File: | src/lib/libcrypto/bn/bn_gcd.c |
Warning: | line 239, column 7 Although the value stored to 'T' is used in the enclosing expression, the value is never actually read from 'T' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* $OpenBSD: bn_gcd.c,v 1.28 2023/06/02 17:15:30 tb Exp $ */ |
2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
3 | * All rights reserved. |
4 | * |
5 | * This package is an SSL implementation written |
6 | * by Eric Young (eay@cryptsoft.com). |
7 | * The implementation was written so as to conform with Netscapes SSL. |
8 | * |
9 | * This library is free for commercial and non-commercial use as long as |
10 | * the following conditions are aheared to. The following conditions |
11 | * apply to all code found in this distribution, be it the RC4, RSA, |
12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
13 | * included with this distribution is covered by the same copyright terms |
14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
15 | * |
16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
17 | * the code are not to be removed. |
18 | * If this package is used in a product, Eric Young should be given attribution |
19 | * as the author of the parts of the library used. |
20 | * This can be in the form of a textual message at program startup or |
21 | * in documentation (online or textual) provided with the package. |
22 | * |
23 | * Redistribution and use in source and binary forms, with or without |
24 | * modification, are permitted provided that the following conditions |
25 | * are met: |
26 | * 1. Redistributions of source code must retain the copyright |
27 | * notice, this list of conditions and the following disclaimer. |
28 | * 2. Redistributions in binary form must reproduce the above copyright |
29 | * notice, this list of conditions and the following disclaimer in the |
30 | * documentation and/or other materials provided with the distribution. |
31 | * 3. All advertising materials mentioning features or use of this software |
32 | * must display the following acknowledgement: |
33 | * "This product includes cryptographic software written by |
34 | * Eric Young (eay@cryptsoft.com)" |
35 | * The word 'cryptographic' can be left out if the rouines from the library |
36 | * being used are not cryptographic related :-). |
37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
38 | * the apps directory (application code) you must include an acknowledgement: |
39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
40 | * |
41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
51 | * SUCH DAMAGE. |
52 | * |
53 | * The licence and distribution terms for any publically available version or |
54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
55 | * copied and put under another distribution licence |
56 | * [including the GNU Public Licence.] |
57 | */ |
58 | /* ==================================================================== |
59 | * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
60 | * |
61 | * Redistribution and use in source and binary forms, with or without |
62 | * modification, are permitted provided that the following conditions |
63 | * are met: |
64 | * |
65 | * 1. Redistributions of source code must retain the above copyright |
66 | * notice, this list of conditions and the following disclaimer. |
67 | * |
68 | * 2. Redistributions in binary form must reproduce the above copyright |
69 | * notice, this list of conditions and the following disclaimer in |
