ |
116 | /* ----- Primitive Routines --------------------------------------------- */ |
117 | /* ---------------------------------------------------------------------- */ |
118 | /* ---------------------------------------------------------------------- */ |
119 | |
120 | |
121 | /* ---------------------------------------------------------------------- */ |
122 | /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ |
123 | /* ---------------------------------------------------------------------- */ |
124 | |
125 | #define MUL64(a,b)((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) |
126 | |
127 | /* ---------------------------------------------------------------------- */ |
128 | /* --- Endian Conversion --- Forcing assembly on some platforms */ |
129 | /* ---------------------------------------------------------------------- */ |
130 | |
131 | /* The following definitions use the above reversal-primitives to do the right |
132 | * thing on endian specific load and stores. |
133 | */ |
134 | |
135 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 |
136 | #define LOAD_UINT32_REVERSED(p)get_u32(p) get_u32(p) |
137 | #define STORE_UINT32_REVERSED(p,v)put_u32(p,v) put_u32(p,v) |
138 | #else |
139 | #define LOAD_UINT32_REVERSED(p)get_u32(p) get_u32_le(p) |
140 | #define STORE_UINT32_REVERSED(p,v)put_u32(p,v) put_u32_le(p,v) |
141 | #endif |
142 | |
143 | #define LOAD_UINT32_LITTLE(p)(get_u32_le(p)) (get_u32_le(p)) |
144 | #define STORE_UINT32_BIG(p,v)put_u32(p, v) put_u32(p, v) |
145 | |
146 | |
147 | |
148 | /* ---------------------------------------------------------------------- */ |
149 | /* ---------------------------------------------------------------------- */ |
150 | /* ----- Begin KDF & PDF Section ---------------------------------------- */ |
151 | /* ---------------------------------------------------------------------- */ |
152 | /* ---------------------------------------------------------------------- */ |
153 | |
154 | /* UMAC uses AES with 16 byte block and key lengths */ |
155 | #define AES_BLOCK_LEN16 16 |
156 | |
157 | #ifdef WITH_OPENSSL1 |
158 | #include <openssl/aes.h> |
159 | typedef AES_KEY aes_int_key[1]; |
160 | #define aes_encryption(in,out,int_key)AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key ) \ |
161 | AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) |
162 | #define aes_key_setup(key,int_key)AES_set_encrypt_key((const u_char *)(key),16*8,int_key) \ |
163 | AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN16*8,int_key) |
164 | #else |
165 | #include "rijndael.h" |
166 | #define AES_ROUNDS ((UMAC_KEY_LEN16 / 4) + 6) |
167 | typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */ |
168 | #define aes_encryption(in,out,int_key)AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key ) \ |
169 | rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out)) |
170 | #define aes_key_setup(key,int_key)AES_set_encrypt_key((const u_char *)(key),16*8,int_key) \ |
171 | rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \ |
172 | UMAC_KEY_LEN16*8) |
173 | #endif |
174 | |
175 | /* The user-supplied UMAC key is stretched using AES in a counter |
176 | * mode to supply all random bits needed by UMAC. The kdf function takes |
177 | * an AES internal key representation 'key' and writes a stream of |
178 | * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct |
179 | * 'ndx' causes a distinct byte stream. |
180 | */ |
181 | static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) |
182 | { |
183 | UINT8 in_buf[AES_BLOCK_LEN16] = {0}; |
184 | UINT8 out_buf[AES_BLOCK_LEN16]; |
185 | UINT8 *dst_buf = (UINT8 *)buffer_ptr; |
186 | int i; |
187 | |
188 | /* Setup the initial value */ |
189 | in_buf[AES_BLOCK_LEN16-9] = ndx; |
190 | in_buf[AES_BLOCK_LEN16-1] = i = 1; |
191 | |
192 | while (nbytes >= AES_BLOCK_LEN16) { |
193 | aes_encryption(in_buf, out_buf, key)AES_encrypt((u_char *)(in_buf),(u_char *)(out_buf),(AES_KEY * )key); |
194 | memcpy(dst_buf,out_buf,AES_BLOCK_LEN16); |
195 | in_buf[AES_BLOCK_LEN16-1] = ++i; |
196 | nbytes -= AES_BLOCK_LEN16; |
197 | dst_buf += AES_BLOCK_LEN16; |
198 | } |
199 | if (nbytes) { |
200 | aes_encryption(in_buf, out_buf, key)AES_encrypt((u_char *)(in_buf),(u_char *)(out_buf),(AES_KEY * )key); |
201 | memcpy(dst_buf,out_buf,nbytes); |
202 | } |
203 | explicit_bzero(in_buf, sizeof(in_buf)); |
204 | explicit_bzero(out_buf, sizeof(out_buf)); |
205 | } |
206 | |
207 | /* The final UHASH result is XOR'd with the output of a pseudorandom |
208 | * function. Here, we use AES to generate random output and |
209 | * xor the appropriate bytes depending on the last bits of nonce. |
210 | * This scheme is optimized for sequential, increasing big-endian nonces. |
211 | */ |
212 | |
213 | typedef struct { |
214 | UINT8 cache[AES_BLOCK_LEN16]; /* Previous AES output is saved */ |
215 | UINT8 nonce[AES_BLOCK_LEN16]; /* The AES input making above cache */ |
216 | aes_int_key prf_key; /* Expanded AES key for PDF */ |
217 | } pdf_ctx; |
218 | |
219 | static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) |
220 | { |
221 | UINT8 buf[UMAC_KEY_LEN16]; |
222 | |
223 | kdf(buf, prf_key, 0, UMAC_KEY_LEN16); |
224 | aes_key_setup(buf, pc->prf_key)AES_set_encrypt_key((const u_char *)(buf),16*8,pc->prf_key ); |
225 | |
226 | /* Initialize pdf and cache */ |
227 | memset(pc->nonce, 0, sizeof(pc->nonce)); |
228 | aes_encryption(pc->nonce, pc->cache, pc->prf_key)AES_encrypt((u_char *)(pc->nonce),(u_char *)(pc->cache) ,(AES_KEY *)pc->prf_key); |
229 | explicit_bzero(buf, sizeof(buf)); |
230 | } |
231 | |
232 | static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], |
233 | UINT8 buf[UMAC_OUTPUT_LEN16]) |
234 | { |
235 | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes |
236 | * of the AES output. If last time around we returned the ndx-1st |
237 | * element, then we may have the result in the cache already. |
238 | */ |
239 | |
240 | #if (UMAC_OUTPUT_LEN16 == 4) |
241 | #define LOW_BIT_MASK0 3 |
242 | #elif (UMAC_OUTPUT_LEN16 == 8) |
243 | #define LOW_BIT_MASK0 1 |
244 | #elif (UMAC_OUTPUT_LEN16 > 8) |
245 | #define LOW_BIT_MASK0 0 |
246 | #endif |
247 | union { |
248 | UINT8 tmp_nonce_lo[4]; |
249 | UINT32 align; |
250 | } t; |
251 | #if LOW_BIT_MASK0 != 0 |
252 | int ndx = nonce[7] & LOW_BIT_MASK0; |
253 | #endif |
254 | *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1]; |
255 | t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK0; /* zero last bit */ |
