| File: | src/sbin/unwind/libunbound/services/outside_network.c | 
| Warning: | line 3589, column 3 Value stored to 'pnum' is never read | 
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | 
| 2 | * services/outside_network.c - implement sending of queries and wait answer. | 
| 3 | * | 
| 4 | * Copyright (c) 2007, NLnet Labs. All rights reserved. | 
| 5 | * | 
| 6 | * This software is open source. | 
| 7 | * | 
| 8 | * Redistribution and use in source and binary forms, with or without | 
| 9 | * modification, are permitted provided that the following conditions | 
| 10 | * are met: | 
| 11 | * | 
| 12 | * Redistributions of source code must retain the above copyright notice, | 
| 13 | * this list of conditions and the following disclaimer. | 
| 14 | * | 
| 15 | * Redistributions in binary form must reproduce the above copyright notice, | 
| 16 | * this list of conditions and the following disclaimer in the documentation | 
| 17 | * and/or other materials provided with the distribution. | 
| 18 | * | 
| 19 | * Neither the name of the NLNET LABS nor the names of its contributors may | 
| 20 | * be used to endorse or promote products derived from this software without | 
| 21 | * specific prior written permission. | 
| 22 | * | 
| 23 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
| 24 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
| 25 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
| 26 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
| 27 | * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
| 28 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED | 
| 29 | * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
| 30 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
| 31 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | 
| 32 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
| 33 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
| 34 | */ | 
| 35 | |
| 36 | /** | 
| 37 | * \file | 
| 38 | * | 
| 39 | * This file has functions to send queries to authoritative servers and | 
| 40 | * wait for the pending answer events. | 
| 41 | */ | 
| 42 | #include "config.h" | 
| 43 | #include <ctype.h> | 
| 44 | #ifdef HAVE_SYS_TYPES_H1 | 
| 45 | # include <sys/types.h> | 
| 46 | #endif | 
| 47 | #include <sys/time.h> | 
| 48 | #include "services/outside_network.h" | 
| 49 | #include "services/listen_dnsport.h" | 
| 50 | #include "services/cache/infra.h" | 
| 51 | #include "iterator/iterator.h" | 
| 52 | #include "util/data/msgparse.h" | 
| 53 | #include "util/data/msgreply.h" | 
| 54 | #include "util/data/msgencode.h" | 
| 55 | #include "util/data/dname.h" | 
| 56 | #include "util/netevent.h" | 
| 57 | #include "util/log.h" | 
| 58 | #include "util/net_help.h" | 
| 59 | #include "util/random.h" | 
| 60 | #include "util/fptr_wlist.h" | 
| 61 | #include "util/edns.h" | 
| 62 | #include "sldns/sbuffer.h" | 
| 63 | #include "dnstap/dnstap.h" | 
| 64 | #ifdef HAVE_OPENSSL_SSL_H1 | 
| 65 | #include <openssl/ssl.h> | 
| 66 | #endif | 
| 67 | #ifdef HAVE_X509_VERIFY_PARAM_SET1_HOST1 | 
| 68 | #include <openssl/x509v3.h> | 
| 69 | #endif | 
| 70 | |
| 71 | #ifdef HAVE_NETDB_H1 | 
| 72 | #include <netdb.h> | 
| 73 | #endif | 
| 74 | #include <fcntl.h> | 
| 75 | |
| 76 | /** number of times to retry making a random ID that is unique. */ | 
| 77 | #define MAX_ID_RETRY1000 1000 | 
| 78 | /** number of times to retry finding interface, port that can be opened. */ | 
| 79 | #define MAX_PORT_RETRY10000 10000 | 
| 80 | /** number of retries on outgoing UDP queries */ | 
| 81 | #define OUTBOUND_UDP_RETRY1 1 | 
| 82 | |
| 83 | /** initiate TCP transaction for serviced query */ | 
| 84 | static void serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff); | 
| 85 | /** with a fd available, randomize and send UDP */ | 
| 86 | static int randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, | 
| 87 | int timeout); | 
| 88 | |
| 89 | /** select a DNS ID for a TCP stream */ | 
| 90 | static uint16_t tcp_select_id(struct outside_network* outnet, | 
| 91 | struct reuse_tcp* reuse); | 
| 92 | |
| 93 | /** Perform serviced query UDP sending operation */ | 
| 94 | static int serviced_udp_send(struct serviced_query* sq, sldns_buffer* buff); | 
| 95 | |
| 96 | /** Send serviced query over TCP return false on initial failure */ | 
| 97 | static int serviced_tcp_send(struct serviced_query* sq, sldns_buffer* buff); | 
| 98 | |
| 99 | /** call the callbacks for a serviced query */ | 
| 100 | static void serviced_callbacks(struct serviced_query* sq, int error, | 
| 101 | struct comm_point* c, struct comm_reply* rep); | 
| 102 | |
| 103 | int | 
| 104 | pending_cmp(const void* key1, const void* key2) | 
| 105 | { | 
| 106 | struct pending *p1 = (struct pending*)key1; | 
| 107 | struct pending *p2 = (struct pending*)key2; | 
| 108 | if(p1->id < p2->id) | 
| 109 | return -1; | 
| 110 | if(p1->id > p2->id) | 
| 111 | return 1; | 
| 112 | log_assert(p1->id == p2->id); | 
| 113 | return sockaddr_cmp(&p1->addr, p1->addrlen, &p2->addr, p2->addrlen); | 
| 114 | } | 
| 115 | |
| 116 | int | 
| 117 | serviced_cmp(const void* key1, const void* key2) | 
| 118 | { | 
| 119 | struct serviced_query* q1 = (struct serviced_query*)key1; | 
| 120 | struct serviced_query* q2 = (struct serviced_query*)key2; | 
| 121 | int r; | 
| 122 | if(q1->qbuflen < q2->qbuflen) | 
| 123 | return -1; | 
| 124 | if(q1->qbuflen > q2->qbuflen) | 
| 125 | return 1; | 
| 126 | log_assert(q1->qbuflen == q2->qbuflen); | 
| 127 | log_assert(q1->qbuflen >= 15 /* 10 header, root, type, class */); | 
| 128 | /* alternate casing of qname is still the same query */ | 
| 129 | if((r = memcmp(q1->qbuf, q2->qbuf, 10)) != 0) | 
| 130 | return r; | 
| 131 | if((r = memcmp(q1->qbuf+q1->qbuflen-4, q2->qbuf+q2->qbuflen-4, 4)) != 0) | 
| 132 | return r; | 
| 133 | if(q1->dnssec != q2->dnssec) { | 
| 134 | if(q1->dnssec < q2->dnssec) | 
| 135 | return -1; | 
| 136 | return 1; | 
| 137 | } | 
| 138 | if((r = query_dname_compare(q1->qbuf+10, q2->qbuf+10)) != 0) | 
| 139 | return r; | 
| 140 | if((r = edns_opt_list_compare(q1->opt_list, q2->opt_list)) != 0) | 
| 141 | return r; | 
| 142 | return sockaddr_cmp(&q1->addr, q1->addrlen, &q2->addr, q2->addrlen); | 
| 143 | } | 
| 144 | |
| 145 | /** compare if the reuse element has the same address, port and same ssl-is | 
| 146 | * used-for-it characteristic */ | 
| 147 | static int | 
| 148 | reuse_cmp_addrportssl(const void* key1, const void* key2) | 
| 149 | { | 
| 150 | struct reuse_tcp* r1 = (struct reuse_tcp*)key1; | 
| 151 | struct reuse_tcp* r2 = (struct reuse_tcp*)key2; | 
| 152 | int r; | 
| 153 | /* compare address and port */ | 
| 154 | r = sockaddr_cmp(&r1->addr, r1->addrlen, &r2->addr, r2->addrlen); | 
| 155 | if(r != 0) | 
| 156 | return r; | 
| 157 | |
| 158 | /* compare if SSL-enabled */ | 
| 159 | if(r1->is_ssl && !r2->is_ssl) | 
| 160 | return 1; | 
| 161 | if(!r1->is_ssl && r2->is_ssl) | 
| 162 | return -1; | 
| 163 | return 0; | 
| 164 | } | 
| 165 | |
| 166 | int | 
| 167 | reuse_cmp(const void* key1, const void* key2) | 
| 168 | { | 
| 169 | int r; | 
| 170 | r = reuse_cmp_addrportssl(key1, key2); | 
| 171 | if(r != 0) | 
| 172 | return r; | 
| 173 | |
| 174 | /* compare ptr value */ | 
| 175 | if(key1 < key2) return -1; | 
| 176 | if(key1 > key2) return 1; | 
| 177 | return 0; | 
| 178 | } | 
| 179 | |
| 180 | int reuse_id_cmp(const void* key1, const void* key2) | 
| 181 | { | 
| 182 | struct waiting_tcp* w1 = (struct waiting_tcp*)key1; | 
| 183 | struct waiting_tcp* w2 = (struct waiting_tcp*)key2; | 
| 184 | if(w1->id < w2->id) | 
| 185 | return -1; | 
| 186 | if(w1->id > w2->id) | 
| 187 | return 1; | 
| 188 | return 0; | 
| 189 | } | 
| 190 | |
| 191 | /** delete waiting_tcp entry. Does not unlink from waiting list. | 
| 192 | * @param w: to delete. | 
| 193 | */ | 
| 194 | static void | 
| 195 | waiting_tcp_delete(struct waiting_tcp* w) | 
| 196 | { | 
| 197 | if(!w) return; | 
| 198 | if(w->timer) | 
| 199 | comm_timer_delete(w->timer); | 
| 200 | free(w); | 
| 201 | } | 
| 202 | |
| 203 | /** | 
| 204 | * Pick random outgoing-interface of that family, and bind it. | 
| 205 | * port set to 0 so OS picks a port number for us. | 
| 206 | * if it is the ANY address, do not bind. | 
| 207 | * @param pend: pending tcp structure, for storing the local address choice. | 
| 208 | * @param w: tcp structure with destination address. | 
| 209 | * @param s: socket fd. | 
| 210 | * @return false on error, socket closed. | 
| 211 | */ | 
| 212 | static int | 
| 213 | pick_outgoing_tcp(struct pending_tcp* pend, struct waiting_tcp* w, int s) | 
| 214 | { | 
| 215 | struct port_if* pi = NULL((void *)0); | 
| 216 | int num; | 
| 217 | pend->pi = NULL((void *)0); | 
| 218 | #ifdef INET6 | 
| 219 | if(addr_is_ip6(&w->addr, w->addrlen)) | 
| 220 | num = w->outnet->num_ip6; | 
| 221 | else | 
| 222 | #endif | 
| 223 | num = w->outnet->num_ip4; | 
| 224 | if(num == 0) { | 
| 225 | log_err("no TCP outgoing interfaces of family"); | 
| 226 | log_addr(VERB_OPS, "for addr", &w->addr, w->addrlen); | 
| 227 | sock_close(s); | 
| 228 | return 0; | 
| 229 | } | 
| 230 | #ifdef INET6 | 
| 231 | if(addr_is_ip6(&w->addr, w->addrlen)) | 
| 232 | pi = &w->outnet->ip6_ifs[ub_random_max(w->outnet->rnd, num)]; | 
| 233 | else | 
| 234 | #endif | 
| 235 | pi = &w->outnet->ip4_ifs[ub_random_max(w->outnet->rnd, num)]; | 
| 236 | log_assert(pi); | 
| 237 | pend->pi = pi; | 
| 238 | if(addr_is_any(&pi->addr, pi->addrlen)) { | 
| 239 | /* binding to the ANY interface is for listening sockets */ | 
| 240 | return 1; | 
| 241 | } | 
| 242 | /* set port to 0 */ | 
| 243 | if(addr_is_ip6(&pi->addr, pi->addrlen)) | 
| 244 | ((struct sockaddr_in6*)&pi->addr)->sin6_port = 0; | 
| 245 | else ((struct sockaddr_in*)&pi->addr)->sin_port = 0; | 
| 246 | if(bind(s, (struct sockaddr*)&pi->addr, pi->addrlen) != 0) { | 
| 247 | #ifndef USE_WINSOCK | 
| 248 | #ifdef EADDRNOTAVAIL49 | 
| 249 | if(!(verbosity < 4 && errno(*__errno()) == EADDRNOTAVAIL49)) | 
| 250 | #endif | 
| 251 | #else /* USE_WINSOCK */ | 
| 252 | if(!(verbosity < 4 && WSAGetLastError() == WSAEADDRNOTAVAIL)) | 
| 253 | #endif | 
| 254 | log_err("outgoing tcp: bind: %s", sock_strerror(errno(*__errno()))); | 
| 255 | sock_close(s); | 
| 256 | return 0; | 
| 257 | } | 
| 258 | log_addr(VERB_ALGO, "tcp bound to src", &pi->addr, pi->addrlen); | 
| 259 | return 1; | 
| 260 | } | 
| 261 | |
| 262 | /** get TCP file descriptor for address, returns -1 on failure, | 
| 263 | * tcp_mss is 0 or maxseg size to set for TCP packets. */ | 
| 264 | int | 
| 265 | outnet_get_tcp_fd(struct sockaddr_storage* addr, socklen_t addrlen, int tcp_mss, int dscp) | 
| 266 | { | 
| 267 | int s; | 
| 268 | int af; | 
| 269 | char* err; | 
| 270 | #if defined(SO_REUSEADDR0x0004) || defined(IP_BIND_ADDRESS_NO_PORT) | 
| 271 | int on = 1; | 
| 272 | #endif | 
| 273 | #ifdef INET6 | 
| 274 | if(addr_is_ip6(addr, addrlen)){ | 
| 275 | s = socket(PF_INET624, SOCK_STREAM1, IPPROTO_TCP6); | 
| 276 | af = AF_INET624; | 
| 277 | } else { | 
| 278 | #else | 
| 279 | { | 
| 280 | #endif | 
| 281 | af = AF_INET2; | 
| 282 | s = socket(PF_INET2, SOCK_STREAM1, IPPROTO_TCP6); | 
| 283 | } | 
| 284 | if(s == -1) { | 
| 285 | log_err_addr("outgoing tcp: socket", sock_strerror(errno(*__errno())), | 
| 286 | addr, addrlen); | 
| 287 | return -1; | 
| 288 | } | 
| 289 | |
| 290 | #ifdef SO_REUSEADDR0x0004 | 
| 291 | if(setsockopt(s, SOL_SOCKET0xffff, SO_REUSEADDR0x0004, (void*)&on, | 
| 292 | (socklen_t)sizeof(on)) < 0) { | 
| 293 | verbose(VERB_ALGO, "outgoing tcp:" | 
| 294 | " setsockopt(.. SO_REUSEADDR ..) failed"); | 
| 295 | } | 
| 296 | #endif | 
| 297 | |
| 298 | err = set_ip_dscp(s, af, dscp); | 
| 299 | if(err != NULL((void *)0)) { | 
| 300 | verbose(VERB_ALGO, "outgoing tcp:" | 
| 301 | "error setting IP DiffServ codepoint on socket"); | 
| 302 | } | 
| 303 | |
| 304 | if(tcp_mss > 0) { | 
| 305 | #if defined(IPPROTO_TCP6) && defined(TCP_MAXSEG0x02) | 
| 306 | if(setsockopt(s, IPPROTO_TCP6, TCP_MAXSEG0x02, | 
| 307 | (void*)&tcp_mss, (socklen_t)sizeof(tcp_mss)) < 0) { | 
| 308 | verbose(VERB_ALGO, "outgoing tcp:" | 
| 309 | " setsockopt(.. TCP_MAXSEG ..) failed"); | 
| 310 | } | 
| 311 | #else | 
| 312 | verbose(VERB_ALGO, "outgoing tcp:" | 
| 313 | " setsockopt(TCP_MAXSEG) unsupported"); | 
| 314 | #endif /* defined(IPPROTO_TCP) && defined(TCP_MAXSEG) */ | 
| 315 | } | 
| 316 | #ifdef IP_BIND_ADDRESS_NO_PORT | 
| 317 | if(setsockopt(s, IPPROTO_IP0, IP_BIND_ADDRESS_NO_PORT, (void*)&on, | 
| 318 | (socklen_t)sizeof(on)) < 0) { | 
| 319 | verbose(VERB_ALGO, "outgoing tcp:" | 
| 320 | " setsockopt(.. IP_BIND_ADDRESS_NO_PORT ..) failed"); | 
| 321 | } | 
| 322 | #endif /* IP_BIND_ADDRESS_NO_PORT */ | 
| 323 | return s; | 
| 324 | } | 
| 325 | |
| 326 | /** connect tcp connection to addr, 0 on failure */ | 
| 327 | int | 
| 328 | outnet_tcp_connect(int s, struct sockaddr_storage* addr, socklen_t addrlen) | 
| 329 | { | 
| 330 | if(connect(s, (struct sockaddr*)addr, addrlen) == -1) { | 
| 331 | #ifndef USE_WINSOCK | 
| 332 | #ifdef EINPROGRESS36 | 
| 333 | if(errno(*__errno()) != EINPROGRESS36) { | 
| 334 | #endif | 
| 335 | if(tcp_connect_errno_needs_log( | 
| 336 | (struct sockaddr*)addr, addrlen)) | 
| 337 | log_err_addr("outgoing tcp: connect", | 
| 338 | strerror(errno(*__errno())), addr, addrlen); | 
| 339 | close(s); | 
| 340 | return 0; | 
| 341 | #ifdef EINPROGRESS36 | 
| 342 | } | 
| 343 | #endif | 
| 344 | #else /* USE_WINSOCK */ | 
| 345 | if(WSAGetLastError() != WSAEINPROGRESS && | 
| 346 | WSAGetLastError() != WSAEWOULDBLOCK) { | 
| 347 | closesocket(s); | 
| 348 | return 0; | 
| 349 | } | 
| 350 | #endif | 
| 351 | } | 
| 352 | return 1; | 
| 353 | } | 
| 354 | |
| 355 | /** log reuse item addr and ptr with message */ | 
| 356 | static void | 
| 357 | log_reuse_tcp(enum verbosity_value v, const char* msg, struct reuse_tcp* reuse) | 
| 358 | { | 
| 359 | uint16_t port; | 
| 360 | char addrbuf[128]; | 
| 361 | if(verbosity < v) return; | 
| 362 | if(!reuse || !reuse->pending || !reuse->pending->c) | 
| 363 | return; | 
| 364 | addr_to_str(&reuse->addr, reuse->addrlen, addrbuf, sizeof(addrbuf)); | 
| 365 | port = ntohs(((struct sockaddr_in*)&reuse->addr)->sin_port)(__uint16_t)(__builtin_constant_p(((struct sockaddr_in*)& reuse->addr)->sin_port) ? (__uint16_t)(((__uint16_t)((( struct sockaddr_in*)&reuse->addr)->sin_port) & 0xffU ) << 8 | ((__uint16_t)(((struct sockaddr_in*)&reuse ->addr)->sin_port) & 0xff00U) >> 8) : __swap16md (((struct sockaddr_in*)&reuse->addr)->sin_port)); | 
| 366 | verbose(v, "%s %s#%u fd %d", msg, addrbuf, (unsigned)port, | 
| 367 | reuse->pending->c->fd); | 
| 368 | } | 
| 369 | |
| 370 | /** pop the first element from the writewait list */ | 
| 371 | struct waiting_tcp* | 
| 372 | reuse_write_wait_pop(struct reuse_tcp* reuse) | 
| 373 | { | 
| 374 | struct waiting_tcp* w = reuse->write_wait_first; | 
| 375 | if(!w) | 
| 376 | return NULL((void *)0); | 
| 377 | log_assert(w->write_wait_queued); | 
| 378 | log_assert(!w->write_wait_prev); | 
| 379 | reuse->write_wait_first = w->write_wait_next; | 
| 380 | if(w->write_wait_next) | 
| 381 | w->write_wait_next->write_wait_prev = NULL((void *)0); | 
| 382 | else reuse->write_wait_last = NULL((void *)0); | 
| 383 | w->write_wait_queued = 0; | 
| 384 | w->write_wait_next = NULL((void *)0); | 
| 385 | w->write_wait_prev = NULL((void *)0); | 
| 386 | return w; | 
| 387 | } | 
| 388 | |
| 389 | /** remove the element from the writewait list */ | 
| 390 | void | 
| 391 | reuse_write_wait_remove(struct reuse_tcp* reuse, struct waiting_tcp* w) | 
| 392 | { | 
| 393 | log_assert(w); | 
| 394 | log_assert(w->write_wait_queued); | 
| 395 | if(!w) | 
| 396 | return; | 
| 397 | if(!w->write_wait_queued) | 
| 398 | return; | 
| 399 | if(w->write_wait_prev) | 
| 400 | w->write_wait_prev->write_wait_next = w->write_wait_next; | 
| 401 | else reuse->write_wait_first = w->write_wait_next; | 
| 402 | log_assert(!w->write_wait_prev || | 
| 403 | w->write_wait_prev->write_wait_next != w->write_wait_prev); | 
| 404 | if(w->write_wait_next) | 
| 405 | w->write_wait_next->write_wait_prev = w->write_wait_prev; | 
| 406 | else reuse->write_wait_last = w->write_wait_prev; | 
| 407 | log_assert(!w->write_wait_next | 
| 408 | || w->write_wait_next->write_wait_prev != w->write_wait_next); | 
| 409 | w->write_wait_queued = 0; | 
| 410 | w->write_wait_next = NULL((void *)0); | 
| 411 | w->write_wait_prev = NULL((void *)0); | 
| 412 | } | 
| 413 | |
| 414 | /** push the element after the last on the writewait list */ | 
| 415 | void | 
| 416 | reuse_write_wait_push_back(struct reuse_tcp* reuse, struct waiting_tcp* w) | 
| 417 | { | 
| 418 | if(!w) return; | 
| 419 | log_assert(!w->write_wait_queued); | 
| 420 | if(reuse->write_wait_last) { | 
| 421 | reuse->write_wait_last->write_wait_next = w; | 
| 422 | log_assert(reuse->write_wait_last->write_wait_next != | 
| 423 | reuse->write_wait_last); | 
| 424 | w->write_wait_prev = reuse->write_wait_last; | 
| 425 | } else { | 
| 426 | reuse->write_wait_first = w; | 
| 427 | w->write_wait_prev = NULL((void *)0); | 
| 428 | } | 
| 429 | w->write_wait_next = NULL((void *)0); | 
| 430 | reuse->write_wait_last = w; | 
| 431 | w->write_wait_queued = 1; | 
| 432 | } | 
| 433 | |
| 434 | /** insert element in tree by id */ | 
| 435 | void | 
| 436 | reuse_tree_by_id_insert(struct reuse_tcp* reuse, struct waiting_tcp* w) | 
| 437 | { | 
| 438 | #ifdef UNBOUND_DEBUG | 
| 439 | rbnode_type* added; | 
| 440 | #endif | 
| 441 | log_assert(w->id_node.key == NULL); | 
| 442 | w->id_node.key = w; | 
| 443 | #ifdef UNBOUND_DEBUG | 
| 444 | added = | 
| 445 | #else | 
| 446 | (void) | 
| 447 | #endif | 
| 448 | rbtree_insert(&reuse->tree_by_id, &w->id_node); | 
| 449 | log_assert(added); /* should have been added */ | 
| 450 | } | 
| 451 | |
| 452 | /** find element in tree by id */ | 
| 453 | struct waiting_tcp* | 
| 454 | reuse_tcp_by_id_find(struct reuse_tcp* reuse, uint16_t id) | 
| 455 | { | 
| 456 | struct waiting_tcp key_w; | 
| 457 | rbnode_type* n; | 
| 458 | memset(&key_w, 0, sizeof(key_w)); | 
| 459 | key_w.id_node.key = &key_w; | 
| 460 | key_w.id = id; | 
| 461 | n = rbtree_search(&reuse->tree_by_id, &key_w); | 
| 462 | if(!n) return NULL((void *)0); | 
| 463 | return (struct waiting_tcp*)n->key; | 
| 464 | } | 
| 465 | |
| 466 | /** return ID value of rbnode in tree_by_id */ | 
| 467 | static uint16_t | 
| 468 | tree_by_id_get_id(rbnode_type* node) | 
| 469 | { | 
| 470 | struct waiting_tcp* w = (struct waiting_tcp*)node->key; | 
| 471 | return w->id; | 
| 472 | } | 
| 473 | |
| 474 | /** insert into reuse tcp tree and LRU, false on failure (duplicate) */ | 
| 475 | int | 
| 476 | reuse_tcp_insert(struct outside_network* outnet, struct pending_tcp* pend_tcp) | 
| 477 | { | 
| 478 | log_reuse_tcp(VERB_CLIENT, "reuse_tcp_insert", &pend_tcp->reuse); | 
| 479 | if(pend_tcp->reuse.item_on_lru_list) { | 
| 480 | if(!pend_tcp->reuse.node.key) | 
| 481 | log_err("internal error: reuse_tcp_insert: " | 
| 482 | "in lru list without key"); | 
| 483 | return 1; | 
| 484 | } | 
| 485 | pend_tcp->reuse.node.key = &pend_tcp->reuse; | 
| 486 | pend_tcp->reuse.pending = pend_tcp; | 
| 487 | if(!rbtree_insert(&outnet->tcp_reuse, &pend_tcp->reuse.node)) { | 
| 488 | /* We are not in the LRU list but we are already in the | 
| 489 | * tcp_reuse tree, strange. | 
| 490 | * Continue to add ourselves to the LRU list. */ | 
| 491 | log_err("internal error: reuse_tcp_insert: in lru list but " | 
| 492 | "not in the tree"); | 
| 493 | } | 
| 494 | /* insert into LRU, first is newest */ | 
| 495 | pend_tcp->reuse.lru_prev = NULL((void *)0); | 
| 496 | if(outnet->tcp_reuse_first) { | 
| 497 | pend_tcp->reuse.lru_next = outnet->tcp_reuse_first; | 
| 498 | log_assert(pend_tcp->reuse.lru_next != &pend_tcp->reuse); | 
| 499 | outnet->tcp_reuse_first->lru_prev = &pend_tcp->reuse; | 
| 500 | log_assert(outnet->tcp_reuse_first->lru_prev != | 
| 501 | outnet->tcp_reuse_first); | 
| 502 | } else { | 
| 503 | pend_tcp->reuse.lru_next = NULL((void *)0); | 
| 504 | outnet->tcp_reuse_last = &pend_tcp->reuse; | 
| 505 | } | 
| 506 | outnet->tcp_reuse_first = &pend_tcp->reuse; | 
| 507 | pend_tcp->reuse.item_on_lru_list = 1; | 
| 508 | log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || | 
| 509 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); | 
| 510 | log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next && | 
| 511 | outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev); | 
| 512 | log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next && | 
| 513 | outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev); | 
| 514 | return 1; | 
| 515 | } | 
| 516 | |
| 517 | /** find reuse tcp stream to destination for query, or NULL if none */ | 
| 518 | static struct reuse_tcp* | 