70 | * the documentation and/or other materials provided with the |
71 | * distribution. |
72 | * |
73 | * 3. All advertising materials mentioning features or use of this |
74 | * software must display the following acknowledgment: |
75 | * "This product includes software developed by the OpenSSL Project |
76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
77 | * |
78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
79 | * endorse or promote products derived from this software without |
80 | * prior written permission. For written permission, please contact |
81 | * openssl-core@openssl.org. |
82 | * |
83 | * 5. Products derived from this software may not be called "OpenSSL" |
84 | * nor may "OpenSSL" appear in their names without prior written |
85 | * permission of the OpenSSL Project. |
86 | * |
87 | * 6. Redistributions of any form whatsoever must retain the following |
88 | * acknowledgment: |
89 | * "This product includes software developed by the OpenSSL Project |
90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
91 | * |
92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
103 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
104 | * ==================================================================== |
105 | * |
106 | * This product includes cryptographic software written by Eric Young |
107 | * (eay@cryptsoft.com). This product includes software written by Tim |
108 | * Hudson (tjh@cryptsoft.com). |
109 | * |
110 | */ |
111 | |
112 | #include <openssl/err.h> |
113 | |
114 | #include "bn_local.h" |
115 | |
116 | static BIGNUM * |
117 | euclid(BIGNUM *a, BIGNUM *b) |
118 | { |
119 | BIGNUM *t; |
120 | int shifts = 0; |
121 | |
122 | /* Loop invariant: 0 <= b <= a. */ |
123 | while (!BN_is_zero(b)) { |
124 | if (BN_is_odd(a) && BN_is_odd(b)) { |
125 | if (!BN_sub(a, a, b)) |
126 | goto err; |
127 | if (!BN_rshift1(a, a)) |
128 | goto err; |
129 | } else if (BN_is_odd(a) && !BN_is_odd(b)) { |
130 | if (!BN_rshift1(b, b)) |
131 | goto err; |
132 | } else if (!BN_is_odd(a) && BN_is_odd(b)) { |
133 | if (!BN_rshift1(a, a)) |
134 | goto err; |
135 | } else { |
136 | if (!BN_rshift1(a, a)) |
137 | goto err; |
138 | if (!BN_rshift1(b, b)) |
139 | goto err; |
140 | shifts++; |
141 | continue; |
142 | } |
143 | |
144 | if (BN_cmp(a, b) < 0) { |
145 | t = a; |
146 | a = b; |
147 | b = t; |
148 | } |
149 | } |
150 | |
151 | if (shifts) { |
152 | if (!BN_lshift(a, a, shifts)) |
153 | goto err; |
154 | } |
155 | |
156 | return a; |
157 | |
158 | err: |
159 | return NULL((void *)0); |
160 | } |
161 | |
162 | int |
163 | BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
164 | { |
165 | BIGNUM *a, *b, *t; |
166 | int ret = 0; |
167 | |
168 | BN_CTX_start(ctx); |
169 | if ((a = BN_CTX_get(ctx)) == NULL((void *)0)) |
170 | goto err; |
171 | if ((b = BN_CTX_get(ctx)) == NULL((void *)0)) |
172 | goto err; |
173 | |
174 | if (!bn_copy(a, in_a)) |
175 | goto err; |
176 | if (!bn_copy(b, in_b)) |
177 | goto err; |
178 | a->neg = 0; |
179 | b->neg = 0; |
180 | |
181 | if (BN_cmp(a, b) < 0) { |
182 | t = a; |
183 | a = b; |
184 | b = t; |
185 | } |
186 | t = euclid(a, b); |
187 | if (t == NULL((void *)0)) |
188 | goto err; |
189 | |
190 | if (!bn_copy(r, t)) |
191 | goto err; |
192 | ret = 1; |
193 | |
194 | err: |
195 | BN_CTX_end(ctx); |
196 | return (ret); |
197 | } |
198 | |
199 | int |
200 | BN_gcd_nonct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
201 | { |
202 | return BN_gcd(r, in_a, in_b, ctx); |
203 | } |
204 | |
205 | /* |