256 | |
257 | if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || |
258 | (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) |
259 | { |
260 | ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0]; |
261 | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0]; |
262 | aes_encryption(pc->nonce, pc->cache, pc->prf_key)AES_encrypt((u_char *)(pc->nonce),(u_char *)(pc->cache) ,(AES_KEY *)pc->prf_key); |
263 | } |
264 | |
265 | #if (UMAC_OUTPUT_LEN16 == 4) |
266 | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; |
267 | #elif (UMAC_OUTPUT_LEN16 == 8) |
268 | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; |
269 | #elif (UMAC_OUTPUT_LEN16 == 12) |
270 | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
271 | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; |
272 | #elif (UMAC_OUTPUT_LEN16 == 16) |
273 | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
274 | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; |
275 | #endif |
276 | } |
277 | |
278 | /* ---------------------------------------------------------------------- */ |
279 | /* ---------------------------------------------------------------------- */ |
280 | /* ----- Begin NH Hash Section ------------------------------------------ */ |
281 | /* ---------------------------------------------------------------------- */ |
282 | /* ---------------------------------------------------------------------- */ |
283 | |
284 | /* The NH-based hash functions used in UMAC are described in the UMAC paper |
285 | * and specification, both of which can be found at the UMAC website. |
286 | * The interface to this implementation has two |
287 | * versions, one expects the entire message being hashed to be passed |
288 | * in a single buffer and returns the hash result immediately. The second |
289 | * allows the message to be passed in a sequence of buffers. In the |
290 | * multiple-buffer interface, the client calls the routine nh_update() as |
291 | * many times as necessary. When there is no more data to be fed to the |
292 | * hash, the client calls nh_final() which calculates the hash output. |
293 | * Before beginning another hash calculation the nh_reset() routine |
294 | * must be called. The single-buffer routine, nh(), is equivalent to |
295 | * the sequence of calls nh_update() and nh_final(); however it is |
296 | * optimized and should be preferred whenever the multiple-buffer interface |
297 | * is not necessary. When using either interface, it is the client's |
298 | * responsibility to pass no more than L1_KEY_LEN bytes per hash result. |
299 | * |
300 | * The routine nh_init() initializes the nh_ctx data structure and |
301 | * must be called once, before any other PDF routine. |
302 | */ |
303 | |
304 | /* The "nh_aux" routines do the actual NH hashing work. They |
305 | * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines |
306 | * produce output for all STREAMS NH iterations in one call, |
307 | * allowing the parallel implementation of the streams. |
308 | */ |
309 | |
310 | #define STREAMS(16 / 4) (UMAC_OUTPUT_LEN16 / 4) /* Number of times hash is applied */ |
311 | #define L1_KEY_LEN1024 1024 /* Internal key bytes */ |
312 | #define L1_KEY_SHIFT16 16 /* Toeplitz key shift between streams */ |
313 | #define L1_PAD_BOUNDARY32 32 /* pad message to boundary multiple */ |
314 | #define ALLOC_BOUNDARY16 16 /* Keep buffers aligned to this */ |
315 | #define HASH_BUF_BYTES64 64 /* nh_aux_hb buffer multiple */ |
316 | |
317 | typedef struct { |
318 | UINT8 nh_key [L1_KEY_LEN1024 + L1_KEY_SHIFT16 * (STREAMS(16 / 4) - 1)]; /* NH Key */ |
319 | UINT8 data [HASH_BUF_BYTES64]; /* Incoming data buffer */ |
320 | int next_data_empty; /* Bookkeeping variable for data buffer. */ |
321 | int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */ |
322 | UINT64 state[STREAMS(16 / 4)]; /* on-line state */ |
323 | } nh_ctx; |
324 | |
325 | |
326 | #if (UMAC_OUTPUT_LEN16 == 4) |
327 | |
328 | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
329 | /* NH hashing primitive. Previous (partial) hash result is loaded and |
330 | * then stored via hp pointer. The length of the data pointed at by "dp", |
331 | * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key |
332 | * is expected to be endian compensated in memory at key setup. |
333 | */ |
334 | { |
335 | UINT64 h; |
336 | UWORD c = dlen / 32; |
337 | UINT32 *k = (UINT32 *)kp; |
338 | const UINT32 *d = (const UINT32 *)dp; |
339 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
340 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7; |
341 | |
342 | h = *((UINT64 *)hp); |
343 | do { |
344 | d0 = LOAD_UINT32_LITTLE(d+0)(get_u32_le(d+0)); d1 = LOAD_UINT32_LITTLE(d+1)(get_u32_le(d+1)); |
345 | d2 = LOAD_UINT32_LITTLE(d+2)(get_u32_le(d+2)); d3 = LOAD_UINT32_LITTLE(d+3)(get_u32_le(d+3)); |
346 | d4 = LOAD_UINT32_LITTLE(d+4)(get_u32_le(d+4)); d5 = LOAD_UINT32_LITTLE(d+5)(get_u32_le(d+5)); |
347 | d6 = LOAD_UINT32_LITTLE(d+6)(get_u32_le(d+6)); d7 = LOAD_UINT32_LITTLE(d+7)(get_u32_le(d+7)); |
348 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
349 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
350 | h += MUL64((k0 + d0), (k4 + d4))((UINT64)((UINT64)(UINT32)((k0 + d0)) * (UINT64)(UINT32)((k4 + d4)))); |
351 | h += MUL64((k1 + d1), (k5 + d5))((UINT64)((UINT64)(UINT32)((k1 + d1)) * (UINT64)(UINT32)((k5 + d5)))); |
352 | h += MUL64((k2 + d2), (k6 + d6))((UINT64)((UINT64)(UINT32)((k2 + d2)) * (UINT64)(UINT32)((k6 + d6)))); |
353 | h += MUL64((k3 + d3), (k7 + d7))((UINT64)((UINT64)(UINT32)((k3 + d3)) * (UINT64)(UINT32)((k7 + d7)))); |
354 | |
355 | d += 8; |
356 | k += 8; |
357 | } while (--c); |
358 | *((UINT64 *)hp) = h; |
359 | } |
360 | |
361 | #elif (UMAC_OUTPUT_LEN16 == 8) |
362 | |
363 | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
364 | /* Same as previous nh_aux, but two streams are handled in one pass, |
365 | * reading and writing 16 bytes of hash-state per call. |
366 | */ |
367 | { |
368 | UINT64 h1,h2; |
369 | UWORD c = dlen / 32; |
370 | UINT32 *k = (UINT32 *)kp; |
371 | const UINT32 *d = (const UINT32 *)dp; |
372 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
373 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
374 | k8,k9,k10,k11; |
375 | |
376 | h1 = *((UINT64 *)hp); |
377 | h2 = *((UINT64 *)hp + 1); |
378 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
379 | do { |
