| File: | src/lib/libcrypto/bn/bn_exp.c |
| Warning: | line 265, column 3 Value stored to 'j' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* $OpenBSD: bn_exp.c,v 1.50 2023/10/19 10:27:27 tb Exp $ */ |
| 2 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * This package is an SSL implementation written |
| 6 | * by Eric Young (eay@cryptsoft.com). |
| 7 | * The implementation was written so as to conform with Netscapes SSL. |
| 8 | * |
| 9 | * This library is free for commercial and non-commercial use as long as |
| 10 | * the following conditions are aheared to. The following conditions |
| 11 | * apply to all code found in this distribution, be it the RC4, RSA, |
| 12 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| 13 | * included with this distribution is covered by the same copyright terms |
| 14 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| 15 | * |
| 16 | * Copyright remains Eric Young's, and as such any Copyright notices in |
| 17 | * the code are not to be removed. |
| 18 | * If this package is used in a product, Eric Young should be given attribution |
| 19 | * as the author of the parts of the library used. |
| 20 | * This can be in the form of a textual message at program startup or |
| 21 | * in documentation (online or textual) provided with the package. |
| 22 | * |
| 23 | * Redistribution and use in source and binary forms, with or without |
| 24 | * modification, are permitted provided that the following conditions |
| 25 | * are met: |
| 26 | * 1. Redistributions of source code must retain the copyright |
| 27 | * notice, this list of conditions and the following disclaimer. |
| 28 | * 2. Redistributions in binary form must reproduce the above copyright |
| 29 | * notice, this list of conditions and the following disclaimer in the |
| 30 | * documentation and/or other materials provided with the distribution. |
| 31 | * 3. All advertising materials mentioning features or use of this software |
| 32 | * must display the following acknowledgement: |
| 33 | * "This product includes cryptographic software written by |
| 34 | * Eric Young (eay@cryptsoft.com)" |
| 35 | * The word 'cryptographic' can be left out if the rouines from the library |
| 36 | * being used are not cryptographic related :-). |
| 37 | * 4. If you include any Windows specific code (or a derivative thereof) from |
| 38 | * the apps directory (application code) you must include an acknowledgement: |
| 39 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| 40 | * |
| 41 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| 42 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 43 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 44 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 45 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 46 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 47 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 48 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 49 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 50 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 51 | * SUCH DAMAGE. |
| 52 | * |
| 53 | * The licence and distribution terms for any publically available version or |
| 54 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
| 55 | * copied and put under another distribution licence |
| 56 | * [including the GNU Public Licence.] |
| 57 | */ |
| 58 | /* ==================================================================== |
| 59 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| 60 | * |
| 61 | * Redistribution and use in source and binary forms, with or without |
| 62 | * modification, are permitted provided that the following conditions |
| 63 | * are met: |
| 64 | * |
| 65 | * 1. Redistributions of source code must retain the above copyright |
| 66 | * notice, this list of conditions and the following disclaimer. |
| 67 | * |
| 68 | * 2. Redistributions in binary form must reproduce the above copyright |
| 69 | * notice, this list of conditions and the following disclaimer in |
| 70 | * the documentation and/or other materials provided with the |
| 71 | * distribution. |
| 72 | * |
| 73 | * 3. All advertising materials mentioning features or use of this |
| 74 | * software must display the following acknowledgment: |
| 75 | * "This product includes software developed by the OpenSSL Project |
| 76 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 77 | * |
| 78 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 79 | * endorse or promote products derived from this software without |
| 80 | * prior written permission. For written permission, please contact |
| 81 | * openssl-core@openssl.org. |
| 82 | * |
| 83 | * 5. Products derived from this software may not be called "OpenSSL" |
| 84 | * nor may "OpenSSL" appear in their names without prior written |
| 85 | * permission of the OpenSSL Project. |
| 86 | * |
| 87 | * 6. Redistributions of any form whatsoever must retain the following |
| 88 | * acknowledgment: |
| 89 | * "This product includes software developed by the OpenSSL Project |
| 90 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 91 | * |
| 92 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 93 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 94 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 95 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 96 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 97 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 98 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 99 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 100 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 101 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 102 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 103 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 104 | * ==================================================================== |
| 105 | * |
| 106 | * This product includes cryptographic software written by Eric Young |
| 107 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 108 | * Hudson (tjh@cryptsoft.com). |
| 109 | * |
| 110 | */ |
| 111 | |
| 112 | #include <stdlib.h> |
| 113 | #include <string.h> |
| 114 | |
| 115 | #include <openssl/err.h> |