206 | * BN_gcd_no_branch is a special version of BN_mod_inverse_no_branch. |
207 | * that returns the GCD. |
208 | */ |
209 | static BIGNUM * |
210 | BN_gcd_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, |
211 | BN_CTX *ctx) |
212 | { |
213 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0); |
214 | BIGNUM local_A, local_B; |
215 | BIGNUM *pA, *pB; |
216 | BIGNUM *ret = NULL((void *)0); |
217 | int sign; |
218 | |
219 | if (in == NULL((void *)0)) |
220 | goto err; |
221 | R = in; |
222 | |
223 | BN_init(&local_A); |
224 | BN_init(&local_B); |
225 | |
226 | BN_CTX_start(ctx); |
227 | if ((A = BN_CTX_get(ctx)) == NULL((void *)0)) |
228 | goto err; |
229 | if ((B = BN_CTX_get(ctx)) == NULL((void *)0)) |
230 | goto err; |
231 | if ((X = BN_CTX_get(ctx)) == NULL((void *)0)) |
232 | goto err; |
233 | if ((D = BN_CTX_get(ctx)) == NULL((void *)0)) |
234 | goto err; |
235 | if ((M = BN_CTX_get(ctx)) == NULL((void *)0)) |
236 | goto err; |
237 | if ((Y = BN_CTX_get(ctx)) == NULL((void *)0)) |
238 | goto err; |
239 | if ((T = BN_CTX_get(ctx)) == NULL((void *)0)) |
Although the value stored to 'T' is used in the enclosing expression, the value is never actually read from 'T' | |
240 | goto err; |
241 | |
242 | if (!BN_one(X)) |
243 | goto err; |
244 | BN_zero(Y); |
245 | if (!bn_copy(B, a)) |
246 | goto err; |
247 | if (!bn_copy(A, n)) |
248 | goto err; |
249 | A->neg = 0; |
250 | |
251 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
252 | /* |
253 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
254 | * BN_div_no_branch will be called eventually. |
255 | */ |
256 | pB = &local_B; |
257 | /* BN_init() done at the top of the function. */ |
258 | BN_with_flags(pB, B, BN_FLG_CONSTTIME0x04); |
259 | if (!BN_nnmod(B, pB, A, ctx)) |
260 | goto err; |
261 | } |
262 | sign = -1; |
263 | /* From B = a mod |n|, A = |n| it follows that |
264 | * |
265 | * 0 <= B < A, |
266 | * -sign*X*a == B (mod |n|), |
267 | * sign*Y*a == A (mod |n|). |
268 | */ |
269 | |
270 | while (!BN_is_zero(B)) { |
271 | BIGNUM *tmp; |
272 | |
273 | /* |
274 | * 0 < B < A, |
275 | * (*) -sign*X*a == B (mod |n|), |
276 | * sign*Y*a == A (mod |n|) |
277 | */ |
278 | |
279 | /* |
280 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
281 | * BN_div_no_branch will be called eventually. |
282 | */ |
283 | pA = &local_A; |
284 | /* BN_init() done at the top of the function. */ |
285 | BN_with_flags(pA, A, BN_FLG_CONSTTIME0x04); |
286 | |
287 | /* (D, M) := (A/B, A%B) ... */ |
288 | if (!BN_div_ct(D, M, pA, B, ctx)) |
289 | goto err; |
290 | |
291 | /* Now |
292 | * A = D*B + M; |
293 | * thus we have |
294 | * (**) sign*Y*a == D*B + M (mod |n|). |
295 | */ |
296 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
297 | |
298 | /* (A, B) := (B, A mod B) ... */ |
299 | A = B; |
300 | B = M; |
301 | /* ... so we have 0 <= B < A again */ |
302 | |
303 | /* Since the former M is now B and the former B is now A, |
304 | * (**) translates into |
305 | * sign*Y*a == D*A + B (mod |n|), |
306 | * i.e. |
307 | * sign*Y*a - D*A == B (mod |n|). |
308 | * Similarly, (*) translates into |
309 | * -sign*X*a == A (mod |n|). |
310 | * |
311 | * Thus, |
312 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
313 | * i.e. |
314 | * sign*(Y + D*X)*a == B (mod |n|). |
315 | * |
316 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
317 | * -sign*X*a == B (mod |n|), |
318 | * sign*Y*a == A (mod |n|). |
319 | * Note that X and Y stay non-negative all the time. |
320 | */ |
321 | |