380 | d0 = LOAD_UINT32_LITTLE(d+0)(get_u32_le(d+0)); d1 = LOAD_UINT32_LITTLE(d+1)(get_u32_le(d+1)); |
381 | d2 = LOAD_UINT32_LITTLE(d+2)(get_u32_le(d+2)); d3 = LOAD_UINT32_LITTLE(d+3)(get_u32_le(d+3)); |
382 | d4 = LOAD_UINT32_LITTLE(d+4)(get_u32_le(d+4)); d5 = LOAD_UINT32_LITTLE(d+5)(get_u32_le(d+5)); |
383 | d6 = LOAD_UINT32_LITTLE(d+6)(get_u32_le(d+6)); d7 = LOAD_UINT32_LITTLE(d+7)(get_u32_le(d+7)); |
384 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
385 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
386 | |
387 | h1 += MUL64((k0 + d0), (k4 + d4))((UINT64)((UINT64)(UINT32)((k0 + d0)) * (UINT64)(UINT32)((k4 + d4)))); |
388 | h2 += MUL64((k4 + d0), (k8 + d4))((UINT64)((UINT64)(UINT32)((k4 + d0)) * (UINT64)(UINT32)((k8 + d4)))); |
389 | |
390 | h1 += MUL64((k1 + d1), (k5 + d5))((UINT64)((UINT64)(UINT32)((k1 + d1)) * (UINT64)(UINT32)((k5 + d5)))); |
391 | h2 += MUL64((k5 + d1), (k9 + d5))((UINT64)((UINT64)(UINT32)((k5 + d1)) * (UINT64)(UINT32)((k9 + d5)))); |
392 | |
393 | h1 += MUL64((k2 + d2), (k6 + d6))((UINT64)((UINT64)(UINT32)((k2 + d2)) * (UINT64)(UINT32)((k6 + d6)))); |
394 | h2 += MUL64((k6 + d2), (k10 + d6))((UINT64)((UINT64)(UINT32)((k6 + d2)) * (UINT64)(UINT32)((k10 + d6)))); |
395 | |
396 | h1 += MUL64((k3 + d3), (k7 + d7))((UINT64)((UINT64)(UINT32)((k3 + d3)) * (UINT64)(UINT32)((k7 + d7)))); |
397 | h2 += MUL64((k7 + d3), (k11 + d7))((UINT64)((UINT64)(UINT32)((k7 + d3)) * (UINT64)(UINT32)((k11 + d7)))); |
398 | |
399 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
400 | |
401 | d += 8; |
402 | k += 8; |
403 | } while (--c); |
404 | ((UINT64 *)hp)[0] = h1; |
405 | ((UINT64 *)hp)[1] = h2; |
406 | } |
407 | |
408 | #elif (UMAC_OUTPUT_LEN16 == 12) |
409 | |
410 | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
411 | /* Same as previous nh_aux, but two streams are handled in one pass, |
412 | * reading and writing 24 bytes of hash-state per call. |
413 | */ |
414 | { |
415 | UINT64 h1,h2,h3; |
416 | UWORD c = dlen / 32; |
417 | UINT32 *k = (UINT32 *)kp; |
418 | const UINT32 *d = (const UINT32 *)dp; |
419 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
420 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
421 | k8,k9,k10,k11,k12,k13,k14,k15; |
422 | |
423 | h1 = *((UINT64 *)hp); |
424 | h2 = *((UINT64 *)hp + 1); |
425 | h3 = *((UINT64 *)hp + 2); |
426 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
427 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
428 | do { |
429 | d0 = LOAD_UINT32_LITTLE(d+0)(get_u32_le(d+0)); d1 = LOAD_UINT32_LITTLE(d+1)(get_u32_le(d+1)); |
430 | d2 = LOAD_UINT32_LITTLE(d+2)(get_u32_le(d+2)); d3 = LOAD_UINT32_LITTLE(d+3)(get_u32_le(d+3)); |
431 | d4 = LOAD_UINT32_LITTLE(d+4)(get_u32_le(d+4)); d5 = LOAD_UINT32_LITTLE(d+5)(get_u32_le(d+5)); |
432 | d6 = LOAD_UINT32_LITTLE(d+6)(get_u32_le(d+6)); d7 = LOAD_UINT32_LITTLE(d+7)(get_u32_le(d+7)); |
433 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
434 | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
435 | |
436 | h1 += MUL64((k0 + d0), (k4 + d4))((UINT64)((UINT64)(UINT32)((k0 + d0)) * (UINT64)(UINT32)((k4 + d4)))); |
437 | h2 += MUL64((k4 + d0), (k8 + d4))((UINT64)((UINT64)(UINT32)((k4 + d0)) * (UINT64)(UINT32)((k8 + d4)))); |
438 | h3 += MUL64((k8 + d0), (k12 + d4))((UINT64)((UINT64)(UINT32)((k8 + d0)) * (UINT64)(UINT32)((k12 + d4)))); |
439 | |
440 | h1 += MUL64((k1 + d1), (k5 + d5))((UINT64)((UINT64)(UINT32)((k1 + d1)) * (UINT64)(UINT32)((k5 + d5)))); |
441 | h2 += MUL64((k5 + d1), (k9 + d5))((UINT64)((UINT64)(UINT32)((k5 + d1)) * (UINT64)(UINT32)((k9 + d5)))); |
442 | h3 += MUL64((k9 + d1), (k13 + d5))((UINT64)((UINT64)(UINT32)((k9 + d1)) * (UINT64)(UINT32)((k13 + d5)))); |
443 | |
444 | h1 += MUL64((k2 + d2), (k6 + d6))((UINT64)((UINT64)(UINT32)((k2 + d2)) * (UINT64)(UINT32)((k6 + d6)))); |
445 | h2 += MUL64((k6 + d2), (k10 + d6))((UINT64)((UINT64)(UINT32)((k6 + d2)) * (UINT64)(UINT32)((k10 + d6)))); |
446 | h3 += MUL64((k10 + d2), (k14 + d6))((UINT64)((UINT64)(UINT32)((k10 + d2)) * (UINT64)(UINT32)((k14 + d6)))); |
447 | |
448 | h1 += MUL64((k3 + d3), (k7 + d7))((UINT64)((UINT64)(UINT32)((k3 + d3)) * (UINT64)(UINT32)((k7 + d7)))); |
449 | h2 += MUL64((k7 + d3), (k11 + d7))((UINT64)((UINT64)(UINT32)((k7 + d3)) * (UINT64)(UINT32)((k11 + d7)))); |
450 | h3 += MUL64((k11 + d3), (k15 + d7))((UINT64)((UINT64)(UINT32)((k11 + d3)) * (UINT64)(UINT32)((k15 + d7)))); |
451 | |
452 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
453 | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
454 | |
455 | d += 8; |
456 | k += 8; |
457 | } while (--c); |
458 | ((UINT64 *)hp)[0] = h1; |
459 | ((UINT64 *)hp)[1] = h2; |
460 | ((UINT64 *)hp)[2] = h3; |
461 | } |
462 | |
463 | #elif (UMAC_OUTPUT_LEN16 == 16) |
464 | |
465 | static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen) |
466 | /* Same as previous nh_aux, but two streams are handled in one pass, |
467 | * reading and writing 24 bytes of hash-state per call. |
468 | */ |
469 | { |
470 | UINT64 h1,h2,h3,h4; |
471 | UWORD c = dlen / 32; |
472 | UINT32 *k = (UINT32 *)kp; |
473 | const UINT32 *d = (const UINT32 *)dp; |
474 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
475 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
476 | k8,k9,k10,k11,k12,k13,k14,k15, |
477 | k16,k17,k18,k19; |
478 | |
479 | h1 = *((UINT64 *)hp); |
480 | h2 = *((UINT64 *)hp + 1); |
481 | h3 = *((UINT64 *)hp + 2); |
482 | h4 = *((UINT64 *)hp + 3); |
483 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
484 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
485 | do { |
486 | d0 = LOAD_UINT32_LITTLE(d+0)(get_u32_le(d+0)); d1 = LOAD_UINT32_LITTLE(d+1)(get_u32_le(d+1)); |
487 | d2 = LOAD_UINT32_LITTLE(d+2)(get_u32_le(d+2)); d3 = LOAD_UINT32_LITTLE(d+3)(get_u32_le(d+3)); |
488 | d4 = LOAD_UINT32_LITTLE(d+4)(get_u32_le(d+4)); d5 = LOAD_UINT32_LITTLE(d+5)(get_u32_le(d+5)); |
489 | d6 = LOAD_UINT32_LITTLE(d+6)(get_u32_le(d+6)); d7 = LOAD_UINT32_LITTLE(d+7)(get_u32_le(d+7)); |
490 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
491 | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
492 | k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); |
493 | |
494 | h1 += MUL64((k0 + d0), (k4 + d4))((UINT64)((UINT64)(UINT32)((k0 + d0)) * (UINT64)(UINT32)((k4 + d4)))); |
495 | h2 += MUL64((k4 + d0), (k8 + d4))((UINT64)((UINT64)(UINT32)((k4 + d0)) * (UINT64)(UINT32)((k8 + d4)))); |
496 | h3 += MUL64((k8 + d0), (k12 + d4))((UINT64)((UINT64)(UINT32)((k8 + d0)) * (UINT64)(UINT32)((k12 + d4)))); |