| 519 | reuse_tcp_find(struct outside_network* outnet, struct sockaddr_storage* addr, | 
| 520 | socklen_t addrlen, int use_ssl) | 
| 521 | { | 
| 522 | struct waiting_tcp key_w; | 
| 523 | struct pending_tcp key_p; | 
| 524 | struct comm_point c; | 
| 525 | rbnode_type* result = NULL((void *)0), *prev; | 
| 526 | verbose(VERB_CLIENT, "reuse_tcp_find"); | 
| 527 | memset(&key_w, 0, sizeof(key_w)); | 
| 528 | memset(&key_p, 0, sizeof(key_p)); | 
| 529 | memset(&c, 0, sizeof(c)); | 
| 530 | key_p.query = &key_w; | 
| 531 | key_p.c = &c; | 
| 532 | key_p.reuse.pending = &key_p; | 
| 533 | key_p.reuse.node.key = &key_p.reuse; | 
| 534 | if(use_ssl) | 
| 535 | key_p.reuse.is_ssl = 1; | 
| 536 | if(addrlen > (socklen_t)sizeof(key_p.reuse.addr)) | 
| 537 | return NULL((void *)0); | 
| 538 | memmove(&key_p.reuse.addr, addr, addrlen); | 
| 539 | key_p.reuse.addrlen = addrlen; | 
| 540 | |
| 541 | verbose(VERB_CLIENT, "reuse_tcp_find: num reuse streams %u", | 
| 542 | (unsigned)outnet->tcp_reuse.count); | 
| 543 | if(outnet->tcp_reuse.root == NULL((void *)0) || | 
| 544 | outnet->tcp_reuse.root == RBTREE_NULL&rbtree_null_node) | 
| 545 | return NULL((void *)0); | 
| 546 | if(rbtree_find_less_equal(&outnet->tcp_reuse, &key_p.reuse, | 
| 547 | &result)) { | 
| 548 | /* exact match */ | 
| 549 | /* but the key is on stack, and ptr is compared, impossible */ | 
| 550 | log_assert(&key_p.reuse != (struct reuse_tcp*)result); | 
| 551 | log_assert(&key_p != ((struct reuse_tcp*)result)->pending); | 
| 552 | } | 
| 553 | /* not found, return null */ | 
| 554 | |
| 555 | /* It is possible that we search for something before the first element | 
| 556 | * in the tree. Replace a null pointer with the first element. | 
| 557 | */ | 
| 558 | if (!result) { | 
| 559 | verbose(VERB_CLIENT, "reuse_tcp_find: taking first"); | 
| 560 | result = rbtree_first(&outnet->tcp_reuse); | 
| 561 | } | 
| 562 | |
| 563 | if(!result || result == RBTREE_NULL&rbtree_null_node) | 
| 564 | return NULL((void *)0); | 
| 565 | |
| 566 | /* It is possible that we got the previous address, but that the | 
| 567 | * address we are looking for is in the tree. If the address we got | 
| 568 | * is less than the address we are looking, then take the next entry. | 
| 569 | */ | 
| 570 | if (reuse_cmp_addrportssl(result->key, &key_p.reuse) < 0) { | 
| 571 | verbose(VERB_CLIENT, "reuse_tcp_find: key too low"); | 
| 572 | result = rbtree_next(result); | 
| 573 | } | 
| 574 | |
| 575 | verbose(VERB_CLIENT, "reuse_tcp_find check inexact match"); | 
| 576 | /* inexact match, find one of possibly several connections to the | 
| 577 | * same destination address, with the correct port, ssl, and | 
| 578 | * also less than max number of open queries, or else, fail to open | 
| 579 | * a new one */ | 
| 580 | /* rewind to start of sequence of same address,port,ssl */ | 
| 581 | prev = rbtree_previous(result); | 
| 582 | while(prev && prev != RBTREE_NULL&rbtree_null_node && | 
| 583 | reuse_cmp_addrportssl(prev->key, &key_p.reuse) == 0) { | 
| 584 | result = prev; | 
| 585 | prev = rbtree_previous(result); | 
| 586 | } | 
| 587 | |
| 588 | /* loop to find first one that has correct characteristics */ | 
| 589 | while(result && result != RBTREE_NULL&rbtree_null_node && | 
| 590 | reuse_cmp_addrportssl(result->key, &key_p.reuse) == 0) { | 
| 591 | if(((struct reuse_tcp*)result)->tree_by_id.count < | 
| 592 | outnet->max_reuse_tcp_queries) { | 
| 593 | /* same address, port, ssl-yes-or-no, and has | 
| 594 | * space for another query */ | 
| 595 | return (struct reuse_tcp*)result; | 
| 596 | } | 
| 597 | result = rbtree_next(result); | 
| 598 | } | 
| 599 | return NULL((void *)0); | 
| 600 | } | 
| 601 | |
| 602 | /** use the buffer to setup writing the query */ | 
| 603 | static void | 
| 604 | outnet_tcp_take_query_setup(int s, struct pending_tcp* pend, | 
| 605 | struct waiting_tcp* w) | 
| 606 | { | 
| 607 | struct timeval tv; | 
| 608 | verbose(VERB_CLIENT, "outnet_tcp_take_query_setup: setup packet to write " | 
| 609 | "len %d timeout %d msec", | 
| 610 | (int)w->pkt_len, w->timeout); | 
| 611 | pend->c->tcp_write_pkt = w->pkt; | 
| 612 | pend->c->tcp_write_pkt_len = w->pkt_len; | 
| 613 | pend->c->tcp_write_and_read = 1; | 
| 614 | pend->c->tcp_write_byte_count = 0; | 
| 615 | pend->c->tcp_is_reading = 0; | 
| 616 | comm_point_start_listening(pend->c, s, -1); | 
| 617 | /* set timer on the waiting_tcp entry, this is the write timeout | 
| 618 | * for the written packet. The timer on pend->c is the timer | 
| 619 | * for when there is no written packet and we have readtimeouts */ | 
| 620 | #ifndef S_SPLINT_S | 
| 621 | tv.tv_sec = w->timeout/1000; | 
| 622 | tv.tv_usec = (w->timeout%1000)*1000; | 
| 623 | #endif | 
| 624 | /* if the waiting_tcp was previously waiting for a buffer in the | 
| 625 | * outside_network.tcpwaitlist, then the timer is reset now that | 
| 626 | * we start writing it */ | 
| 627 | comm_timer_set(w->timer, &tv); | 
| 628 | } | 
| 629 | |
| 630 | /** use next free buffer to service a tcp query */ | 
| 631 | static int | 
| 632 | outnet_tcp_take_into_use(struct waiting_tcp* w) | 
| 633 | { | 
| 634 | struct pending_tcp* pend = w->outnet->tcp_free; | 
| 635 | int s; | 
| 636 | log_assert(pend); | 
| 637 | log_assert(w->pkt); | 
| 638 | log_assert(w->pkt_len > 0); | 
| 639 | log_assert(w->addrlen > 0); | 
| 640 | pend->c->tcp_do_toggle_rw = 0; | 
| 641 | pend->c->tcp_do_close = 0; | 
| 642 | |
| 643 | /* Consistency check, if we have ssl_upstream but no sslctx, then | 
| 644 | * log an error and return failure. | 
| 645 | */ | 
| 646 | if (w->ssl_upstream && !w->outnet->sslctx) { | 
| 647 | log_err("SSL upstream requested but no SSL context"); | 
| 648 | return 0; | 
| 649 | } | 
| 650 | |
| 651 | /* open socket */ | 
| 652 | s = outnet_get_tcp_fd(&w->addr, w->addrlen, w->outnet->tcp_mss, w->outnet->ip_dscp); | 
| 653 | |
| 654 | if(s == -1) | 
| 655 | return 0; | 
| 656 | |
| 657 | if(!pick_outgoing_tcp(pend, w, s)) | 
| 658 | return 0; | 
| 659 | |
| 660 | fd_set_nonblock(s); | 
| 661 | #ifdef USE_OSX_MSG_FASTOPEN | 
| 662 | /* API for fast open is different here. We use a connectx() function and | 
| 663 | then writes can happen as normal even using SSL.*/ | 
| 664 | /* connectx requires that the len be set in the sockaddr struct*/ | 
| 665 | struct sockaddr_in *addr_in = (struct sockaddr_in *)&w->addr; | 
| 666 | addr_in->sin_len = w->addrlen; | 
| 667 | sa_endpoints_t endpoints; | 
| 668 | endpoints.sae_srcif = 0; | 
| 669 | endpoints.sae_srcaddr = NULL((void *)0); | 
| 670 | endpoints.sae_srcaddrlen = 0; | 
| 671 | endpoints.sae_dstaddr = (struct sockaddr *)&w->addr; | 
| 672 | endpoints.sae_dstaddrlen = w->addrlen; | 
| 673 | if (connectx(s, &endpoints, SAE_ASSOCID_ANY, | 
| 674 | CONNECT_DATA_IDEMPOTENT | CONNECT_RESUME_ON_READ_WRITE, | 
| 675 | NULL((void *)0), 0, NULL((void *)0), NULL((void *)0)) == -1) { | 
| 676 | /* if fails, failover to connect for OSX 10.10 */ | 
| 677 | #ifdef EINPROGRESS36 | 
| 678 | if(errno(*__errno()) != EINPROGRESS36) { | 
| 679 | #else | 
| 680 | if(1) { | 
| 681 | #endif | 
| 682 | if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { | 
| 683 | #else /* USE_OSX_MSG_FASTOPEN*/ | 
| 684 | #ifdef USE_MSG_FASTOPEN | 
| 685 | pend->c->tcp_do_fastopen = 1; | 
| 686 | /* Only do TFO for TCP in which case no connect() is required here. | 
| 687 | Don't combine client TFO with SSL, since OpenSSL can't | 
| 688 | currently support doing a handshake on fd that already isn't connected*/ | 
| 689 | if (w->outnet->sslctx && w->ssl_upstream) { | 
| 690 | if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { | 
| 691 | #else /* USE_MSG_FASTOPEN*/ | 
| 692 | if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) { | 
| 693 | #endif /* USE_MSG_FASTOPEN*/ | 
| 694 | #endif /* USE_OSX_MSG_FASTOPEN*/ | 
| 695 | #ifndef USE_WINSOCK | 
| 696 | #ifdef EINPROGRESS36 | 
| 697 | if(errno(*__errno()) != EINPROGRESS36) { | 
| 698 | #else | 
| 699 | if(1) { | 
| 700 | #endif | 
| 701 | if(tcp_connect_errno_needs_log( | 
| 702 | (struct sockaddr*)&w->addr, w->addrlen)) | 
| 703 | log_err_addr("outgoing tcp: connect", | 
| 704 | strerror(errno(*__errno())), &w->addr, w->addrlen); | 
| 705 | close(s); | 
| 706 | #else /* USE_WINSOCK */ | 
| 707 | if(WSAGetLastError() != WSAEINPROGRESS && | 
| 708 | WSAGetLastError() != WSAEWOULDBLOCK) { | 
| 709 | closesocket(s); | 
| 710 | #endif | 
| 711 | return 0; | 
| 712 | } | 
| 713 | } | 
| 714 | #ifdef USE_MSG_FASTOPEN | 
| 715 | } | 
| 716 | #endif /* USE_MSG_FASTOPEN */ | 
| 717 | #ifdef USE_OSX_MSG_FASTOPEN | 
| 718 | } | 
| 719 | } | 
| 720 | #endif /* USE_OSX_MSG_FASTOPEN */ | 
| 721 | if(w->outnet->sslctx && w->ssl_upstream) { | 
| 722 | pend->c->ssl = outgoing_ssl_fd(w->outnet->sslctx, s); | 
| 723 | if(!pend->c->ssl) { | 
| 724 | pend->c->fd = s; | 
| 725 | comm_point_close(pend->c); | 
| 726 | return 0; | 
| 727 | } | 
| 728 | verbose(VERB_ALGO, "the query is using TLS encryption, for %s", | 
| 729 | (w->tls_auth_name?w->tls_auth_name:"an unauthenticated connection")); | 
| 730 | #ifdef USE_WINSOCK | 
| 731 | comm_point_tcp_win_bio_cb(pend->c, pend->c->ssl); | 
| 732 | #endif | 
| 733 | pend->c->ssl_shake_state = comm_ssl_shake_write; | 
| 734 | if(!set_auth_name_on_ssl(pend->c->ssl, w->tls_auth_name, | 
| 735 | w->outnet->tls_use_sni)) { | 
| 736 | pend->c->fd = s; | 
| 737 | #ifdef HAVE_SSL | 
| 738 | SSL_free(pend->c->ssl); | 
| 739 | #endif | 
| 740 | pend->c->ssl = NULL((void *)0); | 
| 741 | comm_point_close(pend->c); | 
| 742 | return 0; | 
| 743 | } | 
| 744 | } | 
| 745 | w->next_waiting = (void*)pend; | 
| 746 | w->outnet->num_tcp_outgoing++; | 
| 747 | w->outnet->tcp_free = pend->next_free; | 
| 748 | pend->next_free = NULL((void *)0); | 
| 749 | pend->query = w; | 
| 750 | pend->reuse.outnet = w->outnet; | 
| 751 | pend->c->repinfo.remote_addrlen = w->addrlen; | 
| 752 | pend->c->tcp_more_read_again = &pend->reuse.cp_more_read_again; | 
| 753 | pend->c->tcp_more_write_again = &pend->reuse.cp_more_write_again; | 
| 754 | pend->reuse.cp_more_read_again = 0; | 
| 755 | pend->reuse.cp_more_write_again = 0; | 
| 756 | memcpy(&pend->c->repinfo.remote_addr, &w->addr, w->addrlen); | 
| 757 | pend->reuse.pending = pend; | 
| 758 | |
| 759 | /* Remove from tree in case the is_ssl will be different and causes the | 
| 760 | * identity of the reuse_tcp to change; could result in nodes not being | 
| 761 | * deleted from the tree (because the new identity does not match the | 
| 762 | * previous node) but their ->key would be changed to NULL. */ | 
| 763 | if(pend->reuse.node.key) | 
| 764 | reuse_tcp_remove_tree_list(w->outnet, &pend->reuse); | 
| 765 | |
| 766 | if(pend->c->ssl) | 
| 767 | pend->reuse.is_ssl = 1; | 
| 768 | else pend->reuse.is_ssl = 0; | 
| 769 | /* insert in reuse by address tree if not already inserted there */ | 
| 770 | (void)reuse_tcp_insert(w->outnet, pend); | 
| 771 | reuse_tree_by_id_insert(&pend->reuse, w); | 
| 772 | outnet_tcp_take_query_setup(s, pend, w); | 
| 773 | return 1; | 
| 774 | } | 
| 775 | |
| 776 | /** Touch the lru of a reuse_tcp element, it is in use. | 
| 777 | * This moves it to the front of the list, where it is not likely to | 
| 778 | * be closed. Items at the back of the list are closed to make space. */ | 
| 779 | void | 
| 780 | reuse_tcp_lru_touch(struct outside_network* outnet, struct reuse_tcp* reuse) | 
| 781 | { | 
| 782 | if(!reuse->item_on_lru_list) { | 
| 783 | log_err("internal error: we need to touch the lru_list but item not in list"); | 
| 784 | return; /* not on the list, no lru to modify */ | 
| 785 | } | 
| 786 | log_assert(reuse->lru_prev || | 
| 787 | (!reuse->lru_prev && outnet->tcp_reuse_first == reuse)); | 
| 788 | if(!reuse->lru_prev) | 
| 789 | return; /* already first in the list */ | 
| 790 | /* remove at current position */ | 
| 791 | /* since it is not first, there is a previous element */ | 
| 792 | reuse->lru_prev->lru_next = reuse->lru_next; | 
| 793 | log_assert(reuse->lru_prev->lru_next != reuse->lru_prev); | 
| 794 | if(reuse->lru_next) | 
| 795 | reuse->lru_next->lru_prev = reuse->lru_prev; | 
| 796 | else outnet->tcp_reuse_last = reuse->lru_prev; | 
| 797 | log_assert(!reuse->lru_next || reuse->lru_next->lru_prev != reuse->lru_next); | 
| 798 | log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next && | 
| 799 | outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev); | 
| 800 | /* insert at the front */ | 
| 801 | reuse->lru_prev = NULL((void *)0); | 
| 802 | reuse->lru_next = outnet->tcp_reuse_first; | 
| 803 | if(outnet->tcp_reuse_first) { | 
| 804 | outnet->tcp_reuse_first->lru_prev = reuse; | 
| 805 | } | 
| 806 | log_assert(reuse->lru_next != reuse); | 
| 807 | /* since it is not first, it is not the only element and | 
| 808 | * lru_next is thus not NULL and thus reuse is now not the last in | 
| 809 | * the list, so outnet->tcp_reuse_last does not need to be modified */ | 
| 810 | outnet->tcp_reuse_first = reuse; | 
| 811 | log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next && | 
| 812 | outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev); | 
| 813 | log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || | 
| 814 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); | 
| 815 | } | 
| 816 | |
| 817 | /** Snip the last reuse_tcp element off of the LRU list */ | 
| 818 | struct reuse_tcp* | 
| 819 | reuse_tcp_lru_snip(struct outside_network* outnet) | 
| 820 | { | 
| 821 | struct reuse_tcp* reuse = outnet->tcp_reuse_last; | 
| 822 | if(!reuse) return NULL((void *)0); | 
| 823 | /* snip off of LRU */ | 
| 824 | log_assert(reuse->lru_next == NULL); | 
| 825 | if(reuse->lru_prev) { | 
| 826 | outnet->tcp_reuse_last = reuse->lru_prev; | 
| 827 | reuse->lru_prev->lru_next = NULL((void *)0); | 
| 828 | } else { | 
| 829 | outnet->tcp_reuse_last = NULL((void *)0); | 
| 830 | outnet->tcp_reuse_first = NULL((void *)0); | 
| 831 | } | 
| 832 | log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || | 
| 833 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); | 
| 834 | reuse->item_on_lru_list = 0; | 
| 835 | reuse->lru_next = NULL((void *)0); | 
| 836 | reuse->lru_prev = NULL((void *)0); | 
| 837 | return reuse; | 
| 838 | } | 
| 839 | |
| 840 | /** remove waiting tcp from the outnet waiting list */ | 
| 841 | void | 
| 842 | outnet_waiting_tcp_list_remove(struct outside_network* outnet, struct waiting_tcp* w) | 
| 843 | { | 
| 844 | struct waiting_tcp* p = outnet->tcp_wait_first, *prev = NULL((void *)0); | 
| 845 | w->on_tcp_waiting_list = 0; | 
| 846 | while(p) { | 
| 847 | if(p == w) { | 
| 848 | /* remove w */ | 
| 849 | if(prev) | 
| 850 | prev->next_waiting = w->next_waiting; | 
| 851 | else outnet->tcp_wait_first = w->next_waiting; | 
| 852 | if(outnet->tcp_wait_last == w) | 
| 853 | outnet->tcp_wait_last = prev; | 
| 854 | w->next_waiting = NULL((void *)0); | 
| 855 | return; | 
| 856 | } | 
| 857 | prev = p; | 
| 858 | p = p->next_waiting; | 
| 859 | } | 
| 860 | /* outnet_waiting_tcp_list_remove is currently called only with items | 
| 861 | * that are already in the waiting list. */ | 
| 862 | log_assert(0); | 
| 863 | } | 
| 864 | |
| 865 | /** pop the first waiting tcp from the outnet waiting list */ | 
| 866 | struct waiting_tcp* | 
| 867 | outnet_waiting_tcp_list_pop(struct outside_network* outnet) | 
| 868 | { | 
| 869 | struct waiting_tcp* w = outnet->tcp_wait_first; | 
| 870 | if(!outnet->tcp_wait_first) return NULL((void *)0); | 
| 871 | log_assert(w->on_tcp_waiting_list); | 
| 872 | outnet->tcp_wait_first = w->next_waiting; | 
| 873 | if(outnet->tcp_wait_last == w) | 
| 874 | outnet->tcp_wait_last = NULL((void *)0); | 
| 875 | w->on_tcp_waiting_list = 0; | 
| 876 | w->next_waiting = NULL((void *)0); | 
| 877 | return w; | 
| 878 | } | 
| 879 | |
| 880 | /** add waiting_tcp element to the outnet tcp waiting list */ | 
| 881 | void | 
| 882 | outnet_waiting_tcp_list_add(struct outside_network* outnet, | 
| 883 | struct waiting_tcp* w, int set_timer) | 
| 884 | { | 
| 885 | struct timeval tv; | 
| 886 | log_assert(!w->on_tcp_waiting_list); | 
| 887 | if(w->on_tcp_waiting_list) | 
| 888 | return; | 
| 889 | w->next_waiting = NULL((void *)0); | 
| 890 | if(outnet->tcp_wait_last) | 
| 891 | outnet->tcp_wait_last->next_waiting = w; | 
| 892 | else outnet->tcp_wait_first = w; | 
| 893 | outnet->tcp_wait_last = w; | 
| 894 | w->on_tcp_waiting_list = 1; | 
| 895 | if(set_timer) { | 
| 896 | #ifndef S_SPLINT_S | 
| 897 | tv.tv_sec = w->timeout/1000; | 
| 898 | tv.tv_usec = (w->timeout%1000)*1000; | 
| 899 | #endif | 
| 900 | comm_timer_set(w->timer, &tv); | 
| 901 | } | 
| 902 | } | 
| 903 | |
| 904 | /** add waiting_tcp element as first to the outnet tcp waiting list */ | 
| 905 | void | 
| 906 | outnet_waiting_tcp_list_add_first(struct outside_network* outnet, | 
| 907 | struct waiting_tcp* w, int reset_timer) | 
| 908 | { | 
| 909 | struct timeval tv; | 
| 910 | log_assert(!w->on_tcp_waiting_list); | 
| 911 | if(w->on_tcp_waiting_list) | 
| 912 | return; | 
| 913 | w->next_waiting = outnet->tcp_wait_first; | 
| 914 | log_assert(w->next_waiting != w); | 
| 915 | if(!outnet->tcp_wait_last) | 
| 916 | outnet->tcp_wait_last = w; | 
| 917 | outnet->tcp_wait_first = w; | 
| 918 | w->on_tcp_waiting_list = 1; | 
| 919 | if(reset_timer) { | 
| 920 | #ifndef S_SPLINT_S | 
| 921 | tv.tv_sec = w->timeout/1000; | 
| 922 | tv.tv_usec = (w->timeout%1000)*1000; | 
| 923 | #endif | 
| 924 | comm_timer_set(w->timer, &tv); | 
| 925 | } | 
| 926 | log_assert( | 
| 927 | (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || | 
| 928 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); | 
| 929 | } | 
| 930 | |
| 931 | /** call callback on waiting_tcp, if not NULL */ | 
| 932 | static void | 
| 933 | waiting_tcp_callback(struct waiting_tcp* w, struct comm_point* c, int error, | 
| 934 | struct comm_reply* reply_info) | 
| 935 | { | 
| 936 | if(w && w->cb) { | 
| 937 | fptr_ok(fptr_whitelist_pending_tcp(w->cb)); | 
| 938 | (void)(*w->cb)(c, w->cb_arg, error, reply_info); | 
| 939 | } | 
| 940 | } | 
| 941 | |
| 942 | /** see if buffers can be used to service TCP queries */ | 
| 943 | static void | 
| 944 | use_free_buffer(struct outside_network* outnet) | 
| 945 | { | 
| 946 | struct waiting_tcp* w; | 
| 947 | while(outnet->tcp_wait_first && !outnet->want_to_quit) { | 
| 948 | #ifdef USE_DNSTAP | 
| 949 | struct pending_tcp* pend_tcp = NULL((void *)0); | 
| 950 | #endif | 
| 951 | struct reuse_tcp* reuse = NULL((void *)0); | 
| 952 | w = outnet_waiting_tcp_list_pop(outnet); | 
| 953 | log_assert( | 
| 954 | (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || | 
| 955 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); | 
| 956 | reuse = reuse_tcp_find(outnet, &w->addr, w->addrlen, | 
| 957 | w->ssl_upstream); | 
| 958 | /* re-select an ID when moving to a new TCP buffer */ | 
| 959 | w->id = tcp_select_id(outnet, reuse); | 
| 960 | LDNS_ID_SET(w->pkt, w->id)(sldns_write_uint16(w->pkt, w->id)); | 
| 961 | if(reuse) { | 
| 962 | log_reuse_tcp(VERB_CLIENT, "use free buffer for waiting tcp: " | 
| 963 | "found reuse", reuse); | 
| 964 | #ifdef USE_DNSTAP | 
| 965 | pend_tcp = reuse->pending; | 
| 966 | #endif | 
| 967 | reuse_tcp_lru_touch(outnet, reuse); | 
| 968 | comm_timer_disable(w->timer); | 
| 969 | w->next_waiting = (void*)reuse->pending; | 
| 970 | reuse_tree_by_id_insert(reuse, w); | 
| 971 | if(reuse->pending->query) { | 
| 972 | /* on the write wait list */ | 
| 973 | reuse_write_wait_push_back(reuse, w); | 
| 974 | } else { | 
| 975 | /* write straight away */ | 
| 976 | /* stop the timer on read of the fd */ | 
| 977 | comm_point_stop_listening(reuse->pending->c); | 
| 978 | reuse->pending->query = w; | 
| 979 | outnet_tcp_take_query_setup( | 
| 980 | reuse->pending->c->fd, reuse->pending, | 
| 981 | w); | 
| 982 | } | 
| 983 | } else if(outnet->tcp_free) { | 
| 984 | struct pending_tcp* pend = w->outnet->tcp_free; | 
| 985 | rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); | 
| 986 | pend->reuse.pending = pend; | 
| 987 | memcpy(&pend->reuse.addr, &w->addr, w->addrlen); | 
| 988 | pend->reuse.addrlen = w->addrlen; | 
| 989 | if(!outnet_tcp_take_into_use(w)) { | 
| 990 | waiting_tcp_callback(w, NULL((void *)0), NETEVENT_CLOSED-1, | 
| 991 | NULL((void *)0)); | 
| 992 | waiting_tcp_delete(w); | 
| 993 | #ifdef USE_DNSTAP | 
| 994 | w = NULL((void *)0); | 
| 995 | #endif | 
| 996 | } | 
| 997 | #ifdef USE_DNSTAP | 
| 998 | pend_tcp = pend; | 
| 999 | #endif | 
| 1000 | } else { | 
| 1001 | /* no reuse and no free buffer, put back at the start */ | 
| 1002 | outnet_waiting_tcp_list_add_first(outnet, w, 0); | 
| 1003 | break; | 
| 1004 | } | 
| 1005 | #ifdef USE_DNSTAP | 
| 1006 | if(outnet->dtenv && pend_tcp && w && w->sq && | 
| 1007 | (outnet->dtenv->log_resolver_query_messages || | 