322 | if (!BN_mul(tmp, D, X, ctx)) |
323 | goto err; |
324 | if (!BN_add(tmp, tmp, Y)) |
325 | goto err; |
326 | |
327 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
328 | Y = X; |
329 | X = tmp; |
330 | sign = -sign; |
331 | } |
332 | |
333 | /* |
334 | * The while loop (Euclid's algorithm) ends when |
335 | * A == gcd(a,n); |
336 | */ |
337 | |
338 | if (!bn_copy(R, A)) |
339 | goto err; |
340 | ret = R; |
341 | err: |
342 | if ((ret == NULL((void *)0)) && (in == NULL((void *)0))) |
343 | BN_free(R); |
344 | BN_CTX_end(ctx); |
345 | return (ret); |
346 | } |
347 | |
348 | int |
349 | BN_gcd_ct(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx) |
350 | { |
351 | if (BN_gcd_no_branch(r, in_a, in_b, ctx) == NULL((void *)0)) |
352 | return 0; |
353 | return 1; |
354 | } |
355 | |
356 | /* BN_mod_inverse_no_branch is a special version of BN_mod_inverse. |
357 | * It does not contain branches that may leak sensitive information. |
358 | */ |
359 | static BIGNUM * |
360 | BN_mod_inverse_no_branch(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, |
361 | BN_CTX *ctx) |
362 | { |
363 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0); |
364 | BIGNUM local_A, local_B; |
365 | BIGNUM *pA, *pB; |
366 | BIGNUM *ret = NULL((void *)0); |
367 | int sign; |
368 | |
369 | BN_init(&local_A); |
370 | BN_init(&local_B); |
371 | |
372 | BN_CTX_start(ctx); |
373 | if ((A = BN_CTX_get(ctx)) == NULL((void *)0)) |
374 | goto err; |
375 | if ((B = BN_CTX_get(ctx)) == NULL((void *)0)) |
376 | goto err; |
377 | if ((X = BN_CTX_get(ctx)) == NULL((void *)0)) |
378 | goto err; |
379 | if ((D = BN_CTX_get(ctx)) == NULL((void *)0)) |
380 | goto err; |
381 | if ((M = BN_CTX_get(ctx)) == NULL((void *)0)) |
382 | goto err; |
383 | if ((Y = BN_CTX_get(ctx)) == NULL((void *)0)) |
384 | goto err; |
385 | if ((T = BN_CTX_get(ctx)) == NULL((void *)0)) |
386 | goto err; |
387 | |
388 | if (in == NULL((void *)0)) |
389 | R = BN_new(); |
390 | else |
391 | R = in; |
392 | if (R == NULL((void *)0)) |
393 | goto err; |
394 | |
395 | if (!BN_one(X)) |
396 | goto err; |
397 | BN_zero(Y); |
398 | if (!bn_copy(B, a)) |
399 | goto err; |
400 | if (!bn_copy(A, n)) |
401 | goto err; |
402 | A->neg = 0; |
403 | |
404 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
405 | /* |
406 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
407 | * BN_div_no_branch will be called eventually. |
408 | */ |
409 | pB = &local_B; |
410 | /* BN_init() done at the top of the function. */ |
411 | BN_with_flags(pB, B, BN_FLG_CONSTTIME0x04); |
412 | if (!BN_nnmod(B, pB, A, ctx)) |
413 | goto err; |
414 | } |
415 | sign = -1; |
416 | /* From B = a mod |n|, A = |n| it follows that |
417 | * |
418 | * 0 <= B < A, |
419 | * -sign*X*a == B (mod |n|), |
420 | * sign*Y*a == A (mod |n|). |
421 | */ |
422 | |
423 | while (!BN_is_zero(B)) { |
424 | BIGNUM *tmp; |
425 | |
426 | /* |
427 | * 0 < B < A, |
428 | * (*) -sign*X*a == B (mod |n|), |
429 | * sign*Y*a == A (mod |n|) |
430 | */ |
431 | |
432 | /* |
433 | * Turn BN_FLG_CONSTTIME flag on, so that when BN_div is invoked, |
434 | * BN_div_no_branch will be called eventually. |
435 | */ |
436 | pA = &local_A; |
437 | /* BN_init() done at the top of the function. */ |
438 | BN_with_flags(pA, A, BN_FLG_CONSTTIME0x04); |
439 | |
440 | /* (D, M) := (A/B, A%B) ... */ |
441 | if (!BN_div_ct(D, M, pA, B, ctx)) |
442 | goto err; |
443 | |
444 | /* Now |
445 | * A = D*B + M; |
446 | * thus we have |
447 | * (**) sign*Y*a == D*B + M (mod |n|). |
448 | */ |