497 | h4 += MUL64((k12 + d0), (k16 + d4))((UINT64)((UINT64)(UINT32)((k12 + d0)) * (UINT64)(UINT32)((k16 + d4)))); |
498 | |
499 | h1 += MUL64((k1 + d1), (k5 + d5))((UINT64)((UINT64)(UINT32)((k1 + d1)) * (UINT64)(UINT32)((k5 + d5)))); |
500 | h2 += MUL64((k5 + d1), (k9 + d5))((UINT64)((UINT64)(UINT32)((k5 + d1)) * (UINT64)(UINT32)((k9 + d5)))); |
501 | h3 += MUL64((k9 + d1), (k13 + d5))((UINT64)((UINT64)(UINT32)((k9 + d1)) * (UINT64)(UINT32)((k13 + d5)))); |
502 | h4 += MUL64((k13 + d1), (k17 + d5))((UINT64)((UINT64)(UINT32)((k13 + d1)) * (UINT64)(UINT32)((k17 + d5)))); |
503 | |
504 | h1 += MUL64((k2 + d2), (k6 + d6))((UINT64)((UINT64)(UINT32)((k2 + d2)) * (UINT64)(UINT32)((k6 + d6)))); |
505 | h2 += MUL64((k6 + d2), (k10 + d6))((UINT64)((UINT64)(UINT32)((k6 + d2)) * (UINT64)(UINT32)((k10 + d6)))); |
506 | h3 += MUL64((k10 + d2), (k14 + d6))((UINT64)((UINT64)(UINT32)((k10 + d2)) * (UINT64)(UINT32)((k14 + d6)))); |
507 | h4 += MUL64((k14 + d2), (k18 + d6))((UINT64)((UINT64)(UINT32)((k14 + d2)) * (UINT64)(UINT32)((k18 + d6)))); |
508 | |
509 | h1 += MUL64((k3 + d3), (k7 + d7))((UINT64)((UINT64)(UINT32)((k3 + d3)) * (UINT64)(UINT32)((k7 + d7)))); |
510 | h2 += MUL64((k7 + d3), (k11 + d7))((UINT64)((UINT64)(UINT32)((k7 + d3)) * (UINT64)(UINT32)((k11 + d7)))); |
511 | h3 += MUL64((k11 + d3), (k15 + d7))((UINT64)((UINT64)(UINT32)((k11 + d3)) * (UINT64)(UINT32)((k15 + d7)))); |
512 | h4 += MUL64((k15 + d3), (k19 + d7))((UINT64)((UINT64)(UINT32)((k15 + d3)) * (UINT64)(UINT32)((k19 + d7)))); |
513 | |
514 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
515 | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
516 | k8 = k16; k9 = k17; k10 = k18; k11 = k19; |
Value stored to 'k10' is never read | |
517 | |
518 | d += 8; |
519 | k += 8; |
520 | } while (--c); |
521 | ((UINT64 *)hp)[0] = h1; |
522 | ((UINT64 *)hp)[1] = h2; |
523 | ((UINT64 *)hp)[2] = h3; |
524 | ((UINT64 *)hp)[3] = h4; |
525 | } |
526 | |
527 | /* ---------------------------------------------------------------------- */ |
528 | #endif /* UMAC_OUTPUT_LENGTH */ |
529 | /* ---------------------------------------------------------------------- */ |
530 | |
531 | |
532 | /* ---------------------------------------------------------------------- */ |
533 | |
534 | static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
535 | /* This function is a wrapper for the primitive NH hash functions. It takes |
536 | * as argument "hc" the current hash context and a buffer which must be a |
537 | * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset |
538 | * appropriately according to how much message has been hashed already. |
539 | */ |
540 | { |
541 | UINT8 *key; |
542 | |
543 | key = hc->nh_key + hc->bytes_hashed; |
544 | nh_aux(key, buf, hc->state, nbytes); |
545 | } |
546 | |
547 | /* ---------------------------------------------------------------------- */ |
548 | |
549 | #if (__LITTLE_ENDIAN__1) |
550 | static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) |
551 | /* We endian convert the keys on little-endian computers to */ |
552 | /* compensate for the lack of big-endian memory reads during hashing. */ |
553 | { |
554 | UWORD iters = num_bytes / bpw; |
555 | if (bpw == 4) { |
556 | UINT32 *p = (UINT32 *)buf; |
557 | do { |
558 | *p = LOAD_UINT32_REVERSED(p)get_u32(p); |
559 | p++; |
560 | } while (--iters); |
561 | } else if (bpw == 8) { |
562 | UINT32 *p = (UINT32 *)buf; |
563 | UINT32 t; |
564 | do { |
565 | t = LOAD_UINT32_REVERSED(p+1)get_u32(p+1); |
566 | p[1] = LOAD_UINT32_REVERSED(p)get_u32(p); |
567 | p[0] = t; |
568 | p += 2; |
569 | } while (--iters); |
570 | } |
571 | } |
572 | #define endian_convert_if_le(x,y,z)endian_convert((x),(y),(z)) endian_convert((x),(y),(z)) |
573 | #else |
574 | #define endian_convert_if_le(x,y,z)endian_convert((x),(y),(z)) do{}while(0) /* Do nothing */ |
575 | #endif |
576 | |
577 | /* ---------------------------------------------------------------------- */ |
578 | |
579 | static void nh_reset(nh_ctx *hc) |
580 | /* Reset nh_ctx to ready for hashing of new data */ |
581 | { |
582 | hc->bytes_hashed = 0; |
583 | hc->next_data_empty = 0; |
584 | hc->state[0] = 0; |
585 | #if (UMAC_OUTPUT_LEN16 >= 8) |
586 | hc->state[1] = 0; |
587 | #endif |
588 | #if (UMAC_OUTPUT_LEN16 >= 12) |
589 | hc->state[2] = 0; |
590 | #endif |
591 | #if (UMAC_OUTPUT_LEN16 == 16) |
592 | hc->state[3] = 0; |
593 | #endif |
594 | |
595 | } |
596 | |
597 | /* ---------------------------------------------------------------------- */ |
598 | |
599 | static void nh_init(nh_ctx *hc, aes_int_key prf_key) |
600 | /* Generate nh_key, endian convert and reset to be ready for hashing. */ |
601 | { |
602 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); |
603 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key))endian_convert((hc->nh_key),(4),(sizeof(hc->nh_key))); |
604 | nh_reset(hc); |
605 | } |
606 | |
607 | /* ---------------------------------------------------------------------- */ |
608 | |
609 | static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes) |
610 | /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ |
611 | /* even multiple of HASH_BUF_BYTES. */ |
612 | { |
613 | UINT32 i,j; |
614 | |
615 | j = hc->next_data_empty; |
616 | if ((j + nbytes) >= HASH_BUF_BYTES64) { |
617 | if (j) { |
618 | i = HASH_BUF_BYTES64 - j; |
619 | memcpy(hc->data+j, buf, i); |
620 | nh_transform(hc,hc->data,HASH_BUF_BYTES64); |
621 | nbytes -= i; |
622 | buf += i; |
623 | hc->bytes_hashed += HASH_BUF_BYTES64; |
624 | } |
625 | if (nbytes >= HASH_BUF_BYTES64) { |
626 | i = nbytes & ~(HASH_BUF_BYTES64 - 1); |
627 | nh_transform(hc, buf, i); |
628 | nbytes -= i; |
629 | buf += i; |
630 | hc->bytes_hashed += i; |
631 | } |
632 | j = 0; |
633 | } |
634 | memcpy(hc->data + j, buf, nbytes); |
635 | hc->next_data_empty = j + nbytes; |
636 | } |
637 | |
638 | /* ---------------------------------------------------------------------- */ |
639 | |
640 | static void zero_pad(UINT8 *p, int nbytes) |
641 | { |
642 | /* Write "nbytes" of zeroes, beginning at "p" */ |
643 | if (nbytes >= (int)sizeof(UWORD)) { |
644 | while ((ptrdiff_t)p % sizeof(UWORD)) { |
645 | *p = 0; |
646 | nbytes--; |
647 | p++; |
648 | } |
649 | while (nbytes >= (int)sizeof(UWORD)) { |
650 | *(UWORD *)p = 0; |
651 | nbytes -= sizeof(UWORD); |
652 | p += sizeof(UWORD); |
653 | } |
654 | } |
655 | while (nbytes) { |
656 | *p = 0; |
657 | nbytes--; |