| 1008 | outnet->dtenv->log_forwarder_query_messages)) { | 
| 1009 | sldns_buffer tmp; | 
| 1010 | sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len); | 
| 1011 | dt_msg_send_outside_query(outnet->dtenv, &w->sq->addr, | 
| 1012 | &pend_tcp->pi->addr, comm_tcp, w->sq->zone, | 
| 1013 | w->sq->zonelen, &tmp); | 
| 1014 | } | 
| 1015 | #endif | 
| 1016 | } | 
| 1017 | } | 
| 1018 | |
| 1019 | /** delete element from tree by id */ | 
| 1020 | static void | 
| 1021 | reuse_tree_by_id_delete(struct reuse_tcp* reuse, struct waiting_tcp* w) | 
| 1022 | { | 
| 1023 | #ifdef UNBOUND_DEBUG | 
| 1024 | rbnode_type* rem; | 
| 1025 | #endif | 
| 1026 | log_assert(w->id_node.key != NULL); | 
| 1027 | #ifdef UNBOUND_DEBUG | 
| 1028 | rem = | 
| 1029 | #else | 
| 1030 | (void) | 
| 1031 | #endif | 
| 1032 | rbtree_delete(&reuse->tree_by_id, w); | 
| 1033 | log_assert(rem); /* should have been there */ | 
| 1034 | w->id_node.key = NULL((void *)0); | 
| 1035 | } | 
| 1036 | |
| 1037 | /** move writewait list to go for another connection. */ | 
| 1038 | static void | 
| 1039 | reuse_move_writewait_away(struct outside_network* outnet, | 
| 1040 | struct pending_tcp* pend) | 
| 1041 | { | 
| 1042 | /* the writewait list has not been written yet, so if the | 
| 1043 | * stream was closed, they have not actually been failed, only | 
| 1044 | * the queries written. Other queries can get written to another | 
| 1045 | * stream. For upstreams that do not support multiple queries | 
| 1046 | * and answers, the stream can get closed, and then the queries | 
| 1047 | * can get written on a new socket */ | 
| 1048 | struct waiting_tcp* w; | 
| 1049 | if(pend->query && pend->query->error_count == 0 && | 
| 1050 | pend->c->tcp_write_pkt == pend->query->pkt && | 
| 1051 | pend->c->tcp_write_pkt_len == pend->query->pkt_len) { | 
| 1052 | /* since the current query is not written, it can also | 
| 1053 | * move to a free buffer */ | 
| 1054 | if(verbosity >= VERB_CLIENT && pend->query->pkt_len > 12+2+2 && | 
| 1055 | LDNS_QDCOUNT(pend->query->pkt)(sldns_read_uint16(pend->query->pkt+4)) > 0 && | 
| 1056 | dname_valid(pend->query->pkt+12, pend->query->pkt_len-12)) { | 
| 1057 | char buf[LDNS_MAX_DOMAINLEN255+1]; | 
| 1058 | dname_str(pend->query->pkt+12, buf); | 
| 1059 | verbose(VERB_CLIENT, "reuse_move_writewait_away current %s %d bytes were written", | 
| 1060 | buf, (int)pend->c->tcp_write_byte_count); | 
| 1061 | } | 
| 1062 | pend->c->tcp_write_pkt = NULL((void *)0); | 
| 1063 | pend->c->tcp_write_pkt_len = 0; | 
| 1064 | pend->c->tcp_write_and_read = 0; | 
| 1065 | pend->reuse.cp_more_read_again = 0; | 
| 1066 | pend->reuse.cp_more_write_again = 0; | 
| 1067 | pend->c->tcp_is_reading = 1; | 
| 1068 | w = pend->query; | 
| 1069 | pend->query = NULL((void *)0); | 
| 1070 | /* increase error count, so that if the next socket fails too | 
| 1071 | * the server selection is run again with this query failed | 
| 1072 | * and it can select a different server (if possible), or | 
| 1073 | * fail the query */ | 
| 1074 | w->error_count ++; | 
| 1075 | reuse_tree_by_id_delete(&pend->reuse, w); | 
| 1076 | outnet_waiting_tcp_list_add(outnet, w, 1); | 
| 1077 | } | 
| 1078 | while((w = reuse_write_wait_pop(&pend->reuse)) != NULL((void *)0)) { | 
| 1079 | if(verbosity >= VERB_CLIENT && w->pkt_len > 12+2+2 && | 
| 1080 | LDNS_QDCOUNT(w->pkt)(sldns_read_uint16(w->pkt+4)) > 0 && | 
| 1081 | dname_valid(w->pkt+12, w->pkt_len-12)) { | 
| 1082 | char buf[LDNS_MAX_DOMAINLEN255+1]; | 
| 1083 | dname_str(w->pkt+12, buf); | 
| 1084 | verbose(VERB_CLIENT, "reuse_move_writewait_away item %s", buf); | 
| 1085 | } | 
| 1086 | reuse_tree_by_id_delete(&pend->reuse, w); | 
| 1087 | outnet_waiting_tcp_list_add(outnet, w, 1); | 
| 1088 | } | 
| 1089 | } | 
| 1090 | |
| 1091 | /** remove reused element from tree and lru list */ | 
| 1092 | void | 
| 1093 | reuse_tcp_remove_tree_list(struct outside_network* outnet, | 
| 1094 | struct reuse_tcp* reuse) | 
| 1095 | { | 
| 1096 | verbose(VERB_CLIENT, "reuse_tcp_remove_tree_list"); | 
| 1097 | if(reuse->node.key) { | 
| 1098 | /* delete it from reuse tree */ | 
| 1099 | if(!rbtree_delete(&outnet->tcp_reuse, reuse)) { | 
| 1100 | /* should not be possible, it should be there */ | 
| 1101 | char buf[256]; | 
| 1102 | addr_to_str(&reuse->addr, reuse->addrlen, buf, | 
| 1103 | sizeof(buf)); | 
| 1104 | log_err("reuse tcp delete: node not present, internal error, %s ssl %d lru %d", buf, reuse->is_ssl, reuse->item_on_lru_list); | 
| 1105 | } | 
| 1106 | reuse->node.key = NULL((void *)0); | 
| 1107 | /* defend against loops on broken tree by zeroing the | 
| 1108 | * rbnode structure */ | 
| 1109 | memset(&reuse->node, 0, sizeof(reuse->node)); | 
| 1110 | } | 
| 1111 | /* delete from reuse list */ | 
| 1112 | if(reuse->item_on_lru_list) { | 
| 1113 | if(reuse->lru_prev) { | 
| 1114 | /* assert that members of the lru list are waiting | 
| 1115 | * and thus have a pending pointer to the struct */ | 
| 1116 | log_assert(reuse->lru_prev->pending); | 
| 1117 | reuse->lru_prev->lru_next = reuse->lru_next; | 
| 1118 | log_assert(reuse->lru_prev->lru_next != reuse->lru_prev); | 
| 1119 | } else { | 
| 1120 | log_assert(!reuse->lru_next || reuse->lru_next->pending); | 
| 1121 | outnet->tcp_reuse_first = reuse->lru_next; | 
| 1122 | log_assert(!outnet->tcp_reuse_first || | 
| 1123 | (outnet->tcp_reuse_first != | 
| 1124 | outnet->tcp_reuse_first->lru_next && | 
| 1125 | outnet->tcp_reuse_first != | 
| 1126 | outnet->tcp_reuse_first->lru_prev)); | 
| 1127 | } | 
| 1128 | if(reuse->lru_next) { | 
| 1129 | /* assert that members of the lru list are waiting | 
| 1130 | * and thus have a pending pointer to the struct */ | 
| 1131 | log_assert(reuse->lru_next->pending); | 
| 1132 | reuse->lru_next->lru_prev = reuse->lru_prev; | 
| 1133 | log_assert(reuse->lru_next->lru_prev != reuse->lru_next); | 
| 1134 | } else { | 
| 1135 | log_assert(!reuse->lru_prev || reuse->lru_prev->pending); | 
| 1136 | outnet->tcp_reuse_last = reuse->lru_prev; | 
| 1137 | log_assert(!outnet->tcp_reuse_last || | 
| 1138 | (outnet->tcp_reuse_last != | 
| 1139 | outnet->tcp_reuse_last->lru_next && | 
| 1140 | outnet->tcp_reuse_last != | 
| 1141 | outnet->tcp_reuse_last->lru_prev)); | 
| 1142 | } | 
| 1143 | log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) || | 
| 1144 | (outnet->tcp_reuse_first && outnet->tcp_reuse_last)); | 
| 1145 | reuse->item_on_lru_list = 0; | 
| 1146 | reuse->lru_next = NULL((void *)0); | 
| 1147 | reuse->lru_prev = NULL((void *)0); | 
| 1148 | } | 
| 1149 | reuse->pending = NULL((void *)0); | 
| 1150 | } | 
| 1151 | |
| 1152 | /** helper function that deletes an element from the tree of readwait | 
| 1153 | * elements in tcp reuse structure */ | 
| 1154 | static void reuse_del_readwait_elem(rbnode_type* node, void* ATTR_UNUSED(arg)arg __attribute__((unused))) | 
| 1155 | { | 
| 1156 | struct waiting_tcp* w = (struct waiting_tcp*)node->key; | 
| 1157 | waiting_tcp_delete(w); | 
| 1158 | } | 
| 1159 | |
| 1160 | /** delete readwait waiting_tcp elements, deletes the elements in the list */ | 
| 1161 | void reuse_del_readwait(rbtree_type* tree_by_id) | 
| 1162 | { | 
| 1163 | if(tree_by_id->root == NULL((void *)0) || | 
| 1164 | tree_by_id->root == RBTREE_NULL&rbtree_null_node) | 
| 1165 | return; | 
| 1166 | traverse_postorder(tree_by_id, &reuse_del_readwait_elem, NULL((void *)0)); | 
| 1167 | rbtree_init(tree_by_id, reuse_id_cmp); | 
| 1168 | } | 
| 1169 | |
| 1170 | /** decommission a tcp buffer, closes commpoint and frees waiting_tcp entry */ | 
| 1171 | static void | 
| 1172 | decommission_pending_tcp(struct outside_network* outnet, | 
| 1173 | struct pending_tcp* pend) | 
| 1174 | { | 
| 1175 | verbose(VERB_CLIENT, "decommission_pending_tcp"); | 
| 1176 | /* A certain code path can lead here twice for the same pending_tcp | 
| 1177 | * creating a loop in the free pending_tcp list. */ | 
| 1178 | if(outnet->tcp_free != pend) { | 
| 1179 | pend->next_free = outnet->tcp_free; | 
| 1180 | outnet->tcp_free = pend; | 
| 1181 | } | 
| 1182 | if(pend->reuse.node.key) { | 
| 1183 | /* needs unlink from the reuse tree to get deleted */ | 
| 1184 | reuse_tcp_remove_tree_list(outnet, &pend->reuse); | 
| 1185 | } | 
| 1186 | /* free SSL structure after remove from outnet tcp reuse tree, | 
| 1187 | * because the c->ssl null or not is used for sorting in the tree */ | 
| 1188 | if(pend->c->ssl) { | 
| 1189 | #ifdef HAVE_SSL | 
| 1190 | SSL_shutdown(pend->c->ssl); | 
| 1191 | SSL_free(pend->c->ssl); | 
| 1192 | pend->c->ssl = NULL((void *)0); | 
| 1193 | #endif | 
| 1194 | } | 
| 1195 | comm_point_close(pend->c); | 
| 1196 | pend->reuse.cp_more_read_again = 0; | 
| 1197 | pend->reuse.cp_more_write_again = 0; | 
| 1198 | /* unlink the query and writewait list, it is part of the tree | 
| 1199 | * nodes and is deleted */ | 
| 1200 | pend->query = NULL((void *)0); | 
| 1201 | pend->reuse.write_wait_first = NULL((void *)0); | 
| 1202 | pend->reuse.write_wait_last = NULL((void *)0); | 
| 1203 | reuse_del_readwait(&pend->reuse.tree_by_id); | 
| 1204 | } | 
| 1205 | |
| 1206 | /** perform failure callbacks for waiting queries in reuse read rbtree */ | 
| 1207 | static void reuse_cb_readwait_for_failure(rbtree_type* tree_by_id, int err) | 
| 1208 | { | 
| 1209 | rbnode_type* node; | 
| 1210 | if(tree_by_id->root == NULL((void *)0) || | 
| 1211 | tree_by_id->root == RBTREE_NULL&rbtree_null_node) | 
| 1212 | return; | 
| 1213 | node = rbtree_first(tree_by_id); | 
| 1214 | while(node && node != RBTREE_NULL&rbtree_null_node) { | 
| 1215 | struct waiting_tcp* w = (struct waiting_tcp*)node->key; | 
| 1216 | waiting_tcp_callback(w, NULL((void *)0), err, NULL((void *)0)); | 
| 1217 | node = rbtree_next(node); | 
| 1218 | } | 
| 1219 | } | 
| 1220 | |
| 1221 | /** mark the entry for being in the cb_and_decommission stage */ | 
| 1222 | static void mark_for_cb_and_decommission(rbnode_type* node, | 
| 1223 | void* ATTR_UNUSED(arg)arg __attribute__((unused))) | 
| 1224 | { | 
| 1225 | struct waiting_tcp* w = (struct waiting_tcp*)node->key; | 
| 1226 | /* Mark the waiting_tcp to signal later code (serviced_delete) that | 
| 1227 | * this item is part of the backed up tree_by_id and will be deleted | 
| 1228 | * later. */ | 
| 1229 | w->in_cb_and_decommission = 1; | 
| 1230 | /* Mark the serviced_query for deletion so that later code through | 
| 1231 | * callbacks (iter_clear .. outnet_serviced_query_stop) won't | 
| 1232 | * prematurely delete it. */ | 
| 1233 | if(w->cb) | 
| 1234 | ((struct serviced_query*)w->cb_arg)->to_be_deleted = 1; | 
| 1235 | } | 
| 1236 | |
| 1237 | /** perform callbacks for failure and also decommission pending tcp. | 
| 1238 | * the callbacks remove references in sq->pending to the waiting_tcp | 
| 1239 | * members of the tree_by_id in the pending tcp. The pending_tcp is | 
| 1240 | * removed before the callbacks, so that the callbacks do not modify | 
| 1241 | * the pending_tcp due to its reference in the outside_network reuse tree */ | 
| 1242 | static void reuse_cb_and_decommission(struct outside_network* outnet, | 
| 1243 | struct pending_tcp* pend, int error) | 
| 1244 | { | 
| 1245 | rbtree_type store; | 
| 1246 | store = pend->reuse.tree_by_id; | 
| 1247 | pend->query = NULL((void *)0); | 
| 1248 | rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); | 
| 1249 | pend->reuse.write_wait_first = NULL((void *)0); | 
| 1250 | pend->reuse.write_wait_last = NULL((void *)0); | 
| 1251 | decommission_pending_tcp(outnet, pend); | 
| 1252 | if(store.root != NULL((void *)0) && store.root != RBTREE_NULL&rbtree_null_node) { | 
| 1253 | traverse_postorder(&store, &mark_for_cb_and_decommission, NULL((void *)0)); | 
| 1254 | } | 
| 1255 | reuse_cb_readwait_for_failure(&store, error); | 
| 1256 | reuse_del_readwait(&store); | 
| 1257 | } | 
| 1258 | |
| 1259 | /** set timeout on tcp fd and setup read event to catch incoming dns msgs */ | 
| 1260 | static void | 
| 1261 | reuse_tcp_setup_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout) | 
| 1262 | { | 
| 1263 | log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_timeout", &pend_tcp->reuse); | 
| 1264 | comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout); | 
| 1265 | } | 
| 1266 | |
| 1267 | /** set timeout on tcp fd and setup read event to catch incoming dns msgs */ | 
| 1268 | static void | 
| 1269 | reuse_tcp_setup_read_and_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout) | 
| 1270 | { | 
| 1271 | log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_readtimeout", &pend_tcp->reuse); | 
| 1272 | sldns_buffer_clear(pend_tcp->c->buffer); | 
| 1273 | pend_tcp->c->tcp_is_reading = 1; | 
| 1274 | pend_tcp->c->tcp_byte_count = 0; | 
| 1275 | comm_point_stop_listening(pend_tcp->c); | 
| 1276 | comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout); | 
| 1277 | } | 
| 1278 | |
| 1279 | int | 
| 1280 | outnet_tcp_cb(struct comm_point* c, void* arg, int error, | 
| 1281 | struct comm_reply *reply_info) | 
| 1282 | { | 
| 1283 | struct pending_tcp* pend = (struct pending_tcp*)arg; | 
| 1284 | struct outside_network* outnet = pend->reuse.outnet; | 
| 1285 | struct waiting_tcp* w = NULL((void *)0); | 
| 1286 | log_assert(pend->reuse.item_on_lru_list && pend->reuse.node.key); | 
| 1287 | verbose(VERB_ALGO, "outnettcp cb"); | 
| 1288 | if(error == NETEVENT_TIMEOUT-2) { | 
| 1289 | if(pend->c->tcp_write_and_read) { | 
| 1290 | verbose(VERB_QUERY, "outnettcp got tcp timeout " | 
| 1291 | "for read, ignored because write underway"); | 
| 1292 | /* if we are writing, ignore readtimer, wait for write timer | 
| 1293 | * or write is done */ | 
| 1294 | return 0; | 
| 1295 | } else { | 
| 1296 | verbose(VERB_QUERY, "outnettcp got tcp timeout %s", | 
| 1297 | (pend->reuse.tree_by_id.count?"for reading pkt": | 
| 1298 | "for keepalive for reuse")); | 
| 1299 | } | 
| 1300 | /* must be timeout for reading or keepalive reuse, | 
| 1301 | * close it. */ | 
| 1302 | reuse_tcp_remove_tree_list(outnet, &pend->reuse); | 
| 1303 | } else if(error == NETEVENT_PKT_WRITTEN-5) { | 
| 1304 | /* the packet we want to write has been written. */ | 
| 1305 | verbose(VERB_ALGO, "outnet tcp pkt was written event"); | 
| 1306 | log_assert(c == pend->c); | 
| 1307 | log_assert(pend->query->pkt == pend->c->tcp_write_pkt); | 
| 1308 | log_assert(pend->query->pkt_len == pend->c->tcp_write_pkt_len); | 
| 1309 | pend->c->tcp_write_pkt = NULL((void *)0); | 
| 1310 | pend->c->tcp_write_pkt_len = 0; | 
| 1311 | /* the pend.query is already in tree_by_id */ | 
| 1312 | log_assert(pend->query->id_node.key); | 
| 1313 | pend->query = NULL((void *)0); | 
| 1314 | /* setup to write next packet or setup read timeout */ | 
| 1315 | if(pend->reuse.write_wait_first) { | 
| 1316 | verbose(VERB_ALGO, "outnet tcp setup next pkt"); | 
| 1317 | /* we can write it straight away perhaps, set flag | 
| 1318 | * because this callback called after a tcp write | 
| 1319 | * succeeded and likely more buffer space is available | 
| 1320 | * and we can write some more. */ | 
| 1321 | pend->reuse.cp_more_write_again = 1; | 
| 1322 | pend->query = reuse_write_wait_pop(&pend->reuse); | 
| 1323 | comm_point_stop_listening(pend->c); | 
| 1324 | outnet_tcp_take_query_setup(pend->c->fd, pend, | 
| 1325 | pend->query); | 
| 1326 | } else { | 
| 1327 | verbose(VERB_ALGO, "outnet tcp writes done, wait"); | 
| 1328 | pend->c->tcp_write_and_read = 0; | 
| 1329 | pend->reuse.cp_more_read_again = 0; | 
| 1330 | pend->reuse.cp_more_write_again = 0; | 
| 1331 | pend->c->tcp_is_reading = 1; | 
| 1332 | comm_point_stop_listening(pend->c); | 
| 1333 | reuse_tcp_setup_timeout(pend, outnet->tcp_reuse_timeout); | 
| 1334 | } | 
| 1335 | return 0; | 
| 1336 | } else if(error != NETEVENT_NOERROR0) { | 
| 1337 | verbose(VERB_QUERY, "outnettcp got tcp error %d", error); | 
| 1338 | reuse_move_writewait_away(outnet, pend); | 
| 1339 | /* pass error below and exit */ | 
| 1340 | } else { | 
| 1341 | /* check ID */ | 
| 1342 | if(sldns_buffer_limit(c->buffer) < sizeof(uint16_t)) { | 
| 1343 | log_addr(VERB_QUERY, | 
| 1344 | "outnettcp: bad ID in reply, too short, from:", | 
| 1345 | &pend->reuse.addr, pend->reuse.addrlen); | 
| 1346 | error = NETEVENT_CLOSED-1; | 
| 1347 | } else { | 
| 1348 | uint16_t id = LDNS_ID_WIRE(sldns_buffer_begin((sldns_read_uint16(sldns_buffer_begin( c->buffer))) | 
| 1349 | c->buffer))(sldns_read_uint16(sldns_buffer_begin( c->buffer))); | 
| 1350 | /* find the query the reply is for */ | 
| 1351 | w = reuse_tcp_by_id_find(&pend->reuse, id); | 
| 1352 | /* Make sure that the reply we got is at least for a | 
| 1353 | * sent query with the same ID; the waiting_tcp that | 
| 1354 | * gets a reply is assumed to not be waiting to be | 
| 1355 | * sent. */ | 
| 1356 | if(w && (w->on_tcp_waiting_list || w->write_wait_queued)) | 
| 1357 | w = NULL((void *)0); | 
| 1358 | } | 
| 1359 | } | 
| 1360 | if(error == NETEVENT_NOERROR0 && !w) { | 
| 1361 | /* no struct waiting found in tree, no reply to call */ | 
| 1362 | log_addr(VERB_QUERY, "outnettcp: bad ID in reply, from:", | 
| 1363 | &pend->reuse.addr, pend->reuse.addrlen); | 
| 1364 | error = NETEVENT_CLOSED-1; | 
| 1365 | } | 
| 1366 | if(error == NETEVENT_NOERROR0) { | 
| 1367 | /* add to reuse tree so it can be reused, if not a failure. | 
| 1368 | * This is possible if the state machine wants to make a tcp | 
| 1369 | * query again to the same destination. */ | 
| 1370 | if(outnet->tcp_reuse.count < outnet->tcp_reuse_max) { | 
| 1371 | (void)reuse_tcp_insert(outnet, pend); | 
| 1372 | } | 
| 1373 | } | 
| 1374 | if(w) { | 
| 1375 | log_assert(!w->on_tcp_waiting_list); | 
| 1376 | log_assert(!w->write_wait_queued); | 
| 1377 | reuse_tree_by_id_delete(&pend->reuse, w); | 
| 1378 | verbose(VERB_CLIENT, "outnet tcp callback query err %d buflen %d", | 
| 1379 | error, (int)sldns_buffer_limit(c->buffer)); | 
| 1380 | waiting_tcp_callback(w, c, error, reply_info); | 
| 1381 | waiting_tcp_delete(w); | 
| 1382 | } | 
| 1383 | verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb"); | 
| 1384 | if(error == NETEVENT_NOERROR0 && pend->reuse.node.key) { | 
| 1385 | verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: keep it"); | 
| 1386 | /* it is in the reuse_tcp tree, with other queries, or | 
| 1387 | * on the empty list. do not decommission it */ | 
| 1388 | /* if there are more outstanding queries, we could try to | 
| 1389 | * read again, to see if it is on the input, | 
| 1390 | * because this callback called after a successful read | 
| 1391 | * and there could be more bytes to read on the input */ | 
| 1392 | if(pend->reuse.tree_by_id.count != 0) | 
| 1393 | pend->reuse.cp_more_read_again = 1; | 
| 1394 | reuse_tcp_setup_read_and_timeout(pend, outnet->tcp_reuse_timeout); | 
| 1395 | return 0; | 
| 1396 | } | 
| 1397 | verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: decommission it"); | 
| 1398 | /* no queries on it, no space to keep it. or timeout or closed due | 
| 1399 | * to error. Close it */ | 
| 1400 | reuse_cb_and_decommission(outnet, pend, (error==NETEVENT_TIMEOUT-2? | 
| 1401 | NETEVENT_TIMEOUT-2:NETEVENT_CLOSED-1)); | 
| 1402 | use_free_buffer(outnet); | 
| 1403 | return 0; | 
| 1404 | } | 
| 1405 | |
| 1406 | /** lower use count on pc, see if it can be closed */ | 
| 1407 | static void | 
| 1408 | portcomm_loweruse(struct outside_network* outnet, struct port_comm* pc) | 
| 1409 | { | 
| 1410 | struct port_if* pif; | 
| 1411 | pc->num_outstanding--; | 
| 1412 | if(pc->num_outstanding > 0) { | 
| 1413 | return; | 
| 1414 | } | 
| 1415 | /* close it and replace in unused list */ | 
| 1416 | verbose(VERB_ALGO, "close of port %d", pc->number); | 
| 1417 | comm_point_close(pc->cp); | 
| 1418 | pif = pc->pif; | 
| 1419 | log_assert(pif->inuse > 0); | 
| 1420 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 | 
| 1421 | pif->avail_ports[pif->avail_total - pif->inuse] = pc->number; | 
| 1422 | #endif | 
| 1423 | pif->inuse--; | 
| 1424 | pif->out[pc->index] = pif->out[pif->inuse]; | 
| 1425 | pif->out[pc->index]->index = pc->index; | 
| 1426 | pc->next = outnet->unused_fds; | 
| 1427 | outnet->unused_fds = pc; | 
| 1428 | } | 
| 1429 | |
| 1430 | /** try to send waiting UDP queries */ | 
| 1431 | static void | 
| 1432 | outnet_send_wait_udp(struct outside_network* outnet) | 
| 1433 | { | 
| 1434 | struct pending* pend; | 
| 1435 | /* process waiting queries */ | 
| 1436 | while(outnet->udp_wait_first && outnet->unused_fds | 
| 1437 | && !outnet->want_to_quit) { | 
| 1438 | pend = outnet->udp_wait_first; | 
| 1439 | outnet->udp_wait_first = pend->next_waiting; | 
| 1440 | if(!pend->next_waiting) outnet->udp_wait_last = NULL((void *)0); | 
| 1441 | sldns_buffer_clear(outnet->udp_buff); | 
| 1442 | sldns_buffer_write(outnet->udp_buff, pend->pkt, pend->pkt_len); | 
| 1443 | sldns_buffer_flip(outnet->udp_buff); | 