| 116 | |
| 117 | #include "bn_local.h" |
| 118 | #include "constant_time.h" |
| 119 | |
| 120 | /* maximum precomputation table size for *variable* sliding windows */ |
| 121 | #define TABLE_SIZE32 32 |
| 122 | |
| 123 | /* Calculates r = a^p by successive squaring of a. Not constant time. */ |
| 124 | int |
| 125 | BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) |
| 126 | { |
| 127 | BIGNUM *rr, *v; |
| 128 | int i; |
| 129 | int ret = 0; |
| 130 | |
| 131 | if (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0) { |
| 132 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED)ERR_put_error(3,(0xfff),((2|64)),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,132); |
| 133 | return -1; |
| 134 | } |
| 135 | |
| 136 | BN_CTX_start(ctx); |
| 137 | |
| 138 | if ((v = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 139 | goto err; |
| 140 | |
| 141 | rr = r; |
| 142 | if (r == a || r == p) |
| 143 | rr = BN_CTX_get(ctx); |
| 144 | if (rr == NULL((void *)0)) |
| 145 | goto err; |
| 146 | |
| 147 | if (!BN_one(rr)) |
| 148 | goto err; |
| 149 | if (BN_is_odd(p)) { |
| 150 | if (!bn_copy(rr, a)) |
| 151 | goto err; |
| 152 | } |
| 153 | |
| 154 | if (!bn_copy(v, a)) |
| 155 | goto err; |
| 156 | |
| 157 | for (i = 1; i < BN_num_bits(p); i++) { |
| 158 | if (!BN_sqr(v, v, ctx)) |
| 159 | goto err; |
| 160 | if (!BN_is_bit_set(p, i)) |
| 161 | continue; |
| 162 | if (!BN_mul(rr, rr, v, ctx)) |
| 163 | goto err; |
| 164 | } |
| 165 | |
| 166 | if (!bn_copy(r, rr)) |
| 167 | goto err; |
| 168 | |
| 169 | ret = 1; |
| 170 | |
| 171 | err: |
| 172 | BN_CTX_end(ctx); |
| 173 | |
| 174 | return ret; |
| 175 | } |
| 176 | LCRYPTO_ALIAS(BN_exp)asm(""); |
| 177 | |
| 178 | /* The old fallback, simple version :-) */ |
| 179 | int |
| 180 | BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 181 | BN_CTX *ctx) |
| 182 | { |
| 183 | int i, j, bits, wstart, wend, window, wvalue; |
| 184 | int start = 1; |
| 185 | BIGNUM *d, *q; |
| 186 | /* Table of variables obtained from 'ctx' */ |
| 187 | BIGNUM *val[TABLE_SIZE32]; |
| 188 | int ret = 0; |
| 189 | |
| 190 | if (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0) { |
| 191 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
| 192 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED)ERR_put_error(3,(0xfff),((2|64)),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,192); |
| 193 | return -1; |
| 194 | } |
| 195 | |
| 196 | if (r == m) { |
| 197 | BNerror(BN_R_INVALID_ARGUMENT)ERR_put_error(3,(0xfff),(118),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,197); |
| 198 | return 0; |
| 199 | } |
| 200 | |
| 201 | bits = BN_num_bits(p); |
| 202 | if (bits == 0) { |
| 203 | /* x**0 mod 1 is still zero. */ |
| 204 | if (BN_abs_is_word(m, 1)) { |
| 205 | ret = 1; |
| 206 | BN_zero(r); |
| 207 | } else |
| 208 | ret = BN_one(r); |
| 209 | return ret; |
| 210 | } |
| 211 | |
| 212 | BN_CTX_start(ctx); |
| 213 | if ((d = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 214 | goto err; |
| 215 | if ((q = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 216 | goto err; |
| 217 | if ((val[0] = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 218 | goto err; |
| 219 | |
| 220 | if (!BN_nnmod(val[0], a, m, ctx)) |
| 221 | goto err; |
| 222 | if (BN_is_zero(val[0])) { |
| 223 | BN_zero(r); |
| 224 | goto done; |
| 225 | } |
| 226 | if (!bn_copy(q, p)) |
| 227 | goto err; |
| 228 | |
| 229 | window = BN_window_bits_for_exponent_size(bits)((bits) > 671 ? 6 : (bits) > 239 ? 5 : (bits) > 79 ? 4 : (bits) > 23 ? 3 : 1); |
| 230 | if (window > 1) { |
| 231 | if (!BN_mod_mul(d, val[0], val[0], m, ctx)) |
| 232 | goto err; |
| 233 | j = 1 << (window - 1); |
| 234 | for (i = 1; i < j; i++) { |
| 235 | if (((val[i] = BN_CTX_get(ctx)) == NULL((void *)0)) || |
| 236 | !BN_mod_mul(val[i], val[i - 1], d,m, ctx)) |
| 237 | goto err; |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | start = 1; /* This is used to avoid multiplication etc |
| 242 | * when there is only the value '1' in the |
| 243 | * buffer. */ |
| 244 | wvalue = 0; /* The 'value' of the window */ |
| 245 | wstart = bits - 1; /* The top bit of the window */ |
| 246 | wend = 0; /* The bottom bit of the window */ |
| 247 | |
| 248 | if (!BN_one(r)) |
| 249 | goto err; |
| 250 | |
| 251 | for (;;) { |
| 252 | if (BN_is_bit_set(q, wstart) == 0) { |
| 253 | if (!start) |
| 254 | if (!BN_mod_mul(r, r, r, m, ctx)) |
| 255 | goto err; |
| 256 | if (wstart == 0) |
| 257 | break; |
| 258 | wstart--; |
| 259 | continue; |
| 260 | } |
| 261 | /* We now have wstart on a 'set' bit, we now need to work out |
| 262 | * how bit a window to do. To do this we need to scan |
| 263 | * forward until the last set bit before the end of the |
| 264 | * window */ |
| 265 | j = wstart; |
Value stored to 'j' is never read | |
| 266 | wvalue = 1; |
| 267 | wend = 0; |
| 268 | for (i = 1; i < window; i++) { |
| 269 | if (wstart - i < 0) |
| 270 | break; |
| 271 | if (BN_is_bit_set(q, wstart - i)) { |
| 272 | wvalue <<= (i - wend); |
| 273 | wvalue |= 1; |
| 274 | wend = i; |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /* wend is the size of the current window */ |
| 279 | j = wend + 1; |
| 280 | /* add the 'bytes above' */ |
| 281 | if (!start) |
| 282 | for (i = 0; i < j; i++) { |
| 283 | if (!BN_mod_mul(r, r, r, m, ctx)) |
| 284 | goto err; |
| 285 | } |
| 286 | |
| 287 | /* wvalue will be an odd number < 2^window */ |
| 288 | if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx)) |
| 289 | goto err; |
| 290 | |
| 291 | /* move the 'window' down further */ |
| 292 | wstart -= wend + 1; |
| 293 | wvalue = 0; |
| 294 | start = 0; |
| 295 | if (wstart < 0) |
| 296 | break; |
| 297 | } |
| 298 | |
| 299 | done: |
| 300 | ret = 1; |
| 301 | |
| 302 | err: |
| 303 | BN_CTX_end(ctx); |
| 304 | |
| 305 | return ret; |
| 306 | } |
| 307 | LCRYPTO_ALIAS(BN_mod_exp_simple)asm(""); |
| 308 | |
| 309 | /* BN_mod_exp_mont_consttime() stores the precomputed powers in a specific layout |
| 310 | * so that accessing any of these table values shows the same access pattern as far |
| 311 | * as cache lines are concerned. The following functions are used to transfer a BIGNUM |
| 312 | * from/to that table. */ |
| 313 | |