658 | p++; |
659 | } |
660 | } |
661 | |
662 | /* ---------------------------------------------------------------------- */ |
663 | |
664 | static void nh_final(nh_ctx *hc, UINT8 *result) |
665 | /* After passing some number of data buffers to nh_update() for integration |
666 | * into an NH context, nh_final is called to produce a hash result. If any |
667 | * bytes are in the buffer hc->data, incorporate them into the |
668 | * NH context. Finally, add into the NH accumulation "state" the total number |
669 | * of bits hashed. The resulting numbers are written to the buffer "result". |
670 | * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. |
671 | */ |
672 | { |
673 | int nh_len, nbits; |
674 | |
675 | if (hc->next_data_empty != 0) { |
676 | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY32 - 1)) & |
677 | ~(L1_PAD_BOUNDARY32 - 1)); |
678 | zero_pad(hc->data + hc->next_data_empty, |
679 | nh_len - hc->next_data_empty); |
680 | nh_transform(hc, hc->data, nh_len); |
681 | hc->bytes_hashed += hc->next_data_empty; |
682 | } else if (hc->bytes_hashed == 0) { |
683 | nh_len = L1_PAD_BOUNDARY32; |
684 | zero_pad(hc->data, L1_PAD_BOUNDARY32); |
685 | nh_transform(hc, hc->data, nh_len); |
686 | } |
687 | |
688 | nbits = (hc->bytes_hashed << 3); |
689 | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; |
690 | #if (UMAC_OUTPUT_LEN16 >= 8) |
691 | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; |
692 | #endif |
693 | #if (UMAC_OUTPUT_LEN16 >= 12) |
694 | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; |
695 | #endif |
696 | #if (UMAC_OUTPUT_LEN16 == 16) |
697 | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; |
698 | #endif |
699 | nh_reset(hc); |
700 | } |
701 | |
702 | /* ---------------------------------------------------------------------- */ |
703 | |
704 | static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len, |
705 | UINT32 unpadded_len, UINT8 *result) |
706 | /* All-in-one nh_update() and nh_final() equivalent. |
707 | * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is |
708 | * well aligned |
709 | */ |
710 | { |
711 | UINT32 nbits; |
712 | |
713 | /* Initialize the hash state */ |
714 | nbits = (unpadded_len << 3); |
715 | |
716 | ((UINT64 *)result)[0] = nbits; |
717 | #if (UMAC_OUTPUT_LEN16 >= 8) |
718 | ((UINT64 *)result)[1] = nbits; |
719 | #endif |
720 | #if (UMAC_OUTPUT_LEN16 >= 12) |
721 | ((UINT64 *)result)[2] = nbits; |
722 | #endif |
723 | #if (UMAC_OUTPUT_LEN16 == 16) |
724 | ((UINT64 *)result)[3] = nbits; |
725 | #endif |
726 | |
727 | nh_aux(hc->nh_key, buf, result, padded_len); |
728 | } |
729 | |
730 | /* ---------------------------------------------------------------------- */ |
731 | /* ---------------------------------------------------------------------- */ |
732 | /* ----- Begin UHASH Section -------------------------------------------- */ |
733 | /* ---------------------------------------------------------------------- */ |
734 | /* ---------------------------------------------------------------------- */ |
735 | |
736 | /* UHASH is a multi-layered algorithm. Data presented to UHASH is first |
737 | * hashed by NH. The NH output is then hashed by a polynomial-hash layer |
738 | * unless the initial data to be hashed is short. After the polynomial- |
739 | * layer, an inner-product hash is used to produce the final UHASH output. |
740 | * |
741 | * UHASH provides two interfaces, one all-at-once and another where data |
742 | * buffers are presented sequentially. In the sequential interface, the |
743 | * UHASH client calls the routine uhash_update() as many times as necessary. |
744 | * When there is no more data to be fed to UHASH, the client calls |
745 | * uhash_final() which |
746 | * calculates the UHASH output. Before beginning another UHASH calculation |
747 | * the uhash_reset() routine must be called. The all-at-once UHASH routine, |
748 | * uhash(), is equivalent to the sequence of calls uhash_update() and |
749 | * uhash_final(); however it is optimized and should be |
750 | * used whenever the sequential interface is not necessary. |
751 | * |
752 | * The routine uhash_init() initializes the uhash_ctx data structure and |
753 | * must be called once, before any other UHASH routine. |
754 | */ |
755 | |
756 | /* ---------------------------------------------------------------------- */ |
757 | /* ----- Constants and uhash_ctx ---------------------------------------- */ |
758 | /* ---------------------------------------------------------------------- */ |
759 | |
760 | /* ---------------------------------------------------------------------- */ |
761 | /* ----- Poly hash and Inner-Product hash Constants --------------------- */ |
762 | /* ---------------------------------------------------------------------- */ |
763 | |
764 | /* Primes and masks */ |
765 | #define p36((UINT64)0x0000000FFFFFFFFBull) ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ |
766 | #define p64((UINT64)0xFFFFFFFFFFFFFFC5ull) ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ |
767 | #define m36((UINT64)0x0000000FFFFFFFFFull) ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ |
768 | |
769 | |
770 | /* ---------------------------------------------------------------------- */ |
771 | |
772 | typedef struct uhash_ctx { |
773 | nh_ctx hash; /* Hash context for L1 NH hash */ |
774 | UINT64 poly_key_8[STREAMS(16 / 4)]; /* p64 poly keys */ |
775 | UINT64 poly_accum[STREAMS(16 / 4)]; /* poly hash result */ |
776 | UINT64 ip_keys[STREAMS(16 / 4)*4]; /* Inner-product keys */ |
777 | UINT32 ip_trans[STREAMS(16 / 4)]; /* Inner-product translation */ |
778 | UINT32 msg_len; /* Total length of data passed */ |
779 | /* to uhash */ |
780 | } uhash_ctx; |
781 | typedef struct uhash_ctx *uhash_ctx_t; |
782 | |
783 | /* ---------------------------------------------------------------------- */ |
784 | |
785 | |
786 | /* The polynomial hashes use Horner's rule to evaluate a polynomial one |
787 | * word at a time. As described in the specification, poly32 and poly64 |
788 | * require keys from special domains. The following implementations exploit |
789 | * the special domains to avoid overflow. The results are not guaranteed to |
790 | * be within Z_p32 and Z_p64, but the Inner-Product hash implementation |
791 | * patches any errant values. |
792 | */ |
793 | |
794 | static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) |
795 | { |
796 | UINT32 key_hi = (UINT32)(key >> 32), |