| 1444 | free(pend->pkt); /* freeing now makes get_mem correct */ | 
| 1445 | pend->pkt = NULL((void *)0); | 
| 1446 | pend->pkt_len = 0; | 
| 1447 | log_assert(!pend->sq->busy); | 
| 1448 | pend->sq->busy = 1; | 
| 1449 | if(!randomize_and_send_udp(pend, outnet->udp_buff, | 
| 1450 | pend->timeout)) { | 
| 1451 | /* callback error on pending */ | 
| 1452 | if(pend->cb) { | 
| 1453 | fptr_ok(fptr_whitelist_pending_udp(pend->cb)); | 
| 1454 | (void)(*pend->cb)(outnet->unused_fds->cp, pend->cb_arg, | 
| 1455 | NETEVENT_CLOSED-1, NULL((void *)0)); | 
| 1456 | } | 
| 1457 | pending_delete(outnet, pend); | 
| 1458 | } else { | 
| 1459 | pend->sq->busy = 0; | 
| 1460 | } | 
| 1461 | } | 
| 1462 | } | 
| 1463 | |
| 1464 | int | 
| 1465 | outnet_udp_cb(struct comm_point* c, void* arg, int error, | 
| 1466 | struct comm_reply *reply_info) | 
| 1467 | { | 
| 1468 | struct outside_network* outnet = (struct outside_network*)arg; | 
| 1469 | struct pending key; | 
| 1470 | struct pending* p; | 
| 1471 | verbose(VERB_ALGO, "answer cb"); | 
| 1472 | |
| 1473 | if(error != NETEVENT_NOERROR0) { | 
| 1474 | verbose(VERB_QUERY, "outnetudp got udp error %d", error); | 
| 1475 | return 0; | 
| 1476 | } | 
| 1477 | if(sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE12) { | 
| 1478 | verbose(VERB_QUERY, "outnetudp udp too short"); | 
| 1479 | return 0; | 
| 1480 | } | 
| 1481 | log_assert(reply_info); | 
| 1482 | |
| 1483 | /* setup lookup key */ | 
| 1484 | key.id = (unsigned)LDNS_ID_WIRE(sldns_buffer_begin(c->buffer))(sldns_read_uint16(sldns_buffer_begin(c->buffer))); | 
| 1485 | memcpy(&key.addr, &reply_info->remote_addr, reply_info->remote_addrlen); | 
| 1486 | key.addrlen = reply_info->remote_addrlen; | 
| 1487 | verbose(VERB_ALGO, "Incoming reply id = %4.4x", key.id); | 
| 1488 | log_addr(VERB_ALGO, "Incoming reply addr =", | 
| 1489 | &reply_info->remote_addr, reply_info->remote_addrlen); | 
| 1490 | |
| 1491 | /* find it, see if this thing is a valid query response */ | 
| 1492 | verbose(VERB_ALGO, "lookup size is %d entries", (int)outnet->pending->count); | 
| 1493 | p = (struct pending*)rbtree_search(outnet->pending, &key); | 
| 1494 | if(!p) { | 
| 1495 | verbose(VERB_QUERY, "received unwanted or unsolicited udp reply dropped."); | 
| 1496 | log_buf(VERB_ALGO, "dropped message", c->buffer); | 
| 1497 | outnet->unwanted_replies++; | 
| 1498 | if(outnet->unwanted_threshold && ++outnet->unwanted_total | 
| 1499 | >= outnet->unwanted_threshold) { | 
| 1500 | log_warn("unwanted reply total reached threshold (%u)" | 
| 1501 | " you may be under attack." | 
| 1502 | " defensive action: clearing the cache", | 
| 1503 | (unsigned)outnet->unwanted_threshold); | 
| 1504 | fptr_ok(fptr_whitelist_alloc_cleanup( | 
| 1505 | outnet->unwanted_action)); | 
| 1506 | (*outnet->unwanted_action)(outnet->unwanted_param); | 
| 1507 | outnet->unwanted_total = 0; | 
| 1508 | } | 
| 1509 | return 0; | 
| 1510 | } | 
| 1511 | |
| 1512 | verbose(VERB_ALGO, "received udp reply."); | 
| 1513 | log_buf(VERB_ALGO, "udp message", c->buffer); | 
| 1514 | if(p->pc->cp != c) { | 
| 1515 | verbose(VERB_QUERY, "received reply id,addr on wrong port. " | 
| 1516 | "dropped."); | 
| 1517 | outnet->unwanted_replies++; | 
| 1518 | if(outnet->unwanted_threshold && ++outnet->unwanted_total | 
| 1519 | >= outnet->unwanted_threshold) { | 
| 1520 | log_warn("unwanted reply total reached threshold (%u)" | 
| 1521 | " you may be under attack." | 
| 1522 | " defensive action: clearing the cache", | 
| 1523 | (unsigned)outnet->unwanted_threshold); | 
| 1524 | fptr_ok(fptr_whitelist_alloc_cleanup( | 
| 1525 | outnet->unwanted_action)); | 
| 1526 | (*outnet->unwanted_action)(outnet->unwanted_param); | 
| 1527 | outnet->unwanted_total = 0; | 
| 1528 | } | 
| 1529 | return 0; | 
| 1530 | } | 
| 1531 | comm_timer_disable(p->timer); | 
| 1532 | verbose(VERB_ALGO, "outnet handle udp reply"); | 
| 1533 | /* delete from tree first in case callback creates a retry */ | 
| 1534 | (void)rbtree_delete(outnet->pending, p->node.key); | 
| 1535 | if(p->cb) { | 
| 1536 | fptr_ok(fptr_whitelist_pending_udp(p->cb)); | 
| 1537 | (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_NOERROR0, reply_info); | 
| 1538 | } | 
| 1539 | portcomm_loweruse(outnet, p->pc); | 
| 1540 | pending_delete(NULL((void *)0), p); | 
| 1541 | outnet_send_wait_udp(outnet); | 
| 1542 | return 0; | 
| 1543 | } | 
| 1544 | |
| 1545 | /** calculate number of ip4 and ip6 interfaces*/ | 
| 1546 | static void | 
| 1547 | calc_num46(char** ifs, int num_ifs, int do_ip4, int do_ip6, | 
| 1548 | int* num_ip4, int* num_ip6) | 
| 1549 | { | 
| 1550 | int i; | 
| 1551 | *num_ip4 = 0; | 
| 1552 | *num_ip6 = 0; | 
| 1553 | if(num_ifs <= 0) { | 
| 1554 | if(do_ip4) | 
| 1555 | *num_ip4 = 1; | 
| 1556 | if(do_ip6) | 
| 1557 | *num_ip6 = 1; | 
| 1558 | return; | 
| 1559 | } | 
| 1560 | for(i=0; i<num_ifs; i++) | 
| 1561 | { | 
| 1562 | if(str_is_ip6(ifs[i])) { | 
| 1563 | if(do_ip6) | 
| 1564 | (*num_ip6)++; | 
| 1565 | } else { | 
| 1566 | if(do_ip4) | 
| 1567 | (*num_ip4)++; | 
| 1568 | } | 
| 1569 | } | 
| 1570 | } | 
| 1571 | |
| 1572 | void | 
| 1573 | pending_udp_timer_delay_cb(void* arg) | 
| 1574 | { | 
| 1575 | struct pending* p = (struct pending*)arg; | 
| 1576 | struct outside_network* outnet = p->outnet; | 
| 1577 | verbose(VERB_ALGO, "timeout udp with delay"); | 
| 1578 | portcomm_loweruse(outnet, p->pc); | 
| 1579 | pending_delete(outnet, p); | 
| 1580 | outnet_send_wait_udp(outnet); | 
| 1581 | } | 
| 1582 | |
| 1583 | void | 
| 1584 | pending_udp_timer_cb(void *arg) | 
| 1585 | { | 
| 1586 | struct pending* p = (struct pending*)arg; | 
| 1587 | struct outside_network* outnet = p->outnet; | 
| 1588 | /* it timed out */ | 
| 1589 | verbose(VERB_ALGO, "timeout udp"); | 
| 1590 | if(p->cb) { | 
| 1591 | fptr_ok(fptr_whitelist_pending_udp(p->cb)); | 
| 1592 | (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_TIMEOUT-2, NULL((void *)0)); | 
| 1593 | } | 
| 1594 | /* if delayclose, keep port open for a longer time. | 
| 1595 | * But if the udpwaitlist exists, then we are struggling to | 
| 1596 | * keep up with demand for sockets, so do not wait, but service | 
| 1597 | * the customer (customer service more important than portICMPs) */ | 
| 1598 | if(outnet->delayclose && !outnet->udp_wait_first) { | 
| 1599 | p->cb = NULL((void *)0); | 
| 1600 | p->timer->callback = &pending_udp_timer_delay_cb; | 
| 1601 | comm_timer_set(p->timer, &outnet->delay_tv); | 
| 1602 | return; | 
| 1603 | } | 
| 1604 | portcomm_loweruse(outnet, p->pc); | 
| 1605 | pending_delete(outnet, p); | 
| 1606 | outnet_send_wait_udp(outnet); | 
| 1607 | } | 
| 1608 | |
| 1609 | /** create pending_tcp buffers */ | 
| 1610 | static int | 
| 1611 | create_pending_tcp(struct outside_network* outnet, size_t bufsize) | 
| 1612 | { | 
| 1613 | size_t i; | 
| 1614 | if(outnet->num_tcp == 0) | 
| 1615 | return 1; /* no tcp needed, nothing to do */ | 
| 1616 | if(!(outnet->tcp_conns = (struct pending_tcp **)calloc( | 
| 1617 | outnet->num_tcp, sizeof(struct pending_tcp*)))) | 
| 1618 | return 0; | 
| 1619 | for(i=0; i<outnet->num_tcp; i++) { | 
| 1620 | if(!(outnet->tcp_conns[i] = (struct pending_tcp*)calloc(1, | 
| 1621 | sizeof(struct pending_tcp)))) | 
| 1622 | return 0; | 
| 1623 | outnet->tcp_conns[i]->next_free = outnet->tcp_free; | 
| 1624 | outnet->tcp_free = outnet->tcp_conns[i]; | 
| 1625 | outnet->tcp_conns[i]->c = comm_point_create_tcp_out( | 
| 1626 | outnet->base, bufsize, outnet_tcp_cb, | 
| 1627 | outnet->tcp_conns[i]); | 
| 1628 | if(!outnet->tcp_conns[i]->c) | 
| 1629 | return 0; | 
| 1630 | } | 
| 1631 | return 1; | 
| 1632 | } | 
| 1633 | |
| 1634 | /** setup an outgoing interface, ready address */ | 
| 1635 | static int setup_if(struct port_if* pif, const char* addrstr, | 
| 1636 | int* avail, int numavail, size_t numfd) | 
| 1637 | { | 
| 1638 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 | 
| 1639 | pif->avail_total = numavail; | 
| 1640 | pif->avail_ports = (int*)memdup(avail, (size_t)numavail*sizeof(int)); | 
| 1641 | if(!pif->avail_ports) | 
| 1642 | return 0; | 
| 1643 | #endif | 
| 1644 | if(!ipstrtoaddr(addrstr, UNBOUND_DNS_PORT53, &pif->addr, &pif->addrlen) && | 
| 1645 | !netblockstrtoaddr(addrstr, UNBOUND_DNS_PORT53, | 
| 1646 | &pif->addr, &pif->addrlen, &pif->pfxlen)) | 
| 1647 | return 0; | 
| 1648 | pif->maxout = (int)numfd; | 
| 1649 | pif->inuse = 0; | 
| 1650 | pif->out = (struct port_comm**)calloc(numfd, | 
| 1651 | sizeof(struct port_comm*)); | 
| 1652 | if(!pif->out) | 
| 1653 | return 0; | 
| 1654 | return 1; | 
| 1655 | } | 
| 1656 | |
| 1657 | struct outside_network* | 
| 1658 | outside_network_create(struct comm_base *base, size_t bufsize, | 
| 1659 | size_t num_ports, char** ifs, int num_ifs, int do_ip4, | 
| 1660 | int do_ip6, size_t num_tcp, int dscp, struct infra_cache* infra, | 
| 1661 | struct ub_randstate* rnd, int use_caps_for_id, int* availports, | 
| 1662 | int numavailports, size_t unwanted_threshold, int tcp_mss, | 
| 1663 | void (*unwanted_action)(void*), void* unwanted_param, int do_udp, | 
| 1664 | void* sslctx, int delayclose, int tls_use_sni, struct dt_env* dtenv, | 
| 1665 | int udp_connect, int max_reuse_tcp_queries, int tcp_reuse_timeout, | 
| 1666 | int tcp_auth_query_timeout) | 
| 1667 | { | 
| 1668 | struct outside_network* outnet = (struct outside_network*) | 
| 1669 | calloc(1, sizeof(struct outside_network)); | 
| 1670 | size_t k; | 
| 1671 | if(!outnet) { | 
| 1672 | log_err("malloc failed"); | 
| 1673 | return NULL((void *)0); | 
| 1674 | } | 
| 1675 | comm_base_timept(base, &outnet->now_secs, &outnet->now_tv); | 
| 1676 | outnet->base = base; | 
| 1677 | outnet->num_tcp = num_tcp; | 
| 1678 | outnet->max_reuse_tcp_queries = max_reuse_tcp_queries; | 
| 1679 | outnet->tcp_reuse_timeout= tcp_reuse_timeout; | 
| 1680 | outnet->tcp_auth_query_timeout = tcp_auth_query_timeout; | 
| 1681 | outnet->num_tcp_outgoing = 0; | 
| 1682 | outnet->num_udp_outgoing = 0; | 
| 1683 | outnet->infra = infra; | 
| 1684 | outnet->rnd = rnd; | 
| 1685 | outnet->sslctx = sslctx; | 
| 1686 | outnet->tls_use_sni = tls_use_sni; | 
| 1687 | #ifdef USE_DNSTAP | 
| 1688 | outnet->dtenv = dtenv; | 
| 1689 | #else | 
| 1690 | (void)dtenv; | 
| 1691 | #endif | 
| 1692 | outnet->svcd_overhead = 0; | 
| 1693 | outnet->want_to_quit = 0; | 
| 1694 | outnet->unwanted_threshold = unwanted_threshold; | 
| 1695 | outnet->unwanted_action = unwanted_action; | 
| 1696 | outnet->unwanted_param = unwanted_param; | 
| 1697 | outnet->use_caps_for_id = use_caps_for_id; | 
| 1698 | outnet->do_udp = do_udp; | 
| 1699 | outnet->tcp_mss = tcp_mss; | 
| 1700 | outnet->ip_dscp = dscp; | 
| 1701 | #ifndef S_SPLINT_S | 
| 1702 | if(delayclose) { | 
| 1703 | outnet->delayclose = 1; | 
| 1704 | outnet->delay_tv.tv_sec = delayclose/1000; | 
| 1705 | outnet->delay_tv.tv_usec = (delayclose%1000)*1000; | 
| 1706 | } | 
| 1707 | #endif | 
| 1708 | if(udp_connect) { | 
| 1709 | outnet->udp_connect = 1; | 
| 1710 | } | 
| 1711 | if(numavailports == 0 || num_ports == 0) { | 
| 1712 | log_err("no outgoing ports available"); | 
| 1713 | outside_network_delete(outnet); | 
| 1714 | return NULL((void *)0); | 
| 1715 | } | 
| 1716 | #ifndef INET6 | 
| 1717 | do_ip6 = 0; | 
| 1718 | #endif | 
| 1719 | calc_num46(ifs, num_ifs, do_ip4, do_ip6, | 
| 1720 | &outnet->num_ip4, &outnet->num_ip6); | 
| 1721 | if(outnet->num_ip4 != 0) { | 
| 1722 | if(!(outnet->ip4_ifs = (struct port_if*)calloc( | 
| 1723 | (size_t)outnet->num_ip4, sizeof(struct port_if)))) { | 
| 1724 | log_err("malloc failed"); | 
| 1725 | outside_network_delete(outnet); | 
| 1726 | return NULL((void *)0); | 
| 1727 | } | 
| 1728 | } | 
| 1729 | if(outnet->num_ip6 != 0) { | 
| 1730 | if(!(outnet->ip6_ifs = (struct port_if*)calloc( | 
| 1731 | (size_t)outnet->num_ip6, sizeof(struct port_if)))) { | 
| 1732 | log_err("malloc failed"); | 
| 1733 | outside_network_delete(outnet); | 
| 1734 | return NULL((void *)0); | 
| 1735 | } | 
| 1736 | } | 
| 1737 | if( !(outnet->udp_buff = sldns_buffer_new(bufsize)) || | 
| 1738 | !(outnet->pending = rbtree_create(pending_cmp)) || | 
| 1739 | !(outnet->serviced = rbtree_create(serviced_cmp)) || | 
| 1740 | !create_pending_tcp(outnet, bufsize)) { | 
| 1741 | log_err("malloc failed"); | 
| 1742 | outside_network_delete(outnet); | 
| 1743 | return NULL((void *)0); | 
| 1744 | } | 
| 1745 | rbtree_init(&outnet->tcp_reuse, reuse_cmp); | 
| 1746 | outnet->tcp_reuse_max = num_tcp; | 
| 1747 | |
| 1748 | /* allocate commpoints */ | 
| 1749 | for(k=0; k<num_ports; k++) { | 
| 1750 | struct port_comm* pc; | 
| 1751 | pc = (struct port_comm*)calloc(1, sizeof(*pc)); | 
| 1752 | if(!pc) { | 
| 1753 | log_err("malloc failed"); | 
| 1754 | outside_network_delete(outnet); | 
| 1755 | return NULL((void *)0); | 
| 1756 | } | 
| 1757 | pc->cp = comm_point_create_udp(outnet->base, -1, | 
| 1758 | outnet->udp_buff, 0, outnet_udp_cb, outnet, NULL((void *)0)); | 
| 1759 | if(!pc->cp) { | 
| 1760 | log_err("malloc failed"); | 
| 1761 | free(pc); | 
| 1762 | outside_network_delete(outnet); | 
| 1763 | return NULL((void *)0); | 
| 1764 | } | 
| 1765 | pc->next = outnet->unused_fds; | 
| 1766 | outnet->unused_fds = pc; | 
| 1767 | } | 
| 1768 | |
| 1769 | /* allocate interfaces */ | 
| 1770 | if(num_ifs == 0) { | 
| 1771 | if(do_ip4 && !setup_if(&outnet->ip4_ifs[0], "0.0.0.0", | 
| 1772 | availports, numavailports, num_ports)) { | 
| 1773 | log_err("malloc failed"); | 
| 1774 | outside_network_delete(outnet); | 
| 1775 | return NULL((void *)0); | 
| 1776 | } | 
| 1777 | if(do_ip6 && !setup_if(&outnet->ip6_ifs[0], "::", | 
| 1778 | availports, numavailports, num_ports)) { | 
| 1779 | log_err("malloc failed"); | 
| 1780 | outside_network_delete(outnet); | 
| 1781 | return NULL((void *)0); | 
| 1782 | } | 
| 1783 | } else { | 
| 1784 | size_t done_4 = 0, done_6 = 0; | 
| 1785 | int i; | 
| 1786 | for(i=0; i<num_ifs; i++) { | 
| 1787 | if(str_is_ip6(ifs[i]) && do_ip6) { | 
| 1788 | if(!setup_if(&outnet->ip6_ifs[done_6], ifs[i], | 
| 1789 | availports, numavailports, num_ports)){ | 
| 1790 | log_err("malloc failed"); | 
| 1791 | outside_network_delete(outnet); | 
| 1792 | return NULL((void *)0); | 
| 1793 | } | 
| 1794 | done_6++; | 
| 1795 | } | 
| 1796 | if(!str_is_ip6(ifs[i]) && do_ip4) { | 
| 1797 | if(!setup_if(&outnet->ip4_ifs[done_4], ifs[i], | 
| 1798 | availports, numavailports, num_ports)){ | 
| 1799 | log_err("malloc failed"); | 
| 1800 | outside_network_delete(outnet); | 
| 1801 | return NULL((void *)0); | 
| 1802 | } | 
| 1803 | done_4++; | 
| 1804 | } | 
| 1805 | } | 
| 1806 | } | 
| 1807 | return outnet; | 
| 1808 | } | 
| 1809 | |
| 1810 | /** helper pending delete */ | 
| 1811 | static void | 
| 1812 | pending_node_del(rbnode_type* node, void* arg) | 
| 1813 | { | 
| 1814 | struct pending* pend = (struct pending*)node; | 
| 1815 | struct outside_network* outnet = (struct outside_network*)arg; | 
| 1816 | pending_delete(outnet, pend); | 
| 1817 | } | 
| 1818 | |
| 1819 | /** helper serviced delete */ | 
| 1820 | static void | 
| 1821 | serviced_node_del(rbnode_type* node, void* ATTR_UNUSED(arg)arg __attribute__((unused))) | 
| 1822 | { | 
| 1823 | struct serviced_query* sq = (struct serviced_query*)node; | 
| 1824 | alloc_reg_release(sq->alloc, sq->region); | 
| 1825 | if(sq->timer) | 
| 1826 | comm_timer_delete(sq->timer); | 
| 1827 | free(sq); | 
| 1828 | } | 
| 1829 | |
| 1830 | void | 
| 1831 | outside_network_quit_prepare(struct outside_network* outnet) | 
| 1832 | { | 
| 1833 | if(!outnet) | 
| 1834 | return; | 
| 1835 | /* prevent queued items from being sent */ | 
| 1836 | outnet->want_to_quit = 1; | 
| 1837 | } | 
| 1838 | |
| 1839 | void | 
| 1840 | outside_network_delete(struct outside_network* outnet) | 
| 1841 | { | 
| 1842 | if(!outnet) | 
| 1843 | return; | 
| 1844 | outnet->want_to_quit = 1; | 
| 1845 | /* check every element, since we can be called on malloc error */ | 
| 1846 | if(outnet->pending) { | 
| 1847 | /* free pending elements, but do no unlink from tree. */ | 
| 1848 | traverse_postorder(outnet->pending, pending_node_del, NULL((void *)0)); | 
| 1849 | free(outnet->pending); | 
| 1850 | } | 
| 1851 | if(outnet->serviced) { | 
| 1852 | traverse_postorder(outnet->serviced, serviced_node_del, NULL((void *)0)); | 
| 1853 | free(outnet->serviced); | 
| 1854 | } | 
| 1855 | if(outnet->udp_buff) | 
| 1856 | sldns_buffer_free(outnet->udp_buff); | 
| 1857 | if(outnet->unused_fds) { | 
| 1858 | struct port_comm* p = outnet->unused_fds, *np; | 
| 1859 | while(p) { | 
| 1860 | np = p->next; | 
| 1861 | comm_point_delete(p->cp); | 
| 1862 | free(p); | 
| 1863 | p = np; | 
| 1864 | } | 
| 1865 | outnet->unused_fds = NULL((void *)0); | 
| 1866 | } | 
| 1867 | if(outnet->ip4_ifs) { | 
| 1868 | int i, k; | 
| 1869 | for(i=0; i<outnet->num_ip4; i++) { | 
| 1870 | for(k=0; k<outnet->ip4_ifs[i].inuse; k++) { | 
| 1871 | struct port_comm* pc = outnet->ip4_ifs[i]. | 
| 1872 | out[k]; | 
| 1873 | comm_point_delete(pc->cp); | 
| 1874 | free(pc); | 
| 1875 | } | 
| 1876 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 | 
| 1877 | free(outnet->ip4_ifs[i].avail_ports); | 
| 1878 | #endif | 
| 1879 | free(outnet->ip4_ifs[i].out); | 
| 1880 | } | 
| 1881 | free(outnet->ip4_ifs); | 
| 1882 | } | 
| 1883 | if(outnet->ip6_ifs) { | 
| 1884 | int i, k; | 
| 1885 | for(i=0; i<outnet->num_ip6; i++) { | 
| 1886 | for(k=0; k<outnet->ip6_ifs[i].inuse; k++) { | 
| 1887 | struct port_comm* pc = outnet->ip6_ifs[i]. | 
| 1888 | out[k]; | 
| 1889 | comm_point_delete(pc->cp); | 
| 1890 | free(pc); | 
| 1891 | } | 
| 1892 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 | 
| 1893 | free(outnet->ip6_ifs[i].avail_ports); | 
| 1894 | #endif | 
| 1895 | free(outnet->ip6_ifs[i].out); | 
| 1896 | } | 
| 1897 | free(outnet->ip6_ifs); | 
| 1898 | } | 
| 1899 | if(outnet->tcp_conns) { | 
| 1900 | size_t i; | 
| 1901 | for(i=0; i<outnet->num_tcp; i++) | 
| 1902 | if(outnet->tcp_conns[i]) { | 
| 1903 | struct pending_tcp* pend; | 
| 1904 | pend = outnet->tcp_conns[i]; | 
| 1905 | if(pend->reuse.item_on_lru_list) { | 
| 1906 | /* delete waiting_tcp elements that | 
| 1907 | * the tcp conn is working on */ | 
| 1908 | decommission_pending_tcp(outnet, pend); | 
| 1909 | } | 
| 1910 | comm_point_delete(outnet->tcp_conns[i]->c); | 
| 1911 | free(outnet->tcp_conns[i]); | 
| 1912 | outnet->tcp_conns[i] = NULL((void *)0); | 
| 1913 | } | 
| 1914 | free(outnet->tcp_conns); | 
| 1915 | outnet->tcp_conns = NULL((void *)0); | 
| 1916 | } | 
| 1917 | if(outnet->tcp_wait_first) { | 
| 1918 | struct waiting_tcp* p = outnet->tcp_wait_first, *np; | 
| 1919 | while(p) { | 
| 1920 | np = p->next_waiting; | 
| 1921 | waiting_tcp_delete(p); | 
| 1922 | p = np; | 
| 1923 | } | 
| 1924 | } | 
| 1925 | /* was allocated in struct pending that was deleted above */ | 
| 1926 | rbtree_init(&outnet->tcp_reuse, reuse_cmp); | 
| 1927 | outnet->tcp_reuse_first = NULL((void *)0); | 
| 1928 | outnet->tcp_reuse_last = NULL((void *)0); | 
| 1929 | if(outnet->udp_wait_first) { | 
| 1930 | struct pending* p = outnet->udp_wait_first, *np; | 
| 1931 | while(p) { | 
| 1932 | np = p->next_waiting; | 
| 1933 | pending_delete(NULL((void *)0), p); | 
| 1934 | p = np; | 
| 1935 | } | 
| 1936 | } | 
| 1937 | free(outnet); | 
| 1938 | } | 
| 1939 | |
| 1940 | void | 
| 1941 | pending_delete(struct outside_network* outnet, struct pending* p) | 
| 1942 | { | 
| 1943 | if(!p) | 
| 1944 | return; | 
| 1945 | if(outnet && outnet->udp_wait_first && | 
| 1946 | (p->next_waiting || p == outnet->udp_wait_last) ) { | 
| 1947 | /* delete from waiting list, if it is in the waiting list */ | 
| 1948 | struct pending* prev = NULL((void *)0), *x = outnet->udp_wait_first; | 
| 1949 | while(x && x != p) { | 
| 1950 | prev = x; | 
| 1951 | x = x->next_waiting; | 
| 1952 | } | 
| 1953 | if(x) { | 
| 1954 | log_assert(x == p); | 
| 1955 | if(prev) | 
| 1956 | prev->next_waiting = p->next_waiting; | 
| 1957 | else outnet->udp_wait_first = p->next_waiting; | 
| 1958 | if(outnet->udp_wait_last == p) | 
| 1959 | outnet->udp_wait_last = prev; | 
| 1960 | } | 
| 1961 | } | 
| 1962 | if(outnet) { | 
| 1963 | (void)rbtree_delete(outnet->pending, p->node.key); | 
| 1964 | } | 
| 1965 | if(p->timer) | 
| 1966 | comm_timer_delete(p->timer); | 
| 1967 | free(p->pkt); | 
| 1968 | free(p); | 
| 1969 | } | 
| 1970 | |
| 1971 | static void | 
| 1972 | sai6_putrandom(struct sockaddr_in6 *sa, int pfxlen, struct ub_randstate *rnd) | 
| 1973 | { | 
| 1974 | int i, last; | 
| 1975 | if(!(pfxlen > 0 && pfxlen < 128)) | 
| 1976 | return; | 
| 1977 | for(i = 0; i < (128 - pfxlen) / 8; i++) { | 
| 1978 | sa->sin6_addr.s6_addr__u6_addr.__u6_addr8[15-i] = (uint8_t)ub_random_max(rnd, 256); | 
| 1979 | } | 
| 1980 | last = pfxlen & 7; | 
| 1981 | if(last != 0) { | 
| 1982 | sa->sin6_addr.s6_addr__u6_addr.__u6_addr8[15-i] |= | 
