Bug Summary

File:src/lib/libcrypto/bn/bn_gcd.c
Warning:line 239, column 7
Although the value stored to 'T' is used in the enclosing expression, the value is never actually read from 'T'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple amd64-unknown-openbsd7.4 -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name bn_gcd.c -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -mrelocation-model pic -pic-level 1 -pic-is-pie -mframe-pointer=all -relaxed-aliasing -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -target-feature +retpoline-indirect-calls -target-feature +retpoline-indirect-branches -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/usr/src/lib/libcrypto/obj -resource-dir /usr/local/llvm16/lib/clang/16 -D LIBRESSL_INTERNAL -D HAVE_FUNOPEN -I /usr/src/lib/libcrypto -I /usr/src/lib/libcrypto/arch/amd64 -I /usr/src/lib/libcrypto/asn1 -I /usr/src/lib/libcrypto/bio -I /usr/src/lib/libcrypto/bn -I /usr/src/lib/libcrypto/bn/arch/amd64 -I /usr/src/lib/libcrypto/bytestring -I /usr/src/lib/libcrypto/curve25519 -I /usr/src/lib/libcrypto/dh -I /usr/src/lib/libcrypto/dsa -I /usr/src/lib/libcrypto/ec -I /usr/src/lib/libcrypto/ecdsa -I /usr/src/lib/libcrypto/evp -I /usr/src/lib/libcrypto/hidden -I /usr/src/lib/libcrypto/hmac -I /usr/src/lib/libcrypto/kdf -I /usr/src/lib/libcrypto/modes -I /usr/src/lib/libcrypto/ocsp -I /usr/src/lib/libcrypto/pkcs12 -I /usr/src/lib/libcrypto/rsa -I /usr/src/lib/libcrypto/sha -I /usr/src/lib/libcrypto/ts -I /usr/src/lib/libcrypto/x509 -I /usr/src/lib/libcrypto/obj -D AES_ASM -D BSAES_ASM -D VPAES_ASM -D OPENSSL_IA32_SSE2 -D RSA_ASM -D OPENSSL_BN_ASM_MONT -D OPENSSL_BN_ASM_MONT5 -D MD5_ASM -D GHASH_ASM -D RC4_MD5_ASM -D SHA1_ASM -D SHA256_ASM -D SHA512_ASM -D WHIRLPOOL_ASM -D OPENSSL_CPUID_OBJ -internal-isystem /usr/local/llvm16/lib/clang/16/include -internal-externc-isystem /usr/include -O2 -fdebug-compilation-dir=/usr/src/lib/libcrypto/obj -ferror-limit 19 -fwrapv -D_RET_PROTECTOR -ret-protector -fcf-protection=branch -fno-jump-tables -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -fno-builtin-malloc -fno-builtin-calloc -fno-builtin-realloc -fno-builtin-valloc -fno-builtin-free -fno-builtin-strdup -fno-builtin-strndup -analyzer-output=html -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /home/ben/Projects/scan/2024-01-11-140451-98009-1 -x c /usr/src/lib/libcrypto/bn/bn_gcd.c
1/* $OpenBSD: bn_gcd.c,v 1.28 2023/06/02 17:15:30 tb Exp $ */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to. The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 * notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in the
30 * documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 * must display the following acknowledgement:
33 * "This product includes cryptographic software written by
34 * Eric Young (eay@cryptsoft.com)"
35 * The word 'cryptographic' can be left out if the rouines from the library
36 * being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 * the apps directory (application code) you must include an acknowledgement:
39 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed. i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 * notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 * notice, this list of conditions and the following disclaimer in
70 * the documentation and/or other materials provided with the
71 * distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 * software must display the following acknowledgment:
75 * "This product includes software developed by the OpenSSL Project
76 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 * endorse or promote products derived from this software without
80 * prior written permission. For written permission, please contact