797 | key_lo = (UINT32)key, |
798 | cur_hi = (UINT32)(cur >> 32), |
799 | cur_lo = (UINT32)cur, |
800 | x_lo, |
801 | x_hi; |
802 | UINT64 X,T,res; |
803 | |
804 | X = MUL64(key_hi, cur_lo)((UINT64)((UINT64)(UINT32)(key_hi) * (UINT64)(UINT32)(cur_lo) )) + MUL64(cur_hi, key_lo)((UINT64)((UINT64)(UINT32)(cur_hi) * (UINT64)(UINT32)(key_lo) )); |
805 | x_lo = (UINT32)X; |
806 | x_hi = (UINT32)(X >> 32); |
807 | |
808 | res = (MUL64(key_hi, cur_hi)((UINT64)((UINT64)(UINT32)(key_hi) * (UINT64)(UINT32)(cur_hi) )) + x_hi) * 59 + MUL64(key_lo, cur_lo)((UINT64)((UINT64)(UINT32)(key_lo) * (UINT64)(UINT32)(cur_lo) )); |
809 | |
810 | T = ((UINT64)x_lo << 32); |
811 | res += T; |
812 | if (res < T) |
813 | res += 59; |
814 | |
815 | res += data; |
816 | if (res < data) |
817 | res += 59; |
818 | |
819 | return res; |
820 | } |
821 | |
822 | |
823 | /* Although UMAC is specified to use a ramped polynomial hash scheme, this |
824 | * implementation does not handle all ramp levels. Because we don't handle |
825 | * the ramp up to p128 modulus in this implementation, we are limited to |
826 | * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 |
827 | * bytes input to UMAC per tag, ie. 16MB). |
828 | */ |
829 | static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) |
830 | { |
831 | int i; |
832 | UINT64 *data=(UINT64*)data_in; |
833 | |
834 | for (i = 0; i < STREAMS(16 / 4); i++) { |
835 | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { |
836 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
837 | hc->poly_key_8[i], p64((UINT64)0xFFFFFFFFFFFFFFC5ull) - 1); |
838 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
839 | hc->poly_key_8[i], (data[i] - 59)); |
840 | } else { |
841 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
842 | hc->poly_key_8[i], data[i]); |
843 | } |
844 | } |
845 | } |
846 | |
847 | |
848 | /* ---------------------------------------------------------------------- */ |
849 | |
850 | |
851 | /* The final step in UHASH is an inner-product hash. The poly hash |
852 | * produces a result not necessarily WORD_LEN bytes long. The inner- |
853 | * product hash breaks the polyhash output into 16-bit chunks and |
854 | * multiplies each with a 36 bit key. |
855 | */ |
856 | |
857 | static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) |
858 | { |
859 | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); |
860 | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); |
861 | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); |
862 | t = t + ipkp[3] * (UINT64)(UINT16)(data); |
863 | |
864 | return t; |
865 | } |
866 | |
867 | static UINT32 ip_reduce_p36(UINT64 t) |
868 | { |
869 | /* Divisionless modular reduction */ |
870 | UINT64 ret; |
871 | |
872 | ret = (t & m36((UINT64)0x0000000FFFFFFFFFull)) + 5 * (t >> 36); |
873 | if (ret >= p36((UINT64)0x0000000FFFFFFFFBull)) |
874 | ret -= p36((UINT64)0x0000000FFFFFFFFBull); |
875 | |
876 | /* return least significant 32 bits */ |
877 | return (UINT32)(ret); |
878 | } |
879 | |
880 | |
881 | /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then |
882 | * the polyhash stage is skipped and ip_short is applied directly to the |
883 | * NH output. |
884 | */ |
885 | static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) |
886 | { |
887 | UINT64 t; |
888 | UINT64 *nhp = (UINT64 *)nh_res; |
889 | |
890 | t = ip_aux(0,ahc->ip_keys, nhp[0]); |
891 | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0])put_u32((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[ 0]); |
892 | #if (UMAC_OUTPUT_LEN16 >= 8) |
893 | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); |
894 | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1])put_u32((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[ 1]); |
895 | #endif |
896 | #if (UMAC_OUTPUT_LEN16 >= 12) |
897 | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); |
898 | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2])put_u32((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[ 2]); |
899 | #endif |
900 | #if (UMAC_OUTPUT_LEN16 == 16) |
901 | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); |
902 | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3])put_u32((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[ 3]); |
903 | #endif |
904 | } |
905 | |
906 | /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then |
907 | * the polyhash stage is not skipped and ip_long is applied to the |
908 | * polyhash output. |
909 | */ |
910 | static void ip_long(uhash_ctx_t ahc, u_char *res) |
911 | { |
912 | int i; |
913 | UINT64 t; |
914 | |
915 | for (i = 0; i < STREAMS(16 / 4); i++) { |
916 | /* fix polyhash output not in Z_p64 */ |
917 | if (ahc->poly_accum[i] >= p64((UINT64)0xFFFFFFFFFFFFFFC5ull)) |
918 | ahc->poly_accum[i] -= p64((UINT64)0xFFFFFFFFFFFFFFC5ull); |
919 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); |
920 | STORE_UINT32_BIG((UINT32 *)res+i,put_u32((UINT32 *)res+i, ip_reduce_p36(t) ^ ahc->ip_trans[ i]) |
921 | ip_reduce_p36(t) ^ ahc->ip_trans[i])put_u32((UINT32 *)res+i, ip_reduce_p36(t) ^ ahc->ip_trans[ i]); |
922 | } |
923 | } |
924 | |
925 | |
926 | /* ---------------------------------------------------------------------- */ |
927 | |
928 | /* ---------------------------------------------------------------------- */ |
929 | |
930 | /* Reset uhash context for next hash session */ |
931 | static int uhash_reset(uhash_ctx_t pc) |
932 | { |
933 | nh_reset(&pc->hash); |
934 | pc->msg_len = 0; |
935 | pc->poly_accum[0] = 1; |
936 | #if (UMAC_OUTPUT_LEN16 >= 8) |
937 | pc->poly_accum[1] = 1; |
938 | #endif |
939 | #if (UMAC_OUTPUT_LEN16 >= 12) |
940 | pc->poly_accum[2] = 1; |
941 | #endif |
942 | #if (UMAC_OUTPUT_LEN16 == 16) |
943 | pc->poly_accum[3] = 1; |
944 | #endif |
945 | return 1; |
946 | } |
947 | |
948 | /* ---------------------------------------------------------------------- */ |
949 | |
950 | /* Given a pointer to the internal key needed by kdf() and a uhash context, |
951 | * initialize the NH context and generate keys needed for poly and inner- |
952 | * product hashing. All keys are endian adjusted in memory so that native |
953 | * loads cause correct keys to be in registers during calculation. |
954 | */ |
955 | static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) |
956 | { |
957 | int i; |
958 | UINT8 buf[(8*STREAMS(16 / 4)+4)*sizeof(UINT64)]; |
959 | |
960 | /* Zero the entire uhash context */ |
