| File: | src/sys/arch/amd64/stand/boot/../../../../lib/libsa/sha2.c | 
| Warning: | line 775, column 34 Although the value stored to 'T1' is used in the enclosing expression, the value is never actually read from 'T1' | 
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: sha2.c,v 1.3 2021/03/12 10:22:46 jsg Exp $ */ | 
| 2 | |
| 3 | /* | 
| 4 | * FILE: sha2.c | 
| 5 | * AUTHOR: Aaron D. Gifford <me@aarongifford.com> | 
| 6 | * | 
| 7 | * Copyright (c) 2000-2001, Aaron D. Gifford | 
| 8 | * All rights reserved. | 
| 9 | * | 
| 10 | * Redistribution and use in source and binary forms, with or without | 
| 11 | * modification, are permitted provided that the following conditions | 
| 12 | * are met: | 
| 13 | * 1. Redistributions of source code must retain the above copyright | 
| 14 | * notice, this list of conditions and the following disclaimer. | 
| 15 | * 2. Redistributions in binary form must reproduce the above copyright | 
| 16 | * notice, this list of conditions and the following disclaimer in the | 
| 17 | * documentation and/or other materials provided with the distribution. | 
| 18 | * 3. Neither the name of the copyright holder nor the names of contributors | 
| 19 | * may be used to endorse or promote products derived from this software | 
| 20 | * without specific prior written permission. | 
| 21 | * | 
| 22 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND | 
| 23 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
| 24 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
| 25 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE | 
| 26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
| 27 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
| 28 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
| 29 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
| 30 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
| 31 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
| 32 | * SUCH DAMAGE. | 
| 33 | * | 
| 34 | * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $ | 
| 35 | */ | 
| 36 | |
| 37 | #include <lib/libsa/stand.h> | 
| 38 | |
| 39 | #include "sha2.h" | 
| 40 | |
| 41 | #define SHA2_SMALL | 
| 42 | |
| 43 | /* | 
| 44 | * UNROLLED TRANSFORM LOOP NOTE: | 
| 45 | * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform | 
| 46 | * loop version for the hash transform rounds (defined using macros | 
| 47 | * later in this file). Either define on the command line, for example: | 
| 48 | * | 
| 49 | * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c | 
| 50 | * | 
| 51 | * or define below: | 
| 52 | * | 
| 53 | * #define SHA2_UNROLL_TRANSFORM | 
| 54 | * | 
| 55 | */ | 
| 56 | #ifndef SHA2_SMALL | 
| 57 | #if defined(__amd64__) || defined(__i386__1) | 
| 58 | #define SHA2_UNROLL_TRANSFORM | 
| 59 | #endif | 
| 60 | #endif | 
| 61 | |
| 62 | /*** SHA-224/256/384/512 Machine Architecture Definitions *****************/ | 
| 63 | /* | 
| 64 | * BYTE_ORDER NOTE: | 
| 65 | * | 
| 66 | * Please make sure that your system defines BYTE_ORDER. If your | 
| 67 | * architecture is little-endian, make sure it also defines | 
| 68 | * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are | 
| 69 | * equivalent. | 
| 70 | * | 
| 71 | * If your system does not define the above, then you can do so by | 
| 72 | * hand like this: | 
| 73 | * | 
| 74 | * #define LITTLE_ENDIAN 1234 | 
| 75 | * #define BIG_ENDIAN 4321 | 
| 76 | * | 
| 77 | * And for little-endian machines, add: | 
| 78 | * | 
| 79 | * #define BYTE_ORDER LITTLE_ENDIAN | 
| 80 | * | 
| 81 | * Or for big-endian machines: | 
| 82 | * | 
| 83 | * #define BYTE_ORDER BIG_ENDIAN | 
| 84 | * | 
| 85 | * The FreeBSD machine this was written on defines BYTE_ORDER | 
| 86 | * appropriately by including <sys/types.h> (which in turn includes | 
| 87 | * <machine/endian.h> where the appropriate definitions are actually | 
| 88 | * made). | 
| 89 | */ | 
| 90 | #if !defined(BYTE_ORDER1234) || (BYTE_ORDER1234 != LITTLE_ENDIAN1234 && BYTE_ORDER1234 != BIG_ENDIAN4321) | 
| 91 | #error Define BYTE_ORDER1234 to be equal to either LITTLE_ENDIAN1234 or BIG_ENDIAN4321 | 
| 92 | #endif | 
| 93 | |
| 94 | |
| 95 | /*** SHA-224/256/384/512 Various Length Definitions ***********************/ | 
| 96 | /* NOTE: Most of these are in sha2.h */ | 
| 97 | #define SHA224_SHORT_BLOCK_LENGTH(64 - 8) (SHA224_BLOCK_LENGTH64 - 8) | 
| 98 | #define SHA256_SHORT_BLOCK_LENGTH(64 - 8) (SHA256_BLOCK_LENGTH64 - 8) | 
| 99 | #define SHA384_SHORT_BLOCK_LENGTH(128 - 16) (SHA384_BLOCK_LENGTH128 - 16) | 
| 100 | #define SHA512_SHORT_BLOCK_LENGTH(128 - 16) (SHA512_BLOCK_LENGTH128 - 16) | 
| 101 | |
| 102 | /*** ENDIAN SPECIFIC COPY MACROS **************************************/ | 
| 103 | #define BE_8_TO_32(dst, cp)do { (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); } while(0) do { \ | 
| 104 | (dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) | \ | 
| 105 | ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24); \ | 
| 106 | } while(0) | 
| 107 | |
| 108 | #define BE_8_TO_64(dst, cp)do { (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | ((u_int64_t)(cp)[1] << 48) | ((u_int64_t )(cp)[0] << 56); } while (0) do { \ | 
| 109 | (dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) | \ | 
| 110 | ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) | \ | 
| 111 | ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) | \ | 
| 112 | ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56); \ | 
| 113 | } while (0) | 
| 114 | |
| 115 | #define BE_64_TO_8(cp, src)do { (cp)[0] = (src) >> 56; (cp)[1] = (src) >> 48 ; (cp)[2] = (src) >> 40; (cp)[3] = (src) >> 32; ( cp)[4] = (src) >> 24; (cp)[5] = (src) >> 16; (cp) [6] = (src) >> 8; (cp)[7] = (src); } while (0) do { \ | 
| 116 | (cp)[0] = (src) >> 56; \ | 
| 117 | (cp)[1] = (src) >> 48; \ | 
| 118 | (cp)[2] = (src) >> 40; \ | 
| 119 | (cp)[3] = (src) >> 32; \ | 
| 120 | (cp)[4] = (src) >> 24; \ | 
| 121 | (cp)[5] = (src) >> 16; \ | 
| 122 | (cp)[6] = (src) >> 8; \ | 
| 123 | (cp)[7] = (src); \ | 
| 124 | } while (0) | 