449 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
450 | |
451 | /* (A, B) := (B, A mod B) ... */ |
452 | A = B; |
453 | B = M; |
454 | /* ... so we have 0 <= B < A again */ |
455 | |
456 | /* Since the former M is now B and the former B is now A, |
457 | * (**) translates into |
458 | * sign*Y*a == D*A + B (mod |n|), |
459 | * i.e. |
460 | * sign*Y*a - D*A == B (mod |n|). |
461 | * Similarly, (*) translates into |
462 | * -sign*X*a == A (mod |n|). |
463 | * |
464 | * Thus, |
465 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
466 | * i.e. |
467 | * sign*(Y + D*X)*a == B (mod |n|). |
468 | * |
469 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
470 | * -sign*X*a == B (mod |n|), |
471 | * sign*Y*a == A (mod |n|). |
472 | * Note that X and Y stay non-negative all the time. |
473 | */ |
474 | |
475 | if (!BN_mul(tmp, D, X, ctx)) |
476 | goto err; |
477 | if (!BN_add(tmp, tmp, Y)) |
478 | goto err; |
479 | |
480 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
481 | Y = X; |
482 | X = tmp; |
483 | sign = -sign; |
484 | } |
485 | |
486 | /* |
487 | * The while loop (Euclid's algorithm) ends when |
488 | * A == gcd(a,n); |
489 | * we have |
490 | * sign*Y*a == A (mod |n|), |
491 | * where Y is non-negative. |
492 | */ |
493 | |
494 | if (sign < 0) { |
495 | if (!BN_sub(Y, n, Y)) |
496 | goto err; |
497 | } |
498 | /* Now Y*a == A (mod |n|). */ |
499 | |
500 | if (!BN_is_one(A)) { |
501 | BNerror(BN_R_NO_INVERSE)ERR_put_error(3,(0xfff),(108),"/usr/src/lib/libcrypto/bn/bn_gcd.c" ,501); |
502 | goto err; |
503 | } |
504 | |
505 | if (!BN_nnmod(Y, Y, n, ctx)) |
506 | goto err; |
507 | if (!bn_copy(R, Y)) |
508 | goto err; |
509 | |
510 | ret = R; |
511 | |
512 | err: |
513 | if ((ret == NULL((void *)0)) && (in == NULL((void *)0))) |
514 | BN_free(R); |
515 | BN_CTX_end(ctx); |
516 | return (ret); |
517 | } |
518 | |
519 | /* solves ax == 1 (mod n) */ |
520 | static BIGNUM * |
521 | BN_mod_inverse_internal(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
522 | int ct) |
523 | { |
524 | BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL((void *)0); |
525 | BIGNUM *ret = NULL((void *)0); |
526 | int sign; |
527 | |
528 | if (ct) |
529 | return BN_mod_inverse_no_branch(in, a, n, ctx); |
530 | |
531 | BN_CTX_start(ctx); |
532 | if ((A = BN_CTX_get(ctx)) == NULL((void *)0)) |
533 | goto err; |
534 | if ((B = BN_CTX_get(ctx)) == NULL((void *)0)) |
535 | goto err; |
536 | if ((X = BN_CTX_get(ctx)) == NULL((void *)0)) |
537 | goto err; |
538 | if ((D = BN_CTX_get(ctx)) == NULL((void *)0)) |
539 | goto err; |
540 | if ((M = BN_CTX_get(ctx)) == NULL((void *)0)) |
541 | goto err; |
542 | if ((Y = BN_CTX_get(ctx)) == NULL((void *)0)) |
543 | goto err; |
544 | if ((T = BN_CTX_get(ctx)) == NULL((void *)0)) |
545 | goto err; |
546 | |
547 | if (in == NULL((void *)0)) |
548 | R = BN_new(); |
549 | else |
550 | R = in; |
551 | if (R == NULL((void *)0)) |
552 | goto err; |
553 | |
554 | if (!BN_one(X)) |
555 | goto err; |
556 | BN_zero(Y); |
557 | if (!bn_copy(B, a)) |
558 | goto err; |
559 | if (!bn_copy(A, n)) |
560 | goto err; |
561 | A->neg = 0; |
562 | if (B->neg || (BN_ucmp(B, A) >= 0)) { |
563 | if (!BN_nnmod(B, B, A, ctx)) |
564 | goto err; |
565 | } |
566 | sign = -1; |
567 | /* From B = a mod |n|, A = |n| it follows that |
568 | * |
569 | * 0 <= B < A, |
570 | * -sign*X*a == B (mod |n|), |
571 | * sign*Y*a == A (mod |n|). |
572 | */ |
573 | |
574 | if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS128 <= 32 ? 450 : 2048))) { |