81 * openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 * nor may "OpenSSL" appear in their names without prior written
85 * permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 * acknowledgment:
89 * "This product includes software developed by the OpenSSL Project
90 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com). This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#include <openssl/err.h>
113
114#include "bn_local.h"
115
116static BIGNUM *
117euclid(BIGNUM *a, BIGNUM *b)
118{
119 BIGNUM *t;
120 int shifts = 0;
121
122 /* Loop invariant: 0 <= b <= a. */
123 while (!BN_is_zero(b)) {
124 if (BN_is_odd(a) && BN_is_odd(b)) {
125 if (!BN_sub(a, a, b))
126 goto err;
127 if (!BN_rshift1(a, a))
128 goto err;
129 } else if (BN_is_odd(a) && !BN_is_odd(b)) {
130 if (!BN_rshift1(b, b))
131 goto err;
132 } else if (!BN_is_odd(a) && BN_is_odd(b)) {
133 if (!BN_rshift1(a, a))
134 goto err;
135 } else {
136 if (!BN_rshift1(a, a))
137 goto err;
138 if (!BN_rshift1(b, b))
139 goto err;
140 shifts++;
141 continue;
142 }
143
144 if (BN_cmp(a, b) < 0) {
145 t = a;
146 a = b;
147 b = t;
148 }
149 }
150
151 if (shifts) {
152 if (!BN_lshift(a, a, shifts))
153 goto err;
154 }
155
156 return a;
157
158 err:
159 return NULL((void *)0);
160}
161
162int
163BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
164{
165 BIGNUM *a, *b, *t;
166 int ret = 0;
167
168 BN_CTX_start(ctx);
169 if ((a = BN_CTX_get(ctx)) == NULL((void *)0))
170 goto err;
171 if ((b = BN_CTX_get(ctx)) == NULL((void *)0))
172 goto err;
173
174 if (!bn_copy(a, in_a))
175 goto err;
176 if (!bn_copy(b, in_b))
177 goto err;
178 a->neg = 0;
179 b->neg = 0;
180
181 if (BN_cmp(a, b) < 0) {
182 t = a;
183 a = b;
184 b = t;
185 }
186 t = euclid(a, b);
187 if (t == NULL((void *)0))
188 goto err;
189
190 if (!bn_copy(r, t))
191 goto err;
192 ret = 1;
193
194 err:
195 BN_CTX_end(ctx);
196 return (ret);
197}
198
199int
200BN_gcd_nonct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
201{
202 return BN_gcd(r, in_a, in_b, ctx);
203}
204
205/*
206 * BN_gcd_no_branch is a special version of BN_mod_inverse_no_branch.
207 * that returns the GCD.
208 */
209static BIGNUM *
210BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
211 BN_CTX *ctx)
212{
213 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0);
214 BIGNUM local_A, local_B;
215 BIGNUM *pA, *pB;
216 BIGNUM *ret = NULL((void *)0);
217 int sign;
218
219 if (in == NULL((void *)0))
220 goto err;
221 R = in;
222
223 BN_init(&local_A);
224 BN_init(&local_B);
225
226 BN_CTX_start(ctx);
227 if ((A = BN_CTX_get(ctx)) == NULL((void *)0))
228 goto err;
229 if ((B = BN_CTX_get(ctx)) == NULL((void *)0))
230 goto err;
231 if ((X = BN_CTX_get(ctx)) == NULL((void *)0))
232 goto err;
233 if ((D = BN_CTX_get(ctx)) == NULL((void *)0))
234 goto err;
235 if ((M = BN_CTX_get(ctx)) == NULL((void *)0))
236 goto err;
237 if ((Y = BN_CTX_get(ctx)) == NULL((void *)0))
238 goto err;
239 if ((T = BN_CTX_get(ctx)) == NULL((void *)0))
Although the value stored to 'T' is used in the enclosing expression, the value is never actually read from 'T'
240 goto err;
241
242 if (!BN_one(X))
243 goto err;
244 BN_zero(Y);
245 if (!bn_copy(B, a))
246 goto err;
247 if (!bn_copy(A, n))
248 goto err;
249 A->neg = 0;
250
251 if (B->neg || (BN_ucmp(B, A) >= 0)) {
252 /*
253 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
254 * BN_div_no_branch will be called eventually.
255 */
256 pB = &local_B;
257 /* BN_init() done at the top of the function. */
258 BN_with_flags(pB, B, BN_FLG_CONSTTIME0x04);
259 if (!BN_nnmod(B, pB, A, ctx))
260 goto err;
261 }
262 sign = -1;
263 /* From B = a mod |n|, A = |n| it follows that
264 *
265 * 0 <= B < A,
266 * -sign*X*a == B (mod |n|),
267 * sign*Y*a == A (mod |n|).