| 125 | |
| 126 | #define BE_32_TO_8(cp, src)do { (cp)[0] = (src) >> 24; (cp)[1] = (src) >> 16 ; (cp)[2] = (src) >> 8; (cp)[3] = (src); } while (0) do { \ | 
| 127 | (cp)[0] = (src) >> 24; \ | 
| 128 | (cp)[1] = (src) >> 16; \ | 
| 129 | (cp)[2] = (src) >> 8; \ | 
| 130 | (cp)[3] = (src); \ | 
| 131 | } while (0) | 
| 132 | |
| 133 | /* | 
| 134 | * Macro for incrementally adding the unsigned 64-bit integer n to the | 
| 135 | * unsigned 128-bit integer (represented using a two-element array of | 
| 136 | * 64-bit words): | 
| 137 | */ | 
| 138 | #define ADDINC128(w,n)do { (w)[0] += (u_int64_t)(n); if ((w)[0] < (n)) { (w)[1]++ ; } } while (0) do { \ | 
| 139 | (w)[0] += (u_int64_t)(n); \ | 
| 140 | if ((w)[0] < (n)) { \ | 
| 141 | (w)[1]++; \ | 
| 142 | } \ | 
| 143 | } while (0) | 
| 144 | |
| 145 | /*** THE SIX LOGICAL FUNCTIONS ****************************************/ | 
| 146 | /* | 
| 147 | * Bit shifting and rotation (used by the six SHA-XYZ logical functions: | 
| 148 | * | 
| 149 | * NOTE: The naming of R and S appears backwards here (R is a SHIFT and | 
| 150 | * S is a ROTATION) because the SHA-224/256/384/512 description document | 
| 151 | * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this | 
| 152 | * same "backwards" definition. | 
| 153 | */ | 
| 154 | /* Shift-right (used in SHA-224, SHA-256, SHA-384, and SHA-512): */ | 
| 155 | #define R(b,x)((x) >> (b)) ((x) >> (b)) | 
| 156 | /* 32-bit Rotate-right (used in SHA-224 and SHA-256): */ | 
| 157 | #define S32(b,x)(((x) >> (b)) | ((x) << (32 - (b)))) (((x) >> (b)) | ((x) << (32 - (b)))) | 
| 158 | /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ | 
| 159 | #define S64(b,x)(((x) >> (b)) | ((x) << (64 - (b)))) (((x) >> (b)) | ((x) << (64 - (b)))) | 
| 160 | |
| 161 | /* Two of six logical functions used in SHA-224, SHA-256, SHA-384, and SHA-512: */ | 
| 162 | #define Ch(x,y,z)(((x) & (y)) ^ ((~(x)) & (z))) (((x) & (y)) ^ ((~(x)) & (z))) | 
| 163 | #define Maj(x,y,z)(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) | 
| 164 | |
| 165 | /* Four of six logical functions used in SHA-224 and SHA-256: */ | 
| 166 | #define Sigma0_256(x)(((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ ((((x )) >> (13)) | (((x)) << (32 - (13)))) ^ ((((x)) >> (22)) | (((x)) << (32 - (22))))) (S32(2, (x))((((x)) >> (2)) | (((x)) << (32 - (2)))) ^ S32(13, (x))((((x)) >> (13)) | (((x)) << (32 - (13)))) ^ S32(22, (x))((((x)) >> (22)) | (((x)) << (32 - (22))))) | 
| 167 | #define Sigma1_256(x)(((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ ((((x )) >> (11)) | (((x)) << (32 - (11)))) ^ ((((x)) >> (25)) | (((x)) << (32 - (25))))) (S32(6, (x))((((x)) >> (6)) | (((x)) << (32 - (6)))) ^ S32(11, (x))((((x)) >> (11)) | (((x)) << (32 - (11)))) ^ S32(25, (x))((((x)) >> (25)) | (((x)) << (32 - (25))))) | 
| 168 | #define sigma0_256(x)(((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ ((((x )) >> (18)) | (((x)) << (32 - (18)))) ^ (((x)) >> (3))) (S32(7, (x))((((x)) >> (7)) | (((x)) << (32 - (7)))) ^ S32(18, (x))((((x)) >> (18)) | (((x)) << (32 - (18)))) ^ R(3 , (x))(((x)) >> (3))) | 
| 169 | #define sigma1_256(x)(((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ ((( (x)) >> (19)) | (((x)) << (32 - (19)))) ^ (((x)) >> (10))) (S32(17, (x))((((x)) >> (17)) | (((x)) << (32 - (17)))) ^ S32(19, (x))((((x)) >> (19)) | (((x)) << (32 - (19)))) ^ R(10, (x))(((x)) >> (10))) | 
| 170 | |
| 171 | /* Four of six logical functions used in SHA-384 and SHA-512: */ | 
| 172 | #define Sigma0_512(x)(((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ ((( (x)) >> (34)) | (((x)) << (64 - (34)))) ^ ((((x)) >> (39)) | (((x)) << (64 - (39))))) (S64(28, (x))((((x)) >> (28)) | (((x)) << (64 - (28)))) ^ S64(34, (x))((((x)) >> (34)) | (((x)) << (64 - (34)))) ^ S64(39, (x))((((x)) >> (39)) | (((x)) << (64 - (39))))) | 
| 173 | #define Sigma1_512(x)(((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ ((( (x)) >> (18)) | (((x)) << (64 - (18)))) ^ ((((x)) >> (41)) | (((x)) << (64 - (41))))) (S64(14, (x))((((x)) >> (14)) | (((x)) << (64 - (14)))) ^ S64(18, (x))((((x)) >> (18)) | (((x)) << (64 - (18)))) ^ S64(41, (x))((((x)) >> (41)) | (((x)) << (64 - (41))))) | 
| 174 | #define sigma0_512(x)(((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ ((((x )) >> (8)) | (((x)) << (64 - (8)))) ^ (((x)) >> (7))) (S64( 1, (x))((((x)) >> (1)) | (((x)) << (64 - (1)))) ^ S64( 8, (x))((((x)) >> (8)) | (((x)) << (64 - (8)))) ^ R( 7, (x))(((x)) >> (7))) | 
| 175 | #define sigma1_512(x)(((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ ((( (x)) >> (61)) | (((x)) << (64 - (61)))) ^ (((x)) >> (6))) (S64(19, (x))((((x)) >> (19)) | (((x)) << (64 - (19)))) ^ S64(61, (x))((((x)) >> (61)) | (((x)) << (64 - (61)))) ^ R( 6, (x))(((x)) >> (6))) | 
| 176 | |
| 177 | |
| 178 | /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ | 
| 179 | /* Hash constant words K for SHA-224 and SHA-256: */ | 
| 180 | static const u_int32_t K256[64] = { | 
| 181 | 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, | 
| 182 | 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, | 
| 183 | 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, | 
| 184 | 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, | 
| 185 | 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, | 
| 186 | 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, | 
| 187 | 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, | 
| 188 | 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, | 
| 189 | 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, | 
| 190 | 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, | 
| 191 | 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, | 
| 192 | 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, | 
| 193 | 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, | 
| 194 | 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, | 
| 195 | 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, | 
| 196 | 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL | 
| 197 | }; | 
| 198 | |