| 1983 | ((0xFF >> last) & ub_random_max(rnd, 256)); | 
| 1984 | } | 
| 1985 | } | 
| 1986 | |
| 1987 | /** | 
| 1988 | * Try to open a UDP socket for outgoing communication. | 
| 1989 | * Sets sockets options as needed. | 
| 1990 | * @param addr: socket address. | 
| 1991 | * @param addrlen: length of address. | 
| 1992 | * @param pfxlen: length of network prefix (for address randomisation). | 
| 1993 | * @param port: port override for addr. | 
| 1994 | * @param inuse: if -1 is returned, this bool means the port was in use. | 
| 1995 | * @param rnd: random state (for address randomisation). | 
| 1996 | * @param dscp: DSCP to use. | 
| 1997 | * @return fd or -1 | 
| 1998 | */ | 
| 1999 | static int | 
| 2000 | udp_sockport(struct sockaddr_storage* addr, socklen_t addrlen, int pfxlen, | 
| 2001 | int port, int* inuse, struct ub_randstate* rnd, int dscp) | 
| 2002 | { | 
| 2003 | int fd, noproto; | 
| 2004 | if(addr_is_ip6(addr, addrlen)) { | 
| 2005 | int freebind = 0; | 
| 2006 | struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr; | 
| 2007 | sa.sin6_port = (in_port_t)htons((uint16_t)port)(__uint16_t)(__builtin_constant_p((uint16_t)port) ? (__uint16_t )(((__uint16_t)((uint16_t)port) & 0xffU) << 8 | ((__uint16_t )((uint16_t)port) & 0xff00U) >> 8) : __swap16md((uint16_t )port)); | 
| 2008 | sa.sin6_flowinfo = 0; | 
| 2009 | sa.sin6_scope_id = 0; | 
| 2010 | if(pfxlen != 0) { | 
| 2011 | freebind = 1; | 
| 2012 | sai6_putrandom(&sa, pfxlen, rnd); | 
| 2013 | } | 
| 2014 | fd = create_udp_sock(AF_INET624, SOCK_DGRAM2, | 
| 2015 | (struct sockaddr*)&sa, addrlen, 1, inuse, &noproto, | 
| 2016 | 0, 0, 0, NULL((void *)0), 0, freebind, 0, dscp); | 
| 2017 | } else { | 
| 2018 | struct sockaddr_in* sa = (struct sockaddr_in*)addr; | 
| 2019 | sa->sin_port = (in_port_t)htons((uint16_t)port)(__uint16_t)(__builtin_constant_p((uint16_t)port) ? (__uint16_t )(((__uint16_t)((uint16_t)port) & 0xffU) << 8 | ((__uint16_t )((uint16_t)port) & 0xff00U) >> 8) : __swap16md((uint16_t )port)); | 
| 2020 | fd = create_udp_sock(AF_INET2, SOCK_DGRAM2, | 
| 2021 | (struct sockaddr*)addr, addrlen, 1, inuse, &noproto, | 
| 2022 | 0, 0, 0, NULL((void *)0), 0, 0, 0, dscp); | 
| 2023 | } | 
| 2024 | return fd; | 
| 2025 | } | 
| 2026 | |
| 2027 | /** Select random ID */ | 
| 2028 | static int | 
| 2029 | select_id(struct outside_network* outnet, struct pending* pend, | 
| 2030 | sldns_buffer* packet) | 
| 2031 | { | 
| 2032 | int id_tries = 0; | 
| 2033 | pend->id = GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); | 
| 2034 | LDNS_ID_SET(sldns_buffer_begin(packet), pend->id)(sldns_write_uint16(sldns_buffer_begin(packet), pend->id)); | 
| 2035 | |
| 2036 | /* insert in tree */ | 
| 2037 | pend->node.key = pend; | 
| 2038 | while(!rbtree_insert(outnet->pending, &pend->node)) { | 
| 2039 | /* change ID to avoid collision */ | 
| 2040 | pend->id = GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); | 
| 2041 | LDNS_ID_SET(sldns_buffer_begin(packet), pend->id)(sldns_write_uint16(sldns_buffer_begin(packet), pend->id)); | 
| 2042 | id_tries++; | 
| 2043 | if(id_tries == MAX_ID_RETRY1000) { | 
| 2044 | pend->id=99999; /* non existent ID */ | 
| 2045 | log_err("failed to generate unique ID, drop msg"); | 
| 2046 | return 0; | 
| 2047 | } | 
| 2048 | } | 
| 2049 | verbose(VERB_ALGO, "inserted new pending reply id=%4.4x", pend->id); | 
| 2050 | return 1; | 
| 2051 | } | 
| 2052 | |
| 2053 | /** return true is UDP connect error needs to be logged */ | 
| 2054 | static int udp_connect_needs_log(int err) | 
| 2055 | { | 
| 2056 | switch(err) { | 
| 2057 | case ECONNREFUSED61: | 
| 2058 | # ifdef ENETUNREACH51 | 
| 2059 | case ENETUNREACH51: | 
| 2060 | # endif | 
| 2061 | # ifdef EHOSTDOWN64 | 
| 2062 | case EHOSTDOWN64: | 
| 2063 | # endif | 
| 2064 | # ifdef EHOSTUNREACH65 | 
| 2065 | case EHOSTUNREACH65: | 
| 2066 | # endif | 
| 2067 | # ifdef ENETDOWN50 | 
| 2068 | case ENETDOWN50: | 
| 2069 | # endif | 
| 2070 | # ifdef EADDRNOTAVAIL49 | 
| 2071 | case EADDRNOTAVAIL49: | 
| 2072 | # endif | 
| 2073 | case EPERM1: | 
| 2074 | case EACCES13: | 
| 2075 | if(verbosity >= VERB_ALGO) | 
| 2076 | return 1; | 
| 2077 | return 0; | 
| 2078 | default: | 
| 2079 | break; | 
| 2080 | } | 
| 2081 | return 1; | 
| 2082 | } | 
| 2083 | |
| 2084 | |
| 2085 | /** Select random interface and port */ | 
| 2086 | static int | 
| 2087 | select_ifport(struct outside_network* outnet, struct pending* pend, | 
| 2088 | int num_if, struct port_if* ifs) | 
| 2089 | { | 
| 2090 | int my_if, my_port, fd, portno, inuse, tries=0; | 
| 2091 | struct port_if* pif; | 
| 2092 | /* randomly select interface and port */ | 
| 2093 | if(num_if == 0) { | 
| 2094 | verbose(VERB_QUERY, "Need to send query but have no " | 
| 2095 | "outgoing interfaces of that family"); | 
| 2096 | return 0; | 
| 2097 | } | 
| 2098 | log_assert(outnet->unused_fds); | 
| 2099 | tries = 0; | 
| 2100 | while(1) { | 
| 2101 | my_if = ub_random_max(outnet->rnd, num_if); | 
| 2102 | pif = &ifs[my_if]; | 
| 2103 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 | 
| 2104 | if(outnet->udp_connect) { | 
| 2105 | /* if we connect() we cannot reuse fds for a port */ | 
| 2106 | if(pif->inuse >= pif->avail_total) { | 
| 2107 | tries++; | 
| 2108 | if(tries < MAX_PORT_RETRY10000) | 
| 2109 | continue; | 
| 2110 | log_err("failed to find an open port, drop msg"); | 
| 2111 | return 0; | 
| 2112 | } | 
| 2113 | my_port = pif->inuse + ub_random_max(outnet->rnd, | 
| 2114 | pif->avail_total - pif->inuse); | 
| 2115 | } else { | 
| 2116 | my_port = ub_random_max(outnet->rnd, pif->avail_total); | 
| 2117 | if(my_port < pif->inuse) { | 
| 2118 | /* port already open */ | 
| 2119 | pend->pc = pif->out[my_port]; | 
| 2120 | verbose(VERB_ALGO, "using UDP if=%d port=%d", | 
| 2121 | my_if, pend->pc->number); | 
| 2122 | break; | 
| 2123 | } | 
| 2124 | } | 
| 2125 | /* try to open new port, if fails, loop to try again */ | 
| 2126 | log_assert(pif->inuse < pif->maxout); | 
| 2127 | portno = pif->avail_ports[my_port - pif->inuse]; | 
| 2128 | #else | 
| 2129 | my_port = portno = 0; | 
| 2130 | #endif | 
| 2131 | fd = udp_sockport(&pif->addr, pif->addrlen, pif->pfxlen, | 
| 2132 | portno, &inuse, outnet->rnd, outnet->ip_dscp); | 
| 2133 | if(fd == -1 && !inuse) { | 
| 2134 | /* nonrecoverable error making socket */ | 
| 2135 | return 0; | 
| 2136 | } | 
| 2137 | if(fd != -1) { | 
| 2138 | verbose(VERB_ALGO, "opened UDP if=%d port=%d", | 
| 2139 | my_if, portno); | 
| 2140 | if(outnet->udp_connect) { | 
| 2141 | /* connect() to the destination */ | 
| 2142 | if(connect(fd, (struct sockaddr*)&pend->addr, | 
| 2143 | pend->addrlen) < 0) { | 
| 2144 | if(udp_connect_needs_log(errno(*__errno()))) { | 
| 2145 | log_err_addr("udp connect failed", | 
| 2146 | strerror(errno(*__errno())), &pend->addr, | 
| 2147 | pend->addrlen); | 
| 2148 | } | 
| 2149 | sock_close(fd); | 
| 2150 | return 0; | 
| 2151 | } | 
| 2152 | } | 
| 2153 | /* grab fd */ | 
| 2154 | pend->pc = outnet->unused_fds; | 
| 2155 | outnet->unused_fds = pend->pc->next; | 
| 2156 | |
| 2157 | /* setup portcomm */ | 
| 2158 | pend->pc->next = NULL((void *)0); | 
| 2159 | pend->pc->number = portno; | 
| 2160 | pend->pc->pif = pif; | 
| 2161 | pend->pc->index = pif->inuse; | 
| 2162 | pend->pc->num_outstanding = 0; | 
| 2163 | comm_point_start_listening(pend->pc->cp, fd, -1); | 
| 2164 | |
| 2165 | /* grab port in interface */ | 
| 2166 | pif->out[pif->inuse] = pend->pc; | 
| 2167 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 | 
| 2168 | pif->avail_ports[my_port - pif->inuse] = | 
| 2169 | pif->avail_ports[pif->avail_total-pif->inuse-1]; | 
| 2170 | #endif | 
| 2171 | pif->inuse++; | 
| 2172 | break; | 
| 2173 | } | 
| 2174 | /* failed, already in use */ | 
| 2175 | verbose(VERB_QUERY, "port %d in use, trying another", portno); | 
| 2176 | tries++; | 
| 2177 | if(tries == MAX_PORT_RETRY10000) { | 
| 2178 | log_err("failed to find an open port, drop msg"); | 
| 2179 | return 0; | 
| 2180 | } | 
| 2181 | } | 
| 2182 | log_assert(pend->pc); | 
| 2183 | pend->pc->num_outstanding++; | 
| 2184 | |
| 2185 | return 1; | 
| 2186 | } | 
| 2187 | |
| 2188 | static int | 
| 2189 | randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, int timeout) | 
| 2190 | { | 
| 2191 | struct timeval tv; | 
| 2192 | struct outside_network* outnet = pend->sq->outnet; | 
| 2193 | |
| 2194 | /* select id */ | 
| 2195 | if(!select_id(outnet, pend, packet)) { | 
| 2196 | return 0; | 
| 2197 | } | 
| 2198 | |
| 2199 | /* select src_if, port */ | 
| 2200 | if(addr_is_ip6(&pend->addr, pend->addrlen)) { | 
| 2201 | if(!select_ifport(outnet, pend, | 
| 2202 | outnet->num_ip6, outnet->ip6_ifs)) | 
| 2203 | return 0; | 
| 2204 | } else { | 
| 2205 | if(!select_ifport(outnet, pend, | 
| 2206 | outnet->num_ip4, outnet->ip4_ifs)) | 
| 2207 | return 0; | 
| 2208 | } | 
| 2209 | log_assert(pend->pc && pend->pc->cp); | 
| 2210 | |
| 2211 | /* send it over the commlink */ | 
| 2212 | if(!comm_point_send_udp_msg(pend->pc->cp, packet, | 
| 2213 | (struct sockaddr*)&pend->addr, pend->addrlen, outnet->udp_connect)) { | 
| 2214 | portcomm_loweruse(outnet, pend->pc); | 
| 2215 | return 0; | 
| 2216 | } | 
| 2217 | outnet->num_udp_outgoing++; | 
| 2218 | |
| 2219 | /* system calls to set timeout after sending UDP to make roundtrip | 
| 2220 | smaller. */ | 
| 2221 | #ifndef S_SPLINT_S | 
| 2222 | tv.tv_sec = timeout/1000; | 
| 2223 | tv.tv_usec = (timeout%1000)*1000; | 
| 2224 | #endif | 
| 2225 | comm_timer_set(pend->timer, &tv); | 
| 2226 | |
| 2227 | #ifdef USE_DNSTAP | 
| 2228 | /* | 
| 2229 | * sending src (local service)/dst (upstream) addresses over DNSTAP | 
| 2230 | * There are no chances to get the src (local service) addr if unbound | 
| 2231 | * is not configured with specific outgoing IP-addresses. So we will | 
| 2232 | * pass 0.0.0.0 (::) to argument for | 
| 2233 | * dt_msg_send_outside_query()/dt_msg_send_outside_response() calls. | 
| 2234 | */ | 
| 2235 | if(outnet->dtenv && | 
| 2236 | (outnet->dtenv->log_resolver_query_messages || | 
| 2237 | outnet->dtenv->log_forwarder_query_messages)) { | 
| 2238 | log_addr(VERB_ALGO, "from local addr", &pend->pc->pif->addr, pend->pc->pif->addrlen); | 
| 2239 | log_addr(VERB_ALGO, "request to upstream", &pend->addr, pend->addrlen); | 
| 2240 | dt_msg_send_outside_query(outnet->dtenv, &pend->addr, &pend->pc->pif->addr, comm_udp, | 
| 2241 | pend->sq->zone, pend->sq->zonelen, packet); | 
| 2242 | } | 
| 2243 | #endif | 
| 2244 | return 1; | 
| 2245 | } | 
| 2246 | |
| 2247 | struct pending* | 
| 2248 | pending_udp_query(struct serviced_query* sq, struct sldns_buffer* packet, | 
| 2249 | int timeout, comm_point_callback_type* cb, void* cb_arg) | 
| 2250 | { | 
| 2251 | struct pending* pend = (struct pending*)calloc(1, sizeof(*pend)); | 
| 2252 | if(!pend) return NULL((void *)0); | 
| 2253 | pend->outnet = sq->outnet; | 
| 2254 | pend->sq = sq; | 
| 2255 | pend->addrlen = sq->addrlen; | 
| 2256 | memmove(&pend->addr, &sq->addr, sq->addrlen); | 
| 2257 | pend->cb = cb; | 
| 2258 | pend->cb_arg = cb_arg; | 
| 2259 | pend->node.key = pend; | 
| 2260 | pend->timer = comm_timer_create(sq->outnet->base, pending_udp_timer_cb, | 
| 2261 | pend); | 
| 2262 | if(!pend->timer) { | 
| 2263 | free(pend); | 
| 2264 | return NULL((void *)0); | 
| 2265 | } | 
| 2266 | |
| 2267 | if(sq->outnet->unused_fds == NULL((void *)0)) { | 
| 2268 | /* no unused fd, cannot create a new port (randomly) */ | 
| 2269 | verbose(VERB_ALGO, "no fds available, udp query waiting"); | 
| 2270 | pend->timeout = timeout; | 
| 2271 | pend->pkt_len = sldns_buffer_limit(packet); | 
| 2272 | pend->pkt = (uint8_t*)memdup(sldns_buffer_begin(packet), | 
| 2273 | pend->pkt_len); | 
| 2274 | if(!pend->pkt) { | 
| 2275 | comm_timer_delete(pend->timer); | 
| 2276 | free(pend); | 
| 2277 | return NULL((void *)0); | 
| 2278 | } | 
| 2279 | /* put at end of waiting list */ | 
| 2280 | if(sq->outnet->udp_wait_last) | 
| 2281 | sq->outnet->udp_wait_last->next_waiting = pend; | 
| 2282 | else | 
| 2283 | sq->outnet->udp_wait_first = pend; | 
| 2284 | sq->outnet->udp_wait_last = pend; | 
| 2285 | return pend; | 
| 2286 | } | 
| 2287 | log_assert(!sq->busy); | 
| 2288 | sq->busy = 1; | 
| 2289 | if(!randomize_and_send_udp(pend, packet, timeout)) { | 
| 2290 | pending_delete(sq->outnet, pend); | 
| 2291 | return NULL((void *)0); | 
| 2292 | } | 
| 2293 | sq->busy = 0; | 
| 2294 | return pend; | 
| 2295 | } | 
| 2296 | |
| 2297 | void | 
| 2298 | outnet_tcptimer(void* arg) | 
| 2299 | { | 
| 2300 | struct waiting_tcp* w = (struct waiting_tcp*)arg; | 
| 2301 | struct outside_network* outnet = w->outnet; | 
| 2302 | verbose(VERB_CLIENT, "outnet_tcptimer"); | 
| 2303 | if(w->on_tcp_waiting_list) { | 
| 2304 | /* it is on the waiting list */ | 
| 2305 | outnet_waiting_tcp_list_remove(outnet, w); | 
| 2306 | waiting_tcp_callback(w, NULL((void *)0), NETEVENT_TIMEOUT-2, NULL((void *)0)); | 
| 2307 | waiting_tcp_delete(w); | 
| 2308 | } else { | 
| 2309 | /* it was in use */ | 
| 2310 | struct pending_tcp* pend=(struct pending_tcp*)w->next_waiting; | 
| 2311 | reuse_cb_and_decommission(outnet, pend, NETEVENT_TIMEOUT-2); | 
| 2312 | } | 
| 2313 | use_free_buffer(outnet); | 
| 2314 | } | 
| 2315 | |
| 2316 | /** close the oldest reuse_tcp connection to make a fd and struct pend | 
| 2317 | * available for a new stream connection */ | 
| 2318 | static void | 
| 2319 | reuse_tcp_close_oldest(struct outside_network* outnet) | 
| 2320 | { | 
| 2321 | struct reuse_tcp* reuse; | 
| 2322 | verbose(VERB_CLIENT, "reuse_tcp_close_oldest"); | 
| 2323 | reuse = reuse_tcp_lru_snip(outnet); | 
| 2324 | if(!reuse) return; | 
| 2325 | /* free up */ | 
| 2326 | reuse_cb_and_decommission(outnet, reuse->pending, NETEVENT_CLOSED-1); | 
| 2327 | } | 
| 2328 | |
| 2329 | static uint16_t | 
| 2330 | tcp_select_id(struct outside_network* outnet, struct reuse_tcp* reuse) | 
| 2331 | { | 
| 2332 | if(reuse) | 
| 2333 | return reuse_tcp_select_id(reuse, outnet); | 
| 2334 | return GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); | 
| 2335 | } | 
| 2336 | |
| 2337 | /** find spare ID value for reuse tcp stream. That is random and also does | 
| 2338 | * not collide with an existing query ID that is in use or waiting */ | 
| 2339 | uint16_t | 
| 2340 | reuse_tcp_select_id(struct reuse_tcp* reuse, struct outside_network* outnet) | 
| 2341 | { | 
| 2342 | uint16_t id = 0, curid, nextid; | 
| 2343 | const int try_random = 2000; | 
| 2344 | int i; | 
| 2345 | unsigned select, count, space; | 
| 2346 | rbnode_type* node; | 
| 2347 | |
| 2348 | /* make really sure the tree is not empty */ | 
| 2349 | if(reuse->tree_by_id.count == 0) { | 
| 2350 | id = GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); | 
| 2351 | return id; | 
| 2352 | } | 
| 2353 | |
| 2354 | /* try to find random empty spots by picking them */ | 
| 2355 | for(i = 0; i<try_random; i++) { | 
| 2356 | id = GET_RANDOM_ID(outnet->rnd)(((unsigned)ub_random(outnet->rnd)>>8) & 0xffff); | 
| 2357 | if(!reuse_tcp_by_id_find(reuse, id)) { | 
| 2358 | return id; | 
| 2359 | } | 
| 2360 | } | 
| 2361 | |
| 2362 | /* equally pick a random unused element from the tree that is | 
| 2363 | * not in use. Pick a the n-th index of an unused number, | 
| 2364 | * then loop over the empty spaces in the tree and find it */ | 
| 2365 | log_assert(reuse->tree_by_id.count < 0xffff); | 
| 2366 | select = ub_random_max(outnet->rnd, 0xffff - reuse->tree_by_id.count); | 
| 2367 | /* select value now in 0 .. num free - 1 */ | 
| 2368 | |
| 2369 | count = 0; /* number of free spaces passed by */ | 
| 2370 | node = rbtree_first(&reuse->tree_by_id); | 
| 2371 | log_assert(node && node != RBTREE_NULL); /* tree not empty */ | 
| 2372 | /* see if select is before first node */ | 
| 2373 | if(select < (unsigned)tree_by_id_get_id(node)) | 
| 2374 | return select; | 
| 2375 | count += tree_by_id_get_id(node); | 
| 2376 | /* perhaps select is between nodes */ | 
| 2377 | while(node && node != RBTREE_NULL&rbtree_null_node) { | 
| 2378 | rbnode_type* next = rbtree_next(node); | 
| 2379 | if(next && next != RBTREE_NULL&rbtree_null_node) { | 
| 2380 | curid = tree_by_id_get_id(node); | 
| 2381 | nextid = tree_by_id_get_id(next); | 
| 2382 | log_assert(curid < nextid); | 
| 2383 | if(curid != 0xffff && curid + 1 < nextid) { | 
| 2384 | /* space between nodes */ | 
| 2385 | space = nextid - curid - 1; | 
| 2386 | log_assert(select >= count); | 
| 2387 | if(select < count + space) { | 
| 2388 | /* here it is */ | 
| 2389 | return curid + 1 + (select - count); | 
| 2390 | } | 
| 2391 | count += space; | 
| 2392 | } | 
| 2393 | } | 
| 2394 | node = next; | 
| 2395 | } | 
| 2396 | |
| 2397 | /* select is after the last node */ | 
| 2398 | /* count is the number of free positions before the nodes in the | 
| 2399 | * tree */ | 
| 2400 | node = rbtree_last(&reuse->tree_by_id); | 
| 2401 | log_assert(node && node != RBTREE_NULL); /* tree not empty */ | 
| 2402 | curid = tree_by_id_get_id(node); | 
| 2403 | log_assert(count + (0xffff-curid) + reuse->tree_by_id.count == 0xffff); | 
| 2404 | return curid + 1 + (select - count); | 
| 2405 | } | 
| 2406 | |
| 2407 | struct waiting_tcp* | 
| 2408 | pending_tcp_query(struct serviced_query* sq, sldns_buffer* packet, | 
| 2409 | int timeout, comm_point_callback_type* callback, void* callback_arg) | 
| 2410 | { | 
| 2411 | struct pending_tcp* pend = sq->outnet->tcp_free; | 
| 2412 | struct reuse_tcp* reuse = NULL((void *)0); | 
| 2413 | struct waiting_tcp* w; | 
| 2414 | |
| 2415 | verbose(VERB_CLIENT, "pending_tcp_query"); | 
| 2416 | if(sldns_buffer_limit(packet) < sizeof(uint16_t)) { | 
| 2417 | verbose(VERB_ALGO, "pending tcp query with too short buffer < 2"); | 
| 2418 | return NULL((void *)0); | 
| 2419 | } | 
| 2420 | |
| 2421 | /* find out if a reused stream to the target exists */ | 
| 2422 | /* if so, take it into use */ | 
| 2423 | reuse = reuse_tcp_find(sq->outnet, &sq->addr, sq->addrlen, | 
| 2424 | sq->ssl_upstream); | 
| 2425 | if(reuse) { | 
| 2426 | log_reuse_tcp(VERB_CLIENT, "pending_tcp_query: found reuse", reuse); | 
| 2427 | log_assert(reuse->pending); | 
| 2428 | pend = reuse->pending; | 
| 2429 | reuse_tcp_lru_touch(sq->outnet, reuse); | 
| 2430 | } | 
| 2431 | |
| 2432 | log_assert(!reuse || (reuse && pend)); | 
| 2433 | /* if !pend but we have reuse streams, close a reuse stream | 
| 2434 | * to be able to open a new one to this target, no use waiting | 
| 2435 | * to reuse a file descriptor while another query needs to use | 
| 2436 | * that buffer and file descriptor now. */ | 
| 2437 | if(!pend) { | 
| 2438 | reuse_tcp_close_oldest(sq->outnet); | 
| 2439 | pend = sq->outnet->tcp_free; | 
| 2440 | log_assert(!reuse || (pend == reuse->pending)); | 
| 2441 | } | 
| 2442 | |
| 2443 | /* allocate space to store query */ | 
| 2444 | w = (struct waiting_tcp*)malloc(sizeof(struct waiting_tcp) | 
| 2445 | + sldns_buffer_limit(packet)); | 
| 2446 | if(!w) { | 
| 2447 | return NULL((void *)0); | 
| 2448 | } | 
| 2449 | if(!(w->timer = comm_timer_create(sq->outnet->base, outnet_tcptimer, w))) { | 
| 2450 | free(w); | 
| 2451 | return NULL((void *)0); | 
| 2452 | } | 
| 2453 | w->pkt = (uint8_t*)w + sizeof(struct waiting_tcp); | 
| 2454 | w->pkt_len = sldns_buffer_limit(packet); | 
| 2455 | memmove(w->pkt, sldns_buffer_begin(packet), w->pkt_len); | 
| 2456 | w->id = tcp_select_id(sq->outnet, reuse); | 
| 2457 | LDNS_ID_SET(w->pkt, w->id)(sldns_write_uint16(w->pkt, w->id)); | 
| 2458 | memcpy(&w->addr, &sq->addr, sq->addrlen); | 
| 2459 | w->addrlen = sq->addrlen; | 
| 2460 | w->outnet = sq->outnet; | 
| 2461 | w->on_tcp_waiting_list = 0; | 
| 2462 | w->next_waiting = NULL((void *)0); | 
| 2463 | w->cb = callback; | 
| 2464 | w->cb_arg = callback_arg; | 
| 2465 | w->ssl_upstream = sq->ssl_upstream; | 
| 2466 | w->tls_auth_name = sq->tls_auth_name; | 
| 2467 | w->timeout = timeout; | 
| 2468 | w->id_node.key = NULL((void *)0); | 
| 2469 | w->write_wait_prev = NULL((void *)0); | 
| 2470 | w->write_wait_next = NULL((void *)0); | 
| 2471 | w->write_wait_queued = 0; | 
| 2472 | w->error_count = 0; | 
| 2473 | #ifdef USE_DNSTAP | 
| 2474 | w->sq = NULL((void *)0); | 
| 2475 | #endif | 
| 2476 | w->in_cb_and_decommission = 0; | 
| 2477 | if(pend) { | 
| 2478 | /* we have a buffer available right now */ | 
| 2479 | if(reuse) { | 
| 2480 | log_assert(reuse == &pend->reuse); | 
| 2481 | /* reuse existing fd, write query and continue */ | 
| 2482 | /* store query in tree by id */ | 
| 2483 | verbose(VERB_CLIENT, "pending_tcp_query: reuse, store"); | 
| 2484 | w->next_waiting = (void*)pend; | 
| 2485 | reuse_tree_by_id_insert(&pend->reuse, w); | 
| 2486 | /* can we write right now? */ | 
| 2487 | if(pend->query == NULL((void *)0)) { | 
| 2488 | /* write straight away */ | 
| 2489 | /* stop the timer on read of the fd */ | 