575 | /* Binary inversion algorithm; requires odd modulus. |
576 | * This is faster than the general algorithm if the modulus |
577 | * is sufficiently small (about 400 .. 500 bits on 32-bit |
578 | * systems, but much more on 64-bit systems) */ |
579 | int shift; |
580 | |
581 | while (!BN_is_zero(B)) { |
582 | /* |
583 | * 0 < B < |n|, |
584 | * 0 < A <= |n|, |
585 | * (1) -sign*X*a == B (mod |n|), |
586 | * (2) sign*Y*a == A (mod |n|) |
587 | */ |
588 | |
589 | /* Now divide B by the maximum possible power of two in the integers, |
590 | * and divide X by the same value mod |n|. |
591 | * When we're done, (1) still holds. */ |
592 | shift = 0; |
593 | while (!BN_is_bit_set(B, shift)) /* note that 0 < B */ |
594 | { |
595 | shift++; |
596 | |
597 | if (BN_is_odd(X)) { |
598 | if (!BN_uadd(X, X, n)) |
599 | goto err; |
600 | } |
601 | /* now X is even, so we can easily divide it by two */ |
602 | if (!BN_rshift1(X, X)) |
603 | goto err; |
604 | } |
605 | if (shift > 0) { |
606 | if (!BN_rshift(B, B, shift)) |
607 | goto err; |
608 | } |
609 | |
610 | /* Same for A and Y. Afterwards, (2) still holds. */ |
611 | shift = 0; |
612 | while (!BN_is_bit_set(A, shift)) /* note that 0 < A */ |
613 | { |
614 | shift++; |
615 | |
616 | if (BN_is_odd(Y)) { |
617 | if (!BN_uadd(Y, Y, n)) |
618 | goto err; |
619 | } |
620 | /* now Y is even */ |
621 | if (!BN_rshift1(Y, Y)) |
622 | goto err; |
623 | } |
624 | if (shift > 0) { |
625 | if (!BN_rshift(A, A, shift)) |
626 | goto err; |
627 | } |
628 | |
629 | /* We still have (1) and (2). |
630 | * Both A and B are odd. |
631 | * The following computations ensure that |
632 | * |
633 | * 0 <= B < |n|, |
634 | * 0 < A < |n|, |
635 | * (1) -sign*X*a == B (mod |n|), |
636 | * (2) sign*Y*a == A (mod |n|), |
637 | * |
638 | * and that either A or B is even in the next iteration. |
639 | */ |
640 | if (BN_ucmp(B, A) >= 0) { |
641 | /* -sign*(X + Y)*a == B - A (mod |n|) */ |
642 | if (!BN_uadd(X, X, Y)) |
643 | goto err; |
644 | /* NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
645 | * actually makes the algorithm slower */ |
646 | if (!BN_usub(B, B, A)) |
647 | goto err; |
648 | } else { |
649 | /* sign*(X + Y)*a == A - B (mod |n|) */ |
650 | if (!BN_uadd(Y, Y, X)) |
651 | goto err; |
652 | /* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */ |
653 | if (!BN_usub(A, A, B)) |
654 | goto err; |
655 | } |
656 | } |
657 | } else { |
658 | /* general inversion algorithm */ |
659 | |
660 | while (!BN_is_zero(B)) { |
661 | BIGNUM *tmp; |
662 | |
663 | /* |
664 | * 0 < B < A, |
665 | * (*) -sign*X*a == B (mod |n|), |
666 | * sign*Y*a == A (mod |n|) |
667 | */ |
668 | |
669 | /* (D, M) := (A/B, A%B) ... */ |
670 | if (BN_num_bits(A) == BN_num_bits(B)) { |
671 | if (!BN_one(D)) |
672 | goto err; |
673 | if (!BN_sub(M, A, B)) |
674 | goto err; |
675 | } else if (BN_num_bits(A) == BN_num_bits(B) + 1) { |
676 | /* A/B is 1, 2, or 3 */ |
677 | if (!BN_lshift1(T, B)) |
678 | goto err; |
679 | if (BN_ucmp(A, T) < 0) { |
680 | /* A < 2*B, so D=1 */ |
681 | if (!BN_one(D)) |
682 | goto err; |
683 | if (!BN_sub(M, A, B)) |
684 | goto err; |
685 | } else { |
686 | /* A >= 2*B, so D=2 or D=3 */ |
687 | if (!BN_sub(M, A, T)) |
688 | goto err; |
689 | if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */ |
690 | if (BN_ucmp(A, D) < 0) { |
691 | /* A < 3*B, so D=2 */ |
692 | if (!BN_set_word(D, 2)) |
693 | goto err; |
694 | /* M (= A - 2*B) already has the correct value */ |
695 | } else { |
696 | /* only D=3 remains */ |