| 199 | /* Initial hash value H for SHA-256: */ | 
| 200 | static const u_int32_t sha256_initial_hash_value[8] = { | 
| 201 | 0x6a09e667UL, | 
| 202 | 0xbb67ae85UL, | 
| 203 | 0x3c6ef372UL, | 
| 204 | 0xa54ff53aUL, | 
| 205 | 0x510e527fUL, | 
| 206 | 0x9b05688cUL, | 
| 207 | 0x1f83d9abUL, | 
| 208 | 0x5be0cd19UL | 
| 209 | }; | 
| 210 | |
| 211 | /* Hash constant words K for SHA-384 and SHA-512: */ | 
| 212 | static const u_int64_t K512[80] = { | 
| 213 | 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, | 
| 214 | 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, | 
| 215 | 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, | 
| 216 | 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, | 
| 217 | 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, | 
| 218 | 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, | 
| 219 | 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, | 
| 220 | 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, | 
| 221 | 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, | 
| 222 | 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, | 
| 223 | 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, | 
| 224 | 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, | 
| 225 | 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, | 
| 226 | 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, | 
| 227 | 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, | 
| 228 | 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, | 
| 229 | 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, | 
| 230 | 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, | 
| 231 | 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, | 
| 232 | 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, | 
| 233 | 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, | 
| 234 | 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, | 
| 235 | 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, | 
| 236 | 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, | 
| 237 | 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, | 
| 238 | 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, | 
| 239 | 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, | 
| 240 | 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, | 
| 241 | 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, | 
| 242 | 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, | 
| 243 | 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, | 
| 244 | 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, | 
| 245 | 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, | 
| 246 | 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, | 
| 247 | 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, | 
| 248 | 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, | 
| 249 | 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, | 
| 250 | 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, | 
| 251 | 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, | 
| 252 | 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL | 
| 253 | }; | 
| 254 | |
| 255 | /* Initial hash value H for SHA-512 */ | 
| 256 | static const u_int64_t sha512_initial_hash_value[8] = { | 
| 257 | 0x6a09e667f3bcc908ULL, | 
| 258 | 0xbb67ae8584caa73bULL, | 
| 259 | 0x3c6ef372fe94f82bULL, | 
| 260 | 0xa54ff53a5f1d36f1ULL, | 
| 261 | 0x510e527fade682d1ULL, | 
| 262 | 0x9b05688c2b3e6c1fULL, | 
| 263 | 0x1f83d9abfb41bd6bULL, | 
| 264 | 0x5be0cd19137e2179ULL | 
| 265 | }; | 
| 266 | |
| 267 | #if !defined(SHA2_SMALL) | 
| 268 | /* Initial hash value H for SHA-224: */ | 
| 269 | static const u_int32_t sha224_initial_hash_value[8] = { | 
| 270 | 0xc1059ed8UL, | 
| 271 | 0x367cd507UL, | 
| 272 | 0x3070dd17UL, | 
| 273 | 0xf70e5939UL, | 
| 274 | 0xffc00b31UL, | 
| 275 | 0x68581511UL, | 
| 276 | 0x64f98fa7UL, | 
| 277 | 0xbefa4fa4UL | 
| 278 | }; | 
| 279 | |
| 280 | /* Initial hash value H for SHA-384 */ | 
| 281 | static const u_int64_t sha384_initial_hash_value[8] = { | 
| 282 | 0xcbbb9d5dc1059ed8ULL, | 
| 283 | 0x629a292a367cd507ULL, | 
| 284 | 0x9159015a3070dd17ULL, | 
| 285 | 0x152fecd8f70e5939ULL, | 
| 286 | 0x67332667ffc00b31ULL, | 
| 287 | 0x8eb44a8768581511ULL, | 
| 288 | 0xdb0c2e0d64f98fa7ULL, | 
| 289 | 0x47b5481dbefa4fa4ULL | 
| 290 | }; | 
| 291 | |
| 292 | /* Initial hash value H for SHA-512-256 */ | 
| 293 | static const u_int64_t sha512_256_initial_hash_value[8] = { | 
| 294 | 0x22312194fc2bf72cULL, | 
| 295 | 0x9f555fa3c84c64c2ULL, | 
| 296 | 0x2393b86b6f53b151ULL, | 
| 297 | 0x963877195940eabdULL, | 
| 298 | 0x96283ee2a88effe3ULL, | 
| 299 | 0xbe5e1e2553863992ULL, | 
| 300 | 0x2b0199fc2c85b8aaULL, | 
| 301 | 0x0eb72ddc81c52ca2ULL | 
| 302 | }; | 
| 303 | |
| 304 | /*** SHA-224: *********************************************************/ | 
| 305 | void | 
| 306 | SHA224Init(SHA2_CTX *context) | 
| 307 | { | 
| 308 | memcpy(context->state.st32, sha224_initial_hash_value, | 
| 309 | sizeof(sha224_initial_hash_value)); | 
| 310 | memset(context->buffer, 0, sizeof(context->buffer)); | 
| 311 | context->bitcount[0] = 0; | 
| 312 | } | 
| 313 | |
| 314 | __weak_alias(SHA224Transform, SHA256Transform)__asm__(".weak " "SHA224Transform" " ; " "SHA224Transform" " = " "SHA256Transform"); | 
| 315 | __weak_alias(SHA224Update, SHA256Update)__asm__(".weak " "SHA224Update" " ; " "SHA224Update" " = " "SHA256Update" ); | 
| 316 | __weak_alias(SHA224Pad, SHA256Pad)__asm__(".weak " "SHA224Pad" " ; " "SHA224Pad" " = " "SHA256Pad" ); | 
| 317 | |
| 318 | void | 
| 319 | SHA224Final(u_int8_t digest[SHA224_DIGEST_LENGTH28], SHA2_CTX *context) | 
| 320 | { | 
| 321 | SHA224Pad(context); | 
| 322 | |
| 323 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 | 
| 324 | int i; | 
| 325 | |
| 326 | /* Convert TO host byte order */ | 
| 327 | for (i = 0; i < 7; i++) | 
| 328 | BE_32_TO_8(digest + i * 4, context->state.st32[i])do { (digest + i * 4)[0] = (context->state.st32[i]) >> 24; (digest + i * 4)[1] = (context->state.st32[i]) >> 16; (digest + i * 4)[2] = (context->state.st32[i]) >> 8; (digest + i * 4)[3] = (context->state.st32[i]); } while (0); | 