| 314 | static int |
| 315 | MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top, unsigned char *buf, |
| 316 | int idx, int window) |
| 317 | { |
| 318 | int i, j; |
| 319 | int width = 1 << window; |
| 320 | BN_ULONGunsigned long *table = (BN_ULONGunsigned long *)buf; |
| 321 | |
| 322 | if (top > b->top) |
| 323 | top = b->top; /* this works because 'buf' is explicitly zeroed */ |
| 324 | |
| 325 | for (i = 0, j = idx; i < top; i++, j += width) { |
| 326 | table[j] = b->d[i]; |
| 327 | } |
| 328 | |
| 329 | return 1; |
| 330 | } |
| 331 | |
| 332 | static int |
| 333 | MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top, unsigned char *buf, int idx, |
| 334 | int window) |
| 335 | { |
| 336 | int i, j; |
| 337 | int width = 1 << window; |
| 338 | volatile BN_ULONGunsigned long *table = (volatile BN_ULONGunsigned long *)buf; |
| 339 | |
| 340 | if (!bn_wexpand(b, top)) |
| 341 | return 0; |
| 342 | |
| 343 | if (window <= 3) { |
| 344 | for (i = 0; i < top; i++, table += width) { |
| 345 | BN_ULONGunsigned long acc = 0; |
| 346 | |
| 347 | for (j = 0; j < width; j++) { |
| 348 | acc |= table[j] & |
| 349 | ((BN_ULONGunsigned long)0 - (constant_time_eq_int(j,idx)&1)); |
| 350 | } |
| 351 | |
| 352 | b->d[i] = acc; |
| 353 | } |
| 354 | } else { |
| 355 | int xstride = 1 << (window - 2); |
| 356 | BN_ULONGunsigned long y0, y1, y2, y3; |
| 357 | |
| 358 | i = idx >> (window - 2); /* equivalent of idx / xstride */ |
| 359 | idx &= xstride - 1; /* equivalent of idx % xstride */ |
| 360 | |
| 361 | y0 = (BN_ULONGunsigned long)0 - (constant_time_eq_int(i,0)&1); |
| 362 | y1 = (BN_ULONGunsigned long)0 - (constant_time_eq_int(i,1)&1); |
| 363 | y2 = (BN_ULONGunsigned long)0 - (constant_time_eq_int(i,2)&1); |
| 364 | y3 = (BN_ULONGunsigned long)0 - (constant_time_eq_int(i,3)&1); |
| 365 | |
| 366 | for (i = 0; i < top; i++, table += width) { |
| 367 | BN_ULONGunsigned long acc = 0; |
| 368 | |
| 369 | for (j = 0; j < xstride; j++) { |
| 370 | acc |= ( (table[j + 0 * xstride] & y0) | |
| 371 | (table[j + 1 * xstride] & y1) | |
| 372 | (table[j + 2 * xstride] & y2) | |
| 373 | (table[j + 3 * xstride] & y3) ) |
| 374 | & ((BN_ULONGunsigned long)0 - (constant_time_eq_int(j,idx)&1)); |
| 375 | } |
| 376 | |
| 377 | b->d[i] = acc; |
| 378 | } |
| 379 | } |
| 380 | b->top = top; |
| 381 | bn_correct_top(b); |
| 382 | return 1; |
| 383 | } |
| 384 | |
| 385 | /* Given a pointer value, compute the next address that is a cache line multiple. */ |
| 386 | #define MOD_EXP_CTIME_ALIGN(x_)((unsigned char*)(x_) + (( 64 ) - (((size_t)(x_)) & ((( 64 ) - 1))))) \ |
| 387 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH( 64 ) - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK(( 64 ) - 1))))) |
| 388 | |
| 389 | /* This variant of BN_mod_exp_mont() uses fixed windows and the special |
| 390 | * precomputation memory layout to limit data-dependency to a minimum |
| 391 | * to protect secret exponents (cf. the hyper-threading timing attacks |
| 392 | * pointed out by Colin Percival, |
| 393 | * http://www.daemonology.net/hyperthreading-considered-harmful/) |
| 394 | */ |
| 395 | int |
| 396 | BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| 397 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| 398 | { |
| 399 | int i, bits, ret = 0, window, wvalue; |
| 400 | int top; |
| 401 | BN_MONT_CTX *mont = NULL((void *)0); |
| 402 | int numPowers; |
| 403 | unsigned char *powerbufFree = NULL((void *)0); |
| 404 | int powerbufLen = 0; |
| 405 | unsigned char *powerbuf = NULL((void *)0); |
| 406 | BIGNUM tmp, am; |
| 407 | |
| 408 | |
| 409 | if (!BN_is_odd(m)) { |
| 410 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS)ERR_put_error(3,(0xfff),(102),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,410); |
| 411 | return (0); |
| 412 | } |
| 413 | |
| 414 | top = m->top; |
| 415 | |
| 416 | bits = BN_num_bits(p); |
| 417 | if (bits == 0) { |
| 418 | /* x**0 mod 1 is still zero. */ |
| 419 | if (BN_abs_is_word(m, 1)) { |
| 420 | ret = 1; |
| 421 | BN_zero(rr); |
| 422 | } else |
| 423 | ret = BN_one(rr); |
| 424 | return ret; |
| 425 | } |
| 426 | |
| 427 | BN_CTX_start(ctx); |
| 428 | |
| 429 | /* |
| 430 | * Allocate a Montgomery context if it was not supplied by the caller. |
| 431 | * If this is not done, things will break in the montgomery part. |
| 432 | */ |
| 433 | if (in_mont != NULL((void *)0)) |
| 434 | mont = in_mont; |
| 435 | else { |
| 436 | if ((mont = BN_MONT_CTX_new()) == NULL((void *)0)) |
| 437 | goto err; |
| 438 | if (!BN_MONT_CTX_set(mont, m, ctx)) |
| 439 | goto err; |
| 440 | } |
| 441 | |
| 442 | /* Get the window size to use with size of p. */ |
| 443 | window = BN_window_bits_for_ctime_exponent_size(bits)((bits) > 937 ? 6 : (bits) > 306 ? 5 : (bits) > 89 ? 4 : (bits) > 22 ? 3 : 1); |
| 444 | #if defined(OPENSSL_BN_ASM_MONT51) |
| 445 | if (window == 6 && bits <= 1024) |
| 446 | window = 5; /* ~5% improvement of 2048-bit RSA sign */ |
| 447 | #endif |
| 448 | |
| 449 | /* Allocate a buffer large enough to hold all of the pre-computed |
| 450 | * powers of am, am itself and tmp. |
| 451 | */ |
| 452 | numPowers = 1 << window; |
| 453 | powerbufLen = sizeof(m->d[0]) * (top * numPowers + |
| 454 | ((2*top) > numPowers ? (2*top) : numPowers)); |
| 455 | if ((powerbufFree = calloc(powerbufLen + |
| 456 | MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH( 64 ), 1)) == NULL((void *)0)) |
| 457 | goto err; |
| 458 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree)((unsigned char*)(powerbufFree) + (( 64 ) - (((size_t)(powerbufFree )) & ((( 64 ) - 1))))); |
| 459 | |
| 460 | /* lay down tmp and am right after powers table */ |
| 461 | tmp.d = (BN_ULONGunsigned long *)(powerbuf + sizeof(m->d[0]) * top * numPowers); |
| 462 | am.d = tmp.d + top; |
| 463 | tmp.top = am.top = 0; |
| 464 | tmp.dmax = am.dmax = top; |
| 465 | tmp.neg = am.neg = 0; |
| 466 | tmp.flags = am.flags = BN_FLG_STATIC_DATA0x02; |
| 467 | |
| 468 | /* prepare a^0 in Montgomery domain */ |
| 469 | #if 1 |
| 470 | if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) |
| 471 | goto err; |
| 472 | #else |
| 473 | tmp.d[0] = (0 - m - >d[0]) & BN_MASK2(0xffffffffffffffffL); /* 2^(top*BN_BITS2) - m */ |
| 474 | for (i = 1; i < top; i++) |