697 | if (!BN_set_word(D, 3)) |
698 | goto err; |
699 | /* currently M = A - 2*B, but we need M = A - 3*B */ |
700 | if (!BN_sub(M, M, B)) |
701 | goto err; |
702 | } |
703 | } |
704 | } else { |
705 | if (!BN_div_nonct(D, M, A, B, ctx)) |
706 | goto err; |
707 | } |
708 | |
709 | /* Now |
710 | * A = D*B + M; |
711 | * thus we have |
712 | * (**) sign*Y*a == D*B + M (mod |n|). |
713 | */ |
714 | tmp = A; /* keep the BIGNUM object, the value does not matter */ |
715 | |
716 | /* (A, B) := (B, A mod B) ... */ |
717 | A = B; |
718 | B = M; |
719 | /* ... so we have 0 <= B < A again */ |
720 | |
721 | /* Since the former M is now B and the former B is now A, |
722 | * (**) translates into |
723 | * sign*Y*a == D*A + B (mod |n|), |
724 | * i.e. |
725 | * sign*Y*a - D*A == B (mod |n|). |
726 | * Similarly, (*) translates into |
727 | * -sign*X*a == A (mod |n|). |
728 | * |
729 | * Thus, |
730 | * sign*Y*a + D*sign*X*a == B (mod |n|), |
731 | * i.e. |
732 | * sign*(Y + D*X)*a == B (mod |n|). |
733 | * |
734 | * So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at |
735 | * -sign*X*a == B (mod |n|), |
736 | * sign*Y*a == A (mod |n|). |
737 | * Note that X and Y stay non-negative all the time. |
738 | */ |
739 | |
740 | /* most of the time D is very small, so we can optimize tmp := D*X+Y */ |
741 | if (BN_is_one(D)) { |
742 | if (!BN_add(tmp, X, Y)) |
743 | goto err; |
744 | } else { |
745 | if (BN_is_word(D, 2)) { |
746 | if (!BN_lshift1(tmp, X)) |
747 | goto err; |
748 | } else if (BN_is_word(D, 4)) { |
749 | if (!BN_lshift(tmp, X, 2)) |
750 | goto err; |
751 | } else if (D->top == 1) { |
752 | if (!bn_copy(tmp, X)) |
753 | goto err; |
754 | if (!BN_mul_word(tmp, D->d[0])) |
755 | goto err; |
756 | } else { |
757 | if (!BN_mul(tmp, D,X, ctx)) |
758 | goto err; |
759 | } |
760 | if (!BN_add(tmp, tmp, Y)) |
761 | goto err; |
762 | } |
763 | |
764 | M = Y; /* keep the BIGNUM object, the value does not matter */ |
765 | Y = X; |
766 | X = tmp; |
767 | sign = -sign; |
768 | } |
769 | } |
770 | |
771 | /* |
772 | * The while loop (Euclid's algorithm) ends when |
773 | * A == gcd(a,n); |
774 | * we have |
775 | * sign*Y*a == A (mod |n|), |
776 | * where Y is non-negative. |
777 | */ |
778 | |
779 | if (sign < 0) { |
780 | if (!BN_sub(Y, n, Y)) |
781 | goto err; |
782 | } |
783 | /* Now Y*a == A (mod |n|). */ |
784 | |
785 | if (!BN_is_one(A)) { |
786 | BNerror(BN_R_NO_INVERSE)ERR_put_error(3,(0xfff),(108),"/usr/src/lib/libcrypto/bn/bn_gcd.c" ,786); |
787 | goto err; |
788 | } |
789 | |
790 | if (!BN_nnmod(Y, Y, n, ctx)) |
791 | goto err; |
792 | if (!bn_copy(R, Y)) |
793 | goto err; |
794 | |
795 | ret = R; |
796 | |
797 | err: |
798 | if ((ret == NULL((void *)0)) && (in == NULL((void *)0))) |
799 | BN_free(R); |
800 | BN_CTX_end(ctx); |
801 | return (ret); |
802 | } |
803 | |
804 | BIGNUM * |
805 | BN_mod_inverse(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
806 | { |
807 | int ct = ((BN_get_flags(a, BN_FLG_CONSTTIME0x04) != 0) || |
808 | (BN_get_flags(n, BN_FLG_CONSTTIME0x04) != 0)); |
809 | return BN_mod_inverse_internal(in, a, n, ctx, ct); |
810 | } |
811 | |
812 | BIGNUM * |
813 | BN_mod_inverse_nonct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
814 | { |
815 | return BN_mod_inverse_internal(in, a, n, ctx, 0); |
816 | } |
817 | |
818 | BIGNUM * |
819 | BN_mod_inverse_ct(BIGNUM *in, const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |
820 | { |
821 | return BN_mod_inverse_internal(in, a, n, ctx, 1); |
822 | } |