| 329 | #else | 
| 330 | memcpy(digest, context->state.st32, SHA224_DIGEST_LENGTH28); | 
| 331 | #endif | 
| 332 | explicit_bzero(context, sizeof(*context)); | 
| 333 | } | 
| 334 | #endif /* !defined(SHA2_SMALL) */ | 
| 335 | |
| 336 | /*** SHA-256: *********************************************************/ | 
| 337 | void | 
| 338 | SHA256Init(SHA2_CTX *context) | 
| 339 | { | 
| 340 | memcpy(context->state.st32, sha256_initial_hash_value, | 
| 341 | sizeof(sha256_initial_hash_value)); | 
| 342 | memset(context->buffer, 0, sizeof(context->buffer)); | 
| 343 | context->bitcount[0] = 0; | 
| 344 | } | 
| 345 | |
| 346 | #ifdef SHA2_UNROLL_TRANSFORM | 
| 347 | |
| 348 | /* Unrolled SHA-256 round macros: */ | 
| 349 | |
| 350 | #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ | 
| 351 | BE_8_TO_32(W256[j], data)do { (W256[j]) = (u_int32_t)(data)[3] | ((u_int32_t)(data)[2] << 8) | ((u_int32_t)(data)[1] << 16) | ((u_int32_t )(data)[0] << 24); } while(0); \ | 
| 352 | data += 4; \ | 
| 353 | T1 = (h) + Sigma1_256((e))((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ ( ((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ ( ((((e))) >> (25)) | ((((e))) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + W256[j]; \ | 
| 354 | (d) += T1; \ | 
| 355 | (h) = T1 + Sigma0_256((a))((((((a))) >> (2)) | ((((a))) << (32 - (2)))) ^ ( ((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ ( ((((a))) >> (22)) | ((((a))) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ | 
| 356 | j++; \ | 
| 357 | } while(0) | 
| 358 | |
| 359 | #define ROUND256(a,b,c,d,e,f,g,h) do { \ | 
| 360 | s0 = W256[(j+1)&0x0f]; \ | 
| 361 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); \ | 
| 362 | s1 = W256[(j+14)&0x0f]; \ | 
| 363 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); \ | 
| 364 | T1 = (h) + Sigma1_256((e))((((((e))) >> (6)) | ((((e))) << (32 - (6)))) ^ ( ((((e))) >> (11)) | ((((e))) << (32 - (11)))) ^ ( ((((e))) >> (25)) | ((((e))) << (32 - (25))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K256[j] + \ | 
| 365 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ | 
| 366 | (d) += T1; \ | 
| 367 | (h) = T1 + Sigma0_256((a))((((((a))) >> (2)) | ((((a))) << (32 - (2)))) ^ ( ((((a))) >> (13)) | ((((a))) << (32 - (13)))) ^ ( ((((a))) >> (22)) | ((((a))) << (32 - (22))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ | 
| 368 | j++; \ | 
| 369 | } while(0) | 
| 370 | |
| 371 | void | 
| 372 | SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH64]) | 
| 373 | { | 
| 374 | u_int32_t a, b, c, d, e, f, g, h, s0, s1; | 
| 375 | u_int32_t T1, W256[16]; | 
| 376 | int j; | 
| 377 | |
| 378 | /* Initialize registers with the prev. intermediate value */ | 
| 379 | a = state[0]; | 
| 380 | b = state[1]; | 
| 381 | c = state[2]; | 
| 382 | d = state[3]; | 
| 383 | e = state[4]; | 
| 384 | f = state[5]; | 
| 385 | g = state[6]; | 
| 386 | h = state[7]; | 
| 387 | |
| 388 | j = 0; | 
| 389 | do { | 
| 390 | /* Rounds 0 to 15 (unrolled): */ | 
| 391 | ROUND256_0_TO_15(a,b,c,d,e,f,g,h); | 
| 392 | ROUND256_0_TO_15(h,a,b,c,d,e,f,g); | 
| 393 | ROUND256_0_TO_15(g,h,a,b,c,d,e,f); | 
| 394 | ROUND256_0_TO_15(f,g,h,a,b,c,d,e); | 
| 395 | ROUND256_0_TO_15(e,f,g,h,a,b,c,d); | 
| 396 | ROUND256_0_TO_15(d,e,f,g,h,a,b,c); | 
| 397 | ROUND256_0_TO_15(c,d,e,f,g,h,a,b); | 
| 398 | ROUND256_0_TO_15(b,c,d,e,f,g,h,a); | 
| 399 | } while (j < 16); | 
| 400 | |
| 401 | /* Now for the remaining rounds up to 63: */ | 
| 402 | do { | 
| 403 | ROUND256(a,b,c,d,e,f,g,h); | 
| 404 | ROUND256(h,a,b,c,d,e,f,g); | 
| 405 | ROUND256(g,h,a,b,c,d,e,f); | 
| 406 | ROUND256(f,g,h,a,b,c,d,e); | 
| 407 | ROUND256(e,f,g,h,a,b,c,d); | 
| 408 | ROUND256(d,e,f,g,h,a,b,c); | 
| 409 | ROUND256(c,d,e,f,g,h,a,b); | 
| 410 | ROUND256(b,c,d,e,f,g,h,a); | 
| 411 | } while (j < 64); | 
| 412 | |
| 413 | /* Compute the current intermediate hash value */ | 
| 414 | state[0] += a; | 
| 415 | state[1] += b; | 
| 416 | state[2] += c; | 
| 417 | state[3] += d; | 
| 418 | state[4] += e; | 
| 419 | state[5] += f; | 
| 420 | state[6] += g; | 
| 421 | state[7] += h; | 
| 422 | |
| 423 | /* Clean up */ | 
| 424 | a = b = c = d = e = f = g = h = T1 = 0; | 
| 425 | } | 
| 426 | |
| 427 | #else /* SHA2_UNROLL_TRANSFORM */ | 
| 428 | |
| 429 | void | 
| 430 | SHA256Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH64]) | 
| 431 | { | 
| 432 | u_int32_t a, b, c, d, e, f, g, h, s0, s1; | 
| 433 | u_int32_t T1, T2, W256[16]; | 
| 434 | int j; | 
| 435 | |
| 436 | /* Initialize registers with the prev. intermediate value */ | 
| 437 | a = state[0]; | 
| 438 | b = state[1]; | 
| 439 | c = state[2]; | 
| 440 | d = state[3]; | 
| 441 | e = state[4]; | 
| 442 | f = state[5]; | 
| 443 | g = state[6]; | 
| 444 | h = state[7]; | 
| 445 | |
| 446 | j = 0; | 
| 447 | do { | 
| 448 | BE_8_TO_32(W256[j], data)do { (W256[j]) = (u_int32_t)(data)[3] | ((u_int32_t)(data)[2] << 8) | ((u_int32_t)(data)[1] << 16) | ((u_int32_t )(data)[0] << 24); } while(0); | 
| 449 | data += 4; | 
| 450 | /* Apply the SHA-256 compression function to update a..h */ | 
| 451 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + W256[j]; | 
| 452 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); | 
| 453 | h = g; | 
| 454 | g = f; | 
| 455 | f = e; | 
| 456 | e = d + T1; | 
| 457 | d = c; | 
| 458 | c = b; | 
| 459 | b = a; | 
| 460 | a = T1 + T2; | 
| 461 | |
| 462 | j++; | 
| 463 | } while (j < 16); | 
| 464 | |
| 465 | do { | 
| 466 | /* Part of the message block expansion: */ | 
| 467 | s0 = W256[(j+1)&0x0f]; | 
| 468 | s0 = sigma0_256(s0)(((((s0)) >> (7)) | (((s0)) << (32 - (7)))) ^ ((( (s0)) >> (18)) | (((s0)) << (32 - (18)))) ^ (((s0 )) >> (3))); | 
| 469 | s1 = W256[(j+14)&0x0f]; | 
| 470 | s1 = sigma1_256(s1)(((((s1)) >> (17)) | (((s1)) << (32 - (17)))) ^ ( (((s1)) >> (19)) | (((s1)) << (32 - (19)))) ^ ((( s1)) >> (10))); | 
| 471 | |
| 472 | /* Apply the SHA-256 compression function to update a..h */ | 