| 2490 | comm_point_stop_listening(pend->c); | 
| 2491 | pend->query = w; | 
| 2492 | outnet_tcp_take_query_setup(pend->c->fd, pend, | 
| 2493 | w); | 
| 2494 | } else { | 
| 2495 | /* put it in the waiting list for | 
| 2496 | * this stream */ | 
| 2497 | reuse_write_wait_push_back(&pend->reuse, w); | 
| 2498 | } | 
| 2499 | } else { | 
| 2500 | /* create new fd and connect to addr, setup to | 
| 2501 | * write query */ | 
| 2502 | verbose(VERB_CLIENT, "pending_tcp_query: new fd, connect"); | 
| 2503 | rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp); | 
| 2504 | pend->reuse.pending = pend; | 
| 2505 | memcpy(&pend->reuse.addr, &sq->addr, sq->addrlen); | 
| 2506 | pend->reuse.addrlen = sq->addrlen; | 
| 2507 | if(!outnet_tcp_take_into_use(w)) { | 
| 2508 | waiting_tcp_delete(w); | 
| 2509 | return NULL((void *)0); | 
| 2510 | } | 
| 2511 | } | 
| 2512 | #ifdef USE_DNSTAP | 
| 2513 | if(sq->outnet->dtenv && | 
| 2514 | (sq->outnet->dtenv->log_resolver_query_messages || | 
| 2515 | sq->outnet->dtenv->log_forwarder_query_messages)) { | 
| 2516 | /* use w->pkt, because it has the ID value */ | 
| 2517 | sldns_buffer tmp; | 
| 2518 | sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len); | 
| 2519 | dt_msg_send_outside_query(sq->outnet->dtenv, &sq->addr, | 
| 2520 | &pend->pi->addr, comm_tcp, sq->zone, | 
| 2521 | sq->zonelen, &tmp); | 
| 2522 | } | 
| 2523 | #endif | 
| 2524 | } else { | 
| 2525 | /* queue up */ | 
| 2526 | /* waiting for a buffer on the outside network buffer wait | 
| 2527 | * list */ | 
| 2528 | verbose(VERB_CLIENT, "pending_tcp_query: queue to wait"); | 
| 2529 | #ifdef USE_DNSTAP | 
| 2530 | w->sq = sq; | 
| 2531 | #endif | 
| 2532 | outnet_waiting_tcp_list_add(sq->outnet, w, 1); | 
| 2533 | } | 
| 2534 | return w; | 
| 2535 | } | 
| 2536 | |
| 2537 | /** create query for serviced queries */ | 
| 2538 | static void | 
| 2539 | serviced_gen_query(sldns_buffer* buff, uint8_t* qname, size_t qnamelen, | 
| 2540 | uint16_t qtype, uint16_t qclass, uint16_t flags) | 
| 2541 | { | 
| 2542 | sldns_buffer_clear(buff); | 
| 2543 | /* skip id */ | 
| 2544 | sldns_buffer_write_u16(buff, flags); | 
| 2545 | sldns_buffer_write_u16(buff, 1); /* qdcount */ | 
| 2546 | sldns_buffer_write_u16(buff, 0); /* ancount */ | 
| 2547 | sldns_buffer_write_u16(buff, 0); /* nscount */ | 
| 2548 | sldns_buffer_write_u16(buff, 0); /* arcount */ | 
| 2549 | sldns_buffer_write(buff, qname, qnamelen); | 
| 2550 | sldns_buffer_write_u16(buff, qtype); | 
| 2551 | sldns_buffer_write_u16(buff, qclass); | 
| 2552 | sldns_buffer_flip(buff); | 
| 2553 | } | 
| 2554 | |
| 2555 | /** lookup serviced query in serviced query rbtree */ | 
| 2556 | static struct serviced_query* | 
| 2557 | lookup_serviced(struct outside_network* outnet, sldns_buffer* buff, int dnssec, | 
| 2558 | struct sockaddr_storage* addr, socklen_t addrlen, | 
| 2559 | struct edns_option* opt_list) | 
| 2560 | { | 
| 2561 | struct serviced_query key; | 
| 2562 | key.node.key = &key; | 
| 2563 | key.qbuf = sldns_buffer_begin(buff); | 
| 2564 | key.qbuflen = sldns_buffer_limit(buff); | 
| 2565 | key.dnssec = dnssec; | 
| 2566 | memcpy(&key.addr, addr, addrlen); | 
| 2567 | key.addrlen = addrlen; | 
| 2568 | key.outnet = outnet; | 
| 2569 | key.opt_list = opt_list; | 
| 2570 | return (struct serviced_query*)rbtree_search(outnet->serviced, &key); | 
| 2571 | } | 
| 2572 | |
| 2573 | void | 
| 2574 | serviced_timer_cb(void* arg) | 
| 2575 | { | 
| 2576 | struct serviced_query* sq = (struct serviced_query*)arg; | 
| 2577 | struct outside_network* outnet = sq->outnet; | 
| 2578 | verbose(VERB_ALGO, "serviced send timer"); | 
| 2579 | /* By the time this cb is called, if we don't have any registered | 
| 2580 | * callbacks for this serviced_query anymore; do not send. */ | 
| 2581 | if(!sq->cblist) | 
| 2582 | goto delete; | 
| 2583 | /* perform first network action */ | 
| 2584 | if(outnet->do_udp && !(sq->tcp_upstream || sq->ssl_upstream)) { | 
| 2585 | if(!serviced_udp_send(sq, outnet->udp_buff)) | 
| 2586 | goto delete; | 
| 2587 | } else { | 
| 2588 | if(!serviced_tcp_send(sq, outnet->udp_buff)) | 
| 2589 | goto delete; | 
| 2590 | } | 
| 2591 | /* Maybe by this time we don't have callbacks attached anymore. Don't | 
| 2592 | * proactively try to delete; let it run and maybe another callback | 
| 2593 | * will get attached by the time we get an answer. */ | 
| 2594 | return; | 
| 2595 | delete: | 
| 2596 | serviced_callbacks(sq, NETEVENT_CLOSED-1, NULL((void *)0), NULL((void *)0)); | 
| 2597 | } | 
| 2598 | |
| 2599 | /** Create new serviced entry */ | 
| 2600 | static struct serviced_query* | 
| 2601 | serviced_create(struct outside_network* outnet, sldns_buffer* buff, int dnssec, | 
| 2602 | int want_dnssec, int nocaps, int tcp_upstream, int ssl_upstream, | 
| 2603 | char* tls_auth_name, struct sockaddr_storage* addr, socklen_t addrlen, | 
| 2604 | uint8_t* zone, size_t zonelen, int qtype, struct edns_option* opt_list, | 
| 2605 | size_t pad_queries_block_size, struct alloc_cache* alloc, | 
| 2606 | struct regional* region) | 
| 2607 | { | 
| 2608 | struct serviced_query* sq = (struct serviced_query*)malloc(sizeof(*sq)); | 
| 2609 | struct timeval t; | 
| 2610 | #ifdef UNBOUND_DEBUG | 
| 2611 | rbnode_type* ins; | 
| 2612 | #endif | 
| 2613 | if(!sq) { | 
| 2614 | alloc_reg_release(alloc, region); | 
| 2615 | return NULL((void *)0); | 
| 2616 | } | 
| 2617 | sq->node.key = sq; | 
| 2618 | sq->alloc = alloc; | 
| 2619 | sq->region = region; | 
| 2620 | sq->qbuf = regional_alloc_init(region, sldns_buffer_begin(buff), | 
| 2621 | sldns_buffer_limit(buff)); | 
| 2622 | if(!sq->qbuf) { | 
| 2623 | alloc_reg_release(alloc, region); | 
| 2624 | free(sq); | 
| 2625 | return NULL((void *)0); | 
| 2626 | } | 
| 2627 | sq->qbuflen = sldns_buffer_limit(buff); | 
| 2628 | sq->zone = regional_alloc_init(region, zone, zonelen); | 
| 2629 | if(!sq->zone) { | 
| 2630 | alloc_reg_release(alloc, region); | 
| 2631 | free(sq); | 
| 2632 | return NULL((void *)0); | 
| 2633 | } | 
| 2634 | sq->zonelen = zonelen; | 
| 2635 | sq->qtype = qtype; | 
| 2636 | sq->dnssec = dnssec; | 
| 2637 | sq->want_dnssec = want_dnssec; | 
| 2638 | sq->nocaps = nocaps; | 
| 2639 | sq->tcp_upstream = tcp_upstream; | 
| 2640 | sq->ssl_upstream = ssl_upstream; | 
| 2641 | if(tls_auth_name) { | 
| 2642 | sq->tls_auth_name = regional_strdup(region, tls_auth_name); | 
| 2643 | if(!sq->tls_auth_name) { | 
| 2644 | alloc_reg_release(alloc, region); | 
| 2645 | free(sq); | 
| 2646 | return NULL((void *)0); | 
| 2647 | } | 
| 2648 | } else { | 
| 2649 | sq->tls_auth_name = NULL((void *)0); | 
| 2650 | } | 
| 2651 | memcpy(&sq->addr, addr, addrlen); | 
| 2652 | sq->addrlen = addrlen; | 
| 2653 | sq->opt_list = opt_list; | 
| 2654 | sq->busy = 0; | 
| 2655 | sq->timer = comm_timer_create(outnet->base, serviced_timer_cb, sq); | 
| 2656 | if(!sq->timer) { | 
| 2657 | alloc_reg_release(alloc, region); | 
| 2658 | free(sq); | 
| 2659 | return NULL((void *)0); | 
| 2660 | } | 
| 2661 | memset(&t, 0, sizeof(t)); | 
| 2662 | comm_timer_set(sq->timer, &t); | 
| 2663 | sq->outnet = outnet; | 
| 2664 | sq->cblist = NULL((void *)0); | 
| 2665 | sq->pending = NULL((void *)0); | 
| 2666 | sq->status = serviced_initial; | 
| 2667 | sq->retry = 0; | 
| 2668 | sq->to_be_deleted = 0; | 
| 2669 | sq->padding_block_size = pad_queries_block_size; | 
| 2670 | #ifdef UNBOUND_DEBUG | 
| 2671 | ins = | 
| 2672 | #else | 
| 2673 | (void) | 
| 2674 | #endif | 
| 2675 | rbtree_insert(outnet->serviced, &sq->node); | 
| 2676 | log_assert(ins != NULL); /* must not be already present */ | 
| 2677 | return sq; | 
| 2678 | } | 
| 2679 | |
| 2680 | /** reuse tcp stream, remove serviced query from stream, | 
| 2681 | * return true if the stream is kept, false if it is to be closed */ | 
| 2682 | static int | 
| 2683 | reuse_tcp_remove_serviced_keep(struct waiting_tcp* w, | 
| 2684 | struct serviced_query* sq) | 
| 2685 | { | 
| 2686 | struct pending_tcp* pend_tcp = (struct pending_tcp*)w->next_waiting; | 
| 2687 | verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep"); | 
| 2688 | /* remove the callback. let query continue to write to not cancel | 
| 2689 | * the stream itself. also keep it as an entry in the tree_by_id, | 
| 2690 | * in case the answer returns (that we no longer want), but we cannot | 
| 2691 | * pick the same ID number meanwhile */ | 
| 2692 | w->cb = NULL((void *)0); | 
| 2693 | /* see if can be entered in reuse tree | 
| 2694 | * for that the FD has to be non-1 */ | 
| 2695 | if(pend_tcp->c->fd == -1) { | 
| 2696 | verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: -1 fd"); | 
| 2697 | return 0; | 
| 2698 | } | 
| 2699 | /* if in tree and used by other queries */ | 
| 2700 | if(pend_tcp->reuse.node.key) { | 
| 2701 | verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: in use by other queries"); | 
| 2702 | /* do not reset the keepalive timer, for that | 
| 2703 | * we'd need traffic, and this is where the serviced is | 
| 2704 | * removed due to state machine internal reasons, | 
| 2705 | * eg. iterator no longer interested in this query */ | 
| 2706 | return 1; | 
| 2707 | } | 
| 2708 | /* if still open and want to keep it open */ | 
| 2709 | if(pend_tcp->c->fd != -1 && sq->outnet->tcp_reuse.count < | 
| 2710 | sq->outnet->tcp_reuse_max) { | 
| 2711 | verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: keep open"); | 
| 2712 | /* set a keepalive timer on it */ | 
| 2713 | if(!reuse_tcp_insert(sq->outnet, pend_tcp)) { | 
| 2714 | return 0; | 
| 2715 | } | 
| 2716 | reuse_tcp_setup_timeout(pend_tcp, sq->outnet->tcp_reuse_timeout); | 
| 2717 | return 1; | 
| 2718 | } | 
| 2719 | return 0; | 
| 2720 | } | 
| 2721 | |
| 2722 | /** cleanup serviced query entry */ | 
| 2723 | static void | 
| 2724 | serviced_delete(struct serviced_query* sq) | 
| 2725 | { | 
| 2726 | verbose(VERB_CLIENT, "serviced_delete"); | 
| 2727 | if(sq->pending) { | 
| 2728 | /* clear up the pending query */ | 
| 2729 | if(sq->status == serviced_query_UDP_EDNS || | 
| 2730 | sq->status == serviced_query_UDP || | 
| 2731 | sq->status == serviced_query_UDP_EDNS_FRAG || | 
| 2732 | sq->status == serviced_query_UDP_EDNS_fallback) { | 
| 2733 | struct pending* p = (struct pending*)sq->pending; | 
| 2734 | verbose(VERB_CLIENT, "serviced_delete: UDP"); | 
| 2735 | if(p->pc) | 
| 2736 | portcomm_loweruse(sq->outnet, p->pc); | 
| 2737 | pending_delete(sq->outnet, p); | 
| 2738 | /* this call can cause reentrant calls back into the | 
| 2739 | * mesh */ | 
| 2740 | outnet_send_wait_udp(sq->outnet); | 
| 2741 | } else { | 
| 2742 | struct waiting_tcp* w = (struct waiting_tcp*) | 
| 2743 | sq->pending; | 
| 2744 | verbose(VERB_CLIENT, "serviced_delete: TCP"); | 
| 2745 | log_assert(!(w->write_wait_queued && w->on_tcp_waiting_list)); | 
| 2746 | /* if on stream-write-waiting list then | 
| 2747 | * remove from waiting list and waiting_tcp_delete */ | 
| 2748 | if(w->write_wait_queued) { | 
| 2749 | struct pending_tcp* pend = | 
| 2750 | (struct pending_tcp*)w->next_waiting; | 
| 2751 | verbose(VERB_CLIENT, "serviced_delete: writewait"); | 
| 2752 | if(!w->in_cb_and_decommission) | 
| 2753 | reuse_tree_by_id_delete(&pend->reuse, w); | 
| 2754 | reuse_write_wait_remove(&pend->reuse, w); | 
| 2755 | if(!w->in_cb_and_decommission) | 
| 2756 | waiting_tcp_delete(w); | 
| 2757 | } else if(!w->on_tcp_waiting_list) { | 
| 2758 | struct pending_tcp* pend = | 
| 2759 | (struct pending_tcp*)w->next_waiting; | 
| 2760 | verbose(VERB_CLIENT, "serviced_delete: tcpreusekeep"); | 
| 2761 | /* w needs to stay on tree_by_id to not assign | 
| 2762 | * the same ID; remove the callback since its | 
| 2763 | * serviced_query will be gone. */ | 
| 2764 | w->cb = NULL((void *)0); | 
| 2765 | if(!reuse_tcp_remove_serviced_keep(w, sq)) { | 
| 2766 | if(!w->in_cb_and_decommission) | 
| 2767 | reuse_cb_and_decommission(sq->outnet, | 
| 2768 | pend, NETEVENT_CLOSED-1); | 
| 2769 | use_free_buffer(sq->outnet); | 
| 2770 | } | 
| 2771 | sq->pending = NULL((void *)0); | 
| 2772 | } else { | 
| 2773 | verbose(VERB_CLIENT, "serviced_delete: tcpwait"); | 
| 2774 | outnet_waiting_tcp_list_remove(sq->outnet, w); | 
| 2775 | if(!w->in_cb_and_decommission) | 
| 2776 | waiting_tcp_delete(w); | 
| 2777 | } | 
| 2778 | } | 
| 2779 | } | 
| 2780 | /* does not delete from tree, caller has to do that */ | 
| 2781 | serviced_node_del(&sq->node, NULL((void *)0)); | 
| 2782 | } | 
| 2783 | |
| 2784 | /** perturb a dname capitalization randomly */ | 
| 2785 | static void | 
| 2786 | serviced_perturb_qname(struct ub_randstate* rnd, uint8_t* qbuf, size_t len) | 
| 2787 | { | 
| 2788 | uint8_t lablen; | 
| 2789 | uint8_t* d = qbuf + 10; | 
| 2790 | long int random = 0; | 
| 2791 | int bits = 0; | 
| 2792 | log_assert(len >= 10 + 5 /* offset qname, root, qtype, qclass */); | 
| 2793 | (void)len; | 
| 2794 | lablen = *d++; | 
| 2795 | while(lablen) { | 
| 2796 | while(lablen--) { | 
| 2797 | /* only perturb A-Z, a-z */ | 
| 2798 | if(isalpha((unsigned char)*d)) { | 
| 2799 | /* get a random bit */ | 
| 2800 | if(bits == 0) { | 
| 2801 | random = ub_random(rnd); | 
| 2802 | bits = 30; | 
| 2803 | } | 
| 2804 | if(random & 0x1) { | 
| 2805 | *d = (uint8_t)toupper((unsigned char)*d); | 
| 2806 | } else { | 
| 2807 | *d = (uint8_t)tolower((unsigned char)*d); | 
| 2808 | } | 
| 2809 | random >>= 1; | 
| 2810 | bits--; | 
| 2811 | } | 
| 2812 | d++; | 
| 2813 | } | 
| 2814 | lablen = *d++; | 
| 2815 | } | 
| 2816 | if(verbosity >= VERB_ALGO) { | 
| 2817 | char buf[LDNS_MAX_DOMAINLEN255+1]; | 
| 2818 | dname_str(qbuf+10, buf); | 
| 2819 | verbose(VERB_ALGO, "qname perturbed to %s", buf); | 
| 2820 | } | 
| 2821 | } | 
| 2822 | |
| 2823 | /** put serviced query into a buffer */ | 
| 2824 | static void | 
| 2825 | serviced_encode(struct serviced_query* sq, sldns_buffer* buff, int with_edns) | 
| 2826 | { | 
| 2827 | /* if we are using 0x20 bits for ID randomness, perturb them */ | 
| 2828 | if(sq->outnet->use_caps_for_id && !sq->nocaps) { | 
| 2829 | serviced_perturb_qname(sq->outnet->rnd, sq->qbuf, sq->qbuflen); | 
| 2830 | } | 
| 2831 | /* generate query */ | 
| 2832 | sldns_buffer_clear(buff); | 
| 2833 | sldns_buffer_write_u16(buff, 0); /* id placeholder */ | 
| 2834 | sldns_buffer_write(buff, sq->qbuf, sq->qbuflen); | 
| 2835 | sldns_buffer_flip(buff); | 
| 2836 | if(with_edns) { | 
| 2837 | /* add edns section */ | 
| 2838 | struct edns_data edns; | 
| 2839 | struct edns_option padding_option; | 
| 2840 | edns.edns_present = 1; | 
| 2841 | edns.ext_rcode = 0; | 
| 2842 | edns.edns_version = EDNS_ADVERTISED_VERSION0; | 
| 2843 | edns.opt_list_in = NULL((void *)0); | 
| 2844 | edns.opt_list_out = sq->opt_list; | 
| 2845 | edns.opt_list_inplace_cb_out = NULL((void *)0); | 
| 2846 | if(sq->status == serviced_query_UDP_EDNS_FRAG) { | 
| 2847 | if(addr_is_ip6(&sq->addr, sq->addrlen)) { | 
| 2848 | if(EDNS_FRAG_SIZE_IP61232 < EDNS_ADVERTISED_SIZE) | 
| 2849 | edns.udp_size = EDNS_FRAG_SIZE_IP61232; | 
| 2850 | else edns.udp_size = EDNS_ADVERTISED_SIZE; | 
| 2851 | } else { | 
| 2852 | if(EDNS_FRAG_SIZE_IP41472 < EDNS_ADVERTISED_SIZE) | 
| 2853 | edns.udp_size = EDNS_FRAG_SIZE_IP41472; | 
| 2854 | else edns.udp_size = EDNS_ADVERTISED_SIZE; | 
| 2855 | } | 
| 2856 | } else { | 
| 2857 | edns.udp_size = EDNS_ADVERTISED_SIZE; | 
| 2858 | } | 
| 2859 | edns.bits = 0; | 
| 2860 | if(sq->dnssec & EDNS_DO0x8000) | 
| 2861 | edns.bits = EDNS_DO0x8000; | 
| 2862 | if(sq->dnssec & BIT_CD0x0010) | 
| 2863 | LDNS_CD_SET(sldns_buffer_begin(buff))(*(sldns_buffer_begin(buff)+3) |= 0x10U); | 
| 2864 | if (sq->ssl_upstream && sq->padding_block_size) { | 
| 2865 | padding_option.opt_code = LDNS_EDNS_PADDING; | 
| 2866 | padding_option.opt_len = 0; | 
| 2867 | padding_option.opt_data = NULL((void *)0); | 
| 2868 | padding_option.next = edns.opt_list_out; | 
| 2869 | edns.opt_list_out = &padding_option; | 
| 2870 | edns.padding_block_size = sq->padding_block_size; | 
| 2871 | } | 
| 2872 | attach_edns_record(buff, &edns); | 
| 2873 | } | 
| 2874 | } | 
| 2875 | |
| 2876 | /** | 
| 2877 | * Perform serviced query UDP sending operation. | 
| 2878 | * Sends UDP with EDNS, unless infra host marked non EDNS. | 
| 2879 | * @param sq: query to send. | 
| 2880 | * @param buff: buffer scratch space. | 
| 2881 | * @return 0 on error. | 
| 2882 | */ | 
| 2883 | static int | 
| 2884 | serviced_udp_send(struct serviced_query* sq, sldns_buffer* buff) | 
| 2885 | { | 
| 2886 | int rtt, vs; | 
| 2887 | uint8_t edns_lame_known; | 
| 2888 | time_t now = *sq->outnet->now_secs; | 
| 2889 | |
| 2890 | if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone, | 
| 2891 | sq->zonelen, now, &vs, &edns_lame_known, &rtt)) | 
| 2892 | return 0; | 
| 2893 | sq->last_rtt = rtt; | 
| 2894 | verbose(VERB_ALGO, "EDNS lookup known=%d vs=%d", edns_lame_known, vs); | 
| 2895 | if(sq->status == serviced_initial) { | 
| 2896 | if(vs != -1) { | 
| 2897 | sq->status = serviced_query_UDP_EDNS; | 
| 2898 | } else { | 
| 2899 | sq->status = serviced_query_UDP; | 
| 2900 | } | 
| 2901 | } | 
| 2902 | serviced_encode(sq, buff, (sq->status == serviced_query_UDP_EDNS) || | 
| 2903 | (sq->status == serviced_query_UDP_EDNS_FRAG)); | 
| 2904 | sq->last_sent_time = *sq->outnet->now_tv; | 
| 2905 | sq->edns_lame_known = (int)edns_lame_known; | 
| 2906 | verbose(VERB_ALGO, "serviced query UDP timeout=%d msec", rtt); | 
| 2907 | sq->pending = pending_udp_query(sq, buff, rtt, | 
| 2908 | serviced_udp_callback, sq); | 
| 2909 | if(!sq->pending) | 
| 2910 | return 0; | 
| 2911 | return 1; | 
| 2912 | } | 
| 2913 | |
| 2914 | /** check that perturbed qname is identical */ | 
| 2915 | static int | 
| 2916 | serviced_check_qname(sldns_buffer* pkt, uint8_t* qbuf, size_t qbuflen) | 
| 2917 | { | 
| 2918 | uint8_t* d1 = sldns_buffer_begin(pkt)+12; | 
| 2919 | uint8_t* d2 = qbuf+10; | 
| 2920 | uint8_t len1, len2; | 
| 2921 | int count = 0; | 
| 2922 | if(sldns_buffer_limit(pkt) < 12+1+4) /* packet too small for qname */ | 
| 2923 | return 0; | 
| 2924 | log_assert(qbuflen >= 15 /* 10 header, root, type, class */); | 
| 2925 | len1 = *d1++; | 
| 2926 | len2 = *d2++; | 
| 2927 | while(len1 != 0 || len2 != 0) { | 
| 2928 | if(LABEL_IS_PTR(len1)( ((len1)&0xc0) == 0xc0 )) { | 
| 2929 | /* check if we can read *d1 with compression ptr rest */ | 
| 2930 | if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) | 
| 2931 | return 0; | 
| 2932 | d1 = sldns_buffer_begin(pkt)+PTR_OFFSET(len1, *d1)( ((len1)&0x3f)<<8 | (*d1) ); | 
| 2933 | /* check if we can read the destination *d1 */ | 
| 2934 | if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) | 
| 2935 | return 0; | 
| 2936 | len1 = *d1++; | 
| 2937 | if(count++ > MAX_COMPRESS_PTRS256) | 
| 2938 | return 0; | 
| 2939 | continue; | 
| 2940 | } | 
| 2941 | if(d2 > qbuf+qbuflen) | 
| 2942 | return 0; | 
| 2943 | if(len1 != len2) | 
| 2944 | return 0; | 
| 2945 | if(len1 > LDNS_MAX_LABELLEN63) | 
| 2946 | return 0; | 
| 2947 | /* check len1 + 1(next length) are okay to read */ | 
| 2948 | if(d1+len1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt))) | 
| 2949 | return 0; | 
| 2950 | log_assert(len1 <= LDNS_MAX_LABELLEN); | 
| 2951 | log_assert(len2 <= LDNS_MAX_LABELLEN); | 
| 2952 | log_assert(len1 == len2 && len1 != 0); | 
| 2953 | /* compare the labels - bitwise identical */ | 
| 2954 | if(memcmp(d1, d2, len1) != 0) | 
| 2955 | return 0; | 
| 2956 | d1 += len1; | 
| 2957 | d2 += len2; | 
| 2958 | len1 = *d1++; | 
| 2959 | len2 = *d2++; | 
| 2960 | } | 
| 2961 | return 1; | 
| 2962 | } | 
| 2963 | |
| 2964 | /** call the callbacks for a serviced query */ | 
| 2965 | static void | 
| 2966 | serviced_callbacks(struct serviced_query* sq, int error, struct comm_point* c, | 
| 2967 | struct comm_reply* rep) | 
| 2968 | { | 
| 2969 | struct service_callback* p; | 
| 2970 | int dobackup = (sq->cblist && sq->cblist->next); /* >1 cb*/ | 
| 2971 | uint8_t *backup_p = NULL((void *)0); | 
| 2972 | size_t backlen = 0; | 
| 2973 | #ifdef UNBOUND_DEBUG | 
| 2974 | rbnode_type* rem = | 
| 2975 | #else | 
| 2976 | (void) | 
| 2977 | #endif | 
| 2978 | /* remove from tree, and schedule for deletion, so that callbacks | 
| 2979 | * can safely deregister themselves and even create new serviced | 
| 2980 | * queries that are identical to this one. */ | 
| 2981 | rbtree_delete(sq->outnet->serviced, sq); | 
| 2982 | log_assert(rem); /* should have been present */ | 
| 2983 | sq->to_be_deleted = 1; | 
| 2984 | verbose(VERB_ALGO, "svcd callbacks start"); | 
| 2985 | if(sq->outnet->use_caps_for_id && error == NETEVENT_NOERROR0 && c && | 
| 2986 | !sq->nocaps && sq->qtype != LDNS_RR_TYPE_PTR) { | 
| 2987 | /* for type PTR do not check perturbed name in answer, | 
| 2988 | * compatibility with cisco dns guard boxes that mess up | 
| 2989 | * reverse queries 0x20 contents */ | 