| 475 | tmp.d[i] = (~m->d[i]) & BN_MASK2(0xffffffffffffffffL); |
| 476 | tmp.top = top; |
| 477 | #endif |
| 478 | |
| 479 | /* prepare a^1 in Montgomery domain */ |
| 480 | if (!BN_nnmod(&am, a, m, ctx)) |
| 481 | goto err; |
| 482 | if (!BN_to_montgomery(&am, &am, mont, ctx)) |
| 483 | goto err; |
| 484 | |
| 485 | #if defined(OPENSSL_BN_ASM_MONT51) |
| 486 | /* This optimization uses ideas from http://eprint.iacr.org/2011/239, |
| 487 | * specifically optimization of cache-timing attack countermeasures |
| 488 | * and pre-computation optimization. */ |
| 489 | |
| 490 | /* Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as |
| 491 | * 512-bit RSA is hardly relevant, we omit it to spare size... */ |
| 492 | if (window == 5 && top > 1) { |
| 493 | void bn_mul_mont_gather5(BN_ULONGunsigned long *rp, const BN_ULONGunsigned long *ap, |
| 494 | const void *table, const BN_ULONGunsigned long *np, |
| 495 | const BN_ULONGunsigned long *n0, int num, int power); |
| 496 | void bn_scatter5(const BN_ULONGunsigned long *inp, size_t num, |
| 497 | void *table, size_t power); |
| 498 | void bn_gather5(BN_ULONGunsigned long *out, size_t num, |
| 499 | void *table, size_t power); |
| 500 | |
| 501 | BN_ULONGunsigned long *np = mont->N.d, *n0 = mont->n0; |
| 502 | |
| 503 | /* BN_to_montgomery can contaminate words above .top |
| 504 | * [in BN_DEBUG[_DEBUG] build]... */ |
| 505 | for (i = am.top; i < top; i++) |
| 506 | am.d[i] = 0; |
| 507 | for (i = tmp.top; i < top; i++) |
| 508 | tmp.d[i] = 0; |
| 509 | |
| 510 | bn_scatter5(tmp.d, top, powerbuf, 0); |
| 511 | bn_scatter5(am.d, am.top, powerbuf, 1); |
| 512 | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); |
| 513 | bn_scatter5(tmp.d, top, powerbuf, 2); |
| 514 | |
| 515 | #if 0 |
| 516 | for (i = 3; i < 32; i++) { |
| 517 | /* Calculate a^i = a^(i-1) * a */ |
| 518 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, |
| 519 | n0, top, i - 1); |
| 520 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 521 | } |
| 522 | #else |
| 523 | /* same as above, but uses squaring for 1/2 of operations */ |
| 524 | for (i = 4; i < 32; i*=2) { |
| 525 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 526 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 527 | } |
| 528 | for (i = 3; i < 8; i += 2) { |
| 529 | int j; |
| 530 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, |
| 531 | n0, top, i - 1); |
| 532 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 533 | for (j = 2 * i; j < 32; j *= 2) { |
| 534 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 535 | bn_scatter5(tmp.d, top, powerbuf, j); |
| 536 | } |
| 537 | } |
| 538 | for (; i < 16; i += 2) { |
| 539 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, |
| 540 | n0, top, i - 1); |
| 541 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 542 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 543 | bn_scatter5(tmp.d, top, powerbuf, 2*i); |
| 544 | } |
| 545 | for (; i < 32; i += 2) { |
| 546 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, |
| 547 | n0, top, i - 1); |
| 548 | bn_scatter5(tmp.d, top, powerbuf, i); |
| 549 | } |
| 550 | #endif |
| 551 | bits--; |
| 552 | for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) |
| 553 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| 554 | bn_gather5(tmp.d, top, powerbuf, wvalue); |
| 555 | |
| 556 | /* Scan the exponent one window at a time starting from the most |
| 557 | * significant bits. |
| 558 | */ |
| 559 | while (bits >= 0) { |
| 560 | for (wvalue = 0, i = 0; i < 5; i++, bits--) |
| 561 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| 562 | |
| 563 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 564 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 565 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 566 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 567 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| 568 | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
| 569 | } |
| 570 | |
| 571 | tmp.top = top; |
| 572 | bn_correct_top(&tmp); |
| 573 | } else |
| 574 | #endif |
| 575 | { |
| 576 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, |
| 577 | window)) |
| 578 | goto err; |
| 579 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, |
| 580 | window)) |
| 581 | goto err; |
| 582 | |
| 583 | /* If the window size is greater than 1, then calculate |
| 584 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) |
| 585 | * (even powers could instead be computed as (a^(i/2))^2 |
| 586 | * to use the slight performance advantage of sqr over mul). |
| 587 | */ |
| 588 | if (window > 1) { |
| 589 | if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) |
| 590 | goto err; |
| 591 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, |
| 592 | 2, window)) |
| 593 | goto err; |
| 594 | for (i = 3; i < numPowers; i++) { |
| 595 | /* Calculate a^i = a^(i-1) * a */ |
| 596 | if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, |
| 597 | mont, ctx)) |
| 598 | goto err; |
| 599 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, |
| 600 | powerbuf, i, window)) |
| 601 | goto err; |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | bits--; |
| 606 | for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) |
| 607 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| 608 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, |
| 609 | wvalue, window)) |
| 610 | goto err; |
| 611 | |
| 612 | /* Scan the exponent one window at a time starting from the most |
| 613 | * significant bits. |
| 614 | */ |
| 615 | while (bits >= 0) { |
| 616 | wvalue = 0; /* The 'value' of the window */ |
| 617 | |
| 618 | /* Scan the window, squaring the result as we go */ |
| 619 | for (i = 0; i < window; i++, bits--) { |
| 620 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, |
| 621 | mont, ctx)) |
| 622 | goto err; |
| 623 | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| 624 | } |
| 625 | |
| 626 | /* Fetch the appropriate pre-computed value from the pre-buf */ |
| 627 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, |
| 628 | wvalue, window)) |
| 629 | goto err; |
| 630 | |
| 631 | /* Multiply the result into the intermediate result */ |