268 */
269
270 while (!BN_is_zero(B)) {
271 BIGNUM *tmp;
272
273 /*
274 * 0 < B < A,
275 * (*) -sign*X*a == B (mod |n|),
276 * sign*Y*a == A (mod |n|)
277 */
278
279 /*
280 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
281 * BN_div_no_branch will be called eventually.
282 */
283 pA = &local_A;
284 /* BN_init() done at the top of the function. */
285 BN_with_flags(pA, A, BN_FLG_CONSTTIME0x04);
286
287 /* (D, M) := (A/B, A%B) ... */
288 if (!BN_div_ct(D, M, pA, B, ctx))
289 goto err;
290
291 /* Now
292 * A = D*B + M;
293 * thus we have
294 * (**) sign*Y*a == D*B + M (mod |n|).
295 */
296 tmp = A; /* keep the BIGNUM object, the value does not matter */
297
298 /* (A, B) := (B, A mod B) ... */
299 A = B;
300 B = M;
301 /* ... so we have 0 <= B < A again */
302
303 /* Since the former M is now B and the former B is now A,
304 * (**) translates into
305 * sign*Y*a == D*A + B (mod |n|),
306 * i.e.
307 * sign*Y*a - D*A == B (mod |n|).
308 * Similarly, (*) translates into
309 * -sign*X*a == A (mod |n|).
310 *
311 * Thus,
312 * sign*Y*a + D*sign*X*a == B (mod |n|),
313 * i.e.
314 * sign*(Y + D*X)*a == B (mod |n|).
315 *
316 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
317 * -sign*X*a == B (mod |n|),
318 * sign*Y*a == A (mod |n|).
319 * Note that X and Y stay non-negative all the time.
320 */
321
322 if (!BN_mul(tmp, D, X, ctx))
323 goto err;
324 if (!BN_add(tmp, tmp, Y))
325 goto err;
326
327 M = Y; /* keep the BIGNUM object, the value does not matter */
328 Y = X;
329 X = tmp;
330 sign = -sign;
331 }
332
333 /*
334 * The while loop (Euclid's algorithm) ends when
335 * A == gcd(a,n);
336 */
337
338 if (!bn_copy(R, A))
339 goto err;
340 ret = R;
341 err:
342 if ((ret == NULL((void *)0)) && (in == NULL((void *)0)))
343 BN_free(R);
344 BN_CTX_end(ctx);
345 return (ret);
346}
347
348int
349BN_gcd_ct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
350{
351 if (BN_gcd_no_branch(r, in_a, in_b, ctx) == NULL((void *)0))
352 return 0;
353 return 1;
354}
355
356/* BN_mod_inverse_no_branch is a special version of BN_mod_inverse.
357 * It does not contain branches that may leak sensitive information.
358 */
359static BIGNUM *
360BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n,
361 BN_CTX *ctx)
362{
363 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0);
364 BIGNUM local_A, local_B;
365 BIGNUM *pA, *pB;
366 BIGNUM *ret = NULL((void *)0);
367 int sign;
368
369 BN_init(&local_A);
370 BN_init(&local_B);
371
372 BN_CTX_start(ctx);
373 if ((A = BN_CTX_get(ctx)) == NULL((void *)0))
374 goto err;
375 if ((B = BN_CTX_get(ctx)) == NULL((void *)0))
376 goto err;
377 if ((X = BN_CTX_get(ctx)) == NULL((void *)0))
378 goto err;
379 if ((D = BN_CTX_get(ctx)) == NULL((void *)0))
380 goto err;
381 if ((M = BN_CTX_get(ctx)) == NULL((void *)0))
382 goto err;
383 if ((Y = BN_CTX_get(ctx)) == NULL((void *)0))
384 goto err;
385 if ((T = BN_CTX_get(ctx)) == NULL((void *)0))
386 goto err;
387
388 if (in == NULL((void *)0))
389 R = BN_new();
390 else
391 R = in;
392 if (R == NULL((void *)0))
393 goto err;
394
395 if (!BN_one(X))
396 goto err;
397 BN_zero(Y);
398 if (!bn_copy(B, a))
399 goto err;
400 if (!bn_copy(A, n))
401 goto err;
402 A->neg = 0;
403
404 if (B->neg || (BN_ucmp(B, A) >= 0)) {
405 /*
406 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
407 * BN_div_no_branch will be called eventually.