961 | memset(ahc, 0, sizeof(uhash_ctx)); |
962 | |
963 | /* Initialize the L1 hash */ |
964 | nh_init(&ahc->hash, prf_key); |
965 | |
966 | /* Setup L2 hash variables */ |
967 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ |
968 | for (i = 0; i < STREAMS(16 / 4); i++) { |
969 | /* Fill keys from the buffer, skipping bytes in the buffer not |
970 | * used by this implementation. Endian reverse the keys if on a |
971 | * little-endian computer. |
972 | */ |
973 | memcpy(ahc->poly_key_8+i, buf+24*i, 8); |
974 | endian_convert_if_le(ahc->poly_key_8+i, 8, 8)endian_convert((ahc->poly_key_8+i),(8),(8)); |
975 | /* Mask the 64-bit keys to their special domain */ |
976 | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; |
977 | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ |
978 | } |
979 | |
980 | /* Setup L3-1 hash variables */ |
981 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ |
982 | for (i = 0; i < STREAMS(16 / 4); i++) |
983 | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), |
984 | 4*sizeof(UINT64)); |
985 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),endian_convert((ahc->ip_keys),(sizeof(UINT64)),(sizeof(ahc ->ip_keys))) |
986 | sizeof(ahc->ip_keys))endian_convert((ahc->ip_keys),(sizeof(UINT64)),(sizeof(ahc ->ip_keys))); |
987 | for (i = 0; i < STREAMS(16 / 4)*4; i++) |
988 | ahc->ip_keys[i] %= p36((UINT64)0x0000000FFFFFFFFBull); /* Bring into Z_p36 */ |
989 | |
990 | /* Setup L3-2 hash variables */ |
991 | /* Fill buffer with index 4 key */ |
992 | kdf(ahc->ip_trans, prf_key, 4, STREAMS(16 / 4) * sizeof(UINT32)); |
993 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),endian_convert((ahc->ip_trans),(sizeof(UINT32)),((16 / 4) * sizeof(UINT32))) |
994 | STREAMS * sizeof(UINT32))endian_convert((ahc->ip_trans),(sizeof(UINT32)),((16 / 4) * sizeof(UINT32))); |
995 | explicit_bzero(buf, sizeof(buf)); |
996 | } |
997 | |
998 | /* ---------------------------------------------------------------------- */ |
999 | |
1000 | #if 0 |
1001 | static uhash_ctx_t uhash_alloc(u_char key[]) |
1002 | { |
1003 | /* Allocate memory and force to a 16-byte boundary. */ |
1004 | uhash_ctx_t ctx; |
1005 | u_char bytes_to_add; |
1006 | aes_int_key prf_key; |
1007 | |
1008 | ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY16); |
1009 | if (ctx) { |
1010 | if (ALLOC_BOUNDARY16) { |
1011 | bytes_to_add = ALLOC_BOUNDARY16 - |
1012 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY16 -1)); |
1013 | ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); |
1014 | *((u_char *)ctx - 1) = bytes_to_add; |
1015 | } |
1016 | aes_key_setup(key,prf_key)AES_set_encrypt_key((const u_char *)(key),16*8,prf_key); |
1017 | uhash_init(ctx, prf_key); |
1018 | } |
1019 | return (ctx); |
1020 | } |
1021 | #endif |
1022 | |
1023 | /* ---------------------------------------------------------------------- */ |
1024 | |
1025 | #if 0 |
1026 | static int uhash_free(uhash_ctx_t ctx) |
1027 | { |
1028 | /* Free memory allocated by uhash_alloc */ |
1029 | u_char bytes_to_sub; |
1030 | |
1031 | if (ctx) { |
1032 | if (ALLOC_BOUNDARY16) { |
1033 | bytes_to_sub = *((u_char *)ctx - 1); |
1034 | ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); |
1035 | } |
1036 | free(ctx); |
1037 | } |
1038 | return (1); |
1039 | } |
1040 | #endif |
1041 | /* ---------------------------------------------------------------------- */ |
1042 | |
1043 | static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len) |
1044 | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and |
1045 | * hash each one with NH, calling the polyhash on each NH output. |
1046 | */ |
1047 | { |
1048 | UWORD bytes_hashed, bytes_remaining; |
1049 | UINT64 result_buf[STREAMS(16 / 4)]; |
1050 | UINT8 *nh_result = (UINT8 *)&result_buf; |
1051 | |
1052 | if (ctx->msg_len + len <= L1_KEY_LEN1024) { |
1053 | nh_update(&ctx->hash, (const UINT8 *)input, len); |
1054 | ctx->msg_len += len; |
1055 | } else { |
1056 | |
1057 | bytes_hashed = ctx->msg_len % L1_KEY_LEN1024; |
1058 | if (ctx->msg_len == L1_KEY_LEN1024) |
1059 | bytes_hashed = L1_KEY_LEN1024; |
1060 | |
1061 | if (bytes_hashed + len >= L1_KEY_LEN1024) { |
1062 | |
1063 | /* If some bytes have been passed to the hash function */ |
1064 | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ |
1065 | /* bytes to complete the current nh_block. */ |
1066 | if (bytes_hashed) { |
1067 | bytes_remaining = (L1_KEY_LEN1024 - bytes_hashed); |
1068 | nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining); |
1069 | nh_final(&ctx->hash, nh_result); |
1070 | ctx->msg_len += bytes_remaining; |
1071 | poly_hash(ctx,(UINT32 *)nh_result); |
1072 | len -= bytes_remaining; |
1073 | input += bytes_remaining; |
1074 | } |
1075 | |
1076 | /* Hash directly from input stream if enough bytes */ |
1077 | while (len >= L1_KEY_LEN1024) { |
1078 | nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN1024, |
1079 | L1_KEY_LEN1024, nh_result); |
1080 | ctx->msg_len += L1_KEY_LEN1024; |
1081 | len -= L1_KEY_LEN1024; |
1082 | input += L1_KEY_LEN1024; |
1083 | poly_hash(ctx,(UINT32 *)nh_result); |
1084 | } |
1085 | } |
1086 | |
1087 | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ |
1088 | if (len) { |
1089 | nh_update(&ctx->hash, (const UINT8 *)input, len); |
1090 | ctx->msg_len += len; |
1091 | } |
1092 | } |
1093 | |
1094 | return (1); |
1095 | } |
1096 | |
1097 | /* ---------------------------------------------------------------------- */ |
1098 | |
1099 | static int uhash_final(uhash_ctx_t ctx, u_char *res) |
1100 | /* Incorporate any pending data, pad, and generate tag */ |
1101 | { |
1102 | UINT64 result_buf[STREAMS(16 / 4)]; |
1103 | UINT8 *nh_result = (UINT8 *)&result_buf; |
1104 | |
1105 | if (ctx->msg_len > L1_KEY_LEN1024) { |
1106 | if (ctx->msg_len % L1_KEY_LEN1024) { |
1107 | nh_final(&ctx->hash, nh_result); |
1108 | poly_hash(ctx,(UINT32 *)nh_result); |
1109 | } |
1110 | ip_long(ctx, res); |
1111 | } else { |
1112 | nh_final(&ctx->hash, nh_result); |
1113 | ip_short(ctx,nh_result, res); |
1114 | } |
1115 | uhash_reset(ctx); |
1116 | return (1); |
1117 | } |
1118 | |
1119 | /* ---------------------------------------------------------------------- */ |
1120 | |
1121 | #if 0 |
1122 | static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) |
1123 | /* assumes that msg is in a writable buffer of length divisible by */ |
1124 | /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ |
1125 | { |