| 2990 | /* noerror and nxdomain must have a qname in reply */ | 
| 2991 | if(sldns_buffer_read_u16_at(c->buffer, 4) == 0 && | 
| 2992 | (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) | 
| 2993 | == LDNS_RCODE_NOERROR || | 
| 2994 | LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) | 
| 2995 | == LDNS_RCODE_NXDOMAIN)) { | 
| 2996 | verbose(VERB_DETAIL, "no qname in reply to check 0x20ID"); | 
| 2997 | log_addr(VERB_DETAIL, "from server", | 
| 2998 | &sq->addr, sq->addrlen); | 
| 2999 | log_buf(VERB_DETAIL, "for packet", c->buffer); | 
| 3000 | error = NETEVENT_CLOSED-1; | 
| 3001 | c = NULL((void *)0); | 
| 3002 | } else if(sldns_buffer_read_u16_at(c->buffer, 4) > 0 && | 
| 3003 | !serviced_check_qname(c->buffer, sq->qbuf, | 
| 3004 | sq->qbuflen)) { | 
| 3005 | verbose(VERB_DETAIL, "wrong 0x20-ID in reply qname"); | 
| 3006 | log_addr(VERB_DETAIL, "from server", | 
| 3007 | &sq->addr, sq->addrlen); | 
| 3008 | log_buf(VERB_DETAIL, "for packet", c->buffer); | 
| 3009 | error = NETEVENT_CAPSFAIL-3; | 
| 3010 | /* and cleanup too */ | 
| 3011 | pkt_dname_tolower(c->buffer, | 
| 3012 | sldns_buffer_at(c->buffer, 12)); | 
| 3013 | } else { | 
| 3014 | verbose(VERB_ALGO, "good 0x20-ID in reply qname"); | 
| 3015 | /* cleanup caps, prettier cache contents. */ | 
| 3016 | pkt_dname_tolower(c->buffer, | 
| 3017 | sldns_buffer_at(c->buffer, 12)); | 
| 3018 | } | 
| 3019 | } | 
| 3020 | if(dobackup && c) { | 
| 3021 | /* make a backup of the query, since the querystate processing | 
| 3022 | * may send outgoing queries that overwrite the buffer. | 
| 3023 | * use secondary buffer to store the query. | 
| 3024 | * This is a data copy, but faster than packet to server */ | 
| 3025 | backlen = sldns_buffer_limit(c->buffer); | 
| 3026 | backup_p = regional_alloc_init(sq->region, | 
| 3027 | sldns_buffer_begin(c->buffer), backlen); | 
| 3028 | if(!backup_p) { | 
| 3029 | log_err("malloc failure in serviced query callbacks"); | 
| 3030 | error = NETEVENT_CLOSED-1; | 
| 3031 | c = NULL((void *)0); | 
| 3032 | } | 
| 3033 | sq->outnet->svcd_overhead = backlen; | 
| 3034 | } | 
| 3035 | /* test the actual sq->cblist, because the next elem could be deleted*/ | 
| 3036 | while((p=sq->cblist) != NULL((void *)0)) { | 
| 3037 | sq->cblist = p->next; /* remove this element */ | 
| 3038 | if(dobackup && c) { | 
| 3039 | sldns_buffer_clear(c->buffer); | 
| 3040 | sldns_buffer_write(c->buffer, backup_p, backlen); | 
| 3041 | sldns_buffer_flip(c->buffer); | 
| 3042 | } | 
| 3043 | fptr_ok(fptr_whitelist_serviced_query(p->cb)); | 
| 3044 | (void)(*p->cb)(c, p->cb_arg, error, rep); | 
| 3045 | } | 
| 3046 | if(backup_p) { | 
| 3047 | sq->outnet->svcd_overhead = 0; | 
| 3048 | } | 
| 3049 | verbose(VERB_ALGO, "svcd callbacks end"); | 
| 3050 | log_assert(sq->cblist == NULL); | 
| 3051 | serviced_delete(sq); | 
| 3052 | } | 
| 3053 | |
| 3054 | int | 
| 3055 | serviced_tcp_callback(struct comm_point* c, void* arg, int error, | 
| 3056 | struct comm_reply* rep) | 
| 3057 | { | 
| 3058 | struct serviced_query* sq = (struct serviced_query*)arg; | 
| 3059 | struct comm_reply r2; | 
| 3060 | #ifdef USE_DNSTAP | 
| 3061 | struct waiting_tcp* w = (struct waiting_tcp*)sq->pending; | 
| 3062 | struct pending_tcp* pend_tcp = NULL((void *)0); | 
| 3063 | struct port_if* pi = NULL((void *)0); | 
| 3064 | if(w && !w->on_tcp_waiting_list && w->next_waiting) { | 
| 3065 | pend_tcp = (struct pending_tcp*)w->next_waiting; | 
| 3066 | pi = pend_tcp->pi; | 
| 3067 | } | 
| 3068 | #endif | 
| 3069 | sq->pending = NULL((void *)0); /* removed after this callback */ | 
| 3070 | if(error != NETEVENT_NOERROR0) | 
| 3071 | log_addr(VERB_QUERY, "tcp error for address", | 
| 3072 | &sq->addr, sq->addrlen); | 
| 3073 | if(error==NETEVENT_NOERROR0) | 
| 3074 | infra_update_tcp_works(sq->outnet->infra, &sq->addr, | 
| 3075 | sq->addrlen, sq->zone, sq->zonelen); | 
| 3076 | #ifdef USE_DNSTAP | 
| 3077 | /* | 
| 3078 | * sending src (local service)/dst (upstream) addresses over DNSTAP | 
| 3079 | */ | 
| 3080 | if(error==NETEVENT_NOERROR0 && pi && sq->outnet->dtenv && | 
| 3081 | (sq->outnet->dtenv->log_resolver_response_messages || | 
| 3082 | sq->outnet->dtenv->log_forwarder_response_messages)) { | 
| 3083 | log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen); | 
| 3084 | log_addr(VERB_ALGO, "to local addr", &pi->addr, pi->addrlen); | 
| 3085 | dt_msg_send_outside_response(sq->outnet->dtenv, &sq->addr, | 
| 3086 | &pi->addr, c->type, sq->zone, sq->zonelen, sq->qbuf, | 
| 3087 | sq->qbuflen, &sq->last_sent_time, sq->outnet->now_tv, | 
| 3088 | c->buffer); | 
| 3089 | } | 
| 3090 | #endif | 
| 3091 | if(error==NETEVENT_NOERROR0 && sq->status == serviced_query_TCP_EDNS && | 
| 3092 | (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == | 
| 3093 | LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE(sldns_buffer_begin((*(sldns_buffer_begin( c->buffer)+3) & 0x0fU) | 
| 3094 | c->buffer))(*(sldns_buffer_begin( c->buffer)+3) & 0x0fU) == LDNS_RCODE_NOTIMPL) ) { | 
| 3095 | /* attempt to fallback to nonEDNS */ | 
| 3096 | sq->status = serviced_query_TCP_EDNS_fallback; | 
| 3097 | serviced_tcp_initiate(sq, c->buffer); | 
| 3098 | return 0; | 
| 3099 | } else if(error==NETEVENT_NOERROR0 && | 
| 3100 | sq->status == serviced_query_TCP_EDNS_fallback && | 
| 3101 | (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == | 
| 3102 | LDNS_RCODE_NOERROR || LDNS_RCODE_WIRE((*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) | 
| 3103 | sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == LDNS_RCODE_NXDOMAIN | 
| 3104 | || LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) | 
| 3105 | == LDNS_RCODE_YXDOMAIN)) { | 
| 3106 | /* the fallback produced a result that looks promising, note | 
| 3107 | * that this server should be approached without EDNS */ | 
| 3108 | /* only store noEDNS in cache if domain is noDNSSEC */ | 
| 3109 | if(!sq->want_dnssec) | 
| 3110 | if(!infra_edns_update(sq->outnet->infra, &sq->addr, | 
| 3111 | sq->addrlen, sq->zone, sq->zonelen, -1, | 
| 3112 | *sq->outnet->now_secs)) | 
| 3113 | log_err("Out of memory caching no edns for host"); | 
| 3114 | sq->status = serviced_query_TCP; | 
| 3115 | } | 
| 3116 | if(sq->tcp_upstream || sq->ssl_upstream) { | 
| 3117 | struct timeval now = *sq->outnet->now_tv; | 
| 3118 | if(error!=NETEVENT_NOERROR0) { | 
| 3119 | if(!infra_rtt_update(sq->outnet->infra, &sq->addr, | 
| 3120 | sq->addrlen, sq->zone, sq->zonelen, sq->qtype, | 
| 3121 | -1, sq->last_rtt, (time_t)now.tv_sec)) | 
| 3122 | log_err("out of memory in TCP exponential backoff."); | 
| 3123 | } else if(now.tv_sec > sq->last_sent_time.tv_sec || | 
| 3124 | (now.tv_sec == sq->last_sent_time.tv_sec && | 
| 3125 | now.tv_usec > sq->last_sent_time.tv_usec)) { | 
| 3126 | /* convert from microseconds to milliseconds */ | 
| 3127 | int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000 | 
| 3128 | + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000; | 
| 3129 | verbose(VERB_ALGO, "measured TCP-time at %d msec", roundtime); | 
| 3130 | log_assert(roundtime >= 0); | 
| 3131 | /* only store if less then AUTH_TIMEOUT seconds, it could be | 
| 3132 | * huge due to system-hibernated and we woke up */ | 
| 3133 | if(roundtime < 60000) { | 
| 3134 | if(!infra_rtt_update(sq->outnet->infra, &sq->addr, | 
| 3135 | sq->addrlen, sq->zone, sq->zonelen, sq->qtype, | 
| 3136 | roundtime, sq->last_rtt, (time_t)now.tv_sec)) | 
| 3137 | log_err("out of memory noting rtt."); | 
| 3138 | } | 
| 3139 | } | 
| 3140 | } | 
| 3141 | /* insert address into reply info */ | 
| 3142 | if(!rep) { | 
| 3143 | /* create one if there isn't (on errors) */ | 
| 3144 | rep = &r2; | 
| 3145 | r2.c = c; | 
| 3146 | } | 
| 3147 | memcpy(&rep->remote_addr, &sq->addr, sq->addrlen); | 
| 3148 | rep->remote_addrlen = sq->addrlen; | 
| 3149 | serviced_callbacks(sq, error, c, rep); | 
| 3150 | return 0; | 
| 3151 | } | 
| 3152 | |
| 3153 | static void | 
| 3154 | serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff) | 
| 3155 | { | 
| 3156 | verbose(VERB_ALGO, "initiate TCP query %s", | 
| 3157 | sq->status==serviced_query_TCP_EDNS?"EDNS":""); | 
| 3158 | serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS); | 
| 3159 | sq->last_sent_time = *sq->outnet->now_tv; | 
| 3160 | log_assert(!sq->busy); | 
| 3161 | sq->busy = 1; | 
| 3162 | sq->pending = pending_tcp_query(sq, buff, sq->outnet->tcp_auth_query_timeout, | 
| 3163 | serviced_tcp_callback, sq); | 
| 3164 | sq->busy = 0; | 
| 3165 | if(!sq->pending) { | 
| 3166 | /* delete from tree so that a retry by above layer does not | 
| 3167 | * clash with this entry */ | 
| 3168 | verbose(VERB_ALGO, "serviced_tcp_initiate: failed to send tcp query"); | 
| 3169 | serviced_callbacks(sq, NETEVENT_CLOSED-1, NULL((void *)0), NULL((void *)0)); | 
| 3170 | } | 
| 3171 | } | 
| 3172 | |
| 3173 | /** Send serviced query over TCP return false on initial failure */ | 
| 3174 | static int | 
| 3175 | serviced_tcp_send(struct serviced_query* sq, sldns_buffer* buff) | 
| 3176 | { | 
| 3177 | int vs, rtt, timeout; | 
| 3178 | uint8_t edns_lame_known; | 
| 3179 | if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone, | 
| 3180 | sq->zonelen, *sq->outnet->now_secs, &vs, &edns_lame_known, | 
| 3181 | &rtt)) | 
| 3182 | return 0; | 
| 3183 | sq->last_rtt = rtt; | 
| 3184 | if(vs != -1) | 
| 3185 | sq->status = serviced_query_TCP_EDNS; | 
| 3186 | else sq->status = serviced_query_TCP; | 
| 3187 | serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS); | 
| 3188 | sq->last_sent_time = *sq->outnet->now_tv; | 
| 3189 | if(sq->tcp_upstream || sq->ssl_upstream) { | 
| 3190 | timeout = rtt; | 
| 3191 | if(rtt >= UNKNOWN_SERVER_NICENESS && rtt < sq->outnet->tcp_auth_query_timeout) | 
| 3192 | timeout = sq->outnet->tcp_auth_query_timeout; | 
| 3193 | } else { | 
| 3194 | timeout = sq->outnet->tcp_auth_query_timeout; | 
| 3195 | } | 
| 3196 | log_assert(!sq->busy); | 
| 3197 | sq->busy = 1; | 
| 3198 | sq->pending = pending_tcp_query(sq, buff, timeout, | 
| 3199 | serviced_tcp_callback, sq); | 
| 3200 | sq->busy = 0; | 
| 3201 | return sq->pending != NULL((void *)0); | 
| 3202 | } | 
| 3203 | |
| 3204 | /* see if packet is edns malformed; got zeroes at start. | 
| 3205 | * This is from servers that return malformed packets to EDNS0 queries, | 
| 3206 | * but they return good packets for nonEDNS0 queries. | 
| 3207 | * We try to detect their output; without resorting to a full parse or | 
| 3208 | * check for too many bytes after the end of the packet. */ | 
| 3209 | static int | 
| 3210 | packet_edns_malformed(struct sldns_buffer* buf, int qtype) | 
| 3211 | { | 
| 3212 | size_t len; | 
| 3213 | if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE12) | 
| 3214 | return 1; /* malformed */ | 
| 3215 | /* they have NOERROR rcode, 1 answer. */ | 
| 3216 | if(LDNS_RCODE_WIRE(sldns_buffer_begin(buf))(*(sldns_buffer_begin(buf)+3) & 0x0fU) != LDNS_RCODE_NOERROR) | 
| 3217 | return 0; | 
| 3218 | /* one query (to skip) and answer records */ | 
| 3219 | if(LDNS_QDCOUNT(sldns_buffer_begin(buf))(sldns_read_uint16(sldns_buffer_begin(buf)+4)) != 1 || | 
| 3220 | LDNS_ANCOUNT(sldns_buffer_begin(buf))(sldns_read_uint16(sldns_buffer_begin(buf)+6)) == 0) | 
| 3221 | return 0; | 
| 3222 | /* skip qname */ | 
| 3223 | len = dname_valid(sldns_buffer_at(buf, LDNS_HEADER_SIZE12), | 
| 3224 | sldns_buffer_limit(buf)-LDNS_HEADER_SIZE12); | 
| 3225 | if(len == 0) | 
| 3226 | return 0; | 
| 3227 | if(len == 1 && qtype == 0) | 
| 3228 | return 0; /* we asked for '.' and type 0 */ | 
| 3229 | /* and then 4 bytes (type and class of query) */ | 
| 3230 | if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE12 + len + 4 + 3) | 
| 3231 | return 0; | 
| 3232 | |
| 3233 | /* and start with 11 zeroes as the answer RR */ | 
| 3234 | /* so check the qtype of the answer record, qname=0, type=0 */ | 
| 3235 | if(sldns_buffer_at(buf, LDNS_HEADER_SIZE12+len+4)[0] == 0 && | 
| 3236 | sldns_buffer_at(buf, LDNS_HEADER_SIZE12+len+4)[1] == 0 && | 
| 3237 | sldns_buffer_at(buf, LDNS_HEADER_SIZE12+len+4)[2] == 0) | 
| 3238 | return 1; | 
| 3239 | return 0; | 
| 3240 | } | 
| 3241 | |
| 3242 | int | 
| 3243 | serviced_udp_callback(struct comm_point* c, void* arg, int error, | 
| 3244 | struct comm_reply* rep) | 
| 3245 | { | 
| 3246 | struct serviced_query* sq = (struct serviced_query*)arg; | 
| 3247 | struct outside_network* outnet = sq->outnet; | 
| 3248 | struct timeval now = *sq->outnet->now_tv; | 
| 3249 | #ifdef USE_DNSTAP | 
| 3250 | struct pending* p = (struct pending*)sq->pending; | 
| 3251 | #endif | 
| 3252 | |
| 3253 | sq->pending = NULL((void *)0); /* removed after callback */ | 
| 3254 | if(error == NETEVENT_TIMEOUT-2) { | 
| 3255 | if(sq->status == serviced_query_UDP_EDNS && sq->last_rtt < 5000) { | 
| 3256 | /* fallback to 1480/1280 */ | 
| 3257 | sq->status = serviced_query_UDP_EDNS_FRAG; | 
| 3258 | log_name_addr(VERB_ALGO, "try edns1xx0", sq->qbuf+10, | 
| 3259 | &sq->addr, sq->addrlen); | 
| 3260 | if(!serviced_udp_send(sq, c->buffer)) { | 
| 3261 | serviced_callbacks(sq, NETEVENT_CLOSED-1, c, rep); | 
| 3262 | } | 
| 3263 | return 0; | 
| 3264 | } | 
| 3265 | if(sq->status == serviced_query_UDP_EDNS_FRAG) { | 
| 3266 | /* fragmentation size did not fix it */ | 
| 3267 | sq->status = serviced_query_UDP_EDNS; | 
| 3268 | } | 
| 3269 | sq->retry++; | 
| 3270 | if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen, | 
| 3271 | sq->zone, sq->zonelen, sq->qtype, -1, sq->last_rtt, | 
| 3272 | (time_t)now.tv_sec)) | 
| 3273 | log_err("out of memory in UDP exponential backoff"); | 
| 3274 | if(sq->retry < OUTBOUND_UDP_RETRY1) { | 
| 3275 | log_name_addr(VERB_ALGO, "retry query", sq->qbuf+10, | 
| 3276 | &sq->addr, sq->addrlen); | 
| 3277 | if(!serviced_udp_send(sq, c->buffer)) { | 
| 3278 | serviced_callbacks(sq, NETEVENT_CLOSED-1, c, rep); | 
| 3279 | } | 
| 3280 | return 0; | 
| 3281 | } | 
| 3282 | } | 
| 3283 | if(error != NETEVENT_NOERROR0) { | 
| 3284 | /* udp returns error (due to no ID or interface available) */ | 
| 3285 | serviced_callbacks(sq, error, c, rep); | 
| 3286 | return 0; | 
| 3287 | } | 
| 3288 | #ifdef USE_DNSTAP | 
| 3289 | /* | 
| 3290 | * sending src (local service)/dst (upstream) addresses over DNSTAP | 
| 3291 | */ | 
| 3292 | if(error == NETEVENT_NOERROR0 && outnet->dtenv && p->pc && | 
| 3293 | (outnet->dtenv->log_resolver_response_messages || | 
| 3294 | outnet->dtenv->log_forwarder_response_messages)) { | 
| 3295 | log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen); | 
| 3296 | log_addr(VERB_ALGO, "to local addr", &p->pc->pif->addr, | 
| 3297 | p->pc->pif->addrlen); | 
| 3298 | dt_msg_send_outside_response(outnet->dtenv, &sq->addr, | 
| 3299 | &p->pc->pif->addr, c->type, sq->zone, sq->zonelen, | 
| 3300 | sq->qbuf, sq->qbuflen, &sq->last_sent_time, | 
| 3301 | sq->outnet->now_tv, c->buffer); | 
| 3302 | } | 
| 3303 | #endif | 
| 3304 | if( (sq->status == serviced_query_UDP_EDNS | 
| 3305 | ||sq->status == serviced_query_UDP_EDNS_FRAG) | 
| 3306 | && (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) | 
| 3307 | == LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE((*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) | 
| 3308 | sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == LDNS_RCODE_NOTIMPL | 
| 3309 | || packet_edns_malformed(c->buffer, sq->qtype) | 
| 3310 | )) { | 
| 3311 | /* try to get an answer by falling back without EDNS */ | 
| 3312 | verbose(VERB_ALGO, "serviced query: attempt without EDNS"); | 
| 3313 | sq->status = serviced_query_UDP_EDNS_fallback; | 
| 3314 | sq->retry = 0; | 
| 3315 | if(!serviced_udp_send(sq, c->buffer)) { | 
| 3316 | serviced_callbacks(sq, NETEVENT_CLOSED-1, c, rep); | 
| 3317 | } | 
| 3318 | return 0; | 
| 3319 | } else if(sq->status == serviced_query_UDP_EDNS && | 
| 3320 | !sq->edns_lame_known) { | 
| 3321 | /* now we know that edns queries received answers store that */ | 
| 3322 | log_addr(VERB_ALGO, "serviced query: EDNS works for", | 
| 3323 | &sq->addr, sq->addrlen); | 
| 3324 | if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen, | 
| 3325 | sq->zone, sq->zonelen, 0, (time_t)now.tv_sec)) { | 
| 3326 | log_err("Out of memory caching edns works"); | 
| 3327 | } | 
| 3328 | sq->edns_lame_known = 1; | 
| 3329 | } else if(sq->status == serviced_query_UDP_EDNS_fallback && | 
| 3330 | !sq->edns_lame_known && (LDNS_RCODE_WIRE((*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) | 
| 3331 | sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == LDNS_RCODE_NOERROR || | 
| 3332 | LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+3) & 0x0fU) == | 
| 3333 | LDNS_RCODE_NXDOMAIN || LDNS_RCODE_WIRE(sldns_buffer_begin((*(sldns_buffer_begin( c->buffer)+3) & 0x0fU) | 
| 3334 | c->buffer))(*(sldns_buffer_begin( c->buffer)+3) & 0x0fU) == LDNS_RCODE_YXDOMAIN)) { | 
| 3335 | /* the fallback produced a result that looks promising, note | 
| 3336 | * that this server should be approached without EDNS */ | 
| 3337 | /* only store noEDNS in cache if domain is noDNSSEC */ | 
| 3338 | if(!sq->want_dnssec) { | 
| 3339 | log_addr(VERB_ALGO, "serviced query: EDNS fails for", | 
| 3340 | &sq->addr, sq->addrlen); | 
| 3341 | if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen, | 
| 3342 | sq->zone, sq->zonelen, -1, (time_t)now.tv_sec)) { | 
| 3343 | log_err("Out of memory caching no edns for host"); | 
| 3344 | } | 
| 3345 | } else { | 
| 3346 | log_addr(VERB_ALGO, "serviced query: EDNS fails, but " | 
| 3347 | "not stored because need DNSSEC for", &sq->addr, | 
| 3348 | sq->addrlen); | 
| 3349 | } | 
| 3350 | sq->status = serviced_query_UDP; | 
| 3351 | } | 
| 3352 | if(now.tv_sec > sq->last_sent_time.tv_sec || | 
| 3353 | (now.tv_sec == sq->last_sent_time.tv_sec && | 
| 3354 | now.tv_usec > sq->last_sent_time.tv_usec)) { | 
| 3355 | /* convert from microseconds to milliseconds */ | 
| 3356 | int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000 | 
| 3357 | + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000; | 
| 3358 | verbose(VERB_ALGO, "measured roundtrip at %d msec", roundtime); | 
| 3359 | log_assert(roundtime >= 0); | 
| 3360 | /* in case the system hibernated, do not enter a huge value, | 
| 3361 | * above this value gives trouble with server selection */ | 
| 3362 | if(roundtime < 60000) { | 
| 3363 | if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen, | 
| 3364 | sq->zone, sq->zonelen, sq->qtype, roundtime, | 
| 3365 | sq->last_rtt, (time_t)now.tv_sec)) | 
| 3366 | log_err("out of memory noting rtt."); | 
| 3367 | } | 
| 3368 | } | 
| 3369 | /* perform TC flag check and TCP fallback after updating our | 
| 3370 | * cache entries for EDNS status and RTT times */ | 
| 3371 | if(LDNS_TC_WIRE(sldns_buffer_begin(c->buffer))(*(sldns_buffer_begin(c->buffer)+2) & 0x02U)) { | 
| 3372 | /* fallback to TCP */ | 
| 3373 | /* this discards partial UDP contents */ | 
| 3374 | if(sq->status == serviced_query_UDP_EDNS || | 
| 3375 | sq->status == serviced_query_UDP_EDNS_FRAG || | 
| 3376 | sq->status == serviced_query_UDP_EDNS_fallback) | 
| 3377 | /* if we have unfinished EDNS_fallback, start again */ | 
| 3378 | sq->status = serviced_query_TCP_EDNS; | 
| 3379 | else sq->status = serviced_query_TCP; | 
| 3380 | serviced_tcp_initiate(sq, c->buffer); | 
| 3381 | return 0; | 
| 3382 | } | 
| 3383 | /* yay! an answer */ | 
| 3384 | serviced_callbacks(sq, error, c, rep); | 
| 3385 | return 0; | 
| 3386 | } | 
| 3387 | |
| 3388 | struct serviced_query* | 
| 3389 | outnet_serviced_query(struct outside_network* outnet, | 
| 3390 | struct query_info* qinfo, uint16_t flags, int dnssec, int want_dnssec, | 
| 3391 | int nocaps, int check_ratelimit, int tcp_upstream, int ssl_upstream, | 
| 3392 | char* tls_auth_name, struct sockaddr_storage* addr, socklen_t addrlen, | 
| 3393 | uint8_t* zone, size_t zonelen, struct module_qstate* qstate, | 
| 3394 | comm_point_callback_type* callback, void* callback_arg, | 
| 3395 | sldns_buffer* buff, struct module_env* env, int* was_ratelimited) | 
| 3396 | { | 
| 3397 | struct serviced_query* sq; | 
| 3398 | struct service_callback* cb; | 
| 3399 | struct edns_string_addr* client_string_addr; | 
| 3400 | struct regional* region; | 
| 3401 | struct edns_option* backed_up_opt_list = qstate->edns_opts_back_out; | 
| 3402 | struct edns_option* per_upstream_opt_list = NULL((void *)0); | 
| 3403 | time_t timenow = 0; | 
| 3404 | |
| 3405 | /* If we have an already populated EDNS option list make a copy since | 
| 3406 | * we may now add upstream specific EDNS options. */ | 
| 3407 | /* Use a region that could be attached to a serviced_query, if it needs | 
| 3408 | * to be created. If an existing one is found then this region will be | 
| 3409 | * destroyed here. */ | 
| 3410 | region = alloc_reg_obtain(env->alloc); | 
| 3411 | if(!region) return NULL((void *)0); | 
| 3412 | if(qstate->edns_opts_back_out) { | 