408 */
409 pB = &local_B;
410 /* BN_init() done at the top of the function. */
411 BN_with_flags(pB, B, BN_FLG_CONSTTIME0x04);
412 if (!BN_nnmod(B, pB, A, ctx))
413 goto err;
414 }
415 sign = -1;
416 /* From B = a mod |n|, A = |n| it follows that
417 *
418 * 0 <= B < A,
419 * -sign*X*a == B (mod |n|),
420 * sign*Y*a == A (mod |n|).
421 */
422
423 while (!BN_is_zero(B)) {
424 BIGNUM *tmp;
425
426 /*
427 * 0 < B < A,
428 * (*) -sign*X*a == B (mod |n|),
429 * sign*Y*a == A (mod |n|)
430 */
431
432 /*
433 * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked,
434 * BN_div_no_branch will be called eventually.
435 */
436 pA = &local_A;
437 /* BN_init() done at the top of the function. */
438 BN_with_flags(pA, A, BN_FLG_CONSTTIME0x04);
439
440 /* (D, M) := (A/B, A%B) ... */
441 if (!BN_div_ct(D, M, pA, B, ctx))
442 goto err;
443
444 /* Now
445 * A = D*B + M;
446 * thus we have
447 * (**) sign*Y*a == D*B + M (mod |n|).
448 */
449 tmp = A; /* keep the BIGNUM object, the value does not matter */
450
451 /* (A, B) := (B, A mod B) ... */
452 A = B;
453 B = M;
454 /* ... so we have 0 <= B < A again */
455
456 /* Since the former M is now B and the former B is now A,
457 * (**) translates into
458 * sign*Y*a == D*A + B (mod |n|),
459 * i.e.
460 * sign*Y*a - D*A == B (mod |n|).
461 * Similarly, (*) translates into
462 * -sign*X*a == A (mod |n|).
463 *
464 * Thus,
465 * sign*Y*a + D*sign*X*a == B (mod |n|),
466 * i.e.
467 * sign*(Y + D*X)*a == B (mod |n|).
468 *
469 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
470 * -sign*X*a == B (mod |n|),
471 * sign*Y*a == A (mod |n|).
472 * Note that X and Y stay non-negative all the time.
473 */
474
475 if (!BN_mul(tmp, D, X, ctx))
476 goto err;
477 if (!BN_add(tmp, tmp, Y))
478 goto err;
479
480 M = Y; /* keep the BIGNUM object, the value does not matter */
481 Y = X;
482 X = tmp;
483 sign = -sign;
484 }
485
486 /*
487 * The while loop (Euclid's algorithm) ends when
488 * A == gcd(a,n);
489 * we have
490 * sign*Y*a == A (mod |n|),
491 * where Y is non-negative.
492 */
493
494 if (sign < 0) {
495 if (!BN_sub(Y, n, Y))
496 goto err;
497 }
498 /* Now Y*a == A (mod |n|). */
499
500 if (!BN_is_one(A)) {
501 BNerror(BN_R_NO_INVERSE)ERR_put_error(3,(0xfff),(108),"/usr/src/lib/libcrypto/bn/bn_gcd.c"
,501)
;
502 goto err;
503 }
504
505 if (!BN_nnmod(Y, Y, n, ctx))
506 goto err;
507 if (!bn_copy(R, Y))
508 goto err;
509
510 ret = R;
511
512 err:
513 if ((ret == NULL((void *)0)) && (in == NULL((void *)0)))
514 BN_free(R);
515 BN_CTX_end(ctx);
516 return (ret);
517}
518
519/* solves ax == 1 (mod n) */
520static BIGNUM *
521BN_mod_inverse_internal(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx,
522 int ct)
523{
524 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0);
525 BIGNUM *ret = NULL((void *)0);
526 int sign;
527
528 if (ct)
529 return BN_mod_inverse_no_branch(in, a, n, ctx);
530
531 BN_CTX_start(ctx);
532 if ((A = BN_CTX_get(ctx)) == NULL((void *)0))
533 goto err;
534 if ((B = BN_CTX_get(ctx)) == NULL((void *)0))
535 goto err;
536 if ((X = BN_CTX_get(ctx)) == NULL((void *)0))
537 goto err;
538 if ((D = BN_CTX_get(ctx)) == NULL((void *)0))
539 goto err;
540 if ((M = BN_CTX_get(ctx)) == NULL((void *)0))
541 goto err;
542 if ((Y = BN_CTX_get(ctx)) == NULL((void *)0))
543 goto err;
544 if ((T = BN_CTX_get(ctx)) == NULL((void *)0))
545 goto err;
546
547 if (in == NULL((void *)0))
548 R = BN_new();
549 else
550 R = in;
551 if (R == NULL((void *)0))
552 goto err;
553
554 if (!BN_one(X))
555 goto err;
556 BN_zero(Y);
557 if (!bn_copy(B, a))
558 goto err;
559 if (!bn_copy(A, n))
560 goto err;
561 A->neg = 0;
562 if (B->neg || (BN_ucmp(B, A) >= 0)) {
563 if (!BN_nnmod(B, B, A, ctx))
564 goto err;
565 }
566 sign = -1;
567 /* From B = a mod |n|, A = |n| it follows that
568 *
569 * 0 <= B < A,
570 * -sign*X*a == B (mod |n|),
571 * sign*Y*a == A (mod |n|).