1126 | UINT8 nh_result[STREAMS(16 / 4)*sizeof(UINT64)]; |
1127 | UINT32 nh_len; |
1128 | int extra_zeroes_needed; |
1129 | |
1130 | /* If the message to be hashed is no longer than L1_HASH_LEN, we skip |
1131 | * the polyhash. |
1132 | */ |
1133 | if (len <= L1_KEY_LEN1024) { |
1134 | if (len == 0) /* If zero length messages will not */ |
1135 | nh_len = L1_PAD_BOUNDARY32; /* be seen, comment out this case */ |
1136 | else |
1137 | nh_len = ((len + (L1_PAD_BOUNDARY32 - 1)) & ~(L1_PAD_BOUNDARY32 - 1)); |
1138 | extra_zeroes_needed = nh_len - len; |
1139 | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1140 | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1141 | ip_short(ahc,nh_result, res); |
1142 | } else { |
1143 | /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH |
1144 | * output to poly_hash(). |
1145 | */ |
1146 | do { |
1147 | nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN1024, L1_KEY_LEN1024, nh_result); |
1148 | poly_hash(ahc,(UINT32 *)nh_result); |
1149 | len -= L1_KEY_LEN1024; |
1150 | msg += L1_KEY_LEN1024; |
1151 | } while (len >= L1_KEY_LEN1024); |
1152 | if (len) { |
1153 | nh_len = ((len + (L1_PAD_BOUNDARY32 - 1)) & ~(L1_PAD_BOUNDARY32 - 1)); |
1154 | extra_zeroes_needed = nh_len - len; |
1155 | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
1156 | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
1157 | poly_hash(ahc,(UINT32 *)nh_result); |
1158 | } |
1159 | |
1160 | ip_long(ahc, res); |
1161 | } |
1162 | |
1163 | uhash_reset(ahc); |
1164 | return 1; |
1165 | } |
1166 | #endif |
1167 | |
1168 | /* ---------------------------------------------------------------------- */ |
1169 | /* ---------------------------------------------------------------------- */ |
1170 | /* ----- Begin UMAC Section --------------------------------------------- */ |
1171 | /* ---------------------------------------------------------------------- */ |
1172 | /* ---------------------------------------------------------------------- */ |
1173 | |
1174 | /* The UMAC interface has two interfaces, an all-at-once interface where |
1175 | * the entire message to be authenticated is passed to UMAC in one buffer, |
1176 | * and a sequential interface where the message is presented a little at a |
1177 | * time. The all-at-once is more optimized than the sequential version and |
1178 | * should be preferred when the sequential interface is not required. |
1179 | */ |
1180 | struct umac_ctxumac128_ctx { |
1181 | uhash_ctx hash; /* Hash function for message compression */ |
1182 | pdf_ctx pdf; /* PDF for hashed output */ |
1183 | void *free_ptr; /* Address to free this struct via */ |
1184 | } umac_ctxumac128_ctx; |
1185 | |
1186 | /* ---------------------------------------------------------------------- */ |
1187 | |
1188 | #if 0 |
1189 | int umac_reset(struct umac_ctxumac128_ctx *ctx) |
1190 | /* Reset the hash function to begin a new authentication. */ |
1191 | { |
1192 | uhash_reset(&ctx->hash); |
1193 | return (1); |
1194 | } |
1195 | #endif |
1196 | |
1197 | /* ---------------------------------------------------------------------- */ |
1198 | |
1199 | int umac_deleteumac128_delete(struct umac_ctxumac128_ctx *ctx) |
1200 | /* Deallocate the ctx structure */ |
1201 | { |
1202 | if (ctx) { |
1203 | if (ALLOC_BOUNDARY16) |
1204 | ctx = (struct umac_ctxumac128_ctx *)ctx->free_ptr; |
1205 | freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY16); |
1206 | } |
1207 | return (1); |
1208 | } |
1209 | |
1210 | /* ---------------------------------------------------------------------- */ |
1211 | |
1212 | struct umac_ctxumac128_ctx *umac_newumac128_new(const u_char key[]) |
1213 | /* Dynamically allocate a umac_ctx struct, initialize variables, |
1214 | * generate subkeys from key. Align to 16-byte boundary. |
1215 | */ |
1216 | { |
1217 | struct umac_ctxumac128_ctx *ctx, *octx; |
1218 | size_t bytes_to_add; |
1219 | aes_int_key prf_key; |
1220 | |
1221 | octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY16); |
1222 | if (ctx) { |
1223 | if (ALLOC_BOUNDARY16) { |
1224 | bytes_to_add = ALLOC_BOUNDARY16 - |
1225 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY16 - 1)); |
1226 | ctx = (struct umac_ctxumac128_ctx *)((u_char *)ctx + bytes_to_add); |
1227 | } |
1228 | ctx->free_ptr = octx; |
1229 | aes_key_setup(key, prf_key)AES_set_encrypt_key((const u_char *)(key),16*8,prf_key); |
1230 | pdf_init(&ctx->pdf, prf_key); |
1231 | uhash_init(&ctx->hash, prf_key); |
1232 | explicit_bzero(prf_key, sizeof(prf_key)); |
1233 | } |
1234 | |
1235 | return (ctx); |
1236 | } |
1237 | |
1238 | /* ---------------------------------------------------------------------- */ |
1239 | |
1240 | int umac_finalumac128_final(struct umac_ctxumac128_ctx *ctx, u_char tag[], const u_char nonce[8]) |
1241 | /* Incorporate any pending data, pad, and generate tag */ |
1242 | { |
1243 | uhash_final(&ctx->hash, (u_char *)tag); |
1244 | pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag); |
1245 | |
1246 | return (1); |
1247 | } |
1248 | |
1249 | /* ---------------------------------------------------------------------- */ |
1250 | |
1251 | int umac_updateumac128_update(struct umac_ctxumac128_ctx *ctx, const u_char *input, long len) |
1252 | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ |
1253 | /* hash each one, calling the PDF on the hashed output whenever the hash- */ |
1254 | /* output buffer is full. */ |
1255 | { |
1256 | uhash_update(&ctx->hash, input, len); |
1257 | return (1); |
1258 | } |
1259 | |
1260 | /* ---------------------------------------------------------------------- */ |
1261 | |
1262 | #if 0 |
1263 | int umac(struct umac_ctxumac128_ctx *ctx, u_char *input, |
1264 | long len, u_char tag[], |
1265 | u_char nonce[8]) |
1266 | /* All-in-one version simply calls umac_update() and umac_final(). */ |
1267 | { |
1268 | uhash(&ctx->hash, input, len, (u_char *)tag); |
1269 | pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
1270 | |
1271 | return (1); |
1272 | } |
1273 | #endif |
1274 | |
1275 | /* ---------------------------------------------------------------------- */ |
1276 | /* ---------------------------------------------------------------------- */ |
1277 | /* ----- End UMAC Section ----------------------------------------------- */ |
1278 | /* ---------------------------------------------------------------------- */ |
1279 | /* ---------------------------------------------------------------------- */ |