| 632 | if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) |
| 633 | goto err; |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /* Convert the final result from montgomery to standard format */ |
| 638 | if (!BN_from_montgomery(rr, &tmp, mont, ctx)) |
| 639 | goto err; |
| 640 | ret = 1; |
| 641 | |
| 642 | err: |
| 643 | if ((in_mont == NULL((void *)0)) && (mont != NULL((void *)0))) |
| 644 | BN_MONT_CTX_free(mont); |
| 645 | freezero(powerbufFree, powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH( 64 )); |
| 646 | BN_CTX_end(ctx); |
| 647 | return (ret); |
| 648 | } |
| 649 | LCRYPTO_ALIAS(BN_mod_exp_mont_consttime)asm(""); |
| 650 | |
| 651 | static int |
| 652 | BN_mod_exp_mont_internal(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 653 | BN_CTX *ctx, BN_MONT_CTX *in_mont, int ct) |
| 654 | { |
| 655 | int i, j, bits, ret = 0, wstart, wend, window, wvalue; |
| 656 | int start = 1; |
| 657 | BIGNUM *d, *r; |
| 658 | const BIGNUM *aa; |
| 659 | /* Table of variables obtained from 'ctx' */ |
| 660 | BIGNUM *val[TABLE_SIZE32]; |
| 661 | BN_MONT_CTX *mont = NULL((void *)0); |
| 662 | |
| 663 | if (ct) { |
| 664 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont); |
| 665 | } |
| 666 | |
| 667 | |
| 668 | if (!BN_is_odd(m)) { |
| 669 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS)ERR_put_error(3,(0xfff),(102),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,669); |
| 670 | return (0); |
| 671 | } |
| 672 | |
| 673 | bits = BN_num_bits(p); |
| 674 | if (bits == 0) { |
| 675 | /* x**0 mod 1 is still zero. */ |
| 676 | if (BN_abs_is_word(m, 1)) { |
| 677 | ret = 1; |
| 678 | BN_zero(rr); |
| 679 | } else |
| 680 | ret = BN_one(rr); |
| 681 | return ret; |
| 682 | } |
| 683 | |
| 684 | BN_CTX_start(ctx); |
| 685 | if ((d = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 686 | goto err; |
| 687 | if ((r = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 688 | goto err; |
| 689 | if ((val[0] = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 690 | goto err; |
| 691 | |
| 692 | /* If this is not done, things will break in the montgomery |
| 693 | * part */ |
| 694 | |
| 695 | if (in_mont != NULL((void *)0)) |
| 696 | mont = in_mont; |
| 697 | else { |
| 698 | if ((mont = BN_MONT_CTX_new()) == NULL((void *)0)) |
| 699 | goto err; |
| 700 | if (!BN_MONT_CTX_set(mont, m, ctx)) |
| 701 | goto err; |
| 702 | } |
| 703 | |
| 704 | if (!BN_nnmod(val[0], a,m, ctx)) |
| 705 | goto err; |
| 706 | aa = val[0]; |
| 707 | if (BN_is_zero(aa)) { |
| 708 | BN_zero(rr); |
| 709 | ret = 1; |
| 710 | goto err; |
| 711 | } |
| 712 | if (!BN_to_montgomery(val[0], aa, mont, ctx)) |
| 713 | goto err; |
| 714 | |
| 715 | window = BN_window_bits_for_exponent_size(bits)((bits) > 671 ? 6 : (bits) > 239 ? 5 : (bits) > 79 ? 4 : (bits) > 23 ? 3 : 1); |
| 716 | if (window > 1) { |
| 717 | if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) |
| 718 | goto err; |
| 719 | j = 1 << (window - 1); |
| 720 | for (i = 1; i < j; i++) { |
| 721 | if (((val[i] = BN_CTX_get(ctx)) == NULL((void *)0)) || |
| 722 | !BN_mod_mul_montgomery(val[i], val[i - 1], |
| 723 | d, mont, ctx)) |
| 724 | goto err; |
| 725 | } |
| 726 | } |
| 727 | |
| 728 | start = 1; /* This is used to avoid multiplication etc |
| 729 | * when there is only the value '1' in the |
| 730 | * buffer. */ |
| 731 | wvalue = 0; /* The 'value' of the window */ |
| 732 | wstart = bits - 1; /* The top bit of the window */ |
| 733 | wend = 0; /* The bottom bit of the window */ |
| 734 | |
| 735 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) |
| 736 | goto err; |
| 737 | for (;;) { |
| 738 | if (BN_is_bit_set(p, wstart) == 0) { |
| 739 | if (!start) { |
| 740 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
| 741 | goto err; |
| 742 | } |
| 743 | if (wstart == 0) |
| 744 | break; |
| 745 | wstart--; |
| 746 | continue; |
| 747 | } |
| 748 | /* We now have wstart on a 'set' bit, we now need to work out |
| 749 | * how bit a window to do. To do this we need to scan |
| 750 | * forward until the last set bit before the end of the |
| 751 | * window */ |
| 752 | j = wstart; |
| 753 | wvalue = 1; |
| 754 | wend = 0; |
| 755 | for (i = 1; i < window; i++) { |
| 756 | if (wstart - i < 0) |
| 757 | break; |
| 758 | if (BN_is_bit_set(p, wstart - i)) { |
| 759 | wvalue <<= (i - wend); |
| 760 | wvalue |= 1; |
| 761 | wend = i; |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | /* wend is the size of the current window */ |
| 766 | j = wend + 1; |
| 767 | /* add the 'bytes above' */ |
| 768 | if (!start) |
| 769 | for (i = 0; i < j; i++) { |
| 770 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
| 771 | goto err; |
| 772 | } |
| 773 | |
| 774 | /* wvalue will be an odd number < 2^window */ |
| 775 | if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) |
| 776 | goto err; |
| 777 | |
| 778 | /* move the 'window' down further */ |
| 779 | wstart -= wend + 1; |
| 780 | wvalue = 0; |
| 781 | start = 0; |
| 782 | if (wstart < 0) |
| 783 | break; |
| 784 | } |
| 785 | if (!BN_from_montgomery(rr, r,mont, ctx)) |
| 786 | goto err; |
| 787 | ret = 1; |
| 788 | |
| 789 | err: |
| 790 | if ((in_mont == NULL((void *)0)) && (mont != NULL((void *)0))) |
| 791 | BN_MONT_CTX_free(mont); |
| 792 | BN_CTX_end(ctx); |
| 793 | return (ret); |
| 794 | } |
| 795 | |
| 796 | int |
| 797 | BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 798 | BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| 799 | { |
| 800 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, |
| 801 | (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0)); |
| 802 | } |
| 803 | |
| 804 | int |
| 805 | BN_mod_exp_mont_ct(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 806 | BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| 807 | { |
| 808 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, 1); |
| 809 | } |
| 810 | |
| 811 | int |
| 812 | BN_mod_exp_mont_nonct(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 813 | BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| 814 | { |
| 815 | return BN_mod_exp_mont_internal(rr, a, p, m, ctx, in_mont, 0); |
| 816 | } |
| 817 | |
| 818 | int |
| 819 | BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONGunsigned long a, const BIGNUM *p, const BIGNUM *m, |