| 3413 | per_upstream_opt_list = edns_opt_copy_region( | 
| 3414 | qstate->edns_opts_back_out, region); | 
| 3415 | if(!per_upstream_opt_list) { | 
| 3416 | alloc_reg_release(env->alloc, region); | 
| 3417 | return NULL((void *)0); | 
| 3418 | } | 
| 3419 | qstate->edns_opts_back_out = per_upstream_opt_list; | 
| 3420 | } | 
| 3421 | |
| 3422 | if(!inplace_cb_query_call(env, qinfo, flags, addr, addrlen, zone, | 
| 3423 | zonelen, qstate, region)) { | 
| 3424 | alloc_reg_release(env->alloc, region); | 
| 3425 | return NULL((void *)0); | 
| 3426 | } | 
| 3427 | /* Restore the option list; we can explicitly use the copied one from | 
| 3428 | * now on. */ | 
| 3429 | per_upstream_opt_list = qstate->edns_opts_back_out; | 
| 3430 | qstate->edns_opts_back_out = backed_up_opt_list; | 
| 3431 | |
| 3432 | if((client_string_addr = edns_string_addr_lookup( | 
| 3433 | &env->edns_strings->client_strings, addr, addrlen))) { | 
| 3434 | edns_opt_list_append(&per_upstream_opt_list, | 
| 3435 | env->edns_strings->client_string_opcode, | 
| 3436 | client_string_addr->string_len, | 
| 3437 | client_string_addr->string, region); | 
| 3438 | } | 
| 3439 | |
| 3440 | serviced_gen_query(buff, qinfo->qname, qinfo->qname_len, qinfo->qtype, | 
| 3441 | qinfo->qclass, flags); | 
| 3442 | sq = lookup_serviced(outnet, buff, dnssec, addr, addrlen, | 
| 3443 | per_upstream_opt_list); | 
| 3444 | if(!sq) { | 
| 3445 | /* Check ratelimit only for new serviced_query */ | 
| 3446 | if(check_ratelimit) { | 
| 3447 | timenow = *env->now; | 
| 3448 | if(!infra_ratelimit_inc(env->infra_cache, zone, | 
| 3449 | zonelen, timenow, env->cfg->ratelimit_backoff, | 
| 3450 | &qstate->qinfo, qstate->reply)) { | 
| 3451 | /* Can we pass through with slip factor? */ | 
| 3452 | if(env->cfg->ratelimit_factor == 0 || | 
| 3453 | ub_random_max(env->rnd, | 
| 3454 | env->cfg->ratelimit_factor) != 1) { | 
| 3455 | *was_ratelimited = 1; | 
| 3456 | alloc_reg_release(env->alloc, region); | 
| 3457 | return NULL((void *)0); | 
| 3458 | } | 
| 3459 | log_nametypeclass(VERB_ALGO, | 
| 3460 | "ratelimit allowed through for " | 
| 3461 | "delegation point", zone, | 
| 3462 | LDNS_RR_TYPE_NS, LDNS_RR_CLASS_IN); | 
| 3463 | } | 
| 3464 | } | 
| 3465 | /* make new serviced query entry */ | 
| 3466 | sq = serviced_create(outnet, buff, dnssec, want_dnssec, nocaps, | 
| 3467 | tcp_upstream, ssl_upstream, tls_auth_name, addr, | 
| 3468 | addrlen, zone, zonelen, (int)qinfo->qtype, | 
| 3469 | per_upstream_opt_list, | 
| 3470 | ( ssl_upstream && env->cfg->pad_queries | 
| 3471 | ? env->cfg->pad_queries_block_size : 0 ), | 
| 3472 | env->alloc, region); | 
| 3473 | if(!sq) { | 
| 3474 | if(check_ratelimit) { | 
| 3475 | infra_ratelimit_dec(env->infra_cache, | 
| 3476 | zone, zonelen, timenow); | 
| 3477 | } | 
| 3478 | return NULL((void *)0); | 
| 3479 | } | 
| 3480 | if(!(cb = (struct service_callback*)regional_alloc( | 
| 3481 | sq->region, sizeof(*cb)))) { | 
| 3482 | if(check_ratelimit) { | 
| 3483 | infra_ratelimit_dec(env->infra_cache, | 
| 3484 | zone, zonelen, timenow); | 
| 3485 | } | 
| 3486 | (void)rbtree_delete(outnet->serviced, sq); | 
| 3487 | serviced_node_del(&sq->node, NULL((void *)0)); | 
| 3488 | return NULL((void *)0); | 
| 3489 | } | 
| 3490 | /* No network action at this point; it will be invoked with the | 
| 3491 | * serviced_query timer instead to run outside of the mesh. */ | 
| 3492 | } else { | 
| 3493 | /* We don't need this region anymore. */ | 
| 3494 | alloc_reg_release(env->alloc, region); | 
| 3495 | /* duplicate entries are included in the callback list, because | 
| 3496 | * there is a counterpart registration by our caller that needs | 
| 3497 | * to be doubly-removed (with callbacks perhaps). */ | 
| 3498 | if(!(cb = (struct service_callback*)regional_alloc( | 
| 3499 | sq->region, sizeof(*cb)))) { | 
| 3500 | return NULL((void *)0); | 
| 3501 | } | 
| 3502 | } | 
| 3503 | /* add callback to list of callbacks */ | 
| 3504 | cb->cb = callback; | 
| 3505 | cb->cb_arg = callback_arg; | 
| 3506 | cb->next = sq->cblist; | 
| 3507 | sq->cblist = cb; | 
| 3508 | return sq; | 
| 3509 | } | 
| 3510 | |
| 3511 | /** remove callback from list */ | 
| 3512 | static void | 
| 3513 | callback_list_remove(struct serviced_query* sq, void* cb_arg) | 
| 3514 | { | 
| 3515 | struct service_callback** pp = &sq->cblist; | 
| 3516 | while(*pp) { | 
| 3517 | if((*pp)->cb_arg == cb_arg) { | 
| 3518 | struct service_callback* del = *pp; | 
| 3519 | *pp = del->next; | 
| 3520 | return; | 
| 3521 | } | 
| 3522 | pp = &(*pp)->next; | 
| 3523 | } | 
| 3524 | } | 
| 3525 | |
| 3526 | void outnet_serviced_query_stop(struct serviced_query* sq, void* cb_arg) | 
| 3527 | { | 
| 3528 | if(!sq) | 
| 3529 | return; | 
| 3530 | callback_list_remove(sq, cb_arg); | 
| 3531 | /* if callbacks() routine scheduled deletion, let it do that */ | 
| 3532 | if(!sq->cblist && !sq->busy && !sq->to_be_deleted) { | 
| 3533 | (void)rbtree_delete(sq->outnet->serviced, sq); | 
| 3534 | serviced_delete(sq); | 
| 3535 | } | 
| 3536 | } | 
| 3537 | |
| 3538 | /** create fd to send to this destination */ | 
| 3539 | static int | 
| 3540 | fd_for_dest(struct outside_network* outnet, struct sockaddr_storage* to_addr, | 
| 3541 | socklen_t to_addrlen) | 
| 3542 | { | 
| 3543 | struct sockaddr_storage* addr; | 
| 3544 | socklen_t addrlen; | 
| 3545 | int i, try, pnum, dscp; | 
| 3546 | struct port_if* pif; | 
| 3547 | |
| 3548 | /* create fd */ | 
| 3549 | dscp = outnet->ip_dscp; | 
| 3550 | for(try = 0; try<1000; try++) { | 
| 3551 | int port = 0; | 
| 3552 | int freebind = 0; | 
| 3553 | int noproto = 0; | 
| 3554 | int inuse = 0; | 
| 3555 | int fd = -1; | 
| 3556 | |
| 3557 | /* select interface */ | 
| 3558 | if(addr_is_ip6(to_addr, to_addrlen)) { | 
| 3559 | if(outnet->num_ip6 == 0) { | 
| 3560 | char to[64]; | 
| 3561 | addr_to_str(to_addr, to_addrlen, to, sizeof(to)); | 
| 3562 | verbose(VERB_QUERY, "need ipv6 to send, but no ipv6 outgoing interfaces, for %s", to); | 
| 3563 | return -1; | 
| 3564 | } | 
| 3565 | i = ub_random_max(outnet->rnd, outnet->num_ip6); | 
| 3566 | pif = &outnet->ip6_ifs[i]; | 
| 3567 | } else { | 
| 3568 | if(outnet->num_ip4 == 0) { | 
| 3569 | char to[64]; | 
| 3570 | addr_to_str(to_addr, to_addrlen, to, sizeof(to)); | 
| 3571 | verbose(VERB_QUERY, "need ipv4 to send, but no ipv4 outgoing interfaces, for %s", to); | 
| 3572 | return -1; | 
| 3573 | } | 
| 3574 | i = ub_random_max(outnet->rnd, outnet->num_ip4); | 
| 3575 | pif = &outnet->ip4_ifs[i]; | 
| 3576 | } | 
| 3577 | addr = &pif->addr; | 
| 3578 | addrlen = pif->addrlen; | 
| 3579 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 | 
| 3580 | pnum = ub_random_max(outnet->rnd, pif->avail_total); | 
| 3581 | if(pnum < pif->inuse) { | 
| 3582 | /* port already open */ | 
| 3583 | port = pif->out[pnum]->number; | 
| 3584 | } else { | 
| 3585 | /* unused ports in start part of array */ | 
| 3586 | port = pif->avail_ports[pnum - pif->inuse]; | 
| 3587 | } | 
| 3588 | #else | 
| 3589 | pnum = port = 0; | 
| Value stored to 'pnum' is never read | |
| 3590 | #endif | 
| 3591 | if(addr_is_ip6(to_addr, to_addrlen)) { | 
| 3592 | struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr; | 
| 3593 | sa.sin6_port = (in_port_t)htons((uint16_t)port)(__uint16_t)(__builtin_constant_p((uint16_t)port) ? (__uint16_t )(((__uint16_t)((uint16_t)port) & 0xffU) << 8 | ((__uint16_t )((uint16_t)port) & 0xff00U) >> 8) : __swap16md((uint16_t )port)); | 
| 3594 | fd = create_udp_sock(AF_INET624, SOCK_DGRAM2, | 
| 3595 | (struct sockaddr*)&sa, addrlen, 1, &inuse, &noproto, | 
| 3596 | 0, 0, 0, NULL((void *)0), 0, freebind, 0, dscp); | 
| 3597 | } else { | 
| 3598 | struct sockaddr_in* sa = (struct sockaddr_in*)addr; | 
| 3599 | sa->sin_port = (in_port_t)htons((uint16_t)port)(__uint16_t)(__builtin_constant_p((uint16_t)port) ? (__uint16_t )(((__uint16_t)((uint16_t)port) & 0xffU) << 8 | ((__uint16_t )((uint16_t)port) & 0xff00U) >> 8) : __swap16md((uint16_t )port)); | 
| 3600 | fd = create_udp_sock(AF_INET2, SOCK_DGRAM2, | 
| 3601 | (struct sockaddr*)addr, addrlen, 1, &inuse, &noproto, | 
| 3602 | 0, 0, 0, NULL((void *)0), 0, freebind, 0, dscp); | 
| 3603 | } | 
| 3604 | if(fd != -1) { | 
| 3605 | return fd; | 
| 3606 | } | 
| 3607 | if(!inuse) { | 
| 3608 | return -1; | 
| 3609 | } | 
| 3610 | } | 
| 3611 | /* too many tries */ | 
| 3612 | log_err("cannot send probe, ports are in use"); | 
| 3613 | return -1; | 
| 3614 | } | 
| 3615 | |
| 3616 | struct comm_point* | 
| 3617 | outnet_comm_point_for_udp(struct outside_network* outnet, | 
| 3618 | comm_point_callback_type* cb, void* cb_arg, | 
| 3619 | struct sockaddr_storage* to_addr, socklen_t to_addrlen) | 
| 3620 | { | 
| 3621 | struct comm_point* cp; | 
| 3622 | int fd = fd_for_dest(outnet, to_addr, to_addrlen); | 
| 3623 | if(fd == -1) { | 
| 3624 | return NULL((void *)0); | 
| 3625 | } | 
| 3626 | cp = comm_point_create_udp(outnet->base, fd, outnet->udp_buff, 0, | 
| 3627 | cb, cb_arg, NULL((void *)0)); | 
| 3628 | if(!cp) { | 
| 3629 | log_err("malloc failure"); | 
| 3630 | close(fd); | 
| 3631 | return NULL((void *)0); | 
| 3632 | } | 
| 3633 | return cp; | 
| 3634 | } | 
| 3635 | |
| 3636 | /** setup SSL for comm point */ | 
| 3637 | static int | 
| 3638 | setup_comm_ssl(struct comm_point* cp, struct outside_network* outnet, | 
| 3639 | int fd, char* host) | 
| 3640 | { | 
| 3641 | cp->ssl = outgoing_ssl_fd(outnet->sslctx, fd); | 
| 3642 | if(!cp->ssl) { | 
| 3643 | log_err("cannot create SSL object"); | 
| 3644 | return 0; | 
| 3645 | } | 
| 3646 | #ifdef USE_WINSOCK | 
| 3647 | comm_point_tcp_win_bio_cb(cp, cp->ssl); | 
| 3648 | #endif | 
| 3649 | cp->ssl_shake_state = comm_ssl_shake_write; | 
| 3650 | /* https verification */ | 
| 3651 | #ifdef HAVE_SSL | 
| 3652 | if(outnet->tls_use_sni) { | 
| 3653 | (void)SSL_set_tlsext_host_name(cp->ssl, host)SSL_ctrl(cp->ssl,55,0,(char *)host); | 
| 3654 | } | 
| 3655 | #endif | 
| 3656 | #ifdef HAVE_SSL_SET1_HOST1 | 
| 3657 | if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER0x01)) { | 
| 3658 | /* because we set SSL_VERIFY_PEER, in netevent in | 
| 3659 | * ssl_handshake, it'll check if the certificate | 
| 3660 | * verification has succeeded */ | 
| 3661 | /* SSL_VERIFY_PEER is set on the sslctx */ | 
| 3662 | /* and the certificates to verify with are loaded into | 
| 3663 | * it with SSL_load_verify_locations or | 
| 3664 | * SSL_CTX_set_default_verify_paths */ | 
| 3665 | /* setting the hostname makes openssl verify the | 
| 3666 | * host name in the x509 certificate in the | 
| 3667 | * SSL connection*/ | 
| 3668 | if(!SSL_set1_host(cp->ssl, host)) { | 
| 3669 | log_err("SSL_set1_host failed"); | 
| 3670 | return 0; | 
| 3671 | } | 
| 3672 | } | 
| 3673 | #elif defined(HAVE_X509_VERIFY_PARAM_SET1_HOST1) | 
| 3674 | /* openssl 1.0.2 has this function that can be used for | 
| 3675 | * set1_host like verification */ | 
| 3676 | if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER0x01)) { | 
| 3677 | X509_VERIFY_PARAM* param = SSL_get0_param(cp->ssl); | 
| 3678 | # ifdef X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS0x4 | 
| 3679 | X509_VERIFY_PARAM_set_hostflags(param, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS0x4); | 
| 3680 | # endif | 
| 3681 | if(!X509_VERIFY_PARAM_set1_host(param, host, strlen(host))) { | 
| 3682 | log_err("X509_VERIFY_PARAM_set1_host failed"); | 
| 3683 | return 0; | 
| 3684 | } | 
| 3685 | } | 
| 3686 | #else | 
| 3687 | (void)host; | 
| 3688 | #endif /* HAVE_SSL_SET1_HOST */ | 
| 3689 | return 1; | 
| 3690 | } | 
| 3691 | |
| 3692 | struct comm_point* | 
| 3693 | outnet_comm_point_for_tcp(struct outside_network* outnet, | 
| 3694 | comm_point_callback_type* cb, void* cb_arg, | 
| 3695 | struct sockaddr_storage* to_addr, socklen_t to_addrlen, | 
| 3696 | sldns_buffer* query, int timeout, int ssl, char* host) | 
| 3697 | { | 
| 3698 | struct comm_point* cp; | 
| 3699 | int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss, outnet->ip_dscp); | 
| 3700 | if(fd == -1) { | 
| 3701 | return 0; | 
| 3702 | } | 
| 3703 | fd_set_nonblock(fd); | 
| 3704 | if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) { | 
| 3705 | /* outnet_tcp_connect has closed fd on error for us */ | 
| 3706 | return 0; | 
| 3707 | } | 
| 3708 | cp = comm_point_create_tcp_out(outnet->base, 65552, cb, cb_arg); | 
| 3709 | if(!cp) { | 
| 3710 | log_err("malloc failure"); | 
| 3711 | close(fd); | 
| 3712 | return 0; | 
| 3713 | } | 
| 3714 | cp->repinfo.remote_addrlen = to_addrlen; | 
| 3715 | memcpy(&cp->repinfo.remote_addr, to_addr, to_addrlen); | 
| 3716 | |
| 3717 | /* setup for SSL (if needed) */ | 
| 3718 | if(ssl) { | 
| 3719 | if(!setup_comm_ssl(cp, outnet, fd, host)) { | 
| 3720 | log_err("cannot setup XoT"); | 
| 3721 | comm_point_delete(cp); | 
| 3722 | return NULL((void *)0); | 
| 3723 | } | 
| 3724 | } | 
| 3725 | |
| 3726 | /* set timeout on TCP connection */ | 
| 3727 | comm_point_start_listening(cp, fd, timeout); | 
| 3728 | /* copy scratch buffer to cp->buffer */ | 
| 3729 | sldns_buffer_copy(cp->buffer, query); | 
| 3730 | return cp; | 
| 3731 | } | 
| 3732 | |
| 3733 | /** setup the User-Agent HTTP header based on http-user-agent configuration */ | 
| 3734 | static void | 
| 3735 | setup_http_user_agent(sldns_buffer* buf, struct config_file* cfg) | 
| 3736 | { | 
| 3737 | if(cfg->hide_http_user_agent) return; | 
| 3738 | if(cfg->http_user_agent==NULL((void *)0) || cfg->http_user_agent[0] == 0) { | 
| 3739 | sldns_buffer_printf(buf, "User-Agent: %s/%s\r\n", PACKAGE_NAME"unbound", | 
| 3740 | PACKAGE_VERSION"1.18.0"); | 
| 3741 | } else { | 
| 3742 | sldns_buffer_printf(buf, "User-Agent: %s\r\n", cfg->http_user_agent); | 
| 3743 | } | 
| 3744 | } | 
| 3745 | |
| 3746 | /** setup http request headers in buffer for sending query to destination */ | 
| 3747 | static int | 
| 3748 | setup_http_request(sldns_buffer* buf, char* host, char* path, | 
| 3749 | struct config_file* cfg) | 
| 3750 | { | 
| 3751 | sldns_buffer_clear(buf); | 
| 3752 | sldns_buffer_printf(buf, "GET /%s HTTP/1.1\r\n", path); | 
| 3753 | sldns_buffer_printf(buf, "Host: %s\r\n", host); | 
| 3754 | setup_http_user_agent(buf, cfg); | 
| 3755 | /* We do not really do multiple queries per connection, | 
| 3756 | * but this header setting is also not needed. | 
| 3757 | * sldns_buffer_printf(buf, "Connection: close\r\n") */ | 
| 3758 | sldns_buffer_printf(buf, "\r\n"); | 
| 3759 | if(sldns_buffer_position(buf)+10 > sldns_buffer_capacity(buf)) | 
| 3760 | return 0; /* somehow buffer too short, but it is about 60K | 
| 3761 | and the request is only a couple bytes long. */ | 
| 3762 | sldns_buffer_flip(buf); | 
| 3763 | return 1; | 
| 3764 | } | 
| 3765 | |
| 3766 | struct comm_point* | 
| 3767 | outnet_comm_point_for_http(struct outside_network* outnet, | 
| 3768 | comm_point_callback_type* cb, void* cb_arg, | 
| 3769 | struct sockaddr_storage* to_addr, socklen_t to_addrlen, int timeout, | 
| 3770 | int ssl, char* host, char* path, struct config_file* cfg) | 
| 3771 | { | 
| 3772 | /* cp calls cb with err=NETEVENT_DONE when transfer is done */ | 
| 3773 | struct comm_point* cp; | 
| 3774 | int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss, outnet->ip_dscp); | 
| 3775 | if(fd == -1) { | 
| 3776 | return 0; | 
| 3777 | } | 
| 3778 | fd_set_nonblock(fd); | 
| 3779 | if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) { | 
| 3780 | /* outnet_tcp_connect has closed fd on error for us */ | 
| 3781 | return 0; | 
| 3782 | } | 
| 3783 | cp = comm_point_create_http_out(outnet->base, 65552, cb, cb_arg, | 
| 3784 | outnet->udp_buff); | 
| 3785 | if(!cp) { | 
| 3786 | log_err("malloc failure"); | 
| 3787 | close(fd); | 
| 3788 | return 0; | 
| 3789 | } | 
| 3790 | cp->repinfo.remote_addrlen = to_addrlen; | 
| 3791 | memcpy(&cp->repinfo.remote_addr, to_addr, to_addrlen); | 
| 3792 | |
| 3793 | /* setup for SSL (if needed) */ | 
| 3794 | if(ssl) { | 
| 3795 | if(!setup_comm_ssl(cp, outnet, fd, host)) { | 
| 3796 | log_err("cannot setup https"); | 
| 3797 | comm_point_delete(cp); | 
| 3798 | return NULL((void *)0); | 
| 3799 | } | 
| 3800 | } | 
| 3801 | |
| 3802 | /* set timeout on TCP connection */ | 
| 3803 | comm_point_start_listening(cp, fd, timeout); | 
| 3804 | |
| 3805 | /* setup http request in cp->buffer */ | 
| 3806 | if(!setup_http_request(cp->buffer, host, path, cfg)) { | 
| 3807 | log_err("error setting up http request"); | 
| 3808 | comm_point_delete(cp); | 
| 3809 | return NULL((void *)0); | 
| 3810 | } | 
| 3811 | return cp; | 
| 3812 | } | 
| 3813 | |
| 3814 | /** get memory used by waiting tcp entry (in use or not) */ | 
| 3815 | static size_t | 
| 3816 | waiting_tcp_get_mem(struct waiting_tcp* w) | 
| 3817 | { | 
| 3818 | size_t s; | 
| 3819 | if(!w) return 0; | 
| 3820 | s = sizeof(*w) + w->pkt_len; | 
| 3821 | if(w->timer) | 
| 3822 | s += comm_timer_get_mem(w->timer); | 
| 3823 | return s; | 
| 3824 | } | 
| 3825 | |
| 3826 | /** get memory used by port if */ | 
| 3827 | static size_t | 
| 3828 | if_get_mem(struct port_if* pif) | 
| 3829 | { | 
| 3830 | size_t s; | 
| 3831 | int i; | 
| 3832 | s = sizeof(*pif) + | 
| 3833 | #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION1 | 
| 3834 | sizeof(int)*pif->avail_total + | 
| 3835 | #endif | 
| 3836 | sizeof(struct port_comm*)*pif->maxout; | 
| 3837 | for(i=0; i<pif->inuse; i++) | 
| 3838 | s += sizeof(*pif->out[i]) + | 
| 3839 | comm_point_get_mem(pif->out[i]->cp); | 
| 3840 | return s; | 
| 3841 | } | 
| 3842 | |
| 3843 | /** get memory used by waiting udp */ | 
| 3844 | static size_t | 
| 3845 | waiting_udp_get_mem(struct pending* w) | 
| 3846 | { | 
| 3847 | size_t s; | 
| 3848 | s = sizeof(*w) + comm_timer_get_mem(w->timer) + w->pkt_len; | 
| 3849 | return s; | 
| 3850 | } | 
| 3851 | |
| 3852 | size_t outnet_get_mem(struct outside_network* outnet) | 
| 3853 | { | 
| 3854 | size_t i; | 
| 3855 | int k; | 
| 3856 | struct waiting_tcp* w; | 
| 3857 | struct pending* u; | 
| 3858 | struct serviced_query* sq; | 
| 3859 | struct service_callback* sb; | 
| 3860 | struct port_comm* pc; | 
| 3861 | size_t s = sizeof(*outnet) + sizeof(*outnet->base) + | 
| 3862 | sizeof(*outnet->udp_buff) + | 
| 3863 | sldns_buffer_capacity(outnet->udp_buff); | 
| 3864 | /* second buffer is not ours */ | 
| 3865 | for(pc = outnet->unused_fds; pc; pc = pc->next) { | 
| 3866 | s += sizeof(*pc) + comm_point_get_mem(pc->cp); | 
| 3867 | } | 
| 3868 | for(k=0; k<outnet->num_ip4; k++) | 
| 3869 | s += if_get_mem(&outnet->ip4_ifs[k]); | 
| 3870 | for(k=0; k<outnet->num_ip6; k++) | 
| 3871 | s += if_get_mem(&outnet->ip6_ifs[k]); | 
| 3872 | for(u=outnet->udp_wait_first; u; u=u->next_waiting) | 
| 3873 | s += waiting_udp_get_mem(u); | 
| 3874 | |
| 3875 | s += sizeof(struct pending_tcp*)*outnet->num_tcp; | 
| 3876 | for(i=0; i<outnet->num_tcp; i++) { | 
| 3877 | s += sizeof(struct pending_tcp); | 
| 3878 | s += comm_point_get_mem(outnet->tcp_conns[i]->c); | 
| 3879 | if(outnet->tcp_conns[i]->query) | 
| 3880 | s += waiting_tcp_get_mem(outnet->tcp_conns[i]->query); | 
| 3881 | } | 
| 3882 | for(w=outnet->tcp_wait_first; w; w = w->next_waiting) | 
| 3883 | s += waiting_tcp_get_mem(w); | 
| 3884 | s += sizeof(*outnet->pending); | 
| 3885 | s += (sizeof(struct pending) + comm_timer_get_mem(NULL((void *)0))) * | 
| 3886 | outnet->pending->count; | 
| 3887 | s += sizeof(*outnet->serviced); | 
| 3888 | s += outnet->svcd_overhead; | 
| 3889 | RBTREE_FOR(sq, struct serviced_query*, outnet->serviced)for(sq=(struct serviced_query*)rbtree_first(outnet->serviced ); (rbnode_type*)sq != &rbtree_null_node; sq = (struct serviced_query *)rbtree_next((rbnode_type*)sq)) { | 
| 3890 | s += sizeof(*sq) + sq->qbuflen; | 
| 3891 | for(sb = sq->cblist; sb; sb = sb->next) | 
| 3892 | s += sizeof(*sb); | 
| 3893 | } | 
| 3894 | return s; | 
| 3895 | } | 
| 3896 | |
| 3897 | size_t | 
| 3898 | serviced_get_mem(struct serviced_query* sq) | 
| 3899 | { | 
| 3900 | struct service_callback* sb; | 
| 3901 | size_t s; | 
| 3902 | s = sizeof(*sq) + sq->qbuflen; | 
| 3903 | for(sb = sq->cblist; sb; sb = sb->next) | 
| 3904 | s += sizeof(*sb); | 
| 3905 | if(sq->status == serviced_query_UDP_EDNS || | 
| 3906 | sq->status == serviced_query_UDP || | 
| 3907 | sq->status == serviced_query_UDP_EDNS_FRAG || | 
| 3908 | sq->status == serviced_query_UDP_EDNS_fallback) { | 
| 3909 | s += sizeof(struct pending); | 
| 3910 | s += comm_timer_get_mem(NULL((void *)0)); | 
| 3911 | } else { | 
| 3912 | /* does not have size of the pkt pointer */ | 
| 3913 | /* always has a timer except on malloc failures */ | 
| 3914 | |
| 3915 | /* these sizes are part of the main outside network mem */ | 
| 3916 | /* | 
| 3917 | s += sizeof(struct waiting_tcp); | 
| 3918 | s += comm_timer_get_mem(NULL); | 
| 3919 | */ | 
| 3920 | } | 
| 3921 | return s; | 
| 3922 | } | 
| 3923 |