572 */
573
574 if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS128 <= 32 ? 450 : 2048))) {
575 /* Binary inversion algorithm; requires odd modulus.
576 * This is faster than the general algorithm if the modulus
577 * is sufficiently small (about 400 .. 500 bits on 32-bit
578 * systems, but much more on 64-bit systems) */
579 int shift;
580
581 while (!BN_is_zero(B)) {
582 /*
583 * 0 < B < |n|,
584 * 0 < A <= |n|,
585 * (1) -sign*X*a == B (mod |n|),
586 * (2) sign*Y*a == A (mod |n|)
587 */
588
589 /* Now divide B by the maximum possible power of two in the integers,
590 * and divide X by the same value mod |n|.
591 * When we're done, (1) still holds. */
592 shift = 0;
593 while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
594 {
595 shift++;
596
597 if (BN_is_odd(X)) {
598 if (!BN_uadd(X, X, n))
599 goto err;
600 }
601 /* now X is even, so we can easily divide it by two */
602 if (!BN_rshift1(X, X))
603 goto err;
604 }
605 if (shift > 0) {
606 if (!BN_rshift(B, B, shift))
607 goto err;
608 }
609
610 /* Same for A and Y. Afterwards, (2) still holds. */
611 shift = 0;
612 while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
613 {
614 shift++;
615
616 if (BN_is_odd(Y)) {
617 if (!BN_uadd(Y, Y, n))
618 goto err;
619 }
620 /* now Y is even */
621 if (!BN_rshift1(Y, Y))
622 goto err;
623 }
624 if (shift > 0) {
625 if (!BN_rshift(A, A, shift))
626 goto err;
627 }
628
629 /* We still have (1) and (2).
630 * Both A and B are odd.
631 * The following computations ensure that
632 *
633 * 0 <= B < |n|,
634 * 0 < A < |n|,
635 * (1) -sign*X*a == B (mod |n|),
636 * (2) sign*Y*a == A (mod |n|),
637 *
638 * and that either A or B is even in the next iteration.
639 */
640 if (BN_ucmp(B, A) >= 0) {
641 /* -sign*(X + Y)*a == B - A (mod |n|) */
642 if (!BN_uadd(X, X, Y))
643 goto err;
644 /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
645 * actually makes the algorithm slower */
646 if (!BN_usub(B, B, A))
647 goto err;
648 } else {
649 /* sign*(X + Y)*a == A - B (mod |n|) */
650 if (!BN_uadd(Y, Y, X))
651 goto err;
652 /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
653 if (!BN_usub(A, A, B))
654 goto err;
655 }
656 }
657 } else {
658 /* general inversion algorithm */
659
660 while (!BN_is_zero(B)) {
661 BIGNUM *tmp;
662
663 /*
664 * 0 < B < A,
665 * (*) -sign*X*a == B (mod |n|),
666 * sign*Y*a == A (mod |n|)
667 */
668
669 /* (D, M) := (A/B, A%B) ... */
670 if (BN_num_bits(A) == BN_num_bits(B)) {
671 if (!BN_one(D))
672 goto err;
673 if (!BN_sub(M, A, B))
674 goto err;
675 } else if (BN_num_bits(A) == BN_num_bits(B) + 1) {
676 /* A/B is 1, 2, or 3 */
677 if (!BN_lshift1(T, B))
678 goto err;
679 if (BN_ucmp(A, T) < 0) {
680 /* A < 2*B, so D=1 */
681 if (!BN_one(D))
682 goto err;
683 if (!BN_sub(M, A, B))
684 goto err;
685 } else {
686 /* A >= 2*B, so D=2 or D=3 */
687 if (!BN_sub(M, A, T))
688 goto err;
689 if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
690 if (BN_ucmp(A, D) < 0) {
691 /* A < 3*B, so D=2 */
692 if (!BN_set_word(D, 2))
693 goto err;
694 /* M (= A - 2*B) already has the correct value */
695 } else {
696 /* only D=3 remains */
697 if (!BN_set_word(D, 3))
698 goto err;
699 /* currently M = A - 2*B, but we need M = A - 3*B */
700 if (!BN_sub(M, M, B))
701 goto err;
702 }
703 }
704 } else {
705 if (!BN_div_nonct(D, M, A, B, ctx))
706 goto err;
707 }
708
709 /* Now
710 * A = D*B + M;
711 * thus we have
712 * (**) sign*Y*a == D*B + M (mod |n|).