| 473 | T1 = h + Sigma1_256(e)(((((e)) >> (6)) | (((e)) << (32 - (6)))) ^ ((((e )) >> (11)) | (((e)) << (32 - (11)))) ^ ((((e)) >> (25)) | (((e)) << (32 - (25))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K256[j] + | 
| 474 | (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); | 
| 475 | T2 = Sigma0_256(a)(((((a)) >> (2)) | (((a)) << (32 - (2)))) ^ ((((a )) >> (13)) | (((a)) << (32 - (13)))) ^ ((((a)) >> (22)) | (((a)) << (32 - (22))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); | 
| 476 | h = g; | 
| 477 | g = f; | 
| 478 | f = e; | 
| 479 | e = d + T1; | 
| 480 | d = c; | 
| 481 | c = b; | 
| 482 | b = a; | 
| 483 | a = T1 + T2; | 
| 484 | |
| 485 | j++; | 
| 486 | } while (j < 64); | 
| 487 | |
| 488 | /* Compute the current intermediate hash value */ | 
| 489 | state[0] += a; | 
| 490 | state[1] += b; | 
| 491 | state[2] += c; | 
| 492 | state[3] += d; | 
| 493 | state[4] += e; | 
| 494 | state[5] += f; | 
| 495 | state[6] += g; | 
| 496 | state[7] += h; | 
| 497 | |
| 498 | /* Clean up */ | 
| 499 | a = b = c = d = e = f = g = h = T1 = T2 = 0; | 
| 500 | } | 
| 501 | |
| 502 | #endif /* SHA2_UNROLL_TRANSFORM */ | 
| 503 | |
| 504 | void | 
| 505 | SHA256Update(SHA2_CTX *context, const u_int8_t *data, size_t len) | 
| 506 | { | 
| 507 | size_t freespace, usedspace; | 
| 508 | |
| 509 | /* Calling with no data is valid (we do nothing) */ | 
| 510 | if (len == 0) | 
| 511 | return; | 
| 512 | |
| 513 | usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH64; | 
| 514 | if (usedspace > 0) { | 
| 515 | /* Calculate how much free space is available in the buffer */ | 
| 516 | freespace = SHA256_BLOCK_LENGTH64 - usedspace; | 
| 517 | |
| 518 | if (len >= freespace) { | 
| 519 | /* Fill the buffer completely and process it */ | 
| 520 | memcpy(&context->buffer[usedspace], data, freespace); | 
| 521 | context->bitcount[0] += freespace << 3; | 
| 522 | len -= freespace; | 
| 523 | data += freespace; | 
| 524 | SHA256Transform(context->state.st32, context->buffer); | 
| 525 | } else { | 
| 526 | /* The buffer is not yet full */ | 
| 527 | memcpy(&context->buffer[usedspace], data, len); | 
| 528 | context->bitcount[0] += len << 3; | 
| 529 | /* Clean up: */ | 
| 530 | usedspace = freespace = 0; | 
| 531 | return; | 
| 532 | } | 
| 533 | } | 
| 534 | while (len >= SHA256_BLOCK_LENGTH64) { | 
| 535 | /* Process as many complete blocks as we can */ | 
| 536 | SHA256Transform(context->state.st32, data); | 
| 537 | context->bitcount[0] += SHA256_BLOCK_LENGTH64 << 3; | 
| 538 | len -= SHA256_BLOCK_LENGTH64; | 
| 539 | data += SHA256_BLOCK_LENGTH64; | 
| 540 | } | 
| 541 | if (len > 0) { | 
| 542 | /* There's left-overs, so save 'em */ | 
| 543 | memcpy(context->buffer, data, len); | 
| 544 | context->bitcount[0] += len << 3; | 
| 545 | } | 
| 546 | /* Clean up: */ | 
| 547 | usedspace = freespace = 0; | 
| 548 | } | 
| 549 | |
| 550 | void | 
| 551 | SHA256Pad(SHA2_CTX *context) | 
| 552 | { | 
| 553 | unsigned int usedspace; | 
| 554 | |
| 555 | usedspace = (context->bitcount[0] >> 3) % SHA256_BLOCK_LENGTH64; | 
| 556 | if (usedspace > 0) { | 
| 557 | /* Begin padding with a 1 bit: */ | 
| 558 | context->buffer[usedspace++] = 0x80; | 
| 559 | |
| 560 | if (usedspace <= SHA256_SHORT_BLOCK_LENGTH(64 - 8)) { | 
| 561 | /* Set-up for the last transform: */ | 
| 562 | memset(&context->buffer[usedspace], 0, | 
| 563 | SHA256_SHORT_BLOCK_LENGTH(64 - 8) - usedspace); | 
| 564 | } else { | 
| 565 | if (usedspace < SHA256_BLOCK_LENGTH64) { | 
| 566 | memset(&context->buffer[usedspace], 0, | 
| 567 | SHA256_BLOCK_LENGTH64 - usedspace); | 
| 568 | } | 
| 569 | /* Do second-to-last transform: */ | 
| 570 | SHA256Transform(context->state.st32, context->buffer); | 
| 571 | |
| 572 | /* Prepare for last transform: */ | 
| 573 | memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH(64 - 8)); | 
| 574 | } | 
| 575 | } else { | 
| 576 | /* Set-up for the last transform: */ | 
| 577 | memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH(64 - 8)); | 
| 578 | |
| 579 | /* Begin padding with a 1 bit: */ | 
| 580 | *context->buffer = 0x80; | 
| 581 | } | 
| 582 | /* Store the length of input data (in bits) in big endian format: */ | 
| 583 | BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],do { (&context->buffer[(64 - 8)])[0] = (context->bitcount [0]) >> 56; (&context->buffer[(64 - 8)])[1] = (context ->bitcount[0]) >> 48; (&context->buffer[(64 - 8)])[2] = (context->bitcount[0]) >> 40; (&context ->buffer[(64 - 8)])[3] = (context->bitcount[0]) >> 32; (&context->buffer[(64 - 8)])[4] = (context->bitcount [0]) >> 24; (&context->buffer[(64 - 8)])[5] = (context ->bitcount[0]) >> 16; (&context->buffer[(64 - 8)])[6] = (context->bitcount[0]) >> 8; (&context ->buffer[(64 - 8)])[7] = (context->bitcount[0]); } while (0) | 
| 584 | context->bitcount[0])do { (&context->buffer[(64 - 8)])[0] = (context->bitcount [0]) >> 56; (&context->buffer[(64 - 8)])[1] = (context ->bitcount[0]) >> 48; (&context->buffer[(64 - 8)])[2] = (context->bitcount[0]) >> 40; (&context ->buffer[(64 - 8)])[3] = (context->bitcount[0]) >> 32; (&context->buffer[(64 - 8)])[4] = (context->bitcount [0]) >> 24; (&context->buffer[(64 - 8)])[5] = (context ->bitcount[0]) >> 16; (&context->buffer[(64 - 8)])[6] = (context->bitcount[0]) >> 8; (&context ->buffer[(64 - 8)])[7] = (context->bitcount[0]); } while (0); | 
| 585 | |
| 586 | /* Final transform: */ | 
| 587 | SHA256Transform(context->state.st32, context->buffer); | 
| 588 | |
| 589 | /* Clean up: */ | 
| 590 | usedspace = 0; | 
| 591 | } | 
| 592 | |
| 593 | void | 
| 594 | SHA256Final(u_int8_t digest[SHA256_DIGEST_LENGTH32], SHA2_CTX *context) | 
| 595 | { | 
| 596 | SHA256Pad(context); | 
| 597 | |
| 598 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 | 
| 599 | int i; | 
| 600 | |
| 601 | /* Convert TO host byte order */ | 
| 602 | for (i = 0; i < 8; i++) | 
| 603 | BE_32_TO_8(digest + i * 4, context->state.st32[i])do { (digest + i * 4)[0] = (context->state.st32[i]) >> 24; (digest + i * 4)[1] = (context->state.st32[i]) >> 16; (digest + i * 4)[2] = (context->state.st32[i]) >> 8; (digest + i * 4)[3] = (context->state.st32[i]); } while (0); | 
| 604 | #else | 
| 605 | memcpy(digest, context->state.st32, SHA256_DIGEST_LENGTH32); | 
| 606 | #endif | 
| 607 | explicit_bzero(context, sizeof(*context)); | 
| 608 | } | 
| 609 | |
| 610 | |
| 611 | /*** SHA-512: *********************************************************/ | 
| 612 | void | 
| 613 | SHA512Init(SHA2_CTX *context) | 
| 614 | { | 
| 615 | memcpy(context->state.st64, sha512_initial_hash_value, | 
| 616 | sizeof(sha512_initial_hash_value)); | 
| 617 | memset(context->buffer, 0, sizeof(context->buffer)); | 
| 618 | context->bitcount[0] = context->bitcount[1] = 0; | 
| 619 | } | 
| 620 | |
| 621 | #ifdef SHA2_UNROLL_TRANSFORM | 
| 622 | |
| 623 | /* Unrolled SHA-512 round macros: */ | 
| 624 | |
| 625 | #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ | 
| 626 | BE_8_TO_64(W512[j], data)do { (W512[j]) = (u_int64_t)(data)[7] | ((u_int64_t)(data)[6] << 8) | ((u_int64_t)(data)[5] << 16) | ((u_int64_t )(data)[4] << 24) | ((u_int64_t)(data)[3] << 32) | ((u_int64_t)(data)[2] << 40) | ((u_int64_t)(data)[1] << 48) | ((u_int64_t)(data)[0] << 56); } while (0); \ | 
| 627 | data += 8; \ | 
| 628 | T1 = (h) + Sigma1_512((e))((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + W512[j]; \ | 
| 629 | (d) += T1; \ | 
| 630 | (h) = T1 + Sigma0_512((a))((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((((a))) >> (39)) | ((((a))) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ | 
| 631 | j++; \ | 
| 632 | } while(0) | 
| 633 | |
| 634 | |
| 635 | #define ROUND512(a,b,c,d,e,f,g,h) do { \ | 
| 636 | s0 = W512[(j+1)&0x0f]; \ | 
| 637 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); \ | 
| 638 | s1 = W512[(j+14)&0x0f]; \ | 
| 639 | s1 = sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); \ | 
| 640 | T1 = (h) + Sigma1_512((e))((((((e))) >> (14)) | ((((e))) << (64 - (14)))) ^ (((((e))) >> (18)) | ((((e))) << (64 - (18)))) ^ (((((e))) >> (41)) | ((((e))) << (64 - (41))))) + Ch((e), (f), (g))((((e)) & ((f))) ^ ((~((e))) & ((g)))) + K512[j] + \ | 
| 641 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ | 
| 642 | (d) += T1; \ | 
| 643 | (h) = T1 + Sigma0_512((a))((((((a))) >> (28)) | ((((a))) << (64 - (28)))) ^ (((((a))) >> (34)) | ((((a))) << (64 - (34)))) ^ (((((a))) >> (39)) | ((((a))) << (64 - (39))))) + Maj((a), (b), (c))((((a)) & ((b))) ^ (((a)) & ((c))) ^ (((b)) & ((c )))); \ | 
| 644 | j++; \ | 
| 645 | } while(0) | 
| 646 | |
| 647 | void | 
| 648 | SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH128]) | 
| 649 | { | 
| 650 | u_int64_t a, b, c, d, e, f, g, h, s0, s1; | 
| 651 | u_int64_t T1, W512[16]; | 
| 652 | int j; | 
| 653 | |
| 654 | /* Initialize registers with the prev. intermediate value */ | 
| 655 | a = state[0]; | 
| 656 | b = state[1]; | 
| 657 | c = state[2]; | 
| 658 | d = state[3]; | 
| 659 | e = state[4]; | 
| 660 | f = state[5]; | 
| 661 | g = state[6]; | 
| 662 | h = state[7]; | 
| 663 | |
| 664 | j = 0; | 
| 665 | do { | 
| 666 | /* Rounds 0 to 15 (unrolled): */ | 
| 667 | ROUND512_0_TO_15(a,b,c,d,e,f,g,h); | 
| 668 | ROUND512_0_TO_15(h,a,b,c,d,e,f,g); | 
| 669 | ROUND512_0_TO_15(g,h,a,b,c,d,e,f); | 
| 670 | ROUND512_0_TO_15(f,g,h,a,b,c,d,e); | 
| 671 | ROUND512_0_TO_15(e,f,g,h,a,b,c,d); | 
| 672 | ROUND512_0_TO_15(d,e,f,g,h,a,b,c); | 
| 673 | ROUND512_0_TO_15(c,d,e,f,g,h,a,b); | 
| 674 | ROUND512_0_TO_15(b,c,d,e,f,g,h,a); | 
| 675 | } while (j < 16); | 
| 676 | |
| 677 | /* Now for the remaining rounds up to 79: */ | 
| 678 | do { | 
| 679 | ROUND512(a,b,c,d,e,f,g,h); | 
| 680 | ROUND512(h,a,b,c,d,e,f,g); | 
| 681 | ROUND512(g,h,a,b,c,d,e,f); | 
| 682 | ROUND512(f,g,h,a,b,c,d,e); | 
| 683 | ROUND512(e,f,g,h,a,b,c,d); | 
| 684 | ROUND512(d,e,f,g,h,a,b,c); | 
| 685 | ROUND512(c,d,e,f,g,h,a,b); | 
| 686 | ROUND512(b,c,d,e,f,g,h,a); | 
| 687 | } while (j < 80); | 
| 688 | |
| 689 | /* Compute the current intermediate hash value */ | 
| 690 | state[0] += a; | 
| 691 | state[1] += b; | 
| 692 | state[2] += c; | 
| 693 | state[3] += d; | 
| 694 | state[4] += e; | 
| 695 | state[5] += f; | 
| 696 | state[6] += g; | 
| 697 | state[7] += h; | 
| 698 | |
| 699 | /* Clean up */ | 
| 700 | a = b = c = d = e = f = g = h = T1 = 0; | 
| 701 | } | 
| 702 | |
| 703 | #else /* SHA2_UNROLL_TRANSFORM */ | 
| 704 | |
| 705 | void | 
| 706 | SHA512Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH128]) | 
| 707 | { | 
| 708 | u_int64_t a, b, c, d, e, f, g, h, s0, s1; | 
| 709 | u_int64_t T1, T2, W512[16]; | 
| 710 | int j; | 
| 711 | |
| 712 | /* Initialize registers with the prev. intermediate value */ | 
| 713 | a = state[0]; | 
| 714 | b = state[1]; | 
| 715 | c = state[2]; | 
| 716 | d = state[3]; | 
| 717 | e = state[4]; | 
| 718 | f = state[5]; | 
| 719 | g = state[6]; | 
| 720 | h = state[7]; | 
| 721 | |
| 722 | j = 0; | 
| 723 | do { | 
| 724 | BE_8_TO_64(W512[j], data)do { (W512[j]) = (u_int64_t)(data)[7] | ((u_int64_t)(data)[6] << 8) | ((u_int64_t)(data)[5] << 16) | ((u_int64_t )(data)[4] << 24) | ((u_int64_t)(data)[3] << 32) | ((u_int64_t)(data)[2] << 40) | ((u_int64_t)(data)[1] << 48) | ((u_int64_t)(data)[0] << 56); } while (0); | 
| 725 | data += 8; | 
| 726 | /* Apply the SHA-512 compression function to update a..h */ | 
| 727 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + W512[j]; | 
| 728 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); | 
| 729 | h = g; | 
| 730 | g = f; | 
| 731 | f = e; | 
| 732 | e = d + T1; | 
| 733 | d = c; | 
| 734 | c = b; | 
| 735 | b = a; | 
| 736 | a = T1 + T2; | 
| 737 | |
| 738 | j++; | 
| 739 | } while (j < 16); | 
| 740 | |
| 741 | do { | 
| 742 | /* Part of the message block expansion: */ | 
| 743 | s0 = W512[(j+1)&0x0f]; | 
| 744 | s0 = sigma0_512(s0)(((((s0)) >> (1)) | (((s0)) << (64 - (1)))) ^ ((( (s0)) >> (8)) | (((s0)) << (64 - (8)))) ^ (((s0)) >> (7))); | 
| 745 | s1 = W512[(j+14)&0x0f]; | 
| 746 | s1 =  sigma1_512(s1)(((((s1)) >> (19)) | (((s1)) << (64 - (19)))) ^ ( (((s1)) >> (61)) | (((s1)) << (64 - (61)))) ^ ((( s1)) >> (6))); | 
| 747 | |
| 748 | /* Apply the SHA-512 compression function to update a..h */ | 
| 749 | T1 = h + Sigma1_512(e)(((((e)) >> (14)) | (((e)) << (64 - (14)))) ^ ((( (e)) >> (18)) | (((e)) << (64 - (18)))) ^ ((((e)) >> (41)) | (((e)) << (64 - (41))))) + Ch(e, f, g)(((e) & (f)) ^ ((~(e)) & (g))) + K512[j] + | 
| 750 | (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); | 
| 751 | T2 = Sigma0_512(a)(((((a)) >> (28)) | (((a)) << (64 - (28)))) ^ ((( (a)) >> (34)) | (((a)) << (64 - (34)))) ^ ((((a)) >> (39)) | (((a)) << (64 - (39))))) + Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c))); | 
| 752 | h = g; | 
| 753 | g = f; | 
| 754 | f = e; | 
| 755 | e = d + T1; | 
| 756 | d = c; | 
| 757 | c = b; | 
| 758 | b = a; | 
| 759 | a = T1 + T2; | 
| 760 | |
| 761 | j++; | 
| 762 | } while (j < 80); | 
| 763 | |
| 764 | /* Compute the current intermediate hash value */ | 
| 765 | state[0] += a; | 
| 766 | state[1] += b; | 
| 767 | state[2] += c; | 
| 768 | state[3] += d; | 
| 769 | state[4] += e; | 
| 770 | state[5] += f; | 
| 771 | state[6] += g; | 
| 772 | state[7] += h; | 
| 773 | |
| 774 | /* Clean up */ | 
| 775 | a = b = c = d = e = f = g = h = T1 = T2 = 0; | 
| Although the value stored to 'T1' is used in the enclosing expression, the value is never actually read from 'T1' | |
| 776 | } | 
| 777 | |
| 778 | #endif /* SHA2_UNROLL_TRANSFORM */ | 
| 779 | |
| 780 | void | 
| 781 | SHA512Update(SHA2_CTX *context, const u_int8_t *data, size_t len) | 
| 782 | { | 
| 783 | size_t freespace, usedspace; | 
| 784 | |
| 785 | /* Calling with no data is valid (we do nothing) */ | 
| 786 | if (len == 0) | 
| 787 | return; | 
| 788 | |
| 789 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128; | 
| 790 | if (usedspace > 0) { | 
| 791 | /* Calculate how much free space is available in the buffer */ | 
| 792 | freespace = SHA512_BLOCK_LENGTH128 - usedspace; | 
| 793 | |
| 794 | if (len >= freespace) { | 
| 795 | /* Fill the buffer completely and process it */ | 
| 796 | memcpy(&context->buffer[usedspace], data, freespace); | 
| 797 | ADDINC128(context->bitcount, freespace << 3)do { (context->bitcount)[0] += (u_int64_t)(freespace << 3); if ((context->bitcount)[0] < (freespace << 3 )) { (context->bitcount)[1]++; } } while (0); | 
| 798 | len -= freespace; | 
| 799 | data += freespace; | 
| 800 | SHA512Transform(context->state.st64, context->buffer); | 
| 801 | } else { | 
| 802 | /* The buffer is not yet full */ | 
| 803 | memcpy(&context->buffer[usedspace], data, len); | 
| 804 | ADDINC128(context->bitcount, len << 3)do { (context->bitcount)[0] += (u_int64_t)(len << 3) ; if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } } while (0); | 
| 805 | /* Clean up: */ | 
| 806 | usedspace = freespace = 0; | 
| 807 | return; | 
| 808 | } | 
| 809 | } | 
| 810 | while (len >= SHA512_BLOCK_LENGTH128) { | 
| 811 | /* Process as many complete blocks as we can */ | 
| 812 | SHA512Transform(context->state.st64, data); | 
| 813 | ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3)do { (context->bitcount)[0] += (u_int64_t)(128 << 3) ; if ((context->bitcount)[0] < (128 << 3)) { (context ->bitcount)[1]++; } } while (0); | 
| 814 | len -= SHA512_BLOCK_LENGTH128; | 
| 815 | data += SHA512_BLOCK_LENGTH128; | 
| 816 | } | 
| 817 | if (len > 0) { | 
| 818 | /* There's left-overs, so save 'em */ | 
| 819 | memcpy(context->buffer, data, len); | 
| 820 | ADDINC128(context->bitcount, len << 3)do { (context->bitcount)[0] += (u_int64_t)(len << 3) ; if ((context->bitcount)[0] < (len << 3)) { (context ->bitcount)[1]++; } } while (0); | 
| 821 | } | 
| 822 | /* Clean up: */ | 
| 823 | usedspace = freespace = 0; | 
| 824 | } | 
| 825 | |
| 826 | void | 
| 827 | SHA512Pad(SHA2_CTX *context) | 
| 828 | { | 
| 829 | unsigned int usedspace; | 
| 830 | |
| 831 | usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH128; | 
| 832 | if (usedspace > 0) { | 
| 833 | /* Begin padding with a 1 bit: */ | 
| 834 | context->buffer[usedspace++] = 0x80; | 
| 835 | |
| 836 | if (usedspace <= SHA512_SHORT_BLOCK_LENGTH(128 - 16)) { | 
| 837 | /* Set-up for the last transform: */ | 
| 838 | memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH(128 - 16) - usedspace); | 
| 839 | } else { | 
| 840 | if (usedspace < SHA512_BLOCK_LENGTH128) { | 
| 841 | memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH128 - usedspace); | 
| 842 | } | 
| 843 | /* Do second-to-last transform: */ | 
| 844 | SHA512Transform(context->state.st64, context->buffer); | 
| 845 | |
| 846 | /* And set-up for the last transform: */ | 
| 847 | memset(context->buffer, 0, SHA512_BLOCK_LENGTH128 - 2); | 
| 848 | } | 
| 849 | } else { | 
| 850 | /* Prepare for final transform: */ | 
| 851 | memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH(128 - 16)); | 
| 852 | |
| 853 | /* Begin padding with a 1 bit: */ | 
| 854 | *context->buffer = 0x80; | 
| 855 | } | 
| 856 | /* Store the length of input data (in bits) in big endian format: */ | 
| 857 | BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],do { (&context->buffer[(128 - 16)])[0] = (context-> bitcount[1]) >> 56; (&context->buffer[(128 - 16) ])[1] = (context->bitcount[1]) >> 48; (&context-> buffer[(128 - 16)])[2] = (context->bitcount[1]) >> 40 ; (&context->buffer[(128 - 16)])[3] = (context->bitcount [1]) >> 32; (&context->buffer[(128 - 16)])[4] = ( context->bitcount[1]) >> 24; (&context->buffer [(128 - 16)])[5] = (context->bitcount[1]) >> 16; (& context->buffer[(128 - 16)])[6] = (context->bitcount[1] ) >> 8; (&context->buffer[(128 - 16)])[7] = (context ->bitcount[1]); } while (0) | 
| 858 | context->bitcount[1])do { (&context->buffer[(128 - 16)])[0] = (context-> bitcount[1]) >> 56; (&context->buffer[(128 - 16) ])[1] = (context->bitcount[1]) >> 48; (&context-> buffer[(128 - 16)])[2] = (context->bitcount[1]) >> 40 ; (&context->buffer[(128 - 16)])[3] = (context->bitcount [1]) >> 32; (&context->buffer[(128 - 16)])[4] = ( context->bitcount[1]) >> 24; (&context->buffer [(128 - 16)])[5] = (context->bitcount[1]) >> 16; (& context->buffer[(128 - 16)])[6] = (context->bitcount[1] ) >> 8; (&context->buffer[(128 - 16)])[7] = (context ->bitcount[1]); } while (0); | 
| 859 | BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],do { (&context->buffer[(128 - 16) + 8])[0] = (context-> bitcount[0]) >> 56; (&context->buffer[(128 - 16) + 8])[1] = (context->bitcount[0]) >> 48; (&context ->buffer[(128 - 16) + 8])[2] = (context->bitcount[0]) >> 40; (&context->buffer[(128 - 16) + 8])[3] = (context-> bitcount[0]) >> 32; (&context->buffer[(128 - 16) + 8])[4] = (context->bitcount[0]) >> 24; (&context ->buffer[(128 - 16) + 8])[5] = (context->bitcount[0]) >> 16; (&context->buffer[(128 - 16) + 8])[6] = (context-> bitcount[0]) >> 8; (&context->buffer[(128 - 16) + 8])[7] = (context->bitcount[0]); } while (0) | 
| 860 | context->bitcount[0])do { (&context->buffer[(128 - 16) + 8])[0] = (context-> bitcount[0]) >> 56; (&context->buffer[(128 - 16) + 8])[1] = (context->bitcount[0]) >> 48; (&context ->buffer[(128 - 16) + 8])[2] = (context->bitcount[0]) >> 40; (&context->buffer[(128 - 16) + 8])[3] = (context-> bitcount[0]) >> 32; (&context->buffer[(128 - 16) + 8])[4] = (context->bitcount[0]) >> 24; (&context ->buffer[(128 - 16) + 8])[5] = (context->bitcount[0]) >> 16; (&context->buffer[(128 - 16) + 8])[6] = (context-> bitcount[0]) >> 8; (&context->buffer[(128 - 16) + 8])[7] = (context->bitcount[0]); } while (0); | 
| 861 | |
| 862 | /* Final transform: */ | 
| 863 | SHA512Transform(context->state.st64, context->buffer); | 
| 864 | |
| 865 | /* Clean up: */ | 
| 866 | usedspace = 0; | 
| 867 | } | 
| 868 | |
| 869 | void | 
| 870 | SHA512Final(u_int8_t digest[SHA512_DIGEST_LENGTH64], SHA2_CTX *context) | 
| 871 | { | 
| 872 | SHA512Pad(context); | 
| 873 | |
| 874 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 | 
| 875 | int i; | 
| 876 | |
| 877 | /* Convert TO host byte order */ | 
| 878 | for (i = 0; i < 8; i++) | 
| 879 | BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >> 56; (digest + i * 8)[1] = (context->state.st64[i]) >> 48; (digest + i * 8)[2] = (context->state.st64[i]) >> 40; (digest + i * 8)[3] = (context->state.st64[i]) >> 32; (digest + i * 8)[4] = (context->state.st64[i]) >> 24; (digest + i * 8)[5] = (context->state.st64[i]) >> 16; (digest + i * 8)[6] = (context->state.st64[i]) >> 8; (digest + i * 8)[7] = (context->state.st64[i]); } while (0); | 
| 880 | #else | 
| 881 | memcpy(digest, context->state.st64, SHA512_DIGEST_LENGTH64); | 
| 882 | #endif | 
| 883 | explicit_bzero(context, sizeof(*context)); | 
| 884 | } | 
| 885 | |
| 886 | #if !defined(SHA2_SMALL) | 
| 887 | |
| 888 | /*** SHA-384: *********************************************************/ | 
| 889 | void | 
| 890 | SHA384Init(SHA2_CTX *context) | 
| 891 | { | 
| 892 | memcpy(context->state.st64, sha384_initial_hash_value, | 
| 893 | sizeof(sha384_initial_hash_value)); | 
| 894 | memset(context->buffer, 0, sizeof(context->buffer)); | 
| 895 | context->bitcount[0] = context->bitcount[1] = 0; | 
| 896 | } | 
| 897 | |
| 898 | __weak_alias(SHA384Transform, SHA512Transform)__asm__(".weak " "SHA384Transform" " ; " "SHA384Transform" " = " "SHA512Transform"); | 
| 899 | __weak_alias(SHA384Update, SHA512Update)__asm__(".weak " "SHA384Update" " ; " "SHA384Update" " = " "SHA512Update" ); | 
| 900 | __weak_alias(SHA384Pad, SHA512Pad)__asm__(".weak " "SHA384Pad" " ; " "SHA384Pad" " = " "SHA512Pad" ); | 
| 901 | |
| 902 | void | 
| 903 | SHA384Final(u_int8_t digest[SHA384_DIGEST_LENGTH48], SHA2_CTX *context) | 
| 904 | { | 
| 905 | SHA384Pad(context); | 
| 906 | |
| 907 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 | 
| 908 | int i; | 
| 909 | |
| 910 | /* Convert TO host byte order */ | 
| 911 | for (i = 0; i < 6; i++) | 
| 912 | BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >> 56; (digest + i * 8)[1] = (context->state.st64[i]) >> 48; (digest + i * 8)[2] = (context->state.st64[i]) >> 40; (digest + i * 8)[3] = (context->state.st64[i]) >> 32; (digest + i * 8)[4] = (context->state.st64[i]) >> 24; (digest + i * 8)[5] = (context->state.st64[i]) >> 16; (digest + i * 8)[6] = (context->state.st64[i]) >> 8; (digest + i * 8)[7] = (context->state.st64[i]); } while (0); | 
| 913 | #else | 
| 914 | memcpy(digest, context->state.st64, SHA384_DIGEST_LENGTH48); | 
| 915 | #endif | 
| 916 | /* Zero out state data */ | 
| 917 | explicit_bzero(context, sizeof(*context)); | 
| 918 | } | 
| 919 | |
| 920 | /*** SHA-512/256: *********************************************************/ | 
| 921 | void | 
| 922 | SHA512_256Init(SHA2_CTX *context) | 
| 923 | { | 
| 924 | memcpy(context->state.st64, sha512_256_initial_hash_value, | 
| 925 | sizeof(sha512_256_initial_hash_value)); | 
| 926 | memset(context->buffer, 0, sizeof(context->buffer)); | 
| 927 | context->bitcount[0] = context->bitcount[1] = 0; | 
| 928 | } | 
| 929 | |
| 930 | MAKE_CLONE(SHA512_256Transform, SHA512Transform); | 
| 931 | MAKE_CLONE(SHA512_256Update, SHA512Update); | 
| 932 | MAKE_CLONE(SHA512_256Pad, SHA512Pad); | 
| 933 | |
| 934 | void | 
| 935 | SHA512_256Final(u_int8_t digest[SHA512_256_DIGEST_LENGTH32], SHA2_CTX *context) | 
| 936 | { | 
| 937 | SHA512_256Pad(context); | 
| 938 | |
| 939 | #if BYTE_ORDER1234 == LITTLE_ENDIAN1234 | 
| 940 | int i; | 
| 941 | |
| 942 | /* Convert TO host byte order */ | 
| 943 | for (i = 0; i < 4; i++) | 
| 944 | BE_64_TO_8(digest + i * 8, context->state.st64[i])do { (digest + i * 8)[0] = (context->state.st64[i]) >> 56; (digest + i * 8)[1] = (context->state.st64[i]) >> 48; (digest + i * 8)[2] = (context->state.st64[i]) >> 40; (digest + i * 8)[3] = (context->state.st64[i]) >> 32; (digest + i * 8)[4] = (context->state.st64[i]) >> 24; (digest + i * 8)[5] = (context->state.st64[i]) >> 16; (digest + i * 8)[6] = (context->state.st64[i]) >> 8; (digest + i * 8)[7] = (context->state.st64[i]); } while (0); | 
| 945 | #else | 
| 946 | memcpy(digest, context->state.st64, SHA512_256_DIGEST_LENGTH32); | 
| 947 | #endif | 
| 948 | /* Zero out state data */ | 
| 949 | explicit_bzero(context, sizeof(*context)); | 
| 950 | } | 
| 951 | #endif /* !defined(SHA2_SMALL) */ |