| 820 | BN_CTX *ctx, BN_MONT_CTX *in_mont) |
| 821 | { |
| 822 | BN_MONT_CTX *mont = NULL((void *)0); |
| 823 | int b, bits, ret = 0; |
| 824 | int r_is_one; |
| 825 | BN_ULONGunsigned long w, next_w; |
| 826 | BIGNUM *d, *r, *t; |
| 827 | BIGNUM *swap_tmp; |
| 828 | |
| 829 | #define BN_MOD_MUL_WORD(r, w, m)(BN_mul_word(r, (w)) && ( (BN_mod_ct(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) \ |
| 830 | (BN_mul_word(r, (w)) && \ |
| 831 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \ |
| 832 | (BN_mod_ct(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1)))) |
| 833 | /* BN_MOD_MUL_WORD is only used with 'w' large, |
| 834 | * so the BN_ucmp test is probably more overhead |
| 835 | * than always using BN_mod (which uses bn_copy if |
| 836 | * a similar test returns true). */ |
| 837 | /* We can use BN_mod and do not need BN_nnmod because our |
| 838 | * accumulator is never negative (the result of BN_mod does |
| 839 | * not depend on the sign of the modulus). |
| 840 | */ |
| 841 | #define BN_TO_MONTGOMERY_WORD(r, w, mont)(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont) , ctx)) \ |
| 842 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx)) |
| 843 | |
| 844 | if (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0) { |
| 845 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
| 846 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED)ERR_put_error(3,(0xfff),((2|64)),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,846); |
| 847 | return -1; |
| 848 | } |
| 849 | |
| 850 | |
| 851 | if (!BN_is_odd(m)) { |
| 852 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS)ERR_put_error(3,(0xfff),(102),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,852); |
| 853 | return (0); |
| 854 | } |
| 855 | if (m->top == 1) |
| 856 | a %= m->d[0]; /* make sure that 'a' is reduced */ |
| 857 | |
| 858 | bits = BN_num_bits(p); |
| 859 | if (bits == 0) { |
| 860 | /* x**0 mod 1 is still zero. */ |
| 861 | if (BN_abs_is_word(m, 1)) { |
| 862 | ret = 1; |
| 863 | BN_zero(rr); |
| 864 | } else |
| 865 | ret = BN_one(rr); |
| 866 | return ret; |
| 867 | } |
| 868 | if (a == 0) { |
| 869 | BN_zero(rr); |
| 870 | ret = 1; |
| 871 | return ret; |
| 872 | } |
| 873 | |
| 874 | BN_CTX_start(ctx); |
| 875 | if ((d = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 876 | goto err; |
| 877 | if ((r = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 878 | goto err; |
| 879 | if ((t = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 880 | goto err; |
| 881 | |
| 882 | if (in_mont != NULL((void *)0)) |
| 883 | mont = in_mont; |
| 884 | else { |
| 885 | if ((mont = BN_MONT_CTX_new()) == NULL((void *)0)) |
| 886 | goto err; |
| 887 | if (!BN_MONT_CTX_set(mont, m, ctx)) |
| 888 | goto err; |
| 889 | } |
| 890 | |
| 891 | r_is_one = 1; /* except for Montgomery factor */ |
| 892 | |
| 893 | /* bits-1 >= 0 */ |
| 894 | |
| 895 | /* The result is accumulated in the product r*w. */ |
| 896 | w = a; /* bit 'bits-1' of 'p' is always set */ |
| 897 | for (b = bits - 2; b >= 0; b--) { |
| 898 | /* First, square r*w. */ |
| 899 | next_w = w * w; |
| 900 | if ((next_w / w) != w) /* overflow */ |
| 901 | { |
| 902 | if (r_is_one) { |
| 903 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont) , ctx))) |
| 904 | goto err; |
| 905 | r_is_one = 0; |
| 906 | } else { |
| 907 | if (!BN_MOD_MUL_WORD(r, w, m)(BN_mul_word(r, (w)) && ( (BN_mod_ct(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))) |
| 908 | goto err; |
| 909 | } |
| 910 | next_w = 1; |
| 911 | } |
| 912 | w = next_w; |
| 913 | if (!r_is_one) { |
| 914 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) |
| 915 | goto err; |
| 916 | } |
| 917 | |
| 918 | /* Second, multiply r*w by 'a' if exponent bit is set. */ |
| 919 | if (BN_is_bit_set(p, b)) { |
| 920 | next_w = w * a; |
| 921 | if ((next_w / a) != w) /* overflow */ |
| 922 | { |
| 923 | if (r_is_one) { |
| 924 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont) , ctx))) |
| 925 | goto err; |
| 926 | r_is_one = 0; |
| 927 | } else { |
| 928 | if (!BN_MOD_MUL_WORD(r, w, m)(BN_mul_word(r, (w)) && ( (BN_mod_ct(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))) |
| 929 | goto err; |
| 930 | } |
| 931 | next_w = a; |
| 932 | } |
| 933 | w = next_w; |
| 934 | } |
| 935 | } |
| 936 | |
| 937 | /* Finally, set r:=r*w. */ |
| 938 | if (w != 1) { |
| 939 | if (r_is_one) { |
| 940 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont)(BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont) , ctx))) |
| 941 | goto err; |
| 942 | r_is_one = 0; |
| 943 | } else { |
| 944 | if (!BN_MOD_MUL_WORD(r, w, m)(BN_mul_word(r, (w)) && ( (BN_mod_ct(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))) |
| 945 | goto err; |
| 946 | } |
| 947 | } |
| 948 | |
| 949 | if (r_is_one) /* can happen only if a == 1*/ |
| 950 | { |
| 951 | if (!BN_one(rr)) |
| 952 | goto err; |
| 953 | } else { |
| 954 | if (!BN_from_montgomery(rr, r, mont, ctx)) |
| 955 | goto err; |
| 956 | } |
| 957 | ret = 1; |
| 958 | |
| 959 | err: |
| 960 | if ((in_mont == NULL((void *)0)) && (mont != NULL((void *)0))) |
| 961 | BN_MONT_CTX_free(mont); |
| 962 | BN_CTX_end(ctx); |
| 963 | return (ret); |
| 964 | } |
| 965 | LCRYPTO_ALIAS(BN_mod_exp_mont_word)asm(""); |
| 966 | |
| 967 | int |
| 968 | BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 969 | BN_CTX *ctx) |
| 970 | { |
| 971 | int i, j, bits, wstart, wend, window, wvalue; |
| 972 | int start = 1; |
| 973 | BIGNUM *aa, *q; |
| 974 | /* Table of variables obtained from 'ctx' */ |
| 975 | BIGNUM *val[TABLE_SIZE32]; |
| 976 | BN_RECP_CTX recp; |
| 977 | int ret = 0; |
| 978 | |
| 979 | if (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0) { |
| 980 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */ |
| 981 | BNerror(ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED)ERR_put_error(3,(0xfff),((2|64)),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,981); |
| 982 | return -1; |
| 983 | } |
| 984 | |
| 985 | bits = BN_num_bits(p); |
| 986 | if (bits == 0) { |
| 987 | /* x**0 mod 1 is still zero. */ |
| 988 | if (BN_abs_is_word(m, 1)) { |
| 989 | ret = 1; |
| 990 | BN_zero(r); |
| 991 | } else |
| 992 | ret = BN_one(r); |
| 993 | return ret; |
| 994 | } |
| 995 | |
| 996 | BN_RECP_CTX_init(&recp); |
| 997 | |
| 998 | BN_CTX_start(ctx); |
| 999 | if ((aa = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 1000 | goto err; |
| 1001 | if ((q = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 1002 | goto err; |
| 1003 | if ((val[0] = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 1004 | goto err; |
| 1005 | |
| 1006 | if (m->neg) { |
| 1007 | /* ignore sign of 'm' */ |
| 1008 | if (!bn_copy(aa, m)) |
| 1009 | goto err; |
| 1010 | aa->neg = 0; |
| 1011 | if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) |
| 1012 | goto err; |
| 1013 | } else { |
| 1014 | if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) |
| 1015 | goto err; |
| 1016 | } |
| 1017 | |
| 1018 | if (!BN_nnmod(val[0], a, m, ctx)) |
| 1019 | goto err; |
| 1020 | if (BN_is_zero(val[0])) { |
| 1021 | BN_zero(r); |
| 1022 | goto done; |
| 1023 | } |
| 1024 | if (!bn_copy(q, p)) |
| 1025 | goto err; |
| 1026 | |
| 1027 | window = BN_window_bits_for_exponent_size(bits)((bits) > 671 ? 6 : (bits) > 239 ? 5 : (bits) > 79 ? 4 : (bits) > 23 ? 3 : 1); |
| 1028 | if (window > 1) { |
| 1029 | if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) |
| 1030 | goto err; |
| 1031 | j = 1 << (window - 1); |
| 1032 | for (i = 1; i < j; i++) { |
| 1033 | if (((val[i] = BN_CTX_get(ctx)) == NULL((void *)0)) || |
| 1034 | !BN_mod_mul_reciprocal(val[i], val[i - 1], |
| 1035 | aa, &recp, ctx)) |
| 1036 | goto err; |
| 1037 | } |
| 1038 | } |
| 1039 | |
| 1040 | start = 1; /* This is used to avoid multiplication etc |
| 1041 | * when there is only the value '1' in the |
| 1042 | * buffer. */ |
| 1043 | wvalue = 0; /* The 'value' of the window */ |
| 1044 | wstart = bits - 1; /* The top bit of the window */ |
| 1045 | wend = 0; /* The bottom bit of the window */ |
| 1046 | |
| 1047 | if (!BN_one(r)) |
| 1048 | goto err; |
| 1049 | |
| 1050 | for (;;) { |
| 1051 | if (BN_is_bit_set(q, wstart) == 0) { |
| 1052 | if (!start) |
| 1053 | if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) |
| 1054 | goto err; |
| 1055 | if (wstart == 0) |
| 1056 | break; |
| 1057 | wstart--; |
| 1058 | continue; |
| 1059 | } |
| 1060 | /* We now have wstart on a 'set' bit, we now need to work out |
| 1061 | * how bit a window to do. To do this we need to scan |
| 1062 | * forward until the last set bit before the end of the |
| 1063 | * window */ |
| 1064 | j = wstart; |
| 1065 | wvalue = 1; |
| 1066 | wend = 0; |
| 1067 | for (i = 1; i < window; i++) { |
| 1068 | if (wstart - i < 0) |
| 1069 | break; |
| 1070 | if (BN_is_bit_set(q, wstart - i)) { |
| 1071 | wvalue <<= (i - wend); |
| 1072 | wvalue |= 1; |
| 1073 | wend = i; |
| 1074 | } |
| 1075 | } |
| 1076 | |
| 1077 | /* wend is the size of the current window */ |
| 1078 | j = wend + 1; |
| 1079 | /* add the 'bytes above' */ |
| 1080 | if (!start) |
| 1081 | for (i = 0; i < j; i++) { |
| 1082 | if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) |
| 1083 | goto err; |
| 1084 | } |
| 1085 | |
| 1086 | /* wvalue will be an odd number < 2^window */ |
| 1087 | if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) |
| 1088 | goto err; |
| 1089 | |
| 1090 | /* move the 'window' down further */ |
| 1091 | wstart -= wend + 1; |
| 1092 | wvalue = 0; |
| 1093 | start = 0; |
| 1094 | if (wstart < 0) |
| 1095 | break; |
| 1096 | } |
| 1097 | |
| 1098 | done: |
| 1099 | ret = 1; |
| 1100 | |
| 1101 | err: |
| 1102 | BN_CTX_end(ctx); |
| 1103 | BN_RECP_CTX_free(&recp); |
| 1104 | |
| 1105 | return ret; |
| 1106 | } |
| 1107 | |
| 1108 | static int |
| 1109 | BN_mod_exp_internal(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 1110 | BN_CTX *ctx, int ct) |
| 1111 | { |
| 1112 | int ret; |
| 1113 | |
| 1114 | |
| 1115 | /* For even modulus m = 2^k*m_odd, it might make sense to compute |
| 1116 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery |
| 1117 | * exponentiation for the odd part), using appropriate exponent |
| 1118 | * reductions, and combine the results using the CRT. |
| 1119 | * |
| 1120 | * For now, we use Montgomery only if the modulus is odd; otherwise, |
| 1121 | * exponentiation using the reciprocal-based quick remaindering |
| 1122 | * algorithm is used. |
| 1123 | * |
| 1124 | * (Timing obtained with expspeed.c [computations a^p mod m |
| 1125 | * where a, p, m are of the same length: 256, 512, 1024, 2048, |
| 1126 | * 4096, 8192 bits], compared to the running time of the |
| 1127 | * standard algorithm: |
| 1128 | * |
| 1129 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration] |
| 1130 | * 55 .. 77 % [UltraSparc processor, but |
| 1131 | * debug-solaris-sparcv8-gcc conf.] |
| 1132 | * |
| 1133 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration] |
| 1134 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc] |
| 1135 | * |
| 1136 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont |
| 1137 | * at 2048 and more bits, but at 512 and 1024 bits, it was |
| 1138 | * slower even than the standard algorithm! |
| 1139 | * |
| 1140 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations] |
| 1141 | * should be obtained when the new Montgomery reduction code |
| 1142 | * has been integrated into OpenSSL.) |
| 1143 | */ |
| 1144 | |
| 1145 | if (BN_is_odd(m)) { |
| 1146 | if (a->top == 1 && !a->neg && !ct) { |
| 1147 | BN_ULONGunsigned long A = a->d[0]; |
| 1148 | ret = BN_mod_exp_mont_word(r, A,p, m,ctx, NULL((void *)0)); |
| 1149 | } else |
| 1150 | ret = BN_mod_exp_mont_ct(r, a,p, m,ctx, NULL((void *)0)); |
| 1151 | } else { |
| 1152 | ret = BN_mod_exp_recp(r, a,p, m, ctx); |
| 1153 | } |
| 1154 | |
| 1155 | return (ret); |
| 1156 | } |
| 1157 | |
| 1158 | int |
| 1159 | BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 1160 | BN_CTX *ctx) |
| 1161 | { |
| 1162 | return BN_mod_exp_internal(r, a, p, m, ctx, |
| 1163 | (BN_get_flags(p, BN_FLG_CONSTTIME0x04) != 0)); |
| 1164 | } |
| 1165 | |
| 1166 | int |
| 1167 | BN_mod_exp_ct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 1168 | BN_CTX *ctx) |
| 1169 | { |
| 1170 | return BN_mod_exp_internal(r, a, p, m, ctx, 1); |
| 1171 | } |
| 1172 | |
| 1173 | int |
| 1174 | BN_mod_exp_nonct(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| 1175 | BN_CTX *ctx) |
| 1176 | { |
| 1177 | return BN_mod_exp_internal(r, a, p, m, ctx, 0); |
| 1178 | } |
| 1179 | |
| 1180 | int |
| 1181 | BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, |
| 1182 | const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, BN_CTX *ctx, |
| 1183 | BN_MONT_CTX *in_mont) |
| 1184 | { |
| 1185 | int i, j, bits, b, bits1, bits2, ret = 0, wpos1, wpos2, window1, window2, wvalue1, wvalue2; |
| 1186 | int r_is_one = 1; |
| 1187 | BIGNUM *d, *r; |
| 1188 | const BIGNUM *a_mod_m; |
| 1189 | /* Tables of variables obtained from 'ctx' */ |
| 1190 | BIGNUM *val1[TABLE_SIZE32], *val2[TABLE_SIZE32]; |
| 1191 | BN_MONT_CTX *mont = NULL((void *)0); |
| 1192 | |
| 1193 | |
| 1194 | if (!BN_is_odd(m)) { |
| 1195 | BNerror(BN_R_CALLED_WITH_EVEN_MODULUS)ERR_put_error(3,(0xfff),(102),"/usr/src/lib/libcrypto/bn/bn_exp.c" ,1195); |
| 1196 | return (0); |
| 1197 | } |
| 1198 | bits1 = BN_num_bits(p1); |
| 1199 | bits2 = BN_num_bits(p2); |
| 1200 | if ((bits1 == 0) && (bits2 == 0)) { |
| 1201 | ret = BN_one(rr); |
| 1202 | return ret; |
| 1203 | } |
| 1204 | |
| 1205 | bits = (bits1 > bits2) ? bits1 : bits2; |
| 1206 | |
| 1207 | BN_CTX_start(ctx); |
| 1208 | if ((d = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 1209 | goto err; |
| 1210 | if ((r = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 1211 | goto err; |
| 1212 | if ((val1[0] = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 1213 | goto err; |
| 1214 | if ((val2[0] = BN_CTX_get(ctx)) == NULL((void *)0)) |
| 1215 | goto err; |
| 1216 | |
| 1217 | if (in_mont != NULL((void *)0)) |
| 1218 | mont = in_mont; |
| 1219 | else { |
| 1220 | if ((mont = BN_MONT_CTX_new()) == NULL((void *)0)) |
| 1221 | goto err; |
| 1222 | if (!BN_MONT_CTX_set(mont, m, ctx)) |
| 1223 | goto err; |
| 1224 | } |
| 1225 | |
| 1226 | window1 = BN_window_bits_for_exponent_size(bits1)((bits1) > 671 ? 6 : (bits1) > 239 ? 5 : (bits1) > 79 ? 4 : (bits1) > 23 ? 3 : 1); |
| 1227 | window2 = BN_window_bits_for_exponent_size(bits2)((bits2) > 671 ? 6 : (bits2) > 239 ? 5 : (bits2) > 79 ? 4 : (bits2) > 23 ? 3 : 1); |
| 1228 | |
| 1229 | /* |
| 1230 | * Build table for a1: val1[i] := a1^(2*i + 1) mod m for i = 0 .. 2^(window1-1) |
| 1231 | */ |
| 1232 | if (!BN_nnmod(val1[0], a1, m, ctx)) |
| 1233 | goto err; |
| 1234 | a_mod_m = val1[0]; |
| 1235 | if (BN_is_zero(a_mod_m)) { |
| 1236 | BN_zero(rr); |
| 1237 | ret = 1; |
| 1238 | goto err; |
| 1239 | } |
| 1240 | |
| 1241 | if (!BN_to_montgomery(val1[0], a_mod_m, mont, ctx)) |
| 1242 | goto err; |
| 1243 | if (window1 > 1) { |
| 1244 | if (!BN_mod_mul_montgomery(d, val1[0], val1[0], mont, ctx)) |
| 1245 | goto err; |
| 1246 | |
| 1247 | j = 1 << (window1 - 1); |
| 1248 | for (i = 1; i < j; i++) { |
| 1249 | if (((val1[i] = BN_CTX_get(ctx)) == NULL((void *)0)) || |
| 1250 | !BN_mod_mul_montgomery(val1[i], val1[i - 1], |
| 1251 | d, mont, ctx)) |
| 1252 | goto err; |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | |
| 1257 | /* |
| 1258 | * Build table for a2: val2[i] := a2^(2*i + 1) mod m for i = 0 .. 2^(window2-1) |
| 1259 | */ |
| 1260 | if (!BN_nnmod(val2[0], a2, m, ctx)) |
| 1261 | goto err; |
| 1262 | a_mod_m = val2[0]; |
| 1263 | if (BN_is_zero(a_mod_m)) { |
| 1264 | BN_zero(rr); |
| 1265 | ret = 1; |
| 1266 | goto err; |
| 1267 | } |
| 1268 | if (!BN_to_montgomery(val2[0], a_mod_m, mont, ctx)) |
| 1269 | goto err; |
| 1270 | if (window2 > 1) { |
| 1271 | if (!BN_mod_mul_montgomery(d, val2[0], val2[0], mont, ctx)) |
| 1272 | goto err; |
| 1273 | |
| 1274 | j = 1 << (window2 - 1); |
| 1275 | for (i = 1; i < j; i++) { |
| 1276 | if (((val2[i] = BN_CTX_get(ctx)) == NULL((void *)0)) || |
| 1277 | !BN_mod_mul_montgomery(val2[i], val2[i - 1], |
| 1278 | d, mont, ctx)) |
| 1279 | goto err; |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | |
| 1284 | /* Now compute the power product, using independent windows. */ |
| 1285 | r_is_one = 1; |
| 1286 | wvalue1 = 0; /* The 'value' of the first window */ |
| 1287 | wvalue2 = 0; /* The 'value' of the second window */ |
| 1288 | wpos1 = 0; /* If wvalue1 > 0, the bottom bit of the first window */ |
| 1289 | wpos2 = 0; /* If wvalue2 > 0, the bottom bit of the second window */ |
| 1290 | |
| 1291 | if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) |
| 1292 | goto err; |
| 1293 | for (b = bits - 1; b >= 0; b--) { |
| 1294 | if (!r_is_one) { |
| 1295 | if (!BN_mod_mul_montgomery(r, r,r, mont, ctx)) |
| 1296 | goto err; |
| 1297 | } |
| 1298 | |
| 1299 | if (!wvalue1) |
| 1300 | if (BN_is_bit_set(p1, b)) { |
| 1301 | /* consider bits b-window1+1 .. b for this window */ |
| 1302 | i = b - window1 + 1; |
| 1303 | while (!BN_is_bit_set(p1, i)) /* works for i<0 */ |
| 1304 | i++; |
| 1305 | wpos1 = i; |
| 1306 | wvalue1 = 1; |
| 1307 | for (i = b - 1; i >= wpos1; i--) { |
| 1308 | wvalue1 <<= 1; |
| 1309 | if (BN_is_bit_set(p1, i)) |
| 1310 | wvalue1++; |
| 1311 | } |
| 1312 | } |
| 1313 | |
| 1314 | if (!wvalue2) |
| 1315 | if (BN_is_bit_set(p2, b)) { |
| 1316 | /* consider bits b-window2+1 .. b for this window */ |
| 1317 | i = b - window2 + 1; |
| 1318 | while (!BN_is_bit_set(p2, i)) |
| 1319 | i++; |
| 1320 | wpos2 = i; |
| 1321 | wvalue2 = 1; |
| 1322 | for (i = b - 1; i >= wpos2; i--) { |
| 1323 | wvalue2 <<= 1; |
| 1324 | if (BN_is_bit_set(p2, i)) |
| 1325 | wvalue2++; |
| 1326 | } |
| 1327 | } |
| 1328 | |
| 1329 | if (wvalue1 && b == wpos1) { |
| 1330 | /* wvalue1 is odd and < 2^window1 */ |
| 1331 | if (!BN_mod_mul_montgomery(r, r, val1[wvalue1 >> 1], |
| 1332 | mont, ctx)) |
| 1333 | goto err; |
| 1334 | wvalue1 = 0; |
| 1335 | r_is_one = 0; |
| 1336 | } |
| 1337 | |
| 1338 | if (wvalue2 && b == wpos2) { |
| 1339 | /* wvalue2 is odd and < 2^window2 */ |
| 1340 | if (!BN_mod_mul_montgomery(r, r, val2[wvalue2 >> 1], |
| 1341 | mont, ctx)) |
| 1342 | goto err; |
| 1343 | wvalue2 = 0; |
| 1344 | r_is_one = 0; |
| 1345 | } |
| 1346 | } |
| 1347 | if (!BN_from_montgomery(rr, r,mont, ctx)) |
| 1348 | goto err; |
| 1349 | ret = 1; |
| 1350 | |
| 1351 | err: |
| 1352 | if ((in_mont == NULL((void *)0)) && (mont != NULL((void *)0))) |
| 1353 | BN_MONT_CTX_free(mont); |
| 1354 | BN_CTX_end(ctx); |
| 1355 | return (ret); |
| 1356 | } |
| 1357 | LCRYPTO_ALIAS(BN_mod_exp2_mont)asm(""); |