713 */
714 tmp = A; /* keep the BIGNUM object, the value does not matter */
715
716 /* (A, B) := (B, A mod B) ... */
717 A = B;
718 B = M;
719 /* ... so we have 0 <= B < A again */
720
721 /* Since the former M is now B and the former B is now A,
722 * (**) translates into
723 * sign*Y*a == D*A + B (mod |n|),
724 * i.e.
725 * sign*Y*a - D*A == B (mod |n|).
726 * Similarly, (*) translates into
727 * -sign*X*a == A (mod |n|).
728 *
729 * Thus,
730 * sign*Y*a + D*sign*X*a == B (mod |n|),
731 * i.e.
732 * sign*(Y + D*X)*a == B (mod |n|).
733 *
734 * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
735 * -sign*X*a == B (mod |n|),
736 * sign*Y*a == A (mod |n|).
737 * Note that X and Y stay non-negative all the time.
738 */
739
740 /* most of the time D is very small, so we can optimize tmp := D*X+Y */
741 if (BN_is_one(D)) {
742 if (!BN_add(tmp, X, Y))
743 goto err;
744 } else {
745 if (BN_is_word(D, 2)) {
746 if (!BN_lshift1(tmp, X))
747 goto err;
748 } else if (BN_is_word(D, 4)) {
749 if (!BN_lshift(tmp, X, 2))
750 goto err;
751 } else if (D->top == 1) {
752 if (!bn_copy(tmp, X))
753 goto err;
754 if (!BN_mul_word(tmp, D->d[0]))
755 goto err;
756 } else {
757 if (!BN_mul(tmp, D,X, ctx))
758 goto err;
759 }
760 if (!BN_add(tmp, tmp, Y))
761 goto err;
762 }
763
764 M = Y; /* keep the BIGNUM object, the value does not matter */
765 Y = X;
766 X = tmp;
767 sign = -sign;
768 }
769 }
770
771 /*
772 * The while loop (Euclid's algorithm) ends when
773 * A == gcd(a,n);
774 * we have
775 * sign*Y*a == A (mod |n|),
776 * where Y is non-negative.
777 */
778
779 if (sign < 0) {
780 if (!BN_sub(Y, n, Y))
781 goto err;
782 }
783 /* Now Y*a == A (mod |n|). */
784
785 if (!BN_is_one(A)) {
786 BNerror(BN_R_NO_INVERSE)ERR_put_error(3,(0xfff),(108),"/usr/src/lib/libcrypto/bn/bn_gcd.c"
,786)
;
787 goto err;
788 }
789
790 if (!BN_nnmod(Y, Y, n, ctx))
791 goto err;
792 if (!bn_copy(R, Y))
793 goto err;
794
795 ret = R;
796
797 err:
798 if ((ret == NULL((void *)0)) && (in == NULL((void *)0)))
799 BN_free(R);
800 BN_CTX_end(ctx);
801 return (ret);
802}
803
804BIGNUM *
805BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
806{
807 int ct = ((BN_get_flags(a, BN_FLG_CONSTTIME0x04) != 0) ||
808 (BN_get_flags(n, BN_FLG_CONSTTIME0x04) != 0));
809 return BN_mod_inverse_internal(in, a, n, ctx, ct);
810}
811
812BIGNUM *
813BN_mod_inverse_nonct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
814{
815 return BN_mod_inverse_internal(in, a, n, ctx, 0);
816}
817
818BIGNUM *
819BN_mod_inverse_ct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
820{
821 return BN_mod_inverse_internal(in, a, n, ctx, 